WorldWideScience

Sample records for collagenase inhibitor production

  1. The production of collagenase by adherent mononuclear cells cultured from human peripheral blood.

    Science.gov (United States)

    Louie, J S; Weiss, J; Ryhänen, L; Nies, K M; Rantala-Ryhänen, S; Uitto, J

    1984-12-01

    Mononuclear cells were isolated from human peripheral blood by Ficoll-Hypaque centrifugation, and the cells adherent to plastic substrata were cultured in serum-free media supplemented with lactalbumin hydrolysate. These cell cultures, which consisted predominantly of monocyte-macrophages as judged by nonspecific esterase staining, accumulated collagenase in the medium. This collagenase resembled other vertebrate collagenases in that it cleaved native triple-helical type I collagen at a locus 3/4-length away from the amino-terminal end of the molecule. The collagenase activity was inhibited by Na2EDTA, dithiothreitol, and fetal calf serum, while the addition of Ca++ or N-ethylmaleimide enhanced the enzyme activity. The accumulation of collagenase in the culture media was markedly enhanced by the incubation of cells with concanavalin A or phorbol myristic acetate. In the presence of cycloheximide, the levels of collagenase activity were markedly reduced, suggesting that active protein synthesis was required to express the enzyme activity. In additional experiments, monocytes were further purified by counterflow centrifugation-elutriation. The collagenase production was markedly increased in cultures enriched in monocyte-macrophages and devoid of polymorphonuclear leukocytes. The accumulation of collagenase in monocyte cultures incubated for 48 hours in the presence of concanavalin A or phorbol myristic acetate was of the same order of magnitude as in parallel cultures containing the same number of polymorphonuclear leukocytes purified by Ficoll-Hypaque centrifugation and Plasmagel sedimentation.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Werb, Z.; Aggeler, J.

    1978-04-01

    We have observed that treatment of rabbit synovial fibroblasts with proteolytic enzymes can induce secretion of collagenase (EC 3.4.24.7) and plasminogen activator (EC 3.4.21.-). Cells treated for 2 to 24 hr with plasmin, trypsin, chymotrypsin, pancreatic elastase, papain, bromelain, thermolysin, or ..cap alpha..-protease but not with thrombin or neuraminidase secreted detectable amounts of collagenase within 16 to 48 hr. Treatment of fibroblasts with trypsin also induced secretion of plasminogen activator. Proteases initiated secretion of collagenase (up to 20 units per 10/sup 6/ cells per 24 hr) only when treatment produced decreased cell adhesion. Collagenase production did not depend on continued presence of proteolytic activity or on subsequent cell adhesion, spreading, or proliferation. Routine subculturing with crude trypsin also induced collagenase secretion by cells. Secretion of collagenase was prevented and normal spreading was obtained if the trypsinized cells were placed into medium containing fetal calf serum. Soybean trypsin inhibitor, ..cap alpha../sub 1/-antitrypsin, bovine serum albumin, collagen, and fibronectin did not inhibit collagenase production. Although proteases that induced collagenase secretion also removed surface glycoprotein, the kinetics of induction of cell protease secretion were different from those for removal of fibronectin. Physiological inducers of secretion of collagenase and plasminogen activator by cells have not been identified. These results suggest that extracellular proteases in conjunction with plasma proteins may govern protease secretion by cells.

  3. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design.

    Science.gov (United States)

    Grams, F; Reinemer, P; Powers, J C; Kleine, T; Pieper, M; Tschesche, H; Huber, R; Bode, W

    1995-03-15

    Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases involved in tissue remodeling. They have also been implicated in various disease processes including tumour invasion and joint destruction and are therefore attractive targets for inhibitor design. For rational drug design, information of inhibitor binding at the atomic level is essential. Recently, we have published the refined high-resolution crystal structure of the catalytic domain of human neutrophil collagenase (HNC) complexed with the inhibitor Pro-Leu-Gly-NHOH, which is a mimic for the unprimed (P3-P1) residues of a bound peptide substrate. We have now determined two additional HNC complexes formed with the thiol inhibitor HSCH2CH(CH2Ph)CO-L-Ala-Gly-NH2 and another hydroxamate inhibitor, HONHCOCH(iBu)CO-L-Ala-Gly-NH2, which were both refined to R-values of 0.183/0.198 at 0.240/0.225-nm resolution. The inhibitor thiol and hydroxamate groups ligand the catalytic zinc, giving rise to a slightly distorted tetrahedral and trigonal-bipyramidal coordination sphere, respectively. The thiol inhibitor diastereomer with S-configuration at the P1' residue (corresponding to an L-amino acid analog) binds to HNC. Its peptidyl moiety mimics binding of primed (P1'-P3') residues of the substrate. In combination with our first structure a continuous hexapeptide corresponding to a peptide substrate productively bound to HNC was constructed and energy-minimized. Proteolytic cleavage of this Michaelis complex is probably general base-catalyzed as proposed for thermolysin, i.e. a glutamate assists nucleophilic attack of a water molecule. Although there are many structural and mechanistic similarities to thermolysin, substrate binding to MMPs differs due to the interactions beyond S1'-P1'. While thermolysin binds substrates with a kink at P1', substrates are bound in an extended conformation in the collagenases. This property explains the tolerance of thermolysin for D-amino acid residues at the P1' position, in

  4. Ovostatin: a novel proteinase inhibitor from chicken egg white. II. Mechanism of inhibition studied with collagenase and thermolysin.

    Science.gov (United States)

    Nagase, H; Harris, E D

    1983-06-25

    The inhibition mechanism of ovostatin was studied using rabbit synovial collagenase and thermolysin. When enzymes were complexed with ovostatin, only the proteolytic activity towards high molecular weight substrates was inhibited. Activity towards low molecular weight substrates was partially modified: the catalytic activity of collagenase bound to ovostatin was inhibited by only 40% towards 2,4-dinitrophenyl-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg and that of thermolysin bound to ovostatin was activated about 2.6-fold towards benzyloxycarbonyl-Gly-Leu-NH2 and benzyloxycarbonyl-Gly-Phe-NH2. Collagenase-ovostatin complexes failed to react with anti-(collagenase) antibody. Saturation of ovostatin with thermolysin prevented the subsequent binding of collagenase. Ovostatin-proteinase complexes ran faster than free ovostatin on 5% polyacrylamide gel electrophoresis. Complexing ovostatin with either collagenase or thermolysin resulted in the cleavage of the quarter-subunit of ovostatin (Mr = 165,000) into two fragments with Mr = 88,000 and 78,000. On the other hand, when the inhibitory capacity of ovostatin was tested with trypsin, chymotrypsin, and papain, only partial inhibition of their proteolytic activities was observed towards azocasein. Stronger inhibition was noted when Azocoll was a substrate, however. Analyses of ovostatin-enzyme complexes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the quarter-subunit of ovostatin was cleaved into several fragments by those enzymes. These results led us to propose that ovostatin inhibits metalloproteinases in preference to proteinases of other classes in a manner similar to alpha 2-macroglobulin; hydrolysis of a peptide bond by a proteinase in the susceptible region of the ovostatin polypeptide chain triggers a conformational change in the ovostatin molecule and the enzyme becomes bound to ovostatin in such a way that the proteinase is sterically hindered from access to large protein substrates and yet

  5. Collagenase Clostridium Histolyticum Injection

    Science.gov (United States)

    ... disease (a thickening of tissue [plaque] inside the penis that causes the penis to curve). Collagenase Clostridium histolyticum injection is in ... the plaque of thickened tissue and allows the penis to be straightened.

  6. Therapeutic applications of collagenase (metalloproteases: A review

    Directory of Open Access Journals (Sweden)

    Hamzeh Alipour

    2016-11-01

    Full Text Available Non-invasive therapeutic methods have recently been used in medical sciences. Enzymes have shown high activity at very low concentrations in laboratories and pharmaceutical, enabling them to play crucial roles in different biological phenomena related to living organism, especially human medicine. Recently, using the therapeutic methods based on non-invasive approaches has been emphasized in medical society. Researchers have focused on producing medicines and tools reducing invasive procedures in medical. Collagenases are proteins which catalyze chemical processes and break the peptide bonds in collagen. Collagen may be generated more than the required amount or produced in unsuitable sites or may not degrade after a certain time. In such cases, using an injectable collagenase or its ointment can be helpful in collagen degradation. In both in vitro and in vivo tests, it has been revealed that collagenases have several therapeutic properties in wound healing, burns, nipple pain and some diseases including intervertebral disc herniation, keloid, cellulite, lipoma among others. This review describes the therapeutic application of collagenase in medical sciences and the process for its production using novel methods, paving the way for more effective and safe applications of collagenases.

  7. Oxidant activation of neutrophil collagenase

    International Nuclear Information System (INIS)

    Muthukumaran, G.; Amoruso, M.A.; Berg, R.A.

    1986-01-01

    Oxidant gas exposure leads to lung injury characterized by acute inflammation, connective tissue breakdown and alveolar damage. In an effort to better understand the mechanism for oxidant gas injury human peripheral neutrophils were isolated and incubated with 14 C-proline labelled extracellular matrix. Neutrophils in the presence of phorbol myristate acetate (PMA) alone (to stimulate the secretion of collagenase from specific granules) had no effect on the matrix. When neutrophils were incubated with PMA and 2 mM p-aminophenylmercuric acetate (APMA), the latter a known activator of collagenase, extensive degradation of the matrix was observed. The generation of the characteristic 3/4- and 1/4-clip fragments of Type I collagen was an indication that the major enzymatic activity operative was collagenase. This was further supported by its requirement for Ca 2+ and inhibition of enzymatic activity by EDTA. Further experiments indicated that 10 μM oxidized glutathione could replace APMA in activating the secreted collagenase. Since GSH is thought to be the major physiological antioxidant in the lung, the degradation of connective tissue caused by inflammation from oxidant gas injury may be attributed to the oxidation of GSH to GSSG with resultant activation of neutrophil collagenase

  8. Natural product-based amyloid inhibitors.

    Science.gov (United States)

    Velander, Paul; Wu, Ling; Henderson, Frances; Zhang, Shijun; Bevan, David R; Xu, Bin

    2017-09-01

    Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579.

    Directory of Open Access Journals (Sweden)

    Carmen M Abfalter

    Full Text Available Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR. B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt and mutated to a proteolytically inactive (ColAE501A version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l. and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications.

  10. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Abfalter, Carmen M; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications.

  11. The interaction of α2-macroglobulin with proteinases. Binding and inhibition of mammalian collagenases and other metal proteinases

    Science.gov (United States)

    Werb, Zena; Burleigh, Mary C.; Barrett, Alan J.; Starkey, Phyllis M.

    1974-01-01

    1. Experiments were performed to determine whether the specific collagenases and other metal proteinases are bound and inhibited by α2-macroglobulin, as are endopeptidases of other classes. 2. A specific collagenase from rabbit synovial cells was inhibited by human serum. The inhibition could be attributed entirely to α2-macroglobulin; α1-trypsin inhibitor was not inhibitory. α2-Macroglobulin presaturated with trypsin or cathepsin B1 did not inhibit collagenase, and pretreatment of α2-macroglobulin with collagenase prevented subsequent reaction with trypsin. The binding of collagenase by α2-macroglobulin was not reversible in gel chromatography. 3. The collagenolytic activity of several rheumatoid synovial fluids was completely inhibited by incubation of the fluids with α2-macroglobulin. 4. The collagenase of human polymorphonuclear-leucocyte granules showed time-dependent inhibition by α2-macroglobulin. 5. The collagenolytic metal proteinase of Crotalus atrox venom was inhibited by α2-macroglobulin. 6. The collagenase of Clostridium histolyticum was bound by α2-macroglobulin, and inhibited more strongly with respect to collagen than with respect to a peptide substrate. 7. Thermolysin, the metal proteinase of Bacillus thermoproteolyticus, was bound and inhibited by α2-macroglobulin. 8. It was shown by polyacrylamidegel electrophoresis of reduced α2-macroglobulin in the presence of sodium dodecyl sulphate that synovial-cell collagenase, clostridial collagenase and thermolysin cleave the quarter subunit of α2-macroglobulin near its mid-point, as do serine proteinases. 9. The results are discussed in relation to previous work, and it is concluded that the characteristics of interaction of the metal proteinases with α2-macroglobulin are the same as those of other proteinases. ImagesPLATE 2PLATE 1 PMID:4374931

  12. Production of alpha 1-proteinase inhibitor (human).

    Science.gov (United States)

    Hein, R H; Van Beveren, S M; Shearer, M A; Coan, M H; Brockway, W J

    1990-03-01

    A method for large scale isolation of alpha 1-proteinase inhibitor (alpha 1-PI) is described. This method employs waste Cohn Fraction IV-1 as the starting material and involves fractional precipitation with polyethylene glycol followed by ion exchange chromatography on diethylaminoethanol (DEAE)-Sepharose. The process also incorporates a ten hour, at 60 degrees C, heat-treatment step to reduce or eliminate the risk of transmission of viral disease. The final product, having a purity of approximately 60%, is freeze-dried. This preparation behaves almost identically to the alpha 1-PI in plasma and is suitable for replacement therapy in hereditary emphysema.

  13. Coordinate regulation of stromelysin and collagenase genes determined with cDNA probes

    International Nuclear Information System (INIS)

    Frisch, S.M.; Clark, E.J.; Werb, Z.

    1987-01-01

    Secreted proteinases are required for tumor metastasis, angiogenesis, and tissue remodeling during wound healing and embryonic growth. Thus, the regulation of the genes of secreted proteinases may serve as an interesting model for growth-controlled genes in general. The authors studied the genes of the secreted proteinases stromelysin and collagenase by using molecularly cloned cDNAs from each proteinase. Stromelysin cDNA was cloned by differential screening of a total cDNA library from rabbit synovial cells treated with phorbol 12-myristate 13-acetate, which yielded a clone of 1.2 kilobase pairs; collagenase cDNA was obtained by cloning reverse transcripts of anti-collagenase-immunoadsorbed polysomal mRNA, which yielded a clone of 0.8 kilobase pairs. Stromelysin and collagenase mRNA species of 2.2 and 2.4 kilobases, respectively, were detected on hybridization blots of RNA from phorbol 12-myristate 13-acetate-treated but not untreated rabbit synovial cells. Expression of stromelysin mRNA was also induced in rabbit alveolar macrophages and rabbit brain capillary endothelial cells treated with phorbol 12-myristate 13-acetate. Stromelysin and collagenase mRNA were both induced by phorbol 12-myristate 13-acetate and cytochalasin B at a constant ratio of the two gene products; this suggest coordinate regulation. The fact that induction was blocked after inhibition of protein synthesis by cycloheximide implicates an indirect signal transduction pathway that requires new protein synthesis

  14. [Treatment of Dupuytren's contracture by collagenase injection].

    Science.gov (United States)

    Foissac, R; Camuzard, O; Dumas, P; Dumontier, C; Chignon-Sicard, B

    2013-09-01

    Dupuytren's disease is a disorder of the palmar aponeurosis responsible for apparition of pathological collagen cords that will gradually lead to a digital retraction. These cords cause functional disability to the hand with a real handicap for the patient. No curative treatment exists currently in this disease. Injections of collagenase from Clostridium histolyticum cause lysis of the collagen present in the cords and cause an interruption of the palmar cord. It is a new treatment in the management of Dupuytren's disease. The use of collagenase injection in the treatment of palmar form of Dupuytren's disease gives good results in the short and medium terms. It is a simple, minimally invasive treatment, several studies have proven its effectiveness and it approximates percutaneous needle fasciotomy in its easy use and its indications. Patients should be well informed about local reactions and transient pain with the injection of C. histolyticum collagenase. Diffusion of this technique is still limited by: the assessment of its cost compared to that of other methods of treatment and particularly the needle fasciotomy, and the evaluation of results over the long-term. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  16. Morphine Promotes Colonization of Anastomotic Tissues with Collagenase - Producing Enterococcus faecalis and Causes Leak.

    Science.gov (United States)

    Shakhsheer, Baddr A; Versten, Luke A; Luo, James N; Defazio, Jennifer R; Klabbers, Robin; Christley, Scott; Zaborin, Alexander; Guyton, Kristina L; Krezalek, Monika; Smith, Daniel P; Ajami, Nadim J; Petrosino, Joseph F; Fleming, Irma D; Belogortseva, Natalia; Zaborina, Olga; Alverdy, John C

    2016-10-01

    Despite ever more powerful antibiotics, newer surgical techniques, and enhanced recovery programs, anastomotic leaks remain a clear and present danger to patients. Previous work from our laboratory suggests that anastomotic leakage may be caused by Enterococcus faecalis strains that express a high collagenase phenotype (i.e., collagenolytic). Yet the mechanisms by which the practice of surgery shifts or selects for collagenolytic phenotypes to colonize anastomotic tissues remain unknown. Here, we hypothesized that morphine, an analgesic agent universally used in gastrointestinal surgery, promotes tissue colonization with collagenolytic E. faecalis and causes anastomotic leak. To test this, rats were administered morphine in a chronic release form as would occur during routine surgery or vehicle. Rats were observed for 6 days and then underwent exploratory laparotomy for anastomotic inspection and tissue harvest for microbial analysis. These results provide further rationale to enhanced recovery after surgery (i.e., ERAS) programs that suggest limiting or avoiding the use of opioids in gastrointestinal surgery. Results demonstrated that compared to placebo-treated rats, morphine-treated rats demonstrated markedly impaired anastomotic healing and gross leaks that correlated with the presence of high collagenase-producing E. faecalis adherent to anastomotic tissues. To determine the direct role of morphine on this response, various isolates of E. faecalis from the rats were exposed to morphine and their collagenase activity and adherence capacity determined in vitro. Morphine increased both the adhesiveness and collagenase production of four strains of E. faecalis harvested from anastomotic tissues, two that were low collagenase producers at baseline, and two that were high collagenase producers at baseline. These results provide further rationale to enhanced recovery after surgery (i.e., ERAS) programs that suggest limiting or avoiding the use of opioids in

  17. Aloe vera: an in vitro study of effects on corneal wound closure and collagenase activity.

    Science.gov (United States)

    Curto, Elizabeth M; Labelle, Amber; Chandler, Heather L

    2014-11-01

    To evaluate the in vitro effects of an aloe vera solution on (i) the viability and wound healing response of corneal cells and (ii) the ability to alter collagenase and gelatinase activities. Primary cultures of corneal epithelial cells and fibroblasts were prepared from grossly normal enucleated canine globes and treated with an aloe solution (doses ranging from 0.0-2 mg/mL). Cellular viability was evaluated using a colorimetric assay. A corneal wound healing model was used to quantify cellular ingrowth across a defect made on the confluent surface. Anticollagenase and antigelatinase activities were evaluated by incubating a bacterial collagenase/gelatinase with aloe solution (doses ranging from 0.0-500 μg/mL) and comparing outcome measures to a general metalloproteinase inhibitor, 1, 10-phenanthroline, and canine serum (doses ranging from 0.0-100%). None of the concentrations of aloe solution tested significantly affected the viability of corneal epithelial cells or fibroblasts. Concentrations ≤175 μg/mL slightly accelerated corneal epithelial cell wound closure; this change was not significant. Concentrations ≥175 μg/mL significantly (P ≤ 0.001) slowed the rate of corneal fibroblast wound closure, while aloe concentrations Aloe solution did not alter the ability for collagenase to degrade gelatin or collagen Type I but increased the ability for collagenase to degrade Type IV collagen. Although additional experiments are required, lower concentrations of aloe solution may be beneficial in healing of superficial corneal wounds to help decrease fibrosis and speed epithelialization. An increase in collagenase activity with aloe vera warrants further testing before considering in vivo studies. © 2014 American College of Veterinary Ophthalmologists.

  18. Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen.

    Science.gov (United States)

    Eckhard, Ulrich; Huesgen, Pitter F; Brandstetter, Hans; Overall, Christopher M

    2014-04-04

    Clostridial collagenases are among the most efficient degraders of collagen. Most clostridia are saprophytes and secrete proteases to utilize proteins in their environment as carbon sources; during anaerobic infections, collagenases play a crucial role in host colonization. Several medical and biotechnological applications have emerged utilizing their high collagenolytic efficiency. However, the contribution of the functionally most important peptidase domain to substrate specificity remains unresolved. We investigated the active site sequence specificity of the peptidase domains of collagenase G and H from Clostridium histolyticum and collagenase T from Clostridium tetani. Both prime and non-prime cleavage site specificity were simultaneously profiled using Proteomic Identification of protease Cleavage Sites (PICS), a mass spectrometry-based method utilizing database searchable proteome-derived peptide libraries. For each enzyme we identified >100 unique-cleaved peptides, resulting in robust cleavage logos revealing collagen-like specificity patterns: a strong preference for glycine in P3 and P1', proline at P2 and P2', and a slightly looser specificity at P1, which in collagen is typically occupied by hydroxyproline. This specificity for the classic collagen motifs Gly-Pro-X and Gly-X-Hyp represents a remarkable adaptation considering the complex requirements for substrate unfolding and presentation that need to be fulfilled before a single collagen strand becomes accessible for cleavage. We demonstrate the striking sequence specificity of a family of clostridial collagenases using proteome derived peptide libraries and PICS, Proteomic Identification of protease Cleavage Sites. In combination with the previously published crystal structures of these proteases, our results represent an important piece of the puzzle in understanding the complex mechanism underlying collagen hydrolysis, and pave the way for the rational design of specific test substrates and

  19. The History of Collagenase Clostridium Histolyticum.

    Science.gov (United States)

    Yang, Kevin K; Bennett, Nelson

    2015-10-01

    After its U.S. FDA approval in 2013, Collagenase Clostridium histolyticum (CCh) has seen increasing use as a nonoperative treatment for Peyronie's disease (PD). We review the history of CCh and trials that led to its adoption. To provide a historical and contemporary context for the evolution of Collagenase Clostridium histolyticum as a treatment modality for Peyronie's disease. A comprehensive search of peer-reviewed literature was performed pertaining to CCh and its biochemical and clinical significance. The main outcome studied was the efficacy and safety profile of CCh in PD. CCh use in other diseases processes and its associated outcomes are also described. CCh injection yields objective improvement in penile curvature across multiple trials in PD patients. Recently, level 1 strength of evidence has emerged supporting its widespread use. As such, CCh stands as the only FDA-approved injectable therapy for PD. Adverse events were namely limited to local reactions. Serious systemic complications and need for intervention were rare. CCh is a safe and effective treatment for PD patients with deformities and plaque configuration amenable to injectable therapy. Multiple trials have demonstrated improvements in objective and subjective metrics such as penile curvature and bother scores. However, multiyear follow-up is needed to assess durability and its sustained clinical significance. Currently, refinement in dosing and technique has established a niche for CCh in PD patients who are affected by their symptoms but are not yet committed to surgical intervention. Yang KK and Bennett N. The history of collagenase clostridium histolyticum. Copyright © 2015 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  20. Glial activation in the collagenase model of nociception associated with osteoarthritis.

    Science.gov (United States)

    Adães, Sara; Almeida, Lígia; Potes, Catarina S; Ferreira, Ana Rita; Castro-Lopes, José M; Ferreira-Gomes, Joana; Neto, Fani L

    2017-01-01

    Background Experimental osteoarthritis entails neuropathic-like changes in dorsal root ganglia (DRG) neurons. Since glial activation has emerged as a key player in nociception, being reported in numerous models of neuropathic pain, we aimed at evaluating if glial cell activation may also occur in the DRG and spinal cord of rats with osteoarthritis induced by intra-articular injection of collagenase. Methods Osteoarthritis was induced by two injections, separated by three days, of 500 U of type II collagenase into the knee joint of rats. Movement-induced nociception was evaluated by the Knee-Bend and CatWalk tests during the following six weeks. Glial fibrillary acidic protein (GFAP) expression in satellite glial cells of the DRG was assessed by immunofluorescence and Western Blot analysis; the pattern of GFAP and activating transcription factor-3 (ATF-3) expression was also compared through double immunofluorescence analysis. GFAP expression in astrocytes and IBA-1 expression in microglia of the L3-L5 spinal cord segments was assessed by immunohistochemistry and Western Blot analysis. The effect of the intrathecal administration of fluorocitrate, an inhibitor of glial activation, on movement-induced nociception was evaluated six weeks after the first collagenase injection. Results GFAP expression in satellite glial cells of collagenase-injected animals was significantly increased six weeks after osteoarthritis induction. Double immunofluorescence showed GFAP upregulation in satellite glial cells surrounding ATF-3-positive neurons. In the spinal cord of collagenase-injected animals, an ipsilateral upregulation of GFAP and IBA-1 was also observed. The inhibition of glial activation with fluorocitrate decreased movement- and loading-induced nociception. Conclusion Collagenase-induced knee osteoarthritis leads to the development of nociception associated with movement of the affected joint and to the activation of glial cells in both the DRG and the spinal cord

  1. MRI in flexor tendon rupture after collagenase injection

    Energy Technology Data Exchange (ETDEWEB)

    Khurana, Shruti [Lady Hardinge Medical College, New Delhi (India); Wadhwa, Vibhor [University of Arkansas for Medical Sciences, Little Rock, AR (United States); Chhabra, Avneesh [UT Southwestern Medical Center, Dallas, TX (United States); Johns Hopkins University, Baltimore, MD (United States); Amirlak, Bardia [UT Southwestern Medical Center, Dallas, TX (United States)

    2017-02-15

    Flexor tendon rupture is an unusual complication following collagenase injection to relieve contractures. These patients require a close follow-up and in the event of tendon rupture, a decision has to be made whether to repair the tendon or manage the complication conservatively. The authors report the utility of MRI in the prognostication and management of a patient with Dupuytren's contracture, who underwent collagenase injection and subsequently developed flexor digitorum profundus tendon rupture. (orig.)

  2. MRI in flexor tendon rupture after collagenase injection

    International Nuclear Information System (INIS)

    Khurana, Shruti; Wadhwa, Vibhor; Chhabra, Avneesh; Amirlak, Bardia

    2017-01-01

    Flexor tendon rupture is an unusual complication following collagenase injection to relieve contractures. These patients require a close follow-up and in the event of tendon rupture, a decision has to be made whether to repair the tendon or manage the complication conservatively. The authors report the utility of MRI in the prognostication and management of a patient with Dupuytren's contracture, who underwent collagenase injection and subsequently developed flexor digitorum profundus tendon rupture. (orig.)

  3. Amplified QCM biosensor for type IV collagenase based on collagenase-cleavage of gold nanoparticles functionalized peptide.

    Science.gov (United States)

    Dong, Zong-Mu; Jin, Xin; Zhao, Guang-Chao

    2018-05-30

    The present study develops a rapid, simple and efficient method for the determination of type IV collagenase by using a specific peptide-modified quartz crystal microbalance (QCM). A small peptide (P1), contains a specific sequence (Pro-Gly) and a terminal cysteine, was synthetized and immobilized to the surface of QCM electrode via the reaction between Au and thiol of the cysteine. The peptide bond between proline and glycine can be specific hydrolyzed cleavage by type IV collagenase, which enabled the modified electrode with a high selectivity toward type IV collagenase. The cleaving process caused a frequency change of QCM to give a signal related to the concentration of type IV collagenase. The morphologies of the modified electrodes were characterized by scanning electron microscope (SEM) and the specific hydrolyzed cleavage process was monitored by QCM. When P1 was modified with gold nanoparticles (P1-Au NPs), the signal could be amplified to further enhance the sensitivity of the designed sensor due to the high-mass of the modified Au NPs. Compared the direct unamplified assay, the values obtained for the limit of detection for type IV collagenase was 0.96 ng mL -1 , yielding about 6.5 times of magnitude improvement in sensitivity. This signal enhanced peptide based QCM biosensor for type IV collagenase also showed good selectivity and sensitivity in complex matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen☆☆☆

    Science.gov (United States)

    Eckhard, Ulrich; Huesgen, Pitter F.; Brandstetter, Hans; Overall, Christopher M.

    2014-01-01

    Clostridial collagenases are among the most efficient degraders of collagen. Most clostridia are saprophytes and secrete proteases to utilize proteins in their environment as carbon sources; during anaerobic infections, collagenases play a crucial role in host colonization. Several medical and biotechnological applications have emerged utilizing their high collagenolytic efficiency. However, the contribution of the functionally most important peptidase domain to substrate specificity remains unresolved. We investigated the active site sequence specificity of the peptidase domains of collagenase G and H from Clostridium histolyticum and collagenase T from Clostridium tetani. Both prime and non-prime cleavage site specificity were simultaneously profiled using Proteomic Identification of protease Cleavage Sites (PICS), a mass spectrometry-based method utilizing database searchable proteome-derived peptide libraries. For each enzyme we identified > 100 unique-cleaved peptides, resulting in robust cleavage logos revealing collagen-like specificity patterns: a strong preference for glycine in P3 and P1′, proline at P2 and P2′, and a slightly looser specificity at P1, which in collagen is typically occupied by hydroxyproline. This specificity for the classic collagen motifs Gly-Pro-X and Gly-X-Hyp represents a remarkable adaptation considering the complex requirements for substrate unfolding and presentation that need to be fulfilled before a single collagen strand becomes accessible for cleavage. Biological significance We demonstrate the striking sequence specificity of a family of clostridial collagenases using proteome derived peptide libraries and PICS, Proteomic Identification of protease Cleavage Sites. In combination with the previously published crystal structures of these proteases, our results represent an important piece of the puzzle in understanding the complex mechanism underlying collagen hydrolysis, and pave the way for the rational design of

  5. Inhibitors of Microglial Neurotoxicity: Focus on Natural Products

    Directory of Open Access Journals (Sweden)

    Kyoungho Suk

    2011-01-01

    Full Text Available Microglial cells play a dual role in the central nervous system as they have both neurotoxic and neuroprotective effects. Uncontrolled and excessive activation of microglia often contributes to inflammation-mediated neurodegeneration. Recently, much attention has been paid to therapeutic strategies aimed at inhibiting neurotoxic microglial activation. Pharmacological inhibitors of microglial activation are emerging as a result of such endeavors. In this review, natural products-based inhibitors of microglial activation will be reviewed. Potential neuroprotective activity of these compounds will also be discussed. Future works should focus on the discovery of novel drug targets that specifically mediate microglial neurotoxicity rather than neuroprotection. Development of new drugs based on these targets may require a better understanding of microglial biology and neuroinflammation at the molecular, cellular, and systems levels.

  6. Inhibitors

    Science.gov (United States)

    ... Icon View public health webinars on blood disorders Inhibitors Language: English (US) Español (Spanish) Recommend on Facebook ... because treatment of bleeds becomes less effective. About Inhibitors People with hemophilia, and many with VWD type ...

  7. Chemical and kinetic characterization of tadpole back skin collagenase.

    Science.gov (United States)

    Bicsak, T A; Harper, E

    1985-10-01

    The purified collagenase from tadpole (Rana catesbiana) back skin was studied with respect to its activation energy using soluble and fibrillar type I collagen, as well as a synthetic peptide substrate, DNP-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg. The activation energy appeared to be independent of the nature of the substrate, ranging between 28 and 35 kcal/mol. The peptide was cleaved at the Gly-Ile bond and proved to be a poor substrate (kcat/Km, 1.21 h-1 microM-1) when compared with native type I collagen in solution (kcat/Km, 40.6 h-1 microM-1), consistent with the enzyme's low activity versus gelatin [T. A. Bicsak and E. Harper (1984) J. Biol. Chem. 259, 13145]. The amino acid composition of the collagenase was shown to be high in glycine and glutamic acid, and the preparation was shown not to be contaminated with collagen by digestion with bacterial collagenase. The enzyme was not inhibited by iodoacetic acid or 2-hydroxy-5-nitrobenzyl bromide, suggesting the lack of essential cysteinyl and tryptophanyl residues, but was inhibited by micromolar concentrations of ZnCl2, consistent with the presence of essential histidine(s). Ethoxyformic anhydride irreversibly inhibited the collagenase suggesting the presence of essential lysyl residues.

  8. The proton-pump inhibitor lansoprazole enhances amyloid beta production.

    Science.gov (United States)

    Badiola, Nahuai; Alcalde, Victor; Pujol, Albert; Münter, Lisa-Marie; Multhaup, Gerd; Lleó, Alberto; Coma, Mireia; Soler-López, Montserrat; Aloy, Patrick

    2013-01-01

    A key event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of amyloid-β (Aβ) species in the brain, derived from the sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. Based on a systems biology study to repurpose drugs for AD, we explore the effect of lansoprazole, and other proton-pump inhibitors (PPIs), on Aβ production in AD cellular and animal models. We found that lansoprazole enhances Aβ37, Aβ40 and Aβ42 production and lowers Aβ38 levels on amyloid cell models. Interestingly, acute lansoprazole treatment in wild type and AD transgenic mice promoted higher Aβ40 levels in brain, indicating that lansoprazole may also exacerbate Aβ production in vivo. Overall, our data presents for the first time that PPIs can affect amyloid metabolism, both in vitro and in vivo.

  9. Metabolic inhibitors as stimulating factors for citric acid production

    International Nuclear Information System (INIS)

    Adham, N.Z.; Ahmed, E.M.; Refai, H.A.E.

    2008-01-01

    The effect of some metabolic inhibitors on citric acid (CA) production by Aspergillus niger in cane molasses medium was investigated. Addition of 0.01-0.1 mM iodoacetic acid and sodium arsenate, 0.05-1.0 mM sodium malonate, 0.01 mM sodium azide, 0.01-0.05 mM sodium fluoride, 0.1-1.0 mM EDTA stimulated CA production (5-49%). Higher concentrations (10 mM) of iodoacetic acid, sodium malonate and 0.5 mM sodium azide caused a complete inhibition of fungal growth, Iodoacetic acid, sodium arsenate and sodium fluoride (0.2 mM) caused a remarkable inhibition of CA production. The implications of those preliminary functions was discussed. (author)

  10. Effect of inhibitors on acid production by baker's yeast.

    Science.gov (United States)

    Sigler, K; Knotková, A; Kotyk, A

    1978-01-01

    Glucose-induced acid extrusion, respiration and anaerobic fermentation in baker's yeast was studied with the aid of sixteen inhibitors. Uranyl(2+) nitrate affected the acid extrusion more anaerobically than aerobically; the complexing of Mg2+ and Ca2+ by EDTA at the membrane had no effect. Inhibitors of glycolysis (iodoacetamide, N-ethylmaleimide, fluoride) suppressed acid production markedly, and so did the phosphorylation-blocking arsenate. Fluoroacetate, inhibiting the citric-acid cycle, had no effect. Inhibition by uncouplers depended on their pKa values: 2,4,6-trinitrophenol (pKa 0.4) less than 2,4-dinitrophenol (4.1) less than azide (4.7) less than 3-chlorophenylhydrazonomalononitrile (6.0). Inhibition by trinitrophenol was only slightly increased by its acetylation. Cyanide and nonpermeant oligomycin showed practically no effect; inhibition by dicyclohexylcarbodiimide was delayed but potent. The concentration profiles of inhibition of acid production differed from those of respiration and fermentation. Thus, though the acid production is a metabolically dependent process, it does not reflect the intensity of metabolism, except partly in the first half of glycolysis.

  11. Investigating longevity of corrosion inhibitors and performance of deicer products under storage or after pavement application.

    Science.gov (United States)

    2011-06-01

    This study evaluated the longevity of corrosion inhibitors and the performance of inhibited deicer products under storage or after pavement application. No significant degradation of corrosion inhibitor or loss of chlorides was seen during the months...

  12. Screening Thai plants for DNA protection, anti-collagenase and suppression of MMP-3 expression properties

    Directory of Open Access Journals (Sweden)

    Kittisak Buddhachat

    2015-06-01

    Full Text Available Objective: To explore the suppression effect of six Thai plants on matrix-degrading enzymes such as collagenase and matrix metalloproteinases (MMPs. Methods: Six Thai plant extracts, Phyllanthus niruri (P. niruri, Vernonia cinerea, Pluchea indica, Rhinocanthus nasutus (R. nasutus, Zingiber cassumunar (Z. cassumunar and Cissus quadrangularis (C. quadrangularis were tested for total phenolic content, antioxidant, DNA protection, anti-collagenase properties and inhibitory effects on IL-1β-acitvated MMP-3 expression. Additionally, the ethanolic extracts of P. niruri and Z. cassumunar were assessed for MMP-2 and -9 production using gelatin zymography. Results: An evaluation of antioxidant activity and total phenolic content revealed that the ethanolic extract of P. niruri had the highest activity (72.17 and 93.05 mg gallic/g extract, respectively. The ethanolic extracts of P. niruri, Vernonia cinerea, R. nasutus and C. quadrangularis performed a strong activity of DNA protection against hydroxyl radicals. The extracts of C. quadrangularis, R. nasutus and P. niruri (IC50 = 0.3, 0.82 and 0.91 mg/mL, respectively possessed good activity for the inhibition of bacterial collagenase activity. Using the promoter activity assay, the ethanolic extract of P. niruri and Z. cassumunar (IC50 = 26.94 and 27.82 µg/mL, respectively decreased IL-1β-stimulated MMP-3 expression in human chondrosarcoma cells (SW1353 cells. Besides, both the ethanolic extracts of P. niruri and Z. cassumunar could alleviate the production of MMP-2 and -9 in IL-1β-activated SW1353. Conclusions: Taken together, the ethanolic extract of P. niruri had several beneficial effects.

  13. In vitro study of novel collagenase (XIAFLEX® on Dupuytren's disease fibroblasts displays unique drug related properties.

    Directory of Open Access Journals (Sweden)

    Farhatullah Syed

    Full Text Available Dupuytren's disease (DD is a benign, fibroproliferative disease of the palmar fascia, with excessive extracellular matrix (ECM deposition and over-production of cytokines and growth factors, resulting in digital fixed flexion contractures limiting hand function and patient quality of life. Surgical fasciectomy is the gold standard treatment but is invasive and has associated morbidity without limiting disease recurrence. Injectable Collagenase Clostridium histolyticum (CCH--Xiaflex®--is a novel, nonsurgical option with clinically proven in vivo reduction of DD contractures but with limited in vitro data demonstrating its cellular and molecular effects. The aim of this study was to delineate the effects of CCH on primary fibroblasts isolated from DD and non-DD anatomical sites (using RTCA, LDH, WST-1, FACS, qRT-PCR, ELISA and In-Cell Quantitative Western Blotting to compare the efficacy of varying concentrations of Xiaflex® against a reagent grade Collagenase, Collagenase A. Results demonstrated that DD nodule and cord fibroblasts had greater proliferation than those from fat and skin. Xiaflex® exposure resulted in dose- and time-dependent inhibition of cellular spreading, attachment and proliferation, with cellular recovery after enzyme removal. Unlike Collagenase A, Xiaflex® did not cause apoptosis. Collagen expression patterns were significantly (p<0.05 different in DD fibroblasts across anatomical sites - the highest levels of collagen I and III were detected in DD nodule, with DD cord and fat fibroblasts demonstrating a smaller increase in both collagen expression relative to DD skin. Xiaflex® significantly (p<0.05 down-regulated ECM components, cytokines and growth factors in a dose-dependent manner. An in vitro scratch wound assay model demonstrated that, at low concentrations, Xiaflex® enabled a faster fibroblast reparatory migration into the wound, whereas, at high concentrations, this process was significantly (p<0.05 inhibited

  14. Cell proliferation in vitro modulates fibroblast collagenase activity

    International Nuclear Information System (INIS)

    Lindblad, W.J.; Flood, L.

    1986-01-01

    Collagenase enzyme activity is regulated by numerous control mechanisms which prevent excessive release and activation of this protease. A primary mechanism for regulating enzyme extracellular activity may be linked to cell division, therefore they have examined the release of collagenase by fibroblasts in vitro in response to cellular proliferation. Studies were performed using fibroblasts derived from adult rat dermis maintained in DMEM containing 10% newborn calf serum, 25 mM tricine buffer, and antibiotics. Cells between subculture 10 and 19 were used with enzyme activity determined with a 14 C-labelled soluble Type I collagen substrate with and without trypsin activation. Fibroblasts, trypsinized and plated at low density secreted 8.5 fold more enzyme than those cells at confluence (975 vs. 115 dpm/μg DNA). This diminution occurred gradually as the cells went from logrithmic growth towards confluence. Confluent fibroblast monolayers were scraped in a grid arrangement, stimulating the remaining cells to divide, without exposure to trypsin. Within 24-48 hr postscraping enzyme levels had increased 260-400%, accompanied by enhanced incorporation of 3 H-thymidine and 3 H-uridine into cell macromolecules. The burst of enzyme release began to subside 12 hr later. These results support a close relationship between fibroblast proliferation and collagenase secretion

  15. Tyrosine kinase/phosphatase inhibitors decrease dengue virus production in HepG2 cells.

    Science.gov (United States)

    Limjindaporn, Thawornchai; Panaampon, Jutatip; Malakar, Shilu; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai

    2017-01-29

    Dengue virus is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. High rates of dengue virus replication and virion production are related to disease severity. To identify anti-DENV compounds, we performed cell-based ELISA testing to detect the level of DENV E protein expression. Among a total of 83 inhibitors, eight were identified as inhibitors with antiviral activity. Epidermal growth factor receptor inhibitor II (EGFR/ErbB-2/ErbB-4 inhibitor II) and protein tyrosine phosphatase inhibitor IV (PTP inhibitor IV) significantly inhibited dengue virus production and demonstrated low toxicity in hepatocyte cell lines. Our results suggest the efficacy of tyrosine kinase/phosphatase inhibitors in decreasing dengue virus production in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Characterization of collagenase-3 binding and internalization by rabbit chondrocytes

    International Nuclear Information System (INIS)

    Raggatt, L.J.; Choundhury, I.; Williams, S.

    2002-01-01

    Full text: Collagenase-3 (MMP-13) is an extracellular matrix metalloproteinase that cleaves type II collagen, the major protein component of cartilage, with high specificity. Several studies have identified increased levels of MMP-13 in arthritic synovial fluid where it may contribute to matrix destruction in this disease. Our laboratory has previously documented a process where by osteoblastic cells remove MMP-13 from the surrounding milieu by binding the enzyme to a specific receptor. The enzyme is then internalized and degraded through the actions of the endocytotic receptor, the low-density lipoprotein receptor-related protein (LRP). Such a mechanism provides for a controlled elimination of a potentially destructive enzyme from the extracellular environment. This process of MMP-13 internalization also occurs in chondrocytes and is significantly reduced in OA chondrocytes. We are currently characterizing the internalization of MMP-13 in normal rabbit chondrocytes. Primary rabbit chondrocytes were harvested and cultured in monolayers for three passages. Reverse transcription polymerase chain reaction (RT-PCR) was used to asses the cell phenotype during the culture period and the rabbit chondrocytes were found to express the cartilage specific genes aggrecan and type II collagen throughout this time. 125I-MMP-13 was used to assess the ability of the rabbit chondrocytes to bind MMP-13. Appreciable specific cell-association of MMP-13 was detected after 10 mm of exposure to the ligand and equilibrium was obtained after 2 h. After identifying the time to equilibrium we determined whether binding was saturable by incubating the chondrocytes with increasing concentrations of 125I-MMP-13 ranging from 0 to 100 nM at 4 deg C for 2h. The amount of specifically associated MMP-13 approached saturation at 75 nM, allowing assessment of the receptor kinetics. Finally, we have assessed the ability of rabbit chondrocytes to internalize a single cohort of 125I-MMP-13 over time at

  17. Effective cell collection method using collagenase and ultrasonic vibration

    Science.gov (United States)

    Kurashina, Y.; Takemura, K.; Miyata, S.; Komotori, J.; Koyama, T.

    2014-01-01

    This study proposes a novel cell collection method based on collagenase treatment and ultrasonic vibration. The method collects calf chondrocytes from a reusable metal cell culture substrate. To develop our concept, we calculated the natural vibration modes of the cell culture substrate by a finite element method, and conducted eigenvalue and piezoelectric-structural analyses. Selecting the first out-of-plane vibration mode of the substrate, which has a single nodal circle, we designed and fabricated the cell collection device. The excited vibration mode properly realized our intentions. We then evaluated the cell collection ratio and the growth response, and observed the morphology of the collected cells. The collagenase and ultrasonic vibration treatment collected comparable numbers of cells to conventional trypsin and pipetting treatment, but improved the proliferating cell statistics. Morphological observations revealed that the membranes of cells collected by the proposed method remain intact; consequently, the cells are larger and rougher than cells collected by the conventional method. Therefore, we present a promising cell collection method for adhesive cell culturing process. PMID:25584115

  18. Role of collagenase clostridium histolyticum in Peyronie's disease

    Directory of Open Access Journals (Sweden)

    Peak TC

    2015-09-01

    Full Text Available Taylor C Peak,1 Gregory C Mitchell,2 Faysal A Yafi,2 Wayne J Hellstrom2 1Department of Urology, Tulane University School of Medicine, 2Section of Andrology, Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA Abstract: Peyronie's disease is a localized connective tissue disease characterized by an active, inflammatory phase and a stable, quiescent phase, with the eventual development of collagenous plaques within the tunica albuginea of the penis. Risk factors primarily associated with Peyronie's disease include Dupuytren's contracture, penile trauma, and family history. A variety of treatment strategies have been utilized, including oral and topical agents, electromotive drug administration, intralesional injections, extracorporeal shockwave therapy, penile traction, and surgery. However, most of these strategies are ineffective, with surgery being the only definitive treatment. Collagenase clostridium histolyticum is a newly US Food and Drug Administration-approved agent for intralesional injection. It is thought to downregulate many of the disease-related genes, cytokines, and growth factors and degrade collagen fibers. It also suppresses cell attachment, spreading, and proliferation. Collagenase clostridium histolyticum has been clinically proven to be a safe and effective therapeutic option, demonstrating decreases in penile curvature and plaque consistency, as well as increases in patient satisfaction. During clinical evaluation, the Peyronie's Disease Questionnaire was validated as an effective tool for assessing treatment outcomes. Keywords: connective tissue disease, CCH, Xiaflex, Peyronie's Disease Questionnaire

  19. Collagen degradation in the abdominal aneurysm: A conspiracy of matrix metalloproteinase and cysteine collagenases

    NARCIS (Netherlands)

    Abdul-Hussien, H.; Soekhoe, R.G.V.; Weber, E.; Thüsen, J.H. von der; Kleemann, R.; Mulder, A.; Hajo Van Bockel, J.; Hanemaaijer, R.; Lindeman, J.H.N.

    2007-01-01

    Growth and rupture of abdominal aortic aneurysms (AAAs) result from increased collagen turnover. Collagen turnover critically depends on specific collagenases that cleave the triple helical region of fibrillar collagen. As yet, the collagenases responsible for collagen degradation in AAAs have not

  20. Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation.

    Science.gov (United States)

    Kishen, Anil; Shrestha, Suja; Shrestha, Annie; Cheng, Calvin; Goh, Cynthia

    2016-08-01

    Antibacterial and chelating properties of chitosan has been widely studied for various dental applications. To characterize the interaction between chitosan-nanoparticles (CSnp) and collagen, and understand their stabilizing effect against collagenase degradation for dentin matrix stabilization. Phase-1: a single Type I collagen-fibril model was used to study the interaction with CSnp along with carbodiimides crosslinking treatment. Degradation of the crosslinked fibrils was studied with bacterial collagenase enzyme and monitored using Fourier Transform Infrared (FTIR) spectroscopy, turbidity measurement (400nm), ninhydrin assay and Atomic Force Microscopy (AFM). Interaction of CSnp with collagenase and Type I collagen, were evaluated using SDS-PAGE, and proteolytic cleavage potential of a synthetic peptide. Phase-2: degradation of dentin collagen crosslinked with/without CSnp was evaluated using FTIR, ninhydrin assay and Scanning Electron Microscopy (SEM). Glutaraldehyde crosslinking was used as a positive control. Both native collagen-fibrils and dentin collagen after crosslinking showed higher resistance to collagenase degradation, as observed in turbidity measurements and FTIR spectra. AFM images showed the interaction of CSnp with single collagen-fibril and crosslinked collagen resisted collagenase degradation up to 54h. The collagen and collagenase both formed complexes with CSnp resulting in thickening of bands and reduction in collagen degradation. CSnp treated collagenase showed significantly reduced cleavage of the fluorescent peptides. Dentin collagen was coated with CSnp following crosslinking with significant increase in resistance to collagenase degradation. Crosslinked CSnp on collagen stabilized and enhanced the resistance of dentin matrix against bacterial collagenase degradation due to non-specific interaction with both collagen and collagenase. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Effect of microRNA-129-5p targeting HMGB1-RAGE signaling pathway on revascularization in a collagenase-induced intracerebral hemorrhage rat model.

    Science.gov (United States)

    Ma, Xin-Long; Li, Shu-Ya; Shang, Feng

    2017-09-01

    This study aimed at exploring the effect of microRNA-129-5p (miR-129-5p) targeting high mobility group box-1 (HMGB1)-receptor for advanced glycation end-products (RAGE) signaling pathway on the revascularization in a collagenase-induced intracerebral hemorrhage (ICH) rat model. OX26-pGFAP-IL, an immunoliposome expressing miR-129-5p was constructed. The collagenase-induced ICH rat models were successfully established by 96 Sprague Dawley (SD) rats, which were categorized into the sham group, ICH group, miR-129-5p group, negative control (NC) group, ethyl pyruvate (EP, an inhibitor of HMGB1) group and N-benzyl-4-chloro-N-cyclohe-xylbenzamide (FPS-ZM1, a RAGE receptor antagonist) group. The miR-129-5p expression in the brain tissue homogenate was detected using the quantitative real-time polymerase chain reaction (qRT-PCR) and the protein expressions of HMGB1 and RAGE by Western blotting. Immunohistochemistry (IHC) was used for the detection of the vascular endothelial growth factor (VEGF). Microvessel density (MVD) was also detected. Compared to the sham group, the ICH, NC, EP and FPS-ZM1 groups had a decrease in miR-129-5p expressions, and an increase in the protein expressions of HMGB1, RAGE and VEGF and MVD. In comparison to the ICH, NC, EP and FPS-ZM1 groups the miR-129-5p group had an elevation in the miRNA-129-5p expressions. The miR-129-5p and EP groups had decreased HMGB1 protein expression and the miR-129-5p, EP and FPS-ZM1 groups had a reduced RAGE protein expression as compared to the ICH group. In comparison to the ICH group, the miR-129-5p, EP, FPS-ZM1 groups had a decline in the VEGF protein expression and MVD. Our study proved that up-regulation of miR-129-5p might suppress the HMGB1-RAGE signaling pathway to restrain the revascularization of rats with ICH. Copyright © 2017. Published by Elsevier Masson SAS.

  2. Epidermal collagenase activity and its induction by 20-hydroxyecdysone in the fiddler crab Uca pugilator

    Directory of Open Access Journals (Sweden)

    Erin A. TOUPS

    2009-02-01

    Full Text Available The epidermal collagenase activity and its induction by 20-hydroxyecdysone in Uca pugilator were investigated. Zymographic electrophoresis showed four bands of collagenase activity, 16, 19, 22 and 29 kDa in molecular weight, with the former two accounting for 60% and 36%, respectively, of the total collagenase activity. The collagenase activity varies during the molting cycle. Among the molt stages tested, Premolt Stage D0 exhibited the highest epidermal collagenase activity for both the 16 and 19 kDa isoenzymes and, as the molt stage proceeded, the enzymatic activity of these two isoenzymes decreased, with the lowest activity for both found in Premolt Stage D3–4. Injection of 20-hydroxyecdysone significantly induced the activity of the 16 kDa collagenase in the epidermis of Uca pugilator, suggesting that the activity of this isoenzyme is under molting hormone control. Although 20-hydroxyecdysone injection did not result in a statistically significant increase in the activity of the 19 kDa isoenzyme, a tendency of the induction was nonetheless demonstrated. This is the first report on epidermal collagenase activity and its induction by the molting hormone in a crustacean [Current Zoology 55(1: 75–80, 2009].

  3. Ubiquitin-Like Protein from Human Placental Extract Exhibits Collagenase Activity

    Science.gov (United States)

    De, Debashree; Datta Chakraborty, Piyali; Mitra, Jyotirmoy; Sharma, Kanika; Mandal, Somnath; Das, Aneesha; Chakrabarti, Saikat; Bhattacharyya, Debasish

    2013-01-01

    An aqueous extract of human placenta exhibits strong gelatinase/collagenase activity in zymography. 2-D gel electrophoresis of the extract with gelatin zymography in the second dimension displayed a single spot, identified as ubiquitin-like component upon MALDI/TOF MS/MS analysis. Immunoblot indicated presence of ubiquitin and absence of collagenase in the extract. Collagenase activity of the ubiquitin-like component was confirmed from the change in solubility of collagen in aqueous buffer, degradation of collagen by size-exclusion HPLC and atomic force microscopy. Quantification with DQ-gelatin showed that the extract contains 0.04 U/ml of collagenase activity that was inhibited up to 95% by ubiquitin antibody. Ubiquitin from bovine erythrocytes demonstrated mild collagenase activity. Bioinformatics studies suggest that placental ubiquitin and collagenase follow structurally divergent evolution. This thermostable intrinsic collagenase activity of placental extract might have wide physiological relevance in degrading and remodeling collagen as it is used as a drug for wound healing and pelvic inflammatory diseases. PMID:23555718

  4. An improved collagen zymography approach for evaluating the collagenases MMP-1, MMP-8, and MMP-13.

    Science.gov (United States)

    Inanc, Seniz; Keles, Didem; Oktay, Gulgun

    2017-10-01

    Collagen zymography is an SDS-PAGE-based method for detecting both the proenzyme and active forms of collagenases. Although collagen zymography is used for assessment of the matrix metalloproteinases MMP-1 and MMP-13, it can be difficult to detect these collagenases due to technical issues. Moreover, it remains unclear whether the collagenase activity of MMP-8 can be detected by this method. Here, we present an improved collagen zymography method that allows quantification of the activities of MMP-1, MMP-8, and MMP-13. Activities of recombinant collagenases could be detected in collagen zymogram gels copolymerized with 0.3 mg/mL type I collagen extracted from rat tail tendon. This improved method is sensitive enough to detect the activity of as little as 1 ng of collagenase. We generated standard curves for the three collagenases to quantify the collagenolytic activity levels of unknown samples. To validate our improved method, we investigated MMP-1 activity levels in human thyroid cancer (8505C) and normal thyroid (Nthy-ori-3-1) cell lines, finding that the proenzyme and active MMP-1 levels were greater in 8505C cells than in Nthy-ori-3-1 cells. Taken together, our data show that collagen zymography can be used in both molecular and clinical investigations to evaluate collagenase activities in various pathological conditions.

  5. Endogenous C1-inhibitor production and expression in the heart after acute myocardial infarction.

    Science.gov (United States)

    Emmens, Reindert W; Baylan, Umit; Juffermans, Lynda J M; Karia, Rashmi V; Ylstra, Bauke; Wouters, Diana; Zeerleder, Sacha; Simsek, Suat; van Ham, Marieke; Niessen, Hans W M; Krijnen, Paul A J

    2016-01-01

    Complement activation contributes significantly to inflammation-related damage in the heart after acute myocardial infarction. Knowledge on factors that regulate postinfraction complement activation is incomplete however. In this study, we investigated whether endogenous C1-inhibitor, a well-known inhibitor of complement activation, is expressed in the heart after acute myocardial infarction. C1-inhibitor and complement activation products C3d and C4d were analyzed immunohistochemically in the hearts of patients who died at different time intervals after acute myocardial infarction (n=28) and of control patients (n=8). To determine putative local C1-inhibitor production, cardiac transcript levels of the C1-inhibitor-encoding gene serping1 were determined in rats after induction of acute myocardial infarction (microarray). Additionally, C1-inhibitor expression was analyzed (fluorescence microscopy) in human endothelial cells and rat cardiomyoblasts in vitro. C1-inhibitor was found predominantly in and on jeopardized cardiomyocytes in necrotic infarct cores between 12h and 5days old. C1-inhibitor protein expression coincided in time and colocalized with C3d and C4d. In the rat heart, serping1 transcript levels were increased from 2h up until 7days after acute myocardial infarction. Both endothelial cells and cardiomyoblasts showed increased intracellular expression of C1-inhibitor in response to ischemia in vitro (n=4). These observations suggest that endogenous C1-inhibitor is likely involved in the regulation of complement activity in the myocardium following acute myocardial infarction. Observations in rat and in vitro suggest that C1-inhibitor is produced locally in the heart after acute myocardial infarction. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Understanding molecular interactions between scavenger receptor A and its natural product inhibitors through molecular modeling studies.

    Science.gov (United States)

    Pagare, Piyusha P; Zaidi, Saheem A; Zhang, Xiaomei; Li, Xia; Yu, Xiaofei; Wang, Xiang-Yang; Zhang, Yan

    2017-10-01

    Scavenger receptor A (SRA), as an immune regulator, has been shown to play important roles in lipid metabolism, cardiovascular diseases, and pathogen recognition. Several natural product inhibitors of SRA have been studied for their potential application in modulating SRA functions. To understand the binding mode of these inhibitors on SRA, we conducted systematic molecular modeling studies in order to identify putative binding domain(s) that may be responsible for their recognition to the receptor as well as their inhibitory activity. Treatment of SRA with one of the natural product inhibitors, rhein, led to significant dissociation of SRA oligomers to its trimer and dimer forms, which further supported our hypothesis on their putative mechanism of action. Such information is believed to shed light on design of more potent inhibitors for the receptor in order to develop potential therapeutics through immune system modulation. Published by Elsevier Inc.

  7. Biodegradation of corrosion inhibitors and their influence on petroleum product pipeline.

    Science.gov (United States)

    Rajasekar, Aruliah; Maruthamuthu, Sundaram; Palaniswamy, Narayanan; Rajendran, Annamalai

    2007-01-01

    The present study enlightens the role of Bacillus cereus ACE4 on biodegradation of commercial corrosion inhibitors (CCI) and the corrosion process on API 5LX steel. Bacillus cereus ACE4, a dominant facultative aerobic species was identified by 16S rDNA sequence analysis, which was isolated from the corrosion products of refined diesel-transporting pipeline in North West India. The effect of CCI on the growth of bacterium and its corrosion inhibition efficiency were investigated. Corrosion inhibition efficiency was studied by rotating cage test and the nature of biodegradation of corrosion inhibitors was also analyzed. This isolate has the capacity to degrade the aromatic and aliphatic hydrocarbon present in the corrosion inhibitors. The degraded products of corrosion inhibitors and bacterial activity determine the electrochemical behavior of API 5LX steel.

  8. Effect of some metabolic inhibitors on citric acid production Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, P.K.; Bhatt, C.S.; Viswanathan, L.

    1983-09-01

    Stationary cultures of Aspergillus niger grown on a synthetic medium have been used to study the effect of some metabolic inhibitors on citric acid production. Addition of 0.05 to 1 mM sodium malonate or 0.01 to 0.1 mM potassium ferricyanide, iodoacetate, sodium azide, soldium arsenate or sodium fluoride stimulated citric acid production (3.6 to 45%), but not total titratable acids. Addition of higher concentrations (0.2 to 10 mM) of later inhibitors caused a marked inhibition of fungal growth and citric acid production. The implications of these preliminary findings are discussed. (Refs. 25).

  9. Difference in Success Treating Proximal Interphalangeal and Metacarpophalangeal Joints with Collagenase

    DEFF Research Database (Denmark)

    Liv Hansen, Karina; Werlinrud, Jens Christian; Larsen, Søren

    2017-01-01

    BACKGROUND: Dupuytren disease (DD) is a fibroproliferative disorder of the palmar fasciae causing extension deficit and impaired hand function. Treatment with injection of collagenase clostridium histolyticum (CCH) is a nonsurgical treatment method. The aim of this study was to evaluate the diffe......BACKGROUND: Dupuytren disease (DD) is a fibroproliferative disorder of the palmar fasciae causing extension deficit and impaired hand function. Treatment with injection of collagenase clostridium histolyticum (CCH) is a nonsurgical treatment method. The aim of this study was to evaluate...

  10. A Sensitive, Rapid, and Specific Technique for the Detection of Collagenase Using Zymography.

    Science.gov (United States)

    Prasad, Shivcharan; Roy, Ipsita

    2017-01-01

    In-gel zymography is a commonly employed tool to identify active enzymes in a quantitative and qualitative manner. In this work, apart from the incorporation of substrate which is traditionally employed in zymography, the identification of collagenase by incubation of the enzyme resolved on a polyacrylamide gel with substrate solution is described. The two methods are quite fast and result in specific detection of bacterial collagenase.

  11. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang

    2011-12-21

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol production. In this study, commercial and polymer-derived activated carbons were utilized to selectively remove the model fermentation inhibitor, furfural, from water solution during bioethanol production. The oxygen functional groups on the carbon surface were found to influence the selectivity of sorbents between inhibitors and sugars during the separation. After inhibitors were selectively removed from the broth, the cell growth and ethanol production efficiency was recovered noticeably in the fermentation. A sorption/desorption cycle was designed, and the sorbents were regenerated in a fixed-bed column system using ethanol-containing standard solution. Dynamic mass balance was obtained after running four or five cycles, and regeneration results were stable even after twenty cycles. © 2011 American Chemical Society.

  12. Natural Product Inspired N-Terminal Hsp90 Inhibitors: From Bench to Bedside?

    Science.gov (United States)

    Khandelwal, Anuj; Crowley, Vincent M; Blagg, Brian S J

    2016-01-01

    The 90 kDa heat shock proteins (Hsp90) are responsible for the conformational maturation of nascent polypeptides and the rematuration of denatured proteins. Proteins dependent upon Hsp90 are associated with all six hallmarks of cancer. Upon Hsp90 inhibition, protein substrates are degraded via the ubiquitin-proteasome pathway. Consequentially, inhibition of Hsp90 offers a therapeutic opportunity for the treatment of cancer. Natural product inhibitors of Hsp90 have been identified in vitro, which have served as leads for the development of more efficacious inhibitors and analogs that have entered clinical trials. This review highlights the development of natural product analogs, as well as the development of clinically important inhibitors that arose from natural products. © 2015 Wiley Periodicals, Inc.

  13. Optimised production of L-glutaminase: A tumour inhibitor from ...

    African Journals Online (AJOL)

    L-Glutaminase, an amidohydrolase enzyme has been a choice of interest in the treatment of lymphoblastic leukemia. This study investigates the production and optimization of extracellular glutaminase enzyme using several agro-industrial residues by Aspergillus flavus KUGF009 using SSF (solid state fermentation).

  14. Effect of ultrasonic pretreatment on kinetics of gelatin hydrolysis by collagenase and its mechanism.

    Science.gov (United States)

    Yu, Zhi-Long; Zeng, Wei-Cai; Zhang, Wen-Hua; Liao, Xue-Pin; Shi, Bi

    2016-03-01

    Gelatin is a mixture of soluble proteins prepared by partial hydrolysis of native collagen. Gelatin can be enzymatically hydrolyzed to produce bioactive hydrolysates. However, the preparation of gelatin peptide with expected activity is usually a time-consuming process. The production efficiency of gelatin hydrolysates needs to be improved. In present work, effect of ultrasonic pretreatment on kinetic parameters of gelatin hydrolysis by collagenase was investigated based on an established kinetic model. With ultrasonic pretreatment, reaction rate constant and enzyme inactivation constant were increased by 27.5% and 27.8%, respectively. Meanwhile, hydrolysis activation energy and enzyme inactivation energy were reduced by 36.3% and 43.0%, respectively. In order to explore its possible mechanism, influence of sonication on structural properties of gelatin was determined using atomic force microscopy, particle size analyzer, fluorescence spectroscopy, protein solubility test and Fourier transform infrared spectroscopy. Moreover, hydrogen peroxide was used as a positive control for potential sonochemical effect. It was found that reduction of gelatin particle size was mainly caused by physical effect of ultrasound. Increased solubility and variation in β-sheet and random coil elements of gelatin were due to sonochemical effect. Both physical and chemical effects of sonication contributed to the change in α-helix and β-turn structures. The current results suggest that ultrasound can be potentially applied to stimulate the production efficiency of gelatin peptides, mainly due to its effects on modification of protein structures. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Collagenase-mediated tissue modeling of corneal ectasia and collagen cross-linking treatments.

    Science.gov (United States)

    Hong, Cheng W; Sinha-Roy, Abhijit; Schoenfield, Lynn; McMahon, James T; Dupps, William J

    2012-04-30

    Corneal collagen cross-linking (CXL) is a method for modifying the natural history of keratoconus and other corneal ectatic diseases. The authors evaluated the use of collagenase for generating an experimental model of ectasia to evaluate the topographic effects of CXL interventions. Nine human corneoscleral specimens unsuitable for transplantation were used. After epithelial debridement, mounting, and pressurization on an artificial anterior chamber, a solution of 10 mg/mL collagenase type II with 15% dextran was applied to five corneas for three hours. Three of these corneas subsequently underwent riboflavin/UV-A CXL. Scheimpflug-based tomography was performed before collagenase exposure, after collagenase exposure, and after CXL to evaluate changes in maximum axial curvature of the anterior surface (K(max)) at three IOP levels. Results were compared to four control eyes exposed to dextran alone. A statistically significant increase in K(max) was seen across all IOP levels in the collagenase group compared to the control group (+6.6 ± 1.1 diopters [D] and +0.3 ± 0.8 D, respectively, at physiological IOP). After CXL, K(max) decreased (-7.6 ± 2.0 D at physiological IOP). Anterior corneal aberrations increased after collagenase exposure and decreased after CXL. Light microscopy showed loss of normal stromal collagen architecture and localized edema after collagenase exposure. A method for generating topographic features of corneal ectasia in human tissue is demonstrated. No significant sensitivity of K(max) to IOP was observed. CXL caused regression of steepening and induced aberrations in this model, consistent with clinical trends. The model may be useful for testing modifications to standard CXL techniques.

  16. Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guang-Li; Ren, Nan-Qi; Wang, Ai-Jie; Guo, Wan-Qian; Xu, Ji-Fei; Liu, Bing-Feng [State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    In the process of producing H{sub 2} from lignocellulosic materials, inhibitory compounds could be potentially formed during pre-treatment. This work experimentally investigated the effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Representative compounds presented in corn stover acid hydrolysate were added in various concentrations, individually or in various combinations and subsequently inhibitions on growth and H{sub 2} production were quantified. Acetate sodium was not inhibitory to T. thermosaccharolyticum W16, rather than it was stimulatory to the growth and H{sub 2} production. Alternatively, furfural, hydroxymethylfurfural (HMF), vanillin and syringaldehyde were potent inhibitors of growth and hydrogen production even though these compounds showed inhibitory effect depending on their concentrations. Synergistic inhibitory effects were exhibited in the introduction of combinations of inhibitors to the medium and in hydrolysate with concentrated inhibitors. Fermentation results from hydrolysates revealed that to increase the efficiency of this bioprocess from corn stover hydrolysate, the inhibitory compounds concentration must be reduced to the levels present in the raw hydrolysate. (author)

  17. Production of xylitol from biomass using an inhibitor-tolerant fungal strain

    Science.gov (United States)

    Inhibitory compounds arising from physical–chemical pretreatment of biomass feedstock can interfere with fermentation of biomass sugars to product. A fungus, Coniochaeta ligniaria NRRL30616 improves fermentability of biomass sugars by metabolizing a variety of microbial inhibitors including furan al...

  18. Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production.

    Science.gov (United States)

    Westman, Johan O; Mapelli, Valeria; Taherzadeh, Mohammad J; Franzén, Carl Johan

    2014-11-01

    Yeast has long been considered the microorganism of choice for second-generation bioethanol production due to its fermentative capacity and ethanol tolerance. However, tolerance toward inhibitors derived from lignocellulosic materials is still an issue. Flocculating yeast strains often perform relatively well in inhibitory media, but inhibitor tolerance has never been clearly linked to the actual flocculation ability per se. In this study, variants of the flocculation gene FLO1 were transformed into the genome of the nonflocculating laboratory yeast strain Saccharomyces cerevisiae CEN.PK 113-7D. Three mutants with distinct differences in flocculation properties were isolated and characterized. The degree of flocculation and hydrophobicity of the cells were correlated to the length of the gene variant. The effect of different strength of flocculation on the fermentation performance of the strains was studied in defined medium with or without fermentation inhibitors, as well as in media based on dilute acid spruce hydrolysate. Strong flocculation aided against the readily convertible inhibitor furfural but not against less convertible inhibitors such as carboxylic acids. During fermentation of dilute acid spruce hydrolysate, the most strongly flocculating mutant with dense cell flocs showed significantly faster sugar consumption. The modified strain with the weakest flocculation showed a hexose consumption profile similar to the untransformed strain. These findings may explain why flocculation has evolved as a stress response and can find application in fermentation-based biorefinery processes on lignocellulosic raw materials. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Essential motions in a fungal lipase with bound substrate, covalently attached inhibitor and product

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Bywater, R.P.

