WorldWideScience

Sample records for collaborative medical informatics

  1. Bioinformatics and Medical Informatics: Collaborations on the Road to Genomic Medicine?

    Science.gov (United States)

    Maojo, Victor; Kulikowski, Casimir A.

    2003-01-01

    In this report, the authors compare and contrast medical informatics (MI) and bioinformatics (BI) and provide a viewpoint on their complementarities and potential for collaboration in various subfields. The authors compare MI and BI along several dimensions, including: (1) historical development of the disciplines, (2) their scientific foundations, (3) data quality and analysis, (4) integration of knowledge and databases, (5) informatics tools to support practice, (6) informatics methods to support research (signal processing, imaging and vision, and computational modeling, (7) professional and patient continuing education, and (8) education and training. It is pointed out that, while the two disciplines differ in their histories, scientific foundations, and methodologic approaches to research in various areas, they nevertheless share methods and tools, which provides a basis for exchange of experience in their different applications. MI expertise in developing health care applications and the strength of BI in biological “discovery science” complement each other well. The new field of biomedical informatics (BMI) holds great promise for developing informatics methods that will be crucial in the development of genomic medicine. The future of BMI will be influenced strongly by whether significant advances in clinical practice and biomedical research come about from separate efforts in MI and BI, or from emerging, hybrid informatics subdisciplines at their interface. PMID:12925552

  2. Medical informatics in morocco.

    Science.gov (United States)

    Bouhaddou, O; Bennani Othmani, M; Diouny, S

    2013-01-01

    Informatics is an essential tool for helping to transform healthcare from a paper-based to a digital sector. This article explores the state-of-the-art of health informatics in Morocco. Specifically, it aims to give a general overview of the Moroccan healthcare system, the challenges it is facing, and the efforts undertaken by the informatics community and Moroccan government in terms of education, research and practice to reform the country's health sector. Through the experience of establishing Medical Informatics as a medical specialty in 2008, creating a Moroccan Medical Informatics Association in 2010 and holding a first national congress took place in April 2012, the authors present their assessment of some important priorities for health informatics in Morocco. These Moroccan initiatives are facilitating collaboration in education, research, and implementation of clinical information systems. In particular, the stakeholders have recognized the need for a national coordinator office and the development of a national framework for standards and interoperability. For developing countries like Morocco, new health IT approaches like mobile health and trans-media health advertising could help optimize scarce resources, improve access to rural areas and focus on the most prevalent health problems, optimizing health care access, quality, and cost for Morocco population.

  3. Development of national competency-based learning objectives "Medical Informatics" for undergraduate medical education.

    Science.gov (United States)

    Röhrig, R; Stausberg, J; Dugas, M

    2013-01-01

    The aim of this project is to develop a catalogue of competency-based learning objectives "Medical Informatics" for undergraduate medical education (abbreviated NKLM-MI in German). The development followed a multi-level annotation and consensus process. For each learning objective a reason why a physician needs this competence was required. In addition, each objective was categorized according to the competence context (A = covered by medical informatics, B = core subject of medical informatics, C = optional subject of medical informatics), the competence level (1 = referenced knowledge, 2 = applied knowledge, 3 = routine knowledge) and a CanMEDS competence role (medical expert, communicator, collaborator, manager, health advocate, professional, scholar). Overall 42 objectives in seven areas (medical documentation and information processing, medical classifications and terminologies, information systems in healthcare, health telematics and telemedicine, data protection and security, access to medical knowledge and medical signal-/image processing) were identified, defined and consented. With the NKLM-MI the competences in the field of medical informatics vital to a first year resident physician are identified, defined and operationalized. These competencies are consistent with the recommendations of the International Medical Informatics Association (IMIA). The NKLM-MI will be submitted to the National Competence-Based Learning Objectives for Undergraduate Medical Education. The next step is implementation of these objectives by the faculties.

  4. Toward a framework for computer-mediated collaborative design in medical informatics.

    Science.gov (United States)

    Patel, V L; Kaufman, D R; Allen, V G; Shortliffe, E H; Cimino, J J; Greenes, R A

    1999-09-01

    The development and implementation of enabling tools and methods that provide ready access to knowledge and information are among the central goals of medical informatics. The need for multi-institutional collaboration in the development of such tools and methods is increasingly being recognized. Collaboration involves communication, which typically involves individuals who work together at the same location. With the evolution of electronic modalities for communication, we seek to understand the role that such technologies can play in supporting collaboration, especially when the participants are geographically separated. Using the InterMed Collaboratory as a subject of study, we have analyzed their activities as an exercise in computer- and network-mediated collaborative design. We report on the cognitive, sociocultural, and logistical issues encountered when scientists from diverse organizations and backgrounds use communications technologies while designing and implementing shared products. Results demonstrate that it is important to match carefully the content with the mode of communication, identifying, for example, suitable uses of E-mail, conference calls, and face-to-face meetings. The special role of leaders in guiding and facilitating the group activities can also be seen, regardless of the communication setting in which the interactions occur. Most important is the proper use of technology to support the evolution of a shared vision of group goals and methods, an element that is clearly necessary before successful collaborative designs can proceed.

  5. Middle East and North African Health Informatics Association (MENAHIA): Building Sustainable Collaboration.

    Science.gov (United States)

    Al-Shorbaji, Najeeb; Househ, Mowafa; Taweel, Adel; Alanizi, Abdullah; Mohammed, Bennani Othmani; Abaza, Haitham; Bawadi, Hala; Rasuly, Hamayon; Alyafei, Khalid; Fernandez-Luque, Luis; Shouman, Mohamed; El-Hassan, Osama; Hussein, Rada; Alshammari, Riyad; Mandil, Salah; Shouman, Sarah; Taheri, Shahrad; Emara, Tamer; Dalhem, Wasmiya; Al-Hamdan, Zaid; Serhier, Zineb

    2018-04-22

    There has been a growing interest in Health Informatics applications, research, and education within the Middle East and North African Region over the past twenty years. People of this region share similar cultural and religious values, primarily speak the Arabic language, and have similar health care related issues, which are in dire need of being addressed. Health Informatics efforts, organizations, and initiatives within the region have been largely under-represented within, but not ignored by, the International Medical Informatics Association (IMIA). Attempts to create bonds and collaboration between the different organizations of the region have remained scattered, and often, resulted in failure despite the fact that the need for a united health informatics collaborative within the region has never been more crucial than today. During the 2017 MEDINFO, held in Hangzhou, China, a new organization, the Middle East and North African Health Informatics Association (MENAHIA) was conceived as a regional non-governmental organization to promote and facilitate health informatics uptake within the region endorsing health informatics research and educational initiatives of the 22 countries represented within the region. This paper provides an overview of the collaboration and efforts to date in forming MENAHIA and displays the variety of initiatives that are already occurring within the MENAHIA region, which MENAHIA will help, endorse, support, share, and improve within the international forum of health informatics. Georg Thieme Verlag KG Stuttgart.

  6. MIRASS: medical informatics research activity support system using information mashup network.

    Science.gov (United States)

    Kiah, M L M; Zaidan, B B; Zaidan, A A; Nabi, Mohamed; Ibraheem, Rabiu

    2014-04-01

    The advancement of information technology has facilitated the automation and feasibility of online information sharing. The second generation of the World Wide Web (Web 2.0) enables the collaboration and sharing of online information through Web-serving applications. Data mashup, which is considered a Web 2.0 platform, plays an important role in information and communication technology applications. However, few ideas have been transformed into education and research domains, particularly in medical informatics. The creation of a friendly environment for medical informatics research requires the removal of certain obstacles in terms of search time, resource credibility, and search result accuracy. This paper considers three glitches that researchers encounter in medical informatics research; these glitches include the quality of papers obtained from scientific search engines (particularly, Web of Science and Science Direct), the quality of articles from the indices of these search engines, and the customizability and flexibility of these search engines. A customizable search engine for trusted resources of medical informatics was developed and implemented through data mashup. Results show that the proposed search engine improves the usability of scientific search engines for medical informatics. Pipe search engine was found to be more efficient than other engines.

  7. Recommendations of the International Medical Informatics Association (IMIA) on Education in Health and Medical Informatics

    Czech Academy of Sciences Publication Activity Database

    Arokiasamy, J.; Ball, M.; Barnett, D.; Bearman, M.; Bemmel van, J.; Douglas, J.; Fisher, P.; Garrie, R.; Gatewood, L.; Goossen, W.; Grant, A.; Hales, J.; Hasman, A.; Haux, R.; Hovenga, E.; Johns, M.; Knaup, P.; Leven, F. J.; Lorenzi, N.; Murray, P.; Neame, R.; Protti, D.; Power, M.; Richard, J.; Schuster, E.; Swinkels, W.; Yang, J.; Zelmer, L.; Zvárová, Jana

    2001-01-01

    Roč. 40, č. 5 (2001), s. 267-277 ISSN 0026-1270 Institutional research plan: AV0Z1030915 Keywords : health informatics * medical informatics * education * recommendations * International Medical Informatics Association * IMIA Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.254, year: 2001

  8. Comparative effectiveness research and medical informatics.

    Science.gov (United States)

    D'Avolio, Leonard W; Farwell, Wildon R; Fiore, Louis D

    2010-12-01

    As is the case for environmental, ecological, astronomical, and other sciences, medical practice and research finds itself in a tsunami of data. This data deluge, due primarily to the introduction of digitalization in routine medical care and medical research, affords the opportunity for improved patient care and scientific discovery. Medical informatics is the subdiscipline of medicine created to make greater use of information in order to improve healthcare. The 4 areas of medical informatics research (information access, structure, analysis, and interaction) are used as a framework to discuss the overlap in information needs of comparative effectiveness research and potential contributions of medical informatics. Examples of progress from the medical informatics literature and the Veterans Affairs Healthcare System are provided. Published by Elsevier Inc.

  9. Medical imaging, PACS, and imaging informatics: retrospective.

    Science.gov (United States)

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  10. A current perspective on medical informatics and health sciences librarianship.

    Science.gov (United States)

    Perry, Gerald J; Roderer, Nancy K; Assar, Soraya

    2005-04-01

    The article offers a current perspective on medical informatics and health sciences librarianship. The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as "boundary spanners," incorporating human factors that unite technology with health care delivery.

  11. An overview of medical informatics education in China.

    Science.gov (United States)

    Hu, Dehua; Sun, Zhenling; Li, Houqing

    2013-05-01

    To outline the history of medical informatics education in the People's Republic of China, systematically analyze the current status of medical informatics education at different academic levels (bachelor's, master's, and doctoral), and suggest reasonable strategies for the further development of the field in China. The development of medical informatics education was divided into three stages, defined by changes in the specialty's name. Systematic searches of websites for material related to the specialty of medical informatics were then conducted. For undergraduate education, the websites surveyed included the website of the Ministry of Education of the People's Republic of China (MOE) and those of universities or colleges identified using the baidu.com search engine. For postgraduate education, the websites included China's Graduate Admissions Information Network (CGAIN) and the websites of the universities or their schools or faculties. Specialties were selected on the basis of three criteria: (1) for undergraduate education, the name of specialty or program was medical informatics or medical information or information management and information system; for postgraduate education, medical informatics or medical information; (2) the specialty was approved and listed by the MOE; (3) the specialty was set up by a medical college or medical university, or a school of medicine of a comprehensive university. The information abstracted from the websites included the year of program approval and listing, the university/college, discipline catalog, discipline, specialty, specialty code, objectives, and main courses. A total of 55 program offerings for undergraduate education, 27 for master's-level education, and 5 for PhD-level education in medical informatics were identified and assessed in China. The results indicate that medical informatics education, a specialty rooted in medical library and information science education in China, has grown significantly in that

  12. Medical Informatics Education & Research in Greece.

    Science.gov (United States)

    Chouvarda, I; Maglaveras, N

    2015-08-13

    This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated.

  13. Medical Imaging Informatics in Nuclear Medicine

    NARCIS (Netherlands)

    van Ooijen, Peter; Glaudemans, Andor W.J.M.; Medema, Jitze; van Zanten, Annie K.; Dierckx, Rudi A.J.O.; Ahaus, C.T.B. (Kees)

    2016-01-01

    Medical imaging informatics is gaining importance in medicine both in clinical practice and in scientific research. Besides radiology, nuclear medicine is also a major stakeholder in medical imaging informatics because of the variety of available imaging modalities and the imaging-oriented operation

  14. Medical Imaging Informatics: Towards a Personalized Computational Patient.

    Science.gov (United States)

    Ayache, N

    2016-05-20

    Medical Imaging Informatics has become a fast evolving discipline at the crossing of Informatics, Computational Sciences, and Medicine that is profoundly changing medical practices, for the patients' benefit.

  15. Recommendations of the International Medical Informatics Association (IMIA) on Education in Biomedical and Health Informatics. First Revision

    NARCIS (Netherlands)

    Mantas, John; Ammenwerth, Elske; Demiris, George; Hasman, Arie; Haux, Reinhold; Hersh, William; Hovenga, Evelyn; Lun, K. C.; Marin, Heimar; Martin-Sanchez, Fernando; Wright, Graham

    2010-01-01

    Objective: The International Medical Informatics Association (IMIA) agreed on revising the existing international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop

  16. Education of medical informatics in Bosnia and Herzegowina.

    Science.gov (United States)

    Masić, I

    1998-06-01

    Time of information in which the authors live resulted in the increase of the amount of the information exponential growth of the new kind of knowledge, flourishing of the familiar ones and the appearance of the new sciences. Medical (health) informatics occupies the central place in all the segments of modern medicine in the past 30 years--in practical work, education and scientific research. In all that, computers have taken over the most important role and are used intensively for the development of the health information systems. Following activities develop within the area of health informatics: health-documentation, health-statistics, health-informatics and bio-medical, scientific and professional information. The pioneer in the development of the health statistics and informatics in Bosnia and Herzegovina (BiH) was Dr Evgenije Sherstnew, who was the Chief of Health Statistics in the Ministry of Health of BiH from 1946-1952, and who founded and led, from 1952 to the end of his life, the Department of Medical Documentation and Health Statistics of the Central Health Institute of BiH, the core around which a group of experts for the development of this field have gathered. In the eighties computers were intensively used as a tool for the processing medical data and with them the development of health information systems at the level of the outpatient-clinics, hospitals, clinical centers, as well as the integral information system of health, health insurance and the social security system of BiH began. Finally, Society for Medical Informatics of BiH, which as a professional association gathers experts in the area of health informatics, actively propagates this profession in the Republic, was founded. With reform of the lectures and curriculum at the medical faculty in Sarajevo, the course in 'Medical Informatics' has been in 1992. into the second semester, since it was assumed that an early insight into the principles of information along with studies of so

  17. Emerging medical informatics research trends detection based on MeSH terms.

    Science.gov (United States)

    Lyu, Peng-Hui; Yao, Qiang; Mao, Jin; Zhang, Shi-Jing

    2015-01-01

    The aim of this study is to analyze the research trends of medical informatics over the last 12 years. A new method based on MeSH terms was proposed to identify emerging topics and trends of medical informatics research. Informetric methods and visualization technologies were applied to investigate research trends of medical informatics. The metric of perspective factor (PF) embedding MeSH terms was appropriately employed to assess the perspective quality for journals. The emerging MeSH terms have changed dramatically over the last 12 years, identifying two stages of medical informatics: the "medical imaging stage" and the "medical informatics stage". The focus of medical informatics has shifted from acquisition and storage of healthcare data by integrating computational, informational, cognitive and organizational sciences to semantic analysis for problem solving and clinical decision-making. About 30 core journals were determined by Bradford's Law in the last 3 years in this area. These journals, with high PF values, have relative high perspective quality and lead the trend of medical informatics.

  18. The Top 100 Articles in the Medical Informatics: a Bibliometric Analysis.

    Science.gov (United States)

    Nadri, Hamed; Rahimi, Bahlol; Timpka, Toomas; Sedghi, Shahram

    2017-08-19

    The number of citations that a research paper receives can be used as a measure of its scientific impact. The objective of this study was to identify and to examine the characteristics of top 100 cited articles in the field of Medical Informatics based on data acquired from the Thomson Reuters' Web of Science (WOS) in October, 2016. The data was collected using two procedures: first we included articles published in the 24 journals listed in the "Medical Informatics" category; second, we retrieved articles using the key words: "informatics", "medical informatics", "biomedical informatics", "clinical informatics" and "health informatics". After removing duplicate records, articles were ranked by the number of citations they received. When the 100 top cited articles had been identified, we collected the following information for each record: all WOS database citations, year of publication, journal, author names, authors' affiliation, country of origin and topics indexed for each record. Citations for the top 100 articles ranged from 346 to 7875, and citations per year ranged from 11.12 to 525. The majority of articles were published in the 2000s (n=43) and 1990s (n=38). Articles were published across 10 journals, most commonly Statistics in medicine (n=71) and Medical decision making (n=28). The articles had an average of 2.47 authors. Statistics and biostatistics modeling was the most common topic (n=71), followed by artificial intelligence (n=12), and medical errors (n=3), other topics included data mining, diagnosis, bioinformatics, information retrieval, and medical imaging. Our bibliometric analysis illustrated a historical perspective on the progress of scientific research on Medical Informatics. Moreover, the findings of the current study provide an insight on the frequency of citations for top cited articles published in Medical Informatics as well as quality of the works, journals, and the trends steering Medical Informatics.

  19. Computational intelligence in medical informatics

    CERN Document Server

    Gunjan, Vinit

    2015-01-01

    This Brief highlights Informatics and related techniques to Computer Science Professionals, Engineers, Medical Doctors, Bioinformatics researchers and other interdisciplinary researchers. Chapters include the Bioinformatics of Diabetes and several computational algorithms and statistical analysis approach to effectively study the disorders and possible causes along with medical applications.

  20. Medical decision support and medical informatics education: roots, methods and applications in czechoslovakia and the czech republic.

    Science.gov (United States)

    Zvárová, Jana

    2013-01-01

    The paper describes the history of medical informatics in Czechoslovakia and the Czech Republic. It focuses on the topics of medical informatics education and decision support methods and systems. Several conferences held in Czechoslovakia and in the Czech Republic organized in cooperation with IMIA or EFMI are described. Support of European Union and Czech agencies in several European and national projects focused on medical informatics topics highly contributed to medical informatics development in Czechoslovakia and the Czech Republic and to the establishment of the European Center for Medical Informatics, Statistics and Epidemiology as the joint workplace of Charles University in Prague and Academy of Sciences of the Czech Republic in 1994.

  1. Health Care Transformation Through Collaboration on Open-Source Informatics Projects: Integrating a Medical Applications Platform, Research Data Repository, and Patient Summarization

    Science.gov (United States)

    McCoy, Allison B; Wright, Adam; Wattanasin, Nich; Sittig, Dean F; Murphy, Shawn N

    2013-01-01

    Background The Strategic Health IT Advanced Research Projects (SHARP) program seeks to conquer well-understood challenges in medical informatics through breakthrough research. Two SHARP centers have found alignment in their methodological needs: (1) members of the National Center for Cognitive Informatics and Decision-making (NCCD) have developed knowledge bases to support problem-oriented summarizations of patient data, and (2) Substitutable Medical Apps, Reusable Technologies (SMART), which is a platform for reusable medical apps that can run on participating platforms connected to various electronic health records (EHR). Combining the work of these two centers will ensure wide dissemination of new methods for synthesized views of patient data. Informatics for Integrating Biology and the Bedside (i2b2) is an NIH-funded clinical research data repository platform in use at over 100 sites worldwide. By also working with a co-occurring initiative to SMART-enabling i2b2, we can confidently write one app that can be used extremely broadly. Objective Our goal was to facilitate development of intuitive, problem-oriented views of the patient record using NCCD knowledge bases that would run in any EHR. To do this, we developed a collaboration between the two SHARPs and an NIH center, i2b2. Methods First, we implemented collaborative tools to connect researchers at three institutions. Next, we developed a patient summarization app using the SMART platform and a previously validated NCCD problem-medication linkage knowledge base derived from the National Drug File-Reference Terminology (NDF-RT). Finally, to SMART-enable i2b2, we implemented two new Web service “cells” that expose the SMART application programming interface (API), and we made changes to the Web interface of i2b2 to host a “carousel” of SMART apps. Results We deployed our SMART-based, NDF-RT-derived patient summarization app in this SMART-i2b2 container. It displays a problem-oriented view of

  2. Health care transformation through collaboration on open-source informatics projects: integrating a medical applications platform, research data repository, and patient summarization.

    Science.gov (United States)

    Klann, Jeffrey G; McCoy, Allison B; Wright, Adam; Wattanasin, Nich; Sittig, Dean F; Murphy, Shawn N

    2013-05-30

    The Strategic Health IT Advanced Research Projects (SHARP) program seeks to conquer well-understood challenges in medical informatics through breakthrough research. Two SHARP centers have found alignment in their methodological needs: (1) members of the National Center for Cognitive Informatics and Decision-making (NCCD) have developed knowledge bases to support problem-oriented summarizations of patient data, and (2) Substitutable Medical Apps, Reusable Technologies (SMART), which is a platform for reusable medical apps that can run on participating platforms connected to various electronic health records (EHR). Combining the work of these two centers will ensure wide dissemination of new methods for synthesized views of patient data. Informatics for Integrating Biology and the Bedside (i2b2) is an NIH-funded clinical research data repository platform in use at over 100 sites worldwide. By also working with a co-occurring initiative to SMART-enabling i2b2, we can confidently write one app that can be used extremely broadly. Our goal was to facilitate development of intuitive, problem-oriented views of the patient record using NCCD knowledge bases that would run in any EHR. To do this, we developed a collaboration between the two SHARPs and an NIH center, i2b2. First, we implemented collaborative tools to connect researchers at three institutions. Next, we developed a patient summarization app using the SMART platform and a previously validated NCCD problem-medication linkage knowledge base derived from the National Drug File-Reference Terminology (NDF-RT). Finally, to SMART-enable i2b2, we implemented two new Web service "cells" that expose the SMART application programming interface (API), and we made changes to the Web interface of i2b2 to host a "carousel" of SMART apps. We deployed our SMART-based, NDF-RT-derived patient summarization app in this SMART-i2b2 container. It displays a problem-oriented view of medications and presents a line-graph display of

  3. Combining medical informatics and bioinformatics toward tools for personalized medicine.

    Science.gov (United States)

    Sarachan, B D; Simmons, M K; Subramanian, P; Temkin, J M

    2003-01-01

    Key bioinformatics and medical informatics research areas need to be identified to advance knowledge and understanding of disease risk factors and molecular disease pathology in the 21 st century toward new diagnoses, prognoses, and treatments. Three high-impact informatics areas are identified: predictive medicine (to identify significant correlations within clinical data using statistical and artificial intelligence methods), along with pathway informatics and cellular simulations (that combine biological knowledge with advanced informatics to elucidate molecular disease pathology). Initial predictive models have been developed for a pilot study in Huntington's disease. An initial bioinformatics platform has been developed for the reconstruction and analysis of pathways, and work has begun on pathway simulation. A bioinformatics research program has been established at GE Global Research Center as an important technology toward next generation medical diagnostics. We anticipate that 21 st century medical research will be a combination of informatics tools with traditional biology wet lab research, and that this will translate to increased use of informatics techniques in the clinic.

  4. Moving toward a United States strategic plan in primary care informatics: a White Paper of the Primary Care Informatics Working Group, American Medical Informatics Association

    Directory of Open Access Journals (Sweden)

    David Little

    2003-06-01

    Full Text Available The Primary Care Informatics Working Group (PCIWG of the American Medical Informatics Association (AMIA has identified the absence of a national strategy for primary care informatics. Under PCIWG leadership, major national and international societies have come together to create the National Alliance for Primary Care Informatics (NAPCI, to promote a connection between the informatics community and the organisations that support primary care. The PCIWG clinical practice subcommittee has recognised the necessity of a global needs assessment, and proposed work in point-of-care technology, clinical vocabularies, and ambulatory electronic medical record development. Educational needs include a consensus statement on informatics competencies, recommendations for curriculum and teaching methods, and methodologies to evaluate their effectiveness. The research subcommittee seeks to define a primary care informatics research agenda, and to support and disseminate informatics research throughout the primary care community. The AMIA board of directors has enthusiastically endorsed the conceptual basis for this White Paper.

  5. New study program: Interdisciplinary Postgraduate Specialist Study in Medical Informatics.

    Science.gov (United States)

    Hercigonja-Szekeres, Mira; Simić, Diana; Božikov, Jadranka; Vondra, Petra

    2014-01-01

    Paper presents an overview of the EU funded Project of Curriculum Development for Interdisciplinary Postgraduate Specialist Study in Medical Informatics named MEDINFO to be introduced in Croatia. The target group for the program is formed by professionals in any of the areas of medicine, IT professionals working on applications of IT for health and researchers and teachers in medical informatics. In addition to Croatian students, the program will also provide opportunity for enrolling students from a wider region of Southeast Europe. Project partners are two faculties of the University of Zagreb - Faculty of Organization and Informatics from Varaždin and School of Medicine, Andrija Štampar School of Public Health from Zagreb with the Croatian Society for Medical Informatics, Croatian Chamber of Economy, and Ericsson Nikola Tesla Company as associates.

  6. A short history of medical informatics in bosnia and herzegovina.

    Science.gov (United States)

    Masic, Izet

    2014-02-01

    The health informatics profession in Bosnia and Herzegovina has relatively long history. Thirty five years from the introduction of the first automatic manipulation of data, thirty years from the establishment of Society for Medical Informatics BiH, twenty years from the establishment of the Scientific journal "Acta Informatica Medica (Acta Inform Med", indexed in PubMed, PubMed Central Scopus, Embase, etc.), twenty years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina, ten years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article is eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.

  7. Medical informatics: A boon to the healthcare industry

    Directory of Open Access Journals (Sweden)

    Dinesh Bhatia

    2010-01-01

    Full Text Available Newer healthcare technologies and treatment procedures are being developed rapidly, and clinicians are incorporating them into their daily practice. They are integrating the past and the present knowledge for better patient healthcare. Previously, it had been difficult to organize, store and retrieve medical and patient information. But, today, with the advent of computers and, moreover, information technology has led to the development of medical informatics that is helping physicians to overcome these challenges. Medical informatics deals with all aspects of understanding and promoting the effective organization analysis, management and use of information in healthcare, which are being highlighted in this review paper.

  8. The jubilee of medical informatics in bosnia and herzegovina - 20 years anniversary.

    Science.gov (United States)

    Masic, Izet

    2009-01-01

    NONE DECLARED LAST TWO YEARS, THE HEALTH INFORMATICS PROFESSION CELEBRATED FIVE JUBILEES IN BOSNIA AND HERZEGOVINA: thirty years from the introduction of the first automatic manipulation of data, twenty years from the establishment of Society for Medical Informatics BiH, fifteen years from the establishment of the Scientific and Professional Journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica", fifteen years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina and five years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article are eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.

  9. Medical image informatics infrastructure design and applications.

    Science.gov (United States)

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  10. Open Access Publishing in the Field of Medical Informatics.

    Science.gov (United States)

    Kuballa, Stefanie

    2017-05-01

    The open access paradigm has become an important approach in today's information and communication society. Funders and governments in different countries stipulate open access publications of funded research results. Medical informatics as part of the science, technology and medicine disciplines benefits from many research funds, such as National Institutes of Health in the US, Wellcome Trust in UK, German Research Foundation in Germany and many more. In this study an overview of the current open access programs and conditions of major journals in the field of medical informatics is presented. It was investigated whether there are suitable options and how they are shaped. Therefore all journals in Thomson Reuters Web of Science that were listed in the subject category "Medical Informatics" in 2014 were examined. An Internet research was conducted by investigating the journals' websites. It was reviewed whether journals offer an open access option with a subsequent check of conditions as for example the type of open access, the fees and the licensing. As a result all journals in the field of medical informatics that had an impact factor in 2014 offer an open access option. A predominantly consistent pricing range was determined with an average fee of 2.248 € and a median fee of 2.207 €. The height of a journals' open access fee did not correlate with the height of its Impact Factor. Hence, medical informatics journals have recognized the trend of open access publishing, though the vast majority of them are working with the hybrid method. Hybrid open access may however lead to problems in questions of double dipping and the often stipulated gold open access.

  11. Twenty years of society of medical informatics of b&h and the journal acta informatica medica.

    Science.gov (United States)

    Masic, Izet

    2012-03-01

    In 2012, Health/Medical informatics profession celebrates five jubilees in Bosnia and Herzegovina: a) Thirty five years from the introduction of the first automatic manipulation of data; b) Twenty five years from establishing Society for Medical Informatics BiH; c) Twenty years from establishing scientific and professional journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica"; d) Twenty years from establishing first Cathdra for Medical Informatics on biomedical faculties in Bosnia and Herzegovina and e) Ten years from the introduction of "Distance learning" in medical curriculum. All of the five mentioned activities in the area of Medical informatics had special importance and gave appropriate contribution in the development of Health/Medical informatics in Bosnia And Herzegovina.

  12. Case-based medical informatics

    Directory of Open Access Journals (Sweden)

    Arocha José F

    2004-11-01

    Full Text Available Abstract Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences

  13. Perspectives for medical informatics. Reusing the electronic medical record for clinical research.

    Science.gov (United States)

    Prokosch, H U; Ganslandt, T

    2009-01-01

    Even though today most university hospitals have already implemented commercial hospital information systems and started to build up comprehensive electronic medical records, reuse of such data for data warehousing and research purposes is still very rare. Given this situation, the focus of this paper is to present an overview on exemplary projects, which have already tackled this challenge, reflect on current initiatives within the United States of America and the European Union to establish IT infrastructures for clinical and translational research, and draw attention to new challenges in this area. This paper does not intend to provide a fully comprehensive review on all the issues of clinical routine data reuse. It is based, however, on a presentation of a large variety of historical, but also most recent activities in data warehousing, data retrieval and linking medical informatics with translational research. The article presents an overview of the various international approaches to this issue and illustrates concepts and solutions which have been published, thus giving an impression of activities pursued in this field of medical informatics. Further, problems and open questions, which have also been named in the literature, are presented and three challenges (to establish comprehensive clinical data warehouses, to establish professional IT infrastructure applications supporting clinical trial data capture and to integrate medical record systems and clinical trial databases) related to this area of medical informatics are identified and presented. Translational biomedical research with the aim "to integrate bedside and biology" and to bridge the gap between clinical care and medical research today and in the years to come, provides a large and interesting field for medical informatics researchers. Especially the need for integrating clinical research projects with data repositories built up during documentation of routine clinical care, today still leaves

  14. The European community and its standardization efforts in medical informatics

    Science.gov (United States)

    Mattheus, Rudy A.

    1992-07-01

    A summary of the CEN TC 251/4 ''Medical Imaging and Multi-Media'' activities will be given. CEN is the European standardization institute, TC 251 deals with medical informatics. Standardization is a condition for the wide scale use of health care and medical informatics and for the creation of a common market. In the last two years, three important categories-- namely, the Commission of the European Communities with their programs and the mandates, the medical informaticians through their European professional federation, and the national normalization institutes through the European committee--have shown to be aware of this problem and have taken actions. As a result, a number of AIM (Advanced Informatics in Medicine), CEC sponsored projects, the CEC mandates to CEN and EWOS, the EFMI working group on standardization, the technical committee of CEN, and the working groups and project teams of CEN and EWOS are working on the subject. On overview of the CEN TC 251/4 ''Medical Imaging and Multi-Media'' activities will be given, including their relation to other work.

  15. On Informatics Diagnostics and Informatics Therapeutics - Good Medical Informatics Research Is Needed Here.

    Science.gov (United States)

    Haux, Reinhold

    2017-01-01

    In the era of digitization some new procedures play an increasing role for diagnosis as well as for therapy: informatics diagnostics and informatics therapeutics. Challenges for such procedures are described. It is discussed, when research on such diagnostics and therapeutics can be regarded as good research. Examples are mentioned for informatics diagnostics and informatics therapeutics, which are based on health-enabling technologies.

  16. Current practices in library/informatics instruction in academic libraries serving medical schools in the Western United States: a three-phase action research study.

    Science.gov (United States)

    Eldredge, Jonathan D; Heskett, Karen M; Henner, Terry; Tan, Josephine P

    2013-09-04

    teaching skills, and that they need to continually adapt to changes in curricula. This study offers a long overdue, systematic view of current practices of library/informatics training at Western U.S. medical schools. Medical educators, particularly curricular leaders, will find opportunities in this study's results for more productive collaborations with the librarians responsible for library and informatics training at their medical schools.

  17. On Development of Medical Informatics Education via European Cooperation

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    1998-01-01

    Roč. 50, - (1998), s. 219-223 ISSN 1386-5056 Keywords : information technologies * education * training * medical informatics * medical statistics * epidemiology Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.357, year: 1998

  18. Spreading knowledge in medical informatics: the contribution of the hospital Italiano de Buenos Aires.

    Science.gov (United States)

    Gonzalez Bernaldo de Quiros, F; Luna, D; Otero, P; Baum, A; Borbolla, D

    2009-01-01

    Medical Informatics (MI) is an emerging discipline with a high need of trained and skillful professionals. To describe the educational experience of the Department of Health Informatics of the Hospital Italiano de Buenos Aires. A descriptive study of the development of the Medical Informatics Residency Program (MIRP) and the e-learning courses related to medical informatics. A four-year MIRP with 15 rotations was started in 2000, and was awarded national educational accreditation. Eight residents have been fully trained and their main academic contributions are shown in this study. The e-learning courses related to medical informatics (Healthcare Management, Epidemiology & Biostatistics, Information Retrieval, Computer Literacy started, 10x10 Spanish version and HL7 introductory course) started in 2006 and were followed by more than 2266 students from all over the world, with an increase trend in foreign students. These educational activities have produced skilled human resources for the development and maintenance of the health informatics projects at our Hospital. In parallel, the number of students trained by e-learning continues to increase, demonstrating the worldwide need of knowledge in this field.

  19. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    International Nuclear Information System (INIS)

    Phillips, M; Kalet, I; McNutt, T; Smith, W

    2014-01-01

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussion in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be

  20. SWOT Analysis on Medical Informatics and Development Strategies

    Science.gov (United States)

    Ma, Xiaoyan; Han, Zhongdong; Ma, Hua

    2015-01-01

    This article aims at clarifying the strategic significance of developing medical informatics, conducting SWOT analysis on this discipline and hence establishing the strategic objectives and focal points for its development.