    2002-01-01

    As an aid to understanding the influence of dynamic fluctuations during esterolytic catalysis, we follow protein flexibility at three different steps along the catalytic pathway from substrate binding to product clearance via a covalently attached inhibitor, which represents a transition-state mi......As an aid to understanding the influence of dynamic fluctuations during esterolytic catalysis, we follow protein flexibility at three different steps along the catalytic pathway from substrate binding to product clearance via a covalently attached inhibitor, which represents a transition...... flexibility suggesting that these processes occur along rough energy surfaces with only a few minima. Detailed energetic analyses along the trajectories indicated that in all cases binding is dominated by van der Waals interactions. The carboxylate form of the product is stabilized by a tight hydrogen bond...

  20. How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production.

    Science.gov (United States)

    Marconi, Patricia L; Alvarez, María A; Pitta-Alvarez, Sandra I

    2007-01-01

    Hairy roots of Brugmansia candida produce the tropane alkaloids scopolamine and hyoscyamine. In an attempt to divert the carbon flux from competing pathways and thus enhance productivity, the polyamine biosynthesis inhibitors cyclohexylamine (CHA) and methylglyoxal-bis-guanylhydrazone (MGBG) and the phenylalanine-ammonia-lyase inhibitor cinnamic acid were used. CHA decreased the specific productivity of both alkaloids but increased significantly the release of scopolamine (approx 500%) when it was added in the mid-exponential phase. However, when CHA was added for only 48 h during the exponential phase, the specific productivity of both alkaloids increased (approx 200%), favoring scopolamine. Treatment with MGBG was detrimental to growth but promoted release into the medium of both alkaloids. However, when it was added for 48 h during the exponential phase, MGBG increased the specific productivity (approx 200%) and release (250- 1800%) of both alkaloids. Cinnamic acid alone also favored release but not specific productivity. When a combination of CHA or MGBG with cinnamic acid was used, the results obtained were approximately the same as with each polyamine biosynthesis inhibitor alone, although to a lesser extent. Regarding root morphology, CHA inhibited growth of primary roots and ramification. However, it had a positive effect on elongation of lateral roots.

  1. Assignments and structure determination of the catalytic domain of human fibroblast collagenase using 3D double and triple resonance NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Mark A.; Dellwo, Martin J.; Schneider, Diane M.; Banks, Tracey M.; Falvo, Joseph [Sterling Winthrop Pharmaceuticals Research Division (United States); Vavra, Karen J.; Mathiowetz, Alan M. [Eastman Kodak Company (United States); Qoronfleh, M. Walid; Ciccarelli, Richard; Cook, Ewell R. [Sterling Winthrop Pharmaceuticals Research Division (United States); Pulvino, Tricia A. [Eastman Kodak Company (United States); Wahl, Robert C.; Wang Hsin [Sterling Winthrop Pharmaceuticals Research Division (United States)

    1997-01-15

    We report here the backbone 1HN, 15N, 13C{alpha}, 13CO, and 1H{alpha} NMR assignments for the catalytic domain of human fibroblast collagenase (HFC). Three independent assignment pathways (matching 1H, 13C{alpha}, and 13CO resonances) were used to establish sequential connections. The connections using 13C{alpha} resonances were obtained from HNCOCA and HNCA experiments; 13CO connections were obtained from HNCO and HNCACO experiments. The sequential proton assignment pathway was established from a 3D(1H/15N) NOESY-HSQC experiment. Amino acid typing was accomplished using 13C and 15N chemical shifts, specific labeling of 15N-Leu, and spin pattern recognition from DQF-COSY. The secondary structure was determined by analyzing the 3D (1H/15N) NOESY-HSQC. A preliminary NMR structure calculation of HFC was found to be in agreement with recent X-ray structures of human fibroblast collagenase and human neutrophil collagenase as well as similar to recent NMR structures of a highly homologous protein, stromelysin. All three helices were located; a five-stranded {beta}-sheet (four parallel strands, one antiparallel strand) was also determined. {beta}-Sheet regions were identified by cross-strand d{alpha}N and dNN connections and by strong intraresidue d{alpha}N correlations, and were corroborated by observing slow amide proton exchange. Chemical shift changes in a selectively 15N-labeled sample suggest that substantial structural changes occur in the active site cleft on the binding of an inhibitor.

  2. Assignments and structure determination of the catalytic domain of human fibroblast collagenase using 3D double and triple resonance NMR spectroscopy

    International Nuclear Information System (INIS)

    McCoy, Mark A.; Dellwo, Martin J.; Schneider, Diane M.; Banks, Tracey M.; Falvo, Joseph; Vavra, Karen J.; Mathiowetz, Alan M.; Qoronfleh, M. Walid; Ciccarelli, Richard; Cook, Ewell R.; Pulvino, Tricia A.; Wahl, Robert C.; Wang Hsin

    1997-01-01

    We report here the backbone 1HN, 15N, 13Cα, 13CO, and 1Hα NMR assignments for the catalytic domain of human fibroblast collagenase (HFC). Three independent assignment pathways (matching 1H, 13Cα, and 13CO resonances) were used to establish sequential connections. The connections using 13Cα resonances were obtained from HNCOCA and HNCA experiments; 13CO connections were obtained from HNCO and HNCACO experiments. The sequential proton assignment pathway was established from a 3D(1H/15N) NOESY-HSQC experiment. Amino acid typing was accomplished using 13C and 15N chemical shifts, specific labeling of 15N-Leu, and spin pattern recognition from DQF-COSY. The secondary structure was determined by analyzing the 3D (1H/15N) NOESY-HSQC. A preliminary NMR structure calculation of HFC was found to be in agreement with recent X-ray structures of human fibroblast collagenase and human neutrophil collagenase as well as similar to recent NMR structures of a highly homologous protein, stromelysin. All three helices were located; a five-stranded β-sheet (four parallel strands, one antiparallel strand) was also determined. β-Sheet regions were identified by cross-strand dαN and dNN connections and by strong intraresidue dαN correlations, and were corroborated by observing slow amide proton exchange. Chemical shift changes in a selectively 15N-labeled sample suggest that substantial structural changes occur in the active site cleft on the binding of an inhibitor

  3. Effect of inhibitors on ethanol production by Pichia stipitis in a complex culture media

    Directory of Open Access Journals (Sweden)

    Ana Karla de Souza Abud

    2017-05-01

    Full Text Available Biomass from lignocellulosic material constitutes a promising energy alternative and without competing with food production. However, pretreatments are required for conversion into sugars which release hexoses, pentoses and other sugars, coupled to inhibitors. Current analysis focuses on ethanol production with the three major inhibitors of lignocellulosic biomass pretreatment, namely, acetic acid, furfural and 5-hydroxymetilfurfural (HMF, and investigates the influence of a mixture of these inhibitors on fermentation by Pichia stipits, using commercial xylose as the only carbon source, through a full factorial 23 + 3 design of experiments (DOE. Fermentations were conducted in a laboratory scale, at 150 rpm and 72h, in a complex culture media with xylose and different inhibitor concentrations, based on the experimental analysis of sugarcane bagasse and 2.107 cell mL-1 of initial concentration of the microorganism. Experimental results showed a significant influence of acetic acid concentration, which must be at the lowest possible level, with no influence of furfural and hydroxymethyl furfural respectively up to concentrations 2.25 and 0.75 g L-1.

  4. [Influence of cryotherapy in the inhibition of collagenase activity in experimental corneal burns by hydrochloric acid. Doctoral thesis summary].

    Science.gov (United States)

    Zalewski, S

    1994-12-01

    Investigations were carried-out on corneas of rabbit eyes burned with 1N HCl and then treated with low temperature. It was found that cryotherapy has advantageous influence on collagenase activity. In early period after burn cryotherapy could prevent collagenolysis and later inhibited collagenase activity.

  5. ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells.

    Science.gov (United States)

    Cesi, Giulia; Walbrecq, Geoffroy; Zimmer, Andreas; Kreis, Stephanie; Haan, Claude

    2017-06-08

    Most melanoma patients with BRAF V600E positive tumors respond well to a combination of BRAF kinase and MEK inhibitors. However, some patients are intrinsically resistant while the majority of patients eventually develop drug resistance to the treatment. For patients insufficiently responding to BRAF and MEK inhibitors, there is an ongoing need for new treatment targets. Cellular metabolism is such a promising new target line: mutant BRAF V600E has been shown to affect the metabolism. Time course experiments and a series of western blots were performed in a panel of BRAF V600E and BRAF WT /NRAS mut human melanoma cells, which were incubated with BRAF and MEK1 kinase inhibitors. siRNA approaches were used to investigate the metabolic players involved. Reactive oxygen species (ROS) were measured by confocal microscopy and AZD7545, an inhibitor targeting PDKs (pyruvate dehydrogenase kinase) was tested. We show that inhibition of the RAS/RAF/MEK/ERK pathway induces phosphorylation of the pyruvate dehydrogenase PDH-E1α subunit in BRAF V600E and in BRAF WT /NRAS mut harboring cells. Inhibition of BRAF, MEK1 and siRNA knock-down of ERK1/2 mediated phosphorylation of PDH. siRNA-mediated knock-down of all PDKs or the use of DCA (a pan-PDK inhibitor) abolished PDH-E1α phosphorylation. BRAF inhibitor treatment also induced the upregulation of ROS, concomitantly with the induction of PDH phosphorylation. Suppression of ROS by MitoQ suppressed PDH-E1α phosphorylation, strongly suggesting that ROS mediate the activation of PDKs. Interestingly, the inhibition of PDK1 with AZD7545 specifically suppressed growth of BRAF-mutant and BRAF inhibitor resistant melanoma cells. In BRAF V600E and BRAF WT /NRAS mut melanoma cells, the increased production of ROS upon inhibition of the RAS/RAF/MEK/ERK pathway, is responsible for activating PDKs, which in turn phosphorylate and inactivate PDH. As part of a possible salvage pathway, the tricarboxylic acid cycle is inhibited leading to

  6. α-1-Antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood

    OpenAIRE

    Pott, Gregory B.; Chan, Edward D.; Dinarello, Charles A.; Shapiro, Leland

    2009-01-01

    Several observations suggest endogenous suppressors of inflammatory mediators are present in human blood. α-1-Antitrypsin (AAT) is the most abundant serine protease inhibitor in blood, and AAT possesses anti-inflammatory activity in vitro and in vivo. Here, we show that in vitro stimulation of whole blood from persons with a genetic AAT deficiency resulted in enhanced cytokine production compared with blood from healthy subjects. Using whole blood from healthy subjects, dilution of blood with...

  7. Histochemical analysis of the role of class I and class II Clostridium histolyticum collagenase in the degradation of rat pancreatic extracellular matrix for islet isolation

    NARCIS (Netherlands)

    Vos-Scheperkeuter, Greetje H.; van Suylichem, Paul T.R.; Wolters, G. H. J.; van Schilfgaarde, Reinout

    1997-01-01

    To understand why class II Clostridium histolyticum collagenase is much more effective than class I in the isolation of rat pancreatic islets, we analyzed the role of these collagenases in pancreatic tissue dissociation. Crude collagenase was purified and then fractionated into class I and II with

  8. Hyaluronidase and collagenase inhibitory activities of the herbal ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Green tea polyphenols (Demeule et al 2000) show gelatinase inhibitory activity. Some of the prescribed anti-arthritic drugs have hyaluronidase or gelatinase inhibitory activity. Thus, the anti-inflammatory drugs indomethacin and dexamethasone. (0.1–0.2 mM) are moderate inhibitors of hyaluronidase. (Girish and Kemparaju ...

  9. Investigation of the use of Maillard reaction inhibitors for the production of patatin-carbohydrate conjugates.

    Science.gov (United States)

    Seo, Sooyoun; Karboune, Salwa

    2014-12-17

    Selected Maillard reaction inhibitors, including aminoguanidine, cysteine, pyridoxamine, and sodium bisulfite, were evaluated for their effect on the production of carbohydrate conjugated proteins with less cross-linking/browning. Patatin (PTT), a major potato protein, was glycated with galactose, xylose, galactooligosaccharides, xylooligosaccharides, galactan, and xylan under controlled conditions. The effectiveness of the inhibitors to control the glycation reaction was assessed by monitoring the glycation extent, the protein cross-linking, and the formation of dicarbonyl compounds. Sodium bisulfite was the most effective inhibitor for PTT-galactose and PTT-xylan reaction systems (reaction control ratios of 210.0 and 12.8). On the other hand, aminoguanidine and cysteine led to the highest reaction control ratios for the PTT-xylose/xylooligosaccharide (160.0 and 143.0) and PTT-galactooligosaccharides/galactan (663.0 and 71.0) reaction systems, respectively. The use of cysteine and aminoguanidine as inhibitors led to 1.7-99.4% decreases in the particle size distribution of the PTT conjugates and to 0.4-9.3% increases in their relative digestibility, per 5% blocked lysine.

  10. Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity.

    Science.gov (United States)

    Wittenauer, Judith; Mäckle, Sonja; Sußmann, Daniela; Schweiggert-Weisz, Ute; Carle, Reinhold

    2015-03-01

    Breakdown and disorganization of extracellular matrix proteins like collagen, fibronectin and elastin are main characteristics of skin aging due to the enhanced activation of proteolytic enzymes such as collagenases and elastases. Inhibition of their enzymatic activities by natural plant compounds might be a promising approach to prevent extrinsic skin aging. Especially polyphenols are supposed to interact with those enzymes due to their molecular nature. In our investigation, extracts of pomace from Riesling grapes were analyzed for their inhibitory properties on collagenase as well as elastase. Crude grape pomace extract showed a dose-dependent inhibitory activity against both enzymes with IC50-values of 20.3μg/ml and 14.7μg/ml for collagenase and elastase activity, respectively. The extracts were fractionated into four fractions containing phenolic compounds differing in chemical structure and polarity. Except for the stilbene containing fraction, all other fractions showed inhibitory effects on both enzyme activities. The most pronounced impact was found for the hydrophilic low molecular weight polyphenols containing the free phenolic acids. In particular, gallic acid showed considerable inhibition values. EGCG was used as a positive control and showed a dose-dependent inhibition of collagenase activity (IC50=0.9mM). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Collagenase Treatment for Dupuytren Disease of the Thumb and First Web

    NARCIS (Netherlands)

    Dreise, Marieke M.; Stenekes, Martin W.; Werker, Paul M. N.

    Purpose To evaluate the short-term effectiveness of collagenase Clostridium histolyticum to treat thumb and first web contractures in Dupuytren disease. Methods We prospectively included 14 thumbs in 12 patients with a contracture at the metacarpophalangeal or interphalangeal joint of at least 20

  12. Comparative Effectiveness of Needle Aponeurotomy and Collagenase Injection for Dupuytren's Contracture: A Multicenter Study

    NARCIS (Netherlands)

    C. Zhou (Chao); S.E.R. Hovius (Steven); Pieters, A.J. (Adriana J.); H.P. Slijper; W.F.J. Feitz (Wout); R.W. Selles (Ruud)

    2017-01-01

    textabstractBackground: Although the efficacy of collagenase clostridium histolyticum (CCH) injections has been demonstrated by randomized clinical trials, the relative effectiveness of CCH remains uncertain. Our aim was to compare the outcomes of CCH with those of percutaneous needle aponeurotomy

  13. DNA structures decorated with cathepsin G/secretory leukocyte proteinase inhibitor stimulate IFNI production by plasmacytoid dendritic cells

    DEFF Research Database (Denmark)

    Skrzeczynska-Moncznik, Joanna; Wlodarczyk, Agnieszka; Banas, Magdalena

    2013-01-01

    psoriasis. Here, we demonstrate that IFNI production in pDCs is stimulated by DNA structures containing the neutrophil serine protease cathepsin G (CatG) and the secretory leukocyte protease inhibitor (SLPI), which is a controlling inhibitor of serine proteases. We also demonstrate the presence...

  14. Alpha-1-antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood.

    Science.gov (United States)

    Pott, Gregory B; Chan, Edward D; Dinarello, Charles A; Shapiro, Leland

    2009-05-01

    Several observations suggest endogenous suppressors of inflammatory mediators are present in human blood. alpha-1-Antitrypsin (AAT) is the most abundant serine protease inhibitor in blood, and AAT possesses anti-inflammatory activity in vitro and in vivo. Here, we show that in vitro stimulation of whole blood from persons with a genetic AAT deficiency resulted in enhanced cytokine production compared with blood from healthy subjects. Using whole blood from healthy subjects, dilution of blood with RPMI tissue-culture medium, followed by incubation for 18 h, increased spontaneous production of IL-8, TNF-alpha, IL-1 beta, and IL-1R antagonist (IL-1Ra) significantly, compared with undiluted blood. Dilution-induced cytokine production suggested the presence of one or more circulating inhibitors of cytokine synthesis present in blood. Serially diluting blood with tissue-culture medium in the presence of cytokine stimulation with heat-killed Staphylococcus epidermidis (S. epi) resulted in 1.2- to 55-fold increases in cytokine production compared with S. epi stimulation alone. Diluting blood with autologous plasma did not increase the production of IL-8, TNF-alpha, IL-1 beta, or IL-1Ra, suggesting that the endogenous, inhibitory activity of blood resided in plasma. In whole blood, diluted and stimulated with S. epi, exogenous AAT inhibited IL-8, IL-6, TNF-alpha, and IL-1 beta significantly but did not suppress induction of the anti-inflammatory cytokines IL-1Ra and IL-10. These ex vivo and in vitro observations suggest that endogenous AAT in blood contributes to the suppression of proinflammatory cytokine synthesis.

  15. α-1-Antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood

    Science.gov (United States)

    Pott, Gregory B.; Chan, Edward D.; Dinarello, Charles A.; Shapiro, Leland

    2009-01-01

    Several observations suggest endogenous suppressors of inflammatory mediators are present in human blood. α-1-Antitrypsin (AAT) is the most abundant serine protease inhibitor in blood, and AAT possesses anti-inflammatory activity in vitro and in vivo. Here, we show that in vitro stimulation of whole blood from persons with a genetic AAT deficiency resulted in enhanced cytokine production compared with blood from healthy subjects. Using whole blood from healthy subjects, dilution of blood with RPMI tissue-culture medium, followed by incubation for 18 h, increased spontaneous production of IL-8, TNF-α, IL-1β, and IL-1R antagonist (IL-1Ra) significantly, compared with undiluted blood. Dilution-induced cytokine production suggested the presence of one or more circulating inhibitors of cytokine synthesis present in blood. Serially diluting blood with tissue-culture medium in the presence of cytokine stimulation with heat-killed Staphylococcus epidermidis (S. epi) resulted in 1.2- to 55-fold increases in cytokine production compared with S. epi stimulation alone. Diluting blood with autologous plasma did not increase the production of IL-8, TNF-α, IL-1β, or IL-1Ra, suggesting that the endogenous, inhibitory activity of blood resided in plasma. In whole blood, diluted and stimulated with S. epi, exogenous AAT inhibited IL-8, IL-6, TNF-α, and IL-1β significantly but did not suppress induction of the anti-inflammatory cytokines IL-1Ra and IL-10. These ex vivo and in vitro observations suggest that endogenous AAT in blood contributes to the suppression of proinflammatory cytokine synthesis. PMID:19197072

  16. [Effect of collagenase on the permeability of the glomerular basement membrane in the rat kidney].

    Science.gov (United States)

    Laloi, C; Geloso-Meyer, A; Cheignon, M; Schaeverbeke, J

    1981-03-16

    Recently, several authors have emphasized the role of negative sites located in th laminae rarae of the glomerular basement membrane (GBM), in restricting glomerular permeability to anionic macromolecules. In this work, we point out that ultrafiltration properties involve integrity of the GBM. Indeed after intravenous perfusion of bacterian collagenase, anionic ferritin permeates the GBM though negative site distribution (as shown by fixation of colloidal iron) is unaffected.

  17. Glial activation in the collagenase model of nociception associated with osteoarthritis

    OpenAIRE

    Ad?es, Sara; Almeida, L?gia; Potes, Catarina S; Ferreira, Ana Rita; Castro-Lopes, Jos? M; Ferreira-Gomes, Joana; Neto, Fani L

    2017-01-01

    Background Experimental osteoarthritis entails neuropathic-like changes in dorsal root ganglia (DRG) neurons. Since glial activation has emerged as a key player in nociception, being reported in numerous models of neuropathic pain, we aimed at evaluating if glial cell activation may also occur in the DRG and spinal cord of rats with osteoarthritis induced by intra-articular injection of collagenase. Methods Osteoarthritis was induced by two injections, separated by three days, of 500 U of typ...

  18. Matrix Metalloproteinase Inhibitors (MMPIs from Marine Natural Products: the Current Situation and Future Prospects

    Directory of Open Access Journals (Sweden)

    Se-Kwon Kim

    2009-03-01

    Full Text Available Matrix metalloproteinases (MMPs are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products.

  19. Inhibition of Collagenase by Mycosporine-like Amino Acids from Marine Sources

    Science.gov (United States)

    Hartmann, Anja; Gostner, Johanna; Fuchs, Julian E.; Chaita, Eliza; Aligiannis, Nektarios; Skaltsounis, Leandros; Ganzera, Markus

    2015-01-01

    Matrix metalloproteinases (MMP) play an important role in extracellular matrix remodeling. Excessive activity of these enzymes can be induced by UV light and leads to skin damage, a process known as photoaging. In this study we investigated the collagenase inhibition potential of mycosporine-like amino acids (MAA), compounds that have been isolated from marine organisms and are known photoprotectants against UV-A and UV-B. For this purpose the commonly used collagenase assay was optimized and for the first time validated in terms of relationships between enzyme-substrate concentrations, temperature, incubation time and enzyme stability. Three compounds were isolated from the marine red algae Porphyra sp. and Palmaria palmata, and evaluated for their inhibitory properties against Chlostridium histolyticum collagenase (Chc). A dose-dependent, but very moderate inhibition was observed for all substances and IC50 values of 104.0 μM for shinorine, 105.9 μM for porphyra and 158.9 μM for palythine were determined. Additionally, computer-aided docking models suggested that the MAA binding to the active site of the enzyme is a competitive inhibition. PMID:26039265

  20. Inhibition of Collagenase by Mycosporine-like Amino Acids from Marine Sources.

    Science.gov (United States)

    Hartmann, Anja; Gostner, Johanna; Fuchs, Julian E; Chaita, Eliza; Aligiannis, Nektarios; Skaltsounis, Leandros; Ganzera, Markus

    2015-07-01

    Matrix metalloproteinases play an important role in extracellular matrix remodeling. Excessive activity of these enzymes can be induced by UV light and leads to skin damage, a process known as photoaging. In this study, we investigated the collagenase inhibition potential of mycosporine-like amino acids, compounds that have been isolated from marine organisms and are known photoprotectants against UV-A and UV-B. For this purpose, the commonly used collagenase assay was optimized and for the first time validated in terms of relationships between enzyme-substrate concentrations, temperature, incubation time, and enzyme stability. Three compounds were isolated from the marine red algae Porphyra sp. and Palmaria palmata, and evaluated for their inhibitory properties against Chlostridium histolyticum collagenase. A dose-dependent, but very moderate, inhibition was observed for all substances and IC50 values of 104.0 µM for shinorine, 105.9 µM for porphyra, and 158.9 µM for palythine were determined. Additionally, computer-aided docking models suggested that the mycosporine-like amino acids binding to the active site of the enzyme is a competitive inhibition. Georg Thieme Verlag KG Stuttgart · New York.

  1. The effect of collagenase on the critical buckling pressure of arteries.

    Science.gov (United States)

    Martinez, Ricky; Han, Hai-Chao

    2012-03-01

    The stability of arteries is essential to normal arterial functions and loss of stability can lead to arterial tortuosity and kinking. Collagen is a main extracellular matrix component that modulates the mechanical properties of arteries and collagen degradation at pathological conditions weakens the mechanical strength of arteries. However, the effects of collagen degradation on the mechanical stability of arteries are unclear. The objective of this study was to investigate the effects of collagen degradation on the critical buckling pressure of arteries. Arterial specimens were subjected to pressurized inflation testing and fitted with nonlinear thick-walled cylindrical model equations to determine their stress strain relationships. The arteries were then tested for the critical buckling pressure at a set of axial stretch ratios. Then, arteries were divided into three groups and treated with Type III collagenase at three different concentrations (64, 128, and 400 U/ml). Mechanical properties and buckling pressures of the arteries were determined after collagenase treatment. Additionally, the theoretical buckling pressures were also determined using a buckling equation. Our results demonstrated that the buckling pressure of arteries was lower after collagenase treatment. The difference between pre- and post- treatment was statistically significant for the highest concentration of 400U/ml but not at the lower concentrations. The buckling equation was found to yield a fair estimation to the experimental critical pressure measurements. These results shed light on the role of matrix remodeling on the mechanical stability of arteries and developments of tortuous arteries.

  2. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities

    DEFF Research Database (Denmark)

    Kitir, Betül; Maolanon, Alex R.; Ohm, Ragnhild G.

    2017-01-01

    medicines. Therefore, detailed mechanistic information and precise characterization of the chemical probes used to investigate the effects of HDAC enzymes are vital. We interrogated Nature's arsenal of macrocyclic nonribosomal peptide HDAC inhibitors by chemical synthesis and evaluation of more than 30...... natural products and analogues. This furnished surprising trends in binding affinities for the various macrocycles, which were then exploited for the design of highly potent class I and IIb HDAC inhibitors. Furthermore, thorough kinetic investigation revealed unexpected inhibitory mechanisms of important...

  3. Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion

    International Nuclear Information System (INIS)

    Sanders, R.W.; Porter, K.G.

    1986-01-01

    Inhibitors of eucaryotes (cycloheximide and amphotericin B) and procaryotes (penicillin and chloramphenical) were used to estimate bacterivory and bacterial production in a eutrophic lake. Bacterial production appeared to be slightly greater than protozoan grazing in the aerobic waters of Lake Oglethorpe. Use of penicillin and cycloheximide yielded inconsistent results in anaerobic water and in aerobic water when bacterial production was low. Production measured by inhibiting eucaryotes with cycloheximide did not always agree with [ 3 H]thymidine estimates or differential filtration methods. Laboratory experiments showed that several common freshwater protozoans continued to swim and ingest bacterium-size latex beads in the presence of the eucaryote inhibitor. Penicillin also affected grazing rates of some ciliates. The authors recommended that caution and a corroborating method be used when estimating ecologically important parameters with specific inhibitors

  4. Serendipitous discovery of short peptides from natural products as tyrosinase inhibitors.

    Science.gov (United States)

    Hsiao, Nai-Wan; Tseng, Tien-Sheng; Lee, Yu-Ching; Chen, Wang-Chuan; Lin, Hui-Hsiung; Chen, Yun-Ru; Wang, Yeng-Tseng; Hsu, Hung-Ju; Tsai, Keng-Chang

    2014-11-24

    Tyrosinase, which is the crucial copper-containing enzyme involved in melanin synthesis, is strongly associated with hyperpigmentation disorders, cancer, and neurodegenerative disease; thus, it has attracted considerable interest in the fields of medicine and cosmetics. The known tyrosinase inhibitors show numerous adverse side effects, and there is a lack of safety regulations governing their use. As a result, there is a need to develop novel inhibitors with no toxicity and long-term stability. In this study, we use molecular docking and pharmacophore modeling to construct a reasonable and reliable pharmacophore model, called Hypo 1, that could be used for identifying potent natural products with crucial complementary functional groups for mushroom tyrosinase inhibition. It was observed that, out of 47,263 natural compounds, A5 structurally resembles a dipeptide (WY) and natural compound B16 is the equivalent of a tripeptide (KFY), revealing that the C-terminus tyrosine residues play a key role in tyrosinase inhibition. Tripeptides RCY and CRY, which show high tyrosinase inhibitory potency, revealed a positional and functional preference for the cysteine residue at the N-terminus of the tripeptides, essentially determining the capacity of tyrosinase inhibition. CRY and RCY used the thiol group of cysteine residues to coordinate with the Cu ions in the active site of tyrosinase and showed reduced tyrosinase activity. We discovered the novel tripeptide CRY that shows the most striking inhibitory potency against mushroom tyrosinase (IC50 = 6.16 μM); this tripeptide is more potent than the known oligopeptides and comparable with kojic acid-tripeptides. Our study provides an insight into the structural and functional roles of key amino acids of tripeptides derived from the natural compound B16, and the results are expected to be useful for the development of tyrosinase inhibitors.

  5. Reducing conditions are the key for efficient production of active ribonuclease inhibitor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2011-05-01

    Full Text Available Abstract Background The eukaryotic RNase ribonuclease/angiogenin inhibitors (RI are a protein group distinguished by a unique structure - they are composed of hydrophobic leucine-rich repeat motifs (LRR and contain a high amount of reduced cysteine residues. The members of this group are difficult to produce in E. coli and other recombinant hosts due to their high aggregation tendency. Results In this work dithiothreitol (DTT was successfully applied for improving the yield of correctly folded ribonuclease/angiogenin inhibitor in E. coli K12 periplasmic and cytoplasmic compartments. The feasibility of the in vivo folding concepts for cytoplasmic and periplasmic production were demonstrated at batch and fed-batch cultivation modes in shake flasks and at the bioreactor scale. Firstly, the best secretion conditions of RI in the periplasmic space were evaluated by using a high throughput multifactorial screening approach of a vector library, directly with the Enbase fed-batch production mode in 96-well plates. Secondly, the effect of the redox environment was evaluated in isogenic dsbA+ and dsbA- strains at the various cultivation conditions with reducing agents in the cultivation medium. Despite the fusion to the signal peptide, highest activities were found in the cytoplasmic fraction. Thus by removing the signal peptide the positive effect of the reducing agent DTT was clearly proven also for the cytoplasmic compartment. Finally, optimal periplasmic and cytoplasmic RI fed-batch production processes involving externally added DTT were developed in shake flasks and scaled up to the bioreactor scale. Conclusions DTT highly improved both, periplasmic and cytoplasmic accumulation and activity of RI at low synthesis rate, i.e. in constructs harbouring weak recombinant synthesis rate stipulating genetic elements together with cultivation at low temperature. In a stirred bioreactor environment RI folding was strongly improved by repeated pulse addition

  6. Effect of nutrient limitation of cyanobacteria on protease inhibitor production and fitness of Daphnia magna.

    Science.gov (United States)

    Schwarzenberger, Anke; Sadler, Thomas; Von Elert, Eric

    2013-10-01

    Herbivore-plant interactions have been well studied in both terrestrial and aquatic ecosystems as they are crucial for the trophic transfer of energy and matter. In nutrient-rich freshwater ecosystems, the interaction between primary producers and herbivores is to a large extent represented by Daphnia and cyanobacteria. The occurrence of cyanobacterial blooms in lakes and ponds has, at least partly, been attributed to cyanotoxins, which negatively affect the major grazer of planktonic cyanobacteria, i.e. Daphnia. Among these cyanotoxins are the widespread protease inhibitors. These inhibitors have been shown (both in vitro and in situ) to inhibit the most important group of digestive proteases in the gut of Daphnia, i.e. trypsins and chymotrypsins, and to reduce Daphnia growth. In this study we grew cultures of the cyanobacterium Microcystis sp. strain BM25 on nutrient-replete, N-depleted or P-depleted medium. We identified three different micropeptins to be the cause for the inhibitory activity of BM25 against chymotrypsins. The micropeptin content depended on nutrient availability: whereas N limitation led to a lower concentration of micropeptins per biomass, P limitation resulted in a higher production of these chymotrypsin inhibitors. The altered micropeptin content of BM25 was accompanied by changed effects on the fitness of Daphnia magna: a higher content of micropeptins led to lower IC50 values for D. magna gut proteases and vice versa. Following expectations, the lower micropeptin content in the N-depleted BM25 caused higher somatic growth of D. magna. Therefore, protease inhibitors can be regarded as a nutrient-dependent defence against grazers. Interestingly, although the P limitation of the cyanobacterium led to a higher micropeptin content, high growth of D. magna was observed when they were fed with P-depleted BM25. This might be due to reduced digestibility of P-depleted cells with putatively thick mucilaginous sheaths. These findings indicate that

  7. NAD+-dependent HDAC inhibitor stimulates Monascus pigment production but inhibit citrinin.

    Science.gov (United States)

    Hu, Yan; Zhou, Youxiang; Mao, Zejing; Li, Huihui; Chen, Fusheng; Shao, Yanchun

    2017-08-23

    Monascus species are edible fungi due to the production of food colorant and other beneficial compounds. Hence, it has been an attractive thesis to improve their productivities. Increasing numbers of investigations revealed that regulating the activities of histone deacetylases can significantly perturb secondary metabolites (SM) production at a global level. In this study, dihydrocoumarin (DHC, an inhibitor of the Sirtuin family of NAD + -dependent deacetylases) was used to treat Monascus ruber for evaluating its effects on organism growth and SM production. The results revealed that the variation trends of colonial sizes, biomass and mycotoxin were in a dose-dependent manner. Generally, they decreased with the increased DHC concentrations in the designed range. But the variation trend of pigment was different. Comparison of SM profile, three new peaks occurred to the mycelia extractions from DHC-treated strain corresponding to molecular weights 402, 416 and 444, respectively. These three compounds were identified as Monasfluol B, Monascus azaphilone C and acetyl-monasfluol B (a new Monascus chemical pigment structure). In short, DHC can stimulate M. ruber strain to produce more pigment-like polyketides but inhibition of mycotoxin (citrinin).

  8. Heterologous production of active ribonuclease inhibitor in Escherichia coli by redox state control and chaperonin coexpression

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2011-08-01

    Full Text Available Abstract Background Eukaryotic Ribonuclease inhibitor (RI, belonging to the RNH1 family, is distinguished by unique features - a high sensitivity to oxidation due to the large number of reduced cysteins and a high hydrophobicity, which made most production approaches so far unsuccessful or resulted in very low yields. In this work efficient in vivo folding of native RI in the Escherichia coli cytoplasm was obtained by external addition of a reducing agent in tandem with oxygen limitation and overproduction of a molecular chaperonin. After optimisation of the production conditions in the shake flask scale the process was scaled up to high cell densities by applying a glucose limited fed-batch procedure. Results RI production in a T7 RNA polymerase based system results in accumulation of aggregated inactive product in inclusion bodies. Combination of addition of the reductant DTT, low production temperature and coexpression of the chaperonin GroELS resulted in high level production of approximately 25 mg g-1 CDW active RI in E. coli ER2566 pET21b, corresponding to approximately 800 kU g-1 cell wet weight. Further conditional screening under fed-batch-like conditions with the EnBase® technology and scale up into the bioreactor scale resulted in an efficient high cell density glucose and oxygen limited fed-batch process with a final cell dry weight of 25 g L-1 and a total RI yield of app. 625 mg L-1 (volumetric activity of 80,000 kU L-1. The E. coli based production constructs showed a very high robustness. The recombinant culture maintained its productivity despite the combination of the toxic growth conditions, the substrate limited production mode in tandem with a high level expression of several recombinant proteins, the set of molecular chaperonins and the target protein (RI. Conclusions High level production of active RI in E. coli in a T7 RNA polymerase expression system depends on the following factors: (i addition of a reducing agent, (ii

  9. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality.

    Science.gov (United States)

    Fischer, Simon; Paul, Albert Jesuran; Wagner, Andreas; Mathias, Sven; Geiss, Melanie; Schandock, Franziska; Domnowski, Martin; Zimmermann, Jörg; Handrick, René; Hesse, Friedemann; Otte, Kerstin

    2015-10-01

    Histone deacetylase (HDAC) inhibitors have been exploited for years to improve recombinant protein expression in mammalian production cells. However, global HDAC inhibition is associated with negative effects on various cellular processes. microRNAs (miRNAs) have been shown to regulate gene expression in almost all eukaryotic cell types by controlling entire cellular pathways. Since miRNAs recently have gained much attention as next-generation cell engineering tool to improve Chinese hamster ovary (CHO) cell factories, we were interested if miRNAs are able to specifically repress HDAC expression in CHO cells to circumvent limitations of unspecific HDAC inhibition. We discovered a novel miRNA in CHO cells, miR-2861, which was shown to enhance productivity in various recombinant CHO cell lines. Furthermore, we demonstrate that miR-2861 might post-transcriptionally regulate HDAC5 in CHO cells. Intriguingly, siRNA-mediated HDAC5 suppression could be demonstrated to phenocopy pro-productive effects of miR-2861 in CHO cells. This supports the notion that miRNA-induced inhibition of HDAC5 may contribute to productivity enhancing effects of miR-2861. Furthermore, since product quality is fundamental to safety and functionality of biologics, we examined the effect of HDAC inhibition on critical product quality attributes. In contrast to unspecific HDAC inhibition using VPA, enforced expression of miR-2861 did not negatively influence antibody aggregation or N-glycosylation. Our findings highlight the superiority of miRNA-mediated inhibition of specific HDACs and present miR-2861 as novel cell engineering tool for improving CHO manufacturing cells. © 2015 Wiley Periodicals, Inc.

  10. Huntingtin cleavage product A forms in neurons and is reduced by gamma-secretase inhibitors

    Directory of Open Access Journals (Sweden)

    Betschart Claudia

    2010-12-01

    Full Text Available Abstract Background The mutation in Huntington's disease is a polyglutamine expansion near the N-terminus of huntingtin. Huntingtin expressed in immortalized neurons is cleaved near the N-terminus to form N-terminal polypeptides known as cleavage products A and B (cpA and cpB. CpA and cpB with polyglutamine expansion form inclusions in the nucleus and cytoplasm, respectively. The formation of cpA and cpB in primary neurons has not been established and the proteases involved in the formation of these fragments are unknown. Results Delivery of htt cDNA into the mouse striatum using adeno-associated virus or into primary cortical neurons using lentivirus generated cpA and cpB, indicating that neurons in brain and in vitro can form these fragments. A screen of small molecule protease inhibitors introduced to clonal striatal X57 cells and HeLa cells identified compounds that reduced levels of cpA and are inhibitors of the aspartyl proteases cathepsin D and cathepsin E. The most effective compound, P1-N031, is a transition state mimetic for aspartyl proteases. By western blot analysis, cathepsin D was easily detected in clonal striatal X57 cells, mouse brain and primary neurons, whereas cathepsin E was only detectible in clonal striatal X57 cells. In primary neurons, levels of cleavage product A were not changed by the same compounds that were effective in clonal striatal cells or by mRNA silencing to partially reduce levels of cathepsin D. Instead, treating primary neurons with compounds that are known to inhibit gamma secretase activity either indirectly (Imatinib mesylate, Gleevec or selectively (LY-411,575 or DAPT reduced levels of cpA. LY-411,575 or DAPT also increased survival of primary neurons expressing endogenous full-length mutant huntingtin. Conclusion We show that cpA and cpB are produced from a larger huntingtin fragment in vivo in mouse brain and in primary neuron cultures. The aspartyl protease involved in forming cpA has cathepsin

  11. Huntingtin cleavage product A forms in neurons and is reduced by gamma-secretase inhibitors.

    Science.gov (United States)

    Kegel, Kimberly B; Sapp, Ellen; Alexander, Jonathan; Reeves, Patrick; Bleckmann, Dorothee; Sobin, Linsday; Masso, Nicholas; Valencia, Antonio; Jeong, Hyunkyung; Krainc, Dimitri; Palacino, James; Curtis, Daniel; Kuhn, Rainer; Betschart, Claudia; Sena-Esteves, Miguel; Aronin, Neil; Paganetti, Paolo; Difiglia, Marian

    2010-12-14

    The mutation in Huntington's disease is a polyglutamine expansion near the N-terminus of huntingtin. Huntingtin expressed in immortalized neurons is cleaved near the N-terminus to form N-terminal polypeptides known as cleavage products A and B (cpA and cpB). CpA and cpB with polyglutamine expansion form inclusions in the nucleus and cytoplasm, respectively. The formation of cpA and cpB in primary neurons has not been established and the proteases involved in the formation of these fragments are unknown. Delivery of htt cDNA into the mouse striatum using adeno-associated virus or into primary cortical neurons using lentivirus generated cpA and cpB, indicating that neurons in brain and in vitro can form these fragments. A screen of small molecule protease inhibitors introduced to clonal striatal X57 cells and HeLa cells identified compounds that reduced levels of cpA and are inhibitors of the aspartyl proteases cathepsin D and cathepsin E. The most effective compound, P1-N031, is a transition state mimetic for aspartyl proteases. By western blot analysis, cathepsin D was easily detected in clonal striatal X57 cells, mouse brain and primary neurons, whereas cathepsin E was only detectible in clonal striatal X57 cells. In primary neurons, levels of cleavage product A were not changed by the same compounds that were effective in clonal striatal cells or by mRNA silencing to partially reduce levels of cathepsin D. Instead, treating primary neurons with compounds that are known to inhibit gamma secretase activity either indirectly (Imatinib mesylate, Gleevec) or selectively (LY-411,575 or DAPT) reduced levels of cpA. LY-411,575 or DAPT also increased survival of primary neurons expressing endogenous full-length mutant huntingtin. We show that cpA and cpB are produced from a larger huntingtin fragment in vivo in mouse brain and in primary neuron cultures. The aspartyl protease involved in forming cpA has cathepsin-D like properties in immortalized neurons and gamma

  12. Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library

    International Nuclear Information System (INIS)

    Hung, Ming-Szu; Xu, Zhidong; Lin, Yu-Ching; Mao, Jian-Hua; Yang, Cheng-Ta; Chang, Pey-Jium; Jablons, David M; You, Liang

    2009-01-01

    Casein kinase 2 (CK2) is dysregulated in various human cancers and is a promising target for cancer therapy. To date, there is no small molecular CK2 inhibitor in clinical trial yet. With the aim to identify novel CK2 inhibitors, we screened a natural product library. We adopted cell-based proliferation and CK2 kinase assays to screen CK2 inhibitors from a natural compound library. Dose-dependent response of CK2 inhibitors in vitro was determined by a radioisotope kinase assay. Western blot analysis was used to evaluate down stream Akt phosphorylation and apoptosis. Apoptosis was also evaluated by annexin-V/propidium iodide (PI) labeling method using flow cytometry. Inhibition effects of CK2 inhibitors on the growth of cancer and normal cells were evaluated by cell proliferation and viability assays. Hematein was identified as a novel CK2 inhibitor that is highly selective among a panel of kinases. It appears to be an ATP non-competitive and partially reversible CK2 inhibitor with an IC 50 value of 0.55 μM. In addition, hematein inhibited cancer cell growth partially through down-regulation of Akt phosphorylation and induced apoptosis in these cells. Furthermore, hematein exerted stronger inhibition effects on the growth of cancer cells than in normal cells. In this study, we showed that hematein is a novel selective and cell permeable small molecule CK2 inhibitor. Hematein showed stronger growth inhibition effects to cancer cells when compared to normal cells. This compound may represent a promising class of CK2 inhibitors

  13. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava

    Science.gov (United States)

    2013-01-01

    Background The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides arabinose, xylose, glucose and mannose. Findings We examined the sensitivity of seven polyhydroxyalkanoate producing bacteria: Azohydromonas lata, Bacillus megaterium, Bacillus cereus, Burkholderia cepacia, Pseudomonas olevorans, Pseudomonas pseudoflava and Ralstonia eutropha, against seven fermentation inhibitors produced by the saccharification of lignocellulose: acetic acid, levulinic acid, coumaric acid, ferulic acid, syringaldehyde, furfural, and hyroxymethyfurfural. There was significant variation in the sensitivity of these microbes to representative phenolics ranging from 0.25-1.5 g/L coumaric and ferulic acid and between 0.5-6.0 g/L syringaldehyde. Inhibition ranged from 0.37-4 g/L and 0.75-6 g/L with acetic acid and levulinic acid, respectively. B. cepacia and P. pseudoflava were selected for further analysis of polyhydroxyalkanoate production. Conclusions We find significant differences in sensitivity to the fermentation inhibitors tested and find these variations to be over a relevant concentration range given the concentrations of inhibitors typically found in lignocellulosic hydrolysates. Of the seven bacteria tested, B. cepacia demonstrated the greatest inhibitor tolerance. Similarly, of two organisms examined for polyhydroxybutyrate production, B. cepacia was notably more efficient when fermenting pentose substrates. PMID:23734728

  14. The Heat Shock Protein Inhibitor Quercetin Attenuates Hepatitis C Virus Production

    Science.gov (United States)

    Gonzalez, Oscar; Fontanes, Vanessa; Raychaudhuri, Santanu; Loo, Rachel; Loo, Joseph; Arumugaswami, Vaithilingaraja; Sun, Ren; Dasgupta, Asim; French, Samuel W.

    2009-01-01

    The hepatitis C viral (HCV) genome is translated through an internal ribosome entry site (IRES) as a single polyprotein precursor that is subsequently cleaved into individual mature viral proteins. Non-structural protein 5A (NS5A) is one of these proteins that has been implicated in regulation of viral genome replication, translation from the viral IRES and viral packaging. We sought to identify cellular proteins that interact with NS5A and determine whether these interactions may play a role in viral production. Mass spectrometric analysis of coimmunoprecipitated NS5A complexes from cell extracts identified heat shock proteins (HSPs) 40 and 70.Weconfirmed anNS5A/HSPinteraction by confocal microscopy demonstrating colocalization of NS5A with HSP40 and with HSP70. Western analysis of coimmunoprecipitated NS5A complexes further confirmed interaction of HSP40 and HSP70 with NS5A.Atransient transfection, luciferase-based, tissue culture IRES assay demonstrated NS5A augmentation of HCV IRES-mediated translation, and small interfering RNA (siRNA)-mediated knockdown of HSP70 reduced this augmentation. Treatment with an inhibitor of HSP synthesis, Quercetin, markedly reduced baseline IRES activity and its augmentation by NS5A. HSP70 knockdown also modestly reduced viral protein accumulation, whereas HSP40 and HSP70 knockdown both reduced infectious viral particle production in an HCV cell culture system using the J6/JFH virus fused to the Renilla luciferase reporter. Treatment with Quercetin reduced infectious particle production at nontoxic concentrations. The marked inhibition of virus production by Quercetin may partially be related to reduction of HSP40 and HSP70 and their potential involvement in IRES translation, as well as viral morphogenesis or secretion. Conclusion Quercetin may allow for dissection of the viral life cycle and has potential therapeutic use to reduce virus production with low associated toxicity. PMID:19839005

  15. Comparison between two different experimental models of osteoarthritis in rabbits. Intra-articular collagenase injection and anterior cruciate ligament transection.

    Science.gov (United States)

    Hermeto, Larissa Correa; Rossi, Rafael De; Jardim, Paulo Henrique de Affonseca; Santana, Aureo Evangelista; Rinaldi, Jaqueline de Carvalho; Justulin, Luis Antonio

    2016-09-01

    To compare two different experimental models of osteoarthritis in rabbits: intra-articular collagenase injection and anterior cruciate ligament transection. Ten adult rabbits were randomly divided in two groups: COLL (collagenase group) and ACLT (anterior cruciate ligament transection). The COLL group was treated with 0.5 ml collagenase solution (2mg collagenase/0.5 ml sterile PBS), and the ACTL group was subjected to anterior cruciate ligament. After six and twelve weeks, respectively, the animals in the COLL and ACTL groups were euthanized. The gross appearance and histological examinations conducted in the cartilage articular surface was blindly scored according to the criteria developed by Yoshimi et al. (1994) and Mankin et al. (1971), respectively. The gross morphologic observation, macroscopic score and histological examinations have demonstrated that the ACTL group presented the highest scores, and lesions more severe than those in the COLL group. Both methods, anterior cruciate ligament transection and collagenase, applied to the stifle joint of the rabbits have effectively induced degenerative changes in the cartilage tissue, through statistically significant analysis (p≤0.05). The ACTL method has presented more severe lesions.

  16. Dose-Related and Time-Dependent Development of Collagenase-Induced Tendinopathy in Rats.

    Science.gov (United States)

    Perucca Orfei, Carlotta; Lovati, Arianna B; Viganò, Marco; Stanco, Deborah; Bottagisio, Marta; Di Giancamillo, Alessia; Setti, Stefania; de Girolamo, Laura

    2016-01-01

    Tendinopathy is a big burden in clinics and it represents 45% of musculoskeletal lesions. Despite the relevant social impact, both pathogenesis and development of the tendinopathy are still under-investigated, thus limiting the therapeutic advancement in this field. The purpose of this study was to evaluate the dose-dependent and time-related tissue-level changes occurring in a collagenase-induced tendinopathy in rat Achilles tendons, in order to establish a standardized model for future pre-clinical studies. With this purpose, 40 Sprague Dawley rats were randomly divided into two groups, treated by injecting collagenase type I within the Achilles tendon at 1 mg/mL (low dose) or 3 mg/mL (high dose). Tendon explants were histologically evaluated at 3, 7, 15, 30 and 45 days. Our results revealed that both the collagenase doses induced a disorganization of collagen fibers and increased the number of rounded resident cells. In particular, the high dose treatment determined a greater neovascularization and fatty degeneration with respect to the lower dose. These changes were found to be time-dependent and to resemble the features of human tendinopathy. Indeed, in our series, the acute phase occurred from day 3 to day 15, and then progressed towards the proliferative phase from day 30 to day 45 displaying a degenerative appearance associated with a very precocious and mild remodeling process. The model represents a good balance between similarity with histological features of human tendinopathy and feasibility, in terms of tendon size to create lesions and costs when compared to other animal models. Moreover, this model could contribute to improve the knowledge in this field, and it could be useful to properly design further pre-clinical studies to test innovative treatments for tendinopathy.

  17. Reclamation of Marine Chitinous Materials for the Production of α-Glucosidase Inhibitors via Microbial Conversion

    Directory of Open Access Journals (Sweden)

    Van Bon Nguyen

    2017-11-01

    Full Text Available Six kinds of chitinous materials have been used as sole carbon/nitrogen (C/N sources for producing α-glucosidase inhibitors (aGI by Paenibacillus sp. TKU042. The aGI productivity was found to be highest in the culture supernatants using demineralized crab shell powder (deCSP and demineralized shrimp shell powder (deSSP as the C/N source. The half maximal inhibitory concentration (IC50 and maximum aGI activity of fermented deCSP (38 µg/mL, 98%, deSSP (108 µg/mL, 89%, squid pen powder (SPP (422 µg/mL, 98%, and shrimp head powder (SHP (455 µg/mL, 92% were compared with those of fermented nutrient broth (FNB (81 µg/mL, 93% and acarbose (1095 µg/mL, 74%, a commercial antidiabetic drug. The result of the protein/chitin ratio on aGI production showed that the optimal ratio was 0.2/1. Fermented deCSP showed lower IC50 and higher maximum inhibitory activity than those of acarbose against rat intestinal α-glucosidase.

  18. Small Molecules Inspired by the Natural Product Withanolides as Potent Inhibitors of Wnt Signaling.

    Science.gov (United States)

    Sheremet, Michael; Kapoor, Shobhna; Schröder, Peter; Kumar, Kamal; Ziegler, Slava; Waldmann, Herbert

    2017-09-19

    Wnt signaling is a fundamental pathway that drives embryonic development and is essential for stem cell maintenance and tissue homeostasis. Dysregulation of Wnt signaling is linked to various diseases, and a constitutively active Wnt pathway drives tumorigenesis. Thus, disruption of the Wnt response is deemed a promising strategy for cancer drug discovery. However, only few clinical drug candidates that target Wnt signaling are available so far, and new small-molecule modulators of Wnt-related processes are in high demand. Here we describe the synthesis of small molecules inspired by withanolide natural products by using a pregnenolone-derived β-lactone as the key intermediate that was transformed into a δ-lactone appended to the D-ring of the steroidal scaffold. This natural-product-inspired compound library contained potent inhibitors of Wnt signaling that act upstream of the destruction complex to stabilize Axin in a tankyrase-independent manner. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A luminescence assay for natural product inhibitors of the Mycobacterium tuberculosis proteasome.

    Science.gov (United States)

    Gunderwala, Amber; Porter, John

    2016-01-01

    Mycobacterium tuberculosis (Mtb) causes a large global burden of disease, with a high mortality rate in healthy and immuno-compromised patients. A number of molecular targets have been identified for treatment of this disease, including the Mtb proteasome. The Mtb proteasome enhances Mtb survival during nitrosative and oxidative stress in the latent, non-replicative phase. Therefore, Mtb proteasome inhibition could help to combat Mtb infections that do not respond to current therapies. To develop and validate a novel biochemical assay to assess Mtb proteasome activity in the presence of organic and aqueous plant test extracts. Fluorescence (photoluminescence) and luminescence (chemiluminescence) assays were investigated as potential methods to determine the robustness and repeatability for use in screening natural product extracts for Mtb proteasome inhibitors. The fluorescence assay, used widely for Mtb proteasome activity assays, was subject to interference due to the natural fluorescence of compounds in many of the extracts; there is little interference with the luminescence approach. As proof of principle, we used the luminescence assay to screen a small set of plant test extracts. Luminescence is the more suitable assay for assay of plant natural product extracts. The sensitivities of the luminescence and fluorescence assays are comparable. A Z'-factor of 0.58 for the luminescence assay makes it suitable for medium-to-high throughput screening efforts. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Production of proteasome inhibitor syringolin A by the endophyte Rhizobium sp. strain AP16.

    Science.gov (United States)

    Dudnik, Alexey; Bigler, Laurent; Dudler, Robert

    2014-06-01

    Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase

    OpenAIRE

    Lima, Carolina A.; Campos, Júlia Furtado; Filho, José L. Lima; Converti, Attilio; da Cunha, Maria G. Carneiro; Porto, Ana L. F.

    2014-01-01

    A 23 full factorial design was used to identify the main effects and interactions of pH, collagen concentration and temperature on the degree of collagen hydrolysis (DH) by collagenase from Penicillium aurantiogriseum URM 4622. Increases in both pH and collagen concentration improved DH, and a positive interaction effect was observed for these variables. On the other hand, temperature had a negative main effect on DH. The maximum value of DH (4.65 μg/mL) was achieved at 7.5 mg/mL collagen con...

  2. Different effects of lipopolysaccharide on plasminogen activator inhibitor-1 production in aortic media in vivo and in culture

    NARCIS (Netherlands)

    Leeuwen, R.T.J. van; Quax, P.H.A.; Tippins, J.R.; Antoniw, J.W.; Andreotti, F.; Maseri, A.; Kluft, C.; Sperti, G.

    1996-01-01

    Background: Lipopolysaccharide (endotoxin) has been shown to increase the expression of plasminogen activator inhibitor type-1 (PAI-1) in the vessel wall. Endotoxin is known to increase PAI-1 production in endothelial cells, but its action on smooth muscle cells (SMCs) is presently not clear. In

  3. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava

    Science.gov (United States)

    Diane Dietrich; Barbara Illman; Casey Crooks

    2013-01-01

    The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides...

  4. Comparison of Neutral Proteases and Collagenase Class I as Essential Enzymes for Human Islet Isolation.

    Science.gov (United States)

    Brandhorst, Heide; Kurfürst, Manfred; Johnson, Paul R; Korsgren, Olle; Brandhorst, Daniel

    2016-01-01

    Efficient islet isolation requires synergistic interaction between collagenase class I (CI) and class II (CII). The CI degradation alters the ratio between CI and CII and is responsible for batch-to-batch variations. This study compares the role of neutral protease (NP) plus clostripain (CP) with CI as essential enzymes for human islet isolation. Human islets were isolated using 4 different enzyme mixtures composed of CII plus either intact (CI-115) or degraded CI (CI-100). Blends were administered either with or without NP/CP. Purified islets were cultured for 3 to 4 days before islet quality assessment. Whereas using intact CI-115 without NP/CP did not significantly reduce islet yield (3429 ± 631 vs 3087 ± 970 islet equivalent/g, nonsignificant), administration of degraded CI-100 without NP/CP decreased islet yield from 3501 ± 580 to 1312 ± 244 islet equivalent/g (P P P NP/CP was omitted (P NP/CP was not added. This study suggests that NP/CP can compensate reduced CI activity. Future attempts to optimize enzyme blends should consider the possibility to increase the proportion of collagenase CI to reduce the need for potentially harmful NPs.

  5. Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase.

    Science.gov (United States)

    Lima, Carolina A; Campos, Júlia Furtado; Filho, José L Lima; Converti, Attilio; da Cunha, Maria G Carneiro; Porto, Ana L F

    2015-07-01

    A 2(3) full factorial design was used to identify the main effects and interactions of pH, collagen concentration and temperature on the degree of collagen hydrolysis (DH) by collagenase from Penicillium aurantiogriseum URM 4622. Increases in both pH and collagen concentration improved DH, and a positive interaction effect was observed for these variables. On the other hand, temperature had a negative main effect on DH. The maximum value of DH (4.65 μg/mL) was achieved at 7.5 mg/mL collagen concentration, pH 8.0 and 25 °C. The peptide profile showed several peptides with molecular weights lower than 2 kDa and exhibited antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus. An antioxidant activity of 84.7 ± 0.24 % towards the radical ABTS• + was obtained with 50 mg/mL hydrolysates. This study demonstrated that collagen hydrolysed by P. aurantiogriseum URM 4622 collagenase possesses interesting antibacterial and antioxidant activities.

  6. [Study on the discovery of novel chitinase inhibitors based on natural products].

    Science.gov (United States)

    Hirose, Tomoyasu

    2012-01-01

    Chitin, the second most abundant polysaccharide in nature, is a constituent of fungal cell walls, the exoskeletons of crustaceans and insects and the microfilarial sheaths of parasitic nematodes. Chitin has, so far, not been found in mammals. Accumulation of chitin by organisms is modulated by chitin synthase-mediated biosynthesis and by chitinase-mediated hydrolytic degradation. Thus, chitinases are expected to be specific targets for antifungal, insecticidal and antiparasitic agents. Paradoxically, while chitin does not exist in mammals, human chitinase family members, such as acidic mammalian chitinase, have recently been described, and offer significant potential for the treatment of asthma and other related diseases in humans. This review covers the development of two chitinase inhibitors of natural origin, Argifin and Argadin, isolated from the cultured broth of microorganisms in our laboratory. In particular, the practical total synthesis of these natural products and discovery methods that generate only highly-active compounds using a kinetic target (chitinase)-guided synthesis approach (termed in situ click chemistry) are described.

  7. Collagen-induced expression of collagenase-3 by primary chondrocytes is mediated by integrin α1 and discoidin domain receptor 2: a protein kinase C-dependent pathway.

    Science.gov (United States)

    Vonk, Lucienne A; Doulabi, Behrouz Z; Huang, ChunLing; Helder, Marco N; Everts, Vincent; Bank, Ruud A

    2011-03-01

    To investigate whether maintaining the chondrocyte's native pericellular matrix prevents collagen-induced up-regulation of collagenase-3 (MMP-13) and whether integrin α1 (ITGα1) and/or discoidin domain receptor 2 (DDR2) modulate MMP-13 expression and which signalling pathway plays a role in collagen-stimulated MMP-13 expression. Goat articular chondrocytes and chondrons were cultured on collagen coatings. Small interfering RNA (siRNA) oligonucleotides targeted against ITGα1 and DDR2 were transfected into primary chondrocytes. Chemical inhibitors for mitogen-activated protein kinase kinase (MEK1) (PD98059), focal adhesion kinase (FAK) (FAK inhibitor 14), mitogen-activated protein kinase 8 (JNK) (SP600125) and protein kinase C (PKC) (PKC412), and a calcium chelator (BAPTA-AM) were used in cell cultures. Real-time PCR was performed to examine gene expression levels of MMP-13, ITGα1 and DDR2 and collagenolytic activity was determined by measuring the amount of hydroxyproline released in the culture medium. Maintaining the chondrocyte's native pericellular matrix prevented MMP-13 up-regulation and collagenolytic activity when the cells were cultured on a collagen coating. Silencing of ITGα1 and DDR2 reduced MMP-13 gene expression and collagenolytic activity by primary chondrocytes cultured on collagen. Incubation with the PKC inhibitor strongly reduced MMP-13 gene expression levels. Gene expression levels of MMP-13 were also decreased by chondrocytes incubated with the MEK, FAK or JNK inhibitor. Maintaining the native pericellular matrix of chondrocytes prevents collagen-induced up-regulation of MMP-13. Both ITGα1 and DDR2 modulate MMP-13 expression after direct contact between chondrocytes and collagen. PKC, FAK, MEK and JNK are involved in collagen-stimulated expression of MMP-13.

  8. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling [Department of Clinical Laboratory, Tongren Hospital, Shanghai (China); Shen, Jie, E-mail: tongrensj163@163.com [Department of Administrative, Tongren Hospital, No. 786 Yuyuan Road, Changning District, Shanghai (China)

    2015-08-07

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice.

  9. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    International Nuclear Information System (INIS)

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling; Shen, Jie

    2015-01-01

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice

  10. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells--associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in canc...

  11. Adipose-Derived Stem Cells Improve Collagenase-Induced Tendinopathy in a Rat Model.

    Science.gov (United States)

    Oshita, Takashi; Tobita, Morikuni; Tajima, Satoshi; Mizuno, Hiroshi

    2016-08-01

    Tendinopathy is a common and highly prevalent musculoskeletal disorder characterized by repetitive activity-related pain and focal tendon tenderness. Histopathologically, tendinopathic tissue mainly shows degenerative changes. Therefore, tendinopathy is not affected by anti-inflammatory therapies. A novel approach, including a stem cell-based therapy, may be beneficial for its treatment. The purpose of this study was to evaluate the effects of adipose-derived stem cells (ASCs) on tendon healing in a rat tendinopathy model. The hypothesis was that ASC transplantation would improve degeneration in collagenase-induced tendinopathy. Controlled laboratory study. Sixteen F344/NSlc rats underwent collagenase injection into the Achilles tendon to induce tendinopathy. At 1 week after collagenase injection, 8 rats received ASCs (ASC group) and 8 received phosphate-buffered saline alone (PBS group). Animals were sacrificed at 4 or 12 weeks after ASC administration, and the degree of degeneration in each tendon was histologically evaluated according to the Bonar scale. The microstructure of healing tendons was observed by scanning electron microscopy. Reverse-transcription polymerase chain reaction (RT-PCR) was performed to measure the ratio of type III collagen messenger RNA (mRNA) to type I collagen mRNA in tendons. The median Bonar scale score in the ASC and PBS groups was 2.5 and 5.33 at 4 weeks after treatment and 1.0 and 4.0 at 12 weeks after treatment, respectively. Histologically, the ASC group showed a significantly lower degree of tendon degeneration than the PBS group at both time points. In the RT-PCR analysis, the ratio of type III collagen to type I collagen was significantly lower in the ASC group than in the PBS group at 12 weeks after treatment. Moreover, this ratio decreased over time in the ASC group, whereas it increased over time in the PBS group. The study findings demonstrate that the application of ASCs results in significant improvement in the

  12. High-Throughput Screen of Natural Product Libraries for Hsp90 Inhibitors

    Directory of Open Access Journals (Sweden)

    Jason Davenport

    2014-02-01

    Full Text Available Hsp90 has become the target of intensive investigation, as inhibition of its function has the ability to simultaneously incapacitate proteins that function in pathways that represent the six hallmarks of cancer. While a number of Hsp90 inhibitors have made it into clinical trials, a number of short-comings have been noted, such that the search continues for novel Hsp90 inhibitors with superior pharmacological properties. To identify new potential Hsp90 inhibitors, we have utilized a high-throughput assay based on measuring Hsp90-dependent refolding of thermally denatured luciferase to screen natural compound libraries. Over 4,000 compounds were screen with over 100 hits. Data mining of the literature indicated that 51 compounds had physiological effects that Hsp90 inhibitors also exhibit, and/or the ability to downregulate the expression levels of Hsp90-dependent proteins. Of these 51 compounds, seven were previously characterized as Hsp90 inhibitors. Four compounds, anthothecol, garcinol, piplartine, and rottlerin, were further characterized, and the ability of these compounds to inhibit the refolding of luciferase, and reduce the rate of growth of MCF7 breast cancer cells, correlated with their ability to suppress the Hsp90-dependent maturation of the heme-regulated eIF2α kinase, and deplete cultured cells of Hsp90-dependent client proteins. Thus, this screen has identified an additional 44 compounds with known beneficial pharmacological properties, but with unknown mechanisms of action as possible new inhibitors of the Hsp90 chaperone machine.

  13. Induction of osteoarthritis by intra-articular injection of collagenase in mice. Strain and sex related differences

    NARCIS (Netherlands)

    van Osch, G. J.; van der Kraan, P. M.; Vitters, E. L.; Blankevoort, L.; van den Berg, W. B.

    1993-01-01

    To study the effects of strain and sex on the development of injury-induced osteoarthritis (OA) in murine knee joints, two doses of highly purified bacterial collagenase (10 units and 30 units) were injected into male and female mice of two closely related strains, C57BL6 and C57BL10. Frontal

  14. Focused library with a core structure extracted from natural products and modified: application to phosphatase inhibitors and several biochemical findings.

    Science.gov (United States)

    Hirai, Go; Sodeoka, Mikiko

    2015-05-19

    Synthesis of a focused library is an important strategy to create novel modulators of specific classes of proteins. Compounds in a focused library are composed of a common core structure and different diversity structures. In this Account, we describe our design and synthesis of libraries focused on selective inhibitors of protein phosphatases (PPases). We considered that core structures having structural and electronic features similar to those of PPase substrates, phosphate esters, would be a reasonable choice. Therefore, we extracted core structures from natural products already identified as PPase inhibitors. Since many PPases share similar active-site structures, such phosphate-mimicking core structures should interact with many enzymes in the same family, and therefore the choice of diversity structures is pivotal both to increase the binding affinity and to achieve specificity for individual enzymes. Here we present case studies of application of focused libraries to obtain PPase inhibitors, covering the overall process from selection of core structures to identification and evaluation of candidates in the focused libraries. To synthesize a library focused on protein serine-threonine phosphatases (PPs), we chose norcantharidin as a core structure, because norcantharidin dicarboxylate shows a broad inhibition profile toward several PPs. From the resulting focused library, we identified a highly selective PP2B inhibitor, NCA-01. On the other hand, to find inhibitors of dual-specificity protein phosphatases (DSPs), we chose 3-acyltetronic acid extracted from natural product RK-682 as a core structure, because its structure resembles the transition state in the dephosphorylation reaction of DSPs. However, a highly selective inhibitor was not found in the resulting focused library. Furthermore, an inherent drawback of compounds having the highly acidic 3-acyltetronic acid as a core structure is very weak potency in cellulo, probably due to poor cell membrane

  15. Some Investigations on Protease Enzyme Production Kinetics Using Bacillus licheniformis BBRC 100053 and Effects of Inhibitors on Protease Activity

    Directory of Open Access Journals (Sweden)

    Zahra Ghobadi Nejad

    2014-01-01

    Full Text Available Due to great commercial application of protease, it is necessary to study kinetic characterization of this enzyme in order to improve design of enzymatic reactors. In this study, mathematical modeling of protease enzyme production kinetics which is derived from Bacillus licheniformis BBRC 100053 was studied (at 37°C, pH 10 after 73 h in stationary phase, and 150 rpm. The aim of the present paper was to determine the best kinetic model and kinetic parameters for production of protease and calculating Ki (inhibition constant of different inhibitors to find the most effective one. The kinetic parameters Km (Michaelis-Menten constant and Vm (maximum rate were calculated 0.626 mM and 0.0523 mM/min. According to the experimental results, using DFP (diisopropyl fluorophosphate and PMSF (phenylmethanesulfonyl fluoride as inhibitors almost 50% of the enzyme activity could be inhibited when their concentrations were 0.525 and 0.541 mM, respectively. Ki for DFP and PMSF were 0.46 and 0.56 mM, respectively. Kinetic analysis showed that the Lineweaver-Burk model was the best fitting model for protease production kinetics DFP was more effective than PMSF and both of them should be covered in the group of noncompetitive inhibitors.