  1. Pathology Informatics Essentials for Residents: A flexible informatics curriculum linked to Accreditation Council for Graduate Medical Education milestones

    Science.gov (United States)

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics have been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: The objective of the study is to develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:27563486

  2. The state and profile of open source software projects in health and medical informatics.

    Science.gov (United States)

    Janamanchi, Balaji; Katsamakas, Evangelos; Raghupathi, Wullianallur; Gao, Wei

    2009-07-01

    Little has been published about the application profiles and development patterns of open source software (OSS) in health and medical informatics. This study explores these issues with an analysis of health and medical informatics related OSS projects on SourceForge, a large repository of open source projects. A search was conducted on the SourceForge website during the period from May 1 to 15, 2007, to identify health and medical informatics OSS projects. This search resulted in a sample of 174 projects. A Java-based parser was written to extract data for several of the key variables of each project. Several visually descriptive statistics were generated to analyze the profiles of the OSS projects. Many of the projects have sponsors, implying a growing interest in OSS among organizations. Sponsorship, we discovered, has a significant impact on project success metrics. Nearly two-thirds of the projects have a restrictive license type. Restrictive licensing may indicate tighter control over the development process. Our sample includes a wide range of projects that are at various stages of development (status). Projects targeted towards the advanced end user are primarily focused on bio-informatics, data formats, database and medical science applications. We conclude that there exists an active and thriving OSS development community that is focusing on health and medical informatics. A wide range of OSS applications are in development, from bio-informatics to hospital information systems. A profile of OSS in health and medical informatics emerges that is distinct and unique to the health care field. Future research can focus on OSS acceptance and diffusion and impact on cost, efficiency and quality of health care.

  3. [Standards in Medical Informatics: Fundamentals and Applications].

    Science.gov (United States)

    Suárez-Obando, Fernando; Camacho Sánchez, Jhon

    2013-09-01

    The use of computers in medical practice has enabled novel forms of communication to be developed in health care. The optimization of communication processes is achieved through the use of standards to harmonize the exchange of information and provide a common language for all those involved. This article describes the concept of a standard applied to medical informatics and its importance in the development of various applications, such as computational representation of medical knowledge, disease classification and coding systems, medical literature searches and integration of biological and clinical sciences. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  4. Development of a medical informatics data warehouse.

    Science.gov (United States)

    Wu, Cai

    2006-01-01

    This project built a medical informatics data warehouse (MedInfo DDW) in an Oracle database to analyze medical information which has been collected through Baylor Family Medicine Clinic (FCM) Logician application. The MedInfo DDW used Star Schema with dimensional model, FCM database as operational data store (ODS); the data from on-line transaction processing (OLTP) were extracted and transferred to a knowledge based data warehouse through SQLLoad, and the patient information was analyzed by using on-line analytic processing (OLAP) in Crystal Report.

  5. Synergy between Medical Informatics and Bioinformatics: Facilitating Genomic Medicine for Future Health Care

    Czech Academy of Sciences Publication Activity Database

    Martin-Sanchez, F.; Iakovidis, I.; Norager, S.; Maojo, V.; de Groen, P.; Van der Lei, J.; Jones, T.; Abraham-Fuchs, K.; Apweiler, R.; Babic, A.; Baud, R.; Breton, V.; Cinquin, P.; Doupi, P.; Dugas, M.; Eils, R.; Engelbrecht, R.; Ghazal, P.; Jehenson, P.; Kulikowski, C.; Lampe, K.; De Moor, G.; Orphanoudakis, S.; Rossing, N.; Sarachan, B.; Sousa, A.; Spekowius, G.; Thireos, G.; Zahlmann, G.; Zvárová, Jana; Hermosilla, I.; Vicente, F. J.

    2004-01-01

    Roč. 37, - (2004), s. 30-42 ISSN 1532-0464 Institutional research plan: CEZ:AV0Z1030915 Keywords : bioinformatics * medical informatics * genomics * genomic medicine * biomedical informatics Subject RIV: BD - Theory of Information Impact factor: 1.013, year: 2004

  6. Incorporation of medical informatics and information technology as core components of undergraduate medical education - time for change!

    Science.gov (United States)

    Otto, Anthony; Kushniruk, Andre

    2009-01-01

    It is generally accepted that Information Technology (IT) is a highly desirable and a very necessary ingredient of modern health care. Review of available literature reveals a paucity of medical informatics and information technology courses in undergraduate medical curricula and a lack of research to assess the effectiveness of medical informatics in undergraduate medical education. The need for such initiatives is discussed and a pilot project is described that evaluated the effectiveness of education in the use of Electronic Medical Record (EMR) applications. Educational activities, for example, could be medical students conducting virtual medical encounters or interacting with EMR applications. An EMR application, which was used in several related projects, has been adapted to the educational environment: standardized patient records can be created and cloned so that individual students can interact with a "standard" patient and alter the patient's data.

  7. MO-C-BRCD-03: The Role of Informatics in Medical Physics and Vice Versa.

    Science.gov (United States)

    Andriole, K

    2012-06-01

    Like Medical Physics, Imaging Informatics encompasses concepts touching every aspect of the imaging chain from image creation, acquisition, management and archival, to image processing, analysis, display and interpretation. The two disciplines are in fact quite complementary, with similar goals to improve the quality of care provided to patients using an evidence-based approach, to assure safety in the clinical and research environments, to facilitate efficiency in the workplace, and to accelerate knowledge discovery. Use-cases describing several areas of informatics activity will be given to illustrate current limitations that would benefit from medical physicist participation, and conversely areas in which informaticists may contribute to the solution. Topics to be discussed include radiation dose monitoring, process management and quality control, display technologies, business analytics techniques, and quantitative imaging. Quantitative imaging is increasingly becoming an essential part of biomedicalresearch as well as being incorporated into clinical diagnostic activities. Referring clinicians are asking for more objective information to be gleaned from the imaging tests that they order so that they may make the best clinical management decisions for their patients. Medical Physicists may be called upon to identify existing issues as well as develop, validate and implement new approaches and technologies to help move the field further toward quantitative imaging methods for the future. Biomedical imaging informatics tools and techniques such as standards, integration, data mining, cloud computing and new systems architectures, ontologies and lexicons, data visualization and navigation tools, and business analytics applications can be used to overcome some of the existing limitations. 1. Describe what is meant by Medical Imaging Informatics and understand why the medical physicist should care. 2. Identify existing limitations in information technologies with

  8. An international course on strategic information management for medical informatics students: aim, content, structure, and experiences

    NARCIS (Netherlands)

    Haux, R.; Ammenwerth, E.; ter Burg, W. J.; Pilz, J.; Jaspers, M. W. M.

    2004-01-01

    We report on a course for medical informatics students on hospital information systems, especially on its strategic information management. Starting as course at the Medical Informatics Program of the University of Heidelberg/University of Applied Sciences Heilbronn, it is now organized as

  9. Factors influencing medical informatics examination grade--can biorhythm, astrological sign, seasonal aspect, or bad statistics predict outcome?

    Science.gov (United States)

    Petrovecki, Mladen; Rahelić, Dario; Bilić-Zulle, Lidija; Jelec, Vjekoslav

    2003-02-01

    To investigate whether and to what extent various parameters, such as individual characteristics, computer habits, situational factors, and pseudoscientific variables, influence Medical Informatics examination grade, and how inadequate statistical analysis can lead to wrong conclusions. The study included a total of 382 second-year undergraduate students at the Rijeka University School of Medicine in the period from 1996/97 to 2000/01 academic year. After passing the Medical Informatics exam, students filled out an anonymous questionnaire about their attitude toward learning medical informatics. They were asked to grade the course organization and curriculum content, and provide their date of birth; sex; study year; high school grades; Medical Informatics examination grade, type, and term; and describe their computer habits. From these data, we determined their zodiac signs and biorhythm. Data were compared by the use of t-test, one-way ANOVA with Tukey's honest significance difference test, and randomized complete block design ANOVA. Out of 21 variables analyzed, only 10 correlated with the average grade. Students taking Medical Informatics examination in the 1998/99 academic year earned lower average grade than any other generation. Significantly higher Medical Informatics exam grade was earned by students who finished a grammar high school; owned and regularly used a computer, Internet, and e-mail (pzodiac sign, zodiac sign quality, or biorhythm cycles, except when intentionally inadequate statistics was used for data analysis. Medical Informatics examination grades correlated with general learning capacity and computer habits of students, but showed no relation to other investigated parameters, such as examination term or pseudoscientific parameters. Inadequate statistical analysis can always confirm false conclusions.

  10. Medical imaging informatics simulators: a tutorial.

    Science.gov (United States)

    Huang, H K; Deshpande, Ruchi; Documet, Jorge; Le, Anh H; Lee, Jasper; Ma, Kevin; Liu, Brent J

    2014-05-01

    A medical imaging informatics infrastructure (MIII) platform is an organized method of selecting tools and synthesizing data from HIS/RIS/PACS/ePR systems with the aim of developing an imaging-based diagnosis or treatment system. Evaluation and analysis of these systems can be made more efficient by designing and implementing imaging informatics simulators. This tutorial introduces the MIII platform and provides the definition of treatment/diagnosis systems, while primarily focusing on the development of the related simulators. A medical imaging informatics (MII) simulator in this context is defined as a system integration of many selected imaging and data components from the MIII platform and clinical treatment protocols, which can be used to simulate patient workflow and data flow starting from diagnostic procedures to the completion of treatment. In these processes, DICOM and HL-7 standards, IHE workflow profiles, and Web-based tools are emphasized. From the information collected in the database of a specific simulator, evidence-based medicine can be hypothesized to choose and integrate optimal clinical decision support components. Other relevant, selected clinical resources in addition to data and tools from the HIS/RIS/PACS and ePRs platform may also be tailored to develop the simulator. These resources can include image content indexing, 3D rendering with visualization, data grid and cloud computing, computer-aided diagnosis (CAD) methods, specialized image-assisted surgical, and radiation therapy technologies. Five simulators will be discussed in this tutorial. The PACS-ePR simulator with image distribution is the cradle of the other simulators. It supplies the necessary PACS-based ingredients and data security for the development of four other simulators: the data grid simulator for molecular imaging, CAD-PACS, radiation therapy simulator, and image-assisted surgery simulator. The purpose and benefits of each simulator with respect to its clinical relevance

  11. 10 years experience with pioneering open access publishing in health informatics: the Journal of Medical Internet Research (JMIR).

    Science.gov (United States)

    Eysenbach, Gunther

    2010-01-01

    Peer-reviewed journals remain important vehicles for knowledge transfer and dissemination in health informatics, yet, their format, processes and business models are changing only slowly. Up to the end of last century, it was common for individual researchers and scientific organizations to leave the business of knowledge transfer to professional publishers, signing away their rights to the works in the process, which in turn impeded wider dissemination. Traditional medical informatics journals are poorly cited and the visibility and uptake of articles beyond the medical informatics community remain limited. In 1999, the Journal of Medical Internet Research (JMIR; http://www.jmir.org) was launched, featuring several innovations including 1) ownership and copyright retained by the authors, 2) electronic-only, "lean" non-for-profit publishing, 3) openly accessible articles with a reversed business model (author pays instead of reader pays), 4) technological innovations such as automatic XML tagging and reference checking, on-the-fly PDF generation from XML, etc., enabling wide distribution in various bibliographic and full-text databases. In the past 10 years, despite limited resources, the journal has emerged as a leading journal in health informatics, and is presently ranked the top journal in the medical informatics and health services research categories by impact factor. The paper summarizes some of the features of the Journal, and uses bibliometric and access data to compare the influence of the Journal on the discipline of medical informatics and other disciplines. While traditional medical informatics journals are primarily cited by other Medical Informatics journals (33%-46% of citations), JMIR papers are to a more often cited by "end-users" (policy, public health, clinical journals), which may be partly attributable to the "open access advantage".

  12. A survey of medical informatics in Belgium.

    Science.gov (United States)

    Roger, F H; Behets, M; Andre, J; de Moor, G; Sevens, C; Willems, J L

    1987-01-01

    The Belgian Society for Medical Informatics (MIM) organized a survey in 1986 in order to assess the present state of development of medical informatics in Belgium. Questionnaires were sent to hospitals, laboratories, private practitioners and pharmacists, as well as to social security organizations and software industries. The response rate was higher in hospitals (93%) than in any other category. Results showed a large number of computerized hospitals (93% of general acute care hospitals and 91% of psychiatric hospitals). There has been a sharp increase (+ 15%) in computerization of the admission, accounting and billing procedures since 1985, most likely in relation with administrative rules issued by the Belgian Government. The same trend (+ 20%) has been observed for computer applications in clinical laboratories, between 1984 and 1985. There is almost one computer terminal for ten beds in the hospitals with more than 200 beds in 1986. This figure exemplifies the present trend to on-line access to data. Computerized instrumental aids to medicine such as text processing, imaging or computerized interpretation of signals have known a rapid extension during recent years, although less comprehensive than administrative applications in hospitals and in social security organizations. The present state of other applications in medicine (general practice, pharmacy, etc.) was more difficult to assess as those information systems remain more pinpointed. In all medical fields, there appears to be a new rise in computer programs offered by software companies.

  13. Contemporary Issues in Medicine--Medical Informatics and Population Health: Report II of the Medical School Objectives Project.

    Science.gov (United States)

    Academic Medicine, 1999

    1999-01-01

    The report of the Association of American Medical Colleges' Medical School Objectives Program presents the work of two expert panels. One, on medical informatics, identified five important physician roles: lifelong learner, clinician, educator, researcher, and manager. Another panel established a definition for "population health…

  14. WE-E-12A-01: Medical Physics 1.0 to 2.0: MRI, Displays, Informatics

    International Nuclear Information System (INIS)

    Pickens, D; Flynn, M; Peck, D

    2014-01-01

    Medical Physics 2.0 is a bold vision for an existential transition of clinical imaging physics in face of the new realities of value-based and evidence-based medicine, comparative effectiveness, and meaningful use. It speaks to how clinical imaging physics can expand beyond traditional insular models of inspection and acceptance testing, oriented toward compliance, towards team-based models of operational engagement, prospective definition and assurance of effective use, and retrospective evaluation of clinical performance. Organized into four sessions of the AAPM, this particular session focuses on three specific modalities as outlined below. MRI 2.0: This presentation will look into the future of clinical MR imaging and what the clinical medical physicist will need to be doing as the technology of MR imaging evolves. Many of the measurement techniques used today will need to be expanded to address the advent of higher field imaging systems and dedicated imagers for specialty applications. Included will be the need to address quality assurance and testing metrics for multi-channel MR imagers and hybrid devices such as MR/PET systems. New pulse sequences and acquisition methods, increasing use of MR spectroscopy, and real-time guidance procedures will place the burden on the medical physicist to define and use new tools to properly evaluate these systems, but the clinical applications must be understood so that these tools are use correctly. Finally, new rules, clinical requirements, and regulations will mean that the medical physicist must actively work to keep her/his sites compliant and must work closely with physicians to ensure best performance of these systems. Informatics Display 1.0 to 2.0: Medical displays are an integral part of medical imaging operation. The DICOM and AAPM (TG18) efforts have led to clear definitions of performance requirements of monochrome medical displays that can be followed by medical physicists to ensure proper performance. However

  15. WE-E-12A-01: Medical Physics 1.0 to 2.0: MRI, Displays, Informatics

    Energy Technology Data Exchange (ETDEWEB)

    Pickens, D [Vanderbilt Medical Center, Nashville, TN (United States); Flynn, M; Peck, D [Henry Ford Health System, Detroit, MI (United States)

    2014-06-15

    Medical Physics 2.0 is a bold vision for an existential transition of clinical imaging physics in face of the new realities of value-based and evidence-based medicine, comparative effectiveness, and meaningful use. It speaks to how clinical imaging physics can expand beyond traditional insular models of inspection and acceptance testing, oriented toward compliance, towards team-based models of operational engagement, prospective definition and assurance of effective use, and retrospective evaluation of clinical performance. Organized into four sessions of the AAPM, this particular session focuses on three specific modalities as outlined below. MRI 2.0: This presentation will look into the future of clinical MR imaging and what the clinical medical physicist will need to be doing as the technology of MR imaging evolves. Many of the measurement techniques used today will need to be expanded to address the advent of higher field imaging systems and dedicated imagers for specialty applications. Included will be the need to address quality assurance and testing metrics for multi-channel MR imagers and hybrid devices such as MR/PET systems. New pulse sequences and acquisition methods, increasing use of MR spectroscopy, and real-time guidance procedures will place the burden on the medical physicist to define and use new tools to properly evaluate these systems, but the clinical applications must be understood so that these tools are use correctly. Finally, new rules, clinical requirements, and regulations will mean that the medical physicist must actively work to keep her/his sites compliant and must work closely with physicians to ensure best performance of these systems. Informatics Display 1.0 to 2.0: Medical displays are an integral part of medical imaging operation. The DICOM and AAPM (TG18) efforts have led to clear definitions of performance requirements of monochrome medical displays that can be followed by medical physicists to ensure proper performance. However

  16. Don E. Detmer and the American Medical Informatics Association: An Appreciation

    Science.gov (United States)

    Shortliffe, Edward H.; Bates, David W.; Bloomrosen, Meryl; Greenwood, Karen; Safran, Charles; Steen, Elaine B.; Tang, Paul C.; Williamson, Jeffrey J.

    2009-01-01

    Don E. Detmer has served as President and Chief Executive Officer of the American Medical Informatics Association (AMIA) for the past five years, helping to set a course for the organization and demonstrating remarkable leadership as AMIA has evolved into a vibrant and influential professional association. On the occasion of Dr. Detmer's retirement, we fondly reflect on his professional life and his many contributions to biomedical informatics and, more generally, to health care in the U.S. and globally. PMID:19574463

  17. An informatics research agenda to support precision medicine: seven key areas.

    Science.gov (United States)

    Tenenbaum, Jessica D; Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R

    2016-07-01

    The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM's vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  18. The challenge of ubiquitous computing in health care: technology, concepts and solutions. Findings from the IMIA Yearbook of Medical Informatics 2005.

    Science.gov (United States)

    Bott, O J; Ammenwerth, E; Brigl, B; Knaup, P; Lang, E; Pilgram, R; Pfeifer, B; Ruderich, F; Wolff, A C; Haux, R; Kulikowski, C

    2005-01-01

    To review recent research efforts in the field of ubiquitous computing in health care. To identify current research trends and further challenges for medical informatics. Analysis of the contents of the Yearbook on Medical Informatics 2005 of the International Medical Informatics Association (IMIA). The Yearbook of Medical Informatics 2005 includes 34 original papers selected from 22 peer-reviewed scientific journals related to several distinct research areas: health and clinical management, patient records, health information systems, medical signal processing and biomedical imaging, decision support, knowledge representation and management, education and consumer informatics as well as bioinformatics. A special section on ubiquitous health care systems is devoted to recent developments in the application of ubiquitous computing in health care. Besides additional synoptical reviews of each of the sections the Yearbook includes invited reviews concerning E-Health strategies, primary care informatics and wearable healthcare. Several publications demonstrate the potential of ubiquitous computing to enhance effectiveness of health services delivery and organization. But ubiquitous computing is also a societal challenge, caused by the surrounding but unobtrusive character of this technology. Contributions from nearly all of the established sub-disciplines of medical informatics are demanded to turn the visions of this promising new research field into reality.

  19. Medical Informatics Idle YouTube Potential.

    Science.gov (United States)

    Hucíková, Anežka; Babic, Ankica

    2017-01-01

    YouTube as an online video-sharing service in the context of Web 2.0 goes beyond the bounds of pure fun, for which the platform was primarily established. Nowadays, commonly to other social media, it serves also educational, informational and last but not least, marketing purposes. The importance of video sharing is supported by several predictions about video reaching over 90% of global internet traffic by 2020. Using qualitative content analysis over selected YouTube videos, paper examines the current situation of the platform's marketing potential usage by medical informatics organizations, researches and other healthcare professionals. Results of the analysis demonstrate several ways in which YouTube is already used to inform, educate or promote above-mentioned medical institutions. However, their engagement in self-promo or spreading awareness of their research projects via YouTube is considered to be low.

  20. [Looking for evidence-based medical informatics].

    Science.gov (United States)

    Coiera, Enrico

    2016-03-01

    e-Health is experiencing a difficult time. On the one side, the forecast is for a bright digital health future created by precision medicine and smart devices. On the other hand, most large scale e-health projects struggle to make a difference and are often controversial. Both futures fail because they are not evidence-based. Medical informatics should follow the example of evidence-based medicine, i.e. conduct rigorous research that gives us evidence to solve real world problems, synthesise that evidence and then apply it strictly. We already have the tools for creating a different universe. What we need is evidence, will, a culture of learning, and hard work.

  1. Strengthening Partnerships along the Informatics Innovation Stages and Spaces: Research and Practice Collaboration in Utah

    Science.gov (United States)

    Xu, Wu; Pettey, Warren; Livnat, Yarden; Gesteland, Per; Rajeev, Deepthi; Reid, Jonathan; Samore, Matthew; Evans, R. Scott; Rolfs, Robert T.; Staes, Catherine

    2011-01-01

    Collaborate, translate, and impact are key concepts describing the roles and purposes of the research Centers of Excellence (COE) in Public Health Informatics (PHI). Rocky Mountain COE integrated these concepts into a framework of PHI Innovation Space and Stage to guide their collaboration between the University of Utah, Intermountain Healthcare, and Utah Department of Health. Seven research projects are introduced that illustrate the framework and demonstrate how to effectively manage multiple innovations among multiple organizations over a five-year period. A COE is more than an aggregation of distinct research projects over a short time period. The people, partnership, shared vision, and mutual understanding and appreciation developed over a long period of time form the core and foundation for ongoing collaborative innovations and its successes. PMID:23569614

  2. Medical Informatics Impact of Information Society in Health Care Development

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2005-01-01

    Roč. 9, - (2005), s. 269-274 ISSN 1335-2393. [YBERC 2005. Young Biomedical Engineers and Researchers Conference. Stará Lesná, 13.07.2005-15.07.2005] Institutional research plan: CEZ:AV0Z10300504 Keywords : medical informatics * information society * telemedicine * education * research and development Subject RIV: BD - Theory of Information

  3. A comparative analysis of moral principles and behavioral norms in eight ethical codes relevant to health sciences librarianship, medical informatics, and the health professions.

    Science.gov (United States)

    Byrd, Gary D; Winkelstein, Peter

    2014-10-01

    Based on the authors' shared interest in the interprofessional challenges surrounding health information management, this study explores the degree to which librarians, informatics professionals, and core health professionals in medicine, nursing, and public health share common ethical behavior norms grounded in moral principles. Using the "Principlism" framework from a widely cited textbook of biomedical ethics, the authors analyze the statements in the ethical codes for associations of librarians (Medical Library Association [MLA], American Library Association, and Special Libraries Association), informatics professionals (American Medical Informatics Association [AMIA] and American Health Information Management Association), and core health professionals (American Medical Association, American Nurses Association, and American Public Health Association). This analysis focuses on whether and how the statements in these eight codes specify core moral norms (Autonomy, Beneficence, Non-Maleficence, and Justice), core behavioral norms (Veracity, Privacy, Confidentiality, and Fidelity), and other norms that are empirically derived from the code statements. These eight ethical codes share a large number of common behavioral norms based most frequently on the principle of Beneficence, then on Autonomy and Justice, but rarely on Non-Maleficence. The MLA and AMIA codes share the largest number of common behavioral norms, and these two associations also share many norms with the other six associations. The shared core of behavioral norms among these professions, all grounded in core moral principles, point to many opportunities for building effective interprofessional communication and collaboration regarding the development, management, and use of health information resources and technologies.

  4. Tetrahedron of medical academics: reasons for training in management, leadership and informatics.

    Science.gov (United States)

    Martins, Henrique

    2009-06-01

    Medical school professors and lecturers are often called to be practicing clinicians, researchers in their own field, in addition to executing their education and curricular responsibilities. Some further accumulate healthcare management responsibilities. These areas pose conflicting demands on time and intellectual activity, but despite their apparent differences, knowledge and skills from management, leadership and informatics may prove useful in helping to smooth these conflicts and hence increase personal effectiveness in these areas. This article tries to clarify some concepts and advance why training in management, leadership and health informatics would seem particularly useful for the medical academic. As opposed to the idea of educational dispersion/specialization, the concept of an integrative tetrahedronal education framework is advanced as a way to plan workshops and other faculty development activities which could be implemented transnationally as well as locally.

  5. Interdisciplinary training to build an informatics workforce for precision medicine

    Directory of Open Access Journals (Sweden)

    Marc S. Williams

    2015-09-01

    Full Text Available The proposed Precision Medicine Initiative has the potential to transform medical care in the future through a shift from interventions based on evidence from population studies and empiric response to ones that account for a range of individual factors that more reliably predict response and outcomes for the patient. Many things are needed to realize this vision, but one of the most critical is an informatics workforce that has broad interdisciplinary training in basic science, applied research and clinical implementation. Current approaches to informatics training do not support this requirement. We present a collaborative model of training that has the potential to produce a workforce prepared for the challenges of implementing precision medicine.

  6. The 13 th world congress on medical and health informatics, Cape Town, South Africa: Partnerships for effective e-Health solutions

    Directory of Open Access Journals (Sweden)

    Andrew Georgiou

    2011-01-01

    Full Text Available The 13 th World Congress on Medical and Health Informatics (Medinfo was held in 2010 between 12 and 15 September in Cape Town, South Africa. This triennial international gathering is the official conference of the International Medical Informatics Association (IMIA and brings together leading health informatics leaders, scientists, clinicians, researchers, vendors, developers and government and health care planners from around the globe. The conference attracted 905 submissions and resulted in a program that included 260 oral presentations, 349 posters presentations and 21 scientific demonstrations representing contributions from 58 countries. The Medinfo program covered all aspects of health informatics from traditional areas, such as hospital information systems, patient registries, nursing informatics, data integration, standards, interoperability issues and decision support, to innovative topics, such as translational bioinformatics, text mining, intelligent data analysis, emerging technologies, quality, social networking, workflow and organizational issues. The outgoing President of the IMIA, Professor Reinhold Haux, presented on health informatics challenges into the future, reinforcing that today and in the future, health care has to be considered as part of a continuous and coordinated life-time journey and not just as episodes of disease. Medical informatics has a key role to play in this paradigm shift. The new IMIA President, Professor Antoine Geissbuhler, was announced at the closing ceremony. The next Medinfo congress will take place in Copenhagen, Denmark, in September 2013.

  7. 77 FR 38294 - Patient Safety Organizations: Delisting for Cause for Medical Informatics

    Science.gov (United States)

    2012-06-27

    ... Organizations: Delisting for Cause for Medical Informatics AGENCY: Agency for Healthcare Research and Quality... Safety Organization (PSO) due to its failure to correct a deficiency. The Patient Safety and Quality... organizations whose mission and primary activity is to conduct activities to improve patient safety and the...

  8. Peculiarities of Teaching Medical Informatics and Statistics

    Directory of Open Access Journals (Sweden)

    Sergey Glushkov

    2017-05-01

    Full Text Available The article reviews features of teaching Medical Informatics and Statistics. The course is referred to the disciplines of Mathematical and Natural sciences. The course is provided in all the faculties of I. M. Sechenov First Moscow State Medical University. For students of Preventive Medicine Department the time frame allotted for studying the course is significantly larger than for similar course provided at other faculties. To improve the teaching methodology of the discipline an analysis of the curriculum has been carried out, attendance and students’ performance statistics have been summarized. As a result, the main goals and objectives have been identified. Besides, general educational functions and the contribution to the solution of problems of education, students’ upbringing and development have been revealed; two stages of teaching have been presented. Recommendations referred to the newest methodological development aimed at improving the quality of teaching the discipline are provided. The ways of improving the methods and organizational forms of education are outlined.

  9. MEDICAL INFORMATICS: AN ESSENTIAL TOOL FOR HEALTH SCIENCES RESEARCH IN ACUTE CARE

    OpenAIRE

    Li, Man; Pickering, Brian W.; Smith, Vernon D.; Hadzikadic, Mirsad; Gajic, Ognjen; Herasevich, Vitaly

    2009-01-01

    Medical Informatics has become an important tool in modern health care practice and research. In the present article we outline the challenges and opportunities associated with the implementation of electronic medical records (EMR) in complex environments such as intensive care units (ICU). We share our initial experience in the design, maintenance and application of a customized critical care, Microsoft SQL based, research warehouse, ICU DataMart. ICU DataMart integrates clinical and adminis...

  10. Medical Informatics: An Essential Tool for Health Sciences Research in Acute Care

    OpenAIRE

    Man Li; Brian W. Pickering; Vernon D. Smith; Mirsad Hadzikadic; Ognjen Gajic; Vitaly Herasevich

    2009-01-01

    Medical Informatics has become an important tool in modern health care practice and research. In the present article we outline the challenges and opportunities associated with the implementation of electronic medical records (EMR) in complex environments such as intensive care units (ICU). We share our initial experience in the design, maintenance and application of a customized critical care, Microsoft SQL based, research warehouse, ICU DataMart. ICU DataMart integrates clinical and adminis...

  11. The Use of RESTful Web Services in Medical Informatics and Clinical Research and Its Implementation in Europe.

    Science.gov (United States)

    Aerts, Jozef

    2017-01-01

    RESTful web services nowadays are state-of-the-art in business transactions over the internet. They are however not very much used in medical informatics and in clinical research, especially not in Europe. To make an inventory of RESTful web services that can be used in medical informatics and clinical research, including those that can help in patient empowerment in the DACH region and in Europe, and to develop some new RESTful web services for use in clinical research and regulatory review. A literature search on available RESTful web services has been performed and new RESTful web services have been developed on an application server using the Java language. Most of the web services found originate from institutes and organizations in the USA, whereas no similar web services could be found that are made available by European organizations. New RESTful web services have been developed for LOINC codes lookup, for UCUM conversions and for use with CDISC Standards. A comparison is made between "top down" and "bottom up" web services, the latter meant to answer concrete questions immediately. The lack of RESTful web services made available by European organizations in healthcare and medical informatics is striking. RESTful web services may in short future play a major role in medical informatics, and when localized for the German language and other European languages, can help to considerably facilitate patient empowerment. This however requires an EU equivalent of the US National Library of Medicine.

  12. Affective medicine. A review of affective computing efforts in medical informatics.

    Science.gov (United States)

    Luneski, A; Konstantinidis, E; Bamidis, P D

    2010-01-01

    Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as "computing that relates to, arises from, or deliberately influences emotions". AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field.

  13. Recent advances in standards for collaborative Digital Anatomic Pathology

    Science.gov (United States)

    2011-01-01

    Context Collaborative Digital Anatomic Pathology refers to the use of information technology that supports the creation and sharing or exchange of information, including data and images, during the complex workflow performed in an Anatomic Pathology department from specimen reception to report transmission and exploitation. Collaborative Digital Anatomic Pathology can only be fully achieved using medical informatics standards. The goal of the international integrating the Healthcare Enterprise (IHE) initiative is precisely specifying how medical informatics standards should be implemented to meet specific health care needs and making systems integration more efficient and less expensive. Objective To define the best use of medical informatics standards in order to share and exchange machine-readable structured reports and their evidences (including whole slide images) within hospitals and across healthcare facilities. Methods Specific working groups dedicated to Anatomy Pathology within multiple standards organizations defined standard-based data structures for Anatomic Pathology reports and images as well as informatic transactions in order to integrate Anatomic Pathology information into the electronic healthcare enterprise. Results The DICOM supplements 122 and 145 provide flexible object information definitions dedicated respectively to specimen description and Whole Slide Image acquisition, storage and display. The content profile “Anatomic Pathology Structured Report” (APSR) provides standard templates for structured reports in which textual observations may be bound to digital images or regions of interest. Anatomic Pathology observations are encoded using an international controlled vocabulary defined by the IHE Anatomic Pathology domain that is currently being mapped to SNOMED CT concepts. Conclusion Recent advances in standards for Collaborative Digital Anatomic Pathology are a unique opportunity to share or exchange Anatomic Pathology structured

  14. Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning

    Science.gov (United States)

    Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott

    2014-01-01

    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.

  15. Medical Informatics in Croatia – a Historical Survey

    Science.gov (United States)

    Dezelic, Gjuro; Kern, Josipa; Petrovecki, Mladen; Ilakovac, Vesna; Hercigonja-Szekeres, Mira

    2014-01-01

    A historical survey of medical informatics (MI) in Croatia is presented from the beginnings in the late sixties of the 20th century to the present time. Described are MI projects, applications in clinical medicine and public health, start and development of MI research and education, beginnings of international cooperation, establishment of the Croatian Society for MI and its membership to EFMI and IMIA. The current status of computerization of the Croatian healthcare system is sketched as well as the present graduate and postgraduate study MI curricula. The information contained in the paper shows that MI in Croatia developed and still develops along with its advancement elsewhere. PMID:24648620

  16. MEDICAL INFORMATICS TODAY AND TOMORROW

    Directory of Open Access Journals (Sweden)

    Jure Dimec

    2004-02-01

    Full Text Available The article describes the state and some trends in the development of medical informatics especially regarding the fields of scientific information, knowledge discovery in databases, and the role of standards in data exchange.The ways of publication of scientific documents experienced dramatic changes with the development of the www, hence causing major changes in daily information practice. Contemporary textual databases contain full documents of hypertextual and multimedia nature and links to full documents are increasingly common within the records of bibliographic databases. The last decade brought the advent of the web information tools, from web portals to global search engines, which are powerful aids but demand strong precaution regarding the quality of retrieved documents from the users. On the other hand, we are witnessing the development of digital libraries of scientific documents as a result of the self-organization of academic institutions, research groups and individuals, often in the opposition to the interests of publishing companies.The information support as an important element of medical procedures made possible the exchange of data between all segments of the health-care system and it has become clear that lack of standards governing structure, understanding and safety is among the biggest obstacles to successful data exchange.In addition, the article comprises a report on the methods of knowledge discovery in databases, which help us discover hidden structures and potential knowledge, invisible to the normal data-processing software, in the enormous amount of data.

  17. Health Informatics for Development: a Three-pronged Strategy of Partnerships, Standards, and Mobile Health. Contribution of the IMIA Working Group on Health Informatics for Development.