  16. Novel animal model for Achilles tendinopathy: Controlled experimental study of serial injections of collagenase in rabbits.

    Science.gov (United States)

    de Cesar Netto, Cesar; Godoy-Santos, Alexandre Leme; Augusto Pontin, Pedro; Natalino, Renato Jose Mendonça; Pereira, Cesar Augusto Martins; Lima, Francisco Diego de Oliveira; da Fonseca, Lucas Furtado; Staggers, Jackson Rucker; Cavinatto, Leonardo Muntada; Schon, Lew Charles; de Camargo, Olavo Pires; Fernandes, Túlio Diniz

    2018-01-01

    Our goal was to develop a novel technique for inducing Achilles tendinopathy in animal models which more accurately represents the progressive histological and biomechanical characteristic of chronic Achilles tendinopathy in humans. In this animal research study, forty-five rabbits were randomly assigned to three groups and given bilateral Achilles injections. Low dose (LD group) (n = 18) underwent a novel technique with three low-dose (0.1mg) injections of collagenase that were separated by two weeks, the high dose group (HD) (n = 18) underwent traditional single high-dose (0.3mg) injections, and the third group were controls (n = 9). Six rabbits were sacrificed from each experimental group (LD and HD) at 10, 12 and 16 weeks. Control animals were sacrificed after 16 weeks. Histological and biomechanical properties were then compared in all three groups. At 10 weeks, Bonar score and tendon cross sectional area was highest in HD group, with impaired biomechanical properties compared to LD group. At 12 weeks, Bonar score was higher in LD group, with similar biomechanical findings when compared to HD group. After 16 weeks, Bonar score was significantly increased for both LD group (11,8±2,28) and HD group (5,6±2,51), when compared to controls (2±0,76). LD group showed more pronounced histological and biomechanical findings, including cross sectional area of the tendon, Young's modulus, yield stress and ultimate tensile strength. In conclusion, Achilles tendinopathy in animal models that were induced by serial injections of low-dose collagenase showed more pronounced histological and biomechanical findings after 16 weeks than traditional techniques, mimicking better the progressive and chronic characteristic of the tendinopathy in humans.

  17. Quorum sensing signals are produced by Aeromonas salmonicida and quorum sensing inhibitors can reduce production of a potential virulence factor

    DEFF Research Database (Denmark)

    Rasch, Maria; Kastbjerg, Vicky Gaedt; Bruhn, Jesper Bartholin

    2007-01-01

    of Aeromonas salmonicida strains. All 31 typical strains were AHL producers as were 21 of 26 atypical strains, but on a strain population basis, production of virulence factors such as protease, lipase, A-layer or pigment did not correlate with the production and accumulation of AHLs in the growth medium....... Pigment production was only observed in broth under highly aerated conditions. Quorum sensing inhibitors (QSIs) are compounds that specifically block QS systems without affecting bacterial growth and 2 such compounds, sulphur-containing AHL-analogues, reduced production of protease in a typical strain......Many pathogens control production of virulence factors by self-produced signals in a process called quorum sensing (QS). We demonstrate that acyl homoserine lactone (AHL) signals, which enable bacteria to express certain phenotypes in relation to cell density, are produced by a wide spectrum...

  18. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.

    Science.gov (United States)

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in

  19. High Throughput Virtual Screening to Identify Novel natural product Inhibitors for MethionyltRNA-Synthetase of Brucella melitensis.

    Science.gov (United States)

    Kumari, Madhulata; Chandra, Subhash; Tiwari, Neeraj; Subbarao, Naidu

    2017-01-01

    The Brucella melitensis methionyl-tRNA-synthetase (MetRSBm) is a promising target for brucellosis drug development. The virtual screening of large libraries of a drug like molecules against a protein target is a common strategy used to identify novel inhibitors. A High throughput virtual screening was performed to identify hits to the potential antibrucellosis drug target, MetRSBm. The best inhibitor identified from the literature survey was 1312, 1415, and 1430. In the virtual screening 56,400 compounds of ChEMBL antimycobacterial library, 1596 approved drugs, 419 Natural product IV library, and 2396 methionine analogous were docked and rescoring, identified top 10 ranked compounds as anti-mycobacterial leads showing G-scores -10.27 to -8.42 (in kcal/mol), approved drugs G-scores -9.08 to -6.60 (in kcal/mol), Natural product IV library G-scores -10.55 to -6.02 (in kcal/mol), methionine analogous Gscores -11.20 to -8.51 (in kcal/mol), and compared with all three known inhibitors (as control) G-scores -3.88 to -3.17 (in kcal/mol). This result indicates these novel compounds have the best binding affinity for MetRSBm. In this study, we extrapolate that the analogous of methionine for find novel drug likeness has been identified [4-(L-histidyl)-2-phenylbenzoyl] methionine hydrochloride, might show the inhibitor of Brucella melitensis effect by interacting with MetRS enzyme. We suggests that Prumycin as a natural product is the novel drugs for brucellosis.

  20. Discovery of Mycobacterium tuberculosis Protein Tyrosine Phosphatase B (PtpB) Inhibitors from Natural Products

    Science.gov (United States)

    Chiaradia-Delatorre, Louise Domeneghini; Menegatti, Angela Camila Orbem; Monache, Franco Delle; Ferrari, Franco; Yunes, Rosendo Augusto; Nunes, Ricardo José; Terenzi, Hernán; Botta, Bruno; Botta, Maurizio

    2013-01-01

    Protein tyrosine phosphatase B (PtpB) is one of the virulence factors secreted into the host cell by Mycobacterium tuberculosis. PtpB attenuates host immune defenses by interfering with signal transduction pathways in macrophages and, therefore, it is considered a promising target for the development of novel anti-tuberculosis drugs. Here we report the discovery of natural compound inhibitors of PtpB among an in house library of more than 800 natural substances by means of a multidisciplinary approach, mixing in silico screening with enzymatic and kinetics studies and MS assays. Six natural compounds proved to inhibit PtpB at low micromolar concentrations (< 30 µM) with Kuwanol E being the most potent with Ki = 1.6 ± 0.1 µM. To the best of our knowledge, Kuwanol E is the most potent natural compound PtpB inhibitor reported so far, as well as it is the first non-peptidic PtpB inhibitor discovered from natural sources. Compounds herein identified may inspire the design of novel specific PtpB inhibitors. PMID:24155919

  1. Comparison of Monoamine Oxidase Inhibitors in Decreasing Production of the Autotoxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde in PC12 Cells

    Science.gov (United States)

    Jinsmaa, Yunden; Sullivan, Patti; Holmes, Courtney; Kopin, Irwin J.; Sharabi, Yehonatan

    2016-01-01

    According to the catecholaldehyde hypothesis, the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to the loss of nigrostriatal dopaminergic neurons in Parkinson’s disease. Monoamine oxidase-A (MAO-A) catalyzes the conversion of intraneuronal dopamine to DOPAL and may serve as a therapeutic target. The “cheese effect”—paroxysmal hypertension evoked by tyramine-containing foodstuffs—limits clinical use of irreversible MAO-A inhibitors. Combined MAO-A/B inhibition decreases DOPAL production in rat pheochromocytoma PC12 cells, but whether reversible MAO-A inhibitors or MAO-B inhibitors decrease endogenous DOPAL production is unknown. We compared the potencies of MAO inhibitors in attenuating DOPAL production and examined possible secondary effects on dopamine storage, constitutive release, synthesis, and auto-oxidation. Catechol concentrations were measured in cells and medium after incubation with the irreversible MAO-A inhibitor clorgyline, three reversible MAO-A inhibitors, or the MAO-B inhibitors selegiline or rasagiline for 180 minutes. Reversible MAO-A inhibitors were generally ineffective, whereas clorgyline (1 nM), rasagiline (500 nM), and selegiline (500 nM) decreased DOPAL levels in the cells and medium. All three drugs also increased dopamine and norepinephrine, decreased 3,4-dihydroxyphenylalanine, and increased cysteinyl-dopamine concentrations in the medium, suggesting increased vesicular uptake and constitutive release, decreased dopamine synthesis, and increased dopamine spontaneous oxidation. In conclusion, clorgyline, rasagiline, and selegiline decrease production of endogenous DOPAL. At relatively high concentrations, the latter drugs probably lose their selectivity for MAO-B. Possibly offsetting increased formation of potentially toxic oxidation products and decreased formation of DOPAL might account for the failure of large clinical trials of MAO-B inhibitors to demonstrate slowing of neurodegeneration in

  2. An analysis of psychotropic drug sales. Increasing sales of selective serotonin reuptake inhibitors anre closely related to number of products

    DEFF Research Database (Denmark)

    Nielsen, Margrethe; Gøtzsche, Peter C.

    2011-01-01

    1000 inhabitants, which was closely related to the number of products on the market that increased by a factor of 16. CONCLUSIONS: Sales of antidepressant drugs are mainly determined by market availability of products indicating that marketing pressures are playing an important role. Thus the current......BACKGROUND: Prescribing of selective serotonin reuptake inhibitors (SSRIs) has increased dramatically. OBJECTIVE: To compare the sales of benzodiazepines and SSRIs within the primary care sector in Denmark and relate changes in usage to number of indications and products on the market. METHODS: We...... by changes in sales of the benzodiazepines and SSRIs. We found a decline in the sales of benzodiazepines after a peak in 1986, likely due to the recognition that they cause dependence. From a low level in 1992, we found that the sales of SSRIs increased almost linearly by a factor of 18, up to 44 DDD per...

  3. Natural products in parallel chemistry--novel 5-lipoxygenase inhibitors from BIOS-based libraries starting from alpha-santonin.

    Science.gov (United States)

    Schwarz, Oliver; Jakupovic, Sven; Ambrosi, Horst-Dieter; Haustedt, Lars Ole; Mang, Christian; Müller-Kuhrt, Lutz

    2007-01-01

    Recently, we developed a concept known as biology-oriented synthesis (BIOS), which targets the design and synthesis of small- to medium-sized compound libraries on the basis of genuine natural product templates to provide screening compounds with high biological relevance. We herein describe the parallel solution phase synthesis of two BIOS-based libraries starting from alpha-santonin (1). Modification of the sesquiterpene lactone 1 by introduction of a thiazole moiety followed by a Lewis-acid-mediated lactone opening yielded a first library of natural product analogues. An acid-mediated dienone-phenol rearrangement of 1 and a subsequent etherification/amidation sequence led to a second natural product-based library. After application of a fingerprint-based virtual screening on these compounds, the biological screening of 23 selected library members against 5-lipoxygenase resulted in the discovery of four potent novel inhibitors of this enzyme.

  4. Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance.

    Science.gov (United States)

    Guo, Ting; He, Ai-yong; Du, Teng-fei; Zhu, Da-wei; Liang, Da-feng; Jiang, Min; Wei, Ping; Ouyang, Ping-kai

    2013-05-01

    A Clostridium beijerinckii mutant RT66 with considerable inhibitor-tolerance obtained by continuous culture was used for butanol production from non-detoxified hemicellulosic hydrolysate of corn fiber treated with dilute sulfuric acid (SAHHC). In fed-batch fermentation, 1.8L of diluted SAHHC containing 10 g/L of reducing sugar was provided during the acidogenic phase and 0.2L of concentrated SAHHC containing 300 g/L of reducing sugar was provided during the solventogenic phase. The mutant produced a total amount of solvents of 12.9 g/L, which consisted of 3.1 g/L of acetone, 9.3 g/L of butanol and 0.5 g/L of ethanol. A solvent yield of 0.35 g/g sugar and a productivity of 0.18 g/L h in 72 h were achieved. The remarkable inhibitor-tolerance of C. beijerinckii RT66 demonstrates that this may be an excellent strain for butanol production from ligocellulosic materials. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  5. Expedited isolation of natural product peptidyl-tRNA hydrolase inhibitors from a Pth1 affinity column

    Directory of Open Access Journals (Sweden)

    Harkirat S. Sethi

    2017-05-01

    Full Text Available New antibiotics and new antibiotic targets are needed to counter the development of bacterial drug resistance that threatens to return the human population to the pre-antibiotic era. Bacterial peptidyl-tRNA hydrolase (Pth1 is a promising new antibiotic target in the early stages of development. While inhibitory activity has been observed in a variety of natural products, bioactive fractionation has been a bottleneck for inhibitor isolation. To expedite the isolation of inhibitory compounds from complex mixtures, we constructed a Pth1 affinity column and used it to isolate inhibitory compounds from crude natural products. Recombinantly produced S. typhimurium Pth1 was covalently attached to a column matrix and the inhibitory activity isolated from ethanol extracts of Salvinia minima. The procedure reported here demonstrates that isolation of Pth1 inhibitory compounds from complex natural product extracts can be greatly expedited over traditional bioactive fractionation, decreasing time and expense. The approach is generally applicable to Pth1s from other bacterial species and opens an avenue to advance and accelerate inhibitor development against this promising antimicrobial target.

  6. Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells

    Directory of Open Access Journals (Sweden)

    Bernardas Morkunas

    2016-07-01

    Full Text Available Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell–cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable.

  7. Characterization of three small molecule inhibitors of enterovirus 71 identified from screening of a library of natural products.

    Science.gov (United States)

    Li, Guiming; Gao, Qianqian; Yuan, Shilin; Wang, Lili; Altmeyer, Ralf; Lan, Ke; Yin, Feifei; Zou, Gang

    2017-07-01

    Enterovirus 71 (EV-A71) is a major cause of hand, foot, and mouth disease (HFMD). Infection with EV-A71 is more often associated with neurological complications in children and is responsible for the majority of fatalities, but currently there is no approved antiviral therapy for treatment. Here, we identified auraptene, formononetin, and yangonin as effective inhibitors of EV-A71 infection in the low-micromolar range from screening of a natural product library. Among them, formononetin and yangonin selectively inhibited EV-A71 while auraptene could inhibit viruses within the enterovirus species A. Time of addition studies showed that all the three inhibitors inhibit both attachment and postattachment step of entry. We found mutations conferring the resistance to these inhibitors in the VP1 and VP4 capsid proteins and confirmed the target residues using a reverse genetic approach. Interestingly, auraptene- and formononetin-resistant viruses exhibit cross-resistance to other inhibitors while yangonin-resistant virus still remains susceptible to auraptene and formononetin. Moreover, auraptene and formononetin, but not yangonin protected EV-A71 against thermal inactivation, indicating a direct stabilizing effect of both compounds on virion capsid conformation. Finally, neither biochanin A (an analog of formononetin) nor DL-Kavain (an analog of yangonin) exhibited anti-EV-A71 activity, suggesting the structural elements required for anti-EV-A71 activity. Taken together, these compounds could become potential lead compounds for anti-EV-A71 drug development and also serve as tool compounds for studying virus entry. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Properties of radiolabeled type I, II, and III collagens related to their use as substrates in collagenase assays

    International Nuclear Information System (INIS)

    Mookhtiar, K.A.; Mallya, S.K.; Van Wart, H.E.

    1986-01-01

    Calf skin and rat tendon type I, bovine cartilage type II, and human amnion type III collagens have been radiolabeled by reaction with [ 3 H]acetic anhydride, [ 3 H]formaldehyde, and succinimidyl 2,3-[3H]propionate. All three reactions produce collagens with high specific activities that are suitable for use as substrates in collagenase assays. The identity of the radiolabel and the labeling indices do not alter the molecular weights or thermal stabilities of the collagens or the solubilities of the collagens or gelatins in dioxane-water mixtures at 4 degrees C. However, in contrast to native or sparsely labeled collagens, those with 40 or more lysine + hydroxylysine residues labeled per molecule do not undergo fibrillogenesis in the presence of 0.2-0.4 M NaCl in the 4-35 degree C temperature range. Thus, the modification reactions not only serve to introduce the radiolabel, but also to keep the collagens soluble over a wide range of temperatures and concentrations. The TCA, TCB fragments produced on partial reaction of each collagen type with tissue collagenases can be selectively denatured by a 10-minute incubation under specific conditions and the intact collagens selectively precipitated by addition of 50% v/v dioxane. This serves as the basis for soluble collagenase assays. The effect of labeling index on the properties of the collagens has been investigated and the results establish the range of conditions over which these collagens can be used as substrates for soluble versus fibrillar collagenase assays

  9. 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis inhibitors increase erythritol production in Torula corallina, and DHN-melanin inhibits erythrose reductase.

    Science.gov (United States)

    Lee, Jung-Kul; Jung, Hyung-Moo; Kim, Sang-Yong

    2003-06-01

    The yeast Torula corallina is a strong erythritol producer that is used in the industrial production of erythritol. However, melanin accumulation during culture represents a serious problem for the purification of erythritol from the fermentation broth. Melanin biosynthesis inhibitors such as 3,4-dihydroxyphenylalanine and 1,8-dihydroxynaphthalene (DHN)-melanin inhibitors were added to the T. corallina cultures. Only the DHN-melanin inhibitors showed an effect on melanin production, which suggests that the melanin formed during the culturing of T. corallina is derived from DHN. This finding was confirmed by the detection of a shunt product of the pentaketide pathway, flaviolin, and elemental analysis. Among the DHN-melanin inhibitors, tricyclazole was the most effective. Supplementation with tricyclazole enhanced the production of erythritol while significantly inhibiting the production of DHN-melanin and DHN-melanin biosynthetic enzymes, such as trihydroxynaphthalene reductase. The erythrose reductase from T. corallina was purified to homogeneity by ion-exchange and affinity chromatography. Purified erythrose reductase was significantly inhibited in vitro in a noncompetitive manner by elevated levels of DHN-melanin. In contrast, the level of erythrose reductase activity was unaffected by increasing concentrations of tricyclazole. These results suggest that supplemental tricyclazole reduces the production of DHN-melanin, which may lead to a reduction in the inhibition of erythrose reductase and a higher yield of erythritol. This is the first report to demonstrate that melanin biosynthesis inhibitors increase the production of a sugar alcohol in T. corallina.

  10. Direct Radiofrequency Application Improves Pain and Gait in Collagenase-Induced Acute Achilles Tendon Injury

    Directory of Open Access Journals (Sweden)

    Yun-Pu Tsai

    2013-01-01

    Full Text Available Radiofrequency (RF is often used as a supplementary and alternative method to alleviate pain for chronic tendinopathy. Whether or how it would work for acute tendon injury is not addressed in the literatures. Through detailed pain and gait monitoring, we hypothesized that collagenase-induce acute tendinopathy model may be able to answer these questions. Gait parameters, including time, distance, and range of motion, were recorded and analyzed using a walking track equipped with a video-based system. Expression of substance P (SP, calcitonin gene related peptide (CGRP, and galanin were used as pain markers. Beta-III tubulin and Masson trichrome staining were used as to evaluate nerve sprouting, matrix tension, and degeneration in the tendon. Of fourteen analyzed parameters, RF significantly improved stance phase, step length, preswing, and intermediary toe-spread of gait. Improved gait related to the expression of substance P, CGRP, and reduced nerve fiber sprouting and matrix tension, but not galanin. The study indicates that direct RF application may be a valuable approach to improve gait and pain in acute tendon injury. Altered gait parameters may be used as references to evaluate therapeutic outcomes of RF or other treatment plan for tendinopathy.

  11. Data on isolating mesenchymal stromal cells from human adipose tissue using a collagenase-free method

    Directory of Open Access Journals (Sweden)

    Wassim Shebaby

    2016-03-01

    Full Text Available The present dataset describes a detailed protocol to isolate mesenchymal cells from human fat without the use of collagenase. Human fat specimen, surgically cleaned from non-fat tissues (e.g., blood vessels and reduced into smaller fat pieces of around 1–3 mm size, is incubated in complete culture media for five to seven days. Then, cells started to spread out from the fat explants and to grow in cultures according to an exponential pattern. Our data showed that primary mesenchymal cells presenting heterogeneous morphology start to acquire more homogenous fibroblastic-like shape when cultured for longer duration or when subcultured into new flasks. Cell isolation efficiency as well as cell doubling time were also calculated throughout the culturing experimentations and illustrated in a separate figure thereafter. This paper contains data previously considered as an alternative protocol to isolate adipose-derived mesenchymal stem cell published in “Proliferation and differentiation of human adipose-derived mesenchymal stem cells (ASCs into osteoblastic lineage are passage dependent” [1]. Keywords: Adipose tissue, mesenchymal stromal cell, cell culture, doubling time

  12. Survey of patient and partner satisfaction following collagenase Clostridium histolyticum treatment for Peyronie's disease.

    Science.gov (United States)

    Anaissie, J; Yafi, F A; Traore, E J; Sikka, S C; Hellstrom, W J G

    2017-03-01

    Intralesional injection of collagenase Clostridium histolyticum (CCH) is a minimally invasive, Food and Drug Administration-approved, effective treatment for Peyronie's disease (PD). To assess the satisfaction of patients and their female sexual partners (FSP) following CCH therapy for PD, we conducted a retrospective review of the records of all patients treated with CCH for PD between 04/2014 and 03/2016. Collected variables included demographics, pre- and post-treatment sexual function, penile curvature, penile vascular findings, and treatment outcomes. Patients and their FSPs were subsequently contacted by telephone and queried regarding their ability to have intercourse and their satisfaction with treatment. A total of 24 couples responded to our questionnaire and constitute the subjects of this analysis. Patient and FSP satisfaction with treatment were 67% and 71%, respectively. Significant predictors of FSP satisfaction with treatment included recall of penile trauma during prior sexual intercourse, improved ability to have sexual intercourse following treatment, and absence of post-procedural glans hypoesthesia. In conclusion, CCH imparts a significant benefit on a couple's sexual health. Partner satisfaction with treatment is correlated with improved ability to have sexual intercourse and absence of patient glans hypoesthesia. © 2017 American Society of Andrology and European Academy of Andrology.

  13. Effect of dimethylaminoethanol, an inhibitor of betaine production, on the disposition of choline in the rat kidney

    International Nuclear Information System (INIS)

    Lohr, J.; Acara, M.

    1990-01-01

    The choline metabolite betaine has been shown to be an important organic osmoregulatory solute in the kidney. The isolated perfused rat kidney and kidney slice incubations were used to investigate the effect of 2-dimethylaminoethanol (DMAE), a choline oxidase inhibitor, on the renal excretion and metabolism of choline. In the isolated perfused kidney, [ 14 C]choline, at an initial perfusate concentration of 300 microM, was effectively removed from the perfusate over 25 min, with nearly all the 14 C in the perfusate accounted for by betaine during the remainder of the 90-min perfusion. DMAE at concentrations of 3.0 or 5.0 mM significantly decreased the rate of removal of [ 14 C]choline from the perfusate and the rate of addition of [ 14 C]betaine to the perfusate, yet [14C]betaine remained the only metabolite of choline in perfusate and urine. In kidney tissue slice experiments, conversion of [ 14 C]choline to [ 14 C]betaine was found in cortical, outer medullary and inner medullary regions of rat kidney. DMAE at 5.0 mM significantly inhibited [ 14 C]betaine production in each of the three regions studied. These data show that DMAE is an effective inhibitor of betaine production by the kidney and, as such, may be an important agent for the study of osmoregulation by the kidney

  14. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells.

    Directory of Open Access Journals (Sweden)

    Ke-Jia Wu

    Full Text Available The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been suggested as a potential molecular target for anti-melanoma therapeutics. However, few JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone analogues were evaluated for their activity against human malignant melanoma cells. The most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cellular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates. Moreover, compound 1 showed higher antiproliferative activity against human melanoma A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be investigated for use as an anti-melanoma agent.

  15. Thermodynamic inhibitor performance extender that, effectively and economically prevent hydrate formation in the oil field production systems

    Energy Technology Data Exchange (ETDEWEB)

    Allenson, Stephen; Johnston, Angela [Nalco Energy Services, Sugar Land, TX (United States)

    2008-07-01

    This paper presents the development of a new additive that was developed to improve the effectiveness of the treatment two to four fold when added to the thermodynamic hydrate inhibitor (THI). Consequently, the THI/additive treatment can now enable the system to handle two to four times the amount of water production or can allow treatment of the same amount of water at half to quarter the dosage of THI. This new additive extends the performance of the THI and allows for a significant increase in production or a significant drop in the amount of THI usage with a corresponding drop in cost. This paper will further discuss the overall process of THI enhancement and will present several case studies where the enhanced THI has been successfully applied. (author)

  16. Effects of Prolyl Hydroxylase Inhibitor L-mimosine on Dental Pulp in the Presence of Advanced Glycation End Products.

    Science.gov (United States)

    Müller, Heinz-Dieter; Cvikl, Barbara; Janjić, Klara; Nürnberger, Sylvia; Moritz, Andreas; Gruber, Reinhard; Agis, Hermann

    2015-11-01

    Proangiogenic prolyl hydroxylase (PHD) inhibitors represent a novel approach to stimulate tissue regeneration. Diabetes mellitus involves the accumulation of advanced glycation end products (AGEs). Here we evaluated the impact of AGEs on the response of human pulp tissue to the PHD inhibitor L-mimosine (L-MIM) in monolayer cultures of dental pulp-derived cells (DPCs) and tooth slice organ cultures. In monolayer cultures, DPCs were incubated with L-MIM and AGEs. Viability was assessed based on formazan formation, live-dead staining, annexin V/propidium iodide, and trypan blue exclusion assay. Vascular endothelial growth factor (VEGF), interleukin (IL)-6, and IL-8 production was evaluated by quantitative polymerase chain reaction and immunoassays. Furthermore, expression levels of odontoblast markers were assessed, and alizarin red staining was performed. Tooth slice organ cultures were performed, and VEGF, IL-6, and IL8 levels in their supernatants were measured by immunoassays. Pulp tissue vitality and morphology were assessed by MTT assay and histology. In monolayer cultures of DPCs, L-MIM at nontoxic concentrations increased the production of VEGF and IL-8 in the presence of AGEs. Stimulation with L-MIM decreased alkaline phosphatase levels and matrix mineralization also in the presence of AGEs, whereas no significant changes in dentin matrix protein 1 and dentin sialophosphoprotein expression were observed. In tooth slice organ cultures, L-MIM increased VEGF but not IL-6 and IL-8 production in the presence of AGEs. The pulp tissue was vital, and no signs of apoptosis or necrosis were observed. Overall, in the presence of AGEs, L-MIM increases the proangiogenic capacity, but decreases alkaline phosphatase expression and matrix mineralization. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Library-based discovery of DYRK1A/CLK1 inhibitors from natural product extracts.

    Science.gov (United States)

    Grabher, Patrick; Durieu, Emilie; Kouloura, Eirini; Halabalaki, Maria; Skaltsounis, Leandros A; Meijer, Laurent; Hamburger, Matthias; Potterat, Olivier

    2012-06-01

    The dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A possesses diverse roles in neuronal development and adult brain physiology, and increased activity has been linked to neurodegenerative diseases. Very few inhibitors of this kinase have been reported up to now. Screening of a library of > 900 plant and fungal extracts afforded 25 extracts with IC₅₀s Larrea tridentata as the active constituents. Active extracts and compounds were also tested on the closely related cdc2-like kinase CLK1. Finally, the selectivity profile of compounds was evaluated by including other members of the DYRKs and CLKs families. While the flavonoids and emodin did not show significant differences in the potency of their activities, harmine (1) was most active against DYRK1A, CLK1, and CLK4, and less potent against the other kinases, with selectivity ranging from 2- to 20-fold. Georg Thieme Verlag KG Stuttgart · New York.

  18. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors.

    Science.gov (United States)

    Blaschek, Wolfgang

    2017-08-01

    Glucose homeostasis is maintained by antagonistic hormones such as insulin and glucagon as well as by regulation of glucose absorption, gluconeogenesis, biosynthesis and mobilization of glycogen, glucose consumption in all tissues and glomerular filtration, and reabsorption of glucose in the kidneys. Glucose enters or leaves cells mainly with the help of two membrane integrated transporters belonging either to the family of facilitative glucose transporters (GLUTs) or to the family of sodium glucose cotransporters (SGLTs). The intestinal glucose absorption by endothelial cells is managed by SGLT1, the transfer from them to the blood by GLUT2. In the kidney SGLT2 and SGLT1 are responsible for reabsorption of filtered glucose from the primary urine, and GLUT2 and GLUT1 enable the transport of glucose from epithelial cells back into the blood stream.The flavonoid phlorizin was isolated from the bark of apple trees and shown to cause glucosuria. Phlorizin is an inhibitor of SGLT1 and SGLT2. With phlorizin as lead compound, specific inhibitors of SGLT2 were developed in the last decade and some of them have been approved for treatment mainly of type 2 diabetes. Inhibition of SGLT2 eliminates excess glucose via the urine. In recent times, the dual SGLT1/SGLT2 inhibitory activity of phlorizin has served as a model for the development and testing of new drugs exhibiting both activities.Besides phlorizin, also some other flavonoids and especially flavonoid enriched plant extracts have been investigated for their potency to reduce postprandial blood glucose levels which can be helpful in the prevention and supplementary treatment especially of type 2 diabetes. Georg Thieme Verlag KG Stuttgart · New York.

  19. Improved TLC Bioautographic Assay for Qualitative and Quantitative Estimation of Tyrosinase Inhibitors in Natural Products.

    Science.gov (United States)

    Zhou, Jinge; Tang, Qingjiu; Wu, Tao; Cheng, Zhihong

    2017-03-01

    TLC bioautography for tyrosinase inhibitors has made recent progress; however, an assay with a relative low consumption of enzyme and quantitative capability would greatly advance the efficacy of related TLC bioautographic assays. An improved TLC bioautographic assay for detecting tyrosinase inhibitors was developed and validated in this study. L-DOPA (better water-solubility than L-tyrosine) was used as the substrate instead of reported L-tyrosine. The effects of enzyme and substrate concentrations, reaction temperatures and times, and pH values of the reaction system as well as different plate types on the TLC bioautographic assay were optimised. The quantitative analysis was conducted by densitometric scanning of spot areas, and expressed as the relative tyrosinase inhibitory capacity (RTIC) using a positive control (kojic acid) equivalent. The limit of detection (LOD) of this assay was 1.0 ng for kojic acid. This assay has acceptable accuracy (101.73-102.90%), intra- and inter-day, and intra- and inter-plate precisions [relative standard deviation (RSD), less than 7.0%], and ruggedness (RSD, less than 3.5%). The consumption of enzyme (75 U/mL) is relatively low. Two tyrosinase inhibitory compounds including naringenin and 1-O-β-D-glucopyranosyl-4-allylbenzene have been isolated from Rhodiola sacra guided by this TLC bioautographic assay. Our improved assay is a relatively low-cost, sensitive, and quantitative method compared to the reported TLC bioautographic assays. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Enzyme inhibition studies by integrated Michaelis-Menten equation considering simultaneous presence of two inhibitors when one of them is a reaction product.

    Science.gov (United States)

    Bezerra, Rui M F; Pinto, Paula A; Fraga, Irene; Dias, Albino A

    2016-03-01

    To determine initial velocities of enzyme catalyzed reactions without theoretical errors it is necessary to consider the use of the integrated Michaelis-Menten equation. When the reaction product is an inhibitor, this approach is particularly important. Nevertheless, kinetic studies usually involved the evaluation of other inhibitors beyond the reaction product. The occurrence of these situations emphasizes the importance of extending the integrated Michaelis-Menten equation, assuming the simultaneous presence of more than one inhibitor because reaction product is always present. This methodology is illustrated with the reaction catalyzed by alkaline phosphatase inhibited by phosphate (reaction product, inhibitor 1) and urea (inhibitor 2). The approach is explained in a step by step manner using an Excel spreadsheet (available as a template in Appendix). Curve fitting by nonlinear regression was performed with the Solver add-in (Microsoft Office Excel). Discrimination of the kinetic models was carried out based on Akaike information criterion. This work presents a methodology that can be used to develop an automated process, to discriminate in real time the inhibition type and kinetic constants as data (product vs. time) are achieved by the spectrophotometer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Saccharomyces cerevisiae strain improvement using selection, mutation, and adaptation for the resistance to lignocellulose-derived fermentation inhibitor for ethanol production.

    Science.gov (United States)

    Jang, Youri; Lim, Younghoon; Kim, Keun

    2014-05-01

    Twenty-five Saccharomyces cerevisiae strains were screened for the highest sugar tolerance, ethanol-tolerance, ethanol production, and inhibitor resistance, and S. cerevisiae KL5 was selected as the best strain. Inhibitor cocktail (100%) was composed of 75 mM formic acid, 75 mM acetic acid, 30 mM furfural, 30 mM hydroxymethyl furfural (HMF), and 2.7 mM vanillin. The cells of strain KL5 were treated with γ-irradiation, and among the survivals, KL5- G2 with improved inhibitor resistance and the highest ethanol yield in the presence of inhibitor cocktail was selected. The KL5-G2 strain was adapted to inhibitor cocktail by sequential transfer of cultures to a minimal YNB medium containing increasing concentrations of inhibitor cocktail. After 10 times of adaptation, most of the isolated colonies could grow in YNB with 80% inhibitor cocktail, whereas the parental KL5 strain could not grow at all. Among the various adapted strains, the best strain (KL5-G2-A9) producing the highest ethanol yield in the presence of inhibitor cocktail was selected. In a complex YP medium containing 60% inhibitor cocktail and 5% glucose, the theoretical yield and productivity (at 48 h) of KL5- G2-A9 were 81.3% and 0.304 g/l/h, respectively, whereas those of KL5 were 20.8% and 0.072 g/l/h, respectively. KL5-G2-A9 reduced the concentrations of HMF, furfural, and vanillin in the medium in much faster rates than KL5.

  2. Phosphodiesterase-5 inhibitors and their analogues as adulterants of herbal and food products: analysis of the Malaysian market, 2014-16.

    Science.gov (United States)

    Bujang, Nur Baizura; Chee, Chin Fei; Heh, Choon Han; Rahman, Noorsaadah Abd; Buckle, Michael J C

    2017-07-01

    Adulteration of herbal health supplements with phosphodiesterase-5 (PDE-5) inhibitors and their analogues is becoming a worldwide problem. The aim of this study was to investigate herbal and food products sold in the Malaysian market for the presence of these adulterants. Sixty-two products that claim to enhance men's sexual health were sampled between April 2014 and April 2016. These products included unregistered products seized by the Pharmacy Enforcement Division of the Ministry of Health (n = 39), products sent to the National Pharmaceutical Regulatory Agency for pre-registration testing (n = 9) and products investigated under the post-registration market surveillance programme (n = 14). The products were tested against an in-house spectral library consisting of 61 PDE-5 inhibitors and analogues using a validated liquid chromatography-mass spectrometry ion-trap-time-of-flight (LC-MS IT-TOF) method. Thirty-two (82%) of the unregistered products and two (14%) of the registered products were found to be adulterated with at least one PDE-5 inhibitor or analogue, while none of the pre-registration products contained adulterants. A total of 16 different adulterants were detected and 36% of the adulterated products contained a mixture of two or more adulterants. This study has demonstrated that the adulteration of unregistered herbal products in the Malaysian market is an alarming issue that needs to be urgently addressed by the relevant authorities.

  3. Inhibitors of MyD88-dependent proinflammatory cytokine production identified utilizing a novel RNA interference screening approach.

    Directory of Open Access Journals (Sweden)

    John S Cho

    2009-09-01

    Full Text Available The events required to initiate host defenses against invading pathogens involve complex signaling cascades comprised of numerous adaptor molecules, kinases, and transcriptional elements, ultimately leading to the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-alpha. How these signaling cascades are regulated, and the proteins and regulatory elements participating are still poorly understood.We report here the development a completely random short-hairpin RNA (shRNA library coupled with a novel forward genetic screening strategy to identify inhibitors of Toll-like receptor (TLR dependent proinflammatory responses. We developed a murine macrophage reporter cell line stably transfected with a construct expressing diphtheria toxin-A (DT-A under the control of the TNF-alpha-promoter. Stimulation of the reporter cell line with the TLR ligand lipopolysaccharide (LPS resulted in DT-A induced cell death, which could be prevented by the addition of an shRNA targeting the TLR adaptor molecule MyD88. Utilizing this cell line, we screened a completely random lentiviral short hairpin RNA (shRNA library for sequences that inhibited TLR-mediated TNF-alpha production. Recovery of shRNA sequences from surviving cells led to the identification of unique shRNA sequences that significantly inhibited TLR4-dependent TNF-alpha gene expression. Furthermore, these shRNA sequences specifically blocked TLR2 but not TLR3-dependent TNF-alpha production.Thus, we describe the generation of novel tools to facilitate large-scale forward genetic screens in mammalian cells and the identification of potent shRNA inhibitors of TLR2 and TLR4- dependent proinflammatory responses.

  4. Use of resources and costs associated with the treatment of Dupuytren's contracture at an orthopedics and traumatology surgery department in Denia (Spain): collagenase clostridium hystolyticum versus subtotal fasciectomy.

    Science.gov (United States)

    Sanjuan Cerveró, Rafael; Franco Ferrando, Nuria; Poquet Jornet, Jaime

    2013-10-14

    Our purpose was to analyze and compare the use of direct health resources and costs generated in the treatment of Dupuytren's contracture using two different techniques: subtotal fasciectomy and infiltration with Collagenase Clostridium Histolyticum (CCH) in regular clinical practice at the Orthopedic and Traumatology Surgery (OTS) Department at the Hospital de Denia (Spain). Observational, retrospective study based on data from the computerized clinical histories of two groups of patients- those treated surgically using a one or two digit subtotal fasciectomy technique (FSC) and those treated with CCH infiltration, monitored in regular clinical practice from February, 2009 to May, 2012. Demographic (age, sex), clinical (number of digits affected and which ones) and use of resources (hospitalizations, medical visits, tests and drugs) data were collected. Resource use and associated costs, according to the hospital's accounting department, were compared based on the type of treatment from Spain's National Health Service. 91 patients (48 (52.8%) in the FSC group) were identified. The average age and number of digits affected was 65.9 (9.2) years and 1.33 (0.48) digits affected in the FSC group, and 65.1 (9.7) years and 1.16 (0.4) digits in the CCH group.Overall, the costs of treating Dupuytren's disease with subtotal FSC amount to €1,814 for major ambulatory surgery and €1,961 with hospital stay including admission, surgical intervention (€904), examinations, dressings and physiotherapy. As to collagenase infiltration, costs amount to €952 (including minor surgery admission, vial with product, office examination and dressings). Finally, comparing total costs for treatments, a savings of €388 is estimated in favor of CCH treatment in the best-case scenario (patient under MAS system with no need for physiotherapy) and €1,008 in the worst-case scenario (patient admitted to hospital needing subsequent physiotherapy), implying a savings of 29% and 51

  5. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening.

    Science.gov (United States)

    Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David

    2015-01-01

    Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening.

  6. Production of xylitol by a Coniochaeta ligniaria strain tolerant of inhibitors and defective in growth on xylose.

    Science.gov (United States)

    Nichols, Nancy N; Saha, Badal C

    2016-05-01

    In conversion of biomass to fuels or chemicals, inhibitory compounds arising from physical-chemical pretreatment of the feedstock can interfere with fermentation of the sugars to product. Fungal strain Coniochaeta ligniaria NRRL30616 metabolizes the furan aldehydes furfural and 5-hydroxymethylfurfural, as well as a number of aromatic and aliphatic acids and aldehydes. Use of NRRL30616 to condition biomass sugars by metabolizing the inhibitors improves their fermentability. Wild-type C. ligniaria has the ability to grow on xylose as sole source of carbon and energy, with no accumulation of xylitol. Mutants of C. ligniaria unable to grow on xylose were constructed. Xylose reductase and xylitol dehydrogenase activities were reduced by approximately two thirds in mutant C8100. The mutant retained ability to metabolize inhibitors in biomass hydrolysates. Although C. ligniaria C8100 did not grow on xylose, the strain converted a portion of xylose to xylitol, producing 0.59 g xylitol/g xylose in rich medium and 0.48 g xylitol/g xylose in corn stover dilute acid hydrolysate. 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2016 © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:606-612, 2016. © 2016 American Institute of Chemical Engineers.

  7. Collagenase-resistant collagen promotes mouse aging and vascular cell senescence.

    Science.gov (United States)

    Vafaie, Faran; Yin, Hao; O'Neil, Caroline; Nong, Zengxuan; Watson, Alanna; Arpino, John-Michael; Chu, Michael W A; Wayne Holdsworth, David; Gros, Robert; Pickering, J Geoffrey

    2014-02-01

    Collagen fibrils become resistant to cleavage over time. We hypothesized that resistance to type I collagen proteolysis not only marks biological aging but also drives it. To test this, we followed mice with a targeted mutation (Col1a1(r/r) ) that yields collagenase-resistant type I collagen. Compared with wild-type littermates, Col1a1(r/r) mice had a shortened lifespan and developed features of premature aging including kyphosis, weight loss, decreased bone mineral density, and hypertension. We also found that vascular smooth muscle cells (SMCs) in the aortic wall of Col1a1(r/r) mice were susceptible to stress-induced senescence, displaying senescence-associated ß-galactosidase (SA-ßGal) activity and upregulated p16(INK4A) in response to angiotensin II infusion. To elucidate the basis of this pro-aging effect, vascular SMCs from twelve patients undergoing coronary artery bypass surgery were cultured on collagen derived from Col1a1(r/r) or wild-type mice. This revealed that mutant collagen directly reduced replicative lifespan and increased stress-induced SA-ßGal activity, p16(INK4A) expression, and p21(CIP1) expression. The pro-senescence effect of mutant collagen was blocked by vitronectin, a ligand for αvß3 integrin that is presented by denatured but not native collagen. Moreover, inhibition of αvß3 with echistatin or with αvß3-blocking antibody increased senescence of SMCs on wild-type collagen. These findings reveal a novel aging cascade whereby resistance to collagen cleavage accelerates cellular aging. This interplay between extracellular and cellular compartments could hasten mammalian aging and the progression of aging-related diseases. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Serial superficial digital flexor tendon biopsies for diagnosing and monitoring collagenase-induced tendonitis in horses

    Directory of Open Access Journals (Sweden)

    José C. de Lacerda Neto

    2013-06-01

    Full Text Available The purpose of this investigation was to demonstrate the feasibility of a biopsy technique by performing serial evaluations of tissue samples of the forelimb superficial digital flexor tendon (SDFT in healthy horses and in horses subjected to superficial digital flexor tendonitis induction. Eight adult horses were evaluated in two different phases (P, control (P1 and tendonitis-induced (P2. At P1, the horses were subjected to five SDFT biopsies of the left forelimb, with 24 hours (h of interval. Clinical and ultrasonographic (US examinations were performed immediately before the tendonitis induction, 24 and 48 h after the procedure. The biopsied tendon tissues were analyzed through histology. P2 evaluations were carried out three months later, when the same horses were subjected to tendonitis induction by injection of bacterial collagenase into the right forelimb SDFT. P2 clinical and US evaluations, and SDFT biopsies were performed before, and after injury induction at the following time intervals: after 24, 48, 72 and 96 h, and after 15, 30, 60, 90, 120 and 150 days. The biopsy technique has proven to be easy and quick to perform and yielded good tendon samples for histological evaluation. At P1 the horses did not show signs of localised inflammation, pain or lameness, neither SDFT US alterations after biopsies, showing that the biopsy procedure per se did not risk tendon integrity. Therefore, this procedure is feasible for routine tendon histological evaluations. The P2 findings demonstrate a relation between the US and histology evaluations concerning induced tendonitis evolution. However, the clinical signs of tendonitis poorly reflected the microscopic tissue condition, indicating that clinical presentation is not a reliable parameter for monitoring injury development. The presented method of biopsying SDFT tissue in horses enables the serial collection of material for histological analysis causing no clinical signs and tendon damage seen

  9. In vitro dissolution of proton-pump inhibitor products intended for paediatric and geriatric use in physiological bicarbonate buffer.

    Science.gov (United States)

    Liu, Fang; Shokrollahi, Honaz

    2015-05-15

    Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effects of Ulmus davidiana planch on mineralization, bone morphogenetic protein-2, alkaline phosphatase, type I collagen, and collagenase-1 in bone cells.

    Science.gov (United States)

    Kang, Sung-Koo; Kim, Kap-Sung; Byun, Yu-Seok; Suh, Seok-Jong; Jim, Un-Ho; Kim, Kyung-Ho; Lee, In-Seon; Kim, Cheorl-Ho

    2006-01-01

    Ulmus davidiana Planch (Ulmaceae) (UD) long has been known to have anti-inflammatory and protective effects on damaged tissue, inflammation, and bone among other functions. The herbal medicine also is being used in Oriental medicine to treat osteoporosis. In a preliminary study, treatment of osteoclasts containing long bone cells with the water extract of UD bark prevented the intracellular maturation of cathepsin K (cat K), and thus, it was considered that UD is a pro-drug of a potent bone-resorption inhibitor. To further clarify the role of UD in ossification, we investigated the effects of UD on the proliferation and differentiation of osteoblastic cell lines in vitro. In this study, we assessed the effects of UD on osteoblastic differentiation in nontransformed osteoblastic cells (MC3T3-E1) and rat bone marrow cells. UD enhanced alkaline phosphatase (ALP) activity and mineralization in a dose- and time-dependent fashion. This stimulatory effect of the UD was observed at relatively low doses (significant at 5-50 microg/ml and maximal at 50 microg/ml). Northern blot analysis showed that UD (100 microg/ml) increases in bone morphogenic protein-2 as well as ALP mRNA concentrations in MC3T3-E1 cells. UD slightly increased in type I collagen mRNA abundance throughout the culture period, whereas it markedly inhibited the gene expression of collagenase-1 between days 15 and 20 of culture. These results indicate that UD has anabolic effects on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of common metabolic bone diseases such as osteoporosis.

  11. A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production

    DEFF Research Database (Denmark)

    Nachbur, Ueli; Stafford, Che A; Bankovacki, Aleksandra

    2015-01-01

    Intracellular nucleotide binding and oligomerization domain (NOD) receptors recognize antigens including bacterial peptidoglycans and initiate immune responses by triggering the production of pro-inflammatory cytokines through activating NF-κB and MAP kinases. Receptor interacting protein kinase 2...

  12. Effects of cattle slurry and nitrification inhibitor application on spatial soil O2 dynamics and N2O production pathways

    DEFF Research Database (Denmark)

    Nguyen, Quan Van; Wu, Di; Kong, Xianwang

    2017-01-01

    Application of cattle slurry to grassland soil has environmental impacts such as ammonia volatilization and greenhouse gas emissions. The extent, however, depends on application method and soil conditions through their effects on infiltration and oxygen (O2) availability during subsequent...... decomposition. Here, we applied O2 planar optode and N2O isotopomer techniques to investigate the linkage between soil O2 dynamics and N2O production pathways in soils treated with cattle slurry (treatment CS) and tested the effect of the nitrification inhibitor 3,4-dimethyl pyrazole phosphate, DMPP (treatment...... produced during incubation. Over 18 days, the application of DMPP substantially mitigated N2O emissions by 60% compared to untreated CS in the investigated system which in terms of aeration status corresponded to wet or compacted grassland soil. Using this novel combination of O2 planar optode imaging...

  13. Titration-based screening for evaluation of natural product extracts: identification of an aspulvinone family of luciferase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, P.G.; Auld, D.S.; Schultz, P.J.; Lovell, S.; Battaile, K.P.; MacArthur, R.; Shen, M.; Tamayo-Castillo, G.; Inglese, J.; Sherman, D.H. (Michigan); (NIH); (Kansas); (Costa Rica); (HWMRI)

    2011-11-28

    The chemical diversity of nature has tremendous potential for the discovery of molecular probes and medicinal agents. However, sensitivity of HTS assays to interfering components of crude extracts derived from plants, and macro- and microorganisms has curtailed their use in lead discovery. Here, we describe a process for leveraging the concentration-response curves obtained from quantitative HTS to improve the initial selection of actives from a library of partially fractionated natural product extracts derived from marine actinomycetes and fungi. By using pharmacological activity, the first-pass CRC paradigm improves the probability that labor-intensive subsequent steps of reculturing, extraction, and bioassay-guided isolation of active component(s) target the most promising strains and growth conditions. We illustrate how this process identified a family of fungal metabolites as potent inhibitors of firefly luciferase, subsequently resolved in molecular detail by X-ray crystallography.

  14. Molecular modeling of human acidic mammalian chitinase in complex with the natural-product cyclopentapeptide chitinase inhibitor argifin.

    Science.gov (United States)

    Gouda, Hiroaki; Terashima, Shinichi; Iguchi, Kanami; Sugawara, Akihiro; Saito, Yoshifumi; Yamamoto, Tsuyoshi; Hirose, Tomoyasu; Shiomi, Kazuro; Sunazuka, Toshiaki; Omura, Satoshi; Hirono, Shuichi

    2009-09-01

    Human acidic mammalian chitinase (hAMCase) is an attractive target for developing anti-asthma medications. We used a variety of computational methods to investigate the interaction between hAMCase and the natural-product cyclopentapeptide chitinase inhibitor argifin. The three-dimensional structure of hAMCase was first constructed using homology modeling. The interaction mode and binding free energy between argifin and hAMCase were then examined by the molecular-docking calculation and the molecular mechanics Poisson-Boltzmann surface area method combined with molecular dynamics simulation, respectively. The results suggested that argifin binds to hAMCase in a similar fashion to the interaction mode observed in the crystal structure of argifin-human chitotriosidase complex, and possesses inhibitory activity against hAMCase in the micromolar range. We further designed argifin derivatives expected to be selective for hAMCase.

  15. Effect of proteasome inhibitors on monocytic IkappaB-alpha and -beta depletion, NF-kappaB activation, and cytokine production.

    Science.gov (United States)

    Haas, M; Page, S; Page, M; Neumann, F J; Marx, N; Adam, M; Ziegler-Heitbrock, H W; Neumeier, D; Brand, K

    1998-03-01

    We investigated the effect of proteasome inhibitors on the lipopolysaccharide (LPS)-induced expression of several monocytic cytokines, which may be dependent on the transcription factor, nuclear factor-kappaB (NF-kappaB). Exposure of human monocytic THP-1 cells to ALLN and Mu873 prevented the LPS-induced degradation of IkappaB-alpha and -beta, as did the more potent proteasome inhibitor, PSI, whereas several calpain inhibitors were ineffective. This was accompanied by the inhibition of nuclear NF-kappaB binding activity and NF-kappaB transcriptional activation. At the mRNA level, the inhibitors blocked the expression of tumor necrosis factor (TNF) and interleukin-1beta (IL-1beta), whereas IL-8 remained unaffected by ALLN and was only partially reduced by the highest dose of PSI. The latter effect appears to be due to an increase in IL-8 mRNA stability in the presence of proteasome inhibitors. Furthermore, the production of TNF was efficiently suppressed by ALLN and PSI, less by Mu873, and not at all by calpain inhibitors. In primary human blood monocytes ALLN also prevented the LPS-induced degradation of IkappaB-alpha and -beta, efficiently blocked the production of TNF and, to a lesser extent, IL-1beta, whereas that of IL-8 was not inhibited. The expression of NF-kappaB-dependent monocytic cytokines may be selectively controlled by the proteasome, offering a potential therapeutic target in inflammatory disease.

  16. Natural inhibitors of tumor-associated proteases

    International Nuclear Information System (INIS)

    Magdolen, U.; Krol, J.; Sato, S.; Schmitt, M.; Magdolen, V.; Krueger, A.; Mueller, M.M.; Sperl, S.

    2002-01-01

    The turnover and remodelling of extracellular matrix (ECM) is an essential part of many normal biological processes including development, morphogenesis, and wound healing. ECM turnover also occurs in severe pathological situations like artherosclerosis, fibrosis, tumor invasion and metastasis. The major proteases involved in this turnover are serine proteases (especially the urokinase-type plasminogen activator/plasmin system), matrix metalloproteases (a family of about 20 zinc-dependent endopeptidases including collagenases, gelatinases, stromelysins, and membrane-type metalloproteases), and cysteine proteases. In vivo, the activity of these proteases is tightly regulated in the extracellular space by zymogen activation and/or controlled inhibition. In the present review, we give an overview on the structure and biochemical properties of important tumor-associated protease inhibitors such as plasminogen activator inhibitor type 1 and type 2 (PAI-1, PAI-2), tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4), and the cysteine protease inhibitor cystatin C. Interestingly, some of these inhibitors of tumor-associated proteases display multiple functions which rather promote than inhibit tumor progression, when the presence of inhibitors in the tumor tissue is not balanced. (author)

  17. 3,5,6,7,8,3′,4′-Heptamethoxyflavone, a Citrus Flavonoid, Inhibits Collagenase Activity and Induces Type I Procollagen Synthesis in HDFn Cells

    Directory of Open Access Journals (Sweden)

    Hong-Il Kim

    2018-02-01

    Full Text Available Citrus fruits contain various types of flavonoids with powerful anti-aging and photoprotective effects on the skin, and have thus been attracting attention as potential, efficacious skincare agents. Here, we aimed to investigate the chemical composition of Citrus unshiu and its protective effects on photoaging. We isolated and identified a bioactive compound, 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF, from C. unshiu peels using ethanol extraction and hexane fractionation. HMF inhibited collagenase activity and increased type I procollagen content in UV-induced human dermal fibroblast neonatal (HDFn cells. HMF also suppressed the expression of matrix metalloproteinases 1 (MMP-1 and induced the expression of type I procollagen protein in UV-induced HDFn cells. Additionally, HMF inhibited ultraviolet B (UVB-induced phosphorylation of the mitogen-activated protein kinases (MAPK cascade signaling components—ERK, JNK, and c-Jun—which are involved in the induction of MMP-1 expression. Furthermore, HMF affected the TGF-β/Smad signaling pathway, which is involved in the regulation of type I procollagen expression. In particular, HMF induced Smad3 protein expression and suppressed Smad7 protein expression in UV-induced HDFn cells in a dose-dependent manner. These findings suggest a role for Citrus unshiu in the preparation of skincare products in future.

  18. Biogenic H2 production from mixed microalgae biomass: impact of pH control and methanogenic inhibitor (BESA addition

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2016-09-01

    Full Text Available Hydrogen production from mixed microalgae biomass, predominantly containing Scendesmus and chlorella species, was investigated with a focus on enhancement strategies, in particular (i pH control (at 5.5 and (ii methanogenic inhibitor (BESA addition along with pH control at 5.5. The results obtained showed that the later condition remarkably increased the performances. This was mainly ascribed to the occurrence of a suitable environment for the hydrogen producers to perform actively. Hydrogen production under these conditions (i.e., both pH 5.5 and pH5.5+BESA was significantly higher than that of the control experiment. Using the pH control at 5.5 and BESA addition, peak hydrogen production rate (HPR and hydrogen yield (HY were attained as 210 mL/L/d and 29.5 mL/g VSadded, respectively. This improvement was nearly 3-folds higher compared with the control experiment with an HPR of 62 mL/L/d and an HY of 9.5 mL/g VSadded.

  19. An analysis of psychotropic drug sales. Increasing sales of selective serotonin reuptake inhibitors are closely related to number of products.

    Science.gov (United States)

    Nielsen, Margrethe; Gøtzsche, Peter

    2011-01-01

    Prescribing of selective serotonin reuptake inhibitors (SSRIs) has increased dramatically. To compare the sales of benzodiazepines and SSRIs within the primary care sector in Denmark and relate changes in usage to number of indications and products on the market. We used data from various sources to establish the sales curves of psychotropic drugs in the period 1970 to 2007, based on the Anatomic Therapeutic Classification system and Defined Daily Doses. Fluctuations in sales of psychotropic drugs that cannot be explained by disease prevalence were caused by changes in sales of the benzodiazepines and SSRIs. We found a decline in the sales of benzodiazepines after a peak in 1986, likely due to the recognition that they cause dependence. From a low level in 1992, we found that the sales of SSRIs increased almost linearly by a factor of 18, up to 44 DDD per 1000 inhabitants, which was closely related to the number of products on the market that increased by a factor of 16. Sales of antidepressant drugs are mainly determined by market availability of products indicating that marketing pressures are playing an important role. Thus the current level of use of SSRIs may not be evidence-based, which is supported by studies showing that the effect of SSRIs has been overestimated.

  20. Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins.

    Science.gov (United States)

    Hassig, Christian A; Zeng, Fu-Yue; Kung, Paul; Kiankarimi, Mehrak; Kim, Sylvia; Diaz, Paul W; Zhai, Dayong; Welsh, Kate; Morshedian, Shana; Su, Ying; O'Keefe, Barry; Newman, David J; Rusman, Yudi; Kaur, Harneet; Salomon, Christine E; Brown, Susan G; Baire, Beeraiah; Michel, Andrew R; Hoye, Thomas R; Francis, Subhashree; Georg, Gunda I; Walters, Michael A; Divlianska, Daniela B; Roth, Gregory P; Wright, Amy E; Reed, John C

    2014-09-01

    Antiapoptotic Bcl-2 family proteins are validated cancer targets composed of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). Although several isoform-selective inhibitors have been developed using structure-based design or high-throughput screening (HTS) of synthetic chemical libraries, no large-scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six antiapoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally relevant PPIs. The screens were conducted in 1536-well format and displayed satisfactory overall HTS statistics, with Z'-factor values ranging from 0.72 to 0.83 and a hit confirmation rate between 16% and 64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied, and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source, and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra-high-throughput screening using natural product sources and highlight some of the challenges associated with this approach. © 2014 Society for Laboratory Automation and Screening.

  1. Effects of selected electron transport chain inhibitors on 24-h hydrogen production by Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Burrows, Elizabeth H; Chaplen, Frank W R; Ely, Roger L

    2011-02-01

    One factor limiting biosolar hydrogen (H(2)) production from cyanobacteria is electron availability to the hydrogenase enzyme. In order to optimize 24-h H(2) production this study used Response Surface Methodology and Q2, an optimization algorithm, to investigate the effects of five inhibitors of the photosynthetic and respiratory electron transport chains of Synechocystis sp. PCC 6803. Over 3 days of diurnal light/dark cycling, with the optimized combination of 9.4 mM KCN (3.1 μmol 10(10) cells(-1)) and 1.5 mM malonate (0.5 μmol 10(10) cells(-1)) the H(2) production was 30-fold higher, in EHB-1 media previously optimized for nitrogen (N), sulfur (S), and carbon (C) concentrations (Burrows et al., 2008). In addition, glycogen concentration was measured over 24 h with two light/dark cycling regimes in both standard BG-11 and EHB-1 media. The results suggest that electron flow as well as glycogen accumulation should be optimized in systems engineered for maximal H(2) output. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Percutaneous treatment of non-contained lumbar disc herniation by injection of oxygen-ozone combined with collagenase

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zhiqun [Therapy Center of Pain, Division of Interventional Radiology, Tang Du Hospital, Fourth Military Medical University, Xian 710038 (China)], E-mail: zhiqunwu@yahoo.com; Wei Longxiao [Therapy Center of Pain, Division of Interventional Radiology, Tang Du Hospital, Fourth Military Medical University, Xian 710038 (China); Li Jun [Therapy Center of Pain, Division of Orthopedic Surgery, Tang Du Hospital, Fourth Military Medical University, Xian 710038 (China); Wang Yiqing; Ni Daihui [Therapy Center of Pain, Division of Interventional Radiology, Tang Du Hospital, Fourth Military Medical University, Xian 710038 (China); Yang Peng; Zhang Yuhai [Department of Biostatistics, Fourth Military Medical University, Xian 710032 (China)

    2009-12-15

    Purpose: To evaluate the therapeutic results of oxygen-ozone combined collagenase injection for the treatment of lumbar disc herniation compared to the surgery. And to explore the role of this minimally invasive treatment as an alternative to disc surgery. Materials and methods: Two groups of patients (n = 108) were treated with different ways respectively. Minimally invasive group of patients was treated with the injection of oxygen-ozone combined with collagenase into the lumbar disc or the epidural space; the other group was treated with traditional surgery. After the treatment, the patients were followed-up and the therapeutic effect was assessed at 2 weeks, 3 and 12 months by the modified Macnab criteria. Results: The success rate was 86.11% and 88.89% in minimally invasive group at 3 and 12 months respectively, while 92.59% and 95.37% in surgical group. There was no statistically significant difference between two groups at 3 and 12 months (P = 0.123, P = 0.08). However, the surgical group produced a statistically significant greater improvement for back pain and disability in the first few weeks (P = 0.0001). The success rate was 51.86% and 85.18% at 2 weeks in minimally invasive group and surgical group respectively. No serious complication occurred in this group. Conclusions: The combination of the oxygen-ozone with collagenase shows significant reductions in pain and improvements in function at 3 and 12 months, it can be considered as an option for the treatment of non-contained lumbar disc herniation instead of surgery.

  3. Percutaneous treatment of non-contained lumbar disc herniation by injection of oxygen-ozone combined with collagenase.

    Science.gov (United States)

    Wu, Zhiqun; Wei, Long Xiao; Li, Jun; Wang, Yiqing; Ni, Daihui; Yang, Peng; Zhang, Yuhai

    2009-12-01

    To evaluate the therapeutic results of oxygen-ozone combined collagenase injection for the treatment of lumbar disc herniation compared to the surgery. And to explore the role of this minimally invasive treatment as an alternative to disc surgery. Two groups of patients (n=108) were treated with different ways respectively. Minimally invasive group of patients was treated with the injection of oxygen-ozone combined with collagenase into the lumbar disc or the epidural space; the other group was treated with traditional surgery. After the treatment, the patients were followed-up and the therapeutic effect was assessed at 2 weeks, 3 and 12 months by the modified Macnab criteria. The success rate was 86.11% and 88.89% in minimally invasive group at 3 and 12 months respectively, while 92.59% and 95.37% in surgical group. There was no statistically significant difference between two groups at 3 and 12 months (P=0.123, P=0.08). However, the surgical group produced a statistically significant greater improvement for back pain and disability in the first few weeks (P=0.0001). The success rate was 51.86% and 85.18% at 2 weeks in minimally invasive group and surgical group respectively. No serious complication occurred in this group. The combination of the oxygen-ozone with collagenase shows significant reductions in pain and improvements in function at 3 and 12 months, it can be considered as an option for the treatment of non-contained lumbar disc herniation instead of surgery.

  4. Production of xylitol by a Coniochaeta ligniaria strain tolerant of inhibitors and defective in xylose metabolism

    Science.gov (United States)

    In conversion of biomass to fuels or chemicals, inhibitory compounds arising from physical-chemical pretreatment of the feedstock can interfere with fermentation of the sugars to product. Fungal strain Coniochaeta ligniaria NRRL30616, metabolizes the furan aldehydes furfural and 5-hydroxymethylfurfu...

  5. The Efficacy and Safety of Concurrent Collagenase Clostridium Histolyticum Injections for 2 Dupuytren Contractures in the Same Hand

    DEFF Research Database (Denmark)

    Gaston, R. G.; Larsen, Søren; Pess, G. M.

    2015-01-01

    Purpose To evaluate efficacy and safety of concurrent administration of 2 collagenase clostridium histolyticum (CCH) injections to treat 2 joints in the same hand with Dupuytren fixed flexion contractures (FFCs). Methods Patients with 2 or more contractures in the same hand caused by palpable cords...... participated in a 60-day, multicenter, open-label, phase 3b study. Two 0.58 mg CCH doses were injected into 1 or 2 cords in the same hand (1 injection per affected joint) during the same visit. Finger extension was performed approximately 24, 48, or 72 or more hours later. Changes in FFC and range of motion...

  6. Multiple concurrent collagenase clostridium histolyticum injections to dupuytren’s cords: an exploratory study

    Directory of Open Access Journals (Sweden)

    Coleman Stephen

    2012-04-01

    Full Text Available Abstract Background Dupuytren’s contracture (DC is a progressive fibroproliferative disorder characterized by development of nodules and collagen cords within the palmar fascia of the hand. Collagenase clostridium histolyticum (CCH is currently approved in adults with DC for the nonsurgical treatment of a single palpable cord during a 30-day treatment cycle. This open-label pilot study was designed to examine the safety, efficacy, and multiple-dose pharmacokinetics of injecting two cords (affected joints with multiple doses of CCH concurrently into the same hand in subjects with DC and multiple contractures. Methods Twelve subjects with DC were enrolled, each with ≥3 contractures caused by palpable cords. Efficacy assessments were taken 30 days after treatment and adverse events (AEs were recorded throughout. In the first treatment period, all subjects were injected with a single dose of CCH (0.58 mg into a single cord. The same subjects entered a second treatment period 30 days later, where two different cords (affected joints were injected concurrently on the same hand. A finger extension procedure was performed 24 hours after each administration of CCH to disrupt the enzymatically weakened cord. Results For metacarpophalangeal (MP joints, mean contracture reduction per joint treated was 29.0 ± 20.7 degrees following single injection vs 30.3 ± 10.9 degrees per treated joint following multiple injections. For proximal interphalangeal (PIP joints, mean reduction in contracture was 30.7 ± 21.1 and 22.1 ± 4.9 degrees per treated joint, respectively, for the two periods. All patients (100% were either “quite satisfied” or “very satisfied” following either treatment cycle. The most common treatment-related AEs were edema peripheral, contusion, and pain in the treated extremity; the differences in severity for local effects of the injections were minimal between treatment periods. No serious treatment-related AEs

  7. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening

    Directory of Open Access Journals (Sweden)

    Lin SH

    2015-06-01

    Full Text Available Shih-Hung Lin,1 Kao-Jean Huang,1,2 Ching-Feng Weng,1 David Shiuan1 1Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, Republic of China; 2Development Center of Biotechnology, Taipei, Taiwan, Republic of China Abstract: Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR. The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening. Keywords: HMG-CoA reductase, virtual screening, curcumin, salvianolic acid C

  8. Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543

    Directory of Open Access Journals (Sweden)

    Jouni Jokela

    2017-10-01

    Full Text Available Nostoc is a cyanobacterial genus, common in soils and a prolific producer of natural products. This research project aimed to explore and characterize Brazilian cyanobacteria for new bioactive compounds. Here we report the production of hepatotoxins and new protease inhibitors from benthic Nostoc sp. CENA543 isolated from a small, shallow, saline-alkaline lake in the Nhecolândia, Pantanal wetland area in Brazil. Nostoc sp. CENA543 produces exceptionally high amounts of nodularin-R. This is the first free-living Nostoc that produces nodularin at comparable levels as the toxic, bloom-forming, Nodularia spumigena. We also characterized pseudospumigins A–F, which are a novel family of linear tetrapeptides. Pseudospumigins are structurally related to linear tetrapeptide spumigins and aeruginosins both present in N. spumigena but differ in respect to their diagnostic amino acid, which is Ile/Leu/Val in pseudospumigins, Pro/mPro in spumigins, and Choi in aeruginosins. The pseudospumigin gene cluster is more similar to the spumigin biosynthetic gene cluster than the aeruginosin gene cluster. Pseudospumigin A inhibited trypsin (IC50 4.5 μM after 1 h in a similar manner as spumigin E from N. spumigena but was almost two orders of magnitude less potent. This study identifies another location and environment where the hepatotoxic nodularin has the potential to cause the death of eukaryotic organisms.

  9. Diazepam enhances production of diazepam-binding inhibitor (DBI), a negative saliva secretion regulator, localized in rat salivary gland.

    Science.gov (United States)

    Tsukagoshi, Eri; Kawaguchi, Mitsuru; Shinomiya, Takashi; Yoshikawa, Masanobu; Kawano, Toshihiko; Okubo, Migiwa; Sawaki, Kohei

    2011-01-01

    Peripheral-type benzodiazepine receptor (PBR) and central-type benzodiazepine receptor (CBR) in salivary gland play a role in the inhibitory regulation of salivary secretion in rodents. Diazepam-binding inhibitor (DBI), an endogenous ligand for PBR, produces neurosteroids, which modulate CBR activity. In this study, we investigated the effect of repetitive administration of diazepam (DZP) on salivary secretion and expression of DBI mRNA and peptide. Moreover, mRNA expression of PBR and pituitary adenylate cyclase-activating polypeptide (PACAP), a transcriptional regulator for DBI promoter, was evaluated after repetitive administration of DZP. Repetitive administration, but not single administration, of 0.4 mg/kg DZP caused inhibition of salivary secretion and enhanced expression of DBI, PACAP, and PBR mRNA in rat salivary gland, with an increase in production of DBI peptide. These results suggest that repetitive administration of DZP stimulates DBI production, which may result in an increase in the suppressive effect of DZP on salivary secretion.

  10. In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract

    Directory of Open Access Journals (Sweden)

    Ghimeray AK

    2015-07-01

    Full Text Available Amal Kumar Ghimeray,1 Un Sun Jung,1,2 Ha Youn Lee,1 Young Hoon Kim,1 Eun Kyung Ryu,1 Moon Sik Chang11R&D Center, Natural Solution Co., Ltd, Gojan-dong, Namdong-gu, Incheon, Republic of Korea; 2Department of Horticultural Biotechnology, Kyung Hee University, Yongin, Republic of KoreaBackground: In phytotherapy, the therapeutic potential is based on the combined action of different herbal drugs. Our objective was to evaluate the antioxidant, anti-collagenase (in vitro, and anti-wrinkle (in vivo effect of combined formulation containing Ginkgo biloba, Punica granatum, Ficus carica, and Morus alba fruits extract.Methods: Antioxidant evaluation was based on the scavenging activity of free radicals (1,1-diphenyl-2-picrylhydrazyl, H2O2, and O2- and the anti-collagenase activity was based on the reduction of collagenase enzyme in vitro. In an in vivo study, 21 female subjects were examined in a placebo-controlled trail. Facial wrinkle, especially the crow's feet region of eyes, was treated with topical formulated 2% cream for 56 days and compared with the placebo.Results: In the in vitro study, the combination of fruits extract showed a higher antioxidant activity which was comparable with the positive standard (ascorbic acid, butylated hydroxyanisole, and Trolox. The data also showed a dose-dependent inhibition of collagenase. In the in vivo study, treatment with 2% formulated cream for 56 days significantly reduced the percentage of wrinkle depth, length, and area with 11.5, 10.07, and 29.55, respectively.Conclusion: The combined formulation of fruit extracts showed excellent antioxidative and anti-collagenase activity as well as a significant effect on anti-wrinkle activity on human skin.Keywords: antioxidant, anti-collagenase, anti-wrinkle, fruits, topical formulation

  11. Engineered aggregation inhibitor fusion for production of highly amyloidogenic human islet amyloid polypeptide.

    Science.gov (United States)

    Mirecka, Ewa Agnieszka; Gremer, Lothar; Schiefer, Stephanie; Oesterhelt, Filipp; Stoldt, Matthias; Willbold, Dieter; Hoyer, Wolfgang

    2014-12-10

    Human islet amyloid polypeptide (IAPP) is the major component of pancreatic amyloid deposits in type 2 diabetes. The structural conversion of IAPP from a monomeric state into amyloid assemblies is the subject of intense research. Recombinant production of IAPP is, however, difficult due to its extreme aggregation propensity. Here we describe a novel strategy for expression of IAPP in Escherichia coli, based on an engineered protein tag, which sequesters IAPP monomers and prevents IAPP aggregation. The IAPP-binding protein HI18 was selected by phage display from a β-wrapin library. Fusion of HI18 to IAPP enabled the soluble expression of the construct. IAPP was cleaved from the fusion construct and purified to homogeneity with a yield of 3mg of isotopically labeled peptide per liter of culture. In the monomeric state, IAPP was largely disordered as evidenced by far-UV CD and liquid-state NMR spectroscopy but competent to form amyloid fibrils according to atomic force microscopy. These results demonstrate the ability of the engineered β-wrapin HI18 for shielding the hydrophobic sequence of IAPP during expression and purification. Fusion of aggregation-inhibiting β-wrapins is a suitable approach for the recombinant production of aggregation-prone proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Cartilage regeneration by selected chondrogenic clonal mesenchymal stem cells in the collagenase-induced monkey osteoarthritis model.

    Science.gov (United States)

    Jiang, Li; Ma, Anlun; Song, Lijun; Hu, Yanxin; Dun, Hao; Daloze, Pierre; Yu, Yonglin; Jiang, Jianyuan; Zafarullah, Muhammad; Chen, Huifang

    2014-11-01

    Osteoarthritis (OA) is the most common form of arthritis, in which cartilage is irreversibly degraded, causing severe pain and disability. Current therapeutic strategies cannot repair damaged cartilage. We evaluated the repair potential of selected chondrogenic clonal MSCs (sC-MSCs) by delivering them into the injured cartilage site in a collagenase-induced OA model in Cynomolgus monkeys. In vitro characterization showed that the isolated monkey sC-MSCs and polyclonal MSCs (P-MSCs) expressed mesenchymal stem cell markers and could differentiate into chondrocytes. The articular cartilage lesions in animals were treated with normal saline (NS), autologous P-MSCs and sC-MSCs, respectively, by direct delivery. The clinical parameters, radiographic images, histological and immunohistochemical examinations at weeks 8, 16 and 24 post-treatment demonstrated that the abrasions of articular cartilage were significantly improved and repaired by MSC-based treatment, particularly in the sC-MSC-treated group, which displayed consistently higher histological scores than those of other groups. In summary, treatment with sC-MSCs can effectively improve the healing of cartilage lesions in the Cynomolgus monkey collagenase-induced OA model. Due to the genetic proximity of monkey and human, the therapeutic strategy presented in this study will have broad applications in clinical practice. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis.

    Science.gov (United States)

    Nixon, Alan J; Dahlgren, Linda A; Haupt, Jennifer L; Yeager, Amy E; Ward, Daniel L

    2008-07-01

    To assess the potential of adipose-derived nucleated cell (ADNC) fractions to improve tendon repair in horses with collagenase-induced tendinitis. 8 horses. Collagenase was used to induce tendinitis in the superficial digital flexor tendon of 1 forelimb in each horse. Four horses were treated by injection of autogenous ADNC fractions, and 4 control horses were injected with PBS solution. Healing was compared by weekly ultrasonographic evaluation. Horses were euthanatized at 6 weeks. Gross and histologic evaluation of tendon structure, fiber alignment, and collagen typing were used to define tendon architecture. Biochemical and molecular analyses of collagen, DNA, and proteoglycan and gene expression of collagen type I and type III, decorin, cartilage oligomeric matrix protein (COMP), and insulin-like growth factor-I were performed. Ultrasonography revealed no difference in rate or quality of repair between groups. Histologic evaluation revealed a significant improvement in tendon fiber architecture; reductions in vascularity, inflammatory cell infiltrate, and collagen type III formation; and improvements in tendon fiber density and alignment in ADNC-treated tendons. Repair sites did not differ in DNA, proteoglycan, or total collagen content. Gene expression of collagen type I and type III in treated and control tendons were similar. Gene expression of COMP was significantly increased in ADNC-injected tendons. ADNC injection improved tendon organization in treated tendons. Although biochemical and molecular differences were less profound, tendons appeared architecturally improved after ADNC injection, which was corroborated by improved tendon COMP expression. Use of ADNC in horses with tendinitis appears warranted.

  14. Utility of NucleoCounter for the chondrocyte count in the collagenase digest of human native cartilage

    Science.gov (United States)

    Yonenaga, Kazumichi; Nishizawa, Satoru; Akizawa, Miki; Asawa, Yukiyo; Fujihara, Yuko; Takato, Tsuyoshi

    2010-01-01

    In cartilage tissue engineering, viable cell numbers should be correctly counted in the collagenase digest of the biopsied cartilage. However, this is a difficult task due to the presence of matrix debris, cell ghosts and their aggregates. To search for the correct cell counting method in this situation, we evaluated the utility of an automatic cell counting device, the NucleoCounter, and compared it with conventional staining using the LIVE/DEAD® kit. We first measured the cell numbers of a standard chondrocyte sample by the NucleoCounter, which showed a high accuracy (R2 = 0.9999) and reproducibility (%CV: 2.00–8.66). We then calculated the cell numbers and viability in some collagenase digests of native cartilage using either the NucleoCounter or LIVE/DEAD® kit, revealing that the total cell numbers, viable ones and viability were highly correlated between them (R2 = 0.9601, 0.9638 and 0.917, respectively). However, both the intrapersonal and interpersonal variabilities in the NucleoCounter was significantly decreased to about 1/20–1/5, compared to that of the LIVE/DEAD® kit. The NucleoCounter was regarded as a useful tool for simple, rapid, and highly reproducible cell counts, which may not only provide constant experimental data in a certain laboratory, but also contribute to the high reproducibility of the clinical results of cartilage tissue engineering among multiple institutions. PMID:20845070

  15. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    Science.gov (United States)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  16. Structure-based discovery of an immunomodulatory inhibitor of TLR1-TLR2 heterodimerization from a natural product-like database.

    Science.gov (United States)

    Zhong, Zhangfeng; Liu, Li-Juan; Dong, Zhi-Qiang; Lu, Lihua; Wang, Modi; Leung, Chung-Hang; Ma, Dik-Lung; Wang, Yitao

    2015-06-30

    We report herein the identification of an immunomodulatory natural product-like compound as a direct inhibitor of TLR1-TLR2 heterodimerization. Compound suppressed TNF-α and IL-6 secretion in Pam3CSK4-induced macrophages. Moreover, compound inhibited the phagocytic activity of macrophages, presumably through modulation of TLR1-TLR2 signaling and inactivation of NF-κB. Molecular docking revealed that compound bound to the interface region of TLR1-TLR2 by forming two hydrogen bonds with residues lining the binding site. To our knowledge, compound has been only the second inhibitor overall of TLR1-TLR2 heterodimerization reported to date.

  17. Screening of mammalian target of rapamycin inhibitors in natural product extracts by capillary electrophoresis in combination with high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Yanmei; Li, Feng; Li, Mingxia; Kang, Jingwu

    2015-04-03

    In this study, capillary electrophoresis (CE) combined with HPLC-MS/MS were used as a powerful platform for screening of inhibitors of mammalian target of rapamycin (mTOR) in natural product extracts. The screening system has been established by using 5-carboxyfluorescein labeled substrate peptide F-4EBP1, a known mTOR inhibitor AZD8055, and a small chemical library consisted of 18 natural product extracts. Biochemical screening of natural product extracts was performed by CE with laser induced fluorescence detection. The CE separation allowed a quantitative measurement of the phosphorylated product, hence the quantitation of enzymatic inhibition as well as inhibition kinetics. The hits are readily identified as long as the peak area of the phosphorylated product is reduced in comparison with the negative control. Subsequent assay-guided isolation of the active natural product extract was performed with HPLC-MS/MS to track the particular active components. The structures of the identified active components were elucidated by the molecular ions and fragmentation information provided by MS/MS analysis. The CE-based assay method only requires minute pure compounds, which can be readily purified by HPLC. Therefore, the combination of CE and HPLC-MS/MS provides a high-throughput platform for screening bioactive compounds from the crude nature extracts. By taking the advantage of the screening system, salvianolic acid A and C in extract of Salvia miltiorrhiza were discovered as the new mTOR inhibitors. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Identification of novel Ebola virus (EBOV) VP24 inhibitor from Indonesian natural products through in silico drug design approach

    Science.gov (United States)

    Tambunan, U. S. F.; Nasution, M. A. F.

    2017-07-01

    Ebola remains as one of the deadliest diseases in the world, with almost 29,000 cases were reported and kill 11,000 of them, and yet neither treatment nor vaccine that can combat this disease effectively. This disease is caused by ebolavirus (EBOV), a primary member of Filoviridae family. The life cycle of this virus has been operated by several key proteins, one of them is VP24 protein, which has been known for its crucial role in the transcription and replication of EBOV. Therefore, targeting VP24 protein can be a solution for treating this pathogenic disease. In this study, virtual screening of Indonesian natural products as EBOV VP24 inhibitor was performed. About 2,020 ligands from many sources, including HerbalDB database, were obtained and screened by using DataWarrior software to measure its molecular and pharmacological properties, resulting 301 ligands in the process. Then, the molecular docking simulation was performed to check the ligand's binding interaction and affinity with EBOV VP24 protein; this simulation was done by using MOE 2014.09 software. This study resulted that cycloartocarpin was the best ligand to inhibit the EBOV VP24 protein. Therefore, this ligand should be checked its stability through molecular dynamics simulation and performed in vitro test to verify its bioactivity against the EBOV VP24 protein.

  19. Radioprotective effects of combination broncho-vaxom, a macrophage activator, and indomethacin, an inhibitor of prostaglandin production. Relationship to myelopoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Fedorocko, P.; Mackova, N.O. [Safarik Univ., Faculty ofSciences, Dept. of Cellular and Molecular Biology, Kosice (Slovakia)

    1996-01-01

    The effects of the bacterial extract broncho-vaxom (BV; radioprotective immunomodulator; 500 {mu}g/mouse i.p., -24 h) and indomethacin (INDO; inhibitor of prostaglandin production; 2x40 {mu}g/mouse i.m., - 24 h and - 3 h) on the post-irradiation recovery of hemopoietic functions in mice were investigated. Both agents were administered either alone or in combination. Endogenous spleen colony formation was increased in all treatment groups, with combination-treated mice exhibiting the greatest effects. Similarly, 24 h after combined administration of BV and INDO (i.e. at the time of presumed irradiation) to the non-irradiated mice granulocyte-macrophage colony-forming cell (GM-CFC) numbers were greater in the bone marrow and spleen. Also, as determined by hydroxyurea injection, there was an increase in the number of GM-CFC in the S-phase of the cell cycle in the bone marrow. However, GM-CFC in the spleen of combination pretreated mice was not stimulated to significant proliferation as compared to GM-CFC in the spleen of mice injected with BV alone. Combined modality treatment was also more effective than single agent treatments in accelerating bone marrow cellularity and GM-CFC regeneration, but not in accelerating GM-CFC regeneration in the spleen. Combined administration of BV and INDO to mice prior to lethal irradiation exerted and additional radioprotective effect and protected 95% of the C57B1/6 mice. (au) 42 refs.

  20. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review.

    Science.gov (United States)

    Kosma, Christina I; Lambropoulou, Dimitra A; Albanis, Triantafyllos A

    2016-11-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration.

    Science.gov (United States)

    Kazi, Rubina S; Banarjee, Reema M; Deshmukh, Arati B; Patil, Gouri V; Jagadeeshaprasad, Mashanipalya G; Kulkarni, Mahesh J

    2017-03-06

    Advanced Glycation End products (AGEs) are implicated in aging process. Thus, reducing AGEs by using glycation inhibitors may help in attenuating the aging process. In this study using Saccharomyces cerevisiae yeast system, we show that Aminoguanidine (AMG), a well-known glycation inhibitor, decreases the AGE modification of proteins in non-calorie restriction (NR) (2% glucose) and extends chronological lifespan (CLS) similar to that of calorie restriction (CR) condition (0.5% glucose). Proteomic analysis revealed that AMG back regulates the expression of differentially expressed proteins especially those involved in mitochondrial respiration in NR condition, suggesting that it switches metabolism from fermentation to respiration, mimicking CR. AMG induced back regulation of differentially expressed proteins could be possibly due to its chemical effect or indirectly by glycation inhibition. To delineate this, Metformin (MET), a structural analog of AMG and a mild glycation inhibitor and Hydralazine (HYD), another potent glycation inhibitor but not structural analog of AMG were used. HYD was more effective than MET in mimicking AMG suggesting that glycation inhibition was responsible for restoration of differentially expressed proteins. Thus glycation inhibitors particularly AMG, HYD and MET extend yeast CLS by reducing AGEs, modulating the expression of proteins involved in mitochondrial respiration and possibly by scavenging glucose. This study reports the role of glycation in aging process. In the non-caloric restriction condition, carbohydrates such as glucose promote protein glycation and reduce CLS. While, the inhibitors of glycation such as AMG, HYD, MET mimic the caloric restriction condition by back regulating deregulated proteins involved in mitochondrial respiration which could facilitate shift of metabolism from fermentation to respiration and extend yeast CLS. These findings suggest that glycation inhibitors can be potential molecules that can be used

  2. The kinetics of inhibitor production resulting from hydrothermal deconstruction of wheat straw studied using a pressurised microwave reactor.

    Science.gov (United States)

    Ibbett, Roger; Gaddipati, Sanyasi; Greetham, Darren; Hill, Sandra; Tucker, Greg

    2014-03-29

    The use of a microwave synthesis reactor has allowed kinetic data for the hydrothermal reactions of straw biomass to be established from short times, avoiding corrections required for slow heating in conventional reactors, or two-step heating. Access to realistic kinetic data is important for predictions of optimal reaction conditions for the pretreatment of biomass for bioethanol processes, which is required to minimise production of inhibitory compounds and to maximise sugar and ethanol yields. The gravimetric loss through solubilisation of straw provided a global measure of the extent of hydrothermal deconstruction. The kinetic profiles of furan and lignin-derived inhibitors were determined in the hydrothermal hydrolysates by UV analysis, with concentrations of formic and acetic acid determined by HPLC. Kinetic analyses were either carried out by direct fitting to simple first order equations or by numerical integration of sequential reactions. A classical Arrhenius activation energy of 148 kJmol-1 has been determined for primary solubilisation, which is higher than the activation energy associated with historical measures of reaction severity. The gravimetric loss is primarily due to depolymerisation of the hemicellulose component of straw, but a minor proportion of lignin is solubilised at the same rate and hence may be associated with the more hydrophilic lignin-hemicellulose interface. Acetic acid is liberated primarily from hydrolysis of pendant acetate groups on hemicellulose, although this occurs at a rate that is too slow to provide catalytic enhancement to the primary solubilisation reactions. However, the increase in protons may enhance secondary reactions leading to the production of furans and formic acid. The work has suggested that formic acid may be formed under these hydrothermal conditions via direct reaction of sugar end groups rather than furan breakdown. However, furan degradation is found to be significant, which may limit ultimate

  3. Tendon Derived Stem Cells Promote Platelet-Rich Plasma Healing in Collagenase-Induced Rat Achilles Tendinopathy

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-12-01

    Full Text Available Background/Aims: Tendon injuries are common, difficult to cure and usually healed with fibrosis and scar tissue. The aim of this study was to evaluate tendon derived stem cells (TDSCs and platelet rich plasma (PRP in the treatment of collagenase induced Achilles tendinopathy in rat. Methods: Four and 8 weeks (n=18 after TDSCs, PRP, PRP with TDSC or PBS (control injection into collagenase or saline (sham injected rat Achilles tendon, tendon tissue was harvested and tendon quality was evaluated by histology and biomechanical testing. TDSCs were cultured and treated by 10% PRP, and the FAK/ERK1/2 signaling pathway and tenocyte-related genes were detected by western blot analysis. Results: Compared to the control, PRP treatment resulted in better healing of injured tendons with improved histological outcomes and biomechanical functions. The addition of TDSCs to PRP treatment significantly enhanced the effects of PRP treatment alone. TDSC injection alone had little effect on tendon healing. PRP and PRP with TDSC treatments of collagenase induced tendon injuries also increased the mRNA and protein expression of tenocyte-related genes (type I collagen, SCX, Tenascin C and activated the focal adhesion kinase (FAK and extracellular-regulated kinase (ERK 1/2 signaling pathways. Treatment of TDSCs in vitro with 10% PRP significantly increased the phosphorylation levels of FAK and ERK1/2 and the protein levels of tenocyte-related genes (Col I, SCX and Tenascin C. Inhibition of the FAK and ERK1/2 signaling pathways abolished the effect of PRP. Conclusion: This study concludes that PRP combined with TDSCs is potentially effective for the treatment of tendinopathy. The PRP induced, FAK and ERK1/2 dependent activation of tenocyte related genes in TDSCs in vitro suggests that the beneficial healing effect of the PRP with TDSC combination might occur by means of an improved TDSC differentiation toward the tenocyte lineage. Thus, a PRP with TDSC combination

  4. VIL-10-overexpressing human MSCs modulate naïve and activated T lymphocytes following induction of collagenase-induced osteoarthritis

    NARCIS (Netherlands)

    E. Farrell (Eric); N. Fahy (N.); A.E. Ryan (Aideen E.); Flatharta, C.O. (Cathal O); O'Flynn, L. (Lisa); T. Ritter (Thomas); J.M. Murphy (J. Mary)

    2016-01-01

    textabstractBackground: Recent efforts in osteoarthritis (OA) research have highlighted synovial inflammation and involvement of immune cells in disease onset and progression. We sought to establish the in-vivo immune response in collagenase-induced OA and investigate the ability of human

  5. Non-surgical treatment of deep wounds triggered by harmful physical and chemical agents: a successful combined use of collagenase and hyaluronic acid.

    Science.gov (United States)

    Onesti, Maria G; Fino, Pasquale; Ponzo, Ida; Ruggieri, Martina; Scuderi, Nicolò

    2016-02-01

    Some chronic ulcers often occur with slough, not progressing through the normal stages of wound healing. Treatment is long and other therapies need to be performed in addition to surgery. Patients not eligible for surgery because of ASA class (American Society of Anesthesiologists class) appear to benefit from chemical therapy with collagenase or hydrocolloids in order to prepare the wound bed, promoting the healing process. We describe four cases of traumatic, upper limb deep wounds caused by different physical and chemical agents, emphasising the effectiveness of treatment based on topical application of collagenase and hyaluronic acid (HA) before standardised surgical procedures. We performed careful disinfection of lesions combined with application of topical cream containing hyaluronic acid, bacterial fermented sodium hyaluronate (0·2%w/w) salt, and bacterial collagenase obtained from non-pathogenic Vibrio alginolyticus (>2·0 nkat1/g). In one patient a dermo-epidermal graft was used to cover the wide loss of substance. In two patients application of a HA-based dermal substitute was done. We obtained successful results in terms of wound healing, with satisfactory aesthetic result and optimal recovery of the affected limb functionality. Topical application of collagenase and HA, alone or before standardised surgical procedures allows faster wound healing. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  6. Skin sample preparation by collagenase digestion for diclofenac quantification using LC-MS/MS after topical application.

    Science.gov (United States)

    Nirogi, Ramakrishna; Padala, Naga Surya Prakash; Boggavarapu, Rajesh Kumar; Kalaikadhiban, Ilayaraja; Ajjala, Devender Reddy; Bhyrapuneni, Gopinadh; Muddana, Nageswara Rao

    2016-06-01

    Skin is the target site to evaluate the pharmacokinetic parameters of topical applications. Sample preparation is one of the influential steps in the bioanalysis of drugs in the skin. Evaluation of dermatopharmacokinetics at preclinical stage is challenging due to lack of proper sample preparation method. There is a need for an efficient sample preparation procedure for quantification of drugs in the skin using LC-MS/MS. The skin samples treated with collagenase followed by homogenization using a bead beater represents a best-fit method resulting in uniform homogenate for reproducible results. A new approach involving enzymatic treatment and mechanical homogenization techniques were evaluated for efficient sample preparation of skin samples in the bioanalysis.

  7. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review

    International Nuclear Information System (INIS)

    Kosma, Christina I.; Lambropoulou, Dimitra A.; Albanis, Triantafyllos A.

    2016-01-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. - Highlights: • Occurrence and fate of PPIs and their metabolites/TPs in the aquatic environment • Overview of the analytical methods applied, using LC-MS techniques • Omeprazole attended the most frequent analysis • Determination and behavior of omeprazole's metabolites/TPs in the environment • More ecotoxicological research is needed to assess the risks of PPIs.

  8. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kosma, Christina I. [Department of Chemistry, University of Ioannina, Ioannina, 45110 (Greece); Lambropoulou, Dimitra A., E-mail: dlambro@chem.auth.gr [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Albanis, Triantafyllos A. [Department of Chemistry, University of Ioannina, Ioannina, 45110 (Greece)

    2016-11-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. - Highlights: • Occurrence and fate of PPIs and their metabolites/TPs in the aquatic environment • Overview of the analytical methods applied, using LC-MS techniques • Omeprazole attended the most frequent analysis • Determination and behavior of omeprazole's metabolites/TPs in the environment • More ecotoxicological research is needed to assess the risks of PPIs.

  9. Myocardial Production of Plasminogen Activator Inhibitor-1 is Associated with Coronary Endothelial and Ventricular Dysfunction after Acute Myocardial Infarction.

    Science.gov (United States)

    Shimizu, Takuya; Uematsu, Manabu; Yoshizaki, Toru; Obata, Jun-Ei; Nakamura, Takamitsu; Fujioka, Daisuke; Watanabe, Kazuhiro; Watanabe, Yosuke; Kugiyama, Kiyotaka

    2016-05-02

    Although plasminogen activator inhibitor-1 (PAI-1) is abundantly expressed in infarcted myocardium, the pathogenic role of myocardial PAI-1 remains unknown. This study examined whether PAI-1 in the infarcted lesion contributes to coronary endothelial dysfunction and left ventricular (LV) dysfunction in patients with acute myocardial infarction (AMI). Plasma levels of PAI-1 activity and tissue-plasminogen activator (tPA) antigen were measured 2 weeks and 6 months after MI by ELISA in plasma obtained from the aortic root (AO) and anterior interventricular vein (AIV) in 28 patients with a first AMI due to occlusion of the left anterior descending coronary artery (LAD). Coronary blood flow responses in LAD to intracoronary infusion of acetylcholine (ACh) and left ventriculography were measured at the same time points: 2 weeks and 6 months after MI. The trans-myocardial gradient of PAI-1 from AO to AIV, reflecting production/release of PAI-1 in the infarcted lesion, was inversely correlated with the coronary blood flow response to ACh 6 months after MI (r=-0.43, p=0.02) and with the percentage change in LV regional motion in the LAD territory from 2 weeks to 6 months after MI (r=-0.38, p=0.04). The trans-myocardial gradient of tPA level showed no significant correlations. PAI-1 produced in the infarcted myocardium and released into the coronary circulation is associated with endothelial dysfunction in resistance vessels of the infarct-related coronary arteries and with progressive dysfunction of the infarcted region of the left ventricle in AMI survivors.

  10. Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity.

    Science.gov (United States)

    Otoguro, Teruhime; Tanaka, Tomohisa; Kasai, Hirotake; Yamashita, Atsuya; Moriishi, Kohji

    2016-11-01

    Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 μM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 μM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  11. Low risk of inhibitor formation in haemophilia A patients following en masse switch in treatment to a third generation full length plasma and albumin-free recombinant factor VIII product (ADVATE®).

    LENUS (Irish Health Repository)

    Bacon, C L

    2011-05-01

    Previous studies have suggested that development of inhibitors in previously treated patients (PTPs) may be attributable to a switch in factor VIII (FVIII) therapeutic product. Consequently, it is widely recognized that inhibitor development must be assessed in PTPs following the introduction of any new FVIII product. Following a national tender process in 2006, all patients with haemophilia A in Ireland changed their FVIII treatment product en masse to a plasma and albumin-free recombinant full-length FVIII product (ADVATE(®)). In this study, we retrospectively reviewed the case records of Irish PTPs to evaluate risk of inhibitor formation following this treatment switch. One hundred and thirteen patients participated in the study. Most patients (89%) had severe haemophilia. Only one of 96 patients with no inhibitor history developed an inhibitor. Prior to the switch in his recombinant FVIII (rFVIII) treatment of choice, this child had only experienced three exposure days (EDs). Consequently, in total he had only received 6 EDs when his inhibitor was first diagnosed. In keeping with this lack of de novo inhibitor development, we observed no evidence of any recurrent inhibitor formation in any of 16 patients with previously documented inhibitors. Similarly, following a previous en masse switch, we have previously reported that changing from a Chinese hamster ovary cell-produced to a baby hamster kidney cell-produced rFVIII was also associated with a low risk of inhibitor formation in PTPs. Our cumulative findings from these two studies clearly emphasizes that the risk of inhibitor development for PTPs following changes in commercial rFVIII product is low, at least in the Irish population.

  12. In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production.

    Science.gov (United States)

    Zhu, Jia-Qing; Li, Xia; Qin, Lei; Li, Wen-Chao; Li, Hui-Ze; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-10-01

    Co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae was developed for bioethanol production from undetoxified pretreated biomass in simultaneously saccharification and co-fermentation (SSCF) process. Glucose accumulation during late fermentation phase in SSCF using xylose-utilizing strain can be eliminated by the introduction of inhibitor-tolerant strain. Effect of different ratios of two strains was investigated and xylose-utilizing strain to inhibitor-tolerant strain ratio of 10:1 (w/w) showed the best xylose consumption and the highest ethanol yield. Inoculating of xylose-utilizing strain at the later stage of SSCF (24-48h) exhibited lower ethanol yield than inoculating at early stage (the beginning 0-12h), probably due to the reduced enzymatic efficiency caused by the unconsumed xylose and oligomeric sugars. Co-culture SSCF increased ethanol concentration by 21.2% and 41.0% comparing to SSCF using individual inhibitor-tolerant and xylose-utilizing strain (increased from 48.5 and 41.7g/L to 58.8g/L), respectively, which suggest this co-culture system was very promising. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production.

    Science.gov (United States)

    Favaro, Lorenzo; Basaglia, Marina; Trento, Alberto; Van Rensburg, Eugéne; García-Aparicio, Maria; Van Zyl, Willem H; Casella, Sergio

    2013-11-29

    Robust yeasts with high inhibitor, temperature, and osmotic tolerance remain a crucial requirement for the sustainable production of lignocellulosic bioethanol. These stress factors are known to severely hinder culture growth and fermentation performance. Grape marc was selected as an extreme environment to search for innately robust yeasts because of its limited nutrients, exposure to solar radiation, temperature fluctuations, weak acid and ethanol content. Forty newly isolated Saccharomyces cerevisiae strains gave high ethanol yields at 40°C when inoculated in minimal media at high sugar concentrations of up to 200 g/l glucose. In addition, the isolates displayed distinct inhibitor tolerance in defined broth supplemented with increasing levels of single inhibitors or with a cocktail containing several inhibitory compounds. Both the fermentation ability and inhibitor resistance of these strains were greater than those of established industrial and commercial S. cerevisiae yeasts used as control strains in this study. Liquor from steam-pretreated sugarcane bagasse was used as a key selective condition during the isolation of robust yeasts for industrial ethanol production, thus simulating the industrial environment. The isolate Fm17 produced the highest ethanol concentration (43.4 g/l) from the hydrolysate, despite relatively high concentrations of weak acids, furans, and phenolics. This strain also exhibited a significantly greater conversion rate of inhibitory furaldehydes compared with the reference strain S. cerevisiae 27P. To our knowledge, this is the first report describing a strain of S. cerevisiae able to produce an ethanol yield equal to 89% of theoretical maximum yield in the presence of high concentrations of inhibitors from sugarcane bagasse. This study showed that yeasts with high tolerance to multiple stress factors can be obtained from unconventional ecological niches. Grape marc appeared to be an unexplored and promising substrate for the

  14. Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products

    Science.gov (United States)

    Sun, Yunan; Zhou, Hui; Zhu, Hongmei; Leung, Siu-Wai

    2016-01-01

    Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase, and its dysregulation can lead to ageing, diabetes, and cancer. From 346 experimentally confirmed SIRT1 inhibitors, an inhibitor structure pattern was generated by inductive logic programming (ILP) with DMax Chemistry Assistant software. The pattern contained amide, amine, and hetero-aromatic five-membered rings, each of which had a hetero-atom and an unsubstituted atom at a distance of 2. According to this pattern, a ligand-based virtual screening of 1 444 880 active compounds from Chinese herbs identified 12 compounds as inhibitors of SIRT1. Three compounds (ZINC08790006, ZINC08792229, and ZINC08792355) had high affinity (-7.3, -7.8, and -8.6 kcal/mol, respectively) for SIRT1 as estimated by molecular docking software AutoDock Vina. This study demonstrated a use of ILP and background knowledge in machine learning to facilitate virtual screening.

  15. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic

    DEFF Research Database (Denmark)

    Persson, T.; Rasmussen, Thomas Bovbjerg; Skindersoe, M.

    2005-01-01

    with similarity both to sulfides 10a-s and to bioactive structures from garlic. Design and biological screening of all compounds presented in this work targeted inhibition of quorum-sensing comprising competitive inhibition of transcriptional regulators LuxR and LasR. The design was based on critical interactions...... within the binding-site and structural motifs in molecular components isolated from garlic, 7 and 8, shown to be quorum-sensing inhibitors but not antibiotics. A potent quorum-sensing inhibitor N-(heptylsulfanylacetyl)-L-homoserine lactone (10c) was identified. Together with data collected for the other...

  16. Effect of lignocellulose-derived inhibitors on the growth and D-lactic acid production of Sporolactobacillus inulinus YBS1-5.

    Science.gov (United States)

    Bai, Zhongzhong; Gao, Zhen; He, Bingfang; Wu, Bin

    2015-10-01

    The impact of lignocellulose-derived inhibitors on the cell growth and D-lactic production of Sporolactobacillus inulinus YBS1-5 was investigated. At high concentrations, both furans and phenolics, such as furfural, HMF, syringaldehyde and vanillin, affected cell growth and D-lactic acid production and syringaldehyde exhibited the highest. Further experiments showed that only vanillin caused cellular membrane damage. Based on the Biolog approach, in vivo studies on intact S. inulinus cells indicated that phenolics had a stronger inhibitory effect than furan derivatives on the metabolic activity of the concerned substrates related with the key enzymes of D-lactic acid fermentation. The direct in vitro inhibitory effect of the model compounds on the four key enzymes displayed similar patterns. Syringaldehyde was the strongest inhibitor. In general, comparison with published results for other microorganisms indicated that strain YBS1-5 was a robust microorganism against inhibitors of lignocellulose hydrolysate. Notably, in concentrated corn stover hydrolysate, S. inulinus YBS1-5 produced 70.7 g/L D-lactic acid, which was 87.7 % of the yield from the control experiment. However, the fermentation time was prolonged 36 h. In order to improve fermentation rate, a detoxification technology or more robust mutant to phenolics especially syringaldehyde should be developed.

  17. Effect of nitrification inhibitors (DMPP and 3MP+TZ) on soil nitrous oxide emissions from a sub-tropical vegetable production system in Queensland, Australia

    Science.gov (United States)

    Scheer, Clemens; Deuter, Peter; Firrell, Mary; Rowlings, David; Grace, Peter

    2015-04-01

    The use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted recently as an effective method to reduce nitrous oxide (N2O) emissions from fertilised agricultural fields, whilst increasing yield and nitrogen use efficiency. Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser and consequently elevated emissions of nitrous oxide (N2O) can be expected. However, to date only limited data is available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment investigated the effect of the nitrification inhibitors (DMPP & 3MP+TZ) on N2O emissions and yield from a typical vegetable production system in sub-tropical Australia. Soil N2O fluxes were monitored continuously over an entire year with a fully automated system. Measurements were taken from three subplots for each treatment within a randomized complete blocks design. There was a significant inhibition effect of DMPP and 3MP+TZ on N2O emissions and soil mineral N content directly following the application of the fertiliser over the vegetable cropping phase. However this mitigation was offset by elevated N2O emissions from the inhibitor treatments over the post-harvest fallow period. Cumulative annual N2O emissions amounted to 1.22 kg-N/ha, 1.16 kg-N/ha, 1.50 kg-N/ha and 0.86 kg-N/ha in the conventional fertiliser (CONV), the DMPP treatment, the 3MP+TZ treatment and the zero fertiliser (0N) respectively. Corresponding fertiliser induced emission factors (EFs) were low with only 0.09 - 0.20% of the total applied fertiliser lost as N2O. There was no significant effect of the nitrification inhibitors on yield compared to the CONV treatment for the three vegetable crops (green beans, broccoli, lettuce) grown over the experimental period. This study highlights that N2O emissions from such vegetable cropping system are primarily controlled by post-harvest emissions following the incorporation of vegetable crop

  18. Discovery of a Potential HER2 Inhibitor from Natural Products for the Treatment of HER2-Positive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jianzong Li

    2016-07-01

    Full Text Available Breast cancer is one of the most lethal types of cancer in women worldwide due to the late stage detection and resistance to traditional chemotherapy. The human epidermal growth factor receptor 2 (HER2 is considered as a validated target in breast cancer therapy. Even though a substantial effort has been made to develop HER2 inhibitors, only lapatinib has been approved by the U.S. Food and Drug Administration (FDA. Side effects were observed in a majority of the patients within one year of treatment initiation. Here, we took advantage of bioinformatics tools to identify novel effective HER2 inhibitors. The structure-based virtual screening combined with ADMET (absorption, distribution, metabolism, excretion and toxicity prediction was explored. In total, 11,247 natural compounds were screened. The top hits were evaluated by an in vitro HER2 kinase inhibition assay. The cell proliferation inhibition effect of identified inhibitors was evaluated in HER2-overexpressing SKBR3 and BT474 cell lines. We found that ZINC15122021 showed favorable ADMET properties and attained high binding affinity against HER2. Moreover, ZINC15122021 showed high kinase inhibition activity against HER2 and presented outstanding cell proliferation inhibition activity against both SKBR3 and BT474 cell lines. Results reveal that ZINC15122021 can be a potential HER2 inhibitor.

  19. Expression of metallocarboxypeptidase inhibitors in Escherichia coli: effect of cysteine content and protein size in the secretory production of disulfide-bridged proteins.

    Science.gov (United States)

    Puertas, Juan-Miguel; Caminal, Glòria; González, Glòria

    2011-09-01

    Metallocarboxypeptidase inhibitors are proteins with possible applications in biomedicine given their properties as anticoagulant and antitumoral factors. They are small, eukaryotic polypeptides comprising several disulfide bridges, which makes them hard to express in inexpensive bacterial hosts. In this work, three of them were produced in high-cell-density cultures of Escherichia coli: PCI (39 residues and three bridges), LCI (66 residues and four bridges) and TCI (75 residues and six bridges). The genes coding for the mentioned inhibitors were cloned in an arabinose-inducible plasmid fused to the signal peptide of DsbA in order to have them secreted and grant the formation of the bridges. The trigger-factor defective strain KTD101 was used as the expression host. The resulting recombinant strains were cultured in fed-batch mode employing minimal media and an exponential feed profile, keeping the specific growth rate at μ = 0.1 h(-1) by limitation of the fed carbon source (glycerol). Between 380 and 540 mg l(-1) of active inhibitors were obtained in both the periplasmic extracts and extracellular media of the cultures. Later on, excretion was enhanced using a cell permeabilization treatment, allowing the recovery of over 80% of the products from the extracellular fraction. Protein yields were found to be inversely proportional to cysteine content of the inhibitor, whereas protein excretion rates were inversely proportional to the protein size. Overall, these results offer insight into the secretory production of active disulfide-bridged proteins in high-cell-density cultures of E. coli.

  20. Increased susceptibility of skin from HERDA (Hereditary Equine Regional Dermal Asthenia)-affected horses to bacterial collagenase degradation: a potential contributing factor to the clinical signs of HERDA.

    Science.gov (United States)

    Rashmir-Raven, Ann; Lavagnino, Michael; Sedlak, Aleksa; Gardner, Keri; Arnoczky, Steven

    2015-12-01

    Hereditary equine regional dermal asthenia (HERDA) is a genetic disorder of collagen resulting in fragile, hyper-extensible skin and ulcerative lesions. The predominance of skin lesions have been shown to occur on the dorsum of HERDA-affected horses. While this has been postulated to be due to increased exposure to sunlight of these areas, the precise pathological mechanism which causes this to occur is unclear. We hypothesized that an increase in collagenase activity, that has been associated with the exposure of dermal fibroblasts to sunlight, will significantly degrade the material properties of skin from HERDA-affected horses when compared to unaffected controls. Six unaffected and seven HERDA-affected horses, all euthanized for other reasons. Full-thickness skin samples from similar locations on each horse were collected and cut into uniform strips and their material properties (tensile modulus) determined by mechanical testing before (n = 12 samples/horse) or after (n = 12 samples/horse) incubation in bacterial collagenase at 37°C for 6 h. The change in modulus following treatment was then compared between HERDA-affected and unaffected horses using a Student's t-test. The modulus of skin from HERDA-affected horses decreased significantly more than that from unaffected horses following collagenase treatment (54 ± 7% versus 30 ± 16%, P = 0.004). The significant decrease in the modulus of skin from HERDA-affected horses following collagenase exposure suggests that their altered collagen microarchitecture is more susceptible to enzymatic degradation and may explain the localization of skin lesions in HERDA-affected horses to those areas of the body most exposed to sunlight. These findings appear to support the previously reported benefits of sunlight restriction in HERDA-affected horses. © 2015 ESVD and ACVD.

  1. vIL-10-overexpressing human MSCs modulate naïve and activated T lymphocytes following induction of collagenase-induced osteoarthritis.

    Science.gov (United States)

    Farrell, Eric; Fahy, Niamh; Ryan, Aideen E; Flatharta, Cathal O; O'Flynn, Lisa; Ritter, Thomas; Murphy, J Mary

    2016-05-18

    Recent efforts in osteoarthritis (OA) research have highlighted synovial inflammation and involvement of immune cells in disease onset and progression. We sought to establish the in-vivo immune response in collagenase-induced OA and investigate the ability of human mesenchymal stem cells (hMSCs) overexpressing viral interleukin 10 (vIL-10) to modulate immune populations and delay/prevent disease progression. Eight-week-old male C57BL/6 mice were injected with 1 U type VII collagenase over two consecutive days. At day 7, 20,000 hMSCs overexpressing vIL-10 were injected into the affected knee. Control groups comprised of vehicle, 20,000 untransduced or adNull-transduced MSCs or virus alone. Six weeks later knees were harvested for histological analysis and popliteal and inguinal lymph nodes for flow cytometric analysis. At this time there was no significant difference in knee OA scores between any of the groups. A trend toward more damage in animals treated with hMSCs was observed. Interestingly there was a significant reduction in the amount of activated CD4 and CD8 T cells in the vIL-10-expressing hMSC group. vIL-10-overexpressing hMSCs can induce long-term reduction in activated T cells in draining lymph nodes of mice with collagenase-induced OA. This could lead to reduced OA severity or disease progression over the long term.

  2. Histological and Immunohistochemical Evaluation of Autologous Cultured Bone Marrow Mesenchymal Stem Cells and Bone Marrow Mononucleated Cells in Collagenase-Induced Tendinitis of Equine Superficial Digital Flexor Tendon

    Science.gov (United States)

    Crovace, Antonio; Lacitignola, Luca; Rossi, Giacomo; Francioso, Edda

    2010-01-01

    The aim of this study was to compare treatment with cultured bone marrow stromal cells (cBMSCs), bone marrow Mononucleated Cells (BMMNCs), and placebo to repair collagenase-induced tendinitis in horses. In six adult Standardbred horses, 4000 IU of collagenase were injected in the superficial digital flexor tendon (SDFT). Three weeks after collagenase treatment, an average of either 5.5 × 106 cBMSCs or 1.2 × 108 BMMNCs, fibrin glue, and saline solution was injected intralesionally in random order. In cBMSC- and BMMNCS-treated tendons, a high expression of cartilage oligomeric matrix protein (COMP) and type I collagen, but low levels of type III collagen were revealed by immunohistochemistry, with a normal longitudinally oriented fiber pattern. Placebo-treated tendons expressed very low quantities of COMP and type I collagen but large numbers of randomly oriented type III collagen fibers. Both cBMSC and BMMNCS grafts resulted in a qualitatively similar heling improvement of tendon extracellular matrix, in terms of the type I/III collagen ratio, fiber orientation, and COMP expression. PMID:20445779

  3. Polysubstituted 4,6-bis(hetero)arylpyrimidines as dual inhibitors of nitric oxide and prostaglandin E-2 production

    Czech Academy of Sciences Publication Activity Database

    Kolman, Viktor; Jansa, Petr; Kalčic, Filip; Janeba, Zlatko; Zídek, Zdeněk

    2017-01-01

    Roč. 67, Jul 1 (2017), s. 53-57 ISSN 1089-8603 R&D Projects: GA TA ČR(CZ) TE01020028 Institutional support: RVO:61388963 ; RVO:68378041 Keywords : pyrimidine derivatives * nitric oxide * prostaglandin E-2 * dual inhibitors * anti-inflammatory properties Subject RIV: CE - Biochemistry; CC - Organic Chemistry (UEM-P) OBOR OECD: Biochemistry and molecular biology; Organic chemistry (UEM-P) Impact factor: 4.181, year: 2016

  4. Autologous leukocyte-reduced platelet-rich plasma therapy for Achilles tendinopathy induced by collagenase in a rabbit model.

    Science.gov (United States)

    González, Juan C; López, Catalina; Álvarez, María E; Pérez, Jorge E; Carmona, Jorge U

    2016-01-19

    Leukocyte-reduced platelet-rich plasma (LR-PRP) is a therapy for tendinopathy of the Achilles tendon (TAT); however, there is scarce information regarding LR-PRP effects in rabbit models of TAT. We compared, at 4 and 12 weeks (w), the LR-PRP and placebo (PBS) effects on ultrasonography, histology and relative gene expression of collagen types I (COL1A1) and III (COL3A1) and vascular endothelial growth factor (VEGF) in 24 rabbits with TAT induced by collagenase. The rabbits (treated with both treatments) were euthanatised after either 4 or 12 w. A healthy group (HG (n = 6)) was included. At 4 and 12 w, the LR-PRP group had a no statistically different histology score to the HG. At w 4, the COL1A1 expression was significantly higher in the LR-PRP group when compared to HG, and the expression of COL3A1 from both LR-PRP and PBS-treated tendons was significantly higher when compared to the HG. At w 12, the expression of COL3A1 remained significantly higher in the PBS group in comparison to the LR-PRP group and the HG. At w 4, the LR-PRP group presented a significantly higher expression of VEGF when compared to the PBS group and the HG. In conclusion, LR-PRP treatment showed regenerative properties in rabbits with TAT.

  5. Diapocynin, a dimer of the NADPH oxidase inhibitor apocynin, reduces ROS production and prevents force loss in eccentrically contracting dystrophic muscle.

    Directory of Open Access Journals (Sweden)

    Hesham M Ismail

    Full Text Available Elevation of intracellular Ca2+, excessive ROS production and increased phospholipase A2 activity contribute to the pathology in dystrophin-deficient muscle. Moreover, Ca2+, ROS and phospholipase A2, in particular iPLA2, are thought to potentiate each other in positive feedback loops. NADPH oxidases (NOX have been considered as a major source of ROS in muscle and have been reported to be overexpressed in muscles of mdx mice. We report here on our investigations regarding the effect of diapocynin, a dimer of the commonly used NOX inhibitor apocynin, on the activity of iPLA2, Ca2+ handling and ROS generation in dystrophic myotubes. We also examined the effects of diapocynin on force production and recovery ability of isolated EDL muscles exposed to eccentric contractions in vitro, a damaging procedure to which dystrophic muscle is extremely sensitive. In dystrophic myotubes, diapocynin inhibited ROS production, abolished iPLA2 activity and reduced Ca2+ influx through stretch-activated and store-operated channels, two major pathways responsible for excessive Ca2+ entry in dystrophic muscle. Diapocynin also prevented force loss induced by eccentric contractions of mdx muscle close to the value of wild-type muscle and reduced membrane damage as seen by Procion orange dye uptake. These findings support the central role played by NOX-ROS in the pathogenic cascade leading to muscular dystrophy and suggest diapocynin as an effective NOX inhibitor that might be helpful for future therapeutic approaches.

  6. Natural products as starting materials for development of second-generation SERCA inhibitors targeted towards prostate cancer cells

    DEFF Research Database (Denmark)

    Nissen, Poul; Jensen, Anne-Marie Lund; Møller, Jesper Vuust

    2006-01-01

    An analysis of the binding of the 8-O-N-tert-butoxycarbonyl-12-aminododecanoyl derivative of 8-O-debutanoylthapsigargin to the target molecule, the SERCA pump, has revealed the importance of the length and flexibility of the side chain attached to O-8. Based on the analysis a series of analogues ...... to the 2-unsubstituted analogue trilobolide has been constructed and shown to be equipotent with thapsigargin as SERCA inhibitors. Only the 12-Boc-aminododecaonoyl derivative, however, was found to be apoptotic...

  7. Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor.

    Science.gov (United States)

    Vasanthakumari, M M; Jadhav, S S; Sachin, Naik; Vinod, G; Shweta, Singh; Manjunatha, B L; Kumara, P Mohana; Ravikanth, G; Nataraja, Karaba N; Uma Shaanker, R

    2015-10-01

    Fungal endophytes inhabit living tissues of plants without any apparent symptoms and in many cases are known to produce secondary metabolites similar to those produced by their respective host plants. However on sub-culture, the endophytic fungi gradually attenuate their ability to produce the metabolites. Attenuation has been a major constraint in realizing the potential of endophytic fungi as an alternative source of plant secondary metabolites. In this study, we report attempts to restore camptothecine (CPT) production in attenuated endophytic fungi isolated from CPT producing plants, Nothapodytes nimmoniana and Miquelia dentata when they are passed through their host plant or plants that produce CPT and when treated with a DNA methyl transferase inhibitor. Attenuated endophytic fungi that traversed through their host tissue or plants capable of synthesizing CPT, produced significantly higher CPT compared to the attenuated fungi. Attenuated fungus cultured in the presence of 5-azacytidine, a DNA methyltransferase inhibitor, had an enhanced CPT content compared to untreated attenuated fungus. These results indicate that the attenuation of CPT production in endophytic fungi could in principle be reversed by eliciting some signals from plant tissue, most likely that which prevents the methylation or silencing of the genes responsible for CPT biosynthesis.

  8. Use of resources and costs associated with the treatment of Dupuytren’s contracture at an orthopedics and traumatology surgery department in Denia (Spain): collagenase clostridium hystolyticum versus subtotal fasciectomy

    Science.gov (United States)

    2013-01-01

    Background Our purpose was to analyze and compare the use of direct health resources and costs generated in the treatment of Dupuytren's contracture using two different techniques: subtotal fasciectomy and infiltration with Collagenase Clostridium Histolyticum (CCH) in regular clinical practice at the Orthopedic and Traumatology Surgery (OTS) Department at the Hospital de Denia (Spain). Methods Observational, retrospective study based on data from the computerized clinical histories of two groups of patients- those treated surgically using a one or two digit subtotal fasciectomy technique (FSC) and those treated with CCH infiltration, monitored in regular clinical practice from February, 2009 to May, 2012. Demographic (age, sex), clinical (number of digits affected and which ones) and use of resources (hospitalizations, medical visits, tests and drugs) data were collected. Resource use and associated costs, according to the hospital’s accounting department, were compared based on the type of treatment from Spain’s National Health Service. Results 91 patients (48 (52.8%) in the FSC group) were identified. The average age and number of digits affected was 65.9 (9.2) years and 1.33 (0.48) digits affected in the FSC group, and 65.1 (9.7) years and 1.16 (0.4) digits in the CCH group. Overall, the costs of treating Dupuytren's disease with subtotal FSC amount to €1,814 for major ambulatory surgery and €1,961 with hospital stay including admission, surgical intervention (€904), examinations, dressings and physiotherapy. As to collagenase infiltration, costs amount to €952 (including minor surgery admission, vial with product, office examination and dressings). Finally, comparing total costs for treatments, a savings of €388 is estimated in favor of CCH treatment in the best-case scenario (patient under MAS system with no need for physiotherapy) and €1,008 in the worst-case scenario (patient admitted to hospital needing subsequent physiotherapy), implying a

  9. Expression and activity of collagenases in the digital laminae of horses with carbohydrate overload-induced acute laminitis.

    Science.gov (United States)

    Wang, L; Pawlak, E A; Johnson, P J; Belknap, J K; Alfandari, D; Black, S J

    2014-01-01

    Matrix metalloproteinases (MMP) are hypothesized to degrade structurally important components of the laminar extracellular matrix (ECM) in horses with laminitis. To compare levels of expression of stromelysin-1 (MMP-3), collagenases (MMP-1, -13), and membrane type-MMPs (MMP-14, -15, -16), and the distribution of their ECM substrates, in laminae of healthy horses and horses with carbohydrate overload laminitis. Twenty-five adult horses. Gene and protein expression were determined in extracts of laminae using real-time quantitative polymerase chain reaction and Western blotting after sodium dodecylsulfate polyacrylamide gel electrophoresis. Distribution of MMP-13 and ECM components was determined using indirect immunofluorescent microscopy of nonfixed frozen sections. ECM morphology was assessed by hematoxylin and eosin staining. Of the genes studied, only those encoding MMP-1 and -13 were upregulated in CHO-induced laminitis; MMP-1 at Obel grade (OG)1 lameness and MMP-13 at OG3 lameness. Laminar MMP-1 was present as 52 kDa proenzyme only. MMP-13 was present as pro- (61 kDa) and processed (48 kDa) enzyme. MMP-13 localized to the basal epithelium of the secondary epidermal laminae and its increased expression were accompanied by the appearance in secondary dermal laminae (SDL) of multiple foci that were devoid of collagen I, fibronectin, chondroitin and keratan sulfate glycosaminoglycans, and eosin-staining material. MMP-13 is upregulated in laminae of horses with CHO-induced OG3 lameness and, by degrading components of the ECM, may contribute to the formation of ECM-free lesions (gaps or tears) that appear in the SDL with OG3 lameness. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  10. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Luyuan Li

    Full Text Available Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2 were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas.

  11. The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Agnieszka E. Laudy

    2017-01-01

    Full Text Available The potential role of non-antibiotic medicinal products in the treatment of multidrug-resistant Gram-negative bacteria has recently been investigated. It is highly likely that the presence of efflux pumps may be one of the reasons for the weak activity of non-antibiotics, as in the case of some non-steroidal anti-inflammatory drugs (NSAIDs, against Gram-negative rods. The activity of eight drugs of potential non-antibiotic activity, active substance standards, and relevant medicinal products were analysed with and without of efflux pump inhibitors against 180 strains of five Gram-negative rod species by minimum inhibitory concentration (MIC value determination in the presence of 1 mM MgSO4. Furthermore, the influence of non-antibiotics on the susceptibility of clinical strains to quinolones with or without PAβN (Phe-Arg-β-naphthylamide was investigated. The impacts of PAβN on the susceptibility of bacteria to non-antibiotics suggests that amitriptyline, alendronate, nicergoline, and ticlopidine are substrates of efflux pumps in Gram-negative rods. Amitriptyline/Amitriptylinum showed the highest direct antibacterial activity, with MICs ranging 100–800 mg/L against all studied species. Significant decreases in the MIC values of other active substances (acyclovir, atorvastatin, and famotidine tested with pump inhibitors were not observed. The investigated non-antibiotic medicinal products did not alter the MICs of quinolones in the absence and in the presence of PAβN to the studied clinical strains of five groups of species.

  12. Calcium-protein interactions in the extracellular environment: calcium binding, activation, and immunolocalization of a collagenase/gelatinase activity expressed in the sea urchin embryo.

    Science.gov (United States)

    Mayne, J; Robinson, J J

    1998-12-15

    We have purified and characterized a collagenase/gelatinase activity expressed during sea urchin embryonic development. The native molecular mass was determined to be 160 kDa, while gelatin substrate gel zymography revealed an active species of 41 kDa, suggesting that the native enzyme is a tetramer of active subunits. Incubation in the presence of EGTA resulted in nearly complete loss of activity and this effect could be reversed by calcium. Calcium-induced reactivation appeared to be cooperative and occurred with an apparent kd value of 3.7 mM. Two modes of calcium binding to the 41-kDa subunit were detected; up to 80 moles of calcium bound with a kd value of 0.5 mM, while an additional 120 moles bound with a kd value of 5 mM. Amino acid analysis revealed a carboxy plus carboxyamide content of 24.3 mol/100 mol, indicating the availability of substantial numbers of weak Ca2+-binding sites. Calcium binding did not result in either secondary or quaternary structural changes in the collagenase/gelatinase, suggesting that Ca2+ may facilitate activation through directly mediating the binding of substrate to the enzyme. The collagenase/gelatinase activity was detected in blastocoelic fluid and in the hyalin fraction dissociated from 1-h-old embryos. Immunolocalization studies revealed two storage compartments in the egg; cortical granules and small granules/vesicles dispersed throughout the cytoplasm. After fertilization, the antigen was detected in both the apical and basal extracellular matrices, the hyaline layer, and basal lamina, respectively.

  13. Use of collagenase ointment in conjunction with negative pressure wound therapy in the care of diabetic wounds: a case series of six patients

    Directory of Open Access Journals (Sweden)

    John D. Miller

    2015-01-01

    Full Text Available Background: Diabetic wounds with additional comorbidities are costly, time intensive, and difficult to heal. Often, multiple modalities may be necessary to achieve wound resolution, relying on the synergistic advantage of each therapy to affect wound healing. The selectivity of Clostridium collagenase is physiologically effective at degrading non-viable collagen fibers while preserving living collagen tissue. Additionally, negative pressure wound therapy (NPWT has long been used to aid wound healing while concurrently depreciating biological wound burden time. Methods: Six patients were selected from those appearing to our university based limb salvage service. Inclusion criteria included patients with a recurrent mixed fibrotic and granular wound base, in which NPWT was indicated, without exclusion criteria. Patients enrolled were administered clostridial collagenase ointment at each regularly scheduled NPWT dressing change. Patients were followed until healing, with visual representations of wound progression and time to full healing recorded. Results: Tandem application of these therapies appeared to expedite wound healing by clearing degenerative fibrous tissue and expediting wound granulation without additional complication. Unfortunately, not all patients were able to reach full healing; with two patients experiencing ulcer recurrence, likely a result of their significant comorbid nature. Conclusion: In our experience, we have noticed a specific subgroup of patients who benefit greatly when collagenase enzymatic debridement therapy is combined with NPWT. It is our belief that this combination therapy combines the molecular clearing of non-viable collagen with the wound granulation necessary to advance complex wounds to the next step in healing despite the current paucity in literature discussing this specific pairing.

  14. Cartilage Protective and Chondrogenic Capacity of WIN-34B, a New Herbal Agent, in the Collagenase-Induced Osteoarthritis Rabbit Model and in Progenitor Cells from Subchondral Bone

    Directory of Open Access Journals (Sweden)

    Jeong-Eun Huh

    2013-01-01

    Full Text Available We sought to determine the cartilage repair capacity of WIN-34B in the collagenase-induced osteoarthritis rabbit model and in progenitor cells from subchondral bone. The cartilage protective effect of WIN-34B was measured by clinical and histological scores, cartilage area, and proteoglycan and collagen contents in the collagenase-induced osteoarthritis rabbit model. The efficacy of chondrogenic differentiation of WIN-34B was assessed by expression of CD105, CD73, type II collagen, and aggrecan in vivo and was analyzed by the surface markers of progenitor cells, the mRNA levels of chondrogenic marker genes, and the level of proteoglycan, GAG, and type II collagen in vitro. Oral administration of WIN-34B significantly increased cartilage area, and this was associated with the recovery of proteoglycan and collagen content. Moreover, WIN-34B at 200 mg/kg significantly increased the expression of CD105, CD73, type II collagen, and aggrecan compared to the vehicle group. WIN-34B markedly enhanced the chondrogenic differentiation of CD105 and type II collagen in the progenitor cells from subchondral bone. Also, we confirmed that treatment with WIN-34B strongly increased the number of SH-2(CD105 cells and expression type II collagen in subchondral progenitor cells. Moreover, WIN-34B significantly increased proteoglycan, as measured by alcian blue staining; the mRNA level of type II α1 collagen, cartilage link protein, and aggrecan; and the inhibition of cartilage matrix molecules, such as GAG and type II collagen, in IL-1β-treated progenitor cells. These findings suggest that WIN-34B could be a potential candidate for effective anti-osteoarthritic therapy with cartilage repair as well as cartilage protection via enhancement of chondrogenic differentiation in the collagenase-induced osteoarthritis rabbit model and progenitor cells from subchondral bone.

  15. Natural Products from Microalgae with Potential against Alzheimer’s Disease: Sulfolipids Are Potent Glutaminyl Cyclase Inhibitors

    Directory of Open Access Journals (Sweden)

    Stephanie Hielscher-Michael

    2016-11-01

    Full Text Available In recent years, many new enzymes, like glutaminyl cyclase (QC, could be associated with pathophysiological processes and represent targets for many diseases, so that enzyme-inhibiting properties of natural substances are becoming increasingly important. In different studies, the pathophysiology connection of QC to various diseases including Alzheimer’s disease (AD was described. Algae are known for the ability to synthesize complex and highly-diverse compounds with specific enzyme inhibition properties. Therefore, we screened different algae species for the presence of QC inhibiting metabolites using a new “Reverse Metabolomics” technique including an Activity-correlation Analysis (AcorA, which is based on the correlation of bioactivities to mass spectral data with the aid of mathematic informatics deconvolution. Thus, three QC inhibiting compounds from microalgae belonging to the family of sulfolipids were identified. The compounds showed a QC inhibition of 81% and 76% at concentrations of 0.25 mg/mL and 0.025 mg/mL, respectively. Thus, for the first time, sulfolipids are identified as QC inhibiting compounds and possess substructures with the required pharmacophore qualities. They represent a new lead structure for QC inhibitors.

  16. Estrogens, selective estrogen receptor modulators, and a selective estrogen receptor down-regulator inhibit endothelial production of tissue factor pathway inhibitor 1

    Directory of Open Access Journals (Sweden)

    Ree Anne

    2006-10-01

    Full Text Available Abstract Background Hormone therapy, oral contraceptives, and tamoxifen increase the risk of thrombotic disease. These compounds also reduce plasma content of tissue factor pathway inhibitor-1 (TFPI, which is the physiological inhibitor of the tissue factor pathway of coagulation. The current aim was to study if estrogens and estrogen receptor (ER modulators may inhibit TFPI production in cultured endothelial cells and, if so, identify possible mechanisms involved. Methods Human endothelial cell cultures were treated with 17β-estradiol (E2, 17α-ethinylestradiol (EE2, tamoxifen, raloxifene, or fulvestrant. Protein levels of TFPI in cell media and cell lysates were measured by an enzyme-linked immunosorbent assay, and TFPI mRNA levels were assessed by quantitative PCR. Expression of ERα was analysed by immunostaining. Results All compounds (each in a concentration of 10 nM reduced TFPI in cell medium, by 34% (E2, 21% (EE2, 16% (tamoxifen, and 28% (raloxifene, respectively, with identical inhibitory effects on cellular TFPI levels. Expression of TFPI mRNA was principally unchanged. Treatment with fulvestrant, which was also associated with down-regulation of secreted TFPI (9% with 10 nM and 26% with 1000 nM, abolished the TFPI-inhibiting effect of raloxifene, but not of the other compounds. Notably, the combination of 1000 nM fulvestrant and 10 nM raloxifene increased TFPI secretion, and, conversely, 10 nM of either tamoxifen or raloxifene seemed to partly (tamoxifen or fully (raloxifene counteract the inhibitory effect of 1000 nM fulvestrant. The cells did not express the regular nuclear 66 kDa ERα, but instead a 45 kDa ERα, which was not regulated by estrogens or ER modulators. Conclusion E2, EE2, tamoxifen, raloxifene, and fulvestrant inhibited endothelial production of TFPI by a mechanism apparently independent of TFPI transcription.

  17. A Moraxella catarrhalis Two-Component Signal Transduction System Necessary for Growth in Liquid Media Affects Production of Two Lysozyme Inhibitors

    Science.gov (United States)

    Joslin, Stephanie N.; Pybus, Christine; Labandeira-Rey, Maria; Evans, Amanda S.; Attia, Ahmed S.; Brautigam, Chad A.

    2014-01-01

    There are a paucity of data concerning gene products that could contribute to the ability of Moraxella catarrhalis to colonize the human nasopharynx. Inactivation of a gene (mesR) encoding a predicted response regulator of a two-component signal transduction system in M. catarrhalis yielded a mutant unable to grow in liquid media. This mesR mutant also exhibited increased sensitivity to certain stressors, including polymyxin B, SDS, and hydrogen peroxide. Inactivation of the gene (mesS) encoding the predicted cognate sensor (histidine) kinase yielded a mutant with the same inability to grow in liquid media as the mesR mutant. DNA microarray and real-time reverse transcriptase PCR analyses indicated that several genes previously shown to be involved in the ability of M. catarrhalis to persist in the chinchilla nasopharynx were upregulated in the mesR mutant. Two other open reading frames upregulated in the mesR mutant were shown to encode small proteins (LipA and LipB) that had amino acid sequence homology to bacterial adhesins and structural homology to bacterial lysozyme inhibitors. Inactivation of both lipA and lipB did not affect the ability of M. catarrhalis O35E to attach to a human bronchial epithelial cell line in vitro. Purified recombinant LipA and LipB fusion proteins were each shown to inhibit human lysozyme activity in vitro and in saliva. A lipA lipB deletion mutant was more sensitive than the wild-type parent strain to killing by human lysozyme in the presence of human apolactoferrin. This is the first report of the production of lysozyme inhibitors by M. catarrhalis. PMID:25312959

  18. Treatment of Dupuytren’s contracture with collagenase clostridium histolyticum under clinical practice conditions: ReDUCTo study

    Directory of Open Access Journals (Sweden)

    Haerle, Max

    2015-08-01

    Full Text Available Background: To date, real-life data on non-surgical correction of Dupuytren’s contracture with collagenase clostridium histolyticum injection (CCH, Xiapex are limited. Methods and results: In an open-label non-interventional study in in Germany (mean age 65.1±9.8 years, 79.3% males, patients were followed up until 1 year after injection. 63 (73.3% received the injection at the MCP joint, and 23 (26.7% at the PIP. The mean grade of contracture in the presently treated finger at baseline was for the MCP joint 32.4°±25.1, for the PIP° 29.2±31.5, and for the DIP° 0.5±2.0. At days 30/360 compared to baseline, the degree of contracture of the MCP joint was reduced by 28.2°±24.6/30.8°±25.0, of the PIP by 20.0°±24.7/8.5°±29.6, and of the DIP by 0.01°±1.9/0.7±2.3. Improvement of hand function at day 30/360 was rated by physicians as very good in 69.5/60.9%, as good in 23.2/28.3%, and as poor in 7.3/8.7%, and none in 0.0/2.2%. No serious adverse drug reactions (SADR occurred. Adverse drug reactions (ADR were noted within injection in 64 patients (74.4%, mostly contusion/swelling, pain, blood blister or other bleeding at the injection site, or ecchymosis. In an overall assessment, at day 30/360, 73.5%/95.7% of the physicians rated tolerability of CCH in their patients as very good, 22.9%/2.2% as good, and 3.6%/2.2% as moderate. On the EQ-5D Visual Analog Scale the mean score improved from 79.5±17.9 to 83.8±15.8 at day 30, and to 85.4±14.1 at day 360. On the Michigan Hand Questionnaire, the total score was 67.5 points at baseline, at day 30 and 75.2 points at day 360.Conclusions: Overall, treatment with CCH under clinical practice conditions was effective and well tolerated. Quality of life and hand function improved substantially. No unknown safety issues were identified during the study.

  19. Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease.

    Science.gov (United States)

    Fleisher, Adam S; Raman, Rema; Siemers, Eric R; Becerra, Lida; Clark, Christopher M; Dean, Robert A; Farlow, Martin R; Galvin, James E; Peskind, Elaine R; Quinn, Joseph F; Sherzai, Abdullah; Sowell, B Brooke; Aisen, Paul S; Thal, Leon J

    2008-08-01

    To evaluate the safety, tolerability, and amyloid beta (Abeta) response to the gamma-secretase inhibitor LY450139 in Alzheimer disease. Multicenter, randomized, double-blind, dose-escalation, placebo-controlled trial. Community-based clinical research centers. Patients Fifty-one individuals with mild to moderate Alzheimer disease were randomized to receive placebo (n=15) or LY450139 (100 mg [n=22] or 140 mg [n=14]), with 43 completing the treatment phase. Intervention The LY450139 groups received 60 mg/d for 2 weeks, then 100 mg/d for 6 weeks, and then either 100 or 140 mg/d for 6 additional weeks. Primary outcome measures were adverse events, plasma and cerebrospinal fluid Abeta levels, vital signs, electrocardiographic data, and laboratory safety test results. Secondary outcome measures included the Alzheimer's Disease Assessment Scale cognitive subscale and the Alzheimer's Disease Cooperative Study Activities of Daily Living Scale. Group differences were seen in skin and subcutaneous tissue concerns (P=.05), including 3 possible drug rashes and 3 reports of hair color change in the treatment groups. There were 3 adverse event-related discontinuations, including 1 transient bowel obstruction. The plasma Abeta(40) concentration was reduced by 58.2% for the 100-mg group and 64.6% for the 140-mg group (P<.001). No significant reduction was seen in cerebrospinal fluid Abeta levels. No group differences were seen in cognitive or functional measures. LY450139 was generally well tolerated at doses of up to 140 mg/d for 14 weeks, with several findings indicating the need for close clinical monitoring in future studies. Decreases in plasma Abeta concentrations were consistent with inhibition of gamma-secretase. Trial Registration clinicaltrials.gov Identifier: NCT00244322.