    Science.gov (United States)

    Marcelo, A; Adejumo, A; Luna, D

    2011-01-01

    Describe the issues surrounding health informatics in developing countries and the challenges faced by practitioners in building internal capacity. From these issues, the authors propose cost-effective strategies that can fast track health informatics development in these low to medium income countries (LMICs). The authors conducted a review of literature and consulted key opinion leaders who have experience with health informatics implementations around the world. Despite geographic and cultural differences, many LMICs share similar challenges and opportunities in developing health informatics. Partnerships, standards, and inter-operability are well known components of successful informatics programs. Establishing partnerships can be comprised of formal inter-institutional collaborations on training and research, collaborative open source software development, and effective use of social networking. Lacking legacy systems, LMICs can discuss standards and inter-operability more openly and have greater potential for success. Lastly, since cellphones are pervasive in developing countries, they can be leveraged as access points for delivering and documenting health services in remote under-served areas. Mobile health or mHealth gives LMICs a unique opportunity to leapfrog through most issues that have plagued health informatics in developed countries. By employing this proposed roadmap, LMICs can now develop capacity for health informatics using appropriate and cost-effective technologies.

  18. Informatics and Technology in Resident Education.

    Science.gov (United States)

    Niehaus, William

    2017-05-01

    Biomedical or clinical informatics is the transdisciplinary field that studies and develops effective uses of biomedical data, information technology innovations, and medical knowledge for scientific inquiry, problem solving, and decision making, with an emphasis on improving human health. Given the ongoing advances in information technology, the field of informatics is becoming important to clinical practice and to residency education. This article will discuss how informatics is specifically relevant to residency education and the different ways to incorporate informatics into residency education, and will highlight applications of current technology in the context of residency education. How informatics can optimize communication for residents, promote information technology use, refine documentation techniques, reduce medical errors, and improve clinical decision making will be reviewed. It is hoped that this article will increase faculty and trainees' knowledge of the field of informatics, awareness of available technology, and will assist practitioners to maximize their ability to provide quality care to their patients. This article will also introduce the idea of incorporating informatics specialists into residency programs to help practitioners deliver more evidenced-based care and to further improve their efficiency. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  19. Medical Informatics Specialty in the Developed English-Speaking Countries: The Terminology Comparative Analysis

    Science.gov (United States)

    Kobryn, Nadia

    2015-01-01

    The article studies the development process of medical informatics specialty terminology as the ground for further research into foreign countries' experience, including the Canadian one, of specialists' professional training in the field of MI. The study determines the origin and chief stages of the formation and development of the medical…

  20. The Gap in Medical Informatics and Continuing Education Between the United States and China: A Comparison of Conferences in 2016.

    Science.gov (United States)

    Liang, Jun; Wei, Kunyan; Meng, Qun; Chen, Zhenying; Zhang, Jiajie; Lei, Jianbo

    2017-06-21

    China launched its second health reform in 2010 with considerable investments in medical informatics (MI). However, to the best of our knowledge, research on the outcomes of this ambitious undertaking has been limited. Our aim was to understand the development of MI and the state of continuing education in China and the United States from the perspective of conferences. We conducted a quantitative and qualitative analysis of four MI conferences in China and two in the United States: China Medical Information Association Annual Symposium (CMIAAS), China Hospital Information Network Annual Conference (CHINC), China Health Information Technology Exchange Annual Conference (CHITEC), China Annual Proceeding of Medical Informatics (CPMI) versus the American Medical Informatics Association (AMIA) and Healthcare Information and Management Systems Society (HIMSS). The scale, composition, and regional distribution of attendees, topics, and research fields for each conference were summarized and compared. CMIAAS and CPMI are mainstream academic conferences, while CHINC and CHITEC are industry conferences in China. Compared to HIMSS 2016, the meeting duration of CHITEC was 3 versus 5 days, the number of conference sessions was 132 versus 950+, the number of attendees was 5000 versus 40,000+, the number of vendors was 152 versus 1400+, the number of subforums was 12 versus 230, the number of preconference education symposiums and workshops was 0 versus 12, and the duration of preconference educational symposiums and workshops was 0 versus 1 day. Compared to AMIA, the meeting duration of Chinese CMIAAS was 2 versus 5 days, the number of conference sessions was 42 versus 110, the number of attendees was 200 versus 2500+, the number of vendors was 5 versus 75+, and the number of subforums was 4 versus 10. The number of preconference tutorials and working groups was 0 versus 29, and the duration of tutorials and working group was 0 versus 1.5 days. Given the size of the Chinese

  1. Affective computing and medical informatics: state of the art in emotion-aware medical applications.

    Science.gov (United States)

    Luneski, Andrej; Bamidis, Panagiotis D; Hitoglou-Antoniadou, Madga

    2008-01-01

    The area of affective computing has received significant attention by the research community over the last few years. In this paper we review the underlying principles in the field, in an effort to draw threads for possible future development within medical informatics. The approach is lead by considering the three main affective channels, namely, visual, audio/speech, and physiological in relation to e-health, emotional intelligence and e-learning. A discussion on the importance of past and present applications together with a prediction on future literature output is also provided.

  2. e-MIR2: a public online inventory of medical informatics resources.

    Science.gov (United States)

    de la Calle, Guillermo; García-Remesal, Miguel; Nkumu-Mbomio, Nelida; Kulikowski, Casimir; Maojo, Victor

    2012-08-02

    Over the past years, the number of available informatics resources in medicine has grown exponentially. While specific inventories of such resources have already begun to be developed for Bioinformatics (BI), comparable inventories are as yet not available for the Medical Informatics (MI) field, so that locating and accessing them currently remains a difficult and time-consuming task. We have created a repository of MI resources from the scientific literature, providing free access to its contents through a web-based service. We define informatics resources as all those elements that constitute, serve to define or are used by informatics systems, ranging from architectures or development methodologies to terminologies, vocabularies, databases or tools. Relevant information describing the resources is automatically extracted from manuscripts published in top-ranked MI journals. We used a pattern matching approach to detect the resources' names and their main features. Detected resources are classified according to three different criteria: functionality, resource type and domain. To facilitate these tasks, we have built three different classification schemas by following a novel approach based on folksonomies and social tagging. We adopted the terminology most frequently used by MI researchers in their publications to create the concepts and hierarchical relationships belonging to the classification schemas. The classification algorithm identifies the categories associated with resources and annotates them accordingly. The database is then populated with this data after manual curation and validation. We have created an online repository of MI resources to assist researchers in locating and accessing the most suitable resources to perform specific tasks. The database contains 609 resources at the time of writing and is available at http://www.gib.fi.upm.es/eMIR2. We are continuing to expand the number of available resources by taking into account further

  3. e-MIR2: a public online inventory of medical informatics resources

    Directory of Open Access Journals (Sweden)

    de la Calle Guillermo

    2012-08-01

    Full Text Available Abstract Background Over the past years, the number of available informatics resources in medicine has grown exponentially. While specific inventories of such resources have already begun to be developed for Bioinformatics (BI, comparable inventories are as yet not available for the Medical Informatics (MI field, so that locating and accessing them currently remains a difficult and time-consuming task. Description We have created a repository of MI resources from the scientific literature, providing free access to its contents through a web-based service. We define informatics resources as all those elements that constitute, serve to define or are used by informatics systems, ranging from architectures or development methodologies to terminologies, vocabularies, databases or tools. Relevant information describing the resources is automatically extracted from manuscripts published in top-ranked MI journals. We used a pattern matching approach to detect the resources’ names and their main features. Detected resources are classified according to three different criteria: functionality, resource type and domain. To facilitate these tasks, we have built three different classification schemas by following a novel approach based on folksonomies and social tagging. We adopted the terminology most frequently used by MI researchers in their publications to create the concepts and hierarchical relationships belonging to the classification schemas. The classification algorithm identifies the categories associated with resources and annotates them accordingly. The database is then populated with this data after manual curation and validation. Conclusions We have created an online repository of MI resources to assist researchers in locating and accessing the most suitable resources to perform specific tasks. The database contains 609 resources at the time of writing and is available at http://www.gib.fi.upm.es/eMIR2. We are continuing to expand the number

  4. Beyond information retrieval and electronic health record use: competencies in clinical informatics for medical education

    Directory of Open Access Journals (Sweden)

    Hersh WR

    2014-07-01

    Full Text Available William R Hersh,1 Paul N Gorman,1 Frances E Biagioli,2 Vishnu Mohan,1 Jeffrey A Gold,3 George C Mejicano4 1Department of Medical Informatics and Clinical Epidemiology, 2Department of Family Medicine, 3Department of Medicine, 4School of Medicine, Oregon Health & Science University, Portland, OR, USA Abstract: Physicians in the 21st century will increasingly interact in diverse ways with information systems, requiring competence in many aspects of clinical informatics. In recent years, many medical school curricula have added content in information retrieval (search and basic use of the electronic health record. However, this omits the growing number of other ways that physicians are interacting with information that includes activities such as clinical decision support, quality measurement and improvement, personal health records, telemedicine, and personalized medicine. We describe a process whereby six faculty members representing different perspectives came together to define competencies in clinical informatics for a curriculum transformation process occurring at Oregon Health & Science University. From the broad competencies, we also developed specific learning objectives and milestones, an implementation schedule, and mapping to general competency domains. We present our work to encourage debate and refinement as well as facilitate evaluation in this area. Keywords: curriculum transformation, clinical decision support, patient safety, health care quality, patient engagement

  5. Community Based Informatics: Geographical Information Systems, Remote Sensing and Ontology collaboration - A technical hands-on approach

    Science.gov (United States)

    Branch, B. D.; Raskin, R. G.; Rock, B.; Gagnon, M.; Lecompte, M. A.; Hayden, L. B.

    2009-12-01

    With the nation challenged to comply with Executive Order 12906 and its needs to augment the Science, Technology, Engineering and Mathematics (STEM) pipeline, applied focus on geosciences pipelines issue may be at risk. The Geosciences pipeline may require intentional K-12 standard course of study consideration in the form of project based, science based and evidenced based learning. Thus, the K-12 to geosciences to informatics pipeline may benefit from an earth science experience that utilizes a community based “learning by doing” approach. Terms such as Community GIS, Community Remotes Sensing, and Community Based Ontology development are termed Community Informatics. Here, approaches of interdisciplinary work to promote and earth science literacy are affordable, consisting of low cost equipment that renders GIS/remote sensing data processing skills necessary in the workforce. Hence, informal community ontology development may evolve or mature from a local community towards formal scientific community collaboration. Such consideration may become a means to engage educational policy towards earth science paradigms and needs, specifically linking synergy among Math, Computer Science, and Earth Science disciplines.

  6. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  7. Interdisciplinary innovations in biomedical and health informatics graduate education.

    Science.gov (United States)

    Demiris, G

    2007-01-01

    Biomedical and health informatics (BHI) is a rapidly growing domain that relies on the active collaboration with diverse disciplines and professions. Educational initiatives in BHI need to prepare students with skills and competencies that will allow them to function within and even facilitate interdisciplinary teams (IDT). This paper describes an interdisciplinary educational approach introduced into a BHI graduate curriculum that aims to prepare informatics researchers to lead IDT research. A case study of the "gerontechnology" research track is presented which highlights how the curriculum fosters collaboration with and understanding of the disciplines of Nursing, Engineering, Computer Science, and Health Administration. Gerontechnology is a new interdisciplinary field that focuses on the use of technology to support aging. Its aim is to explore innovative ways to use information technology and develop systems that support independency and increase quality of life for senior citizens. As a result of a large research group that explores "smart home" technologies and the use of information technology, we integrated this new domain into the curriculum providing a platform for computer scientists, engineers, nurses and physicians to explore challenges and opportunities with our informatics students and faculty. The interdisciplinary educational model provides an opportunity for health informatics students to acquire the skills for communication and collaboration with other disciplines. Numerous graduate and postgraduate students have already participated in this initiative. The evaluation model of this approach is presented. Interdisciplinary educational models are required for health informatics graduate education. Such models need to be innovative and reflect the needs and trends in the domains of health care and information technology.

  8. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Joyeeta Dutta-Moscato

    2014-01-01

    Full Text Available This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC, Richard Hersheberger, PhD (Currently, Dean at Roswell Park, and Megan Seippel, MS (the administrator launched the University of Pittsburgh Cancer Institute (UPCI Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical

  9. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  10. An informatics model for guiding assembly of telemicrobiology workstations for malaria collaborative diagnostics using commodity products and open-source software

    Directory of Open Access Journals (Sweden)

    Crandall Ian

    2009-07-01

    Full Text Available Abstract Background Deficits in clinical microbiology infrastructure exacerbate global infectious disease burdens. This paper examines how commodity computation, communication, and measurement products combined with open-source analysis and communication applications can be incorporated into laboratory medicine microbiology protocols. Those commodity components are all now sourceable globally. An informatics model is presented for guiding the use of low-cost commodity components and free software in the assembly of clinically useful and usable telemicrobiology workstations. Methods The model incorporates two general principles: 1 collaborative diagnostics, where free and open communication and networking applications are used to link distributed collaborators for reciprocal assistance in organizing and interpreting digital diagnostic data; and 2 commodity engineering, which leverages globally available consumer electronics and open-source informatics applications, to build generic open systems that measure needed information in ways substantially equivalent to more complex proprietary systems. Routine microscopic examination of Giemsa and fluorescently stained blood smears for diagnosing malaria is used as an example to validate the model. Results The model is used as a constraint-based guide for the design, assembly, and testing of a functioning, open, and commoditized telemicroscopy system that supports distributed acquisition, exploration, analysis, interpretation, and reporting of digital microscopy images of stained malarial blood smears while also supporting remote diagnostic tracking, quality assessment and diagnostic process development. Conclusion The open telemicroscopy workstation design and use-process described here can address clinical microbiology infrastructure deficits in an economically sound and sustainable manner. It can boost capacity to deal with comprehensive measurement of disease and care outcomes in individuals and

  11. An informatics model for guiding assembly of telemicrobiology workstations for malaria collaborative diagnostics using commodity products and open-source software.

    Science.gov (United States)

    Suhanic, West; Crandall, Ian; Pennefather, Peter

    2009-07-17

    Deficits in clinical microbiology infrastructure exacerbate global infectious disease burdens. This paper examines how commodity computation, communication, and measurement products combined with open-source analysis and communication applications can be incorporated into laboratory medicine microbiology protocols. Those commodity components are all now sourceable globally. An informatics model is presented for guiding the use of low-cost commodity components and free software in the assembly of clinically useful and usable telemicrobiology workstations. The model incorporates two general principles: 1) collaborative diagnostics, where free and open communication and networking applications are used to link distributed collaborators for reciprocal assistance in organizing and interpreting digital diagnostic data; and 2) commodity engineering, which leverages globally available consumer electronics and open-source informatics applications, to build generic open systems that measure needed information in ways substantially equivalent to more complex proprietary systems. Routine microscopic examination of Giemsa and fluorescently stained blood smears for diagnosing malaria is used as an example to validate the model. The model is used as a constraint-based guide for the design, assembly, and testing of a functioning, open, and commoditized telemicroscopy system that supports distributed acquisition, exploration, analysis, interpretation, and reporting of digital microscopy images of stained malarial blood smears while also supporting remote diagnostic tracking, quality assessment and diagnostic process development. The open telemicroscopy workstation design and use-process described here can address clinical microbiology infrastructure deficits in an economically sound and sustainable manner. It can boost capacity to deal with comprehensive measurement of disease and care outcomes in individuals and groups in a distributed and collaborative fashion. The workstation

  12. International collaboration in medical radiation science.

    Science.gov (United States)

    Denham, Gary; Allen, Carla; Platt, Jane

    2016-06-01

    International collaboration is recognised for enhancing the ability to approach complex problems from a variety of perspectives, increasing development of a wider range of research skills and techniques and improving publication and acceptance rates. The aim of this paper is to describe the current status of international collaboration in medical radiation science and compare this to other allied health occupations. This study utilised a content analysis approach where co-authorship of a journal article was used as a proxy for research collaboration and the papers were assigned to countries based on the corporate address given in the by-line of the publication. A convenience sample method was employed and articles published in the professional medical radiation science journals in the countries represented within our research team - Australia, the United Kingdom (UK) and the United States of America (USA) were sampled. Physiotherapy, speech pathology, occupational therapy and nursing were chosen for comparison. Rates of international collaboration in medical radiation science journals from Australia, the UK and the USA have steadily increased over the 3-year period sampled. Medical radiation science demonstrated lower average rates of international collaboration than the other allied health occupations sampled. The average rate of international collaboration in nursing was far below that of the allied health occupations sampled. Overall, the UK had the highest average rate of international collaboration, followed by Australia and the USA, the lowest. Overall, medical radiation science is lagging in international collaboration in comparison to other allied health fields.

  13. Clinical research informatics

    CERN Document Server

    Richesson, Rachel L

    2012-01-01

    This book provides foundational coverage of key areas, concepts, constructs, and approaches of medical informatics as it applies to clinical research activities, in both current settings and in light of emerging policies. The field of clinical research is fully characterized (in terms of study design and overarching business processes), and there is emphasis on information management aspects and informatics implications (including needed activities) within various clinical research environments. The purpose of the book is to provide an overview of clinical research (types), activities, and are

  14. Health Informatics.

    Science.gov (United States)

    Russell, Marie; Brittain, J. Michael

    2002-01-01

    Identifies current trends and issues in health informatics with examples of applications, particularly in English-speaking countries. Topics include health systems, professionals, and patients; consumer health information; electronic medical records; nursing; privacy and confidentiality; finding and using information; the Internet; e-mail;…

  15. Integrating Informatics into the Undergraduate Curriculum: A Report on a Pilot Project.

    Science.gov (United States)

    Ingram, D; Murphy, J

    1996-01-01

    Previous case reports in this series on Education and Training have looked at specialist courses for postgraduate students seeking an in-depth knowledge of informatics and a career in the field. By contrast, this review describes a project designed to pilot a series of learning opportunities for undergraduate medical students. Although some UK medical colleges have opted to introduce informatics into the curriculum as a discipline in its own right, the Informatics Department at St Bartholomew's Hospital Medical College chose a different approach. When a new curriculum was introduced at St Bartholomew's and at The London Hospital Medical College, the Head of the Informatics Department saw this as an ideal opportunity to explore ways of integrating informatics into the curriculum. The initiatives described in this paper were made possible as a result of an award from the UK government Department of Employment. Money from an Enterprise in Higher Education grant funded a range of programmes, one of which was designed to introduce students to selected aspects of informatics and to demonstrate what is feasible in the undergraduate curriculum. The work carried out over a period of three and a half years was intended to provide the basis for the next phase of curriculum development. However, in the wake of the restructuring which has taken place in London medical colleges, the Informatics Department at what was St Bartholomew's has relocated to University College London Medical School, and is now called The Centre for Health Informatics and Multiprofessional Education (CHIME). University College is designing a new medical curriculum and CHIME is drawing on the experience gained through the Enterprise Project to find the best way to integrate informatics into this curriculum.

  16. Medical informatics: an essential tool for health sciences research in acute care.

    Science.gov (United States)

    Li, Man; Pickering, Brian W; Smith, Vernon D; Hadzikadic, Mirsad; Gajic, Ognjen; Herasevich, Vitaly

    2009-10-01

    Medical Informatics has become an important tool in modern health care practice and research. In the present article we outline the challenges and opportunities associated with the implementation of electronic medical records (EMR) in complex environments such as intensive care units (ICU). We share our initial experience in the design, maintenance and application of a customized critical care, Microsoft SQL based, research warehouse, ICU DataMart. ICU DataMart integrates clinical and administrative data from heterogeneous sources within the EMR to support research and practice improvement in the ICUs. Examples of intelligent alarms -- "sniffers", administrative reports, decision support and clinical research applications are presented.

  17. Medical Informatics: An Essential Tool for Health Sciences Research in Acute Care

    Directory of Open Access Journals (Sweden)

    Man Li

    2009-10-01

    Full Text Available Medical Informatics has become an important tool in modern health care practice and research. In the present article we outline the challenges and opportunities associated with the implementation of electronic medical records (EMR in complex environments such as intensive care units (ICU. We share our initial experience in the design, maintenance and application of a customized critical care, Microsoft SQL based, research warehouse, ICU DataMart. ICU DataMart integrates clinical and administrative data from heterogeneous sources within the EMR to support research and practice improvement in the ICUs. Examples of intelligent alarms – “sniffers”, administrative reports, decision support and clinical research applications are presented.

  18. Outcomes management of mechanically ventilated patients: utilizing informatics technology.

    Science.gov (United States)

    Smith, K R

    1998-11-01

    This article examines an informatics system developed for outcomes management of the mechanically ventilated adult population, focusing on weaning the patient from mechanical ventilation. The link between medical informatics and outcomes management is discussed, along with the development of methods, tools, and data sets for outcomes management of the mechanically ventilated adult population at an acute care academic institution. Pros and cons of this system are identified, and specific areas for improvement of future health care outcomes medical informatics systems are discussed.

  19. A multimedia comprehensive informatics system with decision support tools for a multi-site collaboration research of stroke rehabilitation

    Science.gov (United States)

    Wang, Ximing; Documet, Jorge; Garrison, Kathleen A.; Winstein, Carolee J.; Liu, Brent

    2012-02-01

    Stroke is a major cause of adult disability. The Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (I-CARE) clinical trial aims to evaluate a therapy for arm rehabilitation after stroke. A primary outcome measure is correlative analysis between stroke lesion characteristics and standard measures of rehabilitation progress, from data collected at seven research facilities across the country. Sharing and communication of brain imaging and behavioral data is thus a challenge for collaboration. A solution is proposed as a web-based system with tools supporting imaging and informatics related data. In this system, users may upload anonymized brain images through a secure internet connection and the system will sort the imaging data for storage in a centralized database. Users may utilize an annotation tool to mark up images. In addition to imaging informatics, electronic data forms, for example, clinical data forms, are also integrated. Clinical information is processed and stored in the database to enable future data mining related development. Tele-consultation is facilitated through the development of a thin-client image viewing application. For convenience, the system supports access through desktop PC, laptops, and iPAD. Thus, clinicians may enter data directly into the system via iPAD while working with participants in the study. Overall, this comprehensive imaging informatics system enables users to collect, organize and analyze stroke cases efficiently.

  20. Consortium for oral health-related informatics: improving dental research, education, and treatment.

    Science.gov (United States)

    Stark, Paul C; Kalenderian, Elsbeth; White, Joel M; Walji, Muhammad F; Stewart, Denice C L; Kimmes, Nicole; Meng, Thomas R; Willis, George P; DeVries, Ted; Chapman, Robert J

    2010-10-01

    Advances in informatics, particularly the implementation of electronic health records (EHR), in dentistry have facilitated the exchange of information. The majority of dental schools in North America use the same EHR system, providing an unprecedented opportunity to integrate these data into a repository that can be used for oral health education and research. In 2007, fourteen dental schools formed the Consortium for Oral Health-Related Informatics (COHRI). Since its inception, COHRI has established structural and operational processes, governance and bylaws, and a number of work groups organized in two divisions: one focused on research (data standardization, integration, and analysis), and one focused on education (performance evaluations, virtual standardized patients, and objective structured clinical examinations). To date, COHRI (which now includes twenty dental schools) has been successful in developing a data repository, pilot-testing data integration, and sharing EHR enhancements among the group. This consortium has collaborated on standardizing medical and dental histories, developing diagnostic terminology, and promoting the utilization of informatics in dental education. The consortium is in the process of assembling the largest oral health database ever created. This will be an invaluable resource for research and provide a foundation for evidence-based dentistry for years to come.

  1. The Epilepsy Phenome/Genome Project (EPGP) informatics platform.

    Science.gov (United States)

    Nesbitt, Gerry; McKenna, Kevin; Mays, Vickie; Carpenter, Alan; Miller, Kevin; Williams, Michael

    2013-04-01

    The Epilepsy Phenome/Genome Project (EPGP) is a large-scale, multi-institutional, collaborative network of 27 epilepsy centers throughout the U.S., Australia, and Argentina, with the objective of collecting detailed phenotypic and genetic data on a large number of epilepsy participants. The goals of EPGP are (1) to perform detailed phenotyping on 3750 participants with specific forms of non-acquired epilepsy and 1500 parents without epilepsy, (2) to obtain DNA samples on these individuals, and (3) to ultimately genotype the samples in order to discover novel genes that cause epilepsy. To carry out the project, a reliable and robust informatics platform was needed for standardized electronic data collection and storage, data quality review, and phenotypic analysis involving cases from multiple sites. EPGP developed its own suite of web-based informatics applications for participant tracking, electronic data collection (using electronic case report forms/surveys), data management, phenotypic data review and validation, specimen tracking, electroencephalograph and neuroimaging storage, and issue tracking. We implemented procedures to train and support end-users at each clinical site. Thus far, 3780 study participants have been enrolled and 20,957 web-based study activities have been completed using this informatics platform. Over 95% of respondents to an end-user satisfaction survey felt that the informatics platform was successful almost always or most of the time. The EPGP informatics platform has successfully and effectively allowed study management and efficient and reliable collection of phenotypic data. Our novel informatics platform met the requirements of a large, multicenter research project. The platform has had a high level of end-user acceptance by principal investigators and study coordinators, and can serve as a model for new tools to support future large scale, collaborative research projects collecting extensive phenotypic data. Copyright © 2012

  2. Establishing a national resource: a health informatics collection to maintain the legacy of health informatics development.

    Science.gov (United States)

    Ellis, Beverley; Roberts, Jean; Cooper, Helen

    2007-01-01

    This case study report of the establishment of a national repository of multi-media materials describes the creation process, the challenges faced in putting it into operation and the opportunities for the future. The initial resource has been incorporated under standard library and knowledge management practices. A collaborative action research method was used with active experts in the domain to determine the requirements and priorities for further development. The National Health Informatics Collection (NatHIC) is now accessible and the further issues are being addressed by inclusion in future University and NHS strategic plans. Ultimately the Collection will link with other facilities that contribute to the description and maintenance of effective informatics in support of health globally. The issues raised about the National Health Informatics Collection as established in the UK have resonance with the challenges of capturing the overall historic development of an emerging discipline in any country.

  3. Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru.

    Science.gov (United States)

    Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie

    2008-01-14

    New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Forty-three participants enrolled in the course - 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1-5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success.

  4. Embedding a Learning Management System Into an Undergraduate Medical Informatics Course in Saudi Arabia: Lessons Learned

    Science.gov (United States)

    2013-01-01

    Background Public universities in Saudi Arabia today are making substantial investments in e-learning as part of their educational system, especially in the implementation of learning management systems (LMS). To our knowledge, this is the first study conducted in Saudi Arabia exploring medical students’ experience with an LMS, particularly as part of a medical informatics course. Objective This study investigates students’ use of various features of the LMS embedded in a recently implemented medical informatics course. Methods A mixed methodology approach was employed. Survey questionnaires were distributed to all third year medical informatics students at the end of the course. In addition, two focus group sessions were conducted with twelve students. A thematic analysis of the focus group was performed. Results A total of 265 third year medical student surveys (167/265, 63% male and 98/265, 37% female) were completed and analyzed. Overall, 50.6% (134/265) of the students agreed that the course was well planned and up-to-date, had clearly stated objectives and clear evaluation methods, appropriate course assignment, and that the LMS offered easy navigation. Most of the students rated the course as good/fair overall. In general, females were 10.4% more likely to prefer the LMS, as revealed by higher odd ratios (odds ratio [OR] 1.104, 95% CI 0.86-1.42) compared to males. Survey results showed that students’ use of LMS tools increased after taking the course compared to before taking the course. The full model containing all items were statistically significant (χ2 25=69.52, Pstudents who had positive attitudes towards LMS and those who did not. The focus group, however, revealed that the students used social networking for general use rather than learning purposes, but they were using other Internet resources and mobile devices for learning. Male students showed a higher preference for using technology in general to enhance learning activities. Overall

  5. Embedding a learning management system into an undergraduate medical informatics course in Saudi Arabia: lessons learned.

    Science.gov (United States)

    Zakaria, Nasriah; Jamal, Amr; Bisht, Shekhar; Koppel, Cristina

    2013-01-01

    Public universities in Saudi Arabia today are making substantial investments in e-learning as part of their educational system, especially in the implementation of learning management systems (LMS). To our knowledge, this is the first study conducted in Saudi Arabia exploring medical students' experience with an LMS, particularly as part of a medical informatics course. This study investigates students' use of various features of the LMS embedded in a recently implemented medical informatics course. A mixed methodology approach was employed. Survey questionnaires were distributed to all third year medical informatics students at the end of the course. In addition, two focus group sessions were conducted with twelve students. A thematic analysis of the focus group was performed. A total of 265 third year medical student surveys (167/265, 63% male and 98/265, 37% female) were completed and analyzed. Overall, 50.6% (134/265) of the students agreed that the course was well planned and up-to-date, had clearly stated objectives and clear evaluation methods, appropriate course assignment, and that the LMS offered easy navigation. Most of the students rated the course as good/fair overall. In general, females were 10.4% more likely to prefer the LMS, as revealed by higher odd ratios (odds ratio [OR] 1.104, 95% CI 0.86-1.42) compared to males. Survey results showed that students' use of LMS tools increased after taking the course compared to before taking the course. The full model containing all items were statistically significant (χ(2) 25=69.52, Pstudents who had positive attitudes towards LMS and those who did not. The focus group, however, revealed that the students used social networking for general use rather than learning purposes, but they were using other Internet resources and mobile devices for learning. Male students showed a higher preference for using technology in general to enhance learning activities. Overall, medical student attitudes towards the LMS

  6. Medical emplotment

    DEFF Research Database (Denmark)

    Mønsted, Troels Sune

    ’. Theoretically the project departs from Computer Supported Cooperative Work and Participatory Design and is informed by Medical Informatics, Design Research and Science and Technology Studies. Methodically the project is founded on collaborative prototyping, ethnographic studies, and design interventions...... philosophy and building on theory on narrative reasoning, the dissertation offers the notions of emplotment and re-emplotment to describe how physicians marshal information from various sources, including the medical record, the patient and coSummary to form a narrative, when making sense of patients...

  7. Biomedical informatics: we are what we publish.

    Science.gov (United States)

    Elkin, P L; Brown, S H; Wright, G

    2013-01-01

    This article is part of a For-Discussion-Section of Methods of Information in Medicine on "Biomedical Informatics: We are what we publish". It is introduced by an editorial and followed by a commentary paper with invited comments. In subsequent issues the discussion may continue through letters to the editor. Informatics experts have attempted to define the field via consensus projects which has led to consensus statements by both AMIA. and by IMIA. We add to the output of this process the results of a study of the Pubmed publications with abstracts from the field of Biomedical Informatics. We took the terms from the AMIA consensus document and the terms from the IMIA definitions of the field of Biomedical Informatics and combined them through human review to create the Health Informatics Ontology. We built a terminology server using the Intelligent Natural Language Processor (iNLP). Then we downloaded the entire set of articles in Medline identified by searching the literature by "Medical Informatics" OR "Bioinformatics". The articles were parsed by the joint AMIA / IMIA terminology and then again using SNOMED CT and for the Bioinformatics they were also parsed using HGNC Ontology. We identified 153,580 articles using "Medical Informatics" and 20,573 articles using "Bioinformatics". This resulted in 168,298 unique articles and an overlap of 5,855 articles. Of these 62,244 articles (37%) had titles and abstracts that contained at least one concept from the Health Informatics Ontology. SNOMED CT indexing showed that the field interacts with most all clinical fields of medicine. Further defining the field by what we publish can add value to the consensus driven processes that have been the mainstay of the efforts to date. Next steps should be to extract terms from the literature that are uncovered and create class hierarchies and relationships for this content. We should also examine the high occurring of MeSH terms as markers to define Biomedical Informatics

  8. Informatics for neglected diseases collaborations.

    Science.gov (United States)

    Bost, Frederic; Jacobs, Robert T; Kowalczyk, Paul

    2010-05-01

    Many different public and private organizations from across the globe are collaborating on neglected diseases drug-discovery and development projects with the aim of identifying a cure for tropical infectious diseases. These neglected diseases collaborations require a global, secure, multi-organization data-management solution, combined with a platform that facilitates communication and supports collaborative work. This review discusses the solutions offered by 'Software as a Service' (SaaS) web-based platforms, despite notable challenges, and the evolution of these platforms required to foster efficient virtual research efforts by geographically dispersed scientists.

  9. Craniofacial imaging informatics and technology development.

    Science.gov (United States)

    Vannier, M W

    2003-01-01

    'Craniofacial imaging informatics' refers to image and related scientific data from the dentomaxillofacial complex, and application of 'informatics techniques' (derived from disciplines such as applied mathematics, computer science and statistics) to understand and organize the information associated with the data. Major trends in information technology determine the progress made in craniofacial imaging and informatics. These trends include industry consolidation, disruptive technologies, Moore's law, electronic atlases and on-line databases. Each of these trends is explained and documented, relative to their influence on craniofacial imaging. Craniofacial imaging is influenced by major trends that affect all medical imaging and related informatics applications. The introduction of cone beam craniofacial computed tomography scanners is an example of a disruptive technology entering the field. An important opportunity lies in the integration of biologic knowledge repositories with craniofacial images. The progress of craniofacial imaging will continue subject to limitations imposed by the underlying technologies, especially imaging informatics. Disruptive technologies will play a major role in the evolution of this field.

  10. Towards health informatics 3.0. Editorial.

    Science.gov (United States)

    Kulikowski, Casimir A; Geissbuhler, Antoine

    2011-01-01

    To provide an editorial introduction to the 2011 IMIA Yearbook of Medical Informatics with an overview of its contents and contributors. A brief overview of the main theme, and an outline of the purposes, contents, format, and acknowledgment of contributions for the 2011 IMIA Yearbook. This 2011 issue of the IMIA Yearbook highlights important developments in the development of Web 3.0 capabilities that are increasing in Health Informatics, impacting the activities in research, education and practice in this interdisciplinary field. There has been steady progress towards introducing semantics into informatics systems through more sophisticated representations of knowledge in their underlying information. Health Informatics 3.0 capabilities are identified from the recent literature, illustrated by selected papers published during the past 12 months, and articles reported by IMIA Working Groups. Surveys of the main research sub-fields in biomedical informatics in the Yearbook provide an overview of progress and current challenges across the spectrum of the discipline, focusing on Web 3.0 challenges and opportunities.