  20. Phase II safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer's disease

    Science.gov (United States)

    Fleisher, Adam S.; Raman, Rema; Siemers, Eric R.; Becerra, Lida; Clark, Christopher M.; Dean, Robert A; Farlow, Martin R.; Galvin, James E.; Peskind, Elaine R.; Quinn, Joseph F.; Sherzai, Abdullah; Sowell, B. Brooke; Aisen, Paul S.; Thal, Leon J.

    2009-01-01

    Objective Evaluate the safety, tolerability and amyloid beta (Aβ) response to a γ-secretase inhibitor (LY450139) in Alzheimer's disease. Design Multi-center, randomized, double-blind, dose-escalation, placebo-controlled trial. Setting Community based clinical research centers. Participants 51 participants with mild to moderate AD were randomized (placebo=15, 100mg=22, 140mg=14), with 43 completing the treatment phase. Intervention Subjects randomized to LY450139 received 60mg daily for 2 weeks followed by 100mg for 6 weeks, then re-randomized to 100mg or 140mg for 6 additional weeks. Main Outcome Measures Primary outcome measures consisted of adverse events, plasma and cerebrospinal fluid Aβ levels, vital signs, electrocardiogram data, and laboratory safety tests. Secondary outcome measures included the ADAS-cognitive subscale and the ADCS-Activities of Daily Living scale. Results Group differences were seen in “skin and subcutaneous tissue” complaints (p=0.052). These included 3 possible drug rashes and 3 reports of hair color change in the treatment groups. There were 3 adverse-event-related discontinuations, including one report of transient bowel obstruction. Plasma Aβ40 was reduced by 58.2% for the 100mg group and 64.6% for the 140mg group (P<0.001). No significant reduction was seen in CSF Aβ. No group differences were seen in cognitive or functional measures. Conclusions LY450139 was generally well tolerated at doses of up to 140mg taken daily for 14 weeks with several findings indicating the need for close clinical monitoring in future studies. Decreases in plasma Aβ concentrations were consistent with inhibition of γ-secretase. PMID:18695053

  1. Imbalance between HAT and HDAC activities in the PBMCs of patients with ankylosing spondylitis or rheumatoid arthritis and influence of HDAC inhibitors on TNF alpha production.

    Directory of Open Access Journals (Sweden)

    Eric Toussirot

    Full Text Available OBJECTIVE: Acetylation or deacetylation of histone proteins may modulate cytokine gene transcription such as TNF alpha (TNF. We evaluated the balance between histone deacetytlase (HDAC and histone acetyltransferase (HAT in patients with rheumatoid arthritis (RA or ankylosing spondylitis (AS compared to healthy controls (HC and determined the influence of HDAC inhibitors (trichostatin A -TSA- or Sirtinol -Sirt- on these enzymatic activities and on the PBMC production of TNF. METHODS: 52 patients with RA, 21 with AS and 38 HC were evaluated. HAT and HDAC activities were measured on nuclear extracts from PBMC using colorimetric assays. Enzymatic activities were determined prior to and after ex vivo treatment of PBMC by TSA or Sirt. TNF levels were evaluated in PBMC culture supernatants in the absence or presence of TSA or Sirt. RESULTS: HAT and HDAC activities were significantly reduced in AS, while these activities reached similar levels in RA and HC. Ex vivo treatment of PBMC by HDACi tended to decrease HDAC expression in HC, but Sirt significantly reduced HAT in RA. TNF production by PBMC was significantly down-regulated by Sirt in HC and AS patients. CONCLUSION: HAT and HDAC were disturbed in AS while no major changes were found in RA. HDACi may modulate HDAC and HAT PBMC expression, especially Sirt in RA. Sirtinol was able to down regulate TNF production by PBMC in HC and AS. An imbalance between HAT and HDAC activities might provide the rationale for the development of HDACi in the therapeutic approach to inflammatory rheumatic diseases.

  2. Upregulated ROS production induced by the proteasome inhibitor MG-132 on XBP1 gene expression and cell apoptosis in Tca-8113 cells.

    Science.gov (United States)

    Chen, Hai-ying; Ren, Xiao-yan; Wang, Wei-hua; Zhang, Ying-xin; Chen, Shuang-feng; Zhang, Bin; Wang, Le-xin

    2014-07-01

    Exposure of Tca-8113 cells to proteasome inhibitor carbobenzoxy-Leu-Leu-leucinal (MG-132) causing apoptosis is associated with endoplasmic reticulum (ER) stress. X-box-binding protein-1 (XBP1) is an important regulator of a subset of genes active during ER stress, which is related to cell survival and is required for tumor growth. The present study is to evaluate the effect of MG-132 on ROS production, XBP1 gene expression, tumor necrosis factor receptor-associated factor 2 (TRAF2), ASK1 and c-jun protein expression in tongue squamous cell carcinoma cell line Tca-8113 cells. ROS production was measured by reactive oxygen species assay. X-box binding protein-1 (XBP1) mRNA was analyzed by real-time-PCR, TRAF2, ASK1 and c-jun protein were investigated by western blot and immunocytochemistry respectively. The result indicated that ROS production, TRAF2, ASK1 and c-jun were elevated in MG-132 treated cells. Giving ROS scavenger N-acetyl-L-cysteine (NAC) largely prevented the effects of MG-132. Furthermore, treating with MG-132 lead to decreased XBP1 mRNA expression but could not completely block the expression of XBP1. Taken together, these findings provide the evidence that MG-132 induced ER stress lead to Tca-8113 cells apoptosis through ROS generation and TRAF2-ASK1-JNK signal pathway activation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Oenema, O.; Laanbroek, H.J.

    2004-01-01

    Autotrophic ammonia-oxidizing bacteria produce nitrous oxide (N2O) as a by-product of nitrification or as an intermediate of nitrifier denitrification. In soil incubations, acetylene (C2H2) and large partial pressures of oxygen (O-2) are used to distinguish between these sources. C2H2 inhibits

  4. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Oenema, O.; Laanbroek, H.J.

    2004-01-01

    Autotrophic ammonia-oxidizing bacteria produce nitrous oxide (N2O) as a by-product of nitrification or as an intermediate of nitrifier denitrification. In soil incubations, acetylene (C2H2) and large partial pressures of oxygen (O2) are used to distinguish between these sources. C2H2 inhibits

  5. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas euroepaea and Nitrosospir briensis: a cautionary tale

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Oenema, O.; Laanbroek, H.J.

    2004-01-01

    Autotrophic ammonia-oxidizing bacteria produce nitrous oxide (N2O) as a by-product of nitrification or as an intermediate of nitrifier denitrification. In soil incubations, acetylene (C2H2) and large partial pressures of oxygen (O2) are used to distinguish between these sources. C2H2 inhibits

  6. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Olsson, Lisbeth; Thomsen, A.B.

    2003-01-01

    M), it was shown that syringaldehyde and acetovanillone interacted negatively with hydrolysate components on the ethanol productivity. Fermentation in WO hydrolysate, that had been concentrated 6 times by freeze-drying, lasted 4 hours longer than in regular hydrolysate; however, the ethanol yield was the same...

  7. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis.

    Science.gov (United States)

    Wang, Hengwei; Li, Lijuan; Zhang, Lebin; An, Jin; Cheng, Hairong; Deng, Zixin

    2016-05-16

    The process of industrial xylitol production is a massive source of organic pollutants, such as waste xylose mother liquor (WXML), a viscous reddish-brown liquid. Currently, WXML is difficult to reuse due to its miscellaneous low-cost sugars, high content of inhibitors and complex composition. WXML, as an organic pollutant of hemicellulosic hydrolysates, accumulates and has become an issue of industrial concern in China. Previous studies have focused only on the catalysis of xylose in the hydrolysates into xylitol using one strain, without considering the removal of other miscellaneous sugars, thus creating an obstacle to subsequent large-scale purification. In the present study, we aimed to develop a simple one-pot biotransformation to produce high-purity xylitol from WXML to improve its economic value. In the present study, we developed a procedure to produce xylitol from WXML, which combines detoxification, biotransformation and removal of by-product sugars (purification) in one bioreactor using two complementary strains, Candida tropicalis X828 and Bacillus subtilis Bs12. At the first stage of micro-aerobic biotransformation, the yeast cells were allowed to grow and metabolized glucose and the inhibitors furfural and hydroxymethyl furfural (HMF), and converted xylose into xylitol. At the second stage of aerobic biotransformation, B. subtilis Bs12 was activated and depleted the by-product sugars. The one-pot process was successfully scaled up from shake flasks to 5, 150 L and 30 m(3) bioreactors. Approximately 95 g/L of pure xylitol could be obtained from the medium containing 400 g/L of WXML at a yield of 0.75 g/g xylose consumed, and the by-product sugars glucose, L-arabinose and galactose were depleted simultaneously. Our results demonstrate that the one-pot procedure is a viable option for the industrial application of WXML to produce value-added chemicals. The integration of complementary strains in the biotransformation of hemicellulosic hydrolysates is

  8. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail: chidkim@pusan.ac.kr

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  9. Fluorocitrate, an inhibitor of glial metabolism, inhibits the up-regulation of NOS expression, activity and NO production in the spinal cord induced by formalin test in rats.

    Science.gov (United States)

    Sun, Xiao-Cai; Chen, Wei-Na; Li, Shu-Qin; Cai, Jin-Song; Li, Wen-Bin; Xian, Xiao-Hui; Hu, Yu-Yan; Zhang, Min; Li, Qing-Jun

    2009-02-01

    Previous experiments have suggested that nitric oxide plays an important role in nociceptive transmission in the spinal cord. In order to explore the involvement of glia in the NO-mediated nociceptive transmission, the present study was undertaken to investigate the effect of fluorocitrate (FC), an inhibitor of glial metabolism, on NOS expression and activity and NO production in the spinal cord during the process of peripheral inflammatory pain and hyperalgesia induced by formalin test in rats. Sixty adult male Sprague-Dawley rats were randomly assigned into sham, formalin, formalin + normal saline (NS), and formalin + FC groups. The NOS expression, NOS activity and NO production was detected by NADPH-d histochemistry staining, NOS and NO assay kit, respectively. It was found that formalin test significantly up-regulated NOS expression and activity and NO production in the laminae I-II of the dorsal horn and the grey matter around the central canal in the lumbar spinal cord at 1 h after the formalin test. Selective inhibition of glia metabolism with intrathecal administration of FC (1 nmol) significantly inhibited the up-regulation in NOS expression and activity and NO production normally induced by the formalin test, which was represented with decreases in the number and density of the NADPH-d positive cells in the dorsal horn and grey matter around the central canal, and decrease in density of NADPH-d positive neuropil in the dorsal horn in formalin + FC group compared with formalin group. The results suggested that glia may be involved in the NO-mediated nociceptive transmission in the spinal cord.

  10. Anti-tubercular screening of natural products from Colombian plants: 3-methoxynordomesticine, an inhibitor of MurE ligase of Mycobacterium tuberculosis.

    Science.gov (United States)

    Guzman, Juan D; Gupta, Antima; Evangelopoulos, Dimitrios; Basavannacharya, Chandrakala; Pabon, Ludy C; Plazas, Erika A; Muñoz, Diego R; Delgado, Wilman A; Cuca, Luis E; Ribon, Wellman; Gibbons, Simon; Bhakta, Sanjib

    2010-10-01

    New anti-mycobacterial entities with novel mechanisms of action are clinically needed for treating resistant forms of tuberculosis. The purpose of this study was to evaluate anti-tubercular activity and selectivity of seven recently isolated natural products from Colombian plants. MICs were determined using a liquid medium growth inhibition assay for Mycobacterium tuberculosis H(37)Rv and both solid and liquid media growth inhibition assays for Mycobacterium bovis BCG. Escherichia coli growth inhibition and mammalian macrophage cell toxicity were evaluated to establish the degree of selectivity of the natural product against whole cell organisms. Enzymatic inhibition of ATP-dependent MurE ligase from M. tuberculosis was assayed using a colorimetric phosphate detection method. The most active compound, 3-methoxynordomesticine hydrochloride, was further investigated on M. bovis BCG for its inhibition of sigmoidal growth, acid-fast staining and viability counting analysis. Aporphine alkaloids were found to be potent inhibitors of slow-growing mycobacterial pathogens showing favourable selectivity and cytotoxicity. In terms of their endogenous action, the aporphine alkaloids were found inhibitory to M. tuberculosis ATP-dependent MurE ligase at micromolar concentrations. A significantly low MIC was detected for 3-methoxynordomesticine hydrochloride against both M. bovis BCG and M. tuberculosis H(37)Rv. Considering all the data, 3-methoxynordomesticine hydrochloride was found to be a potent anti-tubercular compound with a favourable specificity profile. The alkaloid showed MurE inhibition and is considered an initial hit for exploring related chemical space.

  11. Lack of a Functional VHL Gene Product Sensitizes Renal Cell Carcinoma Cells to the Apoptotic Effects of the Protein Synthesis Inhibitor Verrucarin A

    Directory of Open Access Journals (Sweden)

    Girma M. Woldemichael

    2012-08-01

    Full Text Available Verrucarin A (VA is a small molecule derived from the fungal plant pathogen Myrothecium verrucaria and was identified as a selective inhibitor of clear cell renal cell carcinoma (CCRCC cell proliferation in a high-throughput screen of a library of naturally occurring small molecules. CCRCC arises as a result of loss-of-function mutations in the von Hippel-Lindau (VHL gene. Here we show that VA inhibits protein translation initiation culminating in apoptosis through the extrinsic signaling pathway. Reintroduction of the VHL gene in CCRCC cells afforded resistance to VA's apoptotic effects. This resistance is mediated in part by the formation of stress granules that entrap signaling molecules that initiate the apoptotic signaling cascade. The VHL gene product was found to be a component of stress granules that develop as result of VA treatment. These findings reveal an important role for the VHL gene product in cytotoxic stress response and have important implications for the rational development of VA-related compounds in chemotherapeutic targeting of CCRCC.

  12. Lack of a functional VHL gene product sensitizes renal cell carcinoma cells to the apoptotic effects of the protein synthesis inhibitor verrucarin A.

    Science.gov (United States)

    Woldemichael, Girma M; Turbyville, Thomas J; Vasselli, James R; Linehan, W Marston; McMahon, James B

    2012-08-01

    Verrucarin A (VA) is a small molecule derived from the fungal plant pathogen Myrothecium verrucaria and was identified as a selective inhibitor of clear cell renal cell carcinoma (CCRCC) cell proliferation in a high-throughput screen of a library of naturally occurring small molecules. CCRCC arises as a result of loss-of-function mutations in the von Hippel-Lindau (VHL) gene. Here we show that VA inhibits protein translation initiation culminating in apoptosis through the extrinsic signaling pathway. Reintroduction of the VHL gene in CCRCC cells afforded resistance to VA's apoptotic effects. This resistance is mediated in part by the formation of stress granules that entrap signaling molecules that initiate the apoptotic signaling cascade. The VHL gene product was found to be a component of stress granules that develop as result of VA treatment. These findings reveal an important role for the VHL gene product in cytotoxic stress response and have important implications for the rational development of VA-related compounds in chemotherapeutic targeting of CCRCC.

  13. Lack of a Functional VHL Gene Product Sensitizes Renal Cell Carcinoma Cells to the Apoptotic Effects of the Protein Synthesis Inhibitor Verrucarin A12

    Science.gov (United States)

    Woldemichael, Girma M; Turbyville, Thomas J; Vasselli, James R; Linehan, W Marston; McMahon, James B

    2012-01-01

    Verrucarin A (VA) is a small molecule derived from the fungal plant pathogen Myrothecium verrucaria and was identified as a selective inhibitor of clear cell renal cell carcinoma (CCRCC) cell proliferation in a high-throughput screen of a library of naturally occurring small molecules. CCRCC arises as a result of loss-of-function mutations in the von Hippel-Lindau (VHL) gene. Here we show that VA inhibits protein translation initiation culminating in apoptosis through the extrinsic signaling pathway. Reintroduction of the VHL gene in CCRCC cells afforded resistance to VA's apoptotic effects. This resistance is mediated in part by the formation of stress granules that entrap signaling molecules that initiate the apoptotic signaling cascade. The VHL gene product was found to be a component of stress granules that develop as result of VA treatment. These findings reveal an important role for the VHL gene product in cytotoxic stress response and have important implications for the rational development of VA-related compounds in chemotherapeutic targeting of CCRCC. PMID:22952429

  14. Monocyte intracellular cytokine production during human endotoxaemia with or without a second in vitro LPS challenge : effect of RWJ-67657, a p38 MAP-kinase inhibitor, on LPS-hyporesponsiveness

    NARCIS (Netherlands)

    Faas, MM; Moes, H; Fijen, JW; Kobold, ACM; Tulleken, JE; Zijlstra, JG

    In the present study, we investigated the effect of RWJ-67657, a p38 MAP kinase inhibitor, upon in vivo LPS-induced monocyte cytokine production and upon monocyte LPS-hyporesponsiveness. Thirty minutes before a single injection of LPS (4 ng/kg BW), healthy male volunteers received a single oral dose

  15. Recombinant VP1, an Akt inhibitor, suppresses progression of hepatocellular carcinoma by inducing apoptosis and modulation of CCL2 production.

    Directory of Open Access Journals (Sweden)

    Tai-An Chen

    Full Text Available BACKGROUND: The application of viral elements in tumor therapy is one facet of cancer research. Recombinant capsid protein VP1 (rVP1 of foot-and-mouth disease virus has previously been demonstrated to induce apoptosis in cancer cell lines. Here, we aim to further investigate its apoptotic mechanism and possible anti-metastatic effect in murine models of hepatocellular carcinoma (HCC, one of the most common human cancers worldwide. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with rVP1 inhibited cell proliferation in two murine HCC cell lines, BNL and Hepa1-6, with IC₅₀ values in the range of 0.1-0.2 µM. rVP1 also induced apoptosis in these cells, which was mediated by Akt deactivation and dissociation of Ku70-Bax, and resulted in conformational changes and mitochondrial translocation of Bax, leading to the activation of caspases-9, -3 and -7. Treatment with 0.025 µM rVP1, which did not affect the viability of normal hepatocytes, suppressed cell migration and invasion via attenuating CCL2 production. The production of CCL2 was modulated by Akt-dependent NF-κB activation that was decreased after rVP1 treatment. The in vivo antitumor effects of rVP1 were assessed in both subcutaneous and orthotopic mouse models of HCC in immune-competent BALB/c mice. Intratumoral delivery of rVP1 inhibited subcutaneous tumor growth as a result of increased apoptosis. Intravenous administration of rVP1 in an orthotopic HCC model suppressed tumor growth, inhibited intra-hepatic metastasis, and prolonged survival. Furthermore, a decrease in the serum level of CCL2 was observed in rVP1-treated mice. CONCLUSIONS/SIGNIFICANCE: The data presented herein suggest that, via inhibiting Akt phosphorylation, rVP1 suppresses the growth, migration, and invasion of murine HCC cells by inducing apoptosis and attenuating CCL2 production both in vitro and in vivo. Recombinant protein VP1 thus has the potential to be developed as a new therapeutic agent for HCC.

  16. Phosphodiesterase 4 inhibitors.

    Science.gov (United States)

    Zebda, Rema; Paller, Amy S

    2018-03-01

    Historically, drugs available for treating atopic dermatitis (AD) have been limited to topical corticosteroids and topical calcineurin inhibitors, with systemic immunosuppressants and phototherapy reserved for severe AD. Despite their efficacy and infrequent adverse events, phobia about the use of topical steroids and calcineurin inhibitors has limited their use. More targeted options with fewer systemic and cutaneous side effects are needed for treating AD. Phosphodiesterase 4 (PDE4) is involved in the regulation of proinflammatory cytokines via the degradation of cyclic adenosine monophosphate. PDE4 activity is increased in the inflammatory cells of patients with AD, leading to increased production of proinflammatory cytokines and chemokines. Targeting PDE4 reduces the production of these proinflammatory mediators in AD. Both topical and oral PDE4 inhibitors have a favorable safety profile. Crisaborole 2% ointment, a topical PDE4, is now US Food and Drug Administration-approved for children older than 2 years and adults in the treatment of AD. Crisaborole 2% ointment shows early and sustained improvement in disease severity and pruritus and other AD symptoms, with burning and/or stinging upon application as the only related adverse event. Other PDE4 inhibitors are currently in trials with promising efficacy and safety. Copyright © 2017. Published by Elsevier Inc.

  17. Preparation of CaO/Fly ash as a catalyst inhibitor for transesterification process off palm oil in biodiesel production

    Science.gov (United States)

    Helwani, Z.; Fatra, W.; Saputra, E.; Maulana, R.

    2018-03-01

    A palm fly ash supported calcium oxide (CaO) catalyst was prepared and used in transesterification from off-grade palm oil for biodiesel production. The catalyst synthesized by loading CaO of calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) into fly ash through impregnation method. The optimum catalyst preparation conditions were determined by influence of calcination temperature and weight ratio of Ca(NO3)2.4H2O and fly ash. Catalyst with highest catalytic activity was achieved when calcined at 800 °C and proportion of Ca(NO3)2.4H2O to fly ash is 80:20. Under the conditions of oil : methanol ratio of 1:6, catalyst dosage of 6 wt% and temperature of 70 °C for 2 h, the biodiesel yield reaches to 71.77%. CaO, SiO2, Ca(OH)2 and Ca2SiO4 were found in the catalyst through X-ray diffraction (XRD) while the basic strength of the catalyst H_ in the range 9.3 – 11. Surface area of the developed catalyst is 24.342 m2/g through Brunauer-Emmett-Teller (BET). Characteristics of biodiesel such as density, kinematic viscosity, acid value, flash point has been matched with standard for biodiesel specification of Indonesia.

  18. Discovery and preliminary structure-activity relationship of the marine natural product manzamines as herpes simplex virus type-1 inhibitors.

    Science.gov (United States)

    Palem, Jayavardhana R; Mudit, Mudit; Hsia, Shao-Chung V; Sayed, Khalid A El

    2017-01-01

    Herpes simplex virus type-1 (HSV-1) is a member of alpha-herpesviridae family and is known to cause contagious human infections. The marine habitat is a rich source of structurally unique bioactive secondary metabolites. A small library of marine natural product classes 1-10 has been screened to discover a new hit entity active against HSV-1. Manzamine A showed potent activity against HSV-1 via targeting the viral gene ICP0. Manzamine A is a β-carboline alkaloid isolated from the Indo-Pacific sponge Acanthostrongylophora species. Currently, acyclovir is the drug of choice for HSV-1 infections. Compared with 50 µM acyclovir, manzamine A at 1 µM concentration produced potent repressive effects on viral replication and release of infectious viruses in SIRC cells in recent studies. The potent anti-HSV-1 activity of manzamine A prompted a preliminary structure-activity relationship study by testing targeted manzamines. These included 8-hydroxymanzamine A (11), to test the effect of the C-8 hydroxy substitution at the β-carboline moiety; manzamine E (12), to assess the importance of substitution at the azacyclooctane ring; and ircinal A (13), to determine whether the β-carboline ring is required for the activity. Manzamine A was chemically transformed to its salt forms, manzamine A monohydrochloride (14) and manzamine A monotartrate (15), to test whether improving water solubility and hydrophilicity will positively affect the activity. Compounds were tested for activity against HSV-1 using fluorescent microscopy and plaque assay. The results showed the reduced anti-HSV-1 activity of 11, suggesting that C-8 hydroxy substitution might adversely affect the activity. Similarly, manzamines 12 and 13 showed no activity against HSV-1, indicating the preference of the unsubstituted azacylcooctane and β-carboline rings to the activity. Anti-HSV-1 activity was significantly improved for the manzamine A salts 14 and 15, suggesting that improving the overall water solubility

  19. Effects of infusing nitric oxide donors and inhibitors on plasma metabolites, muscle lactate production and meat quality in lambs fed a high quality roughage-based diet.

    Science.gov (United States)

    Cottrell, J J; Ponnampalam, E N; Dunshea, F R; Warner, R D

    2015-07-01

    As nitric oxide (NO) is postulated to be a mediator of the effects of pre-slaughter stress on meat quality the aims of this experiment were to investigate the effects of modulating NO pharmacologically on meat quality of sedentary lambs. As pharmacological NO donors are prohibitively expensive to use in the lamb model L-Arginine, the substrate for NO synthase (NOS) was infused into lambs and increased NO production by ~30%. In a 2 × 2 factorial design we infused either L-Arginine (500 mg/kg) or the NOS inhibitor L-N(G) nitroarginine methyl ester hydrochloride (L-NAME, 30 mg/kg) 190 min pre-slaughter and investigated meat quality in the Longissimus thoracis lumborum (LTL) or Semimembranosus (SM). The principal outcome of the experiment was that L-NAME inhibited proteolysis and reduced tenderness in the SM. These data indicate that events pre-slaughter that affect NO synthesis can influence meat tenderness, potentially via altered muscle metabolism or modulation of proteolytic enzymes. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. Effects of Nitric Oxide Production Inhibitor Named, NG-Nitro-L-Arginine Methyl Ester (L-NAME, on Rat Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    E Arfaei

    2010-04-01

    Full Text Available Introduction & Objectives: Recently, the findings of some studies have shown that, nitric oxide (NO probably has an important role in differentiation of mesenchymal stem cells to osteoblasts. The aim of the present investigation was to study the effects of nitric oxide production inhibitor named, NG-nitro-L-arginine methyl ester (L-NAME, on rat mesenchymal stem cells differentiation to osteoblasts in vitro. Materials & Methods: This was an experimental study conducted at Hamedan University of Medical Sciences in 2009, in which rat bone marrow stem cells were isolated in an aseptic condition and cultured in vitro. After third passage, the cells were cultured in osteogenic differentiation medium. To study the effects of L-NAME on osteogenic differentiation, the L-NAME was added to the culture medium at a concentration of 125, 250, and 500 μM in some culture plates. During the culture procedure, the media were replaced with fresh ones, with a three days interval. After 28 days of culturing the mineralized matrix was stained using Alizarian red staining method. The gathered data were analyzed by SPSS software version 12 using one way ANOVA. Results: The findings of this study showed that in the presence of L-NAME, differentiation of bone marrow mesenchymal stem cells to osteoblasts was disordered and matrix mineralization significantly decreased in a dose dependent manner. Conclusion: This study revealed that, inhibition of nitric oxide production using L-NAME can prevent the differentiation of rat bone marrow mesenchymal stem cells to osteoblast. The results imply that NO is an important constituent in differentiation of mesenchymal stem cell to osteoblasts.

  1. Inhibitory effects of a selective Jak2 inhibitor on adrenocorticotropic hormone production and proliferation of corticotroph tumor AtT20 cells

    Directory of Open Access Journals (Sweden)

    Asari Y

    2017-09-01

    Full Text Available Yuko Asari, Kazunori Kageyama, Yuki Nakada, Mizuki Tasso, Shinobu Takayasu, Kanako Niioka, Noriko Ishigame, Makoto Daimon Department of Endocrinology and Metabolism, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan Purpose: The primary cause of Cushing’s disease is adrenocorticotropic hormone (ACTH-producing pituitary adenomas. EGFR signaling induces POMC mRNA-transcript levels and ACTH secretion from corticotroph tumors. The Jak–STAT pathway is located downstream of EGFR signaling; therefore, a Jak2 inhibitor could be an effective therapy for EGFR-related tumors. In this study, we determined the effect of a potent and selective Jak2 inhibitor, SD1029, on ACTH production and proliferation in mouse AtT20 corticotroph tumor cells.Materials and methods: AtT20 pituitary corticotroph tumor cells were cultured after transfection with PTTG1- or GADD45β-specific siRNA. Expression levels of mouse POMC, PTTG1, and GADD45β mRNAs were evaluated using quantitative real-time polymerase chain reaction. ACTH levels were measured using ACTH ELISA. Western blot analysis was performed to examine protein expression of phosphorylated STAT3/STAT3. Viable cells and DNA fragmentation were measured using a cell-proliferation assay and cell-death detection ELISA, respectively. Cellular DNA content was analyzed using fluorescence-activated cell sorting.Results: SD1029 decreased POMC and PTTG1 mRNA and ACTH levels, while increasing GADD45β levels. The drug also decreased AtT20-cell proliferation and induced apoptosis, but did not alter cell-cycle progression. SD1029 also inhibited STAT3 phosphorylation. PTTG1 knockdown inhibited POMC mRNA levels and cell proliferation. However, combined treatment with PTTG1 knockdown and SD1029 had no additive effect on POMC mRNA levels or cell proliferation. GADD45β knockdown inhibited the SD1029-induced decrease in POMC mRNA levels and also partially inhibited the decrease in cell proliferation.Conclusion: Both

  2. Bioactivity evaluation of natural product α-mangostin as a novel xanthone-based lysine-specific demethylase 1 inhibitor to against tumor metastasis.

    Science.gov (United States)

    Han, Chao; Li, Zhongrui; Hou, Jiqin; Wang, Zhen; Xu, Dingqiao; Xue, Guimin; Kong, Lingyi

    2018-02-01

    Lysine-specific demethylase 1 (LSD1), which has been reported to be overexpressed in several human cancers, has recently emerged as an attractive therapeutic target for treating cancer. To date, almost all the developed LSD1 inhibitors are chemo-synthesized molecules, while α-mangostin is first characterized as xanthone-based natural inhibitor in the current study with IC 50 values of 2.81 ± 0.44 μM. Bioactivity study and docking analysis indicated that α-mangostin could inhibit MDA-MB-231 cells migration and evasion through inhibit intracellular LSD1 activity. These findings provides new molecular skeleton for LSD1 inhibitor study and should encourage further modification of α-mangostin to produce more potent LSD1 inhibitors with potential anticancer activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A dairy product fermented by lactobacilli cancels the adverse effects of hypochlorhydria induced by a proton pump inhibitor on bone metabolism in growing rats.

    Science.gov (United States)

    Takasugi, Satoshi; Ashida, Kinya; Maruyama, Suyaka; Komaba, Yukari; Kaneko, Tetsuo; Yamaji, Taketo

    2011-11-01

    The purpose of the present study is to investigate the effects of hypochlorhydria induced by proton pump inhibitor (PPI) administration and intake of a dairy product fermented by lactobacilli (DFL) on bone metabolism in growing rats. Male rats, aged 3 weeks, were divided into two groups: a control group fed a casein-based diet and a group fed a DFL-based diet. Each group was fed its respective experimental diets for 9 d. At day 5 of the feeding period, each group was divided into two subgroups: one that received a saline injection and one that received a PPI injection. Rats were subcutaneously administered saline or PPI for 5 d. Faecal Ca excretion was determined from day 6 to day 9. At the end of the experiment, plasma and femurs were collected. Administration of PPI significantly decreased bone mineral density (shown by X-ray computerised tomography) and bone strength (shown by a three-point bending test) in the control group. Plasma osteocalcin, type I collagen C-telopeptides, 1,25-dihydroxyvitamin D and parathyroid hormone concentrations were elevated by PPI administration in the control group. Faecal Ca excretion and urinary P excretion in the control group were remarkably increased by PPI administration. On the other hand, these adverse effects of PPI were not observed in the DFL group. These results suggest that hypochlorhydria-induced bone loss may result from high bone turnover induced by secondary hyperparathyroidism due to Ca malabsorption and that DFL intake cancels these adverse effects probably via improving Ca malabsorption in growing rats.

  4. A combination of a dairy product fermented by lactobacilli and galactooligosaccharides shows additive effects on mineral balances in growing rats with hypochlorhydria induced by a proton pump inhibitor.

    Science.gov (United States)

    Takasugi, Satoshi; Ashida, Kinya; Maruyama, Suyaka; Matsukiyo, Yukari; Kaneko, Tetsuo; Yamaji, Taketo

    2013-06-01

    This study aimed to investigate the effects of a combination of a dairy product fermented by lactobacilli (DFL) and galactooligosaccharides (GOS) on mineral balances in growing rats with hypochlorhydria induced by a proton pump inhibitor (PPI). Three-week-old male rats were assigned to receive one of six diets: a control diet, control diets containing 1.6 or 5.0 % GOS, a DFL diet and DFL diets containing 1.6 or 5.0 % GOS for 9 days. From day 5 of the feeding period, half of the rats fed with control diets were subcutaneously administered with saline, whereas the remaining rats were administered with PPI for 5 days. Calcium (Ca), phosphorus (P), magnesium (Mg), iron (Fe) and zinc (Zn) balances were determined from days 6 to 9. PPI administration significantly decreased the apparent absorption of Ca and Fe and increased urinary P excretion, resulting in decreased Ca, Fe and P retention. GOS dose-dependently increased the apparent absorption of Ca, Mg and Fe and urinary Mg excretion and decreased urinary P excretion. DFL significantly increased the apparent absorption of Ca and Mg and urinary Mg excretion. The combination of DFL and GOS additively affected these parameters, resulting in increased Ca, P and Fe retention, and it further increased the apparent absorption and retention of Zn at 5.0 % GOS. In conclusion, the combination of DFL and GOS improves Ca, P and Fe retention in an additive manner and increases the Zn retention in growing rats with hypochlorhydria induced by PPI.

  5. Tumor necrosis factor-α promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Yosuke Osawa

    Full Text Available Tumor necrosis factor (TNF-α, which is a mediator of hepatotoxicity, has been implicated in liver fibrosis. However, the roles of TNF-α on hepatic stellate cell (HSC activation and liver fibrosis are complicated and remain controversial. To explore this issue, the role of TNF-α in cholestasis-induced liver fibrosis was examined by comparing between TNF-α(-/- mice and TNF-α(+/+ mice after bile duct ligation (BDL. Serum TNF-α levels in mice were increased by common BDL combined with cystic duct ligation (CBDL+CDL. TNF-α deficiency reduced liver fibrosis without affecting liver injury, inflammatory cell infiltration, and liver regeneration after CBDL+CDL. Increased expression levels of collagen α1(I mRNA, transforming growth factor (TGF-β mRNA, and α-smooth muscle actin (αSMA protein by CBDL+CDL in the livers of TNF-α(-/- mice were comparable to those in TNF-α(+/+ mice. Exogenous administration of TNF-α decreased collagen α1(I mRNA expression in isolated rat HSCs. These results suggest that the reduced fibrosis in TNF-α(-/- mice is regulated in post-transcriptional level. Tissue inhibitor of metalloproteinase (TIMP-1 plays a crucial role in the pathogenesis of liver fibrosis. TIMP-1 expression in HSCs in the liver was increased by CBDL+CDL, and the induction was lower in TNF-α(-/- mice than in TNF-α(+/+ mice. Fibrosis in the lobe of TIMP-1(-/- mice with partial BDL was also reduced. These findings indicate that TNF-α produced by cholestasis can promote liver fibrosis via TIMP-1 production from HSCs. Thus, targeting TNF-α and TIMP-1 may become a new therapeutic strategy for treating liver fibrosis in cholestatic liver injury.

  6. Selective serotonin reuptake inhibitors and β-blocker transformation products may not pose a significant risk of toxicity to aquatic organisms in wastewater effluent-dominated receiving waters.

    Science.gov (United States)

    Brown, Alistair K; Challis, Jonathan K; Wong, Charles S; Hanson, Mark L

    2015-10-01

    A probabilistic ecological risk assessment was conducted for the transformation products (TPs) of 3 β-blockers (atenolol, metoprolol, and propranolol) and 5 selective serotonin reuptake inhibitors (SSRIs; citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline) to assess potential threats to aquatic organisms in effluent-dominated surface waters. To this end, the pharmacokinetic literature, the University of Minnesota's Biocatalysis/Biodegradation Database Pathway Prediction System aerobic microbial degradation software, and photolysis literature pertaining to β-blockers and SSRIs were used to determine their most likely TPs formed via human metabolism, aerobic biodegradation, and photolysis, respectively. Monitoring data from North American and European surface waters receiving human wastewater inputs were the basis of the exposure characterizations of the parent compounds and the TPs, where available. In most cases, where monitoring data for TPs did not exist, we assumed a conservative 1:1 parent-to-TP production ratio (i.e., 100% of parent converted). The US Environmental Protection Agency (USEPA)'s EPISuite and ECOSAR v1.11 software were used to estimate acute and chronic toxicities to aquatic organisms. Hazard quotients, which were calculated using the 95(th) percentile of the exposure distributions, ranged from 10(-11) to 10(-3) (i.e., all significantly less than 1). Based on these results, the TPs of interest would be expected to pose little to no environmental risk in surface waters receiving wastewater inputs. Overall, we recommend developing analytical methods that can isolate and quantify human metabolites and TPs at environmentally relevant concentrations to confirm these predictions. Further, we recommend identifying the major species of TPs from classes of pharmaceuticals that could elicit toxic effects via specific modes of action (e.g., norfluoxetine via the serotonin 5-hydroxytryptamine [5-HT]1A receptors) and conducting aquatic toxicity

  7. [Retracted] Blockade of 11β-hydroxysteroid dehydrogenase type 1 enzyme inhibits experimental collagenase-induced osteoarthritis.

    Science.gov (United States)

    2016-01-01

    This manuscript has been retracted by the Editorial Board of Molecular Medicine Reports, following an investigation prompted by the authors of the article mentioned below and the Editor of the Journal, Inflammation. Fig. 1 in this manuscript was reproduced in its entirety from the following study: Gyurkovska V, Stefanova T, Dimitrova P, Danova S, Tropcheva R and Ivanovska N: Tyrosine kinase inhibitor tyrphostin AG490 retards chronic joint inflammation in mice. Inflammation 37: 995-1005, 2014. Every effort was made on the part of the publisher to contact the authors on the Molecular Medicine Reports paper, but were unable to do so. As a result, this article has been retracted by the Editorial Board of Molecular Medicine Reports. [The original article was published in Molecular Medicine Reports 11: 2071‑2075, 2015 DOI: 10.3893/mmr.2014.2983].

  8. Economic analysis and budget impact of clostridial collagenase ointment compared with medicinal honey for treatment of pressure ulcers in the US

    Directory of Open Access Journals (Sweden)

    Mearns ES

    2017-08-01

    Full Text Available Elizabeth S Mearns,1 Michael Liang,1 Brendan L Limone,1 Adrienne M Gilligan,1 Jeffrey D Miller,1 Kathleen D Schaum,2 Curtis R Waycaster2 1Truven Health Analytics, an IBM Company, Cambridge, MA, USA; 2Smith & Nephew, Inc., Fort Worth, TX, USA Objectives: Pressure ulcer (PU treatment poses significant clinical and economic challenges to health-care systems. The aim of this study was to assess the cost-effectiveness and budget impact of enzymatic debridement with clostridial collagenase ointment (CCO compared with autolytic debridement with medicinal honey (MH for PU treatment from a US payer/Medicare perspective in the hospital outpatient department setting.Methods: A cost-effectiveness analysis using a Markov model was developed using a 1-week cycle length across a 1-year time horizon. The three health states were inflammation/senescence, granulation/proliferation (ie, patients achieving 100% granulation, and epithelialization. Data sources included the US Wound Registry, Medicare fee schedules, and other published clinical and cost studies about PU treatment.Results: In the base case analysis over a 1-year time horizon, CCO was the economically dominant strategy (ie, simultaneously conferring greater benefit at less cost. Patients treated with CCO experienced 22.7 quality-adjusted life weeks (QALWs at a cost of $6,161 over 1 year, whereas MH patients experienced 21.9 QALWs at a cost of $7,149. Patients treated with CCO achieved 11.5 granulation weeks and 6.0 epithelization weeks compared with 10.6 and 4.4 weeks for MH, respectively. The number of clinic visits was 40.1 for CCO vs 43.4 for MH, and the number of debridements was 12.3 for CCO compared with 17.6 for MH. Probabilistic sensitivity analyses determined CCO dominant in 72% of 10,000 iterations and cost-effective in 91%, assuming a benchmark willingness-to-pay threshold of $50,000/quality-adjusted life year ($962/QALW. The budget impact analysis showed that for every 1% of patients

  9. Histone deacetylase inhibitors restore IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6 production in breast silicone implant in C57BL/6J wild-type murine model.

    Science.gov (United States)

    Di Liddo, Rosa; Valente, Sergio; Taurone, Samanta; Zwergel, Clemens; Marrocco, Biagina; Turchetta, Rosaria; Conconi, Maria Teresa; Scarpa, Carlotta; Bertalot, Thomas; Schrenk, Sandra; Mai, Antonello; Artico, Marco

    2016-01-20

    Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the expression of an extensive array of genes by reversible deacetylation of nuclear histones as well as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising due to their ability in reducing the severity of inflammatory and autoimmune diseases. In particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to downregulate the expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-1β, and IL-6). Herein, using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of pro-inflammatory cytokines (IL-1β and IL-6) and to promote the transcription of IL-10 gene, without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the production of both IL-1β and IL-6. These results underline the potential application of MC2625 and MC2780 in inflammation-related diseases.

  10. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: Role of MEK/ERK and activin receptor-like kinase-5/Smad signaling.

    Science.gov (United States)

    Lin, Po-Shuen; Chang, Hsiao-Hua; Yeh, Chien-Yang; Chang, Mei-Chi; Chan, Chiu-Po; Kuo, Han-Yueh; Liu, Hsin-Cheng; Liao, Wan-Chuen; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2017-05-01

    In order to clarify the role of transforming growth factor beta 1 (TGF-β1) in pulp repair/regeneration responses, we investigated the differential signaling pathways responsible for the effects of TGF-β1 on collagen turnover, matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of metalloproteinase-1 (TIMP-1) production in human dental pulp cells. Pulp cells were exposed to TGF-β1 with/without pretreatment and coincubation by 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenyl mercapto)butadiene (U0126; a mitogen-activated protein kinase kinase [MEK]/extracellular signal-regulated kinase [ERK] inhibitor) and 4-(5-benzol[1,3]dioxol-5-yl-4-pyrldin-2-yl-1H- imidazol-2-yl)-benzamide hydrate (SB431542; an activin receptor-like kinase-5/Smad signaling inhibitor). Sircol collagen assay was used to measure cellular collagen content. Culture medium procollagen I, TIMP-1, and MMP-3 levels were determined by enzyme-linked immunosorbent assay. TGF-β1 increased the collagen content, procollagen I, and TIMP-1 production, but slightly decreased MMP-3 production of pulp cells. SB431542 and U0126 prevented the TGF-β1-induced increase of collagen content and TIMP-1 production of dental pulp cells. These results indicate that TGF-β1 may be involved in the healing/regeneration processes of dental pulp in response to injury by stimulation of collagen and TIMP-1 production. These events are associated with activin receptor-like kinase-5/Smad2/3 and MEK/ERK signaling. Copyright © 2016. Published by Elsevier B.V.

  11. Environmental life cycle analysis of potato sprout inhibitors

    NARCIS (Netherlands)

    Kerstholt, R.P.V.; Ree, C.M.; Moll, H.C.

    Potato sprout inhibitors are generally applied to suppress sprouting during winter storage. This study presents the compared environmental profiles of the two sprout inhibitors available on the Dutch market: A traditional chemical product with isopropyl-3-chlorophenylcarbamate (CIPC) and

  12. Development of an on-line high performance liquid chromatography detection system for human cytochrome P450 1A2 inhibitors in extracts of natural products

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Claassen, F.W.; Havlik, J.; Bouwmans, E.E.; Cnubben, N.H.P.; Sudhölter, E.J.R.; Rietjens, I.M.C.M.; Beek, T.A. van

    2007-01-01

    An on-line HPLC screening method for detection of inhibitors of human cytochrome P450 1A2 in extracts was developed. HPLC separation of extracts is connected to a continuous methoxyresorufin-O-demethylation (MROD) assay in which recombinant human P450 1A2 converts methoxyresorufin to its fluorescent

  13. Effect of traditional processing methods on the β-carotene, ascorbic acid and trypsin inhibitor content of orange-fleshed sweet potato for production of amala in Nigeria.

    Science.gov (United States)

    Yusuf, Abbas Bazata; Fuchs, Richard; Nicolaides, Linda

    2016-05-01

    The aim of the work was to study the effect of traditional processing methods on the β-carotene, ascorbic acid and trypsin inhibitor contents of orange-fleshed sweet potato amala. The most common sweet potato in Nigeria is white or yellow fleshed, which is very low in provitamin A. However, efforts are underway to promote orange-fleshed sweet potato to improve provitamin A intake. This paper describes how orange-fleshed sweet potato slices were traditionally processed into amala, which is increasingly consumed in Nigeria. The study revealed that both the cold and hot fermentation methods resulted in increased vitamin A levels and lower vitamin C levels in orange-fleshed sweet potato. Further processing to make amala resulted in a fall in both vitamin A and C content. The study found an increase in trypsin inhibitor activity following the cold-water fermentation and a decrease following the hot-water fermentation compared to raw orange-fleshed sweet potato. Trypsin inhibitor activity in amala produced using both the cold and hot methods was below detectable levels. The results indicate that amala produced from traditionally fermented orange-fleshed sweet potato could be a good source of vitamins A and C for the rural poor and that the processing removes any potential negative effects of trypsin inhibitors. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. The dipeptidyl peptidase IV inhibitor vildagliptin suppresses endogenous glucose production and enhances islet function after single-dose administration in type 2 diabetic patients

    DEFF Research Database (Denmark)

    Balas, Bogdan; Baig, Muhammad R; Watson, Catherine

    2007-01-01

    AIMS/HYPOTHESIS: Vildagliptin is a selective dipeptidyl peptidase IV inhibitor that augments meal-stimulated levels of biologically active glucagon-like peptide-1. Chronic vildagliptin treatment decreases postprandial glucose levels and reduces hemoglobin A1c in type 2 diabetic patients. However...

  15. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Engelholm, Lars H; Ingvarsen, Signe

    2007-01-01

    The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process in these......The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process...... in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular...... of large collagen fragments. First, we show that collagen that has been pre-cleaved by a mammalian collagenase is taken up much more efficiently than intact, native collagen by uPARAP/Endo180-positive cells. Second, we demonstrate that this preference is governed by the acquisition of a gelatin...

  16. Rational optimization of drug-target residence time: Insights from inhibitor binding to the S. aureus FabI enzyme-product complex

    Science.gov (United States)

    Chang, Andrew; Schiebel, Johannes; Yu, Weixuan; Bommineni, Gopal R.; Pan, Pan; Baxter, Michael V.; Khanna, Avinash; Sotriffer, Christoph A.; Kisker, Caroline; Tonge, Peter J.

    2013-01-01

    Drug-target kinetics has recently emerged as an especially important facet of the drug discovery process. In particular, prolonged drug-target residence times may confer enhanced efficacy and selectivity in the open in vivo system. However, the lack of accurate kinetic and structural data for series of congeneric compounds hinders the rational design of inhibitors with decreased off-rates. Therefore, we chose the Staphylococcus aureus enoyl-ACP reductase (saFabI) - an important target for the development of new anti-staphylococcal drugs - as a model system to rationalize and optimize the drug-target residence time on a structural basis. Using our new, efficient and widely applicable mechanistically informed kinetic approach, we obtained a full characterization of saFabI inhibition by a series of 20 diphenyl ethers complemented by a collection of 9 saFabI-inhibitor crystal structures. We identified a strong correlation between the affinities of the investigated saFabI diphenyl ether inhibitors and their corresponding residence times, which can be rationalized on a structural basis. Due to its favorable interactions with the enzyme, the residence time of our most potent compound exceeds 10 hours. In addition, we found that affinity and residence time in this system can be significantly enhanced by modifications predictable by a careful consideration of catalysis. Our study provides a blueprint for investigating and prolonging drug-target kinetics and may aid in the rational design of long-residence-time inhibitors targeting the essential saFabI enzyme. PMID:23697754

  17. Herbivore damage-induced production and specific anti-digestive function of serine and cysteine protease inhibitors in tall goldenrod, Solidago altissima L. (Asteraceae).

    Science.gov (United States)

    Bode, Robert F; Halitschke, Rayko; Kessler, André

    2013-05-01

    Plant protease inhibitors (PIs) are among the most well-studied and widely distributed resistance traits that plants use against their herbivore attackers. There are different types of plant PIs which putatively function against the different types of proteases expressed in insect guts. Serine protease inhibitors (SPIs) and cysteine protease inhibitors (CPIs) are hypothesized to differentially function against the predominant gut proteases in lepidopteran and coleopteran herbivores, respectively. Here, we test the hypothesis that tall goldenrod, Solidago altissima, can specifically respond to damage by different herbivores and differentially induce SPIs and CPIs in response to damage by lepidopteran and coleopteran herbivores. Moreover, we ask if the concerted induction of different types of PIs accounts for variation in induced resistance to herbivory. We altered and optimized a rapid and effective existing methodology to quantitatively analyze both SPI and CPI activity simultaneously from a single tissue sample and to use the same plant extracts directly for characterization of inhibitory effects on insect gut protease activity. We found that both SPIs and CPIs are induced in S. altissima in response to damage, regardless of the damaging herbivore species. However, only SPIs were effective against Spodoptera exigua gut proteases. Our data suggest that plant PI responses are not necessarily specific to the identity of the attacking organism but that different components of generally induced defense traits can specifically affect different herbivore species. While providing an efficient and broadly applicable methodology to analyze multiple PIs extracted from the same tissue, this study furthers our understanding of specificity in induced plant resistance.

  18. Assessment of the in vitro and in vivo properties of a {sup 99m}Tc-labeled inhibitor of the multidrug resistant gene product P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, R. E-mail: R.Bergmann@fz-rossendorf.de; Brust, P.; Scheunemann, M.; Pietzsch, H.-J.; Seifert, S.; Roux, F.; Johannsen, B

    2000-02-01

    Overexpression of P-glycoprotein (Pgp), which is present in the plasma membrane of various tumor cells and in several normal cell types, contributes to the multidrug resistance (MDR) phenotype of many human cancers. As a prerequisite for therapy, the expression of Pgp must be studied. The available clinical radiopharmaceuticals for studying the expression of Pgp include the lipophilic {sup 99m}Tc cations (sestamibi, tetrofosmin) as well as [{sup 99m}Tc]Q57, [{sup 99m}Tc]Q58, and [{sup 99m}Tc]Q63. Here we describe the in vitro and in vivo properties of the structurally different complex (3-thiapentane-1,5-dithiolato)[[N-(3-phenylpropyl)-N-2(3-quinazoline-2,4 -dionyl)-ethyl]amino-ethylthiolato] oxotechnetium(V) ({sup 99/99m}Tc1) as a potential inhibitor of Pgp. {sup 99}Tc1 enhances the net cell accumulation of Pgp substrates [{sup 3}H]vinblastine, [{sup 3}H]vincristine, [{sup 3}H]colchicine, [{sup 99m}Tc]sestamibi, and [{sup 99m}Tc]tetrofosmin in rat brain endothelial cells (RBE4), an immortalized endothelial cell line that expresses Pgp. In addition, the cell accumulation of {sup 99m}Tc1 could be increased by verapamil and reserpine, which are known Pgp inhibitors. A multitracer approach was used to study the side effects of {sup 99}Tc1 on cell metabolism. The cells were simultaneously incubated with [{sup 99m}Tc]sestamibi, 2-[{sup 18}F]fluoro-2-deoxyglucose ([{sup 18}F]FDG), and various {sup 3}H-labeled tracers. Two-dimensional scatter plots of [{sup 99m}Tc]sestamibi uptake/[{sup 18}F]FDG uptake show typical changes of known Pgp inhibitors including {sup 99}Tc1. The effects of {sup 99}Tc1 on the in vivo distribution of [{sup 99m}Tc]sestamibi and [{sup 18}F]FDG in rats also are comparable with the effects of verapamil, an established Pgp inhibitor and calcium channel blocker. We conclude that {sup 99/99m}Tc1 is a transport substrate and a potential inhibitor of Pgp. Our approach may be useful in the design of further radiotracers with specificity to Pgp.

  19. Comparative analysis of preparation of human hepatocytes by the ethylenediamine tetraacetic acid and collagenase technique Estudo comparativo da obtenção de hepatócitos humanos pela técnica ácido etilenodiaminotetracético e da colegenase

    Directory of Open Access Journals (Sweden)

    Eduardo Crema

    2007-02-01

    Full Text Available PURPOSE: To compare the viability of human hepatocytes dissociated by the ethylenediaminetetraacetic acid and collagenase techniques. METHODS: Hepatocytes were prepared by dissociation of liver fragments obtained from hepatectomies performed for therapeutic purposes at the Service of Digestive Tract Surgery, Federal University of Triângulo Mineiro. RESULTS: During the first 4 days of the experiment, 70% of the cells presented birefringent membranes and were not stained with 2% erythrosine, and were therefore considered to be viable. During the first 3 days, hepatocyte viability was on average 71% in the EDTA group and 76% in the collagenase group, with no significant difference between groups. No significant difference was observed between groups at any time. The secretion of albumin by the cultured hepatocytes was preserved up to the seventh day. Mean albumin secretion during the first 3 days was 50 µg/ml in the two groups and a reduction of albumin production was observed from the fourth to the seventh day. Again, no significant difference was observed between groups at any time. CONCLUSION: Cell viability and preservation of albumin secretion by hepatocytes are similar for the EDTA and collagenase techniques.OBJETIVO: Comparar a viabilidade dos hepatócitos humanos dissociados pelas técnicas do ácido etilenodiaminotetracético e da colagenase. MÉTODOS: Hepatócitos foram preparados pela dissociação de fragmentos de fígado, provenientes de hepatectomias realizadas com o objetivo terapêutico no Serviço de Cirurgia do Aparelho Digestivo da Universidade Federal do Triângulo Mineiro. RESULTADOS: Detectou-se que nos quatro primeiros dias de experimento 70% das células estavam com suas membranas biorrefringentes e não se coravam pela eritrosina a 2% portanto foram consideradas viáveis. Observou-se que nos três primeiros dias a viabilidade dos hepatócitos foi em média 71% no grupo EDTA e 76% na colagenase, diferença esta sem

  20. Collagenase injections for the treatment of single cords in cases of Dupuytren’s contracture – a prospective intervention study of long-term experience with Xiapex

    Directory of Open Access Journals (Sweden)

    Fischer, Lisa Maria

    2017-04-01

    Full Text Available Introduction: The gold standard in the treatment of Dupuytren’s contracture is surgical therapy. Alternatives are percutaneous needle fasciotomy and radiation in exceptional cases. Injection treatments with Xiapex (Pfizer are a new therapy option. This collagenase, extracted from clostridium histolyticum, is used to break down the affected tissue cords. The objective of this study is to examine the effect and long-term success of treatment with Xiapex.Methods: In this study, Xiapex treatment was conducted on a sample group of 19 patients with Dupuytren’s contracture. The injection was placed either on the cord at the level of the metacarpophalangeal (MCP joint (n=17 or of the proximal interphalangeal (PIP joint (n=7. Break-up of the cord occurred 24 hours after the injection. The neutral zero method was used to assess the extent of movement. The Michigan Hand Outcomes Questionnaire (MHQ was selected for evaluation of the general hand function in 16 patients. The WHO-5 and the EQ-5D VAS Score were used as a measure of the patients’ satisfaction and their state of health. All values were collected both pre-injection as well as 1 year post-injection.Results: Out of 19 patients in our sample group, 16 patients (≈84% benefitted in terms of improvement in mobility. Overall, the range of movement increased by Ø 26° in the affected finger. A separate assessment demonstrated that:The range of movement increased by 77% in the MCP joint. The extent of movement pre-injection was Ø (0-28-78 and post-injection it was Ø (0-9-81 with an improvement of Ø 22°. In the PIP joint, only slight improvement was observed (Ø pre (0-27-93; post (0-24-95.The MHQ increased from Ø 76% (R: 32–97% to 81% (R: 39–100%.The painfulness decreased from Ø 19% (R: 0–55% to Ø11% (R: 0–55%, corresponding to Ø 43%. Satisfaction increased in 72% of patients by Ø 21%.According to WHO-5, patient satisfaction pre-injection was Ø 20 (R: 11–25, and 1 year after

  1. Probing the 3-D Structure, Dynamics, and Stability of Bacterial Collagenase Collagen Binding Domain (apo- versus holo-) by Limited Proteolysis MALDI-TOF MS

    Science.gov (United States)

    Sides, Cynthia R.; Liyanage, Rohana; Lay, Jackson O.; Philominathan, Sagaya Theresa Leena; Matsushita, Osamu; Sakon, Joshua

    2012-03-01

    Pairing limited proteolysis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to probe clostridial collagenase collagen binding domain (CBD) reveals the solution dynamics and stability of the protein, as these factors are crucial to CBD effectiveness as a drug-delivery vehicle. MS analysis of proteolytic digests indicates initial cleavage sites, thereby specifying the less stable and highly accessible regions of CBD. Modulation of protein structure and stability upon metal binding is shown through MS analysis of calcium-bound and cobalt-bound CBD proteolytic digests. Previously determined X-ray crystal structures illustrate that calcium binding induces secondary structure transformation in the highly mobile N-terminal arm and increases protein stability. MS-based detection of exposed residues confirms protein flexibility, accentuates N-terminal dynamics, and demonstrates increased global protein stability exported by calcium binding. Additionally, apo- and calcium-bound CBD proteolysis sites correlate well with crystallographic B-factors, accessibility, and enzyme specificity. MS-observed cleavage sites with no clear correlations are explained either by crystal contacts of the X-ray crystal structures or by observed differences between Molecules A and B in the X-ray crystal structures. The study newly reveals the absence of the βA strand and thus the very dynamic N-terminal linker, as corroborated by the solution X-ray scattering results. Cobalt binding has a regional effect on the solution phase stability of CBD, as limited proteolysis data implies the capture of an intermediate-CBD solution structure when cobalt is bound.

  2. Telescoped Process to Manufacture 6,6,6-Trifluorofucose via Diastereoselective Transfer Hydrogenation: Scalable Access to an Inhibitor of Fucosylation Utilized in Monoclonal Antibody Production.

    Science.gov (United States)

    Achmatowicz, Michal M; Allen, John G; Bio, Matthew M; Bartberger, Michael D; Borths, Christopher J; Colyer, John T; Crockett, Richard D; Hwang, Tsang-Lin; Koek, Jan N; Osgood, Stephen A; Roberts, Scott W; Swietlow, Aleksander; Thiel, Oliver R; Caille, Seb

    2016-06-03

    IgG1 monoclonal antibodies with reduced glycan fucosylation have been shown to improve antibody-dependent cellular cytotoxicity (ADCC) by allowing more effective binding of the Fc region of these proteins to T cells receptors. Increased in vivo efficacy in animal models and oncology clinical trials has been associated with the enhanced ADCC provided by these engineered mAbs. 6,6,6-Trifluorofucose (1) is a new inhibitor of fucosylation that has been demonstrated to allow the preparation of IgG1 monoclonal antibodies with lower fucosylation levels and thus improve the ADCC of these proteins. A new process has been developed to support the preparation of 1 on large-scale for wide mAb manufacture applications. The target fucosylation inhibitor (1) was synthesized from readily available d-arabinose in 11% overall yield and >99.5/0.5 dr (diastereomeric ratio). The heavily telescoped process includes seven steps, two crystallizations as purification handles, and no chromatography. The key transformation of the sequence involves the diastereoselective preparation of the desired trifluoromethyl-bearing alcohol in >9/1 dr from a trimethylsilylketal intermediate via a ruthenium-catalyzed tandem ketal hydrolysis-transfer hydrogenation process.

  3. Proton pump inhibitors

    Science.gov (United States)

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  4. Comparative evaluation of 13 yeast species in the Yarrowia clade on lignocellulosic biomass hydrolysate and genetic engineering of inhibitor tolerant strains for lipid and biofuel production

    Science.gov (United States)

    Yarrowia lipolytica is an oleaginous yeast that has garnered interest for commercial production of single cell oil and other fatty acid-derived chemicals because of its GRAS status and genetic tractability. Three recent peer-reviewed studies have highlighted the possibility of lipid production by th...

  5. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), a Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

    Science.gov (United States)

    Touaibia, Mohamed; Guay, Michel

    2011-01-01

    Natural products play a critical role in modern organic synthesis and learning synthetic techniques is an important component of the organic laboratory experience. In addition to traditional one-step organic synthesis laboratories, a multistep natural product synthesis is an interesting experiment to challenge students. The proposed three-step…

  6. Natural product inhibitors of fatty acid biosynthesis: synthesis of the marine microbial metabolites pseudopyronines A and B and evaluation of their anti-infective activities

    DEFF Research Database (Denmark)

    Giddens, Anna C.; Nielsen, Lone; Boshoff, Helena I.

    2007-01-01

    Total syntheses of the title natural products, pseudopyronines A (1) and B (2), have been achieved using methyl β-oxo carboxylic ester starting materials. The natural products and a small set of structurally related compounds were evaluated for growth inhibitory activity against a range...

  7. Studies on synthesis and structure-activity relationship (SAR) of derivatives of a new natural product from marine fungi as inhibitors of influenza virus neuraminidase.

    Science.gov (United States)

    Li, Jing; Zhang, Dingmei; Zhu, Xun; He, Zhenjian; Liu, Shu; Li, Mengfeng; Pang, Jiyan; Lin, Yongcheng

    2011-01-01

    Based on the natural isoprenyl phenyl ether from a mangrove-derived fungus, 32 analogues were synthesized and evaluated for inhibitory activity against influenza H1N1 neuraminidase. Compound 15 (3-(allyloxy)-4-hydroxybenzaldehyde) exhibited the most potent inhibitory activity, with IC(50) values of 26.96 μM for A/GuangdongSB/01/2009 (H1N1), 27.73 μM for A/Guangdong/03/2009 (H1N1), and 25.13 μM for A/Guangdong/ 05/2009 (H1N1), respectively, which is stronger than the benzoic acid derivatives (~mM level). These are a new kind of non-nitrogenous aromatic ether Neuraminidase (NA) inhibitors. Their structures are simple and the synthesis routes are not complex. The structure-activity relationship (SAR) analysis revealed that the aryl aldehyde and unsubstituted hydroxyl were important to NA inhibitory activities. Molecular docking studies were carried out to explain the SAR of the compounds, and provided valuable information for further structure modification.

  8. Studies on Synthesis and Structure-Activity Relationship (SAR of Derivatives of a New Natural Product from Marine Fungi as Inhibitors of Influenza Virus Neuraminidase

    Directory of Open Access Journals (Sweden)

    Yongcheng Lin

    2011-10-01

    Full Text Available Based on the natural isoprenyl phenyl ether from a mangrove-derived fungus, 32 analogues were synthesized and evaluated for inhibitory activity against influenza H1N1 neuraminidase. Compound 15 (3-(allyloxy-4-hydroxybenzaldehyde exhibited the most potent inhibitory activity, with IC50 values of 26.96 μM for A/GuangdongSB/01/2009 (H1N1, 27.73 μM for A/Guangdong/03/2009 (H1N1, and 25.13 μM for A/Guangdong/05/2009 (H1N1, respectively, which is stronger than the benzoic acid derivatives (~mM level. These are a new kind of non-nitrogenous aromatic ether Neuraminidase (NA inhibitors. Their structures are simple and the synthesis routes are not complex. The structure-activity relationship (SAR analysis revealed that the aryl aldehyde and unsubstituted hydroxyl were important to NA inhibitory activities. Molecular docking studies were carried out to explain the SAR of the compounds, and provided valuable information for further structure modification.

  9. Trichloroacetimidates as Alkylating Reagents and Their Application in the Synthesis of Pyrroloindoline Natural Products and Synthesis of Small Molecule Inhibitors of Src Homology 2 Domain-Containing Inositol Phosphatase (SHIP)

    Science.gov (United States)

    Adhikari, Arijit A.

    was applied towards the synthesis of natural products and their analogs. The pyrroloindoline ring system is found in many alkaloids and cyclic peptides which mainly differ in the substitution at the C3a position. To provide rapid access to these natural products a diversity-oriented strategy was established via displacement of C3a-trichloroacetimidate pyrroloindoline. Carbon, oxygen, sulfur and nitrogen nucleophiles were all shown to undergo substitution reactions with these trichloroacetimidates in the presence of a Lewis acid catalyst. In order to demonstrate the utility of this new method it was applied towards the synthesis of arundinine and a formal synthesis of psychotriasine. Current investigations involve the application of this method towards the synthesis of a complex pyrroloindoline natural product kapakahine C and the progress made therein has been discussed. The reactivity of trichloroacetimidates was also investigated for the selective C3-alkylation of 2,3-disubstituted indoles to provide indolenines. Indolenines serve as useful intermediates in the synthesis of many complex alkaloids. Different benzylic and allylic trichloroacetimidates were shown to provide 3,3'-disubstituted indolenines with high yields in the presence of catalytic amounts of Lewis acids. Various substituted indoles were evaluated under these reaction conditions. This methodology was also applied towards the synthesis of the core tetracyclic ring system found in communesin natural products. In addition to the above work, synthesis of small molecule inhibitors of Src Homology 2 Domain-Containing Inositol Phosphatase (SHIP) has also been described. Aberrations in the phosphoinositide 3-kinase (PI3K) cellular signaling pathway can lead to diseased cellular states like cancer. Herein we have reported stereoselective synthesis of two quinoline based small molecule SHIP inhibitors. The lead compounds and their analogs were tested for their activities against SHIP by Malachite green assay

  10. Affects of organic amine inhibitors on elastomers

    International Nuclear Information System (INIS)

    Ray, T.W.; Ivey, C.E.

    1984-01-01

    The inhibitive properties of long chain, high molecular weight polar materials have permitted long term operation of oil and gas wells which otherwise might not have been economical to keep in production. It is a well known fact that as these inhibitors are introduced into the well, they can attack fluoroelastomer seals which are otherwise very chemical resistant. This paper presents data concerning the attack of these inhibitors on certain elastomers

  11. Profiling acylated homoserine lactones in Yersinia ruckeri and influence of exogenous acyl homoserine lactones and known quorum-sensing inhibitors on protease production

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Nielsen, Kristian Fog; Dalsgaard, Inger

    2007-01-01

    produced. 3-oxo-C8-HSL was detected in organs from fish infected with Y. ruckeri. Protease production was significantly lower at temperatures above 23 degrees C than below although growth was faster at the higher temperatures. Neither addition of sterile filtered high-density Y. ruckeri culture supernatant...

  12. Inhibitors of Succinate: Quinone Reductase/Complex II Regulate Production of Mitochondrial Reactive Oxygen Species and Protect Normal Cells from Ischemic Damage but Induce Specific Cancer Cell Death

    Czech Academy of Sciences Publication Activity Database

    Ralph, S.J.; Moreno-Sanchez, R.; Neužil, Jiří; Rodriguez-Enriquez, S.

    2011-01-01

    Roč. 28, č. 11 (2011), s. 2695-2730 ISSN 0724-8741 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitocans * SDH/Complex II * mitochondrial ROS production Subject RIV: CE - Biochemistry Impact factor: 4.093, year: 2011

  13. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast.

    Science.gov (United States)

    Klinke, H B; Olsson, L; Thomsen, A B; Ahring, B K

    2003-03-20

    Alkaline wet oxidation (WO) (using water, 6.5 g/L sodium carbonate and 12 bar oxygen at 195 degrees C) was used as pretreatment method for wheat straw (60 g/L), resulting in a hydrolysate and a cellulosic solid fraction. The hydrolysate consisted of soluble hemicellulose (8 g/L), low-molecular-weight carboxylic acids (3.9 g/L), phenols (0.27 g/L = 1.7 mM) and 2-furoic acid (0.007 g/L). The wet oxidized wheat straw hydrolysate caused no inhibition of ethanol production by Saccharomyces cerevisiae ATCC 96581. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested in concentrations of 50-100 times the concentration found in the hydrolysate for their effect on fermentation by yeast. At these high concentrations (10 mM), 4-hydroxybenzaldehyde, vanillin, 4-hydroxyacetophenone and acetovanillone caused a 53-67% decrease in the volumetric ethanol productivity in S. cerevisiae compared to controls with an ethanol productivity of 3.8 g/L. The phenol acids (4-hydroxy, vanillic and syringic acid), 2-furoic acid, syringaldehyde and acetosyringone were less inhibitory, causing a 5-16% decrease in ethanol productivity. By adding the same aromatic compounds to hydrolysate (10 mM), it was shown that syringaldehyde and acetovanillone interacted negatively with hydrolysate components on the ethanol productivity. Fermentation in WO hydrolysate, that had been concentrated 6 times by freeze-drying, lasted 4 hours longer than in regular hydrolysate; however, the ethanol yield was the same. The longer fermentation time could not be explained by an inhibitory action of phenols alone, but was more likely caused by inhibitory interactions of phenols with carboxylic acids, such as acetic and formic acid. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 738-747, 2003.

  14. Using a simple HPLC approach to identify the enzymatic products of UTL-5g, a small molecule TNF-α inhibitor, from porcine esterase and from rabbit esterase.

    Science.gov (United States)

    Swartz, Kenneth; Zhang, Yiguan; Valeriote, Frederick; Chen, Ben; Shaw, Jiajiu

    2013-12-01

    UTL-5g is a novel small-molecule chemoprotector that lowers hepatotoxicity, nephrotoxicity, and myelotoxicity induced by cisplatin through TNF-α inhibition among other factors. As a prelude to investigating the metabolites of UTL-5g, we set out to identify the enzymatic products of UTL-5g under the treatment of both porcine liver esterase (PLE) and rabbit liver esterase (RLE). First, a number of mixtures made by UTL-5g and PLE were incubated at 25°C. At predetermined time points, individual samples were quenched by acetonitrile, vortexed, and centrifuged. The supernatants were then analyzed by reversed-phase HPLC (using a C18 column). The retention times and UV/vis spectra of individual peaks were compared to those of UTL-5g and its two postulated enzymatic products; thus the enzymatic products of UTL-5g were tentatively identified. Secondly, a different HPLC method (providing different retentions times) was used to cross-check and to confirm the identities of the two enzymatic products. Based on the observations, it was concluded that under the treatment of PLE, the major enzymatic products of UTL-5g were 5-methyliosxazole-3-carboxylic acid (ISOX) and 2,4-dichloroaniline (DCA). Treatment of UTL-5g by RLE also provided the same enzymatic products of UTL-5g from esterase. These results indicate that the peptide bond in UTL-5g was cleaved by PLE/RLE. Michaelis-Menten kinetics showed that the Km values of UTL-5g were 2.07mM with PLE and 0.37mM with RLE indicating that UTL-5g had a higher affinity with RLE. In summary, by a simple HPLC approach, we have concluded that the peptide bond in UTL-5g was cleaved by esterase from either porcine liver or rabbit liver in vitro and afforded DCA (at a mole ratio of 1:1) and ISOX. However, further studies are needed in order to determine whether UTL-5g is metabolized by microsomal enzymes to produce ISOX and DCA. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. DPP-4 inhibitors

    DEFF Research Database (Denmark)

    Deacon, Carolyn F.

    2016-01-01

    Dipeptidyl peptidase (DPP)-4 inhibitors inhibit the activity of the enzyme responsible for the initial rapid degradation of the incretin hormones, thereby enhancing their antihyperglycemic effects.......Dipeptidyl peptidase (DPP)-4 inhibitors inhibit the activity of the enzyme responsible for the initial rapid degradation of the incretin hormones, thereby enhancing their antihyperglycemic effects....

  16. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    Science.gov (United States)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  17. Effect of lysine succinylation on the regulation of 2-oxoglutarate dehydrogenase inhibitor, OdhI, involved in glutamate production in Corynebacterium glutamicum.

    Science.gov (United States)

    Komine-Abe, Ayano; Nagano-Shoji, Megumi; Kubo, Shosei; Kawasaki, Hisashi; Yoshida, Minoru; Nishiyama, Makoto; Kosono, Saori

    2017-11-01

    In Corynebacterium glutamicum, the activity of the 2-oxoglutarate dehydrogenase (ODH) complex is negatively regulated by the unphosphorylated form of OdhI protein, which is critical for L-glutamate overproduction. We examined the potential impact of protein acylation at lysine (K)-132 of OdhI in C. glutamicum ATCC13032. The K132E succinylation-mimic mutation reduced the ability of OdhI to bind OdhA, the catalytic subunit of the ODH complex, which reduced the inhibition of ODH activity. In vitro succinylation of OdhI protein also reduced the ability to inhibit ODH, and the K132R mutation blocked the effect. These results suggest that succinylation at K132 may attenuate the OdhI function. Consistent with these results, the C. glutamicum mutant strain with OdhI-K132E showed decreased L-glutamate production. Our results indicated that not only phosphorylation but also succinylation of OdhI protein may regulate L-glutamate production in C. glutamicum.

  18. Natural products as potential human ether-a-go-go-related gene channel inhibitors - outcomes from a screening of widely used herbal medicines and edible plants.

    Science.gov (United States)

    Schramm, Anja; Jähne, Evelyn A; Baburin, Igor; Hering, Steffen; Hamburger, Matthias

    2014-08-01

    Inhibition of the human ether-a-go-go-related gene channel is the single most important risk factor leading to acquired long QT syndrome. Drug-induced QT prolongation can cause severe cardiac complications, including arrhythmia, and is thus a liability in drug development. Considering the importance of the human ether-a-go-go-related gene channel as an antitarget and the daily intake of plant-derived foods and herbal products, surprisingly few natural products have been tested for channel blocking properties. In an assessment of possible human ether-a-go-go-related gene liabilities, a selection of widely used herbal medicines and edible plants (vegetables, fruits, and spices) was screened by means of a functional two-microelectrode voltage-clamp assay with Xenopus oocytes. The human ether-a-go-go-related gene channel blocking activity of selected extracts was investigated with the aid of a high-performance liquid chromatography-based profiling approach, and attributed to tannins and alkaloids. Major European medicinal plants and frequently consumed food plants were found to have a low risk for human ether-a-go-go-related gene toxicity. Georg Thieme Verlag KG Stuttgart · New York.

  19. Screening of Indonesian medicinal plants for inhibitor activity on nitric oxide production of RAW264.7 cells and antioxidant activity.

    Science.gov (United States)

    Choi, Eun-Mi; Hwang, Jae-Kwan

    2005-03-01

    Traditional Indonesian medicinal plants were screened for their inhibitory effects on the nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and for the antioxidant activity through the evaluation of free radical scavenging effect and reducing power. The results of screening indicated that 50 methanolic extracts inhibited (>50%) lipopolysaccharides (LPS)-induced NO release from RAW264.7 cells at 50 microg/ml, with 18 having greater than 100% inhibition. At 200 microg/ml, 61 methanol extracts exhibited inhibitory activity (>50%), with 45 showing greater than 100% inhibition. In addition, the free radical scavenging effects of 6 methanolic extracts were found to be more than 50% for extract concentration of 0.5 mug/ml. The results indicate that the extracts contain active compounds that inhibit NO release and scavenge free radical.

  20. Calcineurin inhibitors suppress cytokine production from memory T cells and differentiation of naïve T cells into cytokine-producing mature T cells.

    Directory of Open Access Journals (Sweden)

    Kenshiro Tsuda

    Full Text Available T cells have been classified as belonging to the Th1 or Th2 subsets according to the production of defining cytokines such as IFN-γ and IL-4. The discovery of the Th17 lineage and regulatory T cells shifted the simple concept of the Th1/Th2 balance into a 4-way mechanistic pathway of local and systemic immunological activity. Clinically, the blockage of cytokine signals or non-specific suppression of cytokine predominance by immunosuppressants is the first-line treatment for inflammatory T cell-mediated disorders. Cyclosporine A (CsA and Tacrolimus (Tac are commonly used immunosuppressants for the treatment of autoimmune disease, psoriasis, and atopic disorders. Many studies have shown that these compounds suppress the activation of the calcium-dependent phosphatase calcineurin, thereby inhibiting T-cell activation. Although CsA and Tac are frequently utilized, their pharmacological mechanisms have not yet been fully elucidated.In the present study, we focused on the effects of CsA and Tac on cytokine secretion from purified human memory CD4(+T cells and the differentiation of naïve T cells into cytokine-producing memory T cells. CsA or Tac significantly inhibited IFN-γ, IL-4, and IL-17 production from memory T cells. These compounds also inhibited T cell differentiation into the Th1, Th2, and Th17 subsets, even when used at a low concentration. This study provided critical information regarding the clinical efficacies of CsA and Tac as immunosuppressants.

  1. ELISA analysis of soybean trypsin inhibitors in processed foods.

    Science.gov (United States)

    Brandon, D L; Bates, A H; Friedman, M

    1991-01-01

    Soybean proteins are widely used in human foods in a variety of forms, including infant formulas, flour, protein concentrates, protein isolates, soy sauces, textured soy fibers, and tofu. The presence of inhibitors of digestive enzymes in soy proteins impairs the nutritional quality and possibly the safety of soybeans and other legumes. Processing, based on the use of heat or fractionation of protein isolates, does not completely inactivate or remove these inhibitors, so that residual amounts of inhibitors are consumed by animals and humans. New monoclonal antibody-based immunoassays can measure low levels of the soybean Kunitz trypsin inhibitor (KTI) and the Bowman-Birk trypsin and chymotrypsin inhibitor (BBI) and the Bowman-Birk foods. The enzyme-linked immunosorbent assay (ELISA) was used to measure the inhibitor content of soy concentrates, isolates, and flours, both heated and unheated; a commercial soy infant formula; KTI and BBI with rearranged disulfide bonds; browning products derived from heat-treatment of KTI with glucose and starch; and KTI exposed to high pH. The results indicate that even low inhibitor isolates contain significant amounts of specific inhibitors. Thus, infants on soy formula consume about 10 mg of KTI plus BBI per day. The immunoassays complement the established enzymatic assays of trypsin and chymotrypsin inhibitors, and have advantages in (a) measuring low levels of inhibitors in processed foods; and (b) differentiating between the Kunitz and Bowman-Birk inhibitors. The significance of our findings for food safety are discussed.

  2. Synthesis of 5α-cholestan-6-one derivatives and their inhibitory activities of NO production in activated microglia: discovery of a novel neuroinflammation inhibitor.

    Science.gov (United States)

    Yang, Ya-Xi; Zheng, Long-Tai; Shi, Jing-Jing; Gao, Bo; Chen, Yan-Ke; Yang, Hui-Chi; Chen, Hong-Li; Li, Yuan-Chao; Zhen, Xue-Chu

    2014-02-15

    Glial activation-mediated neuroinflammation plays a pivotal role in the process of several neuroinflammatory diseases including stroke, Alzheimer's diseases, Parkinson's diseases, multiple sclerosis and ischemia. Inhibition of microglial activation may ameliorate neuronal degeneration under the inflammatory conditions. In the present study, a number of 5α-cholestan-6-one derivatives were prepared and the anti-inflammatory effects of these compounds were evaluated in LPS-stimulated BV-2 microglia cells. Those derivatives were synthesized from readily available hyodeoxycholic acid (1). Among the tested compounds, several analogs (16-18, 25, 35, 38) exhibited potent inhibitory activities on nitric oxide production with no or weak cell toxicity. Compound 16 also significantly suppressed the expression of TNF-α, interleukin (IL)-1β, cyclooxygenase (COX-2) as well as inducible nitric oxide synthase (iNOS) in LPS-stimulated BV-2 microglia cells. In addition, compound 16 markedly reduced infarction volume in a focal ischemic mice model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Calyculins and Related Marine Natural Products as Serine- Threonine Protein Phosphatase PP1 and PP2A Inhibitors and Total Syntheses of Calyculin A, B, and C

    Directory of Open Access Journals (Sweden)

    Ari M. P. Koskinen

    2010-01-01

    Full Text Available Calyculins, highly cytotoxic polyketides, originally isolated from the marine sponge Discodermia calyx by Fusetani and co-workers, belong to the lithistid sponges group. These molecules have become interesting targets for cell biologists and synthetic organic chemists. The serine/threonine protein phosphatases play an essential role in the cellular signalling, metabolism, and cell cycle control. Calyculins express potent protein phosphatase 1 and 2A inhibitory activity, and have therefore become valuable tools for cellular biologists studying intracellular processes and their control by reversible phosphorylation. Calyculins might also play an important role in the development of several diseases such as cancer, neurodegenerative diseases, and type 2-diabetes mellitus. The fascinating structures of calyculins have inspired various groups of synthetic organic chemists to develop total syntheses of the most abundant calyculins A and C. However, with fifteen chiral centres, a cyano-capped tetraene unit, a phosphate-bearing spiroketal, an anti, anti, anti dipropionate segment, an α-chiral oxazole, and a trihydroxylated γ-amino acid, calyculins reach versatility that only few natural products can surpass, and truly challenge modern chemists’ asymmetric synthesis skills.

  4. Latifolicinin A from a Fermented Soymilk Product and the Structure-Activity Relationship of Synthetic Analogues as Inhibitors of Breast Cancer Cell Growth.

    Science.gov (United States)

    Ke, Yi-Yu; Tsai, Chen-Hsuan; Yu, Hui-Ming; Jao, Yu-Chen; Fang, Jim-Min; Wong, Chi-Huey

    2015-11-11

    The functional components in soymilk may vary depending upon the fermentation process. A fermented soymilk product (FSP) obtained by incubation with the microorganisms of intestinal microflora was found to reduce the risk of breast cancer. Guided by the inhibitory activities against breast cancer cells, two cytotoxic compounds, daidzein and (S)-latifolicinin A, were isolated from the FSP by repetitive extraction and chromatography. Latifolicinin A is the n-butyl ester of β-(4-hydroxyphenyl)lactic acid (HPLA). A series of the ester and amide derivatives of (S)-HPLA and L-tyrosine were synthesized for evaluation of their cytotoxic activities. In comparison, (S)-HPLA derivatives exhibited equal or superior inhibitory activities to their L-tyrosine counterparts, and (S)-HPLA amides showed better cytotoxic activities than their corresponding esters. In particular, (S)-HPLA farnesyl amide was active to triple-negative MDA-MB-231 breast cancer cells (IC50 = 27 μM) and 10-fold less toxic to Detroit-551 normal cells.

  5. Avaliação do uso de inibidores de etileno sobre a produção de compostos voláteis e de mangiferina em manga Evaluation of the use of ethylene inhibitors on production of volatile compounds and mangiferin in mango fruit

    Directory of Open Access Journals (Sweden)

    Kirley Marques Canuto

    2010-01-01

    Full Text Available Effects of two ethylene inhibitors, 1-methylcylopropene (1-MCP and aminoethoxyvinylglycine (AVG, on production of volatile compounds and mangiferin (a bioactive xanthone in 'Tommy Atkins' mango fruit were investigated. Volatile composition and mangiferin content, in treated and untreated fruits at three maturity, stages were determined by SPME-GC-MS and HPLC, respectively. These chromatographical analysis revealed that the volatile profiles and mangiferin concentrations were not significantly different, suggesting that the use of ethylene inhibitors does not affect the mango aroma and functional properties relative to this xanthone. Moreover, a simple, precise and accurate HPLC method was developed for quantifying mangiferin in mango pulp.

  6. Novel Histone Deacetylase Inhibitors

    National Research Council Canada - National Science Library

    Strobl, Jeannie

    2001-01-01

    The research goal is to demonstrate HDACl is a new chemotherapeutic target for human breast tumor cells and to identify new HDACl inhibitors on the basis of the structure of quinoline antimalarials...

  7. A superoxide dismutase purified from the rhizome of Curcuma aeruginosa Roxb. as inhibitor of nitric oxide production in the macrophage-like RAW 264.7 cell line.

    Science.gov (United States)

    Moon-ai, Wanwisa; Niyomploy, Ploypat; Boonsombat, Ruethairat; Sangvanich, Polkit; Karnchanatat, Aphichart

    2012-04-01

    Superoxide dismutase (SOD, EC 1.15.1.1) is a metalloenzyme or antioxidant enzyme that catalyzes the disproportionation of the harmful superoxide anionic radical to hydrogen peroxide and molecular oxygen. Due to its antioxidative effects, SOD has long been applied in medicinal treatment, cosmetic, and other chemical industries. Fifteen Zingiberaceae plants were tested for SOD activity in their rhizome extracts. The crude homogenate and ammonium sulfate cut fraction of Curcuma aeruginosa were found to contain a significant level of SOD activity. The SOD enzyme was enriched 16.7-fold by sequential ammonium sulfate precipitation, diethylaminoethyl cellulose ion exchange, and Superdex 75 gel filtration column chromatography. An overall SOD yield of 2.51 % with a specific activity of 812.20 U/mg was obtained. The enriched SOD had an apparent MW of 31.5 kDa, as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis, and a pH and temperature optima of 4.0 and 50 °C. With nitroblue tetrazolium and riboflavin as substrates, the K(m) values were 57.31 ± 0.012 and 1.51 ± 0.014 M, respectively, with corresponding V(max) values of 333.7 ± 0.034 and 254.1 ± 0.022 μmol min(-1) mg protein(-1). This SOD likely belongs to the Fe- or Mn-SOD category due to the fact that it was insensitive to potassium cyanide or hydrogen peroxide inhibition, but was potentially weakly stimulated by hydrogen peroxide, and stimulated by Mn(2+)and Fe(2+) ions. Moreover, this purified SOD also exhibited inhibitory effects on lipopolysaccharide-induced nitric oxide production in cultured mouse macrophage cell RAW 264.7 in a dose-dependent manner (IC(50) = 14.36 ± 0.15 μg protein/ml).

  8. Productivity

    DEFF Research Database (Denmark)

    Spring, Martin; Johnes, Geraint; Hald, Kim Sundtoft

    Productivity is increasingly critical for developed economies. It has always been important: as Paul Krugman puts it, “Productivity isn’t everything, but in the long run it is almost everything. A country’s ability to improve its standard of living over time depends almost entirely on its ability...... to raise its output per worker”(Krugman, 1994). Analyses of productivity have, by and large, been the preserve of economists. Operations Management (OM) is rooted in a similar concern for the efficient use of scarce resources; Management Accounting (MA) is concerned with the institutionalised measurement...... and management of productivity. Yet the three perspectives are rarely connected. This paper is a sketch of a literature review seeking to identify, contrast and reconcile these three perspectives. In so doing, it aims to strengthen the connections between policy and managerial analyses of productivity....

  9. Identification of catechols as histone-lysine demethylase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Anders L; Kristensen, Line H; Stephansen, Karen B

    2012-01-01

    Identification of inhibitors of histone-lysine demethylase (HDM) enzymes is important because of their involvement in the development of cancer. An ELISA-based assay was developed for identification of inhibitors of the HDM KDM4C in a natural products library. Based on one of the hits with affinity...

  10. production

    African Journals Online (AJOL)

    answered satisfactorily. An additional important factor in discouraging collaborative work in animal and grassland production is, without doubt, the complexity of work in this field compared with much of that in the individual discipline and, in particular, the com- plexity of work on forage as a source of nutrients for live- stock.

  11. Cathepsin D inhibitors

    Directory of Open Access Journals (Sweden)

    M. Gacko

    2007-11-01

    Full Text Available Inhibitors of cathepsin D belong to chemical compounds that estrify carboxyl groups of the Asp33 and Asp231residues of its catalytic site, penta-peptides containing statin, i.e. the amino acid similar in structure to the tetraedric indirectproduct, and polypeptides found in the spare organs of many plants and forming permanent noncovalent complexes withcathepsin. Cathepsin D activity is also inhibited by alpha2-macroglobulin and antibodies directed against this enzyme.Methods used to determine the activity and concentration of these inhibitors and their analytical, preparative and therapeuticapplications are discussed.

  12. Aminocyclopentanols - Potential glycosidase inhibitors

    DEFF Research Database (Denmark)

    Lauritsen, Marie

    Recently several aminocyclopentanols having the aminogroup adjacent to a carbon sidechain, proved to be potent and anomer-selective glycosidase inhibitors.1 The bicyclic lactone 1, which has been synthesised in our group from sugar-derived starting materials, was found to be suited for further...... in the desired position, 3 and 4 were easily converted into the aminocyclopentanols 5 and 6. Other aminocyclopentanols, which have been synthesised from 1, will be presented, and their activities and specificities as glycosidase inhibitors will be discussed....

  13. 21 CFR 178.3300 - Corrosion inhibitors used for steel or tinplate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Corrosion inhibitors used for steel or tinplate... AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3300 Corrosion inhibitors used for steel or tinplate. Corrosion inhibitors may be safely used for steel or tinplate intended for use in, or...

  14. Discovery of novel phosphonate derivatives as hepatitis C virus NS3 protease inhibitors.

    Science.gov (United States)

    Sheng, X Christopher; Pyun, Hyung-Jung; Chaudhary, Kleem; Wang, Jianying; Doerffler, Edward; Fleury, Melissa; McMurtrie, Darren; Chen, Xiaowu; Delaney, William E; Kim, Choung U

    2009-07-01

    A novel class of phosphonate derivatives was designed to mimic the interaction of product-like carboxylate based inhibitors of HCV NS3 protease. A phosphonic acid (compound 2) was demonstrated to be a potent HCV NS3 protease inhibitor, and a potential candidate for treating HCV infection. The syntheses and preliminary biological evaluation of this phosphonate class of inhibitor are described.

  15. Transglutaminase inhibitor from milk

    NARCIS (Netherlands)

    Jong, G.A.H. de; Wijngaards, G.; Koppelman, S.J.

    2003-01-01

    Cross-linking experiments of skimmed bovine milk with bacterial transglutaminase isolated from Streptoverticillium mobaraense showed only some degree of formation of high-molecular-weight casein polymers. Studies on the nature of this phenomenon revealed that bovine milk contains an inhibitor of

  16. Inhibitors of histone deacetylase

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to compounds of formula (I) or a pharmaceutically acceptable salt, hydrate, solvate, or prodrug thereof, wherein X1, X2, X3, X4, X5, W1, W2, W3, and W4 are as described. The present invention relates generally to inhibitors of histone deacetylase and to methods...

  17. Inhibitors of histone demethylases

    DEFF Research Database (Denmark)

    Lohse, Brian; Kristensen, Jesper L; Kristensen, Line H

    2011-01-01

    Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the i...

  18. HIV protease inhibitor resistance

    NARCIS (Netherlands)

    Wensing, Annemarie M.J.; Fun, Axel; Nijhuis, Monique

    2017-01-01

    HIV protease is pivotal in the viral replication cycle and directs the formation of mature infectious virus particles. The development of highly specific HIV protease inhibitors (PIs), based on thorough understanding of the structure of HIV protease and its substrate, serves as a prime example of

  19. Inhibitors of proprotein convertases.

    Science.gov (United States)

    Basak, Ajoy

    2005-11-01

    The discovery of mammalian subtilases, proprotein convertases (PCs) or subtilisin-like proprotein convertases (SPCs), in 1990 was a result of sustained efforts in searching for enzyme/s responsible for maturation of inactive protein precursors. Since then, seven PCs have so far been discovered that cleave at the carboxy-terminal of a basic amino acid characterized by the consensus sequence Arg/Lys/His-X-X/Lys/Arg-Arg downward arrow, where X denotes any amino acid other than Cys. Two additional PC subtypes--called subtilisin kexin isozyme 1 (SKI-1) or site 1 protease (S1P) and neural apoptosis regulated convertase 1 (NARC-1), also known as PCSK9--that cleave at the carboxy terminus of nonbasic amino acids were discovered later. Numerous studies revealed various important functional roles of PCs in health and diseases such as tumorigenesis, diabetes, viral infections, bacterial pathogenesis, atherosclerosis, and neurodegenarative diseases such as Alzheimer's. Owing to these findings, PCs became a promising frontier for treatment of diverse pathologies. Thus modulation of PC activity with designed inhibitors is an attractive proposition not only for intervention of diseases, but also for biochemical characterization of these enzymes. Various physiological and bioengineered proteins as well as small molecules such as peptide, peptidomimetic, and nonpeptide compounds as inhibitors of PCs have been described in the literature. Among the strategies used for design of PC inhibitors, the most successful is the one based on bioengineered serpin proteins, of which the best example is alpha1-PDX, the double mutant variant of alpha1-antitrypsin (from A(355)IPM(358) to R(355)IPR(358)). Others include small peptide inhibitors with C-terminal carboxyl function modified with a potent neucleophile or those containing pseudo or isosteric peptide bond at the scissile site of a suitable peptide substrate. Among nonpeptide PC inhibitors, the number is very limited. So far, these include

  20. F8 haplotype and inhibitor risk: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort

    Science.gov (United States)

    Schwarz, John; Astermark, Jan; Menius, Erika D.; Carrington, Mary; Donfield, Sharyne M.; Gomperts, Edward D.; Nelson, George W.; Oldenburg, Johannes; Pavlova, Anna; Shapiro, Amy D.; Winkler, Cheryl A.; Berntorp, Erik

    2012-01-01

    Background Ancestral background, specifically African descent, confers higher risk for development of inhibitory antibodies to factor VIII (FVIII) in hemophilia A. It has been suggested that differences in the distribution of factor VIII gene (F8) haplotypes, and mismatch between endogenous F8 haplotypes and those comprising products used for treatment could contribute to risk. Design and Methods Data from the HIGS Combined Cohort were used to determine the association between F8 haplotype 3 (H3) vs. haplotypes 1 and 2 (H1+H2) and inhibitor risk among individuals of genetically-determined African descent. Other variables known to affect inhibitor risk including type of F8 mutation and HLA were included in the analysis. A second research question regarding risk related to mismatch in endogenous F8 haplotype and recombinant FVIII products used for treatment was addressed. Results H3 was associated with higher inhibitor risk among those genetically-identified (N=49) as of African ancestry, but the association did not remain significant after adjustment for F8 mutation type and the HLA variables. Among subjects of all racial ancestries enrolled in HIGS who reported early use of recombinant products (N=223), mismatch in endogenous haplotype and the FVIII proteins constituting the products used did not confer greater risk for inhibitor development. Conclusion H3 was not an independent predictor of inhibitor risk. Further, our findings did not support a higher risk of inhibitors in the presence of a haplotype mismatch between the FVIII molecule infused and that of the individual. PMID:22958194

  1. Comparison of the effect of intra-tendon applications of recombinant human platelet-derived growth factor-BB, platelet-rich plasma, steroids in a rat achilles tendon collagenase model.

    Science.gov (United States)

    Solchaga, Luis A; Bendele, Alison; Shah, Vivek; Snel, Leo B; Kestler, Hans K; Dines, Joshua S; Hee, Christopher K

    2014-01-01

    This study compared the effect of intra-tendon (IT) delivery of recombinant human platelet-derived growth factor-BB (rhPDGF-BB), platelet-rich plasma (PRP) and corticosteroids in a rat tendinopathy model. Seven days after collagenase induction of tendinopathy, a 30-µl IT injection was administered. Treatments included: saline; 3 µg rhPDGF-BB; 10 µg rhPDGF-BB; PRP; and 300 µg triamcinolone acetonide (TCA). Outcomes were assessed 7 and 21 days after treatment. All groups exhibited good to excellent repair. Relative to saline, cell proliferation increased 65% in the 10 µg rhPDGF-BB group and decreased 74% in the TCA group; inflammation decreased 65% in the TCA group. At 7 days, maximum load-to-failure was increased in the 3 µg rhPDGF-BB group relative to saline, PRP, and TCA (p BB group relative to saline, PRP, and TCA (p BB group compared to saline and TCA (p BB group was increased compared to saline, PRP, and TCA (p BB increased maximum load-to-failure (3 and 10 µg) and stiffness (10 µg) relative to controls and commonly used treatments. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:145-150, 2014. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. [Tissue collagenase MMP-14 and endogenous regulators of its activity in the corpus uteri in squamous cell carcinoma of the cervix].

    Science.gov (United States)

    Timoshenko, O S; Gureeva, T A; Kugaevskaya, E V; Zavalishina, L E; Andreeva, Yu Yu; Solovyeva, N I

    to investigate the expression of the membrane-bound matrix metalloproteinase MT1-MMP (MMP-14), its tissue inhibitor TIMP-2, and the proMMP-14 activator furin in the corpus uteri from the vaginal wall to the bottom of the uterine cavity in squamous cell carcinoma of the cervix (SCCC). Hysterectomy material was examined in patients with SCCC. Reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and enzyme assays were used. In SCCC, higher levels of MMP-14 expression were established in tumor cells, as evidenced by IHC (+3) and RT-PCR. IHC showed that the expression of MMP-14 was absent or insignificant in the normal uterine endometrial and myometrial tissues. However, that of MMP-14 mRNA was also found in the normal tissues to the bottom of the uterine cavity. Furin activity in the tumor was much higher than that in normal tissues. IHC indicated that TIMP-2 expression was low or absent in both the tumor and normal tissues. The expression of TIMP-2 mRNA was sufficiently obvious in both the tumor and normal tissues to the bottom of the uterine cavity. In SCCC, MMP-14 expression was substantially increased in tumors. The expression of MMP-14 and regulators of its activity is aimed at enhancing the tumor destructive (invasive) potential in the pericellular space and can occur (be induced) in the morphologically normal uterine tissue apparently with involvement of signaling through the epithelial-mesenchymal interaction. Data are important for understanding the role of MMP-14 in the development of a multistage process of carcinogenesis and may have prognostic value and an impact on therapeutic strategy for the patient.

  3. Crystal structures of rat catechol-O-methyltransferase complexed with coumarine-based inhibitor.

    Science.gov (United States)

    Tsuji, Eiichi; Okazaki, Kosuke; Takeda, Kei

    2009-01-16

    In human, catechol-O-methyltransferase (COMT: E.C. 2.1.1.6) is responsible for metabolism of catechol neurotransmitter and xenobiotics. The main clinical interest in COMT results from the possibility of using COMT inhibitors as adjuncts in the therapy of Parkinson's disease (PD) with l-DOPA. COMT is therefore a target for inhibitor development aiming at PD treatment and has been submitted to extensive structure-based drug design. Recently reported inhibitors have nitrocatechol structure that may inhibit oxidative phosphorylation and uncouple mitochondrial energy production. This work reports the first crystallographic study of Rat COMT complexed with non-nitrocatechol inhibitor. Analysis of the structural differences among the previously reported inhibitor complexes, coumarine-based inhibitor (4-phenyl-7, 8-dihydroxycoumarine: 4PCM) bound structure provides the explanation for inhibitor binding and can be used for future inhibitor design.

  4. A silanediol inhibitor of the metalloprotease thermolysin: synthesis and comparison with a phosphinic acid inhibitor.

    Science.gov (United States)

    Kim, Jaeseung; Sieburth, Scott McN

    2004-04-30

    A silanediol inhibitor of the metalloprotease thermolysin was prepared for comparison to a known phosphinic acid inhibitor, providing the first comparison of these second-row element based transition-state analogues. Inhibition of thermolysin by the silanediol (K(i) = 41 nM) was comparable to that of the phosphinic acid (K(i) = 10 nM) even though the silanediol is uncharged and thereby lacks the intrinsic Coulombic attraction of the phosphinate anion to the active-site zinc cation. This silanediol protease inhibitor is the least sterically encumbered example prepared to date and, therefore, the most prone toward polymerization. Hydrolysis of a difluorosilane intermediate to the silanediol leads cleanly to a monomeric product.

  5. Effect of insulin on albumin production and incorporation of 14C-leucine into proteins in isolated parenchymal liver cells from normal rats

    DEFF Research Database (Denmark)

    Dich, J; Gluud, C N

    1975-01-01

    Parenchymal rat liver cells were isolated by a modification of the collagenase method of Quistorff, Bondesen and Grunnet. The cells secreted albumin into the medium and incorporated 14C-leucine both into cell proteins and proteins secreted into the medium. Albumin production measured from...... the immunologically determined increment in the incubation medium was 1.7 +/- 0.2 mug albumin/min per g liver wet wt. This is about 30% of the rate of production in the perfused liver. Addition of insulin (10(-6)-10(-10) M) enhanced albumin production (50-17%), and incorporation of 14C-leucine both into albumin (50...

  6. [Topical application of vitamins, phytosterols and ceramides. Protection against increased expression of interstital collagenase and reduced collagen-I expression after single exposure to UVA irradiation].

    Science.gov (United States)

    Grether-Beck, S; Mühlberg, K; Brenden, H; Krutmann, J

    2008-07-01

    Photoaged skin is characterized by a decrease of dermal collagen fibers, resulting from an increased breakdown and a diminished de novo synthesis. The increased breakdown results from an increased expression of matrix metalloproteinases (MMPs). The main building blocks involved in de novo synthesis of collagen fibers are collagen 1A1 and 1A2, the expression of which is reduced in photoaged skin. We studied the effect of topical application of vitamins, phytosterols and ceramides on UV-induced up-regulation of the expression of MMP-1 and on UV-induced down-regulation of COL1A1 and COL1A2. The study was conducted with 10 subjects with healthy skin who were comparatively treated for 10 days with (i) a basic preparation containing jojoba oil, (ii) the basic preparation supplemented with vitamins, (iii) the basic preparation supplemented with phytosterols and ceramides, and (iv) the basic preparation supplemented with vitamins, phytosterols and ceramides. All four preparations inhibited the UV induced up-regulation of MMP-1. Neither the basic product nor that supplemented with vitamins inhibited down-regulation of COL1A1 and COL1A2, but addition of phytosterols and ceramides caused a decreased down-regulation of the expression of these genes. Our results indicate that phytosterols and ceramides are effective in blocking the reduced collagen synthesis after UV irradiation and even stimulating synthesis. They may be useful additions to anti-aging products.

  7. Pulmonary Toxicity of Cholinesterase Inhibitors

    National Research Council Canada - National Science Library

    Hilmas, Corey; Adler, Michael; Baskin, Steven I; Gupta, Ramesh C

    2006-01-01

    .... Whereas nerve agents were produced primarily for military deployment, other cholinesterase inhibitors were used for treating conditions such as myasthenia gravis and as pretreaunents for nerve agent exposure...

  8. Janus Associated Kinases Inhibitors in the Pharmacological Thera

    Directory of Open Access Journals (Sweden)

    Daniela Santos1

    2017-01-01

    Full Text Available Janus associated kinases inhibitors are a new strategy for the treatment of different clinical conditions like immunologic, inflammatory and oncology disorders. The aim of this study was to perform a review of all Janus associated kinases inhibitors available in national and international pharmaceutical market, their therapeutic indications and adverse effects, and the potential indications for investigation of those already available in the pharmaceutical market. It was also performed a review of the main new Janus associated kinases inhibitors that are still in clinical research. A literature review was conducted by consulting the summary of product characteristics of Janus associated kinases inhibitors available in the pharmaceutical market and a research in the bibliographic database PubMed using the terms «JAK inhibitors», «Janus associated kinases inhibitors» and «Janus kinases inhibitors». Ninety-five publications were included in the present review, published from January 2014 to January 2015. Drug databases of the European Medicines Agency and United States Food and Drug Administration were also consulted to search for Janus associated kinases inhibitors authorized in clinical practice. Currently, ruxolitinib and tofacitinib are available in the pharmaceutical market and oclatinib is approved as a veterinary medicinal product. Both drugs approved for human use have major adverse effects at hematological and immunological levels, which enhance the importance of the pharmacist’s role in the monitoring of patients involved in these treatments. However, several molecules are in pre-clinical and clinical studies trying to prove its potential in the treatment of several immunologic, inflammatory and oncology disorders. Thus, it is still necessary to deepen the knowledge in this area in order to overcome the risks of therapy with these agents. These risks weighed against the benefits of its clinical use have compromised the progress of

  9. Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a mathematical model.

    Science.gov (United States)

    Lai, Xiulan; Friedman, Avner

    2017-07-19

    The B-raf gene is mutated in up to 66% of human malignant melanomas, and its protein product, BRAF kinase, is a key part of RAS-RAF-MEK-ERK (MAPK) pathway of cancer cell proliferation. BRAF-targeted therapy induces significant responses in the majority of patients, and the combination BRAF/MEK inhibitor enhances clinical efficacy, but the response to BRAF inhibitor and to BRAF/MEK inhibitor is short lived. On the other hand, treatment of melanoma with an immune checkpoint inhibitor, such as anti-PD-1, has lower response rate but the response is much more durable, lasting for years. For this reason, it was suggested that combination of BRAF/MEK and PD-1 inhibitors will significantly improve overall survival time. This paper develops a mathematical model to address the question of the correlation between BRAF/MEK inhibitor and PD-1 inhibitor in melanoma therapy. The model includes dendritic and cancer cells, CD 4 + and CD 8 + T cells, MDSC cells, interleukins IL-12, IL-2, IL-6, IL-10 and TGF- β, PD-1 and PD-L1, and the two drugs: BRAF/MEK inhibitor (with concentration γ B ) and PD-1 inhibitor (with concentration γ A ). The model is represented by a system of partial differential equations, and is used to develop an efficacy map for the combined concentrations (γ B ,γ A ). It is shown that the two drugs are positively correlated if γ B and γ A are at low doses, that is, the growth of the tumor volume decreases if either γ B or γ A is increased. On the other hand, the two drugs are antagonistic at some high doses, that is, there are zones of (γ B ,γ A ) where an increase in one of the two drugs will increase the tumor volume growth, rather than decrease it. It will be important to identify, by animal experiments or by early clinical trials, the zones of (γ B ,γ A ) where antagonism occurs, in order to avoid these zones in more advanced clinical trials.

  10. Small molecule inhibitors of anthrax edema factor.

    Science.gov (United States)

    Jiao, Guan-Sheng; Kim, Seongjin; Moayeri, Mahtab; Thai, April; Cregar-Hernandez, Lynne; McKasson, Linda; O'Malley, Sean; Leppla, Stephen H; Johnson, Alan T

    2018-01-15

    Anthrax is a highly lethal disease caused by the Gram-(+) bacteria Bacillus anthracis. Edema toxin (ET) is a major contributor to the pathogenesis of disease in humans exposed to B. anthracis. ET is a bipartite toxin composed of two proteins secreted by the vegetative bacteria, edema factor (EF) and protective antigen (PA). Our work towards identifying a small molecule inhibitor of anthrax edema factor is the subject of this letter. First we demonstrate that the small molecule probe 5'-Fluorosulfonylbenzoyl 5'-adenosine (FSBA) reacts irreversibly with EF and blocks enzymatic activity. We then show that the adenosine portion of FSBA can be replaced to provide more drug-like molecules which are up to 1000-fold more potent against EF relative to FSBA, display low cross reactivity when tested against a panel of kinases, and are nanomolar inhibitors of EF in a cell-based assay of cAMP production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Caffeine as a Potential Quorum Sensing Inhibitor

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2013-04-01

    Full Text Available Quorum sensing enables bacteria to control the gene expression in response to the cell density. It regulates a variety of bacterial physiological functions such as biofilm formation, bioluminescence, virulence factors and swarming which has been shown contribute to bacterial pathogenesis. The use of quorum sensing inhibitor would be of particular interest in treating bacterial pathogenicity and infections. In this work, we have tested caffeine as quorum sensing inhibitor by using Chromobacterium violaceum CV026 as a biosensor. We verified that caffeine did not degrade the N-acyl homoserine lactones tested. In this work, it is shown that caffeine could inhibit N-acyl homoserine lactone production and swarming of a human opportunistic pathogen, namely Pseudomonas aeruginosa PA01. To the best of our knowledge, this is the first documentation providing evidence on the presence of anti-quorum sensing activity in caffeine. Our work will allow caffeine to be explored as anti-infective drugs.

  12. Proteinaceous alpha-araylase inhibitors

    DEFF Research Database (Denmark)

    Svensson, Birte; Fukuda, Kenji; Nielsen, P.K.

    2004-01-01

    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous a-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase...... inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases...... in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological...

  13. The effect of aromatase inhibitors on bone metabolism

    DEFF Research Database (Denmark)

    Folkestad, Lars; Bjarnason, Nina H; Bjerregaard, Jon Kroll

    2009-01-01

    Aromatase inhibitors increase the disease-free survival in patients with receptor-positive breast cancer. Aromatase is a cytochrome P450 enzyme complex catalysing the conversion of androgens to oestrogens. These properties cause a significant increase in bone loss. In this MiniReview, we present...... data from the aromatase inhibitor studies and the studies designed to investigate aromatase inhibitor effect on bone metabolism. At the cellular level, oestrogen has profound effects on both osteoblasts and osteoclasts. Oestrogen decreases the osteoblastic production of resorptive cytokines...... in comparison with tamoxifen. We conclude that treatment with aromatase inhibitors leads to an increased bone loss and thus an increase in the risk of fractures in women with breast cancer....

  14. Modelling of potentially promising SARS protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Plewczynski, Dariusz [Interdisciplinary Centre for Mathematical and Computational Modelling, ICM, Warsaw University, Pawinskiego 5a Street, 02-106 Warsaw (Poland); Hoffmann, Marcin [BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan (Poland); Grotthuss, Marcin von [BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan (Poland); Knizewski, Lukasz [Interdisciplinary Centre for Mathematical and Computational Modelling, ICM, Warsaw University, Pawinskiego 5a Street, 02-106 Warsaw (Poland); Rychewski, Leszek [BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan (Poland); Eitner, Krystian [BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan (Poland); Ginalski, Krzysztof [Interdisciplinary Centre for Mathematical and Computational Modelling, ICM, Warsaw University, Pawinskiego 5a Street, 02-106 Warsaw (Poland)

    2007-07-18

    In many cases, at the beginning of a high throughput screening experiment some information about active molecules is already available. Active compounds (such as substrate analogues, natural products and inhibitors of related proteins) are often identified in low throughput validation studies on a biochemical target. Sometimes the additional structural information is also available from crystallographic studies on protein and ligand complexes. In addition, the structural or sequence similarity of various protein targets yields a novel possibility for drug discovery. Co-crystallized compounds from homologous proteins can be used to design leads for a new target without co-crystallized ligands. In this paper we evaluate how far such an approach can be used in a real drug campaign, with severe acute respiratory syndrome (SARS) coronavirus providing an example. Our method is able to construct small molecules as plausible inhibitors solely on the basis of the set of ligands from crystallized complexes of a protein target, and other proteins from its structurally homologous family. The accuracy and sensitivity of the method are estimated here by the subsequent use of an electronic high throughput screening flexible docking algorithm. The best performing ligands are then used for a very restrictive similarity search for potential inhibitors of the SARS protease within the million compounds from the Ligand.Info small molecule meta-database. The selected molecules can be passed on for further experimental validation.

  15. [Resistance to integrase inhibitors].

    Science.gov (United States)

    Garrido, Carolina; de Mendoza, Carmen; Soriano, Vicente

    2008-11-01

    Integrase inhibitors are the most recently approved family of antiretroviral agents for the treatment of HIV infection. As with other antiretroviral agents, under pharmacological pressure, the virus selects resistance mutations if viral suppression is incomplete. Mutations are selected in the integrase gene, specifically in positions proximal to the catalytic center. Because clinical experience with these drugs is scarce, information on resistance is limited. Virologic failure with raltegravir is associated with selection of primary mutations such as N155H (40%) and distinct changes in position Q148 (28%). Less frequently, Y143R (6.6%) and E92Q are selected. The most frequently observed mutations in failure with elvitegravir are E92Q, E138K, Q148R/K/H and N155H, and less frequently S147G and T66A/I/K. The most common resistance pattern seems to be E138K + E147G + Q148R. There is a high grade of cross resistance between raltegravir and elvitegravir, making sequencing between these two drugs impossible.

  16. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification

    Directory of Open Access Journals (Sweden)

    David H. Keating

    2014-08-01

    Full Text Available Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass, phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH. To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(PH, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.

  17. Inhibitors of the AAA+ Chaperone p97

    Directory of Open Access Journals (Sweden)

    Eli Chapman

    2015-02-01

    Full Text Available It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®, which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+ chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and

  18. The efficiency of a corrosion inhibitor on steel in a simulated concrete environment

    International Nuclear Information System (INIS)

    Gartner, Nina; Kosec, Tadeja; Legat, Andraž

    2016-01-01

    The aim of the present work was to characterize the efficiency of a corrosion inhibitor on steel in a simulated concrete pore solution. Laboratory measurements were performed at various chloride and inhibitor concentrations in order to simulate different applications of the inhibitor when used for the protection or rehabilitation of steel reinforcement in concrete. Two electrochemical techniques, i.e. potentiodynamic polarization scans and electrochemical impedance spectroscopy, were used for this study. The exposed surfaces of the steel specimens were subsequently investigated by Raman spectroscopy and scanning electron microscopy. It was found that the inhibitor can efficiently retard the corrosion of steel in a simulated concrete pore solution at concentrations of the inhibitor >2.0% and of chlorides <0.3% at a pH 10.5. On the other hand, when these conditions are not fulfilled, localized corrosion was observed. The results of the Raman and SEM/EDS analysis showed various morphologies of corrosion products and different types of corrosion attack depending on the pH of the pore solution, and the applied concentrations of the chlorides and the inhibitor. - Highlights: • Electrochemical studies performed at various Cl − and inhibitor concentrations. • Exposed steel surfaces investigated by Raman spectroscopy and SEM. • Cl − /inhibitor ratio is important parameter for the inhibitor's efficiency. • The corrosion can re-occur if the concentration of the inhibitor is reduced. • Different corrosion behaviour and oxides in the presence of inhibitor and/or Cl − .

  19. Chelation: A Fundamental Mechanism of Action of AGE Inhibitors, AGE Breakers, and Other Inhibitors of Diabetes Complications

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Rhoji; Murray, David B.; Metz, Thomas O.; Baynes, John

    2012-03-01

    Advanced glycation or glycoxidation end-products (AGE) increase in tissue proteins with age, and their rate of accumulation is increased in diabetes, nephropathy and inflammatory diseases. AGE inhibitors include a range of compounds that are proposed to act by trapping carbonyl and dicarbonyl intermediates in AGE formation. However, some among the newer generation of AGE inhibitors lack reactive functional groups that would trap reaction intermediates, indicating an alternative mechanism of action. We propose that AGE inhibitors function primarily as chelators, inhibiting metal-catalyzed oxidation reactions. The AGE-inhibitory activity of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers is also consistent with their chelating activity. Finally, compounds described as AGE breakers, or their hydrolysis products, also have strong chelating activity, suggesting that these compounds also act through their chelating activity. We conclude that chelation is the common, and perhaps the primary, mechanism of action of AGE inhibitors and breakers, and that chronic, mild chelation therapy should prove useful in treatment of diabetes and age-related diseases characterized by oxidative stress, inflammation and increased chemical modification of tissue proteins by advanced glycoxidation and lipoxidation end-products.

  20. Angiogenesis Inhibitors in NSCLC

    Directory of Open Access Journals (Sweden)

    Anna Manzo

    2017-09-01

    Full Text Available Angiogenesis is a complex biological process that plays a relevant role in sustaining the microenvironment, growth, and metastatic potential of several tumors, including non-small cell lung cancer (NSCLC. Bevacizumab was the first angiogenesis inhibitor approved for the treatment of patients with advanced NSCLC in combination with chemotherapy; however, it was limited to patients with non-squamous histology and first-line setting. Approval was based on the results of two phase III trials (ECOG4599 and AVAIL that demonstrated an improvement of about two months in progression-free survival (PFS in both trials, and in the ECOG4599 trial, an improvement in overall survival (OS also. Afterwards, other antiangiogenic agents, including sunitinib, sorafenib, and vandetanib have been unsuccessfully tested in first and successive lines. Recently, two new antiangiogenic agents (ramucirumab and nintedanib produced a significant survival benefit in second-line setting. In the REVEL study, ramucirumab plus docetaxel prolonged the median OS of patients with any histology NSCLC when compared with docetaxel alone (10.4 versus 9.1 months, hazard ratio (HR 0.857, p = 0.0235. In the LUME-Lung 1 study, nintedanib plus docetaxel prolonged the median PFS of patients with any tumor histology (p = 0.0019, and improved OS (12.6 versus 10.3 months in patients with adenocarcinoma. As a result, it became a new option for the second-line treatment of patients with advanced NSCLC and adenocarcinoma histology. Identifying predictive biomarkers to optimize the benefit of antiangiogenic drugs remains an ongoing challenge.

  1. [ACE inhibitors and the kidney].

    Science.gov (United States)

    Hörl, W H

    1996-01-01

    Treatment with ACE inhibitors results in kidney protection due to reduction of systemic blood pressure, intraglomerular pressure, an antiproliferative effect, reduction of proteinuria and a lipid-lowering effect in proteinuric patients (secondary due to reduction of protein excretion). Elderly patients with diabetes melitus, coronary heart disease or peripheral vascular occlusion are at risk for deterioration of kidney function due to a high frequency of renal artery stenosis in these patients. In patients with renal insufficiency dose reduction of ACE inhibitors is necessary (exception: fosinopril) but more important is the risk for development of hyperkalemia. Patients at risk for renal artery stenosis and patients pretreated with diuretics should receive a low ACE inhibitor dosage initially ("start low - go slow"). For compliance reasons once daily ACE inhibitor dosage is recommended.

  2. Selective Inhibitors of Protein Methyltransferases

    Science.gov (United States)

    2015-01-01

    Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs’ physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery. PMID:25406853

  3. Inhibitor specificity of recombinant and endogenous caspase-9.

    Science.gov (United States)

    Ryan, Ciara A; Stennicke, Henning R; Nava, Victor E; Burch, Jennifer B; Hardwick, J Marie; Salvesen, Guy S

    2002-01-01

    Apoptosis triggered through the intrinsic pathway by radiation and anti-neoplastic drugs is initiated by the activation of caspase-9. To elucidate control mechanisms in this pathway we used a range of synthetic and natural reagents. The inhibitory potency of acetyl-Asp-Glu-Val-Asp-aldehyde ('Ac-DEVD-CHO'), benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone ('Z-VAD-FMK') and the endogenous caspase inhibitor X-chromosome-linked inhibitor of apoptosis protein ('XIAP') against recombinant caspase-9 were predictive of the efficacy of these compounds in a cell-free system. However, the viral proteins CrmA and p35, although potent inhibitors of recombinant caspase-9, had almost no ability to block caspase-9 in this system. These findings were also mirrored in cell expression studies. We hypothesize that the viral inhibitors CrmA and p35 are excluded from reacting productively with the natural form of active caspase-9 in vivo, making the potency of inhibitors highly context-dependent. This is supported by survival data from a mouse model of apoptosis driven by Sindbis virus expressing either p35 or a catalytic mutant of caspase-9. These results consolidate previous findings that CrmA is a potent inhibitor of caspase-9 in vitro, yet fails to block caspase-9-mediated cell death. PMID:12067274

  4. Colorimetric micro-assay for accelerated screening of mould inhibitors

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2013-01-01

    Since current standard laboratory methods are time-consuming macro-assays that rely on subjective visual ratings of mould growth, rapid and quantitative laboratory methods are needed to screen potential mould inhibitors for use in and on cellulose-based products. A colorimetric micro-assay has been developed that uses XTT tetrazolium salt to enzymatically assess...

  5. Comparative activity of three inhibitors of the angiotensin converting ...

    African Journals Online (AJOL)

    Three angiotensin converting enzyme (ACE) inhibitors, enalapril, lisinopril and captopril were tested in vivo by topical application on growth, development and whole body ecdysteroids in Ephestia kuehniella Zeller (Lepidoptera:Pyralidae), an important pest in stored products worldwide. The compounds were diluted in ...

  6. Glyceryl trinitrate is a novel inhibitor of quorum sensing in ...

    African Journals Online (AJOL)

    GTN could inhibit the violacein pigment production that is under quorum-sensing control in the reporter strain. Chromobacterium violaceum ATCC 12472. This constitutes the biological evidence of the quorum sensing inhibit- ing activity of GTN. Moreover, molecular docking study showed that GTN is a competitive inhibitor ...

  7. [Wound treatment: scientific production analysis published in the Revista Brasileira de Enfermagem from 1970-2003].

    Science.gov (United States)

    Pereira, Angela Lima; Bachion, Maria Márcia

    2005-01-01

    This systematic review aimed to analyze the scientific production concerning the use of products in the treatment of wounds, published by REBEn from 1970 to 2003. We consulted all numbers of the journal published in the period, identifying 41 articles of interest. After an appraisal reading we included 11 papers in the sample. We identified a larger publication in the decade of 1990, prevailing authors of the attendance area, almost-experimental plan and experience repor. The studied products were papain, propolis, sugar, Unna boot, activated coal, transparent film, amniotic membrane, albumin, collagenase, hydrocolloid dressing, calcium alginate, anti-bacterial agents, essential greasing acids, viscose fibers and polyester. The findings demonstrated they denote positive effects of the use of the products.

  8. Synthesis and pharmacology of proteasome inhibitors.

    Science.gov (United States)

    Rentsch, Andreas; Landsberg, Dirk; Brodmann, Tobias; Bülow, Leila; Girbig, Anna-Katharina; Kalesse, Markus

    2013-05-17

    Shortly after the discovery of the proteasome it was proposed that inhibitors could stabilize proteins which ultimately would trigger apoptosis in tumor cells. The essential questions were whether small molecules would be able to inhibit the proteasome without generating prohibitive side effects and how one would derive these compounds. Fortunately, "Mother Nature" has generated a wide variety of natural products that provide distinct selectivities and specificities. The chemical synthesis of these natural products finally provided access to analogues and optimized drugs of which two different classes have been approved for the treatment of malignancies. Despite these achievements, additional lead structures derived from nature are under investigation and will be discussed with regard to their biological potential and chemical challenges. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Water-soluble inhibitor on microbiologically influenced corrosion in diesel pipeline.

    Science.gov (United States)

    Muthukumar, N; Maruthamuthu, S; Palaniswamy, N

    2006-12-01

    The effect of water-soluble corrosion inhibitor on the growth of bacteria and its corrosion inhibition efficiency were investigated. Corrosion inhibition efficiency was studied by rotating cage test and flow loop techniques. The nature of biodegradation of corrosion inhibitor was also analyzed by using Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR) and Gas chromatography and mass spectrometer (GC-MS). The bacterial isolates (Serratia marcescens ACE2, Bacillus cereus ACE4) have the capacity to degrade the aromatic and aliphatic hydrocarbon present in the corrosion inhibitor. The degraded products of corrosion inhibitor and bacterial activity determine the electrochemical behaviour of API 5LX steel. The influence of bacterial activity on degradation of corrosion inhibitor and its influence on corrosion of API 5LX have been evaluated by employing weight loss techniques and electrochemical studies. The main finding of this paper is that the water-soluble corrosion inhibitor is consumed by the microbial action, which contributes to the decrease in inhibitor efficiency. The present study also emphasis the importance of evaluation of water-soluble corrosion inhibitor in stagnant model (flow loop test) and discusses the demerits of the water-soluble corrosion inhibitors in petroleum product pipeline.

  10. An Update on JAK Inhibitors.

    Science.gov (United States)

    Musumeci, Francesca; Greco, Chiara; Giacchell, Ilaria; Fallacara, Anna Lucia; Ibrahim, Munjed M; Grossi, Giancarlo; Brullo, Chiara; Schenone, Silvia

    2018-03-26

    Janus kinases (JAKs) are a family of non-receptor tyrosine kinases, composed by four members, JAK1, JAK2, JAK3 and TYK2. JAKs are involved in different inflammatory and autoimmune diseases, as well as in malignancies, through the activation of the JAK/STAT signalling pathway. Furthermore, the V617F mutation in JAK2 was identified in patients affected by myeloproliferative neoplasms. This knowledge prompted researchers from academia and pharmaceutical companies to investigate this field in order to discover small molecule JAK inhibitors. These efforts recently afforded to the market approval of four JAK inhibitors. Despite the fact that all these drugs are pyrrolo[2,3-d]pyrimidine derivatives, many compounds endowed with different heterocyclic scaffolds have been reported in the literature as selective or multi-JAK inhibitors, and a number of them is currently being evaluated in clinical trials. In this review we will report many representative compounds that have been published in articles or patents in the last five years (period 2013-2017). The inhibitors will be classified on the basis of their chemical structure, focusing, when possible, on their structure activity relationships, selectivity and biological activity. For every class of derivatives, compounds disclosed before 2013 that have entered clinical trials will also be briefly reported, to underline the importance of a particular chemical scaffold in the search for new inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Removal of inhibitors from lignocellulosic hydrolyzates by vacuum membrane distillation.

    Science.gov (United States)

    Chen, Jingwen; Zhang, Yaqin; Wang, Yafei; Ji, Xiaosheng; Zhang, Lin; Mi, Xigeng; Huang, He

    2013-09-01

    In this study, vacuum membrane distillation (VMD) was used to remove two prototypical fermentation inhibitors (acetic acid and furfural) from lignocellulose hydrolyzates. The effect of operating parameters, such as feed temperature and feed velocity, on the removal efficiencies of inhibitors was investigated. Under optimal conditions, more than 98% of furfural could be removed by VMD. However, the removal efficiency of acetic acid was considerably lower. After furfural and acetic acid were selectively removed from hydrolyzates by VMD, ethanol production efficiency increased by 17.8% compared to original hydrolyzates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Calpain inhibitor nanocrystals prepared using Nano Spray Dryer B-90.

    Science.gov (United States)

    Baba, Koichi; Nishida, Kohji

    2012-08-04

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. Among attractive drugs, calpain inhibitor that inhibits programmed cell death 'apoptosis' is a candidate for curing apoptosis-mediated intractable diseases such as Alzheimer's disease and Parkinson's disease. In this study, the preparation of calpain inhibitor nanocrystals using Nano Spray Dryer B-90 was demonstrated. The particle sizes were controlled by means of selecting mesh aperture sizes. The obtained average particle sizes were in the range of around 300 nm to submicron meter.

  13. ROCK inhibitors in ocular disease

    Directory of Open Access Journals (Sweden)

    Eva Halasz

    2016-12-01

    Full Text Available Rho kinases (ROCKs have a crucial role in actin-cytoskeletal reorganization and thus are involved in broad aspects of cell motility, from smooth muscle contraction to neurite outgrowth. The first marketed ROCK inhibitor, called fasudil, has been used safely for treatment of cerebral vasospasm since 1995 in Japan. During the succeeding decades ROCK inhibitors have been applied in many pathological conditions from central nervous system disorders to cardiovascular disease as potential therapeutic agents or experimental tools to help understand the underlying (pathomechanisms. In 2014, a fasudil derivate named ripasudil was accepted for clinical use in glaucoma and ocular hypertension. Since ROCK kinases are widely expressed in ocular tissues, they have been implicated in the pathology of many ocular conditions such as corneal dysfunction, glaucoma, cataract, diabetic retinopathy, age-related macular degeneration, and retinal detachment. This paper aims to provide an overview of the most recent status/application of ROCK inhibitors in the field of eye disease.

  14. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  15. Corrosion inhibitors from expired drugs.

    Science.gov (United States)

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Electrochemical studies of corrosion inhibitors

    Science.gov (United States)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  17. The effect of chemical anti-inhibitors on fibrinolytic enzymes and inhibitors

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Kluft, C

    1997-01-01

    Fibrinolytic enzyme inhibitors hamper the determination of the specific fibrinolytic serine protease activity. Reportedly, chemical anti-inhibitors eliminate the influence of fibrinolytic inhibitors, but it remains unclear to what extent they change the specific activity of fibrinolytic serine...

  18. Carbohydrate inhibitors of cholera toxin.

    Science.gov (United States)

    Kumar, Vajinder; Turnbull, W Bruce

    2018-01-01

    Cholera is a diarrheal disease caused by a protein toxin released by Vibrio cholera in the host's intestine. The toxin enters intestinal epithelial cells after binding to specific carbohydrates on the cell surface. Over recent years, considerable effort has been invested in developing inhibitors of toxin adhesion that mimic the carbohydrate ligand, with particular emphasis on exploiting the multivalency of the toxin to enhance activity. In this review we introduce the structural features of the toxin that have guided the design of diverse inhibitors and summarise recent developments in the field.

  19. Kynurenine Aminotransferase Isozyme Inhibitors: A Review

    Directory of Open Access Journals (Sweden)

    Alireza Nematollahi

    2016-06-01

    Full Text Available Kynurenine aminotransferase isozymes (KATs 1–4 are members of the pyridoxal-5’-phosphate (PLP-dependent enzyme family, which catalyse the permanent conversion of l-kynurenine (l-KYN to kynurenic acid (KYNA, a known neuroactive agent. As KATs are found in the mammalian brain and have key roles in the kynurenine pathway, involved in different categories of central nervous system (CNS diseases, the KATs are prominent targets in the quest to treat neurodegenerative and cognitive impairment disorders. Recent studies suggest that inhibiting these enzymes would produce effects beneficial to patients with these conditions, as abnormally high levels of KYNA are observed. KAT-1 and KAT-3 share the highest sequence similarity of the isozymes in this family, and their active site pockets are also similar. Importantly, KAT-2 has the major role of kynurenic acid production (70% in the human brain, and it is considered therefore that suitable inhibition of this isozyme would be most effective in managing major aspects of CNS diseases. Human KAT-2 inhibitors have been developed, but the most potent of them, chosen for further investigations, did not proceed in clinical studies due to the cross toxicity caused by their irreversible interaction with PLP, the required cofactor of the KAT isozymes, and any other PLP-dependent enzymes. As a consequence of the possibility of extensive undesirable adverse effects, it is also important to pursue KAT inhibitors that reversibly inhibit KATs and to include a strategy that seeks compounds likely to achieve substantial interaction with regions of the active site other than the PLP. The main purpose of this treatise is to review the recent developments with the inhibitors of KAT isozymes. This treatise also includes analyses of their crystallographic structures in complex with this enzyme family, which provides further insight for researchers in this and related studies.

  20. Proteasome inhibitor treatment reduced fatty acid, triacylglycerol and cholesterol synthesis.

    Science.gov (United States)

    Oliva, Joan; French, Samuel W; Li, Jun; Bardag-Gorce, Fawzia

    2012-08-01

    In the present study, the beneficial effects of proteasome inhibitor treatment in reducing ethanol-induced steatosis were investigated. A microarray analysis was performed on the liver of rats injected with PS-341 (Bortezomib, Velcade), and the results showed that proteasome inhibitor treatment significantly reduced the mRNA expression of SREBP-1c, and the downstream lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. ELOVL6, which is responsible for fatty acids long chain elongation, was also significantly downregulated by proteasome inhibitor treatment. Moreover, PS-341 administration significantly reduced the expression of acyl-glycerol-3-phosphate acyltransferase (AGPAT), and diacylglycerol acyltransferase (DGAT), enzyme involved in triacylglycerol (TAG) synthesis. Finally, PS-341 was found to downregulate the enzyme 3-hydroxy-3-methylglutaryl-CoenzymeA synthase (HMG-CoA synthase) that is responsible for cholesterol synthesis. Proteasome inhibitor was also found to play a role in intestinal lipid adsorption because apolipoproteins A (apoA-I, apoAII, apoA-IV and ApoCIII) were downregulated by proteasome inhibitor treatment, especially ApoA-II that is known to be a marker of alcohol consumption. Proteasome inhibitor treatment also decreased apobec-1 complementation factor (ACF) leading to lower level of editing and production of ApoB protein. Moreover apolipoprotein C-III, a major component of chylomicrons was significantly downregulated. However, lipoprotein lipase (Lpl) and High density lipoprotein binding protein (Hdlbp) mRNA levels were increased by proteasome inhibitor treatment. These results suggested that proteasome inhibitor treatment could be used to reduce the alcohol-enhanced lipogenesis and alcohol-induced liver steatosis. A morphologic analysis, performed on the liver of rats fed ethanol for one month and

  1. Heteroarylimino-4-thiazolidinones as inhibitors of cartilage degradation.

    Science.gov (United States)

    Panico, Anna Maria; Vicini, Paola; Geronikaki, Athina; Incerti, Matteo; Cardile, Venera; Crascì, Lucia; Messina, Rossella; Ronsisvalle, Simone

    2011-02-01

    2-Benzo[d]thiazolyl- and 2-benzo[d]isothiazolyl-imino-5-benzylidene-4-thiazolidinone derivatives were investigated as potential metalloproteinases (MMPs) inhibitors and evaluated for their antidegenerative activity on human chondrocyte cultures stimulated by IL-1β, using an experimental model that reproduces the mechanisms involved in osteoarthritic (OA) diseases. Cell viability, the amount of glycosaminoglycans (GAGs) and the production of nitric oxide (NO) were measured. The most potent compound, 5-(4-methoxy-benzylidene)-2-(benzo[d]isothiazol-3-ylimino)-thiazolidin-4-one (4b), a MMP-13 inhibitor at nanomolar concentration (IC(50)=0.036 μM), could be considered as a lead compound for the development of novel clinical agents, inhibitors of cartilage degradation, for the treatment of OA. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Microorganisms as potential corrosion inhibitors of metallic materials

    Directory of Open Access Journals (Sweden)

    Tasić Žaklina Z.

    2016-01-01

    Full Text Available Corrosion presents the destruction of materials through chemical or electrochemical interactions with their environment. Interactions between the metal surface and bacterial cells or products of their metabolic activities can lead to microbially-influenced corrosion. Also, it is known that certain microorganisms can contribute to corrosion inhibition. In accordance to that, the literature dealing with the application of different microorganisms as a potentialy corrosion inhibitors of metals is investigated. Different bacterial strains as a corrosion inhibitor of a metalic materials are examined. Further, the role of extracellular polymeric substances in corrosion behavior of metals is emphasized. Based on the data presented in this work, it can be said that inhibition efficiency depends on microorganism as well as type of metal. Also, it is presented that some bacterial species can be used as a good corrosion inhibitor instead of toxic organic compounds.

  3. Clinical trials for BET inhibitors run ahead of the science.

    Science.gov (United States)

    Andrieu, Guillaume; Belkina, Anna C; Denis, Gerald V

    2016-03-01

    Several cancer clinical trials for small molecule inhibitors of BET bromodomain proteins have been initiated. There is enthusiasm for the anti-proliferative effect of inhibiting BRD4, one of the targets of these inhibitors, which is thought to cooperate with MYC, a long-desired target for cancer therapeutics. However, no current inhibitor is selective for BRD4 among the three somatic BET proteins, which include BRD2 and BRD3; their respective functions are partially overlapping and none are functionally redundant with BRD4. Each BET protein controls distinct transcriptional pathways that are important for functions beyond cancer cell proliferation, including insulin production, cytokine gene transcription, T cell differentiation, adipogenesis and most seriously, active repression of dangerous latent viruses like HIV. BET inhibitors have been shown to reactivate HIV in human cells. Failure to appreciate that at concentrations used, no available BET inhibitor is member-selective, or to develop a sound biological basis to understand the diverse functions of BET proteins before undertaking for these clinical trials is reckless and likely to lead to adverse events. More mechanistic information from new basic science studies should enable proper focus on the most relevant cancers and define the expected side effect profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Comparative dissolution study on counterfeit medicines of PDE-5 inhibitors

    Directory of Open Access Journals (Sweden)

    E. Deconinck

    2014-08-01

    Full Text Available Counterfeit medicines are a growing problem in both developing and industrialised countries. In general the evaluation of these medicines is limited to the identification and the dosage of the active ingredients. In this study in vitro dissolution tests were conducted on two sets of counterfeit medicines containing PDE-5 inhibitors (sildenafil citrate and tadalafil. The dissolution profiles were statistically compared to the ones of the genuine products using the f2-method and a comparison at each time point using the Cochran test.The results showed low equivalences between counterfeit and genuine products as well as higher variations around the mean dissolution value at the different time points for the counterfeit products. Keywords: Counterfeit, PDE-5 inhibitors, In vitro dissolution, f2-Method, Cochran test

  5. Azidoblebbistatin, a photoreactive myosin inhibitor

    Science.gov (United States)

    Képiró, Miklós; Várkuti, Boglárka H.; Bodor, Andrea; Hegyi, György; Drahos, László; Kovács, Mihály; Málnási-Csizmadia, András

    2012-01-01

    Photoreactive compounds are important tools in life sciences that allow precisely timed covalent crosslinking of ligands and targets. Using a unique technique we have synthesized azidoblebbistatin, which is a derivative of blebbistatin, the most widely used myosin inhibitor. Without UV irradiation azidoblebbistatin exhibits identical inhibitory properties to those of blebbistatin. Using UV irradiation, azidoblebbistatin can be covalently crosslinked to myosin, which greatly enhances its in vitro and in vivo effectiveness. Photo-crosslinking also eliminates limitations associated with the relatively low myosin affinity and water solubility of blebbistatin. The wavelength used for photo-crosslinking is not toxic for cells and tissues, which confers a great advantage in in vivo tests. Because the crosslink results in an irreversible association of the inhibitor to myosin and the irradiation eliminates the residual activity of unbound inhibitor molecules, azidoblebbistatin has a great potential to become a highly effective tool in both structural studies of actomyosin contractility and the investigation of cellular and physiological functions of myosin II. We used azidoblebbistatin to identify previously unknown low-affinity targets of the inhibitor (EC50 ≥ 50 μM) in Dictyostelium discoideum, while the strongest interactant was found to be myosin II (EC50 = 5 μM). Our results demonstrate that azidoblebbistatin, and potentially other azidated drugs, can become highly useful tools for the identification of strong- and weak-binding cellular targets and the determination of the apparent binding affinities in in vivo conditions. PMID:22647605

  6. Checkpoint inhibitors in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Chi Young Ok

    2017-05-01

    Full Text Available Abstract Inhibitory molecules such as PD-1, CTLA-4, LAG-3, or TIM-3 play a role to keep a balance in immune function. However, many cancers exploit such molecules to escape immune surveillance. Accumulating data support that their functions are dysregulated in lymphoid neoplasms, including plasma cell myeloma, myelodysplastic syndrome, and acute myeloid leukemia. In lymphoid neoplasms, aberrations in 9p24.1 (PD-L1, PD-L2, and JAK2 locus, latent Epstein-Barr virus infection, PD-L1 3′-untranslated region disruption, and constitutive JAK-STAT pathway are known mechanisms to induce PD-L1 expression in lymphoma cells. Clinical trials demonstrated that PD-1 blockade is an attractive way to restore host’s immune function in hematological malignancies, particularly classical Hodgkin lymphoma. Numerous clinical trials exploring PD-1 blockade as a single therapy or in combination with other immune checkpoint inhibitors in patients with hematologic cancers are under way. Although impressive clinical response is observed with immune checkpoint inhibitors in patients with certain cancers, not all patients respond to immune checkpoint inhibitors. Therefore, to identify best candidates who would have excellent response to checkpoint inhibitors is of utmost importance. Several possible biomarkers are available, but consensus has not been made and pursuit to discover the best biomarker is ongoing.