  11. Past and next 10 years of medical informatics.

    Science.gov (United States)

    Ückert, Frank; Ammenwerth, Elske; Dujat, Carl; Grant, Andrew; Haux, Reinhold; Hein, Andreas; Hochlehnert, Achim; Knaup-Gregori, Petra; Kulikowski, Casimir; Mantas, John; Maojo, Victor; Marschollek, Michael; Moura, Lincoln; Plischke, Maik; Röhrig, Rainer; Stausberg, Jürgen; Takabayashi, Katsuhiko; Winter, Alfred; Wolf, Klaus-Hendrik; Hasman, Arie

    2014-07-01

    More than 10 years ago Haux et al. tried to answer the question how health care provision will look like in the year 2013. A follow-up workshop was held in Braunschweig, Germany, for 2 days in May, 2013, with 20 invited international experts in biomedical and health informatics. Among other things it had the objectives to discuss the suggested goals and measures of 2002 and how priorities on MI research in this context should be set from the viewpoint of today. The goals from 2002 are now as up-to-date as they were then. The experts stated that the three goals: "patient-centred recording and use of medical data for cooperative care"; "process-integrated decision support through current medical knowledge" and "comprehensive use of patient data for research and health care reporting" have not been reached yet and are still relevant. A new goal for ICT in health care should be the support of patient centred personalized (individual) medicine. MI as an academic discipline carries out research concerning tools that support health care professionals in their work. This research should be carried out without the pressure that it should lead to systems that are immediately and directly accepted in practice.

  12. The architecture of a distributed medical dictionary.

    Science.gov (United States)

    Fowler, J; Buffone, G; Moreau, D

    1995-01-01

    Exploiting high-speed computer networks to provide a national medical information infrastructure is a goal for medical informatics. The Distributed Medical Dictionary under development at Baylor College of Medicine is a model for an architecture that supports collaborative development of a distributed online medical terminology knowledge-base. A prototype is described that illustrates the concept. Issues that must be addressed by such a system include high availability, acceptable response time, support for local idiom, and control of vocabulary.

  13. Integrating community-based participatory research and informatics approaches to improve the engagement and health of underserved populations.

    Science.gov (United States)

    Unertl, Kim M; Schaefbauer, Chris L; Campbell, Terrance R; Senteio, Charles; Siek, Katie A; Bakken, Suzanne; Veinot, Tiffany C

    2016-01-01

    We compare 5 health informatics research projects that applied community-based participatory research (CBPR) approaches with the goal of extending existing CBPR principles to address issues specific to health informatics research. We conducted a cross-case analysis of 5 diverse case studies with 1 common element: integration of CBPR approaches into health informatics research. After reviewing publications and other case-related materials, all coauthors engaged in collaborative discussions focused on CBPR. Researchers mapped each case to an existing CBPR framework, examined each case individually for success factors and barriers, and identified common patterns across cases. Benefits of applying CBPR approaches to health informatics research across the cases included the following: developing more relevant research with wider impact, greater engagement with diverse populations, improved internal validity, more rapid translation of research into action, and the development of people. Challenges of applying CBPR to health informatics research included requirements to develop strong, sustainable academic-community partnerships and mismatches related to cultural and temporal factors. Several technology-related challenges, including needs to define ownership of technology outputs and to build technical capacity with community partners, also emerged from our analysis. Finally, we created several principles that extended an existing CBPR framework to specifically address health informatics research requirements. Our cross-case analysis yielded valuable insights regarding CBPR implementation in health informatics research and identified valuable lessons useful for future CBPR-based research. The benefits of applying CBPR approaches can be significant, particularly in engaging populations that are typically underserved by health care and in designing patient-facing technology. © The Authors 2015. Published by Oxford University Press on behalf of the American Medical

  14. Research Strategies for Biomedical and Health Informatics. Some Thought-provoking and Critical Proposals to Encourage Scientific Debate on the Nature of Good Research in Medical Informatics.

    Science.gov (United States)

    Haux, Reinhold; Kulikowski, Casimir A; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra N; Leong, Tze Yun; McCray, Alexa T

    2017-01-25

    Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes.

  15. Crossing Borders: An Online Interdisciplinary Course in Health Informatics for Students From Two Countries.

    Science.gov (United States)

    Fossum, Mariann; Fruhling, Ann; Moe, Carl Erik; Thompson, Cheryl Bagley

    2017-04-01

    A cross-countries and interprofessional novel approach for delivering an international interdisciplinary graduate health informatics course online is presented. Included in this discussion are the challenges, lessons learned, and pedagogical recommendations from the experiences of teaching the course. Four professors from three different fields and from three universities collaborated in offering an international health informatics course for an interdisciplinary group of 18 US and seven Norwegian students. Highly motivated students and professors, an online technology infrastructure that supported asynchronously communication and course delivery, the ability to adapt the curriculum to meet the pedagogy requirements at all universities, and the support of higher administration for international collaboration were enablers for success. This project demonstrated the feasibility and advantages of an interdisciplinary, interprofessional, and cross-countries approach in teaching health informatics online. Students were able to establish relationships and conduct professional conversations across disciplines and international boundaries using content management software. This graduate course can be used as a part of informatics, computer science, and/or health science programs.

  16. Biomedical and Health Informatics Education – the IMIA Years

    Science.gov (United States)

    2016-01-01

    Summary Objective This paper presents the development of medical informatics education during the years from the establishment of the International Medical Informatics Association (IMIA) until today. Method A search in the literature was performed using search engines and appropriate keywords as well as a manual selection of papers. The search covered English language papers and was limited to search on papers title and abstract only. Results The aggregated papers were analyzed on the basis of the subject area, origin, time span, and curriculum development, and conclusions were drawn. Conclusions From the results, it is evident that IMIA has played a major role in comparing and integrating the Biomedical and Health Informatics educational efforts across the different levels of education and the regional distribution of educators and institutions. A large selection of references is presented facilitating future work on the field of education in biomedical and health informatics. PMID:27488405

  17. Translational informatics: an industry perspective.

    Science.gov (United States)

    Cantor, Michael N

    2012-01-01

    Translational informatics (TI) is extremely important for the pharmaceutical industry, especially as the bar for regulatory approval of new medications is set higher and higher. This paper will explore three specific areas in the drug development lifecycle, from tools developed by precompetitive consortia to standardized clinical data collection to the effective delivery of medications using clinical decision support, in which TI has a major role to play. Advancing TI will require investment in new tools and algorithms, as well as ensuring that translational issues are addressed early in the design process of informatics projects, and also given higher weight in funding or publication decisions. Ultimately, the source of translational tools and differences between academia and industry are secondary, as long as they move towards the shared goal of improving health.

  18. Developing capacity in health informatics in a resource poor setting: lessons from Peru.

    Science.gov (United States)

    Kimball, Ann Marie; Curioso, Walter H; Arima, Yuzo; Fuller, Sherrilynne; Garcia, Patricia J; Segovia-Juarez, Jose; Castagnetto, Jesus M; Leon-Velarde, Fabiola; Holmes, King K

    2009-10-27

    The public sectors of developing countries require strengthened capacity in health informatics. In Peru, where formal university graduate degrees in biomedical and health informatics were lacking until recently, the AMAUTA Global Informatics Research and Training Program has provided research and training for health professionals in the region since 1999. The Fogarty International Center supports the program as a collaborative partnership between Universidad Peruana Cayetano Heredia in Peru and the University of Washington in the United States of America. The program aims to train core professionals in health informatics and to strengthen the health information resource capabilities and accessibility in Peru. The program has achieved considerable success in the development and institutionalization of informatics research and training programs in Peru. Projects supported by this program are leading to the development of sustainable training opportunities for informatics and eight of ten Peruvian fellows trained at the University of Washington are now developing informatics programs and an information infrastructure in Peru. In 2007, Universidad Peruana Cayetano Heredia started offering the first graduate diploma program in biomedical informatics in Peru.

  19. Education in Biomedical and Health Informatics in the Web 3.0 Era: Standards for data, curricula, and activities. Contribution of the IMIA Working Group on Health and Medical Informatics Education.

    Science.gov (United States)

    Otero, P; Hersh, W

    2011-01-01

    Web 3.0 is transforming the World Wide Web by allowing knowledge and reasoning to be gleaned from its content. Describe a new scenario in education and training known as "Education 3.0" that can help in the promotion of learning in health informatics in a collaborative way. Review of the current standards available for curricula and learning activities in in Biomedical and Health Informatics (BMHI) for a Web 3.0 scenario. A new scenario known as "Education 3.0" can provide open educational resources created and reused throughout different institutions and improved by means of an international collaborative knowledge powered by the use of E-learning. Currently there are standards that could be used in identifying and deliver content in education in BMHI in the semantic web era such as Resource Description Format (RDF), Web Ontology Language (OWL) and Sharable Content Object Reference Model (SCORM). In addition, there are other standards to support healthcare education and training. There are few experiences in the use of standards in e-learning in BMHI published in the literature. Web 3.0 can propose new approaches to building the BMHI workforce so there is a need to build tools as knowledge infrastructure to leverage it. The usefulness of standards in the content and competencies of training programs in BMHI needs more experience and research so as to promote the interoperability and sharing of resources in this growing discipline.

  20. Medical Informatics in Clinical Practice: An Overview. | Okoromah ...

    African Journals Online (AJOL)

    Providing a high-quality service to patients involves having the right information at the ... Knowledge and practice and application of computer technology in both ... informatics and to stimulate interest in computer support in health care in our ...

  1. Bridging the gap between informatics and medicine upon medical school entry: Implementing a course on the Applicative Use of ICT.

    Science.gov (United States)

    Milic, Natasa M; Ilic, Nikola; Stanisavljevic, Dejana M; Cirkovic, Andja M; Milin, Jelena S; Bukumiric, Zoran M; Milic, Nikola V; Savic, Marko D; Ristic, Sara M; Trajkovic, Goran Z

    2018-01-01

    Education is undergoing profound changes due to permanent technological innovations. This paper reports the results of a pilot study aimed at developing, implementing and evaluating the course, "Applicative Use of Information and Communication Technologies (ICT) in Medicine," upon medical school entry. The Faculty of Medicine, University of Belgrade, introduced a curriculum reform in 2014 that included the implementation of the course, "Applicative Use of ICT in Medicine" for first year medical students. The course was designed using a blended learning format to introduce the concepts of Web-based learning environments. Data regarding student knowledge, use and attitudes towards ICT were prospectively collected for the classes of 2015/16 and 2016/17. The teaching approach was supported by multimedia didactic materials using Moodle LMS. The overall quality of the course was also assessed. The five level Likert scale was used to measure attitudes related to ICT. In total, 1110 students were assessed upon medical school entry. A small number of students (19%) had previous experience with e-learning. Students were largely in agreement that informatics is needed in medical education, and that it is also useful for doctors (4.1±1.0 and 4.1±0.9, respectively). Ability in informatics and use of the Internet in education in the adjusted multivariate regression model were significantly associated with positive student attitudes toward ICT. More than 80% of students stated that they had learned to evaluate medical information and would use the Internet to search medical literature as an additional source for education. The majority of students (77%) agreed that a blended learning approach facilitates access to learning materials and enables time independent learning (72%). Implementing the blended learning course, "Applicative Use of ICT in Medicine," may bridge the gap between medicine and informatics upon medical school entry. Students displayed positive attitudes towards

  2. Pharmacy informatics: A call to action for educators, administrators, and residency directors.

    Science.gov (United States)

    Steckler, Taylor J; Brownlee, Michael J; Urick, Benjamin Y; Farley, Matthew J

    2017-09-01

    Pharmacy informatics involves the customization and application of information technology to improve medication-related processes. It is a critical function given the recent expansion of technology and prevalence of medication use throughout healthcare. Despite the necessity for pharmacy involvement, many pharmacists and student pharmacists are unaware of how to get started in informatics. Ideally, training should start early with student pharmacists being enrolled in introductory courses taught by leaders in the field. Students especially interested in informatics can build upon their classroom experience with postgraduate year two (PGY2) residencies in several informatics-related areas. Additionally, current pharmacists can gather information from national pharmacy organizations and local information technology pharmacists to prepare for projects in the field. These approaches provide opportunities for all pharmacists to expand their knowledge and establish the basis for highly-motivated pharmacists to become experts in informatics. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Informatics and Standards for Nanomedicine Technology

    Science.gov (United States)

    Thomas, Dennis G.; Klaessig, Fred; Harper, Stacey L.; Fritts, Martin; Hoover, Mark D.; Gaheen, Sharon; Stokes, Todd H.; Reznik-Zellen, Rebecca; Freund, Elaine T.; Klemm, Juli D.; Paik, David S.; Baker, Nathan A.

    2011-01-01

    There are several issues to be addressed concerning the management and effective use of information (or data), generated from nanotechnology studies in biomedical research and medicine. These data are large in volume, diverse in content, and are beset with gaps and ambiguities in the description and characterization of nanomaterials. In this work, we have reviewed three areas of nanomedicine informatics: information resources; taxonomies, controlled vocabularies, and ontologies; and information standards. Informatics methods and standards in each of these areas are critical for enabling collaboration, data sharing, unambiguous representation and interpretation of data, semantic (meaningful) search and integration of data; and for ensuring data quality, reliability, and reproducibility. In particular, we have considered four types of information standards in this review, which are standard characterization protocols, common terminology standards, minimum information standards, and standard data communication (exchange) formats. Currently, due to gaps and ambiguities in the data, it is also difficult to apply computational methods and machine learning techniques to analyze, interpret and recognize patterns in data that are high dimensional in nature, and also to relate variations in nanomaterial properties to variations in their chemical composition, synthesis, characterization protocols, etc. Progress towards resolving the issues of information management in nanomedicine using informatics methods and standards discussed in this review will be essential to the rapidly growing field of nanomedicine informatics. PMID:21721140

  4. It's Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence.

    Science.gov (United States)

    McIntosh, Leslie D; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders.

  5. Nursing Informatics Competency Program

    Science.gov (United States)

    Dunn, Kristina

    2017-01-01

    Currently, C Hospital lacks a standardized nursing informatics competency program to validate nurses' skills and knowledge in using electronic medical records (EMRs). At the study locale, the organization is about to embark on the implementation of a new, more comprehensive EMR system. All departments will be required to use the new EMR, unlike…

  6. The Implementation of Medical Informatics in the National Competence Based Catalogue of Learning Objectives for Undergraduate Medical Education (NKLM).

    Science.gov (United States)

    Behrends, Marianne; Steffens, Sandra; Marschollek, Michael

    2017-01-01

    The National Competence Based Catalogue of Learning Objectives for Undergraduate Medical Education (NKLM) describes medical skills and attitudes without being ordered by subjects or organs. Thus, the NKLM enables systematic curriculum mapping and supports curricular transparency. In this paper we describe where learning objectives related to Medical Informatics (MI) in Hannover coincide with other subjects and where they are taught exclusively in MI. An instance of the web-based MERLIN-database was used for the mapping process. In total 52 learning objectives overlapping with 38 other subjects could be allocated to MI. No overlap exists for six learning objectives describing explicitly topics of information technology or data management for scientific research. Most of the overlap was found for learning objectives relating to documentation and aspects of data privacy. The identification of numerous shared learning objectives with other subjects does not mean that other subjects teach the same content as MI. Identifying common learning objectives rather opens up the possibility for teaching cooperations which could lead to an important exchange and hopefully an improvement in medical education. Mapping of a whole medical curriculum offers the opportunity to identify common ground between MI and other medical subjects. Furthermore, in regard to MI, the interaction with other medical subjects can strengthen its role in medical education.

  7. Attitude and awareness of medical and dental students towards collaboration between medical and dental practice in Hong Kong.

    Science.gov (United States)

    Zhang, Shinan; Lo, Edward C M; Chu, Chun-Hung

    2015-05-02

    Medical-dental collaboration is essential for improving resource efficiency and standards of care. However, few studies have been conducted on it. This study aimed to investigate the attitude and awareness of medical and dental students about collaboration between medical and dental practices in Hong Kong. All medical and dental students in Hong Kong were invited to complete a questionnaire survey at their universities, hospitals and residential halls. It contained 8 questions designed to elicit their attitudes about the collaboration between medical and dental practice. Students were also asked about their awareness of the collaboration between dentistry and medicine. The questionnaires were directly distributed to medical and dental students. The finished questionnaires were immediately collected by research assistants on site. A total of 1,857 questionnaires were distributed and 809 (44%) were returned. Their mean attitude score (SD) towards medical-dental collaboration was 6.37 (1.44). Most students (77%) were aware of the collaboration between medical and dental practice in Hong Kong. They considered that Ear, Nose & Throat, General Surgery and Family Medicine were the 3 most common medical disciplines which entailed collaboration between medical and dental practice. In this study, the medical and dental students in general demonstrated a good attitude and awareness of the collaboration between medical and dental practice in Hong Kong. This established an essential foundation for fostering medical-dental collaboration, which is vital to improving resource efficiency and standards of care.

  8. Research on the Model of E-commerce of China’s Urban Informatization Community

    Directory of Open Access Journals (Sweden)

    Yu Han

    2014-02-01

    Full Text Available Urban informatization e-commerce is a business model of the combination of e-commerce operators and organizational forms of community property management, and the import of people management and property management into e-commerce. This paper analyzes the current situation of Chinese urban community e-commerce and informatization community building. It puts forward the model of community e-commerce based on informatization, and its feasibility was verified by PIECE method. Finally, focusing on the application, the model of community e-commerce based on informatization community is analyzed in detail from the perspective of the role and value, supply chain and collaborative management works. Information services are most likely to succeed in the entry point of e-commerce. The study has shown that the establishment of community e-commerce on the basis of urban informatization community can be regarded as a solution of e-commerce development.

  9. TU-E-211-01: Establishing Multidisciplinary Collaboration as a Medical Physicist.

    Science.gov (United States)

    Xing, L; Fraass, B; Ford, E; Chang, S

    2012-06-01

    Many medical physicists are scientists at heart and their career fulfillment includes a balance of clinical service and research development. Multidisciplinary collaboration is a great way for the medical physicists to advance science and technology of our fields and the fields of our collaborators. Cross-pollination among scientists of different fields has been the key for some of the most significant breakthroughs in science and medicine and produced some of the most rewarding experiences for the individuals involved. However, medical physicists face unique challenges in establishing multidisciplinary collaboration because our time and resources for research are often quite limited compared to basic scientists. Yet we medical physicists are uniquely positioned and have a tremendous opportunity to create/contribute to multidisciplinary research: our fields are already multidisciplinary in nature and hospital environment is problem rich. How do we establish and carry out research collaboration with scientists of other fields? How to balance research with your higher priority clinical service? How do you find the right multidisciplinary collaboration in your own environment? We will discuss the challenges, provide real exemplary solutions to the above questions, and offer advise to medical physicists who are interested in starting or improving their multidisciplinary collaboration. There are different kinds of multidisciplinary collaborations a medical physicist can create and participate at different involvement levels. Multidisciplinary collaboration is not for every medical physicist but for those who seek and devote time to it, the experience can be truly rewarding and the impact can be enormous. 1. Learn the types of multidisciplinary collaboration medical physicists can created/participated 2. Learn the approaches and strategies to develop collaborations with scientists and professional of other fields3. Understand the challenges and different approaches to

  10. 1st International Conference on Advanced Intelligent System and Informatics

    CERN Document Server

    Hassanien, Aboul; El-Bendary, Nashwa; Dey, Nilanjan

    2016-01-01

    The conference topics address different theoretical and practical aspects, and implementing solutions for intelligent systems and informatics disciplines including bioinformatics, computer science, medical informatics, biology, social studies, as well as robotics research. The conference also discuss and present solutions to the cloud computing and big data mining which are considered hot research topics. The conference papers discussed different topics – techniques, models, methods, architectures, as well as multi aspect, domain-specific, and new solutions for the above disciplines. The accepted papers have been grouped into five parts: Part I—Intelligent Systems and Informatics, addressing topics including, but not limited to, medical application, predicting student performance, action classification, and detection of dead stained microscopic cells, optical character recognition, plant identification, rehabilitation of disabled people. Part II—Hybrid Intelligent Systems, addressing topics including, b...

  11. Past and next 10 years of medical informatics

    NARCIS (Netherlands)

    Ückert, Frank; Ammenwerth, Elske; Dujat, Carl; Grant, Andrew; Haux, Reinhold; Hein, Andreas; Hochlehnert, Achim; Knaup-Gregori, Petra; Kulikowski, Casimir; Mantas, John; Maojo, Victor; Marschollek, Michael; Moura, Lincoln; Plischke, Maik; Röhrig, Rainer; Stausberg, Jürgen; Takabayashi, Katsuhiko; Winter, Alfred; Wolf, Klaus-Hendrik; Hasman, Arie

    2014-01-01

    More than 10 years ago Haux et al. tried to answer the question how health care provision will look like in the year 2013. A follow-up workshop was held in Braunschweig, Germany, for 2 days in May, 2013, with 20 invited international experts in biomedical and health informatics. Among other things

  12. Time for TIGER to ROAR! Technology Informatics Guiding Education Reform.

    Science.gov (United States)

    O'Connor, Siobhan; Hubner, Ursula; Shaw, Toria; Blake, Rachelle; Ball, Marion

    2017-11-01

    Information Technology (IT) continues to evolve and develop with electronic devices and systems becoming integral to healthcare in every country. This has led to an urgent need for all professions working in healthcare to be knowledgeable and skilled in informatics. The Technology Informatics Guiding Education Reform (TIGER) Initiative was established in 2006 in the United States to develop key areas of informatics in nursing. One of these was to integrate informatics competencies into nursing curricula and life-long learning. In 2009, TIGER developed an informatics competency framework which outlines numerous IT competencies required for professional practice and this work helped increase the emphasis of informatics in nursing education standards in the United States. In 2012, TIGER expanded to the international community to help synthesise informatics competencies for nurses and pool educational resources in health IT. This transition led to a new interprofessional, interdisciplinary approach, as health informatics education needs to expand to other clinical fields and beyond. In tandem, a European Union (EU) - United States (US) Collaboration on eHealth began a strand of work which focuses on developing the IT skills of the health workforce to ensure technology can be adopted and applied in healthcare. One initiative within this is the EU*US eHealth Work Project, which started in 2016 and is mapping the current structure and gaps in health IT skills and training needs globally. It aims to increase educational opportunities by developing a model for open and scalable access to eHealth training programmes. With this renewed initiative to incorporate informatics into the education and training of nurses and other health professionals globally, it is time for educators, researchers, practitioners and policy makers to join in and ROAR with TIGER. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Informatics for Health 2017: Advancing both science and practice

    Directory of Open Access Journals (Sweden)

    Philip J. Scott

    2017-04-01

    Full Text Available Introduction: The Informatics for Health congress, 24-26 April 2017, in Manchester, UK, brought together the Medical Informatics Europe (MIE conference and the Farr Institute International Conference. This special issue of the Journal of Innovation in Health Informatics contains 113 presentation abstracts and 149 poster abstracts from the congress. Discussion: The twin programmes of “Big Data” and “Digital Health” are not always joined up by coherent policy and investment priorities. Substantial global investment in health IT and data science has led to sound progress but highly variable outcomes. Society needs an approach that brings together the science and the practice of health informatics. The goal is multi-level Learning Health Systems that consume and intelligently act upon both patient data and organizational intervention outcomes. Conclusions: Informatics for Health demonstrated the art of the possible, seen in the breadth and depth of our contributions. We call upon policy makers, research funders and programme leaders to learn from this joined-up approach.

  14. Nursing Informatics Certification Worldwide: History, Pathway, Roles, and Motivation

    Science.gov (United States)

    Cummins, M. R.; Gundlapalli, A. V.; Murray, P.; Park, H.-A.; Lehmann, C. U.

    2016-01-01

    Summary Introduction Official recognition and certification for informatics professionals are essential aspects of workforce development. Objective: To describe the history, pathways, and nuances of certification in nursing informatics across the globe; compare and contrast those with board certification in clinical informatics for physicians. Methods (1) A review of the representative literature on informatics certification and related competencies for nurses and physicians, and relevant websites for nursing informatics associations and societies worldwide; (2) similarities and differences between certification processes for nurses and physicians, and (3) perspectives on roles for nursing informatics professionals in healthcare Results The literature search for ‘nursing informatics certification’ yielded few results in PubMed; Google Scholar yielded a large number of citations that extended to magazines and other non-peer reviewed sources. Worldwide, there are several nursing informatics associations, societies, and workgroups dedicated to nursing informatics associated with medical/health informatics societies. A formal certification program for nursing informatics appears to be available only in the United States. This certification was established in 1992, in concert with the formation and definition of nursing informatics as a specialty practice of nursing by the American Nurses Association. Although informatics is inherently interprofessional, certification pathways for nurses and physicians have developed separately, following long-standing professional structures, training, and pathways aligned with clinical licensure and direct patient care. There is substantial similarity with regard to the skills and competencies required for nurses and physicians to obtain informatics certification in their respective fields. Nurses may apply for and complete a certification examination if they have experience in the field, regardless of formal training. Increasing

  15. The pathology informatics curriculum wiki: Harnessing the power of user-generated content.

    Science.gov (United States)

    Kim, Ji Yeon; Gudewicz, Thomas M; Dighe, Anand S; Gilbertson, John R

    2010-07-13

    The need for informatics training as part of pathology training has never been so critical, but pathology informatics is a wide and complex field and very few programs currently have the resources to provide comprehensive educational pathology informatics experiences to their residents. In this article, we present the "pathology informatics curriculum wiki", an open, on-line wiki that indexes the pathology informatics content in a larger public wiki, Wikipedia, (and other online content) and organizes it into educational modules based on the 2003 standard curriculum approved by the Association for Pathology Informatics (API). In addition to implementing the curriculum wiki at http://pathinformatics.wikispaces.com, we have evaluated pathology informatics content in Wikipedia. Of the 199 non-duplicate terms in the API curriculum, 90% have at least one associated Wikipedia article. Furthermore, evaluation of articles on a five-point Likert scale showed high scores for comprehensiveness (4.05), quality (4.08), currency (4.18), and utility for the beginner (3.85) and advanced (3.93) learners. These results are compelling and support the thesis that Wikipedia articles can be used as the foundation for a basic curriculum in pathology informatics. The pathology informatics community now has the infrastructure needed to collaboratively and openly create, maintain and distribute the pathology informatics content worldwide (Wikipedia) and also the environment (the curriculum wiki) to draw upon its own resources to index and organize this content as a sustainable basic pathology informatics educational resource. The remaining challenges are numerous, but largest by far will be to convince the pathologists to take the time and effort required to build pathology informatics content in Wikipedia and to index and organize this content for education in the curriculum wiki.

  16. 2nd International Congress on Neurotechnology, Electronics and Informatics

    CERN Document Server

    Encarnação, Pedro

    2016-01-01

    This book is a timely report on current neurotechnology research. It presents a snapshot of the state of the art in the field, discusses current challenges and identifies new directions. The book includes a selection of extended and revised contributions presented at the 2nd International Congress on Neurotechnology, Electronics and Informatics (NEUROTECHNIX 2014), held October 25-26 in Rome, Italy. The chapters are varied: some report on novel theoretical methods for studying neuronal connectivity or neural system behaviour; others report on advanced technologies developed for similar purposes; while further contributions concern new engineering methods and technological tools supporting medical diagnosis and neurorehabilitation. All in all, this book provides graduate students, researchers and practitioners dealing with different aspects of neurotechnologies with a unified view of the field, thus fostering new ideas and research collaborations among groups from different disciplines.

  17. [Biomedical informatics].

    Science.gov (United States)

    Capurro, Daniel; Soto, Mauricio; Vivent, Macarena; Lopetegui, Marcelo; Herskovic, Jorge R

    2011-12-01

    Biomedical Informatics is a new discipline that arose from the need to incorporate information technologies to the generation, storage, distribution and analysis of information in the domain of biomedical sciences. This discipline comprises basic biomedical informatics, and public health informatics. The development of the discipline in Chile has been modest and most projects have originated from the interest of individual people or institutions, without a systematic and coordinated national development. Considering the unique features of health care system of our country, research in the area of biomedical informatics is becoming an imperative.

  18. E-health in graduate and postgraduate medical education: illusions, expectations and reality.

    Science.gov (United States)

    Bari, Ferenc; Forczek, Erzsébet; Hantos, Zoltán

    2011-01-01

    With the overall growth of informatics, the medical education system should also provide programs at both graduate and post-graduate levels. While there is a wide consensus as to the importance of this urgent need, several factors slow down the construction and operation of effective education programs in medical and nursing schools. The increasing need for better and more comprehensive training in informatics is strongly limited by several factors including undefined output skills, tight time frame etc. An efficient development of partnerships within the health care system assumes that all professionals involved must possess strong informatics and interpersonal knowledge, and skills reaching beyond their own individual fields. There is an emerging need to define the basic skills and knowledge for each level of the health care education. Trans-border cooperation offers a unique opportunity for the establishment of common criteria for basic skills and knowledge, via joint discussions, collaborative thinking and concerted action.

  19. Training multidisciplinary biomedical informatics students: three years of experience.

    Science.gov (United States)

    van Mulligen, Erik M; Cases, Montserrat; Hettne, Kristina; Molero, Eva; Weeber, Marc; Robertson, Kevin A; Oliva, Baldomero; de la Calle, Guillermo; Maojo, Victor

    2008-01-01

    The European INFOBIOMED Network of Excellence recognized that a successful education program in biomedical informatics should include not only traditional teaching activities in the basic sciences but also the development of skills for working in multidisciplinary teams. A carefully developed 3-year training program for biomedical informatics students addressed these educational aspects through the following four activities: (1) an internet course database containing an overview of all Medical Informatics and BioInformatics courses, (2) a BioMedical Informatics Summer School, (3) a mobility program based on a 'brokerage service' which published demands and offers, including funding for research exchange projects, and (4) training challenges aimed at the development of multi-disciplinary skills. This paper focuses on experiences gained in the development of novel educational activities addressing work in multidisciplinary teams. The training challenges described here were evaluated by asking participants to fill out forms with Likert scale based questions. For the mobility program a needs assessment was carried out. The mobility program supported 20 exchanges which fostered new BMI research, resulted in a number of peer-reviewed publications and demonstrated the feasibility of this multidisciplinary BMI approach within the European Union. Students unanimously indicated that the training challenge experience had contributed to their understanding and appreciation of multidisciplinary teamwork. The training activities undertaken in INFOBIOMED have contributed to a multi-disciplinary BMI approach. It is our hope that this work might provide an impetus for training efforts in Europe, and yield a new generation of biomedical informaticians.

  20. Cheminformatics Research at the Unilever Centre for Molecular Science Informatics Cambridge.

    Science.gov (United States)

    Fuchs, Julian E; Bender, Andreas; Glen, Robert C

    2015-09-01

    The Centre for Molecular Informatics, formerly Unilever Centre for Molecular Science Informatics (UCMSI), at the University of Cambridge is a world-leading driving force in the field of cheminformatics. Since its opening in 2000 more than 300 scientific articles have fundamentally changed the field of molecular informatics. The Centre has been a key player in promoting open chemical data and semantic access. Though mainly focussing on basic research, close collaborations with industrial partners ensured real world feedback and access to high quality molecular data. A variety of tools and standard protocols have been developed and are ubiquitous in the daily practice of cheminformatics. Here, we present a retrospective of cheminformatics research performed at the UCMSI, thereby highlighting historical and recent trends in the field as well as indicating future directions.

  1. The Structure of Medical Informatics Journal Literature

    Science.gov (United States)

    Morris, Theodore A.; McCain, Katherine W.

    1998-01-01

    Abstract Objective: Medical informatics is an emergent interdisciplinary field described as drawing upon and contributing to both the health sciences and information sciences. The authors elucidate the disciplinary nature and internal structure of the field. Design: To better understand the field's disciplinary nature, the authors examine the intercitation relationships of its journal literature. To determine its internal structure, they examined its journal cocitation patterns. Measurements: The authors used data from the Science Citation Index (SCI) and Social Science Citation Index (SSCI) to perform intercitation studies among productive journal titles, and software routines from SPSS to perform multivariate data analyses on cocitation data for proposed core journals. Results: Intercitation network analysis suggests that a core literature exists, one mark of a separate discipline. Multivariate analyses of cocitation data suggest that major focus areas within the field include biomedical engineering, biomedical computing, decision support, and education. The interpretable dimensions of multidimensional scaling maps differed for the SCI and SSCI data sets. Strong links to information science literature were not found. Conclusion: The authors saw indications of a core literature and of several major research fronts. The field appears to be viewed differently by authors writing in journals indexed by SCI from those writing in journals indexed by SSCI, with more emphasis placed on computers and engineering versus decision making by the former and more emphasis on theory versus application (clinical practice) by the latter. PMID:9760393

  2. The rate commitment to ISO 214 standard among the persian abstracts of approved research projects at school of health management and medical informatics, Isfahan University of Medical Sciences, Isfahan, Iran.

    Science.gov (United States)

    Papi, Ahmad; Khalaji, Davoud; Rizi, Hasan Ashrafi; Shabani, Ahmad; Hassanzadeh, Akbar

    2014-01-01

    Commitment to abstracting standards has a very significant role in information retrieval. The present research aimed to evaluate the rate of Commitment to ISO 214 Standard among the Persian abstracts of approved research projects at School of Health Management and Medical Informatics, Isfahan University of Medical Sciences, Isfahan, Iran. This descriptive study used a researcher-made checklist to collect data, which was then analyzed through content analysis. The studied population consisted of 227 approved research projects in the School of Health Management and Medical Informatics, Isfahan University of Medical Sciences during 2001-2010. The validity of the checklist was measured by face and content validity. Data was collected through direct observations. Statistical analyzes including descriptive (frequency distribution and percent) and inferential statistics (Chi-square test) were performed in SPSS-16. The highest and lowest commitment rates to ISO 214 standard were in using third person pronouns (100%) and using active verbs (34/4%), respectively. In addition, the highest commitment rates to ISO 214 standard (100%) related to mentioning third person pronouns, starting the abstract with a sentence to explain the subject of the research, abstract placement, and including keyword in 2009. On the other hand, during 2001-2003, the lowest commitment rate was observed in reporting research findings (16/7%). Moreover, various educational groups differed significantly only in commitment to study goals, providing research findings, and abstaining from using abbreviations, signs, and acronyms. Furthermore, educational level of the corresponding author was significantly related with extracting the keywords from the text. Other factors of ISO 214 standard did not have significant relations with the educational level of the corresponding author. In general, a desirable rate of commitment to ISO 214 standard was observed among the Persian abstracts of approved research

  3. Medical and pharmacy students’ attitudes towards physician-pharmacist collaboration in Kuwait

    Directory of Open Access Journals (Sweden)

    Katoue MG

    2017-09-01

    Full Text Available Objective: To assess and compare the attitudes of medical and pharmacy students towards physician-pharmacist collaboration and explore their opinions about the barriers to collaborative practice in Kuwait. Methods: A cross-sectional survey of pharmacy and medical students (n=467 was conducted in Faculties of Medicine and Pharmacy, Kuwait University. Data were collected via self-administered questionnaire from first-year pharmacy and medical students and students in the last two professional years of the pharmacy and medical programs. Descriptive and comparative analyses were performed using SPSS, version 22. Statistical significance was accepted at p<0.05. Results: The response rate was 82.4%. Respondents had overall positive attitudes towards physician-pharmacist collaboration. Pharmacy students expressed significantly more positive attitudes than medical students (p< 0.001. Medical students rated the three most significant barriers to collaboration to be: pharmacists’ separation from patient care areas (n=100, 70.0%, lack of pharmacists’ access to patients’ medical record (n=90, 63.0% and physicians assuming total responsibility for clinical decision-making (n=87, 60.8%. Pharmacy students’ top three perceived barriers were: lack of pharmacists’ access to patients’ medical record (n=80, 84.2%, organizational obstacles (n=79, 83.2%, and pharmacists’ separation from patient care areas (n=77, 81.1%. Lack of interprofessional education was rated the fourth-largest barrier by both medical (n=79, 55.2% and pharmacy (n=76, 80.0% students. Conclusions: Medical and pharmacy students in Kuwait advocate physician-pharmacist collaborative practice, but both groups identified substantial barriers to implementation. Efforts are needed to enhance undergraduate/postgraduate training in interprofessional collaboration, and to overcome barriers to physician-pharmacist collaboration to advance a team approach to patient care.

  4. Public health informatics in India: the potential and the challenges.

    Science.gov (United States)

    Athavale, A V; Zodpey, Sanjay P

    2010-01-01

    Public health informatics is emerging as a new and distinct specialty area in the global scenario within the broader discipline of health informatics. The potential role of informatics in reducing health disparities in underserved populations has been identified by a number of reports from all over the world. The article discusses the scope, the limitations, and future perspective of this novice discipline in context to India. It also highlights information and technology related tools namely Geographical Information Systems, Telemedicine and Electronic Medical Record/Electronic Health Record. India needs to leverage its "technology" oriented growth until now (e.g., few satellite-based telemedicine projects, etc.) simultaneously toward development of "information"-based public health informatics systems in future. Under the rapidly evolving scenario of global public health, the future of the public health governance and population health in India would depend upon building and integrating the comprehensive and responsive domain of public health informatics.

  5. The Role of Medical Informatics in Primary Care Education

    Directory of Open Access Journals (Sweden)

    PJ McCullagh

    2000-02-01

    Full Text Available This paper investigates the ability of a group of Primary Care professionals to acquire appropriate document retrieval skills, so that they can apply evidence based health care techniques to their various Primary Care roles. The participants, most of whom had little prior experience of the Internet, were enrolled on a two-year part-time Postgraduate Diploma / MSc in Primary Care. As part of the course, they took a compulsory 12-week module in Medical Informatics. A specific task was set: to find appropriate information on Meningococcal Meningitis and Public Health, by using National Library of Medicine's PUBMED bibliographic retrieval system and other unspecified Internet sources. A supplementary piece of coursework required the group to become information providers by providing tutorials on the world wide web. Analysis of the reports showed that the participants were able to learn and use the information tools successfully and that appropriate skills can be transferred in a short time. Overall nine were positive as to the benefits of the evidence-based approach contributing to local health care, with nine expressing mixed views and two having more negative opinions.

  6. Towards a collaborative filtering approach to medication reconciliation.

    Science.gov (United States)

    Hasan, Sharique; Duncan, George T; Neill, Daniel B; Padman, Rema

    2008-11-06

    A physicians prescribing decisions depend on knowledge of the patients medication list. This knowledge is often incomplete, and errors or omissions could result in adverse outcomes. To address this problem, the Joint Commission recommends medication reconciliation for creating a more accurate list of a patients medications. In this paper, we develop techniques for automatic detection of omissions in medication lists, identifying drugs that the patient may be taking but are not on the patients medication list. Our key insight is that this problem is analogous to the collaborative filtering framework increasingly used by online retailers to recommend relevant products to customers. The collaborative filtering approach enables a variety of solution techniques, including nearest neighbor and co-occurrence approaches. We evaluate the effectiveness of these approaches using medication data from a long-term care center in the Eastern US. Preliminary results suggest that this framework may become a valuable tool for medication reconciliation.

  7. Person-generated Data in Self-quantification. A Health Informatics Research Program.

    Science.gov (United States)

    Gray, Kathleen; Martin-Sanchez, Fernando J; Lopez-Campos, Guillermo H; Almalki, Manal; Merolli, Mark

    2017-01-09

    The availability of internet-connected mobile, wearable and ambient consumer technologies, direct-to-consumer e-services and peer-to-peer social media sites far outstrips evidence about the efficiency, effectiveness and efficacy of using them in healthcare applications. The aim of this paper is to describe one approach to build a program of health informatics research, so as to generate rich and robust evidence about health data and information processing in self-quantification and associated healthcare and health outcomes. The paper summarises relevant health informatics research approaches in the literature and presents an example of developing a program of research in the Health and Biomedical Informatics Centre (HaBIC) at the University of Melbourne. The paper describes this program in terms of research infrastructure, conceptual models, research design, research reporting and knowledge sharing. The paper identifies key outcomes from integrative and multiple-angle approaches to investigating the management of information and data generated by use of this Centre's collection of wearable, mobiles and other devices in health self-monitoring experiments. These research results offer lessons for consumers, developers, clinical practitioners and biomedical and health informatics researchers. Health informatics is increasingly called upon to make sense of emerging self-quantification and other digital health phenomena that are well beyond the conventions of healthcare in which the field of informatics originated and consolidated. To make a substantial contribution to optimise the aims, processes and outcomes of health self-quantification needs further work at scale in multi-centre collaborations for this Centre and for health informatics researchers generally.

  8. The Future of Public Health Informatics: Alternative Scenarios and Recommended Strategies

    Science.gov (United States)

    Edmunds, Margo; Thorpe, Lorna; Sepulveda, Martin; Bezold, Clem; Ross, David A.

    2014-01-01

    Background: In October 2013, the Public Health Informatics Institute (PHII) and Institute for Alternative Futures (IAF) convened a multidisciplinary group of experts to evaluate forces shaping public health informatics (PHI) in the United States, with the aim of identifying upcoming challenges and opportunities. The PHI workshop was funded by the Robert Wood Johnson Foundation as part of its larger strategic planning process for public health and primary care. Workshop Context: During the two-day workshop, nine experts from the public and private sectors analyzed and discussed the implications of four scenarios regarding the United States economy, health care system, information technology (IT) sector, and their potential impacts on public health in the next 10 years, by 2023. Workshop participants considered the potential role of the public health sector in addressing population health challenges in each scenario, and then identified specific informatics goals and strategies needed for the sector to succeed in this role. Recommendations and Conclusion: Participants developed recommendations for the public health informatics field and for public health overall in the coming decade. These included the need to rely more heavily on intersectoral collaborations across public and private sectors, to improve data infrastructure and workforce capacity at all levels of the public health enterprise, to expand the evidence base regarding effectiveness of informatics-based public health initiatives, and to communicate strategically with elected officials and other key stakeholders regarding the potential for informatics-based solutions to have an impact on population health. PMID:25848630

  9. Biomedical informatics and the convergence of Nano-Bio-Info-Cogno (NBIC) technologies.

    Science.gov (United States)

    Martin-Sanchez, F; Maojo, V

    2009-01-01

    To analyze the role that biomedical informatics could play in the application of the NBIC Converging Technologies in the medical field and raise awareness of these new areas throughout the Biomedical Informatics community. Review of the literature and analysis of the reference documents in this domain from the biomedical informatics perspective. Detailing existing developments showing that partial convergence of technologies have already yielded relevant results in biomedicine (such as bioinformatics or biochips). Input from current projects in which the authors are involved is also used. Information processing is a key issue in enabling the convergence of NBIC technologies. Researchers in biomedical informatics are in a privileged position to participate and actively develop this new scientific direction. The experience of biomedical informaticians in five decades of research in the medical area and their involvement in the completion of the Human and other genome projects will help them participate in a similar role for the development of applications of converging technologies -particularly in nanomedicine. The proposed convergence will bring bridges between traditional disciplines. Particular attention should be placed on the ethical, legal, and social issues raised by the NBIC convergence. These technologies provide new directions for research and education in Biomedical Informatics placing a greater emphasis in multidisciplinary approaches.

  10. Biomedical informatics discovering knowledge in big data

    CERN Document Server

    Holzinger, Andreas

    2014-01-01

    This book provides a broad overview of the topic Bioinformatics (medical informatics + biological information) with a focus on data, information and knowledge. From data acquisition and storage to visualization, privacy, regulatory, and other practical and theoretical topics, the author touches on several fundamental aspects of the innovative interface between the medical and computational domains that form biomedical informatics. Each chapter starts by providing a useful inventory of definitions and commonly used acronyms for each topic, and throughout the text, the reader finds several real-world examples, methodologies, and ideas that complement the technical and theoretical background. Also at the beginning of each chapter a new section called "key problems", has been added, where the author discusses possible traps and unsolvable or major problems. This new edition includes new sections at the end of each chapter, called "future outlook and research avenues," providing pointers to future challenges.

  11. Informatics to support the IOM social and behavioral domains and measures.

    Science.gov (United States)

    Hripcsak, George; Forrest, Christopher B; Brennan, Patricia Flatley; Stead, William W

    2015-07-01

    Consistent collection and use of social and behavioral determinants of health can improve clinical care, prevention and general health, patient satisfaction, research, and public health. A recent Institute of Medicine committee defined a panel of 11 domains and 12 measures to be included in electronic health records. Incorporating the panel into practice creates a number of informatics research opportunities as well as challenges. The informatics issues revolve around standardization, efficient collection and review, decision support, and support for research. The informatics community can aid the effort by simultaneously optimizing the collection of the selected measures while also partnering with social science researchers to develop and validate new sources of information about social and behavioral determinants of health. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  12. A humanist's legacy in medical informatics: visions and accomplishments of Professor Jean-Raoul Scherrer.

    Science.gov (United States)

    Geissbühler, A; Lovis, C; Spahni, S; Appel, R D; Ratib, O; Boyer, C; Hochstrasser, D F; Baud, R

    2002-01-01

    To report about the work of Prof. Jean-Raoul Scherrer, and show how his humanist vision, his medical skills and his scientific background have enabled and shaped the development of medical informatics over the last 30 years. Starting with the mainframe-based patient-centered hospital information system DIOGENE in the 70s, Prof. Scherrer developed, implemented and evolved innovative concepts of man-machine interfaces, distributed and federated environments, leading the way with information systems that obstinately focused on the support of care providers and patients. Through a rigorous design of terminologies and ontologies, the DIOGENE data would then serve as a basis for the development of clinical research, data mining, and lead to innovative natural language processing techniques. In parallel, Prof. Scherrer supported the development of medical image management, ranging from a distributed picture archiving and communication systems (PACS) to molecular imaging of protein electrophoreses. Recognizing the need for improving the quality and trustworthiness of medical information on the Web, Prof. Scherrer created the Health-On-the-Net (HON) foundation. These achievements, made possible thanks to his visionary mind, deep humanism, creativity, generosity and determination, have made of Prof. Scherrer a true pioneer and leader of the human-centered, patient-oriented application of information technology for improving healthcare.

  13. Library Collaboration with Medical Humanities in an American Medical College in Qatar

    Directory of Open Access Journals (Sweden)

    Sally Birch

    2013-11-01

    Full Text Available The medical humanities, a cross-disciplinary field of practice and research that includes medicine, literature, art, history, philosophy, and sociology, is being increasingly incorporated into medical school curricula internationally. Medical humanities courses in Writing, Literature, Medical Ethics and History can teach physicians-in-training communication skills, doctor-patient relations, and medical ethics, as well as empathy and cross-cultural understanding. In addition to providing educational breadth and variety, the medical humanities can also play a practical role in teaching critical/analytical skills. These skills are utilized in differential diagnosis and problem-based learning, as well as in developing written and oral communications. Communication skills are a required medical competency for passing medical board exams in the U.S., Canada, the UK and elsewhere. The medical library is an integral part of medical humanities training efforts. This contribution provides a case study of the Distributed eLibrary at the Weill Cornell Medical College in Qatar in Doha, and its collaboration with the Writing Program in the Premedical Program to teach and develop the medical humanities. Programs and initiatives of the DeLib library include: developing an information literacy course, course guides for specific courses, the 100 Classic Books Project, collection development of ‘doctors’ stories’ related to the practice of medicine (including medically-oriented movies and TV programs, and workshops to teach the analytical and critical thinking skills that form the basis of humanistic approaches to knowledge. This paper outlines a ‘best practices’ approach to developing the medical humanities in collaboration among the medical library, faculty and administrative stakeholders.

  14. Library collaboration with medical humanities in an american medical college in qatar.

    Science.gov (United States)

    Birch, Sally; Magid, Amani; Weber, Alan

    2013-11-01

    The medical humanities, a cross-disciplinary field of practice and research that includes medicine, literature, art, history, philosophy, and sociology, is being increasingly incorporated into medical school curricula internationally. Medical humanities courses in Writing, Literature, Medical Ethics and History can teach physicians-in-training communication skills, doctor-patient relations, and medical ethics, as well as empathy and cross-cultural understanding. In addition to providing educational breadth and variety, the medical humanities can also play a practical role in teaching critical/analytical skills. These skills are utilized in differential diagnosis and problem-based learning, as well as in developing written and oral communications. Communication skills are a required medical competency for passing medical board exams in the U.S., Canada, the UK and elsewhere. The medical library is an integral part of medical humanities training efforts. This contribution provides a case study of the Distributed eLibrary at the Weill Cornell Medical College in Qatar in Doha, and its collaboration with the Writing Program in the Premedical Program to teach and develop the medical humanities. Programs and initiatives of the DeLib library include: developing an information literacy course, course guides for specific courses, the 100 Classic Books Project, collection development of 'doctors' stories' related to the practice of medicine (including medically-oriented movies and TV programs), and workshops to teach the analytical and critical thinking skills that form the basis of humanistic approaches to knowledge. This paper outlines a 'best practices' approach to developing the medical humanities in collaboration among the medical library, faculty and administrative stakeholders.

  15. The Future Impact of Healthcare Services Digitalization on Health Workforce: The Increasing Role of Medical Informatics.

    Science.gov (United States)

    Lapão, Luís Velez

    2016-01-01

    The digital revolution is gradually transforming our society. What about the effects of digitalization and Internet of Things in healthcare? Among researchers two ideas are dominating, opposing each other. These arguments will be explored and analyzed. A mix-method approach combining literature review with the results from a focus group on eHealth impact on employment is used. Several experts from the WHO and from Health Professional Associations contributed for this analysis. Depending on the type of service it will entail reductions or more need of healthcare workers, yet whatever the scenario medical informatics will play an increasing role.

  16. Enabling Open Science for Health Research: Collaborative Informatics Environment for Learning on Health Outcomes (CIELO).

    Science.gov (United States)

    Payne, Philip; Lele, Omkar; Johnson, Beth; Holve, Erin

    2017-07-31

    There is an emergent and intensive dialogue in the United States with regard to the accessibility, reproducibility, and rigor of health research. This discussion is also closely aligned with the need to identify sustainable ways to expand the national research enterprise and to generate actionable results that can be applied to improve the nation's health. The principles and practices of Open Science offer a promising path to address both goals by facilitating (1) increased transparency of data and methods, which promotes research reproducibility and rigor; and (2) cumulative efficiencies wherein research tools and the output of research are combined to accelerate the delivery of new knowledge in proximal domains, thereby resulting in greater productivity and a reduction in redundant research investments. AcademyHealth's Electronic Data Methods (EDM) Forum implemented a proof-of-concept open science platform for health research called the Collaborative Informatics Environment for Learning on Health Outcomes (CIELO). The EDM Forum conducted a user-centered design process to elucidate important and high-level requirements for creating and sustaining an open science paradigm. By implementing CIELO and engaging a variety of potential users in its public beta testing, the EDM Forum has been able to elucidate a broad range of stakeholder needs and requirements related to the use of an open science platform focused on health research in a variety of "real world" settings. Our initial design and development experience over the course of the CIELO project has provided the basis for a vigorous dialogue between stakeholder community members regarding the capabilities that will add the greatest value to an open science platform for the health research community. A number of important questions around user incentives, sustainability, and scalability will require further community dialogue and agreement. ©Philip Payne, Omkar Lele, Beth Johnson, Erin Holve. Originally published

  17. Understanding the use of geographical information systems (GIS) in health informatics research: A review.

    Science.gov (United States)

    Shaw, Nicola; McGuire, Suzanne

    2017-06-23

    The purpose of this literature review is to understand geographical information systems (GIS) and how they can be applied to public health informatics, medical informatics, and epidemiology. Relevant papers that reflected the use of geographical information systems (GIS) in health research were identified from four academic databases: Academic Search Complete, BioMed Central, PubMed Central, and Scholars Portal, as well as Google Scholar. The search strategy used was to identify articles with "geographic information systems", "GIS", "public health", "medical informatics", "epidemiology", and "health geography" as main subject headings or text words in titles and abstracts. Papers published between 1997 and 2014 were considered and a total of 39 articles were included to inform the authors on the use of GIS technologies in health informatics research. The main applications of GIS in health informatics and epidemiology include disease surveillance, health risk analysis, health access and planning, and community health profiling. GIS technologies can significantly improve quality and efficiency in health research as substantial connections can be made between a population's health and their geographical location. Gains in health informatics can be made when GIS are applied through research, however, improvements need to occur in the quantity and quality of data input for these systems to ensure better geographical health maps are used so that proper conclusions between public health and environmental factors may be made.

  18. ESIP Federation: A Case Study on Enabling Collaboration Infrastructure to Support Earth Science Informatics Communities

    Science.gov (United States)

    Robinson, E.; Meyer, C. B.; Benedict, K. K.

    2013-12-01

    toolbox of collaborative development resources including Amazon Web Services to quickly spin-up the testbed instance and a GitHub account for maintaining testbed project code enabling reuse. Recently, the Foundation supported development of the ESIP Commons (http://commons.esipfed.org), a Drupal-based knowledge repository for non-traditional publications to preserve community products and outcomes like white papers, posters and proceedings. The ESIP Commons adds additional structured metadata, provides attribution to contributors and allows those unfamiliar with ESIP a straightforward way to find information. The success of ESIP Federation activities is difficult to measure. The ESIP Commons is a step toward quantifying sponsor return on investment and is one dataset used in network map analysis of the ESIP community network, another success metric. Over the last 15 years, ESIP has continually grown and attracted experts in the Earth science data and informatics field becoming a primary locus of research and development on the application and evolution of Earth science data standards and conventions. As funding agencies push toward a more collaborative approach, the lessons learned from ESIP and the collaboration services themselves are a crucial component of supporting science research.

  19. Collaborative Affordances of Medical Records

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Houben, Steven

    2017-01-01

    by Sellen and Harper (2003) on the affordances of physical paper. Sellen and Harper describe how the physical properties of paper affords easy reading, navigation, mark-up, and writing, but focuses, we argue, mainly on individual use of paper and digital technology. As an extension to this, Collaborative...... Affordances; being portable across patient wards and the entire hospital, by providing collocated access, by providing a shared overview of medical data, and by giving clinicians ways to maintain mutual awareness. We then discuss how the concept of Collaborative Affordances can be used in the design of new...... technology by providing a design study of a ‘Hybrid Patient Record’ (HyPR), which is designed to seamlessly blend and integrate paper-based with electronic patient records....

  20. The Chief Clinical Informatics Officer (CCIO): AMIA Task Force Report on CCIO Knowledge, Education, and Skillset Requirements.

    Science.gov (United States)

    Kannry, Joseph; Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U

    2016-01-01

    The emerging operational role of the "Chief Clinical Informatics Officer" (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science.

  1. INFORMATIZATION IN EDUCATION

    Directory of Open Access Journals (Sweden)

    А А Меджидова

    2016-12-01

    Full Text Available The article draws attention to the fact that the Informatization of primary education is a uniform process, in which I the first turn mathematics and computer science are associated. Learning these disciplines is in natural interrelation and this comes from the nature of these disciplines. But in other subjects both mathematics and computer science play an applied role. It is proved that at the modern stage of Informatization in education contributes to improving the quality of assimilated knowledge acquired and skills.The article touches upon issues that reveal the relevance of the subject of Informatics in education. In connection with the information development there is a need of Informatization of education and society as a whole. The basic concepts of Informatics as a scientific and academic discipline are shown. Set out the subject, object and objectives of teaching science. Methodical program of the subject, aimed to develop school education is also considered.

  2. Clinical microbiology informatics.

    Science.gov (United States)

    Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron

    2014-10-01

    The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Evolving National Strategy Driving Nursing Informatics in New Zealand.

    Science.gov (United States)

    Honey, Michelle; Westbrooke, Lucy

    2016-01-01

    An update to the New Zealand Health Strategy identifying direction and priorities for health services is underway. Three specific areas have implications for nursing informatics and link to education and practice: best use of technology and information, fostering and spreading innovation and quality improvements, and building leaders and capability for the future. An emphasis on prevention and wellness means nursing needs to focus on health promotion and the role of consumers is changing with access to their on-line information a major focus. As the modes of delivery for services such as telehealth and telenursing changes, nurses are increasingly working independently and utilizing information and communication technologies to collaborate with the health team. New Zealand, and other countries, need strong nursing leadership to sustain the nursing voice in policy and planning and ensure nurses develop the required informatics skills.

  4. Evaluation of a Danish pharmacist student-physician medication review collaboration model

    DEFF Research Database (Denmark)

    Kaae, Susanne; Sørensen, Ellen Westh; Nørgaard, Lotte Stig

    2014-01-01

    Background Interprofessional collaboration between pharmacists and physicians to conduct joint home medication reviews (HMR) is important for optimizing the medical treatment of patients suffering from chronic illnesses. However, collaboration has proved difficult to achieve. The HMR programme...... "Medisam" was launched in 2009 at the University of Copenhagen with the aim of "developing, implementing and evaluating a collaboration model for HMRs and medicine reconciliations in Denmark". The Medisam programme involves patients, pharmacy internship students, the (pharmacist) supervisor of the pharmacy...... students and physicians. Objective To explore if it was possible through the Medisam programme to obtain a fruitful HMR collaboration between pharmacy internship students and physicians as a means to develop HMR collaboration between trained pharmacists and physicians further. Setting Ten matching pairs...

  5. A Health Informatics Curriculum Congruent with IS 2010 and IMIA Recommendations for an Undergraduate Degree

    Science.gov (United States)

    Longenecker, Herbert E., Jr.; Campbell, S. Matt; Landry, Jeffrey P.; Pardue, Harold; Daigle, Roy J.

    2012-01-01

    In addition to being a relevant program for health information technology workers, a recently proposed Health Informatics program was designed with additional objectives in mind: that the program is compatible with the IS 2010 Model Curriculum and that it satisfies the International Medical Informatics Association recommendation for undergraduate…

  6. Health informatics 3.0.

    Science.gov (United States)

    Kalra, Dipak

    2011-01-01

    Web 3.0 promises us smart computer services that will interact with each other and leverage knowledge about us and our immediate context to deliver prioritised and relevant information to support decisions and actions. Healthcare must take advantage of such new knowledge-integrating services, in particular to support better co-operation between professionals of different disciplines working in different locations, and to enable well-informed co-operation between clinicians and patients. To grasp the potential of Web 3.0 we will need well-harmonised semantic resources that can richly connect virtual teams and link their strategies to real-time and tailored evidence. Facts, decision logic, care pathway steps, alerts, education need to be embedded within components that can interact with multiple EHR systems and services consistently. Using Health Informatics 3.0 a patient's current situation could be compared with the outcomes of very similar patients (from across millions) to deliver personalised care recommendations. The integration of EHRs with biomedical sciences ('omics) research results and predictive models such as the Virtual Physiological Human could help speed up the translation of new knowledge into clinical practice. The mission, and challenge, for Health Informatics 3.0 is to enable healthy citizens, patients and professionals to collaborate within a knowledge-empowered social network in which patient specific information and personalised real-time evidence are seamlessly interwoven.

  7. Biomedical informatics and translational medicine

    Directory of Open Access Journals (Sweden)

    Sarkar Indra

    2010-02-01

    Full Text Available Abstract Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians" can be essential members of translational medicine teams.

  8. Collaborative work and medical talk: opportunities for learning through knowledge sharing.

    Science.gov (United States)

    Nilsen, Line Lundvoll; Ludvigsen, Sten R

    2010-01-01

    Teleconsultations provide new opportunities for learning in medical settings. This study explores the conditions under which learning among physicians takes place. The empirical context is 47 real-time video conferences carried out to examine collaborative work and the medical talk involved. Sixteen of the observations were consultations wherein general practitioners (GPs) and specialists shared knowledge with the purpose of solving a medical problem related to a patient under treatment. In this exploratory study, the learning opportunities are seen as what medical practitioners with different types of expertise achieve through interaction while working with patients over periods of time. The analysis of medical talk in consultations shows that collaborative work among GPs and specialists creates a shared understanding of the patient's clinical history and treatment trajectory. As knowledge is demanded and attributed and gaps of knowledge become shared, consultations create a work tool that expands the medical work and talk. Collaborative work in and between different levels of the health care service expands knowledge, creates opportunities for learning in everyday settings, and improves the quality of knowledge distribution in the health care system.

  9. Communication and collaboration technologies.

    Science.gov (United States)

    Cheeseman, Susan E

    2012-01-01

    This is the third in a series of columns exploring health information technology (HIT) in the neonatal intensive care unit (NICU). The first column provided background information on the implementation of information technology throughout the health care delivery system, as well as the requisite informatics competencies needed for nurses to fully engage in the digital era of health care. The second column focused on information and resources to master basic computer competencies described by the TIGER initiative (Technology Informatics Guiding Education Reform) as learning about computers, computer networks, and the transfer of data.1 This column will provide additional information related to basic computer competencies, focusing on communication and collaboration technologies. Computers and the Internet have transformed the way we communicate and collaborate. Electronic communication is the ability to exchange information through the use of computer equipment and software.2 Broadly defined, any technology that facilitates linking one or more individuals together is a collaborative tool. Collaboration using technology encompasses an extensive range of applications that enable groups of individuals to work together including e-mail, instant messaging (IM ), and several web applications collectively referred to as Web 2.0 technologies. The term Web 2.0 refers to web applications where users interact and collaborate with each other in a collective exchange of ideas generating content in a virtual community. Examples of Web 2.0 technologies include social networking sites, blogs, wikis, video sharing sites, and mashups. Many organizations are developing collaborative strategies and tools for employees to connect and interact using web-based social media technologies.3.

  10. Two Decades of HELINA Conferences: A Historical Review of Health Informatics in Africa.

    Science.gov (United States)

    Korpela, M

    2013-01-01

    Review the history of health informatics in Africa as projected by the HELINA conferences, to draw inferences for the next phase. Summarising from the proceedings of HELINA 93, unpublished programmes and reports of later conferences, abstracts and presentations on the web sites of the most recent conferences, and personal recollections of all but one of the conferences. Analysing the e-health situation in Africa in 1993, 2007 and 2011 by mapping software applications presented in the respective conferences on a simplified model of potential spots for e-health use. The following phases were identified: Pre-phase from 1979; individual scientific papers. Phase 1, the 1993-1999 conferences; carried by the momentum of HELINA 93. Phase 2, interregnum; difficulty to find conference organisers. Phase 3, the 2007-2011 conferences; carried by the HELINA association as IMIA Africa Region. Currently most of the important spots for e-health use are being populated by appropriate software applications, mostly by collaborative open source projects. Phase 4 starting, characterised by the expansion of e-health practice on the continent, the HELINA association as a key organiser, and annual HELINA conferences becoming scientifically stronger and more visible. Key issues in making health informatics blossom in Africa include local development capacity, community orientation, collaborative design, international collaboration, government support, champions and organised continent-wide collaboration.

  11. Building a Privacy, Ethics, and Data Access Framework for Real World Computerised Medical Record System Data: A Delphi Study. Contribution of the Primary Health Care Informatics Working Group.

    Science.gov (United States)

    Liyanage, H; Liaw, S-T; Di Iorio, C T; Kuziemsky, C; Schreiber, R; Terry, A L; de Lusignan, S

    2016-11-10

    Privacy, ethics, and data access issues pose significant challenges to the timely delivery of health research. Whilst the fundamental drivers to ensure that data access is ethical and satisfies privacy requirements are similar, they are often dealt with in varying ways by different approval processes. To achieve a consensus across an international panel of health care and informatics professionals on an integrated set of privacy and ethics principles that could accelerate health data access in data-driven health research projects. A three-round consensus development process was used. In round one, we developed a baseline framework for privacy, ethics, and data access based on a review of existing literature in the health, informatics, and policy domains. This was further developed using a two-round Delphi consensus building process involving 20 experts who were members of the International Medical Informatics Association (IMIA) and European Federation of Medical Informatics (EFMI) Primary Health Care Informatics Working Groups. To achieve consensus we required an extended Delphi process. The first round involved feedback on and development of the baseline framework. This consisted of four components: (1) ethical principles, (2) ethical guidance questions, (3) privacy and data access principles, and (4) privacy and data access guidance questions. Round two developed consensus in key areas of the revised framework, allowing the building of a newly, more detailed and descriptive framework. In the final round panel experts expressed their opinions, either as agreements or disagreements, on the ethics and privacy statements of the framework finding some of the previous round disagreements to be surprising in view of established ethical principles. This study develops a framework for an integrated approach to ethics and privacy. Privacy breech risk should not be considered in isolation but instead balanced by potential ethical benefit.

  12. Health Informatics via Machine Learning for the Clinical Management of Patients.

    Science.gov (United States)

    Clifton, D A; Niehaus, K E; Charlton, P; Colopy, G W

    2015-08-13

    To review how health informatics systems based on machine learning methods have impacted the clinical management of patients, by affecting clinical practice. We reviewed literature from 2010-2015 from databases such as Pubmed, IEEE xplore, and INSPEC, in which methods based on machine learning are likely to be reported. We bring together a broad body of literature, aiming to identify those leading examples of health informatics that have advanced the methodology of machine learning. While individual methods may have further examples that might be added, we have chosen some of the most representative, informative exemplars in each case. Our survey highlights that, while much research is taking place in this high-profile field, examples of those that affect the clinical management of patients are seldom found. We show that substantial progress is being made in terms of methodology, often by data scientists working in close collaboration with clinical groups. Health informatics systems based on machine learning are in their infancy and the translation of such systems into clinical management has yet to be performed at scale.

  13. Creating a platform for collaborative genomic research

    Directory of Open Access Journals (Sweden)

    Mark Smithson

    2017-04-01

    The developed genomics informatics platform provides a step-change in this type of genetic research, accelerating reproducible collaborative research across multiple disparate organisations and data sources, of varying type and complexity.

  14. APPLYING OF COLLABORATIVE FILTERING ALGORITHM FOR PROCESSING OF MEDICAL DATA

    Directory of Open Access Journals (Sweden)

    Карина Владимировна МЕЛЬНИК

    2015-05-01

    Full Text Available The problem of improving of effectiveness of medical facility for implementation of social project is considered. There are different approaches to solve this problem, some of which require additional funding, which is usually absent. Therefore, it was proposed to use the approach of processing and application of patients’ data from medical records. The selection of a representative sample of patients was carried out using the technique of collaborative filtering. Review of the methods of collaborative filtering is performed, which showed that there are three main groups of methods. The first group calculates various measures of similarity between the object. The second group is data mining techniques. The third group of methods is a hybrid approach. The Gower coefficient for calculation of similarity measure of medical records of patients is considered in the article. A model of risk assessment of diseases based on collaborative filtering techniques is developed.

  15. International Medical Collaboration: Lessons from Cuba

    Science.gov (United States)

    Castelló González, Mauro; Pons Vásquez, Reinaldo; Rodriguez Bencomo, David; Choonara, Imti

    2016-01-01

    Over 50,000 Cuban health professionals are currently working overseas in 67 different countries. They work in conjunction with local health professionals. The majority work in primary care in deprived areas. The aim is to reduce morbidity and mortality but also improve health in the long term by training local health professionals, and building both institutions and a structure to deliver health care alongside educating the local population. Cuba is a small, middle-income country. It has, however, made a significant international contribution in relation to medical collaboration. Cuba’s international collaboration is based on the principles of social justice and equity for all. It has set an example for other countries to emulate. PMID:27763571

  16. International Medical Collaboration: Lessons from Cuba

    Directory of Open Access Journals (Sweden)

    Mauro Castelló González

    2016-10-01

    Full Text Available Over 50,000 Cuban health professionals are currently working overseas in 67 different countries. They work in conjunction with local health professionals. The majority work in primary care in deprived areas. The aim is to reduce morbidity and mortality but also improve health in the long term by training local health professionals, and building both institutions and a structure to deliver health care alongside educating the local population. Cuba is a small, middle-income country. It has, however, made a significant international contribution in relation to medical collaboration. Cuba’s international collaboration is based on the principles of social justice and equity for all. It has set an example for other countries to emulate.

  17. Big Data: Are Biomedical and Health Informatics Training Programs Ready? Contribution of the IMIA Working Group for Health and Medical Informatics Education.

    Science.gov (United States)

    Otero, P; Hersh, W; Jai Ganesh, A U

    2014-08-15

    The growing volume and diversity of health and biomedical data indicate that the era of Big Data has arrived for healthcare. This has many implications for informatics, not only in terms of implementing and evaluating information systems, but also for the work and training of informatics researchers and professionals. This article addresses the question: What do biomedical and health informaticians working in analytics and Big Data need to know? We hypothesize a set of skills that we hope will be discussed among academic and other informaticians. The set of skills includes: Programming - especially with data-oriented tools, such as SQL and statistical programming languages; Statistics - working knowledge to apply tools and techniques; Domain knowledge - depending on one's area of work, bioscience or health care; and Communication - being able to understand needs of people and organizations, and articulate results back to them. Biomedical and health informatics educational programs must introduce concepts of analytics, Big Data, and the underlying skills to use and apply them into their curricula. The development of new coursework should focus on those who will become experts, with training aiming to provide skills in "deep analytical talent" as well as those who need knowledge to support such individuals.

  18. A repository of codes of ethics and technical standards in health informatics.

    Science.gov (United States)

    Samuel, Hamman W; Zaïane, Osmar R

    2014-01-01

    We present a searchable repository of codes of ethics and standards in health informatics. It is built using state-of-the-art search algorithms and technologies. The repository will be potentially beneficial for public health practitioners, researchers, and software developers in finding and comparing ethics topics of interest. Public health clinics, clinicians, and researchers can use the repository platform as a one-stop reference for various ethics codes and standards. In addition, the repository interface is built for easy navigation, fast search, and side-by-side comparative reading of documents. Our selection criteria for codes and standards are two-fold; firstly, to maintain intellectual property rights, we index only codes and standards freely available on the internet. Secondly, major international, regional, and national health informatics bodies across the globe are surveyed with the aim of understanding the landscape in this domain. We also look at prevalent technical standards in health informatics from major bodies such as the International Standards Organization (ISO) and the U. S. Food and Drug Administration (FDA). Our repository contains codes of ethics from the International Medical Informatics Association (IMIA), the iHealth Coalition (iHC), the American Health Information Management Association (AHIMA), the Australasian College of Health Informatics (ACHI), the British Computer Society (BCS), and the UK Council for Health Informatics Professions (UKCHIP), with room for adding more in the future. Our major contribution is enhancing the findability of codes and standards related to health informatics ethics by compilation and unified access through the health informatics ethics repository.

  19. Introduction to Medical Image Analysis

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Moeslund, Thomas B.

    This book is a result of a collaboration between DTU Informatics at the Technical University of Denmark and the Laboratory of Computer Vision and Media Technology at Aalborg University. It is partly based on the book ”Image and Video Processing”, second edition by Thomas Moeslund. The aim...... of the book is to present the fascinating world of medical image analysis in an easy and interesting way. Compared to many standard books on image analysis, the approach we have chosen is less mathematical and more casual. Some of the key algorithms are exemplified in C-code. Please note that the code...

  20. Building blocks for a clinical imaging informatics environment.

    Science.gov (United States)

    Kohli, Marc D; Warnock, Max; Daly, Mark; Toland, Christopher; Meenan, Chris; Nagy, Paul G

    2014-04-01

    Over the past 20 years, imaging informatics has been driven by the widespread adoption of radiology information and picture archiving and communication and speech recognition systems. These three clinical information systems are commonplace and are intuitive to most radiologists as they replicate familiar paper and film workflow. So what is next? There is a surge of innovation in imaging informatics around advanced workflow, search, electronic medical record aggregation, dashboarding, and analytics tools for quality measures (Nance et al., AJR Am J Roentgenol 200:1064-1070, 2013). The challenge lies in not having to rebuild the technological wheel for each of these new applications but instead attempt to share common components through open standards and modern development techniques. The next generation of applications will be built with moving parts that work together to satisfy advanced use cases without replicating databases and without requiring fragile, intense synchronization from clinical systems. The purpose of this paper is to identify building blocks that can position a practice to be able to quickly innovate when addressing clinical, educational, and research-related problems. This paper is the result of identifying common components in the construction of over two dozen clinical informatics projects developed at the University of Maryland Radiology Informatics Research Laboratory. The systems outlined are intended as a mere foundation rather than an exhaustive list of possible extensions.

  1. Building the foundations of an informatics agenda for global health - 2011 workshop report.

    Science.gov (United States)

    Mirza, Muzna; Kratz, Mary; Medeiros, Donna; Pina, Jamie; Richards, Janise; Zhang, Xiaohui; Fraser, Hamish; Bailey, Christopher; Krishnamurthy, Ramesh

    2012-01-01

    Strengthening the capacity of public health systems to protect and promote the health of the global population continues to be essential in an increasingly connected world. Informatics practices and principles can play an important role for improving global health response capacity. A critical step is to develop an informatics agenda for global health so that efforts can be prioritized and important global health issues addressed. With the aim of building a foundation for this agenda, the authors developed a workshop to examine the evidence in this domain, recognize the gaps, and document evidence-based recommendations. On 21 August 2011, at the 2011 Public Health Informatics Conference in Atlanta, GA, USA, a four-hour interactive workshop was conducted with 85 participants from 15 countries representing governmental organizations, private sector companies, academia, and non-governmental organizations. The workshop discussion followed an agenda of a plenary session - planning and agenda setting - and four tracks: Policy and governance; knowledge management, collaborative networks and global partnerships; capacity building; and globally reusable resources: metrics, tools, processes, templates, and digital assets. Track discussions examined the evidence base and the participants' experience to gather information about the current status, compelling and potential benefits, challenges, barriers, and gaps for global health informatics as well as document opportunities and recommendations. This report provides a summary of the discussions and key recommendations as a first step towards building an informatics agenda for global health. Attention to the identified topics and issues is expected to lead to measurable improvements in health equity, health outcomes, and impacts on population health. We propose the workshop report be used as a foundation for the development of the full agenda and a detailed roadmap for global health informatics activities based on further

  2. Improving Bridging from Informatics Practice to Theory.

    Science.gov (United States)

    Lehmann, C U; Gundlapalli, A V

    2015-01-01

    In 1962, Methods of Information in Medicine ( MIM ) began to publish papers on the methodology and scientific fundamentals of organizing, representing, and analyzing data, information, and knowledge in biomedicine and health care. Considered a companion journal, Applied Clinical Informatics ( ACI ) was launched in 2009 with a mission to establish a platform that allows sharing of knowledge between clinical medicine and health IT specialists as well as to bridge gaps between visionary design and successful and pragmatic deployment of clinical information systems. Both journals are official journals of the International Medical Informatics Association. As a follow-up to prior work, we set out to explore congruencies and interdependencies in publications of ACI and MIM. The objectives were to describe the major topics discussed in articles published in ACI in 2014 and to determine if there was evidence that theory in 2014 MIM publications was informed by practice described in ACI publications in any year. We also set out to describe lessons learned in the context of bridging informatics practice and theory and offer opinions on how ACI editorial policies could evolve to foster and improve such bridging. We conducted a retrospective observational study and reviewed all articles published in ACI during the calendar year 2014 (Volume 5) for their main theme, conclusions, and key words. We then reviewed the citations of all MIM papers from 2014 to determine if there were references to ACI articles from any year. Lessons learned in the context of bridging informatics practice and theory and opinions on ACI editorial policies were developed by consensus among the two authors. A total of 70 articles were published in ACI in 2014. Clinical decision support, clinical documentation, usability, Meaningful Use, health information exchange, patient portals, and clinical research informatics emerged as major themes. Only one MIM article from 2014 cited an ACI article. There

  3. Informatic system for a global tissue-fluid biorepository with a graph theory-oriented graphical user interface

    OpenAIRE

    Butler, William E.; Atai, Nadia; Carter, Bob; Hochberg, Fred

    2014-01-01

    The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies in other fields. The informatic system provides specimen inventory tracking with bar codes assigned to specimens and containers and projects, is hosted on globalized cloud computing resources, and e...

  4. A Distributed and Collaborative Intelligent System for Medical Diagnosis

    Directory of Open Access Journals (Sweden)

    Wided LEJOUAD-CHAARI

    2013-08-01

    Full Text Available In this paper, we present a distributed collaborative system assisting physicians in diagnosis when processing medical images. This is a Web-based solution since the different participants and resources are on various sites. It is collaborative because these participants (physicians, radiologists, knowledgebasesdesigners, program developers for medical image processing, etc. can work collaboratively to enhance the quality of programs and then the quality of the diagnosis results. It is intelligent since it is a knowledge-based system including, but not only, a knowledge base, an inference engine said supervision engine and ontologies. The current work deals with the osteoporosis detection in bone radiographies. We rely on program supervision techniques that aim to automatically plan and control complex software usage. Our main contribution is to allow physicians, who are not experts in computing, to benefit from technological advances made by experts in image processing, and then to efficiently use various osteoporosis detection programs in a distributed environment.

  5. Constructing the informatics and information technology foundations of a medical device evaluation system: a report from the FDA unique device identifier demonstration.

    Science.gov (United States)

    Drozda, Joseph P; Roach, James; Forsyth, Thomas; Helmering, Paul; Dummitt, Benjamin; Tcheng, James E

    2018-02-01

    The US Food and Drug Administration (FDA) has recognized the need to improve the tracking of medical device safety and performance, with implementation of Unique Device Identifiers (UDIs) in electronic health information as a key strategy. The FDA funded a demonstration by Mercy Health wherein prototype UDIs were incorporated into its electronic information systems. This report describes the demonstration's informatics architecture. Prototype UDIs for coronary stents were created and implemented across a series of information systems, resulting in UDI-associated data flow from manufacture through point of use to long-term follow-up, with barcode scanning linking clinical data with UDI-associated device attributes. A reference database containing device attributes and the UDI Research and Surveillance Database (UDIR) containing the linked clinical and device information were created, enabling longitudinal assessment of device performance. The demonstration included many stakeholders: multiple Mercy departments, manufacturers, health system partners, the FDA, professional societies, the National Cardiovascular Data Registry, and information system vendors. The resulting system of systems is described in detail, including entities, functions, linkage between the UDIR and proprietary systems using UDIs as the index key, data flow, roles and responsibilities of actors, and the UDIR data model. The demonstration provided proof of concept that UDIs can be incorporated into provider and enterprise electronic information systems and used as the index key to combine device and clinical data in a database useful for device evaluation. Keys to success and challenges to achieving this goal were identified. Fundamental informatics principles were central to accomplishing the system of systems model. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Informatics for practicing anatomical pathologists: marking a new era in pathology practice.

    Science.gov (United States)

    Gabril, Manal Y; Yousef, George M

    2010-03-01

    Informatics can be defined as using highly advanced technologies to improve patient diagnosis or management. Pathology informatics had evolved as a response to the overwhelming amount of information that was available, in an attempt to better use and maintain them. The most commonly used tools of informatics can be classified into digital imaging, telepathology, as well as Internet and electronic data mining. Digital imaging is the storage of anatomical pathology information, either gross pictures or microscopic slides, in an electronic format. These images can be used for education, archival, diagnosis, and consultation. Virtual microscopy is the more advanced form of digital imaging with enhanced efficiency and accessibility. Telepathology is now increasingly becoming a useful tool in anatomical pathology practice. Different types of telepathology communications are available for both diagnostic and consultation services. The spectrum of applications of informatics in the field of anatomical pathology is broad and encompasses medical education, clinical services, and pathology research. Informatics is now settling on solid ground as an important tool for pathology teaching, with digital teaching becoming the standard tool in many institutions. After a slow start, we now witness the transition of informatics from the research bench to bedside. As we are moving into a new era of extensive pathology informatics utilization, several challenges have to be addressed, including the cost of the new technology, legal issues, and resistance of pathologists. It is clear from the current evidence that pathology informatics will continue to grow and have a major role in the future of our specialty. However, it is also clear that it is not going to fully replace the human factor or the regular microscope.

  7. Research Strategies for Biomedical and Health Informatics

    Science.gov (United States)

    Kulikowski, Casimir A.; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra Neil; Leong, Tze Yun; McCray, Alexa T.

    2017-01-01

    Summary Background Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. Objectives To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Methods Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. Results A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. Conclusions The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes. PMID:28119991

  8. Use of a wiki as an interactive teaching tool in pathology residency education: Experience with a genomics, research, and informatics in pathology course

    Directory of Open Access Journals (Sweden)

    Seung Park

    2012-01-01

    Full Text Available Background: The need for informatics and genomics training in pathology is critical, yet limited resources for such training are available. In this study we sought to critically test the hypothesis that the incorporation of a wiki (a collaborative writing and publication tool with roots in "Web 2.0" in a combined informatics and genomics course could both (1 serve as an interactive, collaborative educational resource and reference and (2 actively engage trainees by requiring the creation and sharing of educational materials. Materials and Methods: A 2-week full-time course at our institution covering genomics, research, and pathology informatics (GRIP was taught by 36 faculty to 18 second- and third-year pathology residents. The course content included didactic lectures and hands-on demonstrations of technology (e.g., whole-slide scanning, telepathology, and statistics software. Attendees were given pre- and posttests. Residents were trained to use wiki technology (MediaWiki and requested to construct a wiki about the GRIP course by writing comprehensive online review articles on assigned lectures. To gauge effectiveness, pretest and posttest scores for our course were compared with scores from the previous 7 years from the predecessor course (limited to informatics given at our institution that did not utilize wikis. Results: Residents constructed 59 peer-reviewed collaborative wiki articles. This group showed a 25% improvement (standard deviation 12% in test scores, which was greater than the 16% delta recorded in the prior 7 years of our predecessor course (P = 0.006. Conclusions: Our use of wiki technology provided a wiki containing high-quality content that will form the basis of future pathology informatics and genomics courses and proved to be an effective teaching tool, as evidenced by the significant rise in our resident posttest scores. Data from this project provide support for the notion that active participation in content creation

  9. NURSING INFORMATICS EDUCATION AND USE: CHALLENGES ...

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    179 .... how organizations can utilize IT to progress their strategic goal from ... Clinical informatics, Veterinary informatics, Dental informatics ... In the late 1990s, the Finnish/Nigerian research ..... International Journal of Nursing &. Midwifery, 5, (5): ...

  10. Collaboration with general practitioners : preferences of medical specialists - a qualitative study

    NARCIS (Netherlands)

    Berendsen, Annette J.; Benneker, Wim H. G. M.; Schuling, Jan; Rijkers-Koorn, Nienke; Slaets, Joris P. J.; Meyboom-de Jong, Betty

    2006-01-01

    Background: Collaboration between general practitioners (GPs) and specialists has been the focus of many collaborative care projects during the past decade. Unfortunately, quite a number of these projects failed. This raises the question of what motivates medical specialists to initiate and continue

  11. APA Summit on Medical Student Education Task Force on Informatics and Technology: learning about computers and applying computer technology to education and practice.

    Science.gov (United States)

    Hilty, Donald M; Hales, Deborah J; Briscoe, Greg; Benjamin, Sheldon; Boland, Robert J; Luo, John S; Chan, Carlyle H; Kennedy, Robert S; Karlinsky, Harry; Gordon, Daniel B; Yager, Joel; Yellowlees, Peter M

    2006-01-01

    This article provides a brief overview of important issues for educators regarding medical education and technology. The literature describes key concepts, prototypical technology tools, and model programs. A work group of psychiatric educators was convened three times by phone conference to discuss the literature. Findings were presented to and input was received from the 2005 Summit on Medical Student Education by APA and the American Directors of Medical Student Education in Psychiatry. Knowledge of, skills in, and attitudes toward medical informatics are important to life-long learning and modern medical practice. A needs assessment is a starting place, since student, faculty, institution, and societal factors bear consideration. Technology needs to "fit" into a curriculum in order to facilitate learning and teaching. Learning about computers and applying computer technology to education and clinical care are key steps in computer literacy for physicians.

  12. RMS: a platform for managing cross-disciplinary and multi-institutional research project collaboration.

    Science.gov (United States)

    Luo, Jake; Apperson-Hansen, Carolyn; Pelfrey, Clara M; Zhang, Guo-Qiang

    2014-11-30

    Cross-institutional cross-disciplinary collaboration has become a trend as researchers move toward building more productive and innovative teams for scientific research. Research collaboration is significantly changing the organizational structure and strategies used in the clinical and translational science domain. However, due to the obstacles of diverse administrative structures, differences in area of expertise, and communication barriers, establishing and managing a cross-institutional research project is still a challenging task. We address these challenges by creating an integrated informatics platform to reduce the barriers to biomedical research collaboration. The Request Management System (RMS) is an informatics infrastructure designed to transform a patchwork of expertise and resources into an integrated support network. The RMS facilitates investigators' initiation of new collaborative projects and supports the management of the collaboration process. In RMS, experts and their knowledge areas are categorized and managed structurally to provide consistent service. A role-based collaborative workflow is tightly integrated with domain experts and services to streamline and monitor the life-cycle of a research project. The RMS has so far tracked over 1,500 investigators with over 4,800 tasks. The research network based on the data collected in RMS illustrated that the investigators' collaborative projects increased close to 3 times from 2009 to 2012. Our experience with RMS indicates that the platform reduces barriers for cross-institutional collaboration of biomedical research projects. Building a new generation of infrastructure to enhance cross-disciplinary and multi-institutional collaboration has become an important yet challenging task. In this paper, we share the experience of developing and utilizing a collaborative project management system. The results of this study demonstrate that a web-based integrated informatics platform can facilitate and

  13. A cloud collaborative medical image platform oriented by social network

    Science.gov (United States)

    Muniz, Frederico B.; Araújo, Luciano V.; Nunes, Fátima L. S.

    2017-03-01

    Computer-aided diagnosis systems using medical images and three-dimensional models as input data have greatly expanded and developed, but in terms of building suitable image databases to assess them, the challenge remains. Although there are some image databases available for this purpose, they are generally limited to certain types of exams or contain a limited number of medical cases. The objective of this work is to present the concepts and the development of a collaborative platform for sharing medical images and three-dimensional models, providing a resource to share and increase the number of images available for researchers. The collaborative cloud platform, called CATALYZER, aims to increase the availability and sharing of graphic objects, including 3D images, and their reports that are essential for research related to medical images. A survey conducted with researchers and health professionals indicated that this could be an innovative approach in the creation of medical image databases, providing a wider variety of cases together with a considerable amount of shared information among its users.

  14. The Effectiveness of Hands-on Health Informatics Skills Exercises in the Multidisciplinary Smart Home Healthcare and Health Informatics Training Laboratories.

    Science.gov (United States)

    Sapci, A H; Sapci, H A

    2017-10-01

    This article aimed to evaluate the effectiveness of newly established innovative smart home healthcare and health informatics laboratories, and a novel laboratory course that focuses on experiential health informatics training, and determine students' self-confidence to operate wireless home health monitoring devices before and after the hands-on laboratory course. Two web-based pretraining and posttraining questionnaires were sent to 64 students who received hands-on training with wireless remote patient monitoring devices in smart home healthcare and health informatics laboratories. All 64 students completed the pretraining survey (100% response rate), and 49 students completed the posttraining survey (76% response rate). The quantitative data analysis showed that 95% of students had an interest in taking more hands-on laboratory courses. Sixty-seven percent of students had no prior experience with medical image, physiological data acquisition, storage, and transmission protocols. After the hands-on training session, 75.51% of students expressed improved confidence about training patients to measure blood pressure monitor using wireless devices. Ninety percent of students preferred to use a similar experiential approach in their future learning experience. Additionally, the qualitative data analysis demonstrated that students were expecting to have more courses with hands-on exercises and integration of technology-enabled delivery and patient monitoring concepts into the curriculum. This study demonstrated that the multidisciplinary smart home healthcare and health informatics training laboratories and the hands-on exercises improved students' technology adoption rates and their self-confidence in using wireless patient monitoring devices. Schattauer GmbH Stuttgart.

  15. A novel approach to collaborative product development in the medical-equipment industry

    OpenAIRE

    Tseng, Kevin C; Chien-Lung, Hsu

    2013-01-01

    In this study, we summarise the requirements for collaborative product development based on our investigation of the differences in the resources and tools that are needed for the various stages of collaborative product development and the needs of system users during these various stages. We proposed a user-oriented approach of collaborative product development for medical equipment and designed a collaborative product development system with the required functionalities to satisfy different...

  16. Ethical and Legal Considerations of Healthcare Informatics

    Directory of Open Access Journals (Sweden)

    Maria ALUAŞ

    2016-12-01

    Full Text Available Internet, cloud computing, social networks and mobile technology, all facilitate information transfer. Healthcare professionals, physicians and patients can use informatic devices in order to simplify their access to medical information, to streamline testing, and to understand clinical results. The use of computers and software facilitate doctor-patient interactions by optimizing communication and information flow. However, digital interfaces also increase the risks that information specialists use information without fully complying with ethical principles and laws in force. Our premise is that these information specialists should: 1 be informed of the rights, duties, and responsibilities linked to their profession and laws in force; 2 have guidelines and ethical tutoring on what they need to do in order to avoid or prevent conflict or misconduct; 3 have renewed specific training on how to interpret and translate legal frameworks into internal rules and standards of good practice. The purpose of this paper was: 1 to familiarize professionals who work in healthcare informatics with the ethical and legal issues related to their work; 2 to provide information about codes of ethics and legal regulations concerning this specific area; 3 to summarize some risks linked to wrong or inadequate use of patient information, such as medical, genetic, or personal data.

  17. The next generation Internet and health care: a civics lesson for the informatics community.

    Science.gov (United States)

    Shortliffe, E H

    1998-01-01

    The Internet provides one of the most compelling examples of the way in which government research investments can, in time, lead to innovations of broad social and economic impact. This paper reviews the history of the Internet's evolution, emphasizing in particular its relationship to medical informatics and to the nation's health-care system. Current national research programs are summarized and the need for more involvement by the informatics community and by federal health-care agencies is emphasized.

  18. Do medical students watch video clips in eLearning and do these facilitate learning?

    Science.gov (United States)

    Romanov, Kalle; Nevgi, Anne

    2007-06-01

    There is controversial evidence of the impact of individual learning style on students' performance in computer-aided learning. We assessed the association between the use of multimedia materials, such as video clips, and collaborative communication tools with learning outcome among medical students. One hundred and twenty-one third-year medical students attended a course in medical informatics (0.7 credits) consisting of lectures, small group sessions and eLearning material. The eLearning material contained six learning modules with integrated video clips and collaborative learning tools in WebCT. Learning outcome was measured with a course exam. Approximately two-thirds of students (68.6%) viewed two or more videos. Female students were significantly more active video-watchers. No significant associations were found between video-watching and self-test scores or the time used in eLearning. Video-watchers were more active in WebCT; they loaded more pages and more actively participated in discussion forums. Video-watching was associated with a better course grade. Students who watched video clips were more active in using collaborative eLearning tools and achieved higher course grades.

  19. Current Status of Nursing Informatics Education in Korea.

    Science.gov (United States)

    Jeon, Eunjoo; Kim, Jeongeun; Park, Hyeoun-Ae; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-04-01

    This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses.

  20. The New Role of Biomedical Informatics in the Age of Digital Medicine.

    Science.gov (United States)

    Martin-Sanchez, Fernando J; Lopez-Campos, Guillermo H

    2016-10-17

    To reflect on the recent rise of Digital Medicine, as well as to analyse main research opportunities in this area. Through the use of several examples, this article aims to highlight the new role that Biomedical Informatics (BMI) can play to facilitate progress in research fields such as participatory and precision medicine. This paper also examines the potential impact and associated risks for BMI due to the development of digital medicine and other recent trends. Lastly, possible strategies to place BMI in a better position to face these challenges are suggested. The core content of this article is based on a recent invited keynote lecture delivered by one of the authors (Martin-Sanchez) at the Medical Informatics Europe conference (MIE 2015) held in Madrid in May 2015. Both authors (Lopez-Campos and Martin-Sanchez) have collaborated during the last four years in projects such as the ones described in section 3 and have also worked in reviewing relevant articles and initiatives to prepare this talk. Challenges for BMI posed by the rise of technologically driven fields such as Digital Medicine are explored. New opportunities for BMI, in the context of two main avenues for biomedical and clinical research (participatory and precision medicine) are also emphasised. Several examples of current research illustrate that BMI plays a key role in the new area of Digital Medicine. Embracing these opportunities will allow academic groups in BMI to maintain their leadership, identify new research funding opportunities and design new educational programs to train the next generation of BMI scientists.

  1. Engaging clinicians in health informatics projects.

    Science.gov (United States)

    Caballero Muñoz, Erika; Hullin Lucay Cossio, Carola M

    2010-01-01

    This chapter gives an educational overview of: * The importance of the engagement of clinicians within a health informatics project * Strategies required for an effective involvement of clinicians throughout a change management process within a clinical context for the implementation of a health informatics project * The critical aspects for a successful implementation of a health informatics project that involves clinicians as end users * Key factors during the administration of changes during the implementation of an informatics project for an information system in clinical practice.

  2. ASHP statement on the pharmacy technician's role in pharmacy informatics.

    Science.gov (United States)

    2014-02-01

    The American Society of Health- System Pharmacists (ASHP) believes that specially trained pharmacy technicians can assume important supportive roles in pharmacy informatics. These roles include automation and technology systems management, management of projects, training and education, policy and governance, customer service, charge integrity, and reporting. Such roles require pharmacy technicians to gain expertise in information technology (IT) systems, including knowledge of interfaces, computer management techniques, problem resolution, and database maintenance. This knowledge could be acquired through specialized training or experience in a health science or allied scientific field (e.g., health informatics). With appropriate safeguards and supervision, pharmacy technician informaticists (PTIs) will manage IT processes in health-system pharmacy services, ensuring a safe and efficient medication-use process.

  3. Evaluation of a collaborative project to develop sustainable healthcare education in eight UK medical schools.

    Science.gov (United States)

    Walpole, S C; Mortimer, F

    2017-09-01

    Environmental change poses pressing challenges to public health and calls for profound and far-reaching changes to policy and practice across communities and health systems. Medical schools can act as a seedbed where knowledge, skills and innovation to address environmental challenges can be developed through innovative and collaborative approaches. The objectives of this study were to (1) explore drivers and challenges of collaboration for educational development between and within medical schools; (2) evaluate the effectiveness of a range of pedagogies for sustainable healthcare education; and (3) identify effective strategies to facilitate the renewal of medical curricula to address evolving health challenges. Participatory action research. Medical school teams participated in a nine-month collaborative project, including a one-day seminar to learn about sustainable healthcare education and develop a project plan. After the seminar, teams were supported to develop, deliver and evaluate new teaching at their medical school. New teaching was introduced at seven medical schools. A variety of pedagogies were represented. Collaboration between schools motivated and informed participants. The main challenges faced related to time pressures. Educators and students commented that new teaching was enjoyable and effective at improving knowledge and skills. Collaborative working supported educators to develop and implement new teaching sessions rapidly and effectively. Collaboration can help to build educators' confidence and capacity in a new area of education development. Different forms of collaboration may be appropriate for different circumstances and at different stages of education development. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  4. Clinical Research Informatics: Supporting the Research Study Lifecycle.

    Science.gov (United States)

    Johnson, S B

    2017-08-01

    Objectives: The primary goal of this review is to summarize significant developments in the field of Clinical Research Informatics (CRI) over the years 2015-2016. The secondary goal is to contribute to a deeper understanding of CRI as a field, through the development of a strategy for searching and classifying CRI publications. Methods: A search strategy was developed to query the PubMed database, using medical subject headings to both select and exclude articles, and filtering publications by date and other characteristics. A manual review classified publications using stages in the "research study lifecycle", with key stages that include study definition, participant enrollment, data management, data analysis, and results dissemination. Results: The search strategy generated 510 publications. The manual classification identified 125 publications as relevant to CRI, which were classified into seven different stages of the research lifecycle, and one additional class that pertained to multiple stages, referring to general infrastructure or standards. Important cross-cutting themes included new applications of electronic media (Internet, social media, mobile devices), standardization of data and procedures, and increased automation through the use of data mining and big data methods. Conclusions: The review revealed increased interest and support for CRI in large-scale projects across institutions, regionally, nationally, and internationally. A search strategy based on medical subject headings can find many relevant papers, but a large number of non-relevant papers need to be detected using text words which pertain to closely related fields such as computational statistics and clinical informatics. The research lifecycle was useful as a classification scheme by highlighting the relevance to the users of clinical research informatics solutions. Georg Thieme Verlag KG Stuttgart.

  5. Advancing medical education: connecting interprofessional collaboration and education opportunities with integrative medicine initiatives to build shared learning.

    Science.gov (United States)

    Templeman, Kate; Robinson, Anske; McKenna, Lisa

    2016-12-01

    BackgroundImproved teamwork between conventional and complementary medicine (CM) practitioners is indicated to achieve effective healthcare. However, little is known about interprofessional collaboration and education in the context of integrative medicine (IM). MethodsThis paper reports the findings from a constructivist-grounded theory method study that explored and highlighted Australian medical students' experiences and opportunities for linking interprofessional collaboration and learning in the context of IM. Following ethical approval, in-depth semi-structured interviews were conducted with 30 medical students from 10 medical education faculties across Australian universities. Results Medical students recognised the importance of interprofessional teamwork between general medical practitioners and CM professionals in patient care and described perspectives of shared responsibilities, profession-specific responsibilities, and collaborative approaches within IM. While students identified that limited interprofessional collaboration currently occurred in the medical curriculum, interprofessional education was considered a means of increasing communication and collaboration between healthcare professionals, helping coordinate effective patient care, and understanding each healthcare team members' professional role and value. Conclusions The findings suggest that medical curricula should include opportunities for medical students to develop required skills, behaviours, and attitudes for interprofessional collaboration and interprofessional education within the context of IM. While this is a qualitative study that reflects theoretical saturation from a selected cohort of medical students, the results also point to the importance of including CM professionals within interprofessional collaboration, thus contributing to more person-centred care.

  6. Current Status of Nursing Informatics Education in Korea

    Science.gov (United States)

    Jeon, Eunjoo; Kim, Jeongeun; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-01-01

    Objectives This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. Methods A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. Results A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Conclusions Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses. PMID:27200224

  7. Psychometrics of the scale of attitudes toward physician-pharmacist collaboration: a study with medical students.

    Science.gov (United States)

    Hojat, Mohammadreza; Spandorfer, John; Isenberg, Gerald A; Vergare, Michael J; Fassihi, Reza; Gonnella, Joseph S

    2012-01-01

    Despite the emphasis placed on interdisciplinary education and interprofessional collaboration between physicians and pharmacologists, no psychometrically sound instrument is available to measure attitudes toward collaborative relationships. This study was designed to examine psychometrics of an instrument for measuring attitudes toward physician-pharmacist collaborative relationships for administration to students in medical and pharmacy schools and to physicians and pharmacists. The Scale of Attitudes Toward Physician-Pharmacist Collaboration was completed by 210 students at Jefferson Medical College. Factor analysis and correlational methods were used to examine psychometrics of the instrument. Consistent with the conceptual framework of interprofessional collaboration, three underlying constructs, namely "responsibility and accountability;" "shared authority;" and "interdisciplinary education" emerged from the factor analysis of the instrument providing support for its construct validity. The reliability coefficient alpha for the instrument was 0.90. The instrument's criterion-related validity coefficient with scores of a validated instrument (Jefferson Scale of Attitudes Toward Physician-Nurse Collaboration) was 0.70. Findings provide support for the validity and reliability of the instrument for medical students. The instrument has the potential to be used for the evaluation of interdisciplinary education in medical and pharmacy schools, and for the evaluation of patient outcomes resulting from collaborative physician-pharmacist relationships.

  8. Enhancing the Motivation for Rural Career: The Collaboration between the Local Government and Medical School.

    Science.gov (United States)

    Seguchi, Masaru; Furuta, Noriko; Kobayashi, Seiji; Kato, Kazuhiro; Sasaki, Kouji; Hori, Hiroki; Okuno, Masataka

    2015-07-01

    The shortage of medical workforce in rural areas is a global long-standing problem. Due to the severity of shortages in the medical workforce, Mie prefectural government has collaborated with a medical school and the municipal governments to increase the rural medical workforce. Since 2010, this collaboration has led to an annual lecture series on rural practice for medical students. We distributed questionnaires at the beginning and end of the lecture series to examine the effect of this program. The questionnaire consisted of two parts that included an understanding of rural practice and the motivation to work in rural areas. The lecture series significantly improved the responses to the following questions "Rural practice is interesting" (p motivation of medical students and their interest in a rural career. While collaboration between the local government and medical school rarely occurs in planning medical education programs, this approach may offer a promising way to foster local health professionals.

  9. Consumer Health Informatics in the Context of Engaged Citizens and eHealth Services - A New CHI Meta Model.

    Science.gov (United States)

    Wiesner, Martin; Griebel, Lena; Becker, Kurt; Pobiruchin, Monika

    2016-01-01

    Consumer Health Informatics (CHI) is a relatively new and interdisciplinary field in Medical Informatics. It focuses on consumer- rather than professional-centered services. However, the definitions and understanding of a) what is a "consumer"? or b) what is health technology in the context of CHI? and c) what factors and actors influence the usage of eHealth services? vary widely. The CHI special interest group (SIG) - associated with the German Association for Medical Informatics, Biometry and Epidemiology - conducted two workshops in 2015 to improve the common understanding on these topics. The workshop outcomes, the derived CHI-specific meta model and examples how to apply this model are presented in this paper. The model supports the definition of multi-actor contexts, as it not solely reflects the conventional patient-physician relationship but also allows for the description of second health market providers.

  10. Stereoscopic medical imaging collaboration system

    Science.gov (United States)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  11. Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation

    Science.gov (United States)

    Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.

    2017-09-01

    Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  12. COLLABORATIVE MULTI-SCALE 3D CITY AND INFRASTRUCTURE MODELING AND SIMULATION

    Directory of Open Access Journals (Sweden)

    M. Breunig

    2017-09-01

    Full Text Available Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  13. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  14. 75 FR 64731 - Request for Information (RFI) for Consumer Health Initiative To Develop Collaborations That...

    Science.gov (United States)

    2010-10-20

    ... Initiative To Develop Collaborations That Produce Evidence-Based Informatics Resources and Products\\1\\ \\1... health. The overarching goal is to promote transparency, stimulate original development and partnerships..., Collaboration, & Quality was convened. This federally sponsored summit aimed to: (1) Convene leaders across...