  7. Synthetic and Natural Lipase Inhibitors.

    Science.gov (United States)

    Białecka-Florjańczyk, Ewa; Fabiszewska, Agata Urszula; Krzyczkowska, Jolanta; Kuryłowicz, Alina

    2016-06-30

    Lipases are enzymes that catalyse the hydrolysis of ester bonds of triglycerides ranging among biocatalysts of considerable physiological significance and industrial potential. Better understanding of the catalytic functions and achieving the possibility to control the biocatalysis process, in particular exploring some activators and inhibitors of lipases, seems to be crucial in the context of novel applications. The lipase activity is a function of interfacial composition: the enzyme can be there activated as well as denaturated or deactivated and the interface is an appropriate site for modulating lipolysis. Lipase inhibitor, interacts directly with the enzyme and inhibits lipase action. Alternatively, some compounds can postpone the lipolytic reaction via adsorption to the interphase or to the substrate molecules. The aim of this review is to summarise the current knowledge concerning human, animal and microbial lipase inhibitors, which were grouped into two categories: synthetic lipase inhibitors (including phosphonates, boronic acids and fats analogues) and natural compounds (including β-lactones and some botanical foodstuffs - plant extracts and plant metabolites, mainly polyphenols and saponins as well as peptides and some dietary fibers). The topics discussed include also inhibition issues from the viewpoint of obesity treatment. Among natural compounds able to inhibit lipase activity are β-lactones including orlistat. Orlistat is the only registered drug for obesity treatment in many countries, especially pancreatic lipase which is responsible for the hydrolysis of over 80% of total dietary fats. Its effectiveness in obesity treatment was also described.

  8. Inhibitors of mTOR

    NARCIS (Netherlands)

    Klümpen, Heinz-Josef; Beijnen, Jos H.; Gurney, Howard; Schellens, Jan H. M.

    2010-01-01

    Inhibitors of mammalian target of rapamycin (mTOR) have been approved for the treatment of renal cell carcinoma and appear to have a role in the treatment of other malignancies. The primary objective of this drug review is to provide pharmacokinetic and dynamic properties of the commonly used drugs

  9. Checkpoint inhibitors in hematological malignancies.

    Science.gov (United States)

    Ok, Chi Young; Young, Ken H

    2017-05-08

    Inhibitory molecules such as PD-1, CTLA-4, LAG-3, or TIM-3 play a role to keep a balance in immune function. However, many cancers exploit such molecules to escape immune surveillance. Accumulating data support that their functions are dysregulated in lymphoid neoplasms, including plasma cell myeloma, myelodysplastic syndrome, and acute myeloid leukemia. In lymphoid neoplasms, aberrations in 9p24.1 (PD-L1, PD-L2, and JAK2 locus), latent Epstein-Barr virus infection, PD-L1 3'-untranslated region disruption, and constitutive JAK-STAT pathway are known mechanisms to induce PD-L1 expression in lymphoma cells. Clinical trials demonstrated that PD-1 blockade is an attractive way to restore host's immune function in hematological malignancies, particularly classical Hodgkin lymphoma. Numerous clinical trials exploring PD-1 blockade as a single therapy or in combination with other immune checkpoint inhibitors in patients with hematologic cancers are under way. Although impressive clinical response is observed with immune checkpoint inhibitors in patients with certain cancers, not all patients respond to immune checkpoint inhibitors. Therefore, to identify best candidates who would have excellent response to checkpoint inhibitors is of utmost importance. Several possible biomarkers are available, but consensus has not been made and pursuit to discover the best biomarker is ongoing.

  10. Tensammetric Studies on Corrosion Inhibitors

    Indian Academy of Sciences (India)

    Tensammetric Studies on Corrosion Inhibitors-I 277 paralleled potential data and corrosion data given in the next section. The only chemicals which bring about increased polarization of the steel speci- mens are sodium nitrite, dicyclohexylamine nitrite, cyclohexylamine and morpholine. The extent of polarization follows the ...

  11. Less-toxic corrosion inhibitors

    Science.gov (United States)

    Humphries, T. S.

    1981-01-01

    Combinations of borates, nitrates, phosphates, silicates, and sodium MBT protect aluminum from corrosion in fresh water. Most effective combinations contained sodium phosphate and were alkaline. These inhibitors replace toxic chromates which are subject to governmental restrictions, but must be used in larger quantities. Experimental exposure times varied from 1 to 14 months depending upon nature of submersion solution.

  12. Proton pump inhibitors and gastroenteritis

    NARCIS (Netherlands)

    R.J. Hassing (Robert); A. Verbon (Annelies); H. de Visser (Herman); A. Hofman (Albert); B.H.Ch. Stricker (Bruno)

    2016-01-01

    textabstractAn association between proton pump inhibitor (PPI) therapy and bacterial gastroenteritis has been suggested as well as contradicted. The aim of this study was to examine the association between the use of PPIs and occurrence of bacterial gastroenteritis in the prospective Rotterdam

  13. Retroviral proteinases and their inhibitors

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Juraj

    2000-01-01

    Roč. 3, 3,4 (2000), s. 23-24 [ Proteolytic enzymes and their inhibitors in physiology and pathogenesis. 14.09.2000, Plzen] Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology

  14. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  15. Disposal of Flashed Brine Dosed with CaCO{sub3} Scale Inhibitor: What Happens When the Inhibitor is Exhausted?

    Energy Technology Data Exchange (ETDEWEB)

    Michels, D.E.

    1983-12-15

    A freshly flashed geothermal liquid, previously dosed with inhibitor and super-saturated with calcite was injected into another well where it displaced an unflashed counterpart of itself around the wellbore. Back-production of the injectate, and subsequently the native fluid, has yielded data for the rate that a scale inhibitor is degraded after injection. The circumstance also displays a novel mechanism whereby two fluids that do not physically mix never the less reactive with one another through the reservoir rock's serving a role of intermediary. The results have been further interpretated to conclude that in some circumstances a short lifetime for the scale inhibitor is not necessarily a problem for long-term injection.

  16. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells--associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    .6-0.9; P = 0.02) and OS (HR = 0.7; 95% CI: 0.6-1.0; P = 0.05). Expression of MMP-9 by lymphocytes correlated significantly with the degree of peritumoural inflammation (P = 0.02) but not with RFS (HR = .9; 95% CI: 0.7-1.1; P = 0.2) or OS (HR = 0.8; 95% CI: 0.7-1.0; P = 0.07). CONCLUSION: TIMP-1 in cancer......AIM: To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1......) in cancer cells and supporting stroma cells of CRC. METHODS: Immunoreactivity of MMP-9 and TIMP-1 by carcinoma cells, lymphocytes and fibroblasts in archival specimens of paraffin-embedded primary tumours were retrospectively associated with outcome in 340 consecutive patients completely resected for CRC...

  17. The OECD validation program of the H295R steroidogenesis assay for the identification of in vitro inhibitors and inducers of testosterone and estradiol production. Phase 2: Inter-laboratory pre-validation studies

    DEFF Research Database (Denmark)

    Hecker, Markus; Hollert, Henner; Cooper, Ralph

    2007-01-01

    are currently ongoing as part of the 'Special Activity on the Testing and Assessment of Endocrine Disruptors' within the OECD Test Guidelines Program to review, develop, standardize, and validate a number of in vitro and in vivo toxicological assays for testing and assessment of chemicals concerning...... plate was run in conjunction with the chemical exposure plate to account for inter-assay variation. Each chemical exposure was conducted two or three times. Results. All laboratories successfully detected increases and/or decreases in hormone production by H295R cells after exposure to the different...... related to one laboratory there were unexplained minor uncertainties related to the inter-laboratory hormone production variation. Based on the findings from this Phase 2 prevalidation study, the H295R Steroidogenesis Assay protocol is currently being refined. The next phase of the OECD validation program...

  18. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  19. Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview

    Directory of Open Access Journals (Sweden)

    B. E. Amitha Rani

    2012-01-01

    Full Text Available Corrosion control of metals is of technical, economical, environmental, and aesthetical importance. The use of inhibitors is one of the best options of protecting metals and alloys against corrosion. The environmental toxicity of organic corrosion inhibitors has prompted the search for green corrosion inhibitors as they are biodegradable, do not contain heavy metals or other toxic compounds. As in addition to being environmentally friendly and ecologically acceptable, plant products are inexpensive, readily available and renewable. Investigations of corrosion inhibiting abilities of tannins, alkaloids, organic,amino acids, and organic dyes of plant origin are of interest. In recent years, sol-gel coatings doped with inhibitors show real promise. Although substantial research has been devoted to corrosion inhibition by plant extracts, reports on the detailed mechanisms of the adsorption process and identification of the active ingredient are still scarce. Development of computational modeling backed by wet experimental results would help to fill this void and help understand the mechanism of inhibitor action, their adsorption patterns, the inhibitor-metal surface interface and aid the development of designer inhibitors with an understanding of the time required for the release of self-healing inhibitors. The present paper consciously restricts itself mainly to plant materials as green corrosion inhibitors.

  20. Cholinesterase inhibitor (Altenuene) from an endophytic fungus Alternaria alternata: optimization, purification and characterization.

    Science.gov (United States)

    Bhagat, J; Kaur, A; Kaur, R; Yadav, A K; Sharma, V; Chadha, B S

    2016-10-01

    The aim of this study was to screen endophytic fungi isolated from Vinca rosea for their potential to produce acetylcholinesterase (AChE) inhibitors. Endophytic fungi isolated from V. rosea (Catharanthus roseus), were screened for AChE inhibitor production using Ellman's method. Maximum inhibition against AChE (78%) was observed in an isolate VS-10, identified to be Alternaria alternata on morphological and molecular basis. The isolate also inhibited butyrylcholinesterase (73%). Significant increase (1·3 fold) was achieved after optimization of process parameters using one variable at time approach. The inhibitor was purified using chromatographic techniques. The structure elucidation of the inhibitor was carried out using spectroscopic techniques and was identified to be 'altenuene'. The purified inhibitor possessed antioxidant potential as revealed by dot blot assay. The insecticidal potential of purified inhibitor was evaluated by feeding Spodoptora litura on diet amended with inhibitor. It evinced significant larval mortality. Endophytic A. alternata can serve as a source of dual cholinesterase inhibitor 'altenuene' with significant antioxidant and insecticidal activity. This is the first report on acetylcholinestearse inhibitory activity of altenuene. Alternaria alternata has the potential to produce a dual ChE inhibitor with antioxidant activity useful in the treatment of neurodegenerative disorders and in agriculture as biocontrol agent. © 2016 The Society for Applied Microbiology.

  1. Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Sung-Koo; Park, Don-Hee; Song, Se Hee; Wee, Young-Jung; Jeong, Gwi-Taek

    2013-06-01

    The acidic hydrolysis of biomass generates numerous inhibitors of fermentation, which adversely affect cell growth and metabolism. The goal of the present study was to determine the effects of fermentation inhibitors on growth and glucose consumption by Saccharomyces cerevisiae. We also conducted in situ adsorption during cell cultivation in synthetic broth containing fermentation inhibitors. In order to evaluate the effect of in situ adsorption on cell growth, five inhibitors, namely 5-hydroxymethylfurfural, levulinic acid, furfural, formic acid, and acetic acid, were introduced into synthetic broth. The existence of fermentation inhibitors during cell culture adversely affects cell growth and sugar consumption. Furfural, formic acid, and acetic acid were the most potent inhibitors in our culture system. The in situ adsorption of inhibitors by the addition of activated charcoal to the synthetic broth increased cell growth and sugar consumption. Our results indicate that detoxification of fermentation media by in situ adsorption may be useful for enhancing biofuel production.

  2. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...

  3. Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers.

    Science.gov (United States)

    Lee, Sung-Woo; Im, Jeongdae; Dispirito, Alan A; Bodrossy, Levente; Barcelona, Michael J; Semrau, Jeremy D

    2009-11-01

    Methane and nitrous oxide are both potent greenhouse gasses, with global warming potentials approximately 25 and 298 times that of carbon dioxide. A matrix of soil microcosms was constructed with landfill cover soils collected from the King Highway Landfill in Kalamazoo, Michigan and exposed to geochemical parameters known to affect methane consumption by methanotrophs while also examining their impact on biogenic nitrous oxide production. It was found that relatively dry soils (5% moisture content) along with 15 mg NH (4) (+) (kg soil)(-1) and 0.1 mg phenylacetylene(kg soil)(-1) provided the greatest stimulation of methane oxidation while minimizing nitrous oxide production. Microarray analyses of pmoA showed that the methanotrophic community structure was dominated by Type II organisms, but Type I genera were more evident with the addition of ammonia. When phenylacetylene was added in conjunction with ammonia, the methanotrophic community structure was more similar to that observed in the presence of no amendments. PCR analyses showed the presence of amoA from both ammonia-oxidizing bacteria and archaea, and that the presence of key genes associated with these cells was reduced with the addition of phenylacetylene. Messenger RNA analyses found transcripts of pmoA, but not of mmoX, nirK, norB, or amoA from either ammonia-oxidizing bacteria or archaea. Pure culture analyses showed that methanotrophs could produce significant amounts of nitrous oxide, particularly when expressing the particulate methane monooxygenase (pMMO). Collectively, these data suggest that methanotrophs expressing pMMO played a role in nitrous oxide production in these microcosms.

  4. Risk Factors for Inhibitor Formation in Hemophilia: A Prevalent Case-Control Study

    Science.gov (United States)

    Ragni, Margaret V.; Ojeifo, Oluseyi; Feng, Jinong; Yan, Jin; Hill, Kathleen A.; Sommer, Steve S.; Trucco, Massimo N.; Brambilla, Donald J.

    2009-01-01

    Background Inhibitor formation is a major complication of hemophilia treatment. Aim In a prevalent case-control study, we evaluated blood product exposure, genotype, and HLA type on hemophilia A inhibitor formation. Methods Product exposure was extracted from medical records. Genotype was determined on stored DNA samples by detection of virtually all mutations-SSCP (DOVAM-S) and subcycling PCR. HLA typing was performed by PCR amplification and exonuclease-released fluorescence. Results Cases experienced higher intensity factor, 455 vs. 200 U per exposure, p0.100. Genotype was not associated with race. Time to immune tolerance was shorter for titers 0.50. Conclusions Inhibitor formation is associated with high intensity product exposure, CNS bleeding, African-American race, and low frequency of missense mutations. The ideal time to initiate prophylaxis to reduce CNS bleeding and inhibitor formation will require prospective studies. PMID:19563499

  5. Bioactive Natural Product and Superacid Chemistry for Lead Compound Identification: A Case Study of Selective hCA III and L-Type Ca2+ Current Inhibitors for Hypotensive Agent Discovery

    Directory of Open Access Journals (Sweden)

    Hélène Carreyre

    2017-05-01

    Full Text Available Dodoneine (Ddn is one of the active compounds identified from Agelanthus dodoneifolius, which is a medicinal plant used in African pharmacopeia and traditional medicine for the treatment of hypertension. In the context of a scientific program aiming at discovering new hypotensive agents through the original combination of natural product discovery and superacid chemistry diversification, and after evidencing dodoneine’s vasorelaxant effect on rat aorta, superacid modifications allowed us to generate original analogues which showed selective human carbonic anhydrase III (hCA III and L-type Ca2+ current inhibition. These derivatives can now be considered as new lead compounds for vasorelaxant therapeutics targeting these two proteins.

  6. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  7. Efficacy of Some Essential Oils Against Aspergillus flavus with Special Reference to Lippia alba Oil an Inhibitor of Fungal Proliferation and Aflatoxin B1 Production in Green Gram Seeds during Storage.

    Science.gov (United States)

    Pandey, Abhay K; Sonker, Nivedita; Singh, Pooja

    2016-04-01

    During mycofloral analysis of green gram (Vigna radiata (L.) R. Wilczek) seed samples taken from different grocery stores by agar and standard blotter paper methods, 5 fungal species were identified, of which Aspergillus flavus exhibited higher relative frequency (75.20% to 80.60%) and was found to produce aflatoxin B1 . On screening of 11 plant essential oils against this mycotoxigenic fungi, Lippia alba essential oil was found to be most effective and showed absolute inhibition of mycelia growth at 0.28 μL/mL. The oil of L. alba was fungistatic and fungicidal at 0.14 and 0.28 μL/mL, respectively. Oil had broad range of fungitoxicity at its MIC value and was absolutely inhibited the AFB1 production level at 2.0 μL/mL. Chemical analysis of this oil revealed geranial (36.9%) and neral (29.3%) as major components followed by myrcene (18.6%). Application of a dose of 80 μL/0.25 L air of Lippia oil in the storage system significantly inhibited the fungal proliferation and aflatoxin production without affecting the seed germination rate. By the virtue of fungicidal, antiaflatoxigenic nature and potent efficacy in storage food system, L. alba oil can be commercialized as botanical fungicide for the protection of green gram seeds during storage. © 2016 Institute of Food Technologists®

  8. Angioedema related to Angiotensin inhibitors.

    Science.gov (United States)

    Knecht, Stephanie E; Dunn, Steven P; Macaulay, Tracy E

    2014-10-01

    Angiotensin inhibitors have been extensively evaluated in clinical trials and have demonstrated significant reductions in morbidity and mortality following myocardial infarction and stroke, as well as in patients with heart failure or who are at risk of cardiovascular disease. Further, both angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are frequently prescribed for the treatment of hypertension and to preserve renal function in patients with diabetes mellitus and chronic kidney disease. Angioedema is a known, but rare, adverse effect of ACEIs and ARBs. Therefore, it is important for clinicians to have a thorough understanding of risks and benefits of prescribing these medications, particularly in patients with a history of angioedema. This review describes the literature evaluating the incidence and cross-reactivity of angioedema with ACEIs and ARBs in order to provide guidance for clinical decision making. © The Author(s) 2014.

  9. Proteasome inhibitors in cancer therapy

    Directory of Open Access Journals (Sweden)

    Wioletta Romaniuk

    2015-12-01

    Full Text Available Proteasomes are multisubunit enzyme complexes. They contain three enzymatic active sites which are termed chymotrypsin-like, trypsin-like, and caspase-like. The elementary function of the proteasomes is degradation of damaged proteins. Proteasome inhibition leads to accumulation of damaged protein, which leads to caspase activation and cell death. This relationship is used in cancer therapy. Bortezomib is the first proteasome inhibitor approved by the US Food and Drug Administration for the treatment of relapsed/refractory multiple myeloma. Carfilzomib belongs to the second generation of drugs, which was approved by the US FDA in 2012. Currently in the study phase there are four new inhibitors: ixazomib (MLN9780/MLN2238, delanzomib (CEP-18770, oprozomib (ONX0912/PR-047 and marizomib (NPI-0052.

  10. Proton Pump Inhibitors and Gastritis

    OpenAIRE

    Suzuki, Masayuki; Suzuki, Hidekazu; Hibi, Toshifumi

    2008-01-01

    Proton pump inhibitors (PPIs) are novel compounds that strongly inhibit the H+/K+-ATPase in the gastric parietal cells to cause profound suppression of acid secretion. Acid-generating ATPase, also known as vacuolar-type ATPase, is located in the lysozomes of leukocytes and osteoclasts and its activity is also reportedly influenced by treatment with PPIs. This concept is supported by the results of studies using autoradiography in which 3H-Lansoprazole uptake sites were clearly detected in the...

  11. Stabilization versus inhibition of TAFIa by competitive inhibitors in vitro

    NARCIS (Netherlands)

    Walker, J.B.; Hughes, B.; James, I.; Haddock, P.; Kluft, C.; Bajzar, L.

    2003-01-01

    Two competitive inhibitors of TAFIa (activated thrombin-activable fibrinolysis inhibitor), 2-guanidinoethyl-mercaptosuccinic acid and potato tuber carboxypeptidase inhibitor, variably affect fibrinolysis of clotted human plasma. Depending on their concentration, the inhibitors shortened, prolonged,

  12. Pharmacology of HIV integrase inhibitors.

    Science.gov (United States)

    Adams, Jessica L; Greener, Benjamin N; Kashuba, Angela D M

    2012-09-01

    The purpose of this study is to review recent and relevant pharmacology data for three HIV integrase inhibitors: raltegravir (marketed), dolutegravir, and elvitegravir (both in phase III drug development). Data from January 2011 to April 2012 were evaluated. These data better characterized integrase inhibitor pharmacokinetics, assessed dosing regimens, and investigated previously undescribed drug-drug interactions. Due to formulation challenges, raltegravir inter-patient and intra-patient pharmacokinetic variability is high. Twice-daily 400  mg dosing has been shown to be clinically superior to 800  mg once-daily dosing. A pediatric formulation of raltegravir with less variable pharmacokinetics and greater bioavailability was US Food and Drug Administration (US FDA)-approved in December 2011. Cobicistat-boosted elvitegravir, and the second-generation integrase inhibitor dolutegravir, have lower pharmacokinetic variability and are dosed once daily. Dolutegravir drug interactions are similar to raltegravir, whereas boosted elvitegravir participates in additional CYP3A-mediated interactions. Raltegravir's potent antiretroviral activity has resulted in widespread use in both treatment-naïve and experienced patients. Dolutegravir and cobicistat-boosted elvitegravir have some pharmacokinetic advantages. Pharmacokinetic data in special populations (pregnancy, pediatrics) to optimize dosing are still required.

  13. Thioredoxin Reductase and its Inhibitors

    Science.gov (United States)

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  14. Substituted androstanes as aromatase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Levina, Inna S [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    1998-11-30

    The synthesis and structure-activity relationships of inhibitors of steroid aromatase which catalyses the last stage of a multistep biotransformation of cholesterol into estrogens, viz., aromatisation of C{sub 19}-steroids into C{sub 18}-phenolic steroids, are discussed. Compounds of the androstane series which are structurally related to the natural substrate, viz., androst-4-ene-3,17-dione, are the subjects of consideration. The review encompasses problems of synthesis of various substituted androstanes and their aromatase-inhibiting activities and structural requirements for selective specific aromatase inhibitors based on in vitro and in vivo structure-activity studies of compounds synthesised, their biological properties and the results of clinical trials. Special attention is paid to practical applications of aromatase inhibitors in the treatment of hormone-dependent mammary and ovarian tumours as well as benign prostatic tumours. In writing this report, the author has used all the information currently available in the chemical, biochemical, endocrinological and medicinal literature as well as in patents. The bibliography includes 173 references.

  15. Substituted androstanes as aromatase inhibitors

    Science.gov (United States)

    Levina, Inna S.

    1998-11-01

    The synthesis and structure-activity relationships of inhibitors of steroid aromatase which catalyses the last stage of a multistep biotransformation of cholesterol into estrogens, viz., aromatisation of C19-steroids into C18-phenolic steroids, are discussed. Compounds of the androstane series which are structurally related to the natural substrate, viz., androst-4-ene-3,17-dione, are the subjects of consideration. The review encompasses problems of synthesis of various substituted androstanes and their aromatase-inhibiting activities and structural requirements for selective specific aromatase inhibitors based on in vitro and in vivo structure-activity studies of compounds synthesised, their biological properties and the results of clinical trials. Special attention is paid to practical applications of aromatase inhibitors in the treatment of hormone-dependent mammary and ovarian tumours as well as benign prostatic tumours. In writing this report, the author has used all the information currently available in the chemical, biochemical, endocrinological and medicinal literature as well as in patents. The bibliography includes 173 references.

  16. Effect of phosphodiesterase inhibitors in the bladder

    Directory of Open Access Journals (Sweden)

    Bilal Chughtai

    2015-01-01

    Full Text Available Many aging men will experience lower urinary tract symptoms (LUTS. Phosphodiesterase type 5 (PDE5 inhibitors have shown promise in treating LUTS in these patients. PDE5 inhibitors mediate their effects through several pathways including cAMP, NO/cGMP, K-channel modulated pathways, and the l-cysteine/H2S pathway. PDE5 inhibitors exert their effect in muscle cells, nerve fibers, and interstitial cells (ICs. The use of PDE5 inhibitors led to improvement in LUTS. This included urodynamic parameters. PDE5 inhibitors may play a significant role in LUTS due to their effect on the bladder rather than the prostate.

  17. Potential physiological role of plant glycosidase inhibitors

    DEFF Research Database (Denmark)

    Bellincampi, D.; Carmadella, L.; Delcour, J.A.

    2004-01-01

    and insects responsible of severe crop losses. Plants have evolved proteinaceous inhibitors to modulate the activity of several of these enzymes. The continuing discovery of new inhibitors indicates that this research area is still unexplored and may lead to new exciting developments. To date, the role...... of the inhibitors is not completely understood. Here we review recent results obtained on the best characterised inhibitors, pointing to their possible biological role in vivo. Results recently obtained with plant transformation technology indicate that this class of inhibitors has potential biotechnological...

  18. Tailored Ahp-cyclodepsipeptides as Potent Non-covalent Serine Protease Inhibitors.

    Science.gov (United States)

    Köcher, Steffen; Rey, Juliana; Bongard, Jens; Tiaden, André N; Meltzer, Michael; Richards, Peter J; Ehrmann, Michael; Kaiser, Markus

    2017-07-10

    The S1 serine protease family is one of the largest and most biologically important protease families. Despite their biomedical significance, generic approaches to generate potent, class-specific, bioactive non-covalent inhibitors for these enzymes are still limited. In this work, we demonstrate that Ahp-cyclodepsipeptides represent a suitable scaffold for generating target-tailored inhibitors of serine proteases. For efficient synthetic access, we developed a practical mixed solid- and solution-phase synthesis that we validated through performing the first chemical synthesis of the two natural products Tasipeptin A and B. The suitability of the Ahp-cyclodepsipeptide scaffold for tailored inhibitor synthesis is showcased by the generation of the most potent human HTRA protease inhibitors to date. We anticipate that our approach may also be applied to other serine proteases, thus opening new avenues for a systematic discovery of serine protease inhibitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Durability of Steel Fibres Reinforcement Concrete Beams in Chloride Environment Combined with Inhibitor

    Directory of Open Access Journals (Sweden)

    AbdelMonem Masmoudi

    2016-01-01

    Full Text Available This paper presented the effect of the combination of an inhibitor and steel fibre reinforced concrete (SFRC for concrete structures in chloride environments. Twelve beams were cast and tested to study their flexural behavior. The morphology of steel surfaces using the inhibitor after observing the scanning electron microscope showed a low layer of corrosion products. The steel surface immersed in the inhibitor free solution was seen to have been subject to chloride ions attacks as shown in this study. The interest to the field of the present study is the relatively higher durability of the performance when using the inhibitor. Crack width and crack spacing for beams under the same load showed that the use of SFRC with the inhibitor for concrete structures in chloride environments must have transferred tension across cracks that led to reducing crack spacing without any chloride ions attack.

  20. Emerging therapies for atopic dermatitis: JAK inhibitors.

    Science.gov (United States)

    Cotter, David G; Schairer, David; Eichenfield, Lawrence

    2018-03-01

    The Janus kinase-signal transducer and activator of transcription pathway is a conserved master regulator of immunity and myeloproliferation. Advanced understanding of this pathway has led to development of targeted inhibitors of Janus kinases (Jakinibs). As a class, JAK inhibitors effectively treat a multitude of hematologic and inflammatory diseases. Given such success, use of JAK inhibitors for mitigation of atopic dermatitis is under active investigation. Herein, we review the evolving data on the safety and efficacy of JAK inhibitors in treatment of atopic dermatitis. Although it is still early in the study of JAK inhibitors for atopic dermatitis, evidence identifies JAK inhibitors as effective alternatives to conventional therapies. Nonetheless, multiple large safety and efficacy trials are needed before widespread use of JAK inhibitors can be advocated for atopic dermatitis. Copyright © 2017. Published by Elsevier Inc.

  1. Counterfeit phosphodiesterase type 5 inhibitors pose significant safety risks

    OpenAIRE

    Jackson, G; Arver, S; Banks, I; Stecher, V J

    2010-01-01

    Counterfeit drugs are inherently dangerous and a growing problem; counterfeiters are becoming increasingly sophisticated. Growth of the counterfeit medication market is attributable in part to phosphodiesterase type 5 inhibitor (PDE5i) medications for erectile dysfunction (ED). Millions of counterfeit PDE5is are seized yearly and account for the bulk of all counterfeit pharmaceutical product seizures. It has been estimated that up to 2.5 million men in Europe are exposed to illicit sildenafil...

  2. Inhibitor of Tec kinase, LFM-A13, decreases pro-inflammatory mediators production in LPS-stimulated RAW264.7 macrophages via NF-κB pathway.

    Science.gov (United States)

    Wang, Fei; Zhang, Wei; Wang, Chao; Fang, Xu; Cheng, Hao; Liu, Sheng; Chen, Xu-Lin

    2017-05-23

    Tec kinase, a prototypical member of the Tec tyrosine kinases family, was shown to mainly govern lymphocyte proliferation. In the present study, we investigated the role of Tec kinase in acute inflammatory response in lipopolysaccharide (LPS) challenge. First, we demonstrate that Tec kinase activity was observed in RAW264.7 macrophages exposed to LPS. Tec and phosphorylated Tec expression were upregulated in a dose- and time-dependent manner after LPS stimulation. LPS increased monocyte chemotactic protein (MCP)-1 secretion and intercellular adhesion molecule (ICAM)-1 expression, and increasing mRNA expression was consistently observed. LPS also induced IκBα phoshporylaytion and its degradation, increased NF-κB p65 phoshporylaytion and translocation to nuclei in RAW264.7 cells. Pretreatment with LFM-A13 decreased LPS-induced cytokines and chemokines production and mRNA levels, blocked NF-κB transactivation. These effects of LPS were also prevented by Tec-siRNA. Additionally, LFM-A13 or Tec-siRNA obviously inhibited LPS-induced TGFβ-activated kinase 1(TAK1) phosphorylation. Taken together, our results suggest that Tec kinase involves in acute inflammation process in LPS-stimulated RAW264.7 cells, at least mediated by activating TAK1/ NF-κB signal pathway.

  3. The efficiency of a corrosion inhibitor on steel in a simulated concrete environment

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Nina; Kosec, Tadeja, E-mail: tadeja.kosec@zag.si; Legat, Andraž

    2016-12-01

    The aim of the present work was to characterize the efficiency of a corrosion inhibitor on steel in a simulated concrete pore solution. Laboratory measurements were performed at various chloride and inhibitor concentrations in order to simulate different applications of the inhibitor when used for the protection or rehabilitation of steel reinforcement in concrete. Two electrochemical techniques, i.e. potentiodynamic polarization scans and electrochemical impedance spectroscopy, were used for this study. The exposed surfaces of the steel specimens were subsequently investigated by Raman spectroscopy and scanning electron microscopy. It was found that the inhibitor can efficiently retard the corrosion of steel in a simulated concrete pore solution at concentrations of the inhibitor >2.0% and of chlorides <0.3% at a pH 10.5. On the other hand, when these conditions are not fulfilled, localized corrosion was observed. The results of the Raman and SEM/EDS analysis showed various morphologies of corrosion products and different types of corrosion attack depending on the pH of the pore solution, and the applied concentrations of the chlorides and the inhibitor. - Highlights: • Electrochemical studies performed at various Cl{sup −} and inhibitor concentrations. • Exposed steel surfaces investigated by Raman spectroscopy and SEM. • Cl{sup −}/inhibitor ratio is important parameter for the inhibitor's efficiency. • The corrosion can re-occur if the concentration of the inhibitor is reduced. • Different corrosion behaviour and oxides in the presence of inhibitor and/or Cl{sup −}.

  4. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Carrageenan is a potent inhibitor of papillomavirus infection.

    Directory of Open Access Journals (Sweden)

    Christopher B Buck

    2006-07-01

    Full Text Available Certain sexually transmitted human papillomavirus (HPV types are causally associated with the development of cervical cancer. Our recent development of high-titer HPV pseudoviruses has made it possible to perform high-throughput in vitro screens to identify HPV infection inhibitors. Comparison of a variety of compounds revealed that carrageenan, a type of sulfated polysaccharide extracted from red algae, is an extremely potent infection inhibitor for a broad range of sexually transmitted HPVs. Although carrageenan can inhibit herpes simplex viruses and some strains of HIV in vitro, genital HPVs are about a thousand-fold more susceptible, with 50% inhibitory doses in the low ng/ml range. Carrageenan acts primarily by preventing the binding of HPV virions to cells. This finding is consistent with the fact that carrageenan resembles heparan sulfate, an HPV cell-attachment factor. However, carrageenan is three orders of magnitude more potent than heparin, a form of cell-free heparan sulfate that has been regarded as a highly effective model HPV inhibitor. Carrageenan can also block HPV infection through a second, postattachment heparan sulfate-independent effect. Carrageenan is in widespread commercial use as a thickener in a variety of cosmetic and food products, ranging from sexual lubricants to infant feeding formulas. Some of these products block HPV infectivity in vitro, even when diluted a million-fold. Clinical trials are needed to determine whether carrageenan-based products are effective as topical microbicides against genital HPVs.

  6. Inhibitors of plant hormone transport

    Czech Academy of Sciences Publication Activity Database

    Klíma, Petr; Laňková, Martina; Zažímalová, Eva

    2016-01-01

    Roč. 253, č. 6 (2016), s. 1391-1404 ISSN 0033-183X R&D Projects: GA MŠk(CZ) LD15088 Institutional support: RVO:61389030 Keywords : polar auxin transport * acid-binding protein * gnom arf-gef * equilibrative nucleoside transporter * efflux carrier polarity * plasma-membrane-protein * cultured tobacco cells * arabidopsis-thaliana * gravitropic response * brefeldin-a * Plant hormones * Transport * Inhibitors * Auxin * Cytokinins * Strigolactones * Abscisic acid * Cell biology Subject RIV: ED - Physiology Impact factor: 2.870, year: 2016

  7. Simvastatin suppresses dexamethasone-induced secretion of plasminogen activator inhibitor-1 in human bone marrow adipocytes

    Directory of Open Access Journals (Sweden)

    Baba Hideo

    2011-04-01

    Full Text Available Abstract Background Osteonecrosis of the femoral head is a common complication of high-dose glucocorticoid treatment. Intravascular thrombosis is thought to be associated with the ischemic state of the femoral head. Plasminogen activator inhibitor-1 (PAI-1 is an adipokine, which are physiologically active substances secreted from visceral and subcutaneous adipocytes. PAI-1 suppresses fibrinolysis by binding tissue-type plasminogen activator. Several reports have described the relationship between PAI-1 and steroid-induced osteonecrosis of the femoral head, and the preventive effects of lipid-lowering agents (statins against steroid-induced osteonecrosis of the femoral head. We previously reported that adipokines and dexamethasone induced PAI-1 secretion from bone marrow adipocytes. The purpose of the present study is to examine the effects of simvastatin on PAI-1 secretion from human bone marrow adipocytes in vitro. Methods Primary bone marrow adipocytes were extracted from collagenase-treated bone marrow fluid obtained from the femoral necks of 40 patients (6 men, 34 women; age range, 52-81 years undergoing hip joint replacement surgery. After suspended culture with or without dexamethasone or simvastatin, PAI-1 mRNA expression was assessed by real-time RT-PCR. Total PAI-1 protein secretion in culture medium was assessed by enzyme-linked immunosorbent assay. Results PAI-1 mRNA expression was up-regulated by 388% (P = 0.002 with dexamethasone, and down-regulated by 45% (P = 0.002 with simvastatin, as compared to control levels. Dexamethasone increased total PAI-1 secretion by 166% (P = 0.001 and simvastatin decreased total PAI-1 secretion by 64% (P = 0.002. No significant changes were observed in adiponectin mRNA expression and secretion by dexamethasone and simvastatin, while pre-treatment with simvastatin reversed dexamethasone induced PAI-1 secretion by 89%, as compared to control levels. Conclusion The present study confirmed the suppressive

  8. Identifying common metalloprotease inhibitors by protein fold types using Fourier transform mass spectrometry.

    Science.gov (United States)

    Mitchell, Jennifer K; Pitcher, Desley; McArdle, Bernadette M; Alnefelt, Terese; Duffy, Sandra; Avery, Vicky; Quinn, Ronald J

    2007-12-01

    Fourteen natural products, known to inhibit other proteins of the Zincin-like fold class, were screened for inhibition of the Zincin-like fold metalloprotease thermolysin using mass spectrometry. Fourier Transform Mass Spectrometry was successful in identifying actinonin, a known inhibitor of astacin and stromelysin, to be an inhibitor of thermolysin. Molecular modelling studies have shown that specificity within the Zincin-like fold is determined by Protein Fold Topology.

  9. BACE-1 inhibitors part 1: identification of novel hydroxy ethylamines (HEAs).

    Science.gov (United States)

    Clarke, Brian; Demont, Emmanuel; Dingwall, Colin; Dunsdon, Rachel; Faller, Andrew; Hawkins, Julie; Hussain, Ishrut; MacPherson, David; Maile, Graham; Matico, Rosalie; Milner, Peter; Mosley, Julie; Naylor, Alan; O'Brien, Alistair; Redshaw, Sally; Riddell, David; Rowland, Paul; Soleil, Virginie; Smith, Kathrine J; Stanway, Steven; Stemp, Geoffrey; Sweitzer, Sharon; Theobald, Pam; Vesey, David; Walter, Daryl S; Ward, John; Wayne, Gareth

    2008-02-01

    Inhibition of the aspartyl protease BACE-1 has the potential to deliver a disease-modifying therapy for Alzheimer's disease. Herein, is described the lead generation effort which resulted, with the support of X-ray crystallography, in the discovery of potent inhibitors based on a hydroxy ethylamine (HEA) transition-state mimetic. These inhibitors were capable of lowering amyloid production in a cell-based assay.

  10. A New Family of Lysozyme Inhibitors Contributing to Lysozyme Tolerance in Gram-Negative Bacteria

    OpenAIRE

    Callewaert, Lien; Aertsen, Abram; Deckers, Daphne; Vanoirbeek, Kristof G. A.; Vanderkelen, Lise; Van Herreweghe, Joris M.; Masschalck, Barbara; Nakimbugwe, Dorothy; Robben, Johan; Michiels, Chris W.

    2008-01-01

    Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative...

  11. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  12. Anti-corrosion performance of composite inhibitor for N80 steel in NaIO4 solution

    Science.gov (United States)

    Zhao, Liqiang; Zhu, Yanhua; Zhang, Jian; Liu, Pingli; Liu, Yigang; Meng, Xianghai; Liu, Changlong

    2017-10-01

    A kind of composite inhibitor was chosen and compounded by zinc nitrate, sodium silicate, sodium tri-polyphosphate by orthogonal design method. The anti-corrosion performance of this composite inhibitor for N80 steel in sodium periodate solution was investigated through electrochemical measurements and soaking experiments, followed by corrosion morphology observations and corrosion products analysis. The results indicated that the composite inhibitor is a cathodic inhibitor and suitable for application in sodium periodate solution, the inhibition efficiency of optimal inhibitor can reach to 95.3%. The composite inhibitor inhibited the corrosion process by preventing the contact of corrosive medium and steel surface through formation of a protective film on the surface of N80 steel.

  13. Vanadium Compounds as PTP Inhibitors

    Directory of Open Access Journals (Sweden)

    Elsa Irving

    2017-12-01

    Full Text Available Phosphotyrosine signaling is regulated by the opposing actions of protein tyrosine kinases (PTKs and protein tyrosine phosphatases (PTPs. Here we discuss the potential of vanadium derivatives as PTP enzyme inhibitors and metallotherapeutics. We describe how vanadate in the V oxidized state is thought to inhibit PTPs, thus acting as a pan-inhibitor of this enzyme superfamily. We discuss recent developments in the biological and biochemical actions of more complex vanadium derivatives, including decavanadate and in particular the growing number of oxidovanadium compounds with organic ligands. Pre-clinical studies involving these compounds are discussed in the anti-diabetic and anti-cancer contexts. Although in many cases PTP inhibition has been implicated, it is also clear that many such compounds have further biochemical effects in cells. There also remain concerns surrounding off-target toxicities and long-term use of vanadium compounds in vivo in humans, hindering their progress through clinical trials. Despite these current misgivings, interest in these chemicals continues and many believe they could still have therapeutic potential. If so, we argue that this field would benefit from greater focus on improving the delivery and tissue targeting of vanadium compounds in order to minimize off-target toxicities. This may then harness their full therapeutic potential.

  14. Proton pump inhibitors and osteoporosis

    DEFF Research Database (Denmark)

    Andersen, Bjarne Nesgaard; Johansen, Per Birger; Abrahamsen, Bo

    2016-01-01

    PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months and a di......PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months...... and a discussion of these findings and how this has influenced our understanding of this association, the clinical impact and the underlying pathophysiology. RECENT FINDINGS: New studies have further strengthened existing evidence linking use of PPIs to osteoporosis. Short-term use does not appear to pose a lower...... risk than long-term use. There is a continued lack of conclusive studies identifying the pathogenesis. Direct effects on calcium absorption or on osteoblast or osteoclast action cannot at present plausibly explain the mechanism. SUMMARY: The use of PPIs is a risk factor for development of osteoporosis...

  15. Proteasome inhibitor patents (2010 - present).

    Science.gov (United States)

    Metcalf, Rainer; Scott, Latanya M; Daniel, Kenyon G; Dou, Q Ping

    2014-04-01

    Over the past 3 years, numerous patents and patent applications have been submitted and published involving compounds designed to inhibit the proteasome. Proteasome inhibition has been of great interest in cancer research since disruption of proteolysis leads to a significant buildup of cytotoxic proteins and activation of apoptotic pathways, particularly in rapidly proliferating cells. The current standards in proteasome inhibition are the only FDA-approved inhibitors, bortezomib and carfilzomib. Although these drugs are quite effective in treating multiple myeloma and other blood tumors, there are shortcomings, including toxicities and resistance. Most of the current patents attempt to improve on existing compounds, by increasing bioavailability and selectivity, while attempting to reduce toxicity. A general categorization of similar compounds was employed to evaluate and compare drug design strategies. This review focuses on novel compounds and subsequent analogs developed for proteasome inhibition, used in preventing and treating human cancers. A comprehensive description and categorization of patents related to each type of compound and its derivatives, as well as their uses and efficacies as anticancer agents is included. A review of combination therapy patents has also been included. Although there are many diverse chemical scaffolds being published, there are few patented proteasome inhibitors whose method of inhibition is genuinely novel. Most patents utilize a destructive chemical warhead to attack the catalytic threonine residue of the proteasome active sites. Few patents try to depart from this, emphasizing the need for developing new mechanisms of action and specific targeting.

  16. Silanediol-based inhibitor of thermolysin.

    Science.gov (United States)

    Kim, Jaeseung; Glekas, Athanasios; McN Sieburth, Scott

    2002-12-16

    The first silanediol inhibitor of thermolysin is reported, prepared by analogy with the Grobelny/Bartlett phosphinate inhibitor. A Cbz group on nitrogen proved to be unstable to the triflic acid mediated silanediol deprotection and was replaced with a dihydrocinnamoyl group. The silanediol was prepared in high purity by hydrolysis of a difluorosilane intermediate and proved to be an effective inhibitor, differing from the phosphinate by a factor of 4 (K(i)=41nM).

  17. Inhibition stereochemistry of hydroxamate inhibitors for thermolysin.

    Science.gov (United States)

    Jin, Y; Kim, D H

    1998-12-15

    N-Acyl-N-hydroxy-beta-amino acid derivatives were prepared and tested as inhibitors for thermolysin to find that these inhibitors show the L-stereospecificity in contrast to the corresponding hydroxamates prepared from alpha-amino acid, which exhibit the D-stereochemistry. N-Formyl-N-hydroxy-beta-L-Phe-NHMe is the most potent inhibitor having the Ki value of 1.66 microM.

  18. Novel mechanisms to inhibit HIV reservoir seeding using Jak inhibitors.

    Directory of Open Access Journals (Sweden)

    Christina Gavegnano

    2017-12-01

    Full Text Available Despite advances in the treatment of HIV infection with ART, elucidating strategies to overcome HIV persistence, including blockade of viral reservoir establishment, maintenance, and expansion, remains a challenge. T cell homeostasis is a major driver of HIV persistence. Cytokines involved in regulating homeostasis of memory T cells, the major hub of the HIV reservoir, trigger the Jak-STAT pathway. We evaluated the ability of tofacitinib and ruxolitinib, two FDA-approved Jak inhibitors, to block seeding and maintenance of the HIV reservoir in vitro. We provide direct demonstration for involvement of the Jak-STAT pathway in HIV persistence in vivo, ex vivo, and in vitro; pSTAT5 strongly correlates with increased levels of integrated viral DNA in vivo, and in vitro Jak inhibitors reduce the frequency of CD4+ T cells harboring integrated HIV DNA. We show that Jak inhibitors block viral production from infected cells, inhibit γ-C receptor cytokine (IL-15-induced viral reactivation from latent stores thereby preventing transmission of infectious particles to bystander activated T cells. These results show that dysregulation of the Jak-STAT pathway is associated with viral persistence in vivo, and that Jak inhibitors target key events downstream of γ-C cytokine (IL-2, IL-7 and IL-15 ligation to their receptors, impacting the magnitude of the HIV reservoir in all memory CD4 T cell subsets in vitro and ex vivo. Jak inhibitors represent a therapeutic modality to prevent key events of T cell activation that regulate HIV persistence and together, specific, potent blockade of these events may be integrated to future curative strategies.

  19. Corrosion Inhibitor of Carbon Steel from Onion Peel Extract

    Directory of Open Access Journals (Sweden)

    Muhammad Samsudin Asep

    2018-01-01

    Full Text Available Carbon steels composed by two main elements, they are iron (Fe and carbon (C elements which widely used in industrial because of its resistance and more affordable than stainless steel, but their weakness is they have low corrosion resistance. One way to modify carbon steel is by coating them with antioxidant compounds that can delay, slow down, and prevent lipid oxidation process, which obtained from onion peel extract. Several studies on corrosion inhibitors have been performed. However, the efficiency was not reach the optimum. This study aims to examine the effect of onion peel extract concentration on the efficiency of corrosion inhibitor and characterization of the green corrosion inhibitor from onion peel extract. This research method begins by extracting onion peel to 200 ml solvent which we use aquadest and methanol and mixed with 5 grams of crushed onion peel, then let them be extracted for 60 minutes with room temperature. Once it was filtered and the solution obtained, followed by evaporating process with rotary evaporator to decrease the content of solvent. The product is ready to be used as a green corrosion inhibitor of carbon steel in 1 mol/L HCl. While the analysis used is HPLC qualitative analysis, and electroplatting process. The impedance is measured at a frequency of 100 kHz to 4 mHz with an AC current of 10mV. Inhibitor concentrations are vary between 2 ml and 4 ml of onion peel extract. Electroplatting is done within 30 minutes with 10 minutes each checking time. Furthermore, quantitative analysis was done for the analysis of corrosion rate and weight loss. Based on HPLC analysis, it is known that the extract of onion peel contains 1mg/L of quercetin, which is belong to flavonoid group as green inhibitor. While electroplatting process, aquadest solvent having average efficiency of 99,57% for 2 ml of extract, and 99,60% for 4 ml of extract. Methanol solvent having average efficiency of 99,52% for 2 ml of extract and 99

  20. Arginase Inhibitor in the Pharmacological Correction of Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Mihail V. Pokrovskiy

    2011-01-01

    Full Text Available This paper is about a way of correction of endothelial dysfunction with the inhibitor of arginase: L-norvaline. There is an imbalance between vasoconstriction and vasodilatation factors of endothelium on the basis of endothelial dysfunction. Among vasodilatation agents, nitrogen oxide plays the basic role. Amino acid L-arginine serves as a source of molecules of nitrogen oxide in an organism. Because of the high activity of arginase enzyme which catalyzes the hydrolysis of L-arginine into ornithine and urea, the bioavailability of nitrogen oxide decreases. The inhibitors of arginase suppress the activity of the given enzyme, raising and production of nitrogen oxide, preventing the development of endothelial dysfunction.

  1. Stabilized cyclopropane analogs of the splicing inhibitor FD-895.

    Science.gov (United States)

    Villa, Reymundo; Kashyap, Manoj Kumar; Kumar, Deepak; Kipps, Thomas J; Castro, Januario E; La Clair, James J; Burkart, Michael D

    2013-09-12

    Targeting the spliceosome with small molecule inhibitors provides a new avenue to target cancer by intercepting alternate splicing pathways. Although our understanding of alternate mRNA splicing remains poorly understood, it provides an escape pathway for many cancers resistant to current therapeutics. These findings have encouraged recent academic and industrial efforts to develop natural product spliceosome inhibitors, including FD-895 (1a), pladienolide B (1b), and pladienolide D (1c), into next-generation anticancer drugs. The present study describes the application of semisynthesis and total synthesis to reveal key structure-activity relationships for the spliceosome inhibition by 1a. This information is applied to deliver new analogs with improved stability and potent activity at inhibiting splicing in patient derived cell lines.

  2. Chemistry and biology of natural product derived protease inhibitors

    OpenAIRE

    Stolze, Sara Christina

    2012-01-01

    Im Rahmen dieser Dissertation sollten Naturstoffe und davon abgeleitete Derivate synthetisiert und im Hinblick auf ihre biologische Aktivität als Protease-Inhibitoren untersucht werden. Für die Naturstoffklasse der 3-Amino-6-Hydroxy-2-piperidon(Ahp)-Cyclodepsipeptide, die als nicht-kovalente Serin-Protease-Inhibitoren bekannt sind, konnte eine Festphasensynthese basierend auf einem allgemeinen Ahp-Vorläufermolekül entwickelt werden. Für den Ahp-Vorläufer wurde eine Lösungssynthese entwicke...

  3. Optimised production of L-glutaminase: A tumour inhibitor from ...

    African Journals Online (AJOL)

    Jane

    2011-10-17

    Oct 17, 2011 ... therapeutic agent against cancer and HIV (Roberts et al.,. 1970; Chandrasekaran et al., 1991; Kumar and ..... Molecular cloning, overexpression, and purification of Micrococcus luteus K-3-type glutaminase from Aspergillus oryzae RIB40. Protein Exp. Purif., 38: 272–278. Mitchell DA, Lonsane BK (1992).

  4. Effect of iron and growth inhibitors on siderophores production by ...

    African Journals Online (AJOL)

    The ability of Pseudomonas to grow and to produce siderophores is dependent on the iron content and the type of carbon sources in the medium. Under conditions of low-iron concentration the Pseudomonas isolates studied produced yellow-green fluorescent iron-binding peptide siderophores and the biosynthesis of this ...

  5. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges.

    Science.gov (United States)

    Víteček, Jan; Lojek, Antonín; Valacchi, Giuseppe; Kubala, Lukáš

    2012-01-01

    In the past three decades, nitric oxide has been well established as an important bioactive molecule implicated in regulation of cardiovascular, nervous, and immune systems. Therefore, it is not surprising that much effort has been made to find specific inhibitors of nitric oxide synthases (NOS), the enzymes responsible for production of nitric oxide. Among the many NOS inhibitors developed to date, inhibitors based on derivatives and analogues of arginine are of special interest, as this category includes a relatively high number of compounds with good potential for experimental as well as clinical application. Though this group of inhibitors covers early nonspecific compounds, modern drug design strategies such as biochemical screening and computer-aided drug design have provided NOS-isoform-specific inhibitors. With an emphasis on major advances in this field, a comprehensive list of inhibitors based on their structural characteristics is discussed in this paper. We provide a summary of their biochemical properties as well as their observed effects both in vitro and in vivo. Furthermore, we focus in particular on their pharmacology and use in recent clinical studies. The potential of newly designed specific NOS inhibitors developed by means of modern drug development strategies is highlighted.

  6. Arginine-Based Inhibitors of Nitric Oxide Synthase: Therapeutic Potential and Challenges

    Directory of Open Access Journals (Sweden)

    Jan Víteček

    2012-01-01

    Full Text Available In the past three decades, nitric oxide has been well established as an important bioactive molecule implicated in regulation of cardiovascular, nervous, and immune systems. Therefore, it is not surprising that much effort has been made to find specific inhibitors of nitric oxide synthases (NOS, the enzymes responsible for production of nitric oxide. Among the many NOS inhibitors developed to date, inhibitors based on derivatives and analogues of arginine are of special interest, as this category includes a relatively high number of compounds with good potential for experimental as well as clinical application. Though this group of inhibitors covers early nonspecific compounds, modern drug design strategies such as biochemical screening and computer-aided drug design have provided NOS-isoform-specific inhibitors. With an emphasis on major advances in this field, a comprehensive list of inhibitors based on their structural characteristics is discussed in this paper. We provide a summary of their biochemical properties as well as their observed effects both in vitro and in vivo. Furthermore, we focus in particular on their pharmacology and use in recent clinical studies. The potential of newly designed specific NOS inhibitors developed by means of modern drug development strategies is highlighted.

  7. An alpha-glucosidase inhibitor from an endophytic Cladosporium sp. with potential as a biocontrol agent.

    Science.gov (United States)

    Singh, Bahaderjeet; Kaur, Tamanreet; Kaur, Sanehdeep; Manhas, Rajesh K; Kaur, Amarjeet

    2015-02-01

    This study highlights the importance of alpha-glucosidase inhibitors as mechanisms for endophyte-mediated resistance to insect pests. One of the major benefits which endophytes confer on plants is providing resistance against insect pests. This built-in defense mechanism of the plant can be used for exploring ecofriendly strategies for pest control. In the present study, 34 endophytic fungi were isolated from Tinospora cordifolia and screened for their ability to produce alpha-glucosidase inhibitors. Maximum inhibitory activity was observed in an isolate from T. cordifolia (TN-9S), identified to be Cladosporium sp. The inhibitor was purified using chromatographic techniques. The insecticidal activity of the purified inhibitor was evaluated against Spodoptera litura. The inhibitor induced a significant mortality in the larvae of S. litura and adversely affected its survival and development. It also inhibited the activity of α-glycosidases in vivo in the gut of the larvae. The purified inhibitor was determined to be a phenolic compound with amine groups, demonstrating a noncompetitive type of inhibition in vitro. The production of the inhibitor was optimized. Response surface methodology (RSM) analysis revealed a significant interaction between dextrose and malt extract, with first-order effect of pH.

  8. Serine protease inhibitors to treat inflammation: a patent review (2011-2016).

    Science.gov (United States)

    Soualmia, Feryel; El Amri, Chahrazade

    2018-02-01

    Inflammation is a physiological part of the complex biological response of tissues to counteract various harmful signals. This process involves diverse actors such as immune cells, blood vessels, and nerves as sources of mediators for inflammation control. Among them serine proteases are key elements in both physiological and pathological inflammation. Areas covered: Serine protease inhibitors to treat inflammatory diseases are being actively investigated by various industrial and academic institutions. The present review covers patent literature on serine protease inhibitors for the therapy of inflammatory diseases patented between 2011 and 2016. Expert opinion: Serine proteases regulating inflammation are versatile enzymes, usually involved in proinflammatory cytokine production and activation of immune cells. Their dysregulation during inflammation can have devastating consequences, promoting various diseases including skin and lung inflammation, neuroinflammation, and inflammatory arthritis. Several serine proteases were selected for their contribution to inflammatory diseases and significant efforts that are spread to develop inhibitors. Strategies developed for inhibitor identification consist on either peptide-based inhibitor derived from endogenous protein inhibitors or small-organic molecules. It is also worth noting that among the recent patents on serine protease inhibitors related to inflammation a significant number are related to retinal vascular dysfunction and skin diseases.

  9. 2-bromoethylamine, a suicide inhibitor of semicarbazide-sensitive amine oxidase, increases hydralazine hypotension in rats.

    Science.gov (United States)

    Vidrio, Horacio; Medina, Martha

    2005-09-01

    Previous work has shown that inhibitors of the predominantly vascular enzyme semicarbazide-sensitive amine oxidase (SSAO) potentiate the hypotensive response to hydralazine, itself a SSAO inhibitor, in anesthetized rats. The present study was carried out to determine whether the recently described suicide SSAO inhibitor 2-bromoethylamine shares this effect. Hypotensive responses to hydralazine, 0.1 mg/kg IV, were obtained in chloralose-urethane-anesthetized rats, either unpretreated or receiving bromoethylamine at different doses and pretreatment intervals. Parallel experiments were run with semicarbazide, the prototypical hydrazine SSAO inhibitor. Both inhibitors potentiated hydralazine hypotension, bromoethylamine having a longer latency and a shorter duration of action than semicarbazide. High doses of bromoethylamine did not produce potentiation, a phenomenon attributed to SSAO inactivation by excess substrate and decreased formation by the enzyme of the inhibitor product. Experiments with combined administration of both inhibitors were also carried out. When semicarbazide was administered before bromoethylamine, potentiaton was prevented, apparently by a mechanism similar to the above; when it was given after the amine, potentiation was increased. This was attributed to enzyme inhibition by interaction with 2 different active sites. The charactertistics of hydralazine potentiation by bromoethylamine were considered compatible with the mechanism of SSAO inhibition by the amine.

  10. [Interaction between clopidogrel and proton pump inhibitors

    NARCIS (Netherlands)

    Harmsze, A.M.; Boer, A. de; Boot, H.; Deneer, V.H.; Heringa, M.; Mol, P.G.; Schalekamp, T.; Verduijn, M.M.; Verheugt, F.W.A.; Comte, M. le

    2011-01-01

    The drug interaction between proton pump inhibitors and clopidogrel has been the subject of much study in recent years. Contradictory results regarding the effect of proton pump inhibitors on platelet reactivity and on clinical outcome in clopidogrel-treated patients have been reported in

  11. Electrochemical Behaviour of Environmentally Friendly Inhibitor of ...

    African Journals Online (AJOL)

    Electrochemical Behaviour of Environmentally Friendly Inhibitor of Aloe Secundiflora Extract in Corrosion Control of Carbon Steel in Soft Water Media. ... The investigation was performed at different inhibitor concentrations under static and dynamic conditions using a Rotating Disk Electrode (RDE). The impedance and ...

  12. Discovery and SAR of hydantoin TACE inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wensheng; Guo, Zhuyan; Orth, Peter; Madison, Vincent; Chen, Lei; Dai, Chaoyang; Feltz, Robert J.; Girijavallabhan, Vinay M.; Kim, Seong Heon; Kozlowski, Joseph A.; Lavey, Brian J.; Li, Dansu; Lundell, Daniel; Niu, Xiaoda; Piwinski, John J.; Popovici-Muller, Janeta; Rizvi, Razia; Rosner, Kristin E.; Shankar, Bandarpalle B.; Shih, Neng-Yang; Siddiqui, M.A.; Sun, J.; Tong, L.; Umland, S.; Wong, M.K.; Yang, D.Y.; Zhou, G. (Merck)

    2010-09-03

    We disclose inhibitors of TNF-{alpha} converting enzyme (TACE) designed around a hydantoin zinc binding moiety. Crystal structures of inhibitors bound to TACE revealed monodentate coordination of the hydantoin to the zinc. SAR, X-ray, and modeling designs are described. To our knowledge, these are the first reported X-ray structures of TACE with a hydantoin zinc ligand.

  13. Does plasminogen activator inhibitor-1 drive lymphangiogenesis?

    DEFF Research Database (Denmark)

    Bruyère, Françoise; Melen-Lamalle, Laurence; Blacher, Silvia

    2010-01-01

    The purpose of this study is to explore the function of plasminogen activator inhibitor-1 (PAI-1) during pathological lymphangiogenesis. PAI-1, the main physiological inhibitor of plasminogen activators is involved in pathological angiogenesis at least by controlling extracellular proteolysis and...

  14. Proteases and protease inhibitors in cancer

    NARCIS (Netherlands)

    van Noorden, C. J.

    1998-01-01

    The second conference on 'Proteases and protease inhibitors in cancer' was organized by the American Association for Cancer Research (AACR) and Acta Pathologica Microbiologica et Immunologica Scandinavica (APMIS). To understand the role of proteinases and to develop relevant synthetic inhibitors to

  15. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  16. Efflux inhibitor suppresses Streptococcus mutans virulence properties.

    Science.gov (United States)

    Zeng, Huihui; Liu, Jia; Ling, Junqi

    2017-04-01

    It is well established that efflux pumps play important roles in bacterial pathogenicity and efflux inhibitors (EIs) have been proved to be effective in suppressing bacterial virulence properties. However, little is known regarding the EI of Streptococcus mutans, a well-known caries-inducing bacterium. In this study, we identified the EI of S. mutans through ethidium bromide efflux assay and investigated how EI affected S. mutans virulence regarding the cariogenicity and stress response. Results indicated that reserpine, the identified EI, suppressed acid tolerance, mutacin production and transformation efficiency of S. mutans, and modified biofilm architecture and extracellular polysaccharide distribution. Suppressed glycosyltransferase activity was also noted after reserpine exposure. The data from quantitative real-time-PCR demonstrated that reserpine significantly altered the expression profile of quorum-sensing and virulence-associated genes. These findings suggest that reserpine represents a promising adjunct anticariogenic agent in that it suppresses virulence properties of S. mutans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Natural sesquiterpen lactones as acetylcholinesterase inhibitors

    Directory of Open Access Journals (Sweden)

    HOMA HAJIMEHDIPOOR

    2014-06-01

    Full Text Available Background and the purpose of the study: The amount of elder people who suffer from Alzheimer disease is continuously increasing every year. Cholinesterase inhibitors have shown to be effective in alleviating the symptoms of the disease, thus opening a field of research for these treatments. Herbal products, owning a reputation as effective agents in many biological studies are now drawing attention for inhibiting acetylcholinesterase, in other words, Alzheimer disease. In the present study, the ability of three sesquiterpene lactones from Inula oculus-christi and I. aucheriana to inhibit AChE has been evaluated through Ellman assay.Materials and Methods: Gaillardin and pulchellin C were obtained from I. oculus-christi and britannin from I. aucheriana by chromatographic methods. They were dissolved in methanol in concentration of 3 mg/mL and the AChEI activity of the compounds was determined by Ellman method using Acethylthiocholine iodide as the substrate and 5, 5′-dithiobis-2-nitrobenzoic acid as the reagent, in 96-well plates at 405 nm.Results: AChEI activity of the examined compounds was obtained as 67.0, 25.2 and 10.9% in concentration of 300 µg/L for gaillardin, britannin and pulchellin C, respectively.Conclusion: Among the three sesquiterpene lactones, gaillardin with 67% inhibition of AChE could be considered a good candidate for future Alzheimer studies.

  18. Synthesis of tritium labeled renin inhibitor ditekiren

    International Nuclear Information System (INIS)

    Hsi, R.S.P.; Stolle, W.T.; Bundy, G.L.

    1994-01-01

    In the search for a radioactive form of the peptidomimetic renin inhibitor, ditekiren, with a metabolically suitable radiolabel for conducting drug disposition studies, we prepared [ 3 H]ditekiren with tritium labels in the N-methyl-histidine moiety and in the leu-val alcohol transition-state insert. [His- 3 H]ditekiren was obtained by first introducing two iodine substituents into the N-methyl-histidine moiety of the parent drug, followed by catalytic hydrodehalogenation with tritium gas. Administration of this labeled drug to monkeys, however, resulted in prolonged retention of radioactivity in the test animals, even though little or no tritiated water was detected in urine. The results, together with similar earlier findings after administration of [ 3 H]ditekiren labeled in the proline moiety of the drug, led us to synthesize [ 3 H]ditekiren labeled in the ''unnatural'' leu-val alcohol (LVA) portion of the molecule. The tritium label in [LVA- 3 H]ditekiren was found to be metabolically suitable for conducting drug disposition studies, with no liability for tritiated water production or prolonged retention of radioactivity in tissues of test animals. (author)

  19. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly...... specific inhibitor of uPA. With the aim of creating better inhibitors based on the upain-2 scaffold, the following three strategies were explored: First, it was attempted to predefine the structure of upain-2 in solution by incorporating turn-inducing sequences and peptidomimetics. Additionally...... bond across the ring. The second bridge was made by a disulfide bridge, amide bond formation or via ring-closing metathesis. A, with upain-2 equipotent, bicyclic inhibitor was obtained and its binding to uPA was studied by ITC, NMR and X-ray. The knowledge of how selective inhibitors bind uPA has been...

  20. Solid Obtained by Electrocoagulation of Vinasse, new Inhibitor for Acid Corrosion of Brass

    Directory of Open Access Journals (Sweden)

    Elaine Ojeda-Armaignac

    2016-07-01

    Full Text Available This work is part of research related to obtaining a corrosion inhibitor from vinasse, whose basic advantages is the possibility of using an industrial waste from distilleries ethyl alcohol as raw material in the production of a solid corrosion inhibitor of national production by electrocoagulation, which implies import substitution and cost reductions. The inhibitory action of the solids obtained by electrocoagulation of vinasse was investigated by potentiodynamic polarization techniques and electrochemical impedance spectroscopy. It was found that the efficiencies of inhibition against the brass into the electrolyte solution were very good, behaving as an efficient inhibitor in acid medium. Inhibition efficiency increases with increasing concentration. The maximum inhibition efficiency was of 93,43 % for the concentration of 2 mg / L of vinasse. Thermodynamic parameters were obtained at the study temperature. It was found that the adsorption of inhibitor molecules on the surface of brass obey the Langmuir isotherm, and the values of adsorción free energy of - 23.06 kJ mol-1 show the spontaneity of adsorption and indicate that the inhibitor is strongly adsorbed on the surface of brass, study of potentiodynamic polarization curves confirmed that it is a mixed type inhibitor, with an anode predominance and there is a predominant mechanism of physical adsorption combined with a chemisorption.

  1. Structural and mechanistic basis of differentiated inhibitors of the acute pancreatitis target kynurenine-3-monooxygenase

    Science.gov (United States)

    Hutchinson, Jonathan P.; Rowland, Paul; Taylor, Mark R. D.; Christodoulou, Erica M.; Haslam, Carl; Hobbs, Clare I.; Holmes, Duncan S.; Homes, Paul; Liddle, John; Mole, Damian J.; Uings, Iain; Walker, Ann L.; Webster, Scott P.; Mowat, Christopher G.; Chung, Chun-Wa

    2017-06-01

    Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design.