  15. A novel collaborative e-learning platform for medical students - ALERT STUDENT.

    Science.gov (United States)

    Taveira-Gomes, Tiago; Saffarzadeh, Areo; Severo, Milton; Guimarães, M Jorge; Ferreira, Maria Amélia

    2014-07-14

    The increasing complexity of medical curricula would benefit from adaptive computer supported collaborative learning systems that support study management using instructional design and learning object principles. However, to our knowledge, there are scarce reports regarding applications developed to meet this goal and encompass the complete medical curriculum. The aim of ths study was to develop and assess the usability of an adaptive computer supported collaborative learning system for medical students to manage study sessions. A study platform named ALERT STUDENT was built as a free web application. Content chunks are represented as Flashcards that hold knowledge and open ended questions. These can be created in a collaborative fashion. Multiple Flashcards can be combined into custom stacks called Notebooks that can be accessed in study Groups that belong to the user institution. The system provides a Study Mode that features text markers, text notes, timers and color-coded content prioritization based on self-assessment of open ended questions presented in a Quiz Mode. Time spent studying and Perception of knowledge are displayed for each student and peers using charts. Computer supported collaborative learning is achieved by allowing for simultaneous creation of Notebooks and self-assessment questions by many users in a pre-defined Group. Past personal performance data is retrieved when studying new Notebooks containing previously studied Flashcards. Self-report surveys showed that students highly agreed that the system was useful and were willing to use it as a reference tool. The platform employs various instructional design and learning object principles in a computer supported collaborative learning platform for medical students that allows for study management. The application broadens student insight over learning results and supports informed decisions based on past learning performance. It serves as a potential educational model for the medical

  16. Validation of the Impact of Health Information Technology (I-HIT) Scale: an international collaborative.

    Science.gov (United States)

    Dykes, Patricia C; Hurley, Ann C; Brown, Suzanne; Carr, Robyn; Cashen, Margaret; Collins, Rita; Cook, Robyn; Currie, Leanne; Docherty, Charles; Ensio, Anneli; Foster, Joanne; Hardiker, Nicholas R; Honey, Michelle L L; Killalea, Rosaleen; Murphy, Judy; Saranto, Kaija; Sensmeier, Joyce; Weaver, Charlotte

    2009-01-01

    In 2005, the Healthcare Information Management Systems Society (HIMSS) Nursing Informatics Community developed a survey to measure the impact of health information technology (HIT), the I-HIT Scale, on the role of nurses and interdisciplinary communication in hospital settings. In 2007, nursing informatics colleagues from Australia, England, Finland, Ireland, New Zealand, Scotland and the United States formed a research collaborative to validate the I-HIT across countries. All teams have completed construct and face validation in their countries. Five out of six teams have initiated reliability testing by practicing nurses. This paper reports the international collaborative's validation of the I-HIT Scale completed to date.

  17. Gaps in the existing public health informatics training programs: a challenge to the development of a skilled global workforce.

    Science.gov (United States)

    Joshi, Ashish; Perin, Douglas Marcel Puricelli

    2012-01-01

    The objective of this study was to explore public health informatics (PHI) training programs that currently exist to meet the growing demand for a trained global workforce. We used several search engines, scientific databases, and the websites of informatics organizations; sources included PubMed, Google, the American Medical Informatics Organization, and the International Medical Informatics Organization. The search was conducted from May to July 2011 and from January to February 2012 using key words such as informatics, public health informatics, or biomedical informatics along with academic programs, training, certificate, graduate programs, or postgraduate programs. Course titles and catalog descriptions were gathered from the program or institution websites. Variables included PHI program categories, location and mode of delivery, program credits, and costs. Each course was then categorized based on its title and description as available on the Internet. Finally, we matched course titles and descriptions with the competencies for PHIs determined by Centers for Disease Control and Prevention (CDC). Descriptive analysis was performed to report means and frequency distributions for continuous and categorical variables. Stratified analysis was performed to explore average credits and cost per credit among both the public and private institutions. Fifteen PHI programs were identified across 13 different institutions, the majority of which were US-based. The average number of credits and the associated costs required to obtain PHI training were much higher in private as compared to public institutions. The study results suggest that a need for online contextual and cost-effective PHI training programs exists to address the growing needs of professionals worldwide who are using technology to improve public health in their respective countries.

  18. Public Policy and Health Informatics.

    Science.gov (United States)

    Bell, Katherine

    2018-04-05

    To provide an overview of the history of electronic health policy and identify significant laws that influence health informatics. US Department of Health and Human Services. The development of health information technology has influenced the process for delivering health care. Public policy and regulations are an important part of health informatics and establish the structure of electronic health systems. Regulatory bodies of the government initiate policies to ease the execution of electronic health record implementation. These same bureaucratic entities regulate the system to protect the rights of the patients and providers. Nurses should have an overall understanding of the system behind health informatics and be able to advocate for change. Nurses can utilize this information to optimize the use of health informatics and campaign for safe, effective, and efficient health information technology. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. An Assessment of Imaging Informatics for Precision Medicine in Cancer.

    Science.gov (United States)

    Chennubhotla, C; Clarke, L P; Fedorov, A; Foran, D; Harris, G; Helton, E; Nordstrom, R; Prior, F; Rubin, D; Saltz, J H; Shalley, E; Sharma, A

    2017-08-01

    Objectives: Precision medicine requires the measurement, quantification, and cataloging of medical characteristics to identify the most effective medical intervention. However, the amount of available data exceeds our current capacity to extract meaningful information. We examine the informatics needs to achieve precision medicine from the perspective of quantitative imaging and oncology. Methods: The National Cancer Institute (NCI) organized several workshops on the topic of medical imaging and precision medicine. The observations and recommendations are summarized herein. Results: Recommendations include: use of standards in data collection and clinical correlates to promote interoperability; data sharing and validation of imaging tools; clinician's feedback in all phases of research and development; use of open-source architecture to encourage reproducibility and reusability; use of challenges which simulate real-world situations to incentivize innovation; partnership with industry to facilitate commercialization; and education in academic communities regarding the challenges involved with translation of technology from the research domain to clinical utility and the benefits of doing so. Conclusions: This article provides a survey of the role and priorities for imaging informatics to help advance quantitative imaging in the era of precision medicine. While these recommendations were drawn from oncology, they are relevant and applicable to other clinical domains where imaging aids precision medicine. Georg Thieme Verlag KG Stuttgart.

  20. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2015-06-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Collaboration with general practitioners: preferences of medical specialists – a qualitative study

    Directory of Open Access Journals (Sweden)

    Slaets Joris PJ

    2006-12-01

    Full Text Available Abstract Background Collaboration between general practitioners (GPs and specialists has been the focus of many collaborative care projects during the past decade. Unfortunately, quite a number of these projects failed. This raises the question of what motivates medical specialists to initiate and continue participating with GPs in new collaborative care models. The following question is addressed in this study: What motivates medical specialists to initiate and sustain new models for collaborating with GPs? Methods We conducted semi-structured interviews with eighteen medical specialists in the province of Groningen, in the North of The Netherlands. The sampling criteria were age, gender, type of hospital in which they were practicing, and specialty. The interviews were recorded, fully transcribed, and analysed by three researchers working independently. The resulting motivational factors were grouped into categories. Results 'Teaching GPs' and 'regulating patient flow' (referrals appeared to dominate when the motivational factors were considered. In addition, specialists want to develop relationships with the GPs on a more personal level. Most specialists believe that there is not much they can learn from GPs. 'Lack of time', 'no financial compensation', and 'no support from colleagues' were considered to be the main concerns to establishing collaborative care practices. Additionally, projects were often experienced as too complex and time consuming whereas guidelines were experienced as too restrictive. Conclusion Specialists are particularly interested in collaborating because the GP is the gatekeeper for access to secondary health care resources. Specialists feel that they are able to teach the GPs something, but they do not feel that they have anything to learn from the GPs. With respect to professional expertise, therefore, specialists do not consider GPs as equals. Once personal relationships with the GPs have been established, an

  2. Towards a measurement of internalization of collaboration scripts in the medical context - results of a pilot study.

    Science.gov (United States)

    Kiesewetter, Jan; Gluza, Martin; Holzer, Matthias; Saravo, Barbara; Hammitzsch, Laura; Fischer, Martin R

    2015-01-01

    Collaboration as a key qualification in medical education and everyday routine in clinical care can substantially contribute to improving patient safety. Internal collaboration scripts are conceptualized as organized - yet adaptive - knowledge that can be used in specific situations in professional everyday life. This study examines the level of internalization of collaboration scripts in medicine. Internalization is understood as fast retrieval of script information. The goals of the current study were the assessment of collaborative information, which is part of collaboration scripts, and the development of a methodology for measuring the level of internalization of collaboration scripts in medicine. For the contrastive comparison of internal collaboration scripts, 20 collaborative novices (medical students in their final year) and 20 collaborative experts (physicians with specialist degrees in internal medicine or anesthesiology) were included in the study. Eight typical medical collaborative situations as shown on a photo or video were presented to the participants for five seconds each. Afterwards, the participants were asked to describe what they saw on the photo or video. Based on the answers, the amount of information belonging to a collaboration script (script-information) was determined and the time each participant needed for answering was measured. In order to measure the level of internalization, script-information per recall time was calculated. As expected, collaborative experts stated significantly more script-information than collaborative novices. As well, collaborative experts showed a significantly higher level of internalization. Based on the findings of this research, we conclude that our instrument can discriminate between collaboration novices and experts. It therefore can be used to analyze measures to foster subject-specific competency in medical education.

  3. The Development of a Mobile Application in a Collaborative Banking System

    Directory of Open Access Journals (Sweden)

    Cristian CIUREA

    2010-01-01

    Full Text Available This paper presents a taxonomy of mobile applications with accent on collaborative mobile applications. The development of mobile applications is described in comparison with the other types of informatics applications. Collaborative banking systems are presented in order to create the context in which the Collaborative Multicash Servicedesk (CMS application will be integrated. The mobile applications are analyzed as auto-adaptive applications in order to reveal their advantages. Some metrics are built for evaluating the security and quality of Collaborative Multicash Servicedesk application.

  4. From bed to bench: bridging from informatics practice to theory: an exploratory analysis.

    Science.gov (United States)

    Haux, R; Lehmann, C U

    2014-01-01

    In 2009, Applied Clinical Informatics (ACI)--focused on applications in clinical informatics--was launched as a companion journal to Methods of Information in Medicine (MIM). Both journals are official journals of the International Medical Informatics Association. To explore which congruencies and interdependencies exist in publications from theory to practice and from practice to theory and to determine existing gaps. Major topics discussed in ACI and MIM were analyzed. We explored if the intention of publishing companion journals to provide an information bridge from informatics theory to informatics practice and vice versa could be supported by this model. In this manuscript we will report on congruencies and interdependences from practice to theory and on major topics in MIM. Retrospective, prolective observational study on recent publications of ACI and MIM. All publications of the years 2012 and 2013 were indexed and analyzed. Hundred and ninety-six publications were analyzed (ACI 87, MIM 109). In MIM publications, modelling aspects as well as methodological and evaluation approaches for the analysis of data, information, and knowledge in biomedicine and health care were frequently raised - and often discussed from an interdisciplinary point of view. Important themes were ambient-assisted living, anatomic spatial relations, biomedical informatics as scientific discipline, boosting, coding, computerized physician order entry, data analysis, grid and cloud computing, health care systems and services, health-enabling technologies, health information search, health information systems, imaging, knowledge-based decision support, patient records, signal analysis, and web science. Congruencies between journals could be found in themes, but with a different focus on content. Interdependencies from practice to theory, found in these publications, were only limited. Bridging from informatics theory to practice and vice versa remains a major component of successful

  5. Image-based electronic patient records for secured collaborative medical applications.

    Science.gov (United States)

    Zhang, Jianguo; Sun, Jianyong; Yang, Yuanyuan; Liang, Chenwen; Yao, Yihong; Cai, Weihua; Jin, Jin; Zhang, Guozhen; Sun, Kun

    2005-01-01

    We developed a Web-based system to interactively display image-based electronic patient records (EPR) for secured intranet and Internet collaborative medical applications. The system consists of four major components: EPR DICOM gateway (EPR-GW), Image-based EPR repository server (EPR-Server), Web Server and EPR DICOM viewer (EPR-Viewer). In the EPR-GW and EPR-Viewer, the security modules of Digital Signature and Authentication are integrated to perform the security processing on the EPR data with integrity and authenticity. The privacy of EPR in data communication and exchanging is provided by SSL/TLS-based secure communication. This presentation gave a new approach to create and manage image-based EPR from actual patient records, and also presented a way to use Web technology and DICOM standard to build an open architecture for collaborative medical applications.

  6. The ongoing evolution of the core curriculum of a clinical fellowship in pathology informatics

    Directory of Open Access Journals (Sweden)

    Andrew M Quinn

    2014-01-01

    Full Text Available The Partners HealthCare system′s Clinical Fellowship in Pathology Informatics (Boston, MA, USA faces ongoing challenges to the delivery of its core curriculum in the forms of: (1 New classes of fellows annually with new and varying educational needs and increasingly fractured, enterprise-wide commitments; (2 taxing electronic health record (EHR and laboratory information system (LIS implementations; and (3 increasing interest in the subspecialty at the academic medical centers (AMCs in what is a large health care network. In response to these challenges, the fellowship has modified its existing didactic sessions and piloted both a network-wide pathology informatics lecture series and regular "learning laboratories". Didactic sessions, which had previously included more formal discussions of the four divisions of the core curriculum: Information fundamentals, information systems, workflow and process, and governance and management, now focus on group discussions concerning the fellows′ ongoing projects, updates on the enterprise-wide EHR and LIS implementations, and directed questions about weekly readings. Lectures are given by the informatics faculty, guest informatics faculty, current and former fellows, and information systems members in the network, and are open to all professional members of the pathology departments at the AMCs. Learning laboratories consist of small-group exercises geared toward a variety of learning styles, and are driven by both the fellows and a member of the informatics faculty. The learning laboratories have created a forum for discussing real-time and real-world pathology informatics matters, and for incorporating awareness of and timely discussions about the latest pathology informatics literature. These changes have diversified the delivery of the fellowship′s core curriculum, increased exposure of faculty, fellows and trainees to one another, and more equitably distributed teaching responsibilities among

  7. The ongoing evolution of the core curriculum of a clinical fellowship in pathology informatics.

    Science.gov (United States)

    Quinn, Andrew M; Klepeis, Veronica E; Mandelker, Diana L; Platt, Mia Y; Rao, Luigi K F; Riedlinger, Gregory; Baron, Jason M; Brodsky, Victor; Kim, Ji Yeon; Lane, William; Lee, Roy E; Levy, Bruce P; McClintock, David S; Beckwith, Bruce A; Kuo, Frank C; Gilbertson, John R

    2014-01-01

    The Partners HealthCare system's Clinical Fellowship in Pathology Informatics (Boston, MA, USA) faces ongoing challenges to the delivery of its core curriculum in the forms of: (1) New classes of fellows annually with new and varying educational needs and increasingly fractured, enterprise-wide commitments; (2) taxing electronic health record (EHR) and laboratory information system (LIS) implementations; and (3) increasing interest in the subspecialty at the academic medical centers (AMCs) in what is a large health care network. In response to these challenges, the fellowship has modified its existing didactic sessions and piloted both a network-wide pathology informatics lecture series and regular "learning laboratories". Didactic sessions, which had previously included more formal discussions of the four divisions of the core curriculum: Information fundamentals, information systems, workflow and process, and governance and management, now focus on group discussions concerning the fellows' ongoing projects, updates on the enterprise-wide EHR and LIS implementations, and directed questions about weekly readings. Lectures are given by the informatics faculty, guest informatics faculty, current and former fellows, and information systems members in the network, and are open to all professional members of the pathology departments at the AMCs. Learning laboratories consist of small-group exercises geared toward a variety of learning styles, and are driven by both the fellows and a member of the informatics faculty. The learning laboratories have created a forum for discussing real-time and real-world pathology informatics matters, and for incorporating awareness of and timely discussions about the latest pathology informatics literature. These changes have diversified the delivery of the fellowship's core curriculum, increased exposure of faculty, fellows and trainees to one another, and more equitably distributed teaching responsibilities among the entirety of the

  8. The Informatics Security Cost of Distributed Applications

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2010-01-01

    Full Text Available The objective, necessity, means and estimated efficiency of information security cost modeling are presented. The security requirements of distributed informatics applications are determined. Aspects regarding design, development and implementation are established. Influence factors for informatics security are presented and their correlation is analyzed. The costs associated to security processes are studied. Optimal criteria for informatics security are established. The security cost of the informatics application for validating organizational identifiers is determined using theoretical assumptions made for cost models. The conclusions highlight the validity of research results and offer perspectives for future research.

  9. Pathology informatics fellowship training: Focus on molecular pathology

    Directory of Open Access Journals (Sweden)

    Diana Mandelker

    2014-01-01

    Full Text Available Background: Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Methods and Results: Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program′s core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. Conclusions: The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists.

  10. Pathology informatics fellowship training: Focus on molecular pathology.

    Science.gov (United States)

    Mandelker, Diana; Lee, Roy E; Platt, Mia Y; Riedlinger, Gregory; Quinn, Andrew; Rao, Luigi K F; Klepeis, Veronica E; Mahowald, Michael; Lane, William J; Beckwith, Bruce A; Baron, Jason M; McClintock, David S; Kuo, Frank C; Lebo, Matthew S; Gilbertson, John R

    2014-01-01

    Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program's core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists.

  11. X-Informatics: Practical Semantic Science

    Science.gov (United States)

    Borne, K. D.

    2009-12-01

    The discipline of data science is merging with multiple science disciplines to form new X-informatics research disciplines. They are almost too numerous to name, but they include geoinformatics, bioinformatics, cheminformatics, biodiversity informatics, ecoinformatics, materials informatics, and the emerging discipline of astroinformatics. Within any X-informatics discipline, the information granules are unique to that discipline -- e.g., gene sequences in bio, the sky object in astro, and the spatial object in geo (such as points, lines, and polygons in the vector model, and pixels in the raster model). Nevertheless the goals are similar: transparent data re-use across subdisciplines and within education settings, information and data integration and fusion, personalization of user interactions with the data collection, semantic search and retrieval, and knowledge discovery. The implementation of an X-informatics framework enables these semantic e-science research goals. We describe the concepts, challenges, and new developments associated with the new discipline of astroinformatics, and how geoinformatics provides valuable lessons learned and a model for practical semantic science within a traditional science discipline through the accretion of data science methodologies (such as formal metadata creation, data models, data mining, information retrieval, knowledge engineering, provenance, taxonomies, and ontologies). The emerging concept of data-as-a-service (DaaS) builds upon the concept of smart data (or data DNA) for intelligent data management, automated workflows, and intelligent processing. Smart data, defined through X-informatics, enables several practical semantic science use cases, including self-discovery, data intelligence, automatic recommendations, relevance analysis, dimension reduction, feature selection, constraint-based mining, interdisciplinary data re-use, knowledge-sharing, data use in education, and more. We describe these concepts within the

  12. Electronic Personal Health Record Use Among Nurses in the Nursing Informatics Community.

    Science.gov (United States)

    Gartrell, Kyungsook; Trinkoff, Alison M; Storr, Carla L; Wilson, Marisa L

    2015-07-01

    An electronic personal health record is a patient-centric tool that enables patients to securely access, manage, and share their health information with healthcare providers. It is presumed the nursing informatics community would be early adopters of electronic personal health record, yet no studies have been identified that examine the personal adoption of electronic personal health record's for their own healthcare. For this study, we sampled nurse members of the American Medical Informatics Association and the Healthcare Information and Management Systems Society with 183 responding. Multiple logistic regression analysis was used to identify those factors associated with electronic personal health record use. Overall, 72% were electronic personal health record users. Users tended to be older (aged >50 years), be more highly educated (72% master's or doctoral degrees), and hold positions as clinical informatics specialists or chief nursing informatics officers. Those whose healthcare providers used electronic health records were significantly more likely to use electronic personal health records (odds ratio, 5.99; 95% confidence interval, 1.40-25.61). Electronic personal health record users were significantly less concerned about privacy of health information online than nonusers (odds ratio, 0.32; 95% confidence interval, 0.14-0.70) adjusted for ethnicity, race, and practice region. Informatics nurses, with their patient-centered view of technology, are in prime position to influence development of electronic personal health records. Our findings can inform policy efforts to encourage informatics and other professional nursing groups to become leaders and users of electronic personal health record; such use could help them endorse and engage patients to use electronic personal health records. Having champions with expertise in and enthusiasm for the new technology can promote the adoptionof electronic personal health records among healthcare providers as well as

  13. Exploration Medical Capability (ExMC) Projects

    Science.gov (United States)

    Wu, Jimmy; Watkins, Sharmila; Baumann, David

    2010-01-01

    During missions to the Moon or Mars, the crew will need medical capabilities to diagnose and treat disease as well as for maintaining their health. The Exploration Medical Capability Element develops medical technologies, medical informatics, and clinical capabilities for different levels of care during space missions. The work done by team members in this Element is leading edge technology, procedure, and pharmacological development. They develop data systems that protect patient's private medical information, aid in the diagnosis of medical conditions, and act as a repository of relevant NASA life sciences experimental studies. To minimize the medical risks to crew health the physicians and scientists in this Element develop models to quantify the probability of medical events occurring during a mission. They define procedures to treat an ill or injured crew member who does not have access to an emergency room and who must be cared for in a microgravity environment where both liquids and solids behave differently than on Earth. To support the development of these medical capabilities, the Element manages the development of medical technologies that prevent, monitor, diagnose, and treat an ill or injured crewmember. The Exploration Medical Capability Element collaborates with the National Space Biomedical Research Institute (NSBRI), the Department of Defense, other Government-funded agencies, academic institutions, and industry.

  14. The Emerging Role of the Chief Research Informatics Officer in Academic Health Centers.

    Science.gov (United States)

    Sanchez-Pinto, L Nelson; Mosa, Abu S M; Fultz-Hollis, Kate; Tachinardi, Umberto; Barnett, William K; Embi, Peter J

    2017-08-16

    The role of the Chief Research Informatics Officer (CRIO) is emerging in academic health centers to address the challenges clinical researchers face in the increasingly digitalized, data-intensive healthcare system. Most current CRIOs are the first officers in their institutions to hold that role. To date there is very little published information about this role and the individuals who serve it. To increase our understanding of the CRIO role, the leaders who serve it, and the factors associated with their success in their organizations. The Clinical Research Informatics Working Group of the American Medical Informatics Association (AMIA) conducted a national survey of CRIOs in the United States and convened an expert panel of CRIOs to discuss their experience during the 2016 AMIA Annual Symposium. CRIOs come from diverse academic backgrounds. Most have advance training and extensive experience in biomedical informatics but the majority have been CRIOs for less than three years. CRIOs identify funding, data governance, and advancing data analytics as their major challenges. CRIOs play an important role in helping shape the future of clinical research, innovation, and data analytics in healthcare in their organizations. They share many of the same challenges and see the same opportunities for the future of the field. Better understanding the background and experience of current CRIOs can help define and develop the role in other organizations and enhance their influence in the field of research informatics.

  15. Sphere of Knowledge Implications for Policy Embedded GIS/Informatics Collaboration

    Science.gov (United States)

    Branch, B. D.

    2009-05-01

    A Sphere of Knowledge (SK) is hereby defined as a pseudo-ontology, which may render interdisciplinary research as norm for all disciplines in order deal with global environment and economy concerns. Citizenry literate data sharing and informatics may be feasible only in shared knowledge experiences that an interdisciplinary workforce can provide. Governmental data use, as a workforce concern is more complex. Large data repositories, in databases or data warehouses may constantly centralize and re-distribute data. Centralized data archives require standards as well. These standards must serve multiple users, including investigators recording or generating the data and investigators accessing the data, and must guide developers and maintainers of the databases' (Gardner, et al, 2003, p. 2). Hence, Gardner, et al. (2003) indicated the importance of standards in data sharing. Thus, critical to open data use is a standard means of access and distributions and agreements. Executive Order 12906, a federal mandate has an overall policy influence that all data should be free and accessible. In addition, one of the underlying principles is that scientists and non-scientists should not be forced to learn complex details of the data product naming and schema, other people's naming vocabularies, schemes and syntax decisions and myriad details of differing web site interfaces' (Fox, McGuinness, Raskin and Sinha, 2008, p. 1). If such is true, then the use of such data as an actual job skill or activity needs to be measured and addressed by all institutions of learning. Moreover, any economy suffering from job loss may reconstitute new jobs in a data driven economy. Policy development and implementation should reflect such complexities' (Gardner, et al, 2003, p. 2). SK may be too broad for any one disciplinary to address effectively as a next generation concern. For example, informatics and the use of geographical information systems may require skills sets that are not germane

  16. Approaches, requirements and trends in teacher training informatics to attestation of pedagogical stuff under conditions of informatization

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Заславская

    2013-12-01

    Full Text Available This article describes the requirements for the training of teachers of Informatics, the need for managerial competence. Recommendations to the teacher of Informatics for the attestation of pedagogical staff.

  17. Different tracks for pathology informatics fellowship training: Experiences of and input from trainees in a large multisite fellowship program

    Directory of Open Access Journals (Sweden)

    Bruce P Levy

    2012-01-01

    Informatics candidates. Increasingly, these fellowships must be able to accommodate the needs of candidates anticipating a wide range of Pathology Informatics career paths, be able to accommodate Pathology′s increasingly subspecialized structure, and do this in a way that respects the multiple fellowships needed to become a subspecialty pathologist and informatician. This is further complicated as Pathology Informatics begins to look outward and takes its place in the growing, and still ill-defined, field of Clinical Informatics, a field that is not confined to just one medical specialty, to one way of practicing medicine, or to one way of providing patient care.

  18. International Conference on Health Informatics

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the International Conference on Health Informatics (ICHI). The conference was a new special topic conference initiative by the International Federation of Medical and Biological Engineering (IFMBE), held in Vilamoura, Portugal on 7-9 November, 2013. The main theme of the ICHI2013 was “Integrating Information and Communication Technologies with Biomedicine for Global Health”. The proceedings offer a unique forum to examine enabling technologies of sensors, devices and systems that optimize the acquisition, transmission, processing, storage, retrieval of biomedical and health information as well as to report novel clinical applications of health information systems and the deployment of m-Health, e-Health, u-Health, p-Health and Telemedicine.

  19. Effects of a Patient-Provider, Collaborative, Medication-Planning Tool: A Randomized, Controlled Trial

    Directory of Open Access Journals (Sweden)

    James F. Graumlich

    2016-01-01

    Full Text Available Among patients with various levels of health literacy, the effects of collaborative, patient-provider, medication-planning tools on outcomes relevant to self-management are uncertain. Objective. Among adult patients with type II diabetes mellitus, we tested the effectiveness of a medication-planning tool (Medtable™ implemented via an electronic medical record to improve patients’ medication knowledge, adherence, and glycemic control compared to usual care. Design. A multicenter, randomized controlled trial in outpatient primary care clinics. 674 patients received either the Medtable tool or usual care and were followed up for up to 12 months. Results. Patients who received Medtable had greater knowledge about indications for medications in their regimens and were more satisfied with the information about their medications. Patients’ knowledge of drug indication improved with Medtable regardless of their literacy status. However, Medtable did not improve patients’ demonstrated medication use, regimen adherence, or glycemic control (HbA1c. Conclusion. The Medtable tool supported provider/patient collaboration related to medication use, as reflected in patient satisfaction with communication, but had limited impact on patient medication knowledge, adherence, and HbA1c outcomes. This trial is registered with ClinicalTrials.gov NCT01296633.

  20. Building and evaluating an informatics tool to facilitate analysis of a biomedical literature search service in an academic medical center library.

    Science.gov (United States)

    Hinton, Elizabeth G; Oelschlegel, Sandra; Vaughn, Cynthia J; Lindsay, J Michael; Hurst, Sachiko M; Earl, Martha

    2013-01-01

    This study utilizes an informatics tool to analyze a robust literature search service in an academic medical center library. Structured interviews with librarians were conducted focusing on the benefits of such a tool, expectations for performance, and visual layout preferences. The resulting application utilizes Microsoft SQL Server and .Net Framework 3.5 technologies, allowing for the use of a web interface. Customer tables and MeSH terms are included. The National Library of Medicine MeSH database and entry terms for each heading are incorporated, resulting in functionality similar to searching the MeSH database through PubMed. Data reports will facilitate analysis of the search service.

  1. Data Analysis and Data Mining: Current Issues in Biomedical Informatics

    Science.gov (United States)

    Bellazzi, Riccardo; Diomidous, Marianna; Sarkar, Indra Neil; Takabayashi, Katsuhiko; Ziegler, Andreas; McCray, Alexa T.

    2011-01-01

    Summary Background Medicine and biomedical sciences have become data-intensive fields, which, at the same time, enable the application of data-driven approaches and require sophisticated data analysis and data mining methods. Biomedical informatics provides a proper interdisciplinary context to integrate data and knowledge when processing available information, with the aim of giving effective decision-making support in clinics and translational research. Objectives To reflect on different perspectives related to the role of data analysis and data mining in biomedical informatics. Methods On the occasion of the 50th year of Methods of Information in Medicine a symposium was organized, that reflected on opportunities, challenges and priorities of organizing, representing and analysing data, information and knowledge in biomedicine and health care. The contributions of experts with a variety of backgrounds in the area of biomedical data analysis have been collected as one outcome of this symposium, in order to provide a broad, though coherent, overview of some of the most interesting aspects of the field. Results The paper presents sections on data accumulation and data-driven approaches in medical informatics, data and knowledge integration, statistical issues for the evaluation of data mining models, translational bioinformatics and bioinformatics aspects of genetic epidemiology. Conclusions Biomedical informatics represents a natural framework to properly and effectively apply data analysis and data mining methods in a decision-making context. In the future, it will be necessary to preserve the inclusive nature of the field and to foster an increasing sharing of data and methods between researchers. PMID:22146916

  2. Managing collaboration across boundaries in health information technology projects.

    Science.gov (United States)

    Garrety, Karin; Dalley, Andrew; McLoughlin, Ian; Wilson, Rob; Yu, Ping

    2012-01-01

    One reason that it is so difficult to build electronic systems for collecting and sharing health information is that their design and implementation requires clear goals and a great deal of collaboration among people from diverse social and occupational worlds. This paper uses empirical examples from two Australian health informatics projects to illustrate the importance of boundary objects and boundary spanning activities in facilitating the high degree of collaboration required for the design and implementation of workable systems.

  3. Educating medical students as competent users of health information technologies: the MSOP data.

    Science.gov (United States)

    McGowan, Julie J; Passiment, Morgan; Hoffman, Helene M

    2007-01-01

    As more health information technologies become part of the health care environment, the need for physicians with medical informatics competencies is growing. In 2006, a survey was created to determine the degree to which the Association of American Medical College's Medical School Objectives Project (MSOP) medical informatics competencies had been incorporated into medical school curricula in the United States. a web-based tool was used to create the survey; medical education deans or their designees were requested to complete the survey. Analysis focused on the clinician, researcher, and manager roles of physicians. Seventy usable surveys were returned. Many of the objectives were stated in the schools' respective curricula and the competencies were being evaluated. However, only a few schools taught and assessed the medical informatics objectives that required interaction with health information. To insure that physicians have the knowledge, skills, and attitudes to effectively and efficiently interact with today's health information technologies, more medical informatics concepts need to be included and assessed in all undergraduate medical education curricula in the United States.

  4. Smartphone as a personal, pervasive health informatics services platform: literature review.

    Science.gov (United States)

    Wac, K

    2012-01-01

    The article provides an overview of current trends in personal sensor, signal and imaging informatics, that are based on emerging mobile computing and communications technologies enclosed in a smartphone and enabling the provision of personal, pervasive health informatics services. The article reviews examples of these trends from the PubMed and Google scholar literature search engines, which, by no means claim to be complete, as the field is evolving and some recent advances may not be documented yet. There exist critical technological advances in the surveyed smartphone technologies, employed in provision and improvement of diagnosis, acute and chronic treatment and rehabilitation health services, as well as in education and training of healthcare practitioners. However, the most emerging trend relates to a routine application of these technologies in a prevention/wellness sector, helping its users in self-care to stay healthy. Smartphone-based personal health informatics services exist, but still have a long way to go to become an everyday, personalized healthcare-provisioning tool in the medical field and in a clinical practice. Key main challenge for their widespread adoption involve lack of user acceptance striving from variable credibility and reliability of applications and solutions as they a) lack evidence- based approach; b) have low levels of medical professional involvement in their design and content; c) are provided in an unreliable way, influencing negatively its usability; and, in some cases, d) being industry-driven, hence exposing bias in information provided, for example towards particular types of treatment or intervention procedures.

  5. Energy Decision Science and Informatics | Integrated Energy Solutions |

    Science.gov (United States)

    NREL Decision Science and Informatics Energy Decision Science and Informatics NREL utilizes and advances state-of-the-art decision science and informatics to help partners make well-informed energy decisions backed by credible, objective data analysis and insights to maximize the impact of energy

  6. Computer Networking Strategies for Building Collaboration among Science Educators.

    Science.gov (United States)

    Aust, Ronald

    The development and dissemination of science materials can be associated with technical delivery systems such as the Unified Network for Informatics in Teacher Education (UNITE). The UNITE project was designed to investigate ways for using computer networking to improve communications and collaboration among university schools of education and…

  7. Energy informatics: Fundamentals and standardization

    Directory of Open Access Journals (Sweden)

    Biyao Huang

    2017-06-01

    Full Text Available Based on international standardization and power utility practices, this paper presents a preliminary and systematic study on the field of energy informatics and analyzes boundary expansion of information and energy system, and the convergence of energy system and ICT. A comprehensive introduction of the fundamentals and standardization of energy informatics is provided, and several key open issues are identified.

  8. Nursing informatics and nursing ethics

    DEFF Research Database (Denmark)

    Kaltoft, Mette Kjer

    2013-01-01

    All healthcare visions, including that of The TIGER (Technology-Informatics-Guiding-Educational-Reform) Initiative envisage a crucial role for nursing. However, its 7 descriptive pillars do not address the disconnect between Nursing Informatics and Nursing Ethics and their distinct communities......-of-(care)-decision. Increased pressure for translating 'evidence-based' research findings into 'ethically-sound', 'value-based' and 'patient-centered' practice requires rethinking the model implicit in conventional knowledge translation and informatics practice in all disciplines, including nursing. The aim is to aid 'how...... nurses and other health care scientists more clearly identify clinical and other relevant data that can be captured to inform future comparative effectiveness research. 'A prescriptive, theory-based discipline of '(Nursing) Decisionics' expands the Grid for Volunteer Development of TIGER's newly launched...

  9. Massive open online course for health informatics education.

    Science.gov (United States)

    Paton, Chris

    2014-04-01

    This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). The Health Informatics Forum is a social networking site for educating health informatics students and professionals [corrected]. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost.

  10. Fostering critical thinking and collaborative learning skills among medical students through a research protocol writing activity in the curriculum.

    Science.gov (United States)

    Sahoo, Soumendra; Mohammed, Ciraj Ali

    2018-06-01

    This intervention was aimed to analyse the effect of academic writing and journal critiquing as educational approaches in improving critical thinking and collaborative learning among undergraduate medical students. A research proposal writing format was created for the 4th year medical students of Melaka Manipal Medical College, Malaysia during their ophthalmology clinical postings. The students worked in small groups and developed research protocols through an evidence based approach. This was followed by writing reflective summaries in academic portfolios about the activity undertaken. A mixed methods study was designed to explore the possible role of collaborative research proposal writing in enhancing critical thinking and collaborative learning. Analysis of reflections submitted by 188 medical students after the intervention indicate that majority of them found an improvement in their skills of critical thinking and collaborative learning as a result of research protocol writing. All participants agreed that the model helped in applying concepts to new situations in the form of designing their own study, which reflected in enhanced higher order cognitive skills. This study shows that the introduction of a structured module in the core medical curriculum that focuses on research writing skills embedded with collaborative and reflective practices can enhance collaborative learning, critical thinking, and reasoning among medical students.

  11. Fostering critical thinking and collaborative learning skills among medical students through a research protocol writing activity in the curriculum

    Directory of Open Access Journals (Sweden)

    Soumendra Sahoo

    2018-06-01

    Full Text Available Purpose This intervention was aimed to analyse the effect of academic writing and journal critiquing as educational approaches in improving critical thinking and collaborative learning among undergraduate medical students. Methods A research proposal writing format was created for the 4th year medical students of Melaka Manipal Medical College, Malaysia during their ophthalmology clinical postings. The students worked in small groups and developed research protocols through an evidence based approach. This was followed by writing reflective summaries in academic portfolios about the activity undertaken.A mixed methods study was designed to explore the possible role of collaborative research proposal writing in enhancing critical thinking and collaborative learning. Results Analysis of reflections submitted by 188 medical students after the intervention indicate that majority of them found an improvement in their skills of critical thinking and collaborative learning as a result of research protocol writing. All participants agreed that the model helped in applying concepts to new situations in the form of designing their own study, which reflected in enhanced higher order cognitive skills. Conclusion This study shows that the introduction of a structured module in the core medical curriculum that focuses on research writing skills embedded with collaborative and reflective practices can enhance collaborative learning, critical thinking, and reasoning among medical students.

  12. BACHELOR OF INFORMATICS COMPETENCE IN PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Andrii M. Striuk

    2015-04-01

    Full Text Available Based on the analysis of approaches to the definition of professional competencies of IT students the competence in programming of bachelor of informatics is proposed. Due to the standard of training in 040302 “Informatics” and Computing Curricula 2001 it was defined the content and structure of the competence in programming of bachelor of informatics. The system of content modules providing its formation was designed. The contribution of regulatory competencies of bachelor of informatics in the formation of competence in programming is defined. The directions of formation of competence in programming in the cloudy-oriented learning environment are proposed.

  13. Collaborative Systems Biology Projects for the Military Medical Community.

    Science.gov (United States)

    Zalatoris, Jeffrey J; Scheerer, Julia B; Lebeda, Frank J

    2017-09-01

    This pilot study was conducted to examine, for the first time, the ongoing systems biology research and development projects within the laboratories and centers of the U.S. Army Medical Research and Materiel Command (USAMRMC). The analysis has provided an understanding of the breadth of systems biology activities, resources, and collaborations across all USAMRMC subordinate laboratories. The Systems Biology Collaboration Center at USAMRMC issued a survey regarding systems biology research projects to the eight U.S.-based USAMRMC laboratories and centers in August 2016. This survey included a data call worksheet to gather self-identified project and programmatic information. The general topics focused on the investigators and their projects, on the project's research areas, on omics and other large data types being collected and stored, on the analytical or computational tools being used, and on identifying intramural (i.e., USAMRMC) and extramural collaborations. Among seven of the eight laboratories, 62 unique systems biology studies were funded and active during the final quarter of fiscal year 2016. Of 29 preselected medical Research Task Areas, 20 were associated with these studies, some of which were applicable to two or more Research Task Areas. Overall, studies were categorized among six general types of objectives: biological mechanisms of disease, risk of/susceptibility to injury or disease, innate mechanisms of healing, diagnostic and prognostic biomarkers, and host/patient responses to vaccines, and therapeutic strategies including host responses to therapies. We identified eight types of omics studies and four types of study subjects. Studies were categorized on a scale of increasing complexity from single study subject/single omics technology studies (23/62) to studies integrating results across two study subject types and two or more omics technologies (13/62). Investigators at seven USAMRMC laboratories had collaborations with systems biology experts

  14. Evidence-based Practice. Findings from the Section on Education and Consumer Health Informatics.

    Science.gov (United States)

    Staccini, P; Douali, N

    2013-01-01

    To provide an overview of outstanding current research conducted in Education and Consumer Informatics. Synopsis of the articles on education and consumer health informatics published in 2012 and selected for the IMIA Yearbook of Medical Informatics 2013. Architecture of monitoring or telehealth information systems for patients with chronic disease must include wireless devices to aid in the collection of personal data. Data acquisition technologies have an impact on patients' willingness to participate in telehealth programmes. Patients are more likely to prefer mobile applications over web-based applications. Social media is widely used by clinicians. Especially younger clinicians use it for personal purposes and for reference materials retrieval. Questions remain on optimal training requirements and on the effects on clinician behavior and on patient outcomes. A high level of e-Health literacy by patients will promote increased adoption and utilization of personal health records. The selected articles highlight the need for training of clinicians to become aware of existing telehealth systems, in order to correctly inform and guide patients to take part in telehealth systems and adopt personal healthcare records (PHR).

  15. History of health informatics: a global perspective.

    Science.gov (United States)

    Cesnik, Branko; Kidd, Michael R

    2010-01-01

    In considering a 'history' of Health Informatics it is important to be aware that the discipline encompasses a wide array of activities, products, research and theories. Health Informatics is as much a result of evolution as planned philosophy, having its roots in the histories of information technology and medicine. The process of its growth continues so that today's work is tomorrow's history. A 'historical' discussion of the area is its history to date, a report rather than a summation. As well as its successes, the history of Health Informatics is populated with visionary promises that have failed to materialise despite the best intentions. For those studying the subject or working in the field, the experiences of others' use of Information Technologies for the betterment of health care can provide a necessary perspective. This chapter starts by noting some of the major events and people that form a technological backdrop to Health Informatics and ends with some thoughts on the future. This chapter gives an educational overview of: * The history of computing * The beginnings of the health informatics discipline.

  16. Discussion on informatization teaching of certain radar transmitter

    Science.gov (United States)

    Liang, Guanhui; Lv, Guizhou; Meng, Yafeng

    2017-04-01

    With the development of informatization, the traditional teaching method of certain radar transmitter is more and more difficult to meet the need of cultivating new type of high-quality military talents. This paper first analyzes the problems traditional teaching method of certain radar transmitter, and then puts forward the strategy of informatization teaching, and finally elaborates the concrete steps and contents of informatization teaching. Using the multimedia maintenance training system, information simulation training system and network courses and other informatization means, effectively improves the master degree to radar transmitter by trainees, but also lays a good foundation for repair in the next step.

  17. A virtual environment for medical radiation collaborative learning.

    Science.gov (United States)

    Bridge, Pete; Trapp, Jamie V; Kastanis, Lazaros; Pack, Darren; Parker, Jacqui C

    2015-06-01

    A software-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students' understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 % of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of "invisible" physical principles and increased opportunity for experimentation and collaborative problem-based learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.

  18. Patient Outcomes as Transformative Mechanisms to Bring Health Information Technology Industry and Research Informatics Closer Together.

    Science.gov (United States)

    Krive, Jacob

    2015-01-01

    Despite the fast pace of recent innovation within the health information technology and research informatics domains, there remains a large gap between research and academia, while interest in translating research innovations into implementations in the patient care settings is lacking. This is due to absence of common outcomes and performance measurement targets, with health information technology industry employing financial and operational measures and academia focusing on patient outcome concerns. The paper introduces methodology for and roadmap to introduction of common objectives as a way to encourage better collaboration between industry and academia using patient outcomes as a composite measure of demonstrated success from health information systems investments. Along the way, the concept of economics of health informatics, or "infonomics," is introduced to define a new way of mapping future technology investments in accordance with projected clinical impact.

  19. The Australian Medical Schools Assessment Collaboration: benchmarking the preclinical performance of medical students.

    Science.gov (United States)

    O'Mara, Deborah A; Canny, Ben J; Rothnie, Imogene P; Wilson, Ian G; Barnard, John; Davies, Llewelyn

    2015-02-02

    To report the level of participation of medical schools in the Australian Medical Schools Assessment Collaboration (AMSAC); and to measure differences in student performance related to medical school characteristics and implementation methods. Retrospective analysis of data using the Rasch statistical model to correct for missing data and variability in item difficulty. Linear model analysis of variance was used to assess differences in student performance. 6401 preclinical students from 13 medical schools that participated in AMSAC from 2011 to 2013. Rasch estimates of preclinical basic and clinical science knowledge. Representation of Australian medical schools and students in AMSAC more than doubled between 2009 and 2013. In 2013 it included 12 of 19 medical schools and 68% of medical students. Graduate-entry students scored higher than students entering straight from school. Students at large schools scored higher than students at small schools. Although the significance level was high (P performance. The effect on performance of multiple assessments compared with the test items as part of a single end-of-year examination was negligible. The variables investigated explain only 12% of the total variation in student performance. An increasing number of medical schools are participating in AMSAC to monitor student performance in preclinical sciences against an external benchmark. Medical school characteristics account for only a small part of overall variation in student performance. Student performance was not affected by the different methods of administering test items.

  20. Evaluation of Founding Members of the International Academy of Health Sciences Informatics (IAHSI) Based on Google Scholar and Scopus Parameters.

    Science.gov (United States)

    Masic, Izet

    2017-12-01

    The International Academy of Health Sciences Informatics (IAHSI) is established by International Medical Informatics Association (IMIA) which is the world body for health and biomedical informatics. The Academy will serve as an honor society that recognizes expertise in biomedical and health informatics internationally. Academy membership will be one of the highest honors in the international field of biomedical and health informatics. To present scientometric analysis of founding members of the International Academy of Health Sciences Informatics, to evaluate members and their scientific rating. The work has an analytical character and presents analysis of the data obtained from the Google Scholar and Scopus database. Results are shown through number of cases, percentage and graphically. The analysis showed a significant correlation between the Academy and the country (continent) of origin of the academician. In IAHSI are mainly represented academics originating from Europe - 40 members (33,3%), North America - 39 members (32,5%), Asia - 20 members (16,6%), South America - 9 members (7,5%), Australia - 7 members (5,8%), while only 5 members or 4,16% come from Africa. Criteria for number of representatives of each continent to main academic communities are relatively questionable, as this analysis showed. Development of Health Sciences Informatics should be the main purpose, and it should be evenly distributed with slight deviations in number of representatives of each continent.

  1. Virtual reality, telemedicine, web and data processing innovations in medical and psychiatric education and clinical care.

    Science.gov (United States)

    Hilty, Donald M; Alverson, Dale C; Alpert, Jonathan E; Tong, Lowell; Sagduyu, Kemal; Boland, Robert J; Mostaghimi, Arash; Leamon, Martin L; Fidler, Don; Yellowlees, Peter M

    2006-01-01

    This article highlights technology innovations in psychiatric and medical education, including applications from other fields. The authors review the literature and poll educators and informatics faculty for novel programs relevant to psychiatric education. The introduction of new technologies requires skill at implementation and evaluation to assess the pros and cons. There is a significant body of literature regarding virtual reality and simulation, including assessment of outcomes, but other innovations are not well studied. Innovations, like other uses of technology, require collaboration between parties and integration within the educational framework of an institution.

  2. Factors influencing teamwork and collaboration within a tertiary medical center.

    Science.gov (United States)

    Chien, Shu Feng; Wan, Thomas Th; Chen, Yu-Chih

    2012-04-26

    To understand how work climate and related factors influence teamwork and collaboration in a large medical center. A survey of 3462 employees was conducted to generate responses to Sexton's Safety Attitudes Questionnaire (SAQ) to assess perceptions of work environment via a series of five-point, Likert-scaled questions. Path analysis was performed, using teamwork (TW) and collaboration (CO) as endogenous variables. The exogenous variables are effective communication (EC), safety culture (SC), job satisfaction (JS), work pressure (PR), and work climate (WC). The measurement instruments for the variables or summated subscales are presented. Reliability of each sub-scale are calculated. Alpha Cronbach coefficients are relatively strong: TW (0.81), CO (0.76), EC (0.70), SC (0.83), JS (0.91), WP (0.85), and WC (0.78). Confirmatory factor analysis was performed for each of these constructs. Path analysis enables to identify statistically significant predictors of two endogenous variables, teamwork and intra-organizational collaboration. Significant amounts of variance in perceived teamwork (R(2) = 0.59) and in collaboration (R(2) = 0.75) are accounted for by the predictor variables. In the initial model, safety culture is the most important predictor of perceived teamwork, with a β weight of 0.51, and work climate is the most significant predictor of collaboration, with a β weight of 0.84. After eliminating statistically insignificant causal paths and allowing correlated predictors1, the revised model shows that work climate is the only predictor positively influencing both teamwork (β = 0.26) and collaboration (β = 0.88). A relatively weak positive (β = 0.14) but statistically significant relationship exists between teamwork and collaboration when the effects of other predictors are simultaneously controlled. Hospital executives who are interested in improving collaboration should assess the work climate to ensure that employees are operating in a setting conducive

  3. Factors influencing teamwork and collaboration within a tertiary medical center

    Science.gov (United States)

    Chien, Shu Feng; Wan, Thomas TH; Chen, Yu-Chih

    2012-01-01

    AIM: To understand how work climate and related factors influence teamwork and collaboration in a large medical center. METHODS: A survey of 3462 employees was conducted to generate responses to Sexton’s Safety Attitudes Questionnaire (SAQ) to assess perceptions of work environment via a series of five-point, Likert-scaled questions. Path analysis was performed, using teamwork (TW) and collaboration (CO) as endogenous variables. The exogenous variables are effective communication (EC), safety culture (SC), job satisfaction (JS), work pressure (PR), and work climate (WC). The measurement instruments for the variables or summated subscales are presented. Reliability of each sub-scale are calculated. Alpha Cronbach coefficients are relatively strong: TW (0.81), CO (0.76), EC (0.70), SC (0.83), JS (0.91), WP (0.85), and WC (0.78). Confirmatory factor analysis was performed for each of these constructs. RESULTS: Path analysis enables to identify statistically significant predictors of two endogenous variables, teamwork and intra-organizational collaboration. Significant amounts of variance in perceived teamwork (R2 = 0.59) and in collaboration (R2 = 0.75) are accounted for by the predictor variables. In the initial model, safety culture is the most important predictor of perceived teamwork, with a β weight of 0.51, and work climate is the most significant predictor of collaboration, with a β weight of 0.84. After eliminating statistically insignificant causal paths and allowing correlated predictors1, the revised model shows that work climate is the only predictor positively influencing both teamwork (β = 0.26) and collaboration (β = 0.88). A relatively weak positive (β = 0.14) but statistically significant relationship exists between teamwork and collaboration when the effects of other predictors are simultaneously controlled. CONCLUSION: Hospital executives who are interested in improving collaboration should assess the work climate to ensure that employees are

  4. An information technology emphasis in biomedical informatics education.

    Science.gov (United States)

    Kane, Michael D; Brewer, Jeffrey L

    2007-02-01

    Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.

  5. Contemporary issues in transfusion medicine informatics

    Directory of Open Access Journals (Sweden)

    Gaurav Sharma

    2011-01-01

    Full Text Available The Transfusion Medicine Service (TMS covers diverse clinical and laboratory-based services that must be delivered with accuracy, efficiency and reliability. TMS oversight is shared by multiple regulatory agencies that cover product manufacturing and validation standards geared toward patient safety. These demands present significant informatics challenges. Over the past few decades, TMS information systems have improved to better handle blood product manufacturing, inventory, delivery, tracking and documentation. Audit trails and access to electronic databases have greatly facilitated product traceability and biovigilance efforts. Modern blood bank computing has enabled novel applications such as the electronic crossmatch, kiosk-based blood product delivery systems, and self-administered computerized blood donor interview and eligibility determination. With increasing use of barcoding technology, there has been a marked improvement in patient and specimen identification. Moreover, the emergence of national and international labeling standards such as ISBT 128 have facilitated the availability, movement and tracking of blood products across national and international boundaries. TMS has only recently begun to leverage the electronic medical record to address quality issues in transfusion practice and promote standardized documentation within institutions. With improved technology, future growth is expected in blood bank automation and product labeling with applications such as radio frequency identification devices. This article reviews several of these key informatics issues relevant to the contemporary practice of TMS.

  6. Contemporary issues in transfusion medicine informatics.

    Science.gov (United States)

    Sharma, Gaurav; Parwani, Anil V; Raval, Jay S; Triulzi, Darrell J; Benjamin, Richard J; Pantanowitz, Liron

    2011-01-07

    The Transfusion Medicine Service (TMS) covers diverse clinical and laboratory-based services that must be delivered with accuracy, efficiency and reliability. TMS oversight is shared by multiple regulatory agencies that cover product manufacturing and validation standards geared toward patient safety. These demands present significant informatics challenges. Over the past few decades, TMS information systems have improved to better handle blood product manufacturing, inventory, delivery, tracking and documentation. Audit trails and access to electronic databases have greatly facilitated product traceability and biovigilance efforts. Modern blood bank computing has enabled novel applications such as the electronic crossmatch, kiosk-based blood product delivery systems, and self-administered computerized blood donor interview and eligibility determination. With increasing use of barcoding technology, there has been a marked improvement in patient and specimen identification. Moreover, the emergence of national and international labeling standards such as ISBT 128 have facilitated the availability, movement and tracking of blood products across national and international boundaries. TMS has only recently begun to leverage the electronic medical record to address quality issues in transfusion practice and promote standardized documentation within institutions. With improved technology, future growth is expected in blood bank automation and product labeling with applications such as radio frequency identification devices. This article reviews several of these key informatics issues relevant to the contemporary practice of TMS.

  7. Scoping review protocol: education initiatives for medical psychiatry collaborative care.

    Science.gov (United States)

    Shen, Nelson; Sockalingam, Sanjeev; Abi Jaoude, Alexxa; Bailey, Sharon M; Bernier, Thérèse; Freeland, Alison; Hawa, Aceel; Hollenberg, Elisa; Woldemichael, Bethel; Wiljer, David

    2017-09-03

    The collaborative care model is an approach providing care to those with mental health and addictions disorders in the primary care setting. There is a robust evidence base demonstrating its clinical and cost-effectiveness in comparison with usual care; however, the transitioning to this new paradigm of care has been difficult. While there are efforts to train and prepare healthcare professionals, not much is known about the current state of collaborative care training programmes. The objective of this scoping review is to understand how widespread these collaborative care education initiatives are, how they are implemented and their impacts. The scoping review methodology uses the established review methodology by Arksey and O'Malley. The search strategy was developed by a medical librarian and will be applied in eight different databases spanning multiple disciplines. A two-stage screening process consisting of a title and abstract scan and a full-text review will be used to determine the eligibility of articles. To be included, articles must report on an existing collaborative care education initiative for healthcare providers. All articles will be independently assessed for eligibility by pairs of reviewers, and all eligible articles will be abstracted and charted in duplicate using a standardised form. The extracted data will undergo a 'narrative review' or a descriptive analysis of the contextual or process-oriented data and simple quantitative analysis using descriptive statistics. Research ethics approval is not required for this scoping review. The results of this scoping review will inform the development of a collaborative care training initiative emerging from the Medical Psychiatry Alliance, a four-institution philanthropic partnership in Ontario, Canada. The results will also be presented at relevant national and international conferences and published in a peer-reviewed journal. © Article author(s) (or their employer(s) unless otherwise stated in

  8. Differential impact of student behaviours on group interaction and collaborative learning: medical students' and tutors' perspectives.

    Science.gov (United States)

    Iqbal, Maha; Velan, Gary M; O'Sullivan, Anthony J; Balasooriya, Chinthaka

    2016-08-22

    Collaboration is of increasing importance in medical education and medical practice. Students' and tutors' perceptions about small group learning are valuable to inform the development of strategies to promote group dynamics and collaborative learning. This study investigated medical students' and tutors' views on competencies and behaviours which promote effective learning and interaction in small group settings. This study was conducted at UNSW Australia. Five focus group discussions were conducted with first and second year medical students and eight small group tutors were interviewed. Data were transcribed verbatim and thematic analysis was conducted. Students and tutors identified a range of behaviours that influenced collaborative learning. The main themes that emerged included: respectfulness; dominance, strong opinions and openness; constructiveness of feedback; active listening and contribution; goal orientation; acceptance of roles and responsibilities; engagement and enthusiasm; preparedness; self- awareness and positive personal attributes. An important finding was that some of these student behaviours were found to have a differential impact on group interaction compared with collaborative learning. This information could be used to promote higher quality learning in small groups. This study has identified medical students' and tutors' perceptions regarding interactional behaviours in small groups, as well as behaviours which lead to more effective learning in those settings. This information could be used to promote learning in small groups.

  9. osni.info-Using free/libre/open source software to build a virtual international community for open source nursing informatics.

    Science.gov (United States)

    Oyri, Karl; Murray, Peter J

    2005-12-01

    Many health informatics organizations seem to be slow to take up the advantages of dynamic, web-based technologies for providing services to, and interaction with, their members; these are often the very technologies they promote for use within healthcare environments. This paper aims to introduce some of the many free/libre/open source (FLOSS) applications that are now available to develop interactive websites and dynamic online communities as part of the structure of health informatics organizations, and to show how the Open Source Nursing Informatics Working Group (OSNI) of the special interest group in nursing informatics of the International Medical Informatics Association (IMIA-NI) is using some of these tools to develop an online community of nurse informaticians through their website, at . Some background introduction to FLOSS applications is used for the benefit of those less familiar with such tools, and examples of some of the FLOSS content management systems (CMS) being used by OSNI are described. The experiences of the OSNI will facilitate a knowledgeable nursing contribution to the wider discussions on the applications of FLOSS within health and healthcare, and provides a model that many other groups could adopt.

  10. Using web services for linking genomic data to medical information systems.

    Science.gov (United States)

    Maojo, V; Crespo, J; de la Calle, G; Barreiro, J; Garcia-Remesal, M

    2007-01-01

    To develop a new perspective for biomedical information systems, regarding the introduction of ideas, methods and tools related to the new scenario of genomic medicine. Technological aspects related to the analysis and integration of heterogeneous clinical and genomic data include mapping clinical and genetic concepts, potential future standards or the development of integrated biomedical ontologies. In this clinicomics scenario, we describe the use of Web services technologies to improve access to and integrate different information sources. We give a concrete example of the use of Web services technologies: the OntoFusion project. Web services provide new biomedical informatics (BMI) approaches related to genomic medicine. Customized workflows will aid research tasks by linking heterogeneous Web services. Two significant examples of these European Commission-funded efforts are the INFOBIOMED Network of Excellence and the Advancing Clinico-Genomic Trials on Cancer (ACGT) integrated project. Supplying medical researchers and practitioners with omics data and biologists with clinical datasets can help to develop genomic medicine. BMI is contributing by providing the informatics methods and technological infrastructure needed for these collaborative efforts.

  11. INFORMATIZATION: PHILOSOPHICAL AND ANTHROPOLOGICAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    A. A. Kosolapov

    2015-07-01

    Full Text Available Purpose.Computerization and informatization in recent decades gave the mankind automated electronic document management systems, automated process of production, Internet and network information resources WWW, expanded the communications capabilities and led to the globalization of the information society. At the same time gives rise to a number of processes of informatization philosophical and anthropological problems, that has become an existential character. It is necessary to identify and understanding of these issues on the basis of the gnoseological model of the evolution informatization paradigms and determine their main characteristics. Methodology. The system-activity approach was used; it allowed identifying and analyzing the impact of the main components of information and communication technologies (ICT for educational activities. And further to present them as a unified system of human activity in conditions computerization/informatization. The philosophical principles: a comprehensive review of the subject, the unity of the logical and historical, ascending from the abstract to the concrete was used. The general scientific principles: unity and development of the system, the decomposition hierarchy, individualization and cooperation, diversity and taxonomy were applied. Findings.The three-stage gnoseological model of the paradigms computerization/informatization evolution was proposed by the author. It is based on three information system characteristics: speed, interface and data access. The seven-bar anthrop-centric model, which is called the architecture of information systems (AIS, which describes the changes in their types of procuring, was proposed for each paradigm. The philosophical-anthropological problems that affect negatively its progress were formulated for each stage of modern information society transformation. Originality. The gnoseological model of development processes of informatization in the form of three

  12. The Biodiversity Informatics Potential Index

    Science.gov (United States)

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  13. Pathology informatics fellowship retreats: The use of interactive scenarios and case studies as pathology informatics teaching tools.

    Science.gov (United States)

    Lee, Roy E; McClintock, David S; Balis, Ulysses J; Baron, Jason M; Becich, Michael J; Beckwith, Bruce A; Brodsky, Victor B; Carter, Alexis B; Dighe, Anand S; Haghighi, Mehrvash; Hipp, Jason D; Henricks, Walter H; Kim, Jiyeon Y; Klepseis, Veronica E; Kuo, Frank C; Lane, William J; Levy, Bruce P; Onozato, Maristela L; Park, Seung L; Sinard, John H; Tuthill, Mark J; Gilbertson, John R

    2012-01-01

    Last year, our pathology informatics fellowship added informatics-based interactive case studies to its existing educational platform of operational and research rotations, clinical conferences, a common core curriculum with an accompanying didactic course, and national meetings. The structure of the informatics case studies was based on the traditional business school case study format. Three different formats were used, varying in length from short, 15-minute scenarios to more formal multiple hour-long case studies. Case studies were presented over the course of three retreats (Fall 2011, Winter 2012, and Spring 2012) and involved both local and visiting faculty and fellows. Both faculty and fellows found the case studies and the retreats educational, valuable, and enjoyable. From this positive feedback, we plan to incorporate the retreats in future academic years as an educational component of our fellowship program. Interactive case studies appear to be valuable in teaching several aspects of pathology informatics that are difficult to teach in more traditional venues (rotations and didactic class sessions). Case studies have become an important component of our fellowship's educational platform.

  14. From bench to bed: bridging from informatics theory to practice. An exploratory analysis.

    Science.gov (United States)

    Lehmann, C U; Haux, R

    2014-01-01

    In 2009, the journal Applied Clinical Informatics (ACI) commenced publication. Focused on applications in clinical informatics, ACI was intended to be a companion journal to METHODS of Information in Medicine (MIM). Both journals are official journals of IMIA, the International Medical Informatics Association. To explore, after five years, which congruencies and interdependencies exist in publications of these journals and to determine if gaps exist. To achieve this goal, major topics discussed in ACI and in MIM had to be analysed. Finally, we wanted to explore, whether the intention of publishing these companion journals to provide an information bridge from informatics theory to informatics practice and from practice to theory could be supported by this model. In this manuscript we will report on congruencies and interdependencies from practise to theory and on major topis in ACI. Further results will be reported in a second paper. Retrospective, prolective observational study on recent publications of ACI and MIM. All publications of the years 2012 and 2013 from these journals were indexed and analysed. Hundred and ninety-six publications have been analysed (87 ACI, 109 MIM). In ACI publications addressed care coordination, shared decision support, and provider communication in its importance for complex patient care and safety and quality. Other major themes included improving clinical documentation quality and efficiency, effectiveness of clinical decision support and alerts, implementation of health information technology systems including discussion of failures and succeses. An emerging topic in the years analyzed was a focus on health information technology to predict and prevent hospital admissions and managing population health including the application of mobile health technology. Congruencies between journals could be found in themes, but with different focus in its contents. Interdependencies from practise to theory found in these publications, were

  15. Online molecular image repository and analysis system: A multicenter collaborative open-source infrastructure for molecular imaging research and application.

    Science.gov (United States)

    Rahman, Mahabubur; Watabe, Hiroshi

    2018-05-01

    Molecular imaging serves as an important tool for researchers and clinicians to visualize and investigate complex biochemical phenomena using specialized instruments; these instruments are either used individually or in combination with targeted imaging agents to obtain images related to specific diseases with high sensitivity, specificity, and signal-to-noise ratios. However, molecular imaging, which is a multidisciplinary research field, faces several challenges, including the integration of imaging informatics with bioinformatics and medical informatics, requirement of reliable and robust image analysis algorithms, effective quality control of imaging facilities, and those related to individualized disease mapping, data sharing, software architecture, and knowledge management. As a cost-effective and open-source approach to address these challenges related to molecular imaging, we develop a flexible, transparent, and secure infrastructure, named MIRA, which stands for Molecular Imaging Repository and Analysis, primarily using the Python programming language, and a MySQL relational database system deployed on a Linux server. MIRA is designed with a centralized image archiving infrastructure and information database so that a multicenter collaborative informatics platform can be built. The capability of dealing with metadata, image file format normalization, and storing and viewing different types of documents and multimedia files make MIRA considerably flexible. With features like logging, auditing, commenting, sharing, and searching, MIRA is useful as an Electronic Laboratory Notebook for effective knowledge management. In addition, the centralized approach for MIRA facilitates on-the-fly access to all its features remotely through any web browser. Furthermore, the open-source approach provides the opportunity for sustainable continued development. MIRA offers an infrastructure that can be used as cross-boundary collaborative MI research platform for the rapid

  16. Informatics for Metabolomics.

    Science.gov (United States)

    Kusonmano, Kanthida; Vongsangnak, Wanwipa; Chumnanpuen, Pramote

    2016-01-01

    Metabolome profiling of biological systems has the powerful ability to provide the biological understanding of their metabolic functional states responding to the environmental factors or other perturbations. Tons of accumulative metabolomics data have thus been established since pre-metabolomics era. This is directly influenced by the high-throughput analytical techniques, especially mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based techniques. Continuously, the significant numbers of informatics techniques for data processing, statistical analysis, and data mining have been developed. The following tools and databases are advanced for the metabolomics society which provide the useful metabolomics information, e.g., the chemical structures, mass spectrum patterns for peak identification, metabolite profiles, biological functions, dynamic metabolite changes, and biochemical transformations of thousands of small molecules. In this chapter, we aim to introduce overall metabolomics studies from pre- to post-metabolomics era and their impact on society. Directing on post-metabolomics era, we provide a conceptual framework of informatics techniques for metabolomics and show useful examples of techniques, tools, and databases for metabolomics data analysis starting from preprocessing toward functional interpretation. Throughout the framework of informatics techniques for metabolomics provided, it can be further used as a scaffold for translational biomedical research which can thus lead to reveal new metabolite biomarkers, potential metabolic targets, or key metabolic pathways for future disease therapy.

  17. Integrating Informatics Technologies into Oracle

    Directory of Open Access Journals (Sweden)

    Manole VELICANU

    2006-01-01

    Full Text Available A characteristic of the actual informatics’ context is the interference of the technologies, which assumes that for creating an informatics product, is necessary to use integrate many technologies. This thing is also used for database systems which had integrated, in the past few years, almost everything is new in informatics technology. The idea is that when using database management systems - DBMS the user can benefit all the necessary interfaces and instruments for developing an application with databases from the very beginning to the end, no matter the type of application and the work environment. For example, if the database application needs any Internet facilities these could be appealed from the products that the DBMS is working with offers. The concept of the interference of informatics technologies has many advantages, which all contribute to increasing the efficiency of the activities that develop and maintain complex databases applications.

  18. A hard pill to swallow: medication, empathy, and the value of collaborative recovery.

    Science.gov (United States)

    Bizub, Anne L

    2013-06-01

    Recovery from mental illness is a complex journey that is greatly facilitated when client and professional helper collaborate in the decision making process. It is further aided when the latter has an empathetic awareness of the client's experience, especially with regard to the impact of pharmacological treatment. The following article describes one psychologist's experience of being prescribed medication during a period of acute illness. Analysis of this experience is via a narrative, phenomenological approach. Results suggest that even when taken as directed, a medication can augment one's subjective feeling of illness. It further shows how challenging it can be for the ailing individual to assert his or her needs for something other than hospitalization. Although only one case is analyzed, it points to the impact that medication may have on the life of a person with mental illness, reinforcing the importance of collaboration and empathetic understanding of the other's experience.

  19. Growing partnerships: leveraging the power of collaboration through the Medical Education Partnership Initiative.

    Science.gov (United States)

    Olapade-Olaopa, Emiola Oluwabunmi; Baird, Sarah; Kiguli-Malwadde, Elsie; Kolars, Joseph C

    2014-08-01

    A major goal of the Medical Education Partnership Initiative (MEPI) is to improve local health systems by strengthening medical education in Sub-Saharan Africa. A new approach to collaboration was intended to overcome the one-sided nature of many partnerships that often provide more rewards to institutions from wealthy countries than to their Sub-Saharan African counterparts. The benefits of this MEPI approach are reflected in at least five positive outcomes. First, effective partnerships have been developed across a diverse group of MEPI stakeholders. Second, a "community of practice" has been established to continue strengthening medical education in Sub-Saharan Africa. Third, links have been strengthened among MEPI health science schools in Sub-Saharan Africa, their communities, and ministries of both health and education. Fourth, respect among partners in the United States for a culture of ownership and self-determinism among their African counterparts committed to improving education has been enhanced. And finally, performance metrics for strengthening of health science education in Sub-Saharan Africa have been advanced. Meanwhile, partner medical schools in the United States have witnessed the benefits of collaborating across traditional disciplinary boundaries, such as physicians working within highly functioning community-based health care teams with many of the participating schools in Sub-Saharan Africa. MEPI demonstrates that North-South as well as South-South partnerships, with an explicit focus on improving local health systems through better education, can be designed to empower partners in the South with support from collaborators in the North.

  20. Assessment of Health Informatics Competencies in Undergraduate ...

    African Journals Online (AJOL)

    Rwanda Journal Series F: Medicine and Health Sciences Vol. ... establishment of continuous on-the-job training in health informatics for those ... deals with the resources, devices and formalized methods .... informatics competencies in undergraduate level, the tool ... Descriptive statistics were used to describe numerical.

  1. Remote Collaboration, Decision Support, and On-Demand Medical Image Analysis for Acute Stroke Care