  2. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement

    Science.gov (United States)

    Altenhöfer, Sebastian; Radermacher, Kim A.; Kleikers, Pamela W.M.; Wingler, Kirstin

    2015-01-01

    Abstract Significance: Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. Recent Advances: Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. Critical Issues: Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. Future Directions: The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition. Antioxid. Redox Signal. 23, 406–427. PMID:24383718

  3. Additives as corrosion inhibitors in reinforced concrete

    International Nuclear Information System (INIS)

    Venegas, Ricardo; Vera, Rosa; Carvajal, Ana Maria; Villarroel, Maria; Vera, Enrique; Ortiz, Cesar

    2008-01-01

    This work studies the behavior of two additives as inhibitors of corrosion in reinforced concrete. The presence of Microsilica, a physical inhibitor, in the mixture decreases pore size in structures and improves compression. Calcium Nitrite, a chemical inhibitor, is an oxidizing agent and allows a more homogenous film to form over the steel that becomes more resistant to attacks from aggressive ions like anion chloride and others. Three pairs of concrete test pieces were used without additives and with additives with a/c ration of 0.55. The samples were exposed to an accelerated attack of chlorides, submerging them in a 4.27 M solution of NaCl for 24 hours and then drying them at room temperature for another 24 hours, completing a cycle every 48 hours. The tests were carried out at 1 cycle and 5 cycles of partial moistening and drying. The steel corrosion was evaluated with corrosion potential measurements. Conductivity, pH, chlorides and sulfate profiles were defined depending on the depth of the concrete. The composition of the corrosion products was determined using X-ray diffraction and the morphology of the film by scanning electron microscopy. The results show that for 1 test cycle, the corrosion potential of the steel in the sample with calcium nitrite was -54mV, which was a higher value than that measured in the sample with microsilica (-217.3mV) and without an additive (-159.1mV), corroborating its inhibitory power. The content of the free chlorides in the sample with micros ice allows greater capillary suction by adding high amounts of chloride to the structure (2.6% on the outside up to 2.20% near the steel); while the test pieces with calcium nitrite and without an additive had concentrations lower than 2% in all the evaluated points. After five cycles of exposing the samples to the saline solution the behavior is inverted. The measures of conductivity agreed with the previous results. Meanwhile, the pH of the solutions obtained from the powder from the

  4. Allele-specific primer based identification of dimeric alpha-amylase inhibitor

    OpenAIRE

    Pradeep Sharma; Pooja Sharma; Manoj Saini; S. S. Singh

    2011-01-01

    Wheat is one of the most important staple food crops cultivated over 200 mha in the range of environment throughout the world. Wheat production must continue to increase by 2% annually, more particularly in developing world including south-east Asia. Besides increasing the inherent productivity of wheat, it is important to minimize the losses caused to production by various abiotic and biotic factors. Alpha–amylase inhibitors are attractive candidates for the control of seed weevils as...

  5. Development of green vapour corrosion inhibitor

    Science.gov (United States)

    Asmara, Y. P.; Suraj, V.; Siregar, J. P.; Kurniawan, T.; Bachtiar, D.; Mohamed, N. M. Z. N.

    2017-10-01

    Corrosion control using inhibitor is an effective method to protect carbon steel from corrosion. Due to environmental toxicity of chemical inorganic corrosion inhibitors (synthetic), green inhibitors are potentially to develop. In atmospheric conditions, green vapour corrosion inhibitors are the best solutions to replace the uses of inorganic corrosion inhibitors. This research used chemical acid extraction from the key lime (citrus aurantiifolia) leaves and seeds. They are used as the main ingredients to produce this effective green corrosion inhibitor. The experiments investigated effects of corrosion inhibition on corrosion rate of low carbon steel in 3% NaCl solution using both fog salt chamber and electrochemical cell. Using salt fog chamber to represent atmospheric conditions, and corrosion rates are evaluated visually and calculated using weight loss methods. Corrosion rate on electrochemical cell were calculated using linear polarization resistance (LPR) methods. All of the experiments were set in natural conditions at pH 7. Using weight loss for three days exposure time, the efficiency of the inhibitor reached 82.39%.

  6. Histone Deacetylase Inhibitors as Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Tomas Eckschlager

    2017-07-01

    Full Text Available Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC and histone acetyltransferases (HAT. HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  7. Thiazoles and Thiazolidinones as COX/LOX Inhibitors.

    Science.gov (United States)

    Liaras, Konstantinos; Fesatidou, Maria; Geronikaki, Athina

    2018-03-18

    Inflammation is a natural process that is connected to various conditions and disorders such as arthritis, psoriasis, cancer, infections, asthma, etc. Based on the fact that cyclooxygenase isoenzymes (COX-1, COX-2) are responsible for the production of prostaglandins that play an important role in inflammation, traditional treatment approaches include administration of non-steroidal anti-inflammatory drugs (NSAIDs), which act as selective or non-selective COX inhibitors. Almost all of them present a number of unwanted, often serious, side effects as a consequence of interference with the arachidonic acid cascade. In search for new drugs to avoid side effects, while maintaining high potency over inflammation, scientists turned their interest to the synthesis of dual COX/LOX inhibitors, which could provide numerous therapeutic advantages in terms of anti-inflammatory activity, improved gastric protection and safer cardiovascular profile compared to conventional NSAIDs. Τhiazole and thiazolidinone moieties can be found in numerous biologically active compounds of natural origin, as well as synthetic molecules that possess a wide range of pharmacological activities. This review focuses on the biological activity of several thiazole and thiazolidinone derivatives as COX-1/COX-2 and LOX inhibitors.

  8. Discovery of novel inhibitors for the treatment of glaucoma

    Science.gov (United States)

    Cholkar, Kishore; Trinh, Hoang M.; Pal, Dhananjay; Mitra, Ashim K

    2015-01-01

    Introduction Glaucoma is a neurodegenerative disease with heterogeneous causes that result in retinal ganglionic cell death (RGC). The discovery of ocular anti-hypertensives has shifted glaucoma therapy, largely, from surgery to medical intervention. Indeed, several intraocular pressure (IOP) lowering drugs, with different mechanisms of action and RGC protective property, have been developed. Areas covered In this review, the authors discuss the main new class of kinase inhibitors used as glaucoma treatments, which lower IOP by enhancing drainage and/or lowering production of aqueous humor. The authors include novel inhibitors under preclinical evaluation and investigation for their anti-glaucoma treatment. Additionally, the authors look at treatments that are in clinics now and which may be available in the near future. Expert opinion Treatment of glaucoma remains challenging because the exact cause is yet to be delineated. Neuroprotection to the optic nerve head is undisputable. The novel ROCK inhibitors have the capacity to lower IOP and provide optic nerve and RGC protection. In particular, the S-isomer of roscovitine has the capacity to lower IOP and provide neuroprotection. Combinations of selected drugs, which can provide maximal and sustained IOP lowering effects as well as neuroprotection, are paramount to the prevention of glaucoma progression. In the near future, microRNA intervention may be considered as a potential therapeutic target. PMID:25575654

  9. [Betalactam antibiotics combined with bectalactamases inhibitors. Amoxicillin-sulbactam].

    Science.gov (United States)

    Barcelona, Laura; Marín, Marcelo; Stamboulian, Daniel

    2008-01-01

    Betalactamases production is one of the main bacterial resistance mechanisms to betalactam antibiotics. The use of bectalactamases inhibitors combined with betalactam antibiotics allows the inactivation of certain betalactamases produced by Gram positive, Gram negative and anaerobic organisms, and even by mycobacteria. Betalactamases inhibitors are an improved therapeutic alternative compared with the other betalactam since, in most cases, they cover a wider antimicrobial spectrum than their analogues. Betalactamases enzimatic activity is specifically directed to the betalactam ring hydrolisis, producing a compound without antibacterial activity. According to their genomic position within microorganisms, betalactamases can be either chromosomic or plasmidic. Currently there are three betalactamases inhibitors locally available: clavulanic acid, sulbactam and tazobactam. Of them, only sulbactam has an intrinsic antimicrobial activity against penicillin binding proteins. The clinical experience from over 20 years confirms that the combination of betalactam antibiotics is effective in the empirical initial treatment of respiratory, intraabdominal, urinary tract and gynecologic infections, including those of polymicrobial origin. In the specific case of amoxicillin-sulbactam, experiences have shown the effectiveness of the combination in the treatment of peritonsillar abscess, otitis media, sinusitis, community acquired pneumonia, acute exacerbation of chronic obstructive pulmonar disease (COPD), urinary tract infection and obstetric/gynecologic infections. The spectrum and pharmacologic properties of this combination makes it also an excellent option for the treatment of skin/soft tissue and intraabdominal infections.

  10. ALK inhibitors, a pharmaceutical perspective

    Directory of Open Access Journals (Sweden)

    Arturo eGalvani

    2012-02-01

    Full Text Available In 2007, the ALK tyrosine kinase, already known to be translocated and activated in Anaplastic Large Cell Lymphoma, and a few other rare cancers, was described as a potential therapeutic target for a subset of non small-cell lung cancer (NSCLC patients. Clinical proof of concept, culminating in the recent approval by the FDA of the Pfizer drug Xalkori (crizotinib, formerly known as PF-02341066 followed in record time. The drug was approved together with a companion diagnostic, the Vysis ALK Break Apart FISH Probe Kit (Abbott Molecular, Inc. for detection of eligible patients. This remarkable example of the coming of age of personalized medicine in cancer therapy is hopefully only an auspice of things to come in this rapidly developing field. Perhaps unsurprisingly, however, the appearance of clinical acquired resistance to crizotinib has already been observed early on in clinical testing, with the identification of several ALK secondary point mutations which diminish drug efficacy, and which open the way for development of second-generation inhibitors. It is also emerging that acquired resistance to crizotinib may also occur through ALK-independent mechanisms, which still need to be elucidated in detail.

  11. ACE inhibitor-induced angioedema.

    Science.gov (United States)

    Baram, Michael; Kommuri, Anand; Sellers, Subhashini A; Cohn, John R

    2013-01-01

    Angiotensin-converting enzyme inhibitors (ACEI) are commonly prescribed for blood pressure control and renal protection. ACEI angioedema is a common problem in patients who are taking ACEI, although, in most cases, the disorder is self-limited, and spontaneous episodes of apparently unprovoked angioedema stop with the discontinuation of the medication. In a subset of patients, hospitalization and even intubation are required for airway protection. The diagnosis is made clinically. There are no laboratory studies that establish the diagnosis. However, such investigations help exclude alternative diagnoses as the cause for the patient's presentation. Conventional treatment with regimens used to control allergic angioedema is ineffective in this condition. The mechanism of ACEI-induced angioedema is thought to be related to its effect on the kallikrein-kinin system. Kallikrein is a protease that converts high-molecular-weight kininogens into kinins, primarily bradykinin. Medications recently developed, primarily icatibant and ecallantide, to control hereditary angioedema, a disorder also associated with kallikrein-kinin activation, have been used to treat ACEI angioedema with some success. The efficacy of these agents and their optimal use remains to be established by randomized and placebo controlled trials. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. AZT as a telomerase inhibitor

    International Nuclear Information System (INIS)

    Gomez, Daniel E.; Armando, Romina G.; Alonso, Daniel F.

    2012-01-01

    Telomerase is a highly specialized reverse transcriptase (RT) and the maintenance of telomeric length is determined by this specific enzyme. The human holoenzyme telomerase is a ribonucleoprotein composed by a catalytic subunit, hTERT, an RNA component, hTR, and a group of associated proteins. Telomerase is normally expressed in embryonic cells and is repressed during adulthood. The enzyme is reexpressed in around 85% of solid tumors. This observation makes it a potential target for developing drugs that could be developed for therapeutic purposes. The identification of the hTERT as a functional catalytic RT prompted studies of inhibiting telomerase with the HIV RT inhibitor azidothymidine (AZT). Previously, we have demonstrated that AZT binds preferentially to telomeres, inhibits telomerase and enhances tumor cell senescence, and apoptosis after AZT treatment in breast mammary adenocarcinoma cells. Since then, several studies have considered AZT for telomerase inhibition and have led to potential clinical strategies for anticancer therapy. This review covers present thinking of the inhibition of telomerase by AZT and future treatment protocols using the drug.

  13. Proton pump inhibitors and gastroenteritis.

    Science.gov (United States)

    Hassing, Robert-Jan; Verbon, Annelies; de Visser, Herman; Hofman, Albert; Stricker, Bruno H

    2016-10-01

    An association between proton pump inhibitor (PPI) therapy and bacterial gastroenteritis has been suggested as well as contradicted. The aim of this study was to examine the association between the use of PPIs and occurrence of bacterial gastroenteritis in the prospective Rotterdam Study. The Rotterdam Study is a population-based cohort study among 14,926 subjects aged 45 years and older with up to 24 years of follow-up. Analyses were performed with a generalized estimating equations method in participants who handed-in a diagnostic stool sample. Furthermore, a nested case-control analysis was performed using the total cohort as a reference group. A bacterial microorganism was isolated in 125 samples, whereas 1174 samples were culture negative. In the generalized estimating equations analysis, we found that participants with a bacterial gastroenteritis were more likely than controls to be current users of PPIs (adjusted OR 1.94; 95 % CI 1.15-3.25). Different sensitivity analyses did not change this result. A considerably higher effect was observed (adjusted OR 6.14; 95 % CI 3.81-9.91), using the total cohort as a reference in a nested case-control analysis. Current PPI therapy is associated with an increased risk of bacterial gastroenteritis. However, by reducing the risk of selection and information bias in our study design, we demonstrated that the effect is lower than previously assumed.

  14. An Updated Review of Tyrosinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Te-Sheng Chang

    2009-05-01

    Full Text Available Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed.

  15. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  16. An Updated Review of Tyrosinase Inhibitors

    Science.gov (United States)

    Chang, Te-Sheng

    2009-01-01

    Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed. PMID:19582213

  17. Quorum sensing inhibitors from Leucetta chagosensis Dendy, 1863.

    Science.gov (United States)

    Mai, T; Tintillier, F; Lucasson, A; Moriou, C; Bonno, E; Petek, S; Magré, K; Al Mourabit, A; Saulnier, D; Debitus, C

    2015-10-01

    Sponges are a rich source for investigation of bioactive small molecules. They have been mostly investigated for the search of new pharmacological models or therapeutic agents for the treatment of human diseases. Micro-organisms can also represent a virulent pathogen for marine invertebrates such as sponges, which need to protect themselves against these microbes. Sponges' self defence mechanisms involving dialogue molecules thus represent a pertinent research track for potent anti-infective and anti-biofilm activities such as quorum sensing inhibitors (QSIs). The investigation of the QSI crude extract of Leucetta chagosensis Dendy, 1863 led to the isolation of three new alkaloids, isonaamine D, di-isonaamidine A and leucettamine D, along with the known isonaamine A and isonaamidine A. Isonaamidine A and isonaamine D were identified as inhibitors of the three quorum sensing pathways of Vibrio harveyi (CAI-1, AI-2 and harveyi auto inducer), but isonaamidine A displayed the strongest activity on AI-2 biosensor. Both compounds are new examples of natural QSIs of V. harveyi. These results outline the importance of these secondary metabolites for their producing organisms themselves in their natural environment, as well as the potential of the marine resource for aquaculture needs. A new type of quorum sensing inhibitors was isolated from the sponge Leucetta chagosensis. One of them inhibits strongly the AI-2 channel of Vibrio harveyi, a marine pathogen of special importance in aquaculture. The activity of five different related compounds, including three new natural products discovered there, was investigated leading to structure-activity relationships which are useful for the design of new quorum sensing inhibitors to control marine infectious pathogens. © 2015 The Society for Applied Microbiology.

  18. Quorum sensing Inhibitors as anti-pathogenic drugs

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bovbjerg; Givskov, Michael Christian

    2006-01-01

    as well as elevated tolerance to the activity of the innate immune system. Gram-negative bacteria commonly use N-acyl homoserine lactones (AHL) as QS signal molecules. The use of signal molecule based drugs to attenuate bacterial pathogenecity rather than bacterial growth is attractive for several reasons......, particularly considering the emergence of increasingly antibiotic-resistant bacteria. Compounds capable of this type of interference have been termed anti-pathogenic drugs. A large variety of synthetic AHL analogues and natural products libraries have been screened and a number of QS inhibitors (QSI) have been...

  19. An ERG channel inhibitor from the scorpion Buthus eupeus

    DEFF Research Database (Denmark)

    Korolkova, Y.V.; Kozlov, S.A.; Lipkin, A.V.

    2001-01-01

    The isolation of the peptide inhibitor of M-type K(+) current, BeKm-1, from the venom of the Central Asian scorpion Buthus eupeus has been described previously (Fillipov A. K., Kozlov, S. A., Pluzhnikov, K. A., Grishin, E. V., and Brown, D. A. (1996) FEBS Lett. 384, 277-280). Here we report...... that the precursor contains a signal peptide of 21 amino acid residues. The mature toxin consists of 36 amino acid residues. BeKm-1 belongs to the family of scorpion venom potassium channel blockers and represents a new subgroup of these toxins. The recombinant BeKm-1 was produced as a Protein A fusion product...

  20. Physcio chemical analysis of browning inhibitors treated solanum turberosum powder

    International Nuclear Information System (INIS)

    Alizai, M.N.K.; Abid, H.

    2008-01-01

    White potatoes (Solanum turberosum) were procured from agriculture Research Institute Tarnab Farm Peshawar to use for the preparation of potato powder. The process involves sorting. Washing, peeling slicing, blanching, treating with poly phenol oxidase inhibitors, dehydration, grinding and packing. All these parameters used in process were standardized. Chemical analysis of fresh potato and potato powder were carried out. Microbiological examination, functional properties and storage life studies of the potato powder were also performed. The product prepared by drying in cabinet dryer at 55 C for 7 hours was off white colour potatoes chips which was grinded to make off white potato powder. The potato powder possessed taste and texture. (author)

  1. Predicting the Performance of Organic Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    David A. Winkler

    2017-12-01

    Full Text Available The withdrawal of effective but toxic corrosion inhibitors has provided an impetus for the discovery of new, benign organic compounds to fill that role. Concurrently, developments in the high-throughput synthesis of organic compounds, the establishment of large libraries of available chemicals, accelerated corrosion inhibition testing technologies, and the increased capability of machine learning methods have made discovery of new corrosion inhibitors much faster and cheaper than it used to be. We summarize these technical developments in the corrosion inhibition field and describe how data-driven machine learning methods can generate models linking molecular properties to corrosion inhibition that can be used to predict the performance of materials not yet synthesized or tested. We briefly summarize the literature on quantitative structure–property relationships models of small organic molecule corrosion inhibitors. The success of these models provides a paradigm for rapid discovery of novel, effective corrosion inhibitors for a range of metals and alloys in diverse environments.

  2. Pharmacological caspase inhibitors: research towards therapeutic perspectives.

    Science.gov (United States)

    Kudelova, J; Fleischmannova, J; Adamova, E; Matalova, E

    2015-08-01

    Caspases are key molecules of apoptosis and the inflammatory response. Up-regulation of the caspase cascade contributes to human pathologies such as neurodegenerative and immune disorders. Thus, blocking the excessive apoptosis by pharmacological inhibitors seems promising for therapeutic interventions in such diseases. Caspase inhibitors, both natural and artificial, have been used as research tools and have helped to define the role of the individual caspases in apoptosis and in non-apoptotic processes. Moreover, some caspase inhibitors have demonstrated their therapeutic efficiency in the reduction of cell death and inflammation in animal models of human diseases. However, no drug based on caspase inhibition has been approved on the market until now. Thus, the development of therapeutic approaches that specifically target caspases remains a great challenge and is now the focus of intense biological and clinical interest. Here, we provide a brief review of recent knowledge about pharmacological caspase inhibitors with special focus on their proposed clinical applications.

  3. Inhibitors of Protein Methyltransferases as Chemical Tools

    Science.gov (United States)

    Luo, Minkui

    2016-01-01

    Protein methyltransferases (PMTs) play essential roles in many biological processes through methylation of histones and diverse nonhistone substrates. Dysregulation of these enzymes has been implicated in many diseases including cancers. While PMT-associated biology can be probed via genetic perturbation, this approach targets full-length PMTs rather than their methyltransferase activities and often lacks temporal, spatial and dose controls (timing, location and amount of dosed compounds). In contrast, small-molecule inhibitors of PMTs can be designed to specifically target the methyltransferase domains in a temporal, spatial and dose-dependent manner. This utility has motivated the development of hundreds of PMT inhibitors, but meanwhile can make it challenging to select the most suitable PMT inhibitors to interrogate PMT-associated biology. This perspective aims to provide timely guidance to evaluate these PMT inhibitors in their relevant biological contexts. PMID:26646500

  4. Strategies for discontinuation of proton pump inhibitors

    DEFF Research Database (Denmark)

    Haastrup, Peter; Paulsen, Maja S; Begtrup, Luise M

    2014-01-01

    PURPOSE: Proton pump inhibitors (PPIs) are considered to be overprescribed. Consensus on how to attempt discontinuation is, however, lacking. We therefore conducted a systematic review of clinical studies on discontinuation of PPIs. METHODS: Systematic review based on clinical studies investigating...

  5. Selective serotonin reuptake inhibitor sertraline inhibits voltage ...

    Indian Academy of Sciences (India)

    2016-10-04

    701. South Korea. *Corresponding author (Email, parkws@kangwon.ac.kr). We examined the effects of the selective serotonin reuptake inhibitor (SSRI) sertraline on voltage-dependent K+ (Kv) channels in freshly isolated ...

  6. Tyrosinase inhibitor screening in traditional Chinese medicines by electrophoretically mediated microanalysis.

    Science.gov (United States)

    Tang, Lilin; Zhang, Wenpeng; Zhao, Haiyan; Chen, Zilin

    2015-08-01

    A capillary-electrophoresis-based method for the screening of tyrosinase inhibitors in traditional Chinese medicines was developed. The method integrated electrophoretically mediated microanalysis with sandwich mode injection, partial filling, and rapid polarity switching techniques, and carried out on-column enzyme reaction and the separation of substrate and product. The conditions were optimized including the background electrolyte, mixing voltage, and the incubation time. Finally, the screening of nine standard natural compounds of traditional Chinese medicines was carried out. The inhibitors can be directly identified from the reduced peak area of the product compared to that obtained without any inhibitor. Chlorogenic acid (100 μM) showed inhibitory activity with the inhibitory percentage of 19.8%, while the other compounds showed no inhibitory activity. This method has great application potential in drug discovery from traditional Chinese medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of nitrogen fertilization and nitrification inhibitor product on vegetative growth, production and oil quality in ‘Arbequina’ hedgerow and ‘Picual’ vase-trained orchards; Efectos de la fertilización nitrogenada y del inhibidor de la nitrificación sobre el crecimiento vegetativo, la producción y la calidad del aceite en olivares 'Arbequina' en intensivo y 'Picual' en vaso.

    Energy Technology Data Exchange (ETDEWEB)

    Centeno, A.; García, J.M.; Gómez-del-Campo, M.

    2017-07-01

    Two experiments were carried out in olive orchards in the center of Spain over a three-year period. In this cold and dry area, growers traditionally apply large amounts of N with no experimental knowledge. An ‘Arbequina’ hedgerow and ‘Picual’ vase orchards were fertilized with two N-doses applied to the soil in spring with or without the nitrification inhibitor (DMPP). Vegetative growth, fruit and oil characteristics were evaluated. These variables were affected by the N-treatment during the 3rd year. The lowest N-application increased vegetative growth, while when N-leaf composition was higher than 2%, fruit dry weight, oil content and oil phenol content were reduced. ‘Picual’ did not respond to N-applications. The effect of DMPP on growth or production was not consistent and a lower phenolic content was obtained for ‘Arbequina’. Our results demonstrated that in this dry land, N-fertilization is not always necessary and oil quality can be negatively affected with high doses. [Spanish] Durante tres años, se llevaron a cabo dos experimentos en olivares del centro de España. En esta fría y seca zona de cultivo, los agricultores aplican grandes cantidades de nitrógeno sin ningún criterio. Un olivar de ‘Arbequina’ en intensivo y otro de ‘Picual’ en vaso se fertilizaron con dos dosis de N aplicado al suelo en primavera con o sin el inhibidor de la nitrificación 3.4 dimethyl phyrazol phosphate (DMPP). El tercer año, el N afectó al crecimiento vegetativo y a las características del fruto y del aceite. La menor dosis de N aplicada, aumentó el crecimiento, pero cuando la composición de N en hoja fue superior al 2%, el peso del fruto, el contenido en aceite y el contenido fenólico se redujeron. ‘Picual’ no respondió al N. El efecto del DMPP en el crecimiento o la producción no fue consistente y afectó negativamente al contenido fenólico del aceite en ‘Arbequina’. Nuestros resultados demuestran que en esta árida zona la

  8. The effect of chemical anti-inhibitors on fibrinolytic enzymes and inhibitors

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Kluft, C

    1997-01-01

    proteases. We studied the influence of chemical anti-inhibitors (chloramine T, flufenamate, sodium lauryl sulfate, and methylamine) on fibrinolytic serine proteases and fibrinolytic enzyme inhibitors using the physiological substrate fibrin as plasmin substrate. Low concentrations of chloramine T (0.01 mmol......%) and plasminogen activators (apparent recovery > 200%). Sodium lauryl sulfate eliminates the major fibrinolytic enzyme inhibitors, but increases the activity of plasmin (apparent recovery > 200%) and plasminogen activator, urokinase type (apparent recovery 130%). Methylamine affects only plasmin inhibition. We...

  9. Proton pump inhibitors affect the gut microbiome.

    Science.gov (United States)

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Tigchelaar, Ettje F; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    2016-05-01

    Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or promoting colonisation by pathogens. In this study, we investigated the influence of PPI use on the gut microbiome. The gut microbiome composition of 1815 individuals, spanning three cohorts, was assessed by tag sequencing of the 16S rRNA gene. The difference in microbiota composition in PPI users versus non-users was analysed separately in each cohort, followed by a meta-analysis. 211 of the participants were using PPIs at the moment of stool sampling. PPI use is associated with a significant decrease in Shannon's diversity and with changes in 20% of the bacterial taxa (false discovery rate microbiome of PPI-users, including the genus Rothia (p=9.8×10(-38)). In PPI users we observed a significant increase in bacteria: genera Enterococcus, Streptococcus, Staphylococcus and the potentially pathogenic species Escherichia coli. The differences between PPI users and non-users observed in this study are consistently associated with changes towards a less healthy gut microbiome. These differences are in line with known changes that predispose to C. difficile infections and can potentially explain the increased risk of enteric infections in PPI users. On a population level, the effects of PPI are more prominent than the effects of antibiotics or other commonly used drugs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    Science.gov (United States)

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL -1 levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL -1 ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL -1 . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Small Molecule Inhibitors of Protein Arginine Methyltransferases

    Science.gov (United States)

    Hu, Hao; Qian, Kun; Ho, Meng-Chiao; Zheng, Y. George

    2016-01-01

    Introduction Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. Areas covered The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. Expert opinion Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead. PMID:26789238

  12. Emerging Corrosion Inhibitors for Interfacial Coating

    Directory of Open Access Journals (Sweden)

    Mona Taghavikish

    2017-12-01

    Full Text Available Corrosion is a deterioration of a metal due to reaction with environment. The use of corrosion inhibitors is one of the most effective ways of protecting metal surfaces against corrosion. Their effectiveness is related to the chemical composition, their molecular structures and affinities for adsorption on the metal surface. This review focuses on the potential of ionic liquid, polyionic liquid (PIL and graphene as promising corrosion inhibitors in emerging coatings due to their remarkable properties and various embedment or fabrication strategies. The review begins with a precise description of the synthesis, characterization and structure-property-performance relationship of such inhibitors for anti-corrosion coatings. It establishes a platform for the formation of new generation of PIL based coatings and shows that PIL corrosion inhibitors with various heteroatoms in different form can be employed for corrosion protection with higher barrier properties and protection of metal surface. However, such study is still in its infancy and there is significant scope to further develop new structures of PIL based corrosion inhibitors and coatings and study their behaviour in protection of metals. Besides, it is identified that the combination of ionic liquid, PIL and graphene could possibly contribute to the development of the ultimate corrosion inhibitor based coating.

  13. Development of Radiosensitizer using farnesyltransferase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Seok; Choe, Yong Kyung; Han, Mi Young; Kim, Kwang Dong [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    We selected some compounds that were reported to have an activity of farneyltransferase inhibitor and tested the hypothesis that they might be used to radiosensitize cells transformed by ras oncogenes. The inhibition of ras processing using some, but not all, inhibitors resulted in higher levels of cell death after {gamma}-irradiation and increased radiosensitivity in H-ras-transformed NIH3T3 cells and MCF-10A human tumor cells. They did not induce additional cell death in control cells that doe not have ras mutation. Furthermore, the treatment of inhibitors alone induced a weak G0/G1 block, whereas inhibitors in combination with {gamma}-irradiation induced an additional enrichment in the G2/M phase of the cell cycle that typically represents irradiation-induced growth arrest. At present, the underling mechanism by which the farnesylltransferase inhibitors exert radiosensitizing effect is not known. In summary, our results suggest and lead to the possibility that some of farnesylation inhibitors may prove clinically useful not only as antitumor agents, but also radiosensitizers of tumors whose growth is dependent on ras function. (author). 15 refs., 10 figs., 4 tabs.

  14. Synergistic combinations of the CCR5 inhibitor VCH-286 with other classes of HIV-1 inhibitors.

    Science.gov (United States)

    Asin-Milan, Odalis; Sylla, Mohamed; El-Far, Mohamed; Belanger-Jasmin, Geneviève; Haidara, Alpha; Blackburn, Julie; Chamberland, Annie; Tremblay, Cécile L

    2014-12-01

    Here, we evaluated the in vitro anti-HIV-1 activity of the experimental CCR5 inhibitor VCH-286 as a single agent or in combination with various classes of HIV-1 inhibitors. Although VCH-286 used alone had highly inhibitory activity, paired combinations with different drug classes led to synergistic or additive interactions. However, combinations with other CCR5 inhibitors led to effects ranging from synergy to antagonism. We suggest that caution should be exercised when combining CCR5 inhibitors in vivo. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. BACE1 (β-Secretase) Inhibitors for the Treatment of Alzheimer's Disease

    Science.gov (United States)

    Osswald, Heather L.

    2014-01-01

    BACE1 (β-secretase, memapsin 2, Asp2) has emerged as a promising target for the treatment of Alzheimer's Disease. BACE1 is an aspartic protease which functions in the first step of the pathway leading to the production and deposition of amyloid-β peptide (Aβ). Its gene deletion showed only mild phenotypes. BACE1 inhibition has direct implications in the Alzheimer's Disease pathology without largely affecting viability. However, inhibiting BACE1 selectively in vivo has presented many challenges to medicinal chemists. Since its identification in 2000, inhibitors covering many different structural classes have been designed and developed. These inhibitors can be largely classified as either peptidomimetic or non-peptidic inhibitors. Progress in these fields resulted in inhibitors that contain many targeted drug-like characteristics. In this review, we describe structure-based design strategies and evolution of a wide range of BACE1 inhibitors including compounds that have been shown to reduce brain Aβ, rescue the cognitive decline in transgenic AD mice and inhibitor drug candidates that are currently in clinical trials. PMID:24691405

  16. Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors

    Directory of Open Access Journals (Sweden)

    Jeff Scott Piotrowski

    2014-03-01

    Full Text Available Lignocellulosic hydrolysate (LCH inhibitors are a large class of bioactive molecules that arise from pretreatment, hydrolysis, and fermentation of plant biomass. These diverse compounds reduce lignocellulosic biofuel yields by inhibiting cellular processes and diverting energy into cellular responses. LCH inhibitors present one of the most significant challenges to efficient biofuel production by microbes. Development of new strains that lessen the effects of LCH inhibitors is an economically favorable strategy relative to expensive detoxification methods that also can reduce sugar content in deconstructed biomass. Systems biology analyses and metabolic modeling combined with directed evolution and synthetic biology are successful strategies for biocatalyst development, and methods that leverage state-of-the-art tools are needed to overcome inhibitors more completely. This perspective considers the energetic costs of LCH inhibitors and technologies that can be used to overcome their drain on conversion efficiency. We suggest academic and commercial research groups could benefit by sharing data on LCH inhibitors and implementing translational biofuel research.

  17. Inhibiting properties and adsorption of an amine based fatty acid corrosion inhibitor on carbon steel in aqueous carbon dioxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Buchweishaija, Joseph

    1997-12-31

    Carbon dioxide corrosion is a major corrosion problem in oil and gas production systems and many organic inhibitors have been tested and used to protect the substrate from corrosion. This thesis studies the mechanism of interaction of the inhibitor molecule with the metallic substrate and how this affects the dissolution rate of the metal. The performance of a commercial amine based fatty acid corrosion inhibitor has been investigated using rotating cylinder electrodes and carbon steel electrodes in CO{sub 2} saturated formation water in the temperature range between 35 to 80{sup o}C. The corrosion process was monitored by electrochemical impedance measurements, and at the end of each experiment full polarization curves were recorded. When the inhibitor was applied on noncorroded electrodes, high inhibitor performance, over 99.7%, was observed independent of temperature. On precorroded electrodes inhibitor performance was found to depend on temperature and time of precorrosion. Above 60{sup o}C, the inhibitor performance decreased with increasing time of precorrosion, presumably because of the formation of a corrosion film of either iron carbonate or a combination of iron carbonate and iron carbide which prevent the inhibitor from reaching the surface. The inhibitor protection efficiency was assumed to be associated with the degree of inhibitor coverage at the material surface, and adsorption isotherms have been calculated in the concentration range between 0.1 ppm and 100 ppm. A Langmuir isotherm was found to give the best fit. The inhibitor performance on a 2 days precorroded rotating electrode was investigated at different solution pH ranging between 4.5 and 6.5 at 35{sup o}C. 130 refs., 80 figs., 22 tabs.

  18. Discovery of a novel inhibitor of NAD(P)(+)-dependent malic enzyme (ME2) by high-throughput screening.

    Science.gov (United States)

    Wen, Yi; Xu, Lei; Chen, Fang-lei; Gao, Jing; Li, Jing-ya; Hu, Li-hong; Li, Jia

    2014-05-01

    Malic enzymes are oxidative decarboxylases with NAD(+) or NAD(P)(+) as cofactor that catalyze the conversion of L-malate to pyruvate and CO2. The aim of this study was to discover and characterize a potent inhibitor of human NAD(P)(+)-dependent malic enzyme 2 (ME2). Recombinant human ME2-His-Tag fusion protein was overexpressed in E coli and purified with Ni-NTA resin. A high-throughput screening (HTS) assay was developed to find ME2 inhibitors. Detergent Brij-35 was used to exclude false positives. The characteristics of the inhibitor were analyzed with enzyme kinetics analysis. A thermal shift assay for ME2 was carried out to verify the binding of the inhibitor with the enzyme. An HTS system for discovering ME2 inhibitors was established with a Z' factor value of 0.775 and a signal-to-noise ratio (S/N) of 9.80. A library containing 12 683 natural products was screened. From 47 hits, NPD387 was identified as an inhibitor of ME2. The primary structure-activity relationship study on NPD387 derivatives showed that one derivative NPD389 was more potent than the parent compound NPD387 (the IC50 of NPD389 was 4.63 ± 0.36 μmol/L or 5.59 ± 0.38 μmol/L, respectively, in the absence or presence of 0.01% Brij-35 in the assay system). The enzyme kinetics analysis showed that NPD389 was a fast-binding uncompetitive inhibitor with respect to the substrate NAD(+) and a mixed-type inhibitor with respect to the substrate L-malate. NPD389 is a potent ME2 inhibitor that binds to the enzyme in a fast-binding mode, acting as an uncompetitive inhibitor with respect to the substrate NAD(+) and a mixed-type inhibitor with respect to the substrate L-malate.

  19. Comparison of Clot-based, Chromogenic, and Fluorescence Assays for Measurement of Factor VIII Inhibitors in the U.S. Hemophilia Inhibitor Research Study

    Science.gov (United States)

    Miller, Connie H.; Rice, Anne S.; Boylan, Brian; Shapiro, Amy D.; Lentz, Steven R.; Wicklund, Brian M.; Kelly, Fiona M.; Soucie, J. Michael

    2015-01-01

    Summary Background Detection and validation of inhibitors (antibodies) to hemophilia treatment products are important for clinical care, evaluation of product safety, and assessment of population trends. Methods Centralized monitoring for factor VIII (FVIII) inhibitors was conducted for patients in the Hemophilia Inhibitor Research Study using a previously reported modified Nijmegen-Bethesda clotting assay (NBA), a chromogenic Bethesda assay (CBA), and a novel fluorescence immunoassay (FLI). Results NBA and CBA were performed on 1005 specimens and FLI on 272 specimens. CBA was negative on 880/883 specimens (99.7%) with Nijmegen-Bethesda units (NBU)NBA and negative CBA, 58.1% were FLI-negative, 12.9% had evidence of lupus anticoagulant, and 35.5% had non-time-dependent inhibition. CBA and FLI were positive on 72.4% and 100% of 1.0–1.9 NBU specimens and 43.1% and 50.0% of 0.5–0.9 NBU specimens. FLI detected antibodies in 98.0% of CBA-positive and 81.6% of NBA-positive specimens (P=0.004). Among 21 new inhibitors detected by NBA, 5 (23.8%) with 0.7–1.3 NBU did not react in CBA or FLI. Among previously positive patients with 0.5–1.9 NBU, 7/25 (28%) were not CBA or FLI positive. FLI was positive on 36/169 NBU-negative specimens (21.3%). Conclusions FVIII specificity could not be demonstrated by CBA or FLI for 26% of inhibitors of 0.5–1.9 NBU; such results must be interpreted with caution. Low titer inhibitors detected in clot-based assays should always be repeated, with consideration given to evaluating their reactivity with FVIII using more specific assays. PMID:23601690

  20. Interspecific differences between D. pulex and D. magna in tolerance to cyanobacteria with protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Christian J Kuster

    Full Text Available It is known that cyanobacteria negatively affect herbivores due to their production of toxins such as protease inhibitors. In the present study we investigated potential interspecific differences between two major herbivores, Daphnia magna and Daphnia pulex, in terms of their tolerance to cyanobacteria with protease inhibitors. Seven clones each of D. magna and of D. pulex were isolated from different habitats in Europe and North America. To test for interspecific differences in the daphnids' tolerance to cyanobacteria, their somatic and population growth rates were determined for each D. magna and D. pulex clone after exposure to varying concentrations of two Microcystis aeruginosa strains. The M. aeruginosa strains NIVA and PCC(- contained either chymotrypsin or trypsin inhibitors, but no microcystins. Mean somatic and population growth rates on a diet with 20% NIVA were significantly more reduced in D. pulex than in D. magna. On a diet with 10% PCC(-, the population growth of D. pulex was significantly more reduced than that of D. magna. This indicates that D. magna is more tolerant to cyanobacteria with protease inhibitors than D. pulex. The reduction of growth rates was possibly caused by an interference of cyanobacterial inhibitors with proteases in the gut of Daphnia, as many other conceivable factors, which might have been able to explain the reduced growth, could be excluded as causal factors. Protease assays revealed that the sensitivities of chymotrypsins and trypsins to cyanobacterial protease inhibitors did not differ between D. magna and D. pulex. However, D. magna exhibited a 2.3-fold higher specific chymotrypsin activity than D. pulex, which explains the observed higher tolerance to cyanobacterial protease inhibitors of D. magna. The present study suggests that D. magna may control the development of cyanobacterial blooms more efficiently than D. pulex due to differences in their tolerance to cyanobacteria with protease

  1. β-secretase inhibitor; a promising novel therapeutic drug in AD

    Directory of Open Access Journals (Sweden)

    Kelly Willemijn Menting

    2014-07-01

    Full Text Available Alzheimer’s disease (AD and vascular dementia are responsible for up to 90% of dementia cases. According to the World Health Organization (WHO, a staggering number of 35.6 million people are currently diagnosed with dementia. Blocking disease progression or preventing AD altogether is desirable for both social and economic reasons and recently focus has shifted to a new and promising drug: the β-secretase inhibitor. Much of AD research has investigated the amyloid cascade hypothesis, which postulates that AD is caused by changes in amyloid beta (Aβ stability and aggregation. Blocking Aβ production by inhibiting the first protease required for its generation, β-secretase/BACE1, may be the next step in blocking AD progression. In April 2012, promising phase I data on inhibitor MK-8931 was presented. This drug reduced Aβ CSF levels up to 92% and was well tolerated by patients. In March 2013 data was added from a one week trial in 32 mild to moderate AD patients, showing CSF Aβ levels decreased up to 84%. However, BACE1 inhibitors require further research. First, greatly reducing Aβ levels through BACE1 inhibition may have harmful side effects. Second, BACE1 inhibitors have yet to pass clinical trial phase II/III and no data on possible side effects on AD patients are available. And third, there remains doubt about the clinical efficacy of BACE1 inhibitors. In moderate AD patients, Aβ plaques have already been formed. BACE1 inhibitors prevent production of new Aβ plaques, but hypothetically do not influence already existing Aβ peptides. Therefore, BACE1 inhibitors are potentially better at preventing AD instead of having therapeutic use.

  2. Improved Peak Capacity for Capillary Electrophoretic Separations of Enzyme Inhibitors with Activity-Based Detection Using Magnetic Bead Microreactors

    Science.gov (United States)

    Yan, Xiaoyan; Gilman, S. Douglass

    2010-01-01

    A technique for separating and detecting enzyme inhibitors was developed using capillary electrophoresis with an enzyme microreactor. The on-column enzyme microreactor was constructed using NdFeB magnet(s) to immobilize alkaline phosphatase-coated superparamagnetic beads (2.8 μm diameter) inside a capillary before the detection window. Enzyme inhibition assays were performed by injecting a plug of inhibitor into a capillary filled with the substrate, AttoPhos. Product generated in the enzyme microreactor was detected by laser-induced fluorescence. Inhibitor zones electrophoresed through the capillary, passed through the enzyme microreactor, and were observed as negative peaks due to decreased product formation. The goal of this study was to improve peak capacities for inhibitor separations relative to previous work, which combined continuous engagement electrophoretically mediated microanalysis (EMMA) and transient engagement EMMA to study enzyme inhibition. The effects of electric field strength, bead injection time and inhibitor concentrations on peak capacity and peak width were investigated. Peak capacities were increased to ≥20 under optimal conditions of electric field strength and bead injection time for inhibition assays with arsenate and theophylline. Five reversible inhibitors of alkaline phosphatase (theophylline, vanadate, arsenate, L-tryptophan and tungstate) were separated and detected to demonstrate the ability of this technique to analyze complex inhibitor mixtures. PMID:20024913

  3. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  4. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    International Nuclear Information System (INIS)

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Lee, Jin Kyung

    2015-01-01

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC

  5. Screening of tyrosinase inhibitors by capillary electrophoresis with immobilized enzyme microreactor and molecular docking.

    Science.gov (United States)

    Cheng, Mengxia; Chen, Zilin

    2017-02-01

    A new method for screening tyrosinase inhibitors from traditional Chinese medicines (TCMs) was successfully developed by capillary electrophoresis with reliable online immobilized enzyme microreactor (IMER). In addition, molecular docking study has been used for supporting inhibition interaction between enzyme and inhibitors. The IMER of tyrosinase was constructed at the outlet of the capillary by using glutaraldehyde as cross-linker. The parameters including enzyme reaction, separation of the substrate and product, and the performance of immobilized tyrosinase were investigated systematically. Because of using short-end injection procedure, the product and substrate were effectively separated within 2 min. The immobilized tyrosinase could remain 80% active for 30 days at 4°C. The Michaelis-Menten constant of tyrosinase was determined as 1.78 mM. Kojic acid, a known tyrosinase inhibitor, was used as a model compound for the validation of the inhibitors screening method. The half-maximal inhibitory concentration of kojic acid was 5.55 μM. The method was successfully applied for screening tyrosinase inhibitors from 15 compounds of TCM. Four compounds including quercetin, kaempferol, bavachinin, and bakuchiol were found having inhibitory potentials. The results obtained in this work were supported by molecular docking study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of ATX and DUSP inhibitors : inhibiting phosphate ester hydrolysis in biology

    NARCIS (Netherlands)

    Albers, Harald Matheas Henricus Gerardus

    2012-01-01

    The first part of this thesis describes the development of inhibitors of autotaxin (ATX or ENPP2), a phosphodiesterase that is responsible for the production of the lipid lysophosphatidic acid (LPA) in the circulation. ATX is implicated in several diseases including inflammation, fibrotic disease

  7. Recombinant C1-Inhibitor Effects on Coagulation and Fibrinolysis in Patients with Hereditary Angioedema

    NARCIS (Netherlands)

    Relan, Anurag; Bakhtiari, Kamran; van Amersfoort, Edwin S.; Meijers, Joost C. M.; Hack, C. Erik

    2012-01-01

    Background: Recombinant human C1-inhibitor (rhC1INH; Ruconest (R)) has been developed for treatment of acute angioedema attacks in patients with hereditary angioedema (HAE) due to heterozygous deficiency of C1INH. Previous reports suggest that administration of plasma-derived C1INH products may be

  8. Control of asphaltene deposition laboratory screening and evaluation of asphaltene inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Allenson, S. [Nalco/Exxon Energy Chemicals, Sugar Land, TX (United States)

    2000-08-01

    A systematic experimental program was developed to critically assess and control the potential for asphaltene deposition from reservoir fluids. By following the methodology, the GOM crude oil was successfully evaluated for its tendency to precipitate and deposit asphaltenes under typical production conditions. An asphaltene inhibitor that stabilizes the asphaltenes was also successfully evaluated. (au)

  9. Safety of C1-Esterase Inhibitor in Acute and Prophylactic Therapy of Hereditary Angioedema

    DEFF Research Database (Denmark)

    Busse, Paula; Bygum, Anette; Edelman, Jonathan

    2014-01-01

    BACKGROUND: The plasma-derived, pasteurized C1-inhibitor (C1-INH) concentrate, Berinert has a 4-decade history of use in hereditary angioedema (HAE), with a substantial literature base that demonstrates safety and efficacy. Thromboembolic events have rarely been reported with C1-INH products, typ...

  10. Increasing insight into induced plant defense mechanisms using elicitors and inhibitors

    NARCIS (Netherlands)

    Bruinsma, M.; Loon, van J.J.A.; Dicke, M.

    2010-01-01

    One of the strategies that plants employ to defend themselves against herbivore attack is the induced production of carnivore-attracting volatiles. Using elicitors and inhibitors of different steps of the signal-transduction pathways can improve our understanding of the mechanisms underlying induced

  11. A New alpha-Glucosidase Inhibitor, 10-Hydroxy-8(E)-Octadecenoic Acid

    Science.gov (United States)

    In our continuous effort to screen natural products for their anti-microbial and enzyme inhibitor activities, we found that 10-Hydroxy-8(E)-Octadecenoic acid (HOD) exhibited strong anti- a-glucosidase (EC 3.2.1.20) activity. HOD is an intermediate in the bioconversion of oleic acid to 7,10-dihydrox...

  12. Cyclooxygenase inhibitors attenuate bradykinin-induced vasoconstriction in septic isolated rat lungs

    NARCIS (Netherlands)

    Fischer, L. G.; Hollmann, M. W.; Horstman, D. J.; Rich, G. F.

    2000-01-01

    Cyclooxygenase (COX) products play an important role in modulating sepsis and subsequent endothelial injury. We hypothesized that COX inhibitors may attenuate endothelial dysfunction during sepsis, as measured by receptor-mediated bradykinin (BK)-induced vasoconstriction and/or receptor-independent

  13. Evaluation of corrosion inhibitor simulating conditions of operation

    Science.gov (United States)

    Gómez, O.; Aponte, H.; Vera, E.; Pineda, Y.

    2017-12-01

    Operating conditions at the head of oil wells are critical, in addition to injecting water to increase the pressure while maintaining production cause deterioration in the metallic structures that transport fluids. One way to maintain integrity is the injection of inhibitors which plays an important role in protecting the pipes. In this study a molecule N-PHENYL NITRONE was obtained, which was evaluated by electrochemical tests (LPR) and Tafel Polarization Curves in a reactor controlling environments containing different dosages, pressure values, temperatures and flow velocity using working electrodes tubing API N 80, the reactor was connected to a potentiostat to determine corrosion rates, allowing the analysis of the influence of each variable on the protective behaviour of the inhibitor, and its efficiency against the decrease of the deterioration of the pipes. Corrosion products are analysed by X-Ray Diffraction (XRD). Photographic records of the surface verify the formation of iron carbonate (FeCO3). In addition, a mathematical analysis of the independent variables is performed to evaluate the effect that it has on the efficiency of corrosion inhibition.

  14. Protection against retrovirus pathogenesis by SR protein inhibitors.

    Directory of Open Access Journals (Sweden)

    Anne Keriel

    Full Text Available Indole derivatives compounds (IDC are a new class of splicing inhibitors that have a selective action on exonic splicing enhancers (ESE-dependent activity of individual serine-arginine-rich (SR proteins. Some of these molecules have been shown to compromise assembly of HIV infectious particles in cell cultures by interfering with the activity of the SR protein SF2/ASF and by subsequently suppressing production of splicing-dependent retroviral accessory proteins. For all replication-competent retroviruses, a limiting requirement for infection and pathogenesis is the expression of the envelope glycoprotein which strictly depends on the host splicing machinery. Here, we have evaluated the efficiency of IDC on an animal model of retroviral pathogenesis using a fully replication-competent retrovirus. In this model, all newborn mice infected with a fully replicative murine leukemia virus (MLV develop erythroleukemia within 6 to 8 weeks of age. We tested several IDC for their ability to interfere ex vivo with MLV splicing and virus spreading as well as for their protective effect in vivo. We show here that two of these IDC, IDC13 and IDC78, selectively altered splicing-dependent production of the retroviral envelope gene, thus inhibiting early viral replication in vivo, sufficiently to protect mice from MLV-induced pathogenesis. The apparent specificity and clinical safety observed here for both IDC13 and IDC78 strongly support further assessment of inhibitors of SR protein splicing factors as a new class of antiretroviral therapeutic agents.

  15. Size-fitting of Intravaginal Rings for Macaques and in vitro Release Kinetics of Zinc Finger Inhibitors

    OpenAIRE

    Malcolm, Karl; Smith, James M.; Appella, Ettore; Schito, Marco; Hayashi, Ryo; Lanier, Nattawan; Otten, Ronald; Butera, Sal; McConville, Christopher; Woolfson, David

    2008-01-01

    Background: Small molecule inhibitors of the zinc finger domain (ZFI) in the nucleocapsid protein (NCp7) of HIV-1 are potent inhibitors of HIV and SIVreplication and may have utility as topical products to prevent infection. Furthermore, intravaginal rings (IVRs) were developed as coitally-independent,sustained release devices which could be used for administration of HIV microbicides. The aims of these studies were to demonstrate that IVRs sized formacaques are practical and compatible with ...

  16. Structural Characterization and Determinants of Specificity of Single- Chain Antibody Inhibitors of Membrane-Type Serine Protease 1

    Science.gov (United States)

    2007-03-01

    protease involved in male chromatin remodeling blocks the development of sea urchin embryos at the initial cell cycle. J. Cell Biochem. 98, 335–342. 18...Macrophage Morphology Changes and Inhibition of Nitric Oxide Production by Macrophages. The cleavage of MSP-1 by MT-SP1 was then tested in primary cells in...inhibitor (Fig. 3) were studied. The morphology change in response to MSP-1 was independent of HAI-1 or anti-MT-SP1 antibody presence. Both inhibitors

  17. Intralesional polysulphated glycosaminoglycan as treatment of equine collagenase induced tendinitis: clinical, ultrasonographic and histopathologic evaluation Polissulfato de glicosaminoglicanas no tratamento intralesional de tendinite induzida em eqüinos: avaliação clínica, ultra-sonográfica e histopatológica

    Directory of Open Access Journals (Sweden)

    S. Marxen

    2004-12-01

    Full Text Available The effect of intratendineous injections of polysulphated glycosaminoglycan (PSGAG as treatment of collagenase-induced tendonitis was studied. Two groups (GI and GII of five Arabian horses each, males and females, two to six year-old, were submitted to experimental tendinitis of the superficial digital flexor tendon of the left thoracic limb by intratendineous injection of 1.0ml of collagenase (2.5mg/ml. Seven days after the induced-lesions were created, the horses of GI received five intralesional injections of 1.0ml (125mg of PSGAG, every four days. Horses of GII received injections of saline in the same dose and rate. Clinical and ultrasonographic evaluations were performed periodically, during 150 days. All animals showed lameness, increased local pain, heat and swelling 24 hours after the injury was created. All signs, except to swelling, which remained visible by the end of the study, showed regression in all animals. Lesions of variable size, shape and position were evidenced by the ultrasonographic evaluation, reaching maximum severity between the seventh and the 23rd days. By the end of the study, the echogenicity grade ranged from 1 to 2, and the grade of fiber alignment from 0 to 2. The histopathologic analysis demonstrated repair areas with intense fibroplasia and neovascularization, collagen fibers poorly organized, and thickened hypercellular endotenon. The data of this study did not show significant differences between the treated and control groups, therefore leading to the conclusion that the intralesional injection of PSGAG did not have beneficial effects in the treatment of collagenase-induced tendinitis.Estudou-se o efeito de aplicações intratendíneas do polissulfato de glicosaminoglicanas (PSGAG no tratamento de tendinite induzida pela colagenase. Dois grupos (GI e GII de cinco eqüinos da raça Puro-Sangue Árabe, machos e fêmeas, com idades entre dois e seis anos, foram submetidos à tendinite do tendão flexor digital

  18. Monoamine Reuptake Inhibitors in Parkinson's Disease

    Science.gov (United States)

    Huot, Philippe; Fox, Susan H.; Brotchie, Jonathan M.

    2015-01-01

    The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia. PMID:25810948

  19. Synthesis and biological evaluation of phosphonate derivatives as autotaxin (ATX) inhibitors.

    Science.gov (United States)

    Cui, Peng; Tomsig, Jose L; McCalmont, William F; Lee, Sangderk; Becker, Christopher J; Lynch, Kevin R; Macdonald, Timothy L

    2007-03-15

    Autotaxin (ATX) is an autocrine motility factor that promotes cancer cell invasion, cell migration, and angiogenesis. ATX, originally discovered as a nucleotide phosphodiesterase, is known now to be responsible for the lysophospholipid-preferring phospholipase D activity in plasma. As such, it catalyzes the production of lysophosphatidic acid (LPA) from lysophophatidylcholine (LPC). ATX is thus an attractive drug target; small molecular inhibitors might be efficacious in slowing the spread of cancers. With this study we have generated a series of beta-keto and beta-hydroxy phosphonate derivatives of LPA, some of which are potent ATX inhibitors.

  20. Total synthesis and structure–activity relationship studies of a series of selective G protein inhibitors

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Zhang, Hang; Underwood, Christina R.

    2016-01-01

    G proteins are key mediators of G protein-coupled receptor signalling, which facilitates a plethora of important physiological processes. The cyclic depsipeptides YM-254890 and FR900359 are the only known specific inhibitors of the Gq subfamily of G proteins; however, no synthetic route has been...... that both YM-254890 and FR900359 are highly potent inhibitors of Gq signalling, with FR900359 being the most potent. These natural products and their analogues represent unique tools for explorative studies of G protein inhibition....

  1. A Novel System for Identification of Inhibitors of Rift Valley Fever Virus Replication

    Directory of Open Access Journals (Sweden)

    Mary E. Piper

    2010-03-01

    Full Text Available Rift Valley fever virus (RVFV is a human and livestock pathogen endemic to sub-Saharan Africa. We have developed a T7-dependent system for the efficient production of RVFV-like particles (RVF-VLPs based on the virulent ZH-501 strain of RVFV. The RVF-VLPs are capable of performing a single round of infection, allowing for the study of viral replication, assembly, and infectivity. We demonstrate that these RVF-VLPs are antigenically indistinguishable from authentic RVFV and respond similarly to a wide array of known and previously unknown chemical inhibitors. This system should be useful for screening for small molecule inhibitors of RVFV replication.

  2. A novel system for identification of inhibitors of rift valley Fever virus replication.

    Science.gov (United States)

    Piper, Mary E; Gerrard, Sonja R

    2010-03-01

    Rift Valley fever virus (RVFV) is a human and livestock pathogen endemic to sub-Saharan Africa. We have developed a T7-dependent system for the efficient production of RVFV-like particles (RVF-VLPs) based on the virulent ZH-501 strain of RVFV. The RVF-VLPs are capable of performing a single round of infection, allowing for the study of viral replication, assembly, and infectivity. We demonstrate that these RVF-VLPs are antigenically indistinguishable from authentic RVFV and respond similarly to a wide array of known and previously unknown chemical inhibitors. This system should be useful for screening for small molecule inhibitors of RVFV replication.

  3. Research Advances and Detection Methodologies for Microbe-Derived Acetylcholinesterase Inhibitors: A Systemic Review

    Directory of Open Access Journals (Sweden)

    Jingqian Su

    2017-01-01

    Full Text Available Acetylcholinesterase inhibitors (AChEIs are an attractive research subject owing to their potential applications in the treatment of neurodegenerative diseases. Fungi and bacteria are major producers of AChEIs. Their active ingredients of fermentation products include alkaloids, terpenoids, phenylpropanoids, and steroids. A variety of in vitro acetylcholinesterase inhibitor assays have been developed and used to measure the activity of acetylcholinesterases, including modified Ellman’s method, thin layer chromatography bioautography, and the combined liquid chromatography-mass spectrometry/modified Ellman’s method. In this review, we provide an overview of the different detection methodologies, the microbe-derived AChEIs, and their producing strains.

  4. Preliminary studies on vigna unguiculata trypsin inhibitor

    International Nuclear Information System (INIS)

    Sofyan, Rochestri

    1980-01-01

    Investigation on the presence of trypsin inhibitor in vigna unguiculata at three stages of ripeness, i.e. as young beans obtained from first harvest usually consumed as vegetable, seed from beans picked two weeks after the first harvest and seed from beans picked four weeks after the first harvest, has been carried out. The conclusion drawn from this experiment showed the existence of trypsin inhibitor at those stages of ripeness. It is found that the older the stage of ripeness the greater the specific activity of trypsin inhibitor. Evidently the heated extract loss its antitryptic activity progressively with increasing heatings periods. Extract heated on a water bath at a constant temperature of 78 deg C during 20, 40 and 60 minutes, loss its antitryptic activity of about 53, 78 and 96% respectively. (author)

  5. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom.

    Science.gov (United States)

    Yang, Jie; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Jia, Jingming; Jin, Byung Rae

    2017-10-01

    Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Human tyrosinase inhibitor in rum distillate wastewater.

    Science.gov (United States)

    Takara, Kensaku; Iwasaki, Hironori; Ujihara, Kunihiro; Wada, Koji

    2008-01-01

    An inhibitor of human tyrosinase activity in rum distillate wastewater was isolated and identified as (S)-(+)-imperanene (1). (S)-(+)-Imperanene significantly inhibited tyrosinase isolated from HMV-II cells (IC(50) 1.85 mM). Inhibition kinetics studies revealed that imperanene is a competitive inhibitor of tyrosinase when L-3,4-dihydroxyphenylalanine is used as the substrate. The inhibitory activities of 1, O-beta-D-glucopyranosyl imperanene (2) and O-beta-D-glucopyranosyl-3-methoxyl imperanene (3) were 1>2>3.

  7. Presence of aromatase inhibitors in cycads.

    Science.gov (United States)

    Kowalska, M T; Itzhak, Y; Puett, D

    1995-07-28

    Cycads, the most primitive of the living gymnosperms, have been used and continue to be used for food and medicinal purposes by many cultures, although toxins must be removed before ingestion. In our quest to identify tropical plants that contain inhibitors of the cytochrome P-450 aromatase and thus may be efficacious in treating estrogen-dependent tumors, we have screened extracts from 5 species of cycad folia encompassing 3 genera: Cycas cairnsiana F. Muell., Cycas revoluta Thunb., Cycas rumphii Miq., Dioon spinulosum Dyer and Encephalartos ferox Bertol. All extracts were found to contain inhibitors of the human enzyme.

  8. Rational design of protein kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Yarmoluk S. M.

    2013-07-01

    Full Text Available Modern methodological approaches to rational design of low molecular weight compounds with specific activity in relation to predetermined biomolecular targets are considered by example of development of high effective protein kinase inhibitors. The application of new computational methods that allow to significantly improve the quality of computational experiments (in, particular, accuracy of low molecular weight compounds activity prediction without increase of computational and time costs are highlighted. The effectiveness of strategy of rational design is demonstrated by examples of several own investigations devoted to development of new inhibitors that are high effective and selective towards protein kinases CK2, FGFR1 and ASK1.

  9. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly...... of novel peptide-based protease inhibitors, efforts were made towards improved methods for peptide synthesis. The coupling of Fmoc-amino acids onto N-methylated peptidyl resins was investigated. These couplings can be low yielding and the effect of the use of microwave heating combined with the coupling...

  10. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    DEFF Research Database (Denmark)

    Sørensen, Mette G; Karsdal, Morten A; Dziegiel, Morten H

    2010-01-01

    Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we...... screened a protein kinase inhibitor library in human osteoclasts....

  11. Development of novel arginase inhibitors for therapy of endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Jochen eSteppan

    2013-09-01

    Full Text Available Endothelial dysfunction and resulting vascular pathology have been identified as an early hallmark of multiple diseases, including diabetes mellitus. One of the major contributors to endothelial dysfunction is a decrease in nitric oxide (NO bioavailability, impaired NO signaling and an increase in the amount of reactive oxygen species (ROS. In the endothelium NO is produced by eNOS (endothelial nitric oxide synthase, for which L-arginine is a substrate. Arginase, an enzyme critical in the urea cycle also metabolizes L-arginine, thereby directly competing with eNOS for their common substrate and constraining its bioavailability for eNOS, thereby compromising NO production. Arginase expression and activity is upregulated in many cardiovascular diseases including ischemia reperfusion injury, hypertension, atherosclerosis, and diabetes mellitus. More importantly, since the 1990s, specific arginase inhibitors such as N-hydroxy-guanidinium or N-hydroxy-nor-L-arginine, and boronic acid derivatives, such as, 2(S-amino-6-boronohexanoic acid, and S-(2-boronoethyl-L-cysteine (BEC, that can bridge the binuclear manganese cluster of arginase have been developed. These highly potent and specific inhibitors can now be used to probe arginase function and thereby modulate the redox milieu of the cell by changing the balance between NO and ROS. Inspired by this success, drug discovery programs have recently led to the identification of α-α-disubstituted amino acid based arginase inhibitors (such as (R-2-amino-6-borono-2-(2-(piperidin-1-ylethylhexanoic acid, that are currently under early investigation as therapeutics. Finally, some investigators concentrate on identification of plant derived compounds with arginase inhibitory capability, such as piceatannol-3'-O-β-D-glucopyranoside (PG. All of these synthesized or naturally derived small molecules may represent novel therapeutics for vascular disease particularly that associated with diabetes.

  12. A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Lien Callewaert

    2008-03-01

    Full Text Available Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative bacteria. First, a lysozyme inhibitor was isolated by affinity chromatography from a periplasmic extract of Salmonella Enteritidis, identified by mass spectrometry and correspondingly designated as PliC (periplasmic lysozyme inhibitor of c-type lysozyme. A pliC knock-out mutant no longer produced lysozyme inhibitory activity and showed increased lysozyme sensitivity in the presence of the outer membrane permeabilizing protein lactoferrin. PliC lacks similarity with the previously described Escherichia coli lysozyme inhibitor Ivy, but is related to a group of proteins with a common conserved COG3895 domain, some of them predicted to be lipoproteins. No function has yet been assigned to these proteins, although they are widely spread among the Proteobacteria. We demonstrate that at least two representatives of this group, MliC (membrane bound lysozyme inhibitor of c-type lysozyme of E. coli and Pseudomonas aeruginosa, also possess lysozyme inhibitory activity and confer increased lysozyme tolerance upon expression in E. coli. Interestingly, mliC of Salmonella Typhi was picked up earlier in a screen for genes induced during residence in macrophages, and knockout of mliC was shown to reduce macrophage survival of S. Typhi. Based on these observations, we suggest that the COG3895 domain is a common feature of a novel and widespread family of bacterial lysozyme inhibitors in gram-negative bacteria that may function as colonization or virulence factors in bacteria

  13. A New Family of Lysozyme Inhibitors Contributing to Lysozyme Tolerance in Gram-Negative Bacteria

    Science.gov (United States)

    Callewaert, Lien; Aertsen, Abram; Deckers, Daphne; Vanoirbeek, Kristof G. A.; Vanderkelen, Lise; Van Herreweghe, Joris M.; Masschalck, Barbara; Nakimbugwe, Dorothy; Robben, Johan; Michiels, Chris W.

    2008-01-01

    Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative bacteria. First, a lysozyme inhibitor was isolated by affinity chromatography from a periplasmic extract of Salmonella Enteritidis, identified by mass spectrometry and correspondingly designated as PliC (periplasmic lysozyme inhibitor of c-type lysozyme). A pliC knock-out mutant no longer produced lysozyme inhibitory activity and showed increased lysozyme sensitivity in the presence of the outer membrane permeabilizing protein lactoferrin. PliC lacks similarity with the previously described Escherichia coli lysozyme inhibitor Ivy, but is related to a group of proteins with a common conserved COG3895 domain, some of them predicted to be lipoproteins. No function has yet been assigned to these proteins, although they are widely spread among the Proteobacteria. We demonstrate that at least two representatives of this group, MliC (membrane bound lysozyme inhibitor of c-type lysozyme) of E. coli and Pseudomonas aeruginosa, also possess lysozyme inhibitory activity and confer increased lysozyme tolerance upon expression in E. coli. Interestingly, mliC of Salmonella Typhi was picked up earlier in a screen for genes induced during residence in macrophages, and knockout of mliC was shown to reduce macrophage survival of S. Typhi. Based on these observations, we suggest that the COG3895 domain is a common feature of a novel and widespread family of bacterial lysozyme inhibitors in gram-negative bacteria that may function as colonization or virulence factors in bacteria interacting with

  14. Crystal Structure of Inhibitor-Bound Human 5-lipoxygenase-activating Protein

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson,A.; McKeever, B.; Xu, S.; Wisniewski, D.; Miller, D.; Yamin, T.; Spencer, R.; Chu, L.; Ujjainwalla, F.; et al.

    2007-01-01

    Leukotrienes are proinflammatory products of arachidonic acid oxidation by 5-lipoxygenase that have been shown to be involved in respiratory and cardiovascular diseases. The integral membrane protein FLAP is essential for leukotriene biosynthesis. We describe the x-ray crystal structures of human FLAP in complex with two leukotriene biosynthesis inhibitors at 4.0 and 4.2 angstrom resolution, respectively. The structures show that inhibitors bind in membrane-embedded pockets of FLAP, which suggests how these inhibitors prevent arachidonic acid from binding to FLAP and subsequently being transferred to 5-lipoxygenase, thereby preventing leukotriene biosynthesis. This structural information provides a platform for the development of therapeutics for respiratory and cardiovascular diseases.

  15. Soybean-derived Bowman-Birk inhibitor (BBI) blocks HIV entry into macrophages.

    Science.gov (United States)

    Ma, Tong-Cui; Le Guo; Zhou, Run-Hong; Wang, Xu; Liu, Jin-Biao; Li, Jie-Liang; Zhou, Yu; Hou, Wei; Ho, Wen-Zhe

    2018-01-01

    Bowman-Birk inhibitor (BBI) is a soybean-derived protease inhibitor that has anti-inflammation and anti-HIV effect. Here, we further investigated the anti-HIV action of BBI in macrophages, focusing on its effect on viral entry. We found that BBI could significantly block HIV entry into macrophages. Investigation of the mechanism(s) of the BBI action on HIV inhibition showed that BBI down-regulated the expression of CD4 receptor (as much as 80%) and induced the production of the CC chemokines (up to 60 folds at protein level) in macrophages. This inhibitory effect of BBI on HIV entry could be blocked by the neutralization antibodies to CC chemokines. These findings indicate that BBI may have therapeutic potential as a viral entry inhibitor for the prevention and treatment of HIV infection. Copyright © 2017. Published by Elsevier Inc.

  16. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours

    DEFF Research Database (Denmark)

    Lasko, Loren M; Jakob, Clarissa G; Edalji, Rohinton P

    2017-01-01

    The dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved...... model. These results demonstrate the feasibility of using small molecule inhibitors to selectively target the catalytic activity of histone acetyltransferases, which may provide effective treatments for transcriptional activator-driven malignancies and diseases....... also been implicated in human pathological conditions (including cancer). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products, bi-substrate analogues and the widely used small molecule C646, lack potency or selectivity. Here, we describe A-485, a potent...

  17. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear.Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.Although PP1

  18. Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff; Harris, Robert E.

    2014-01-01

    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor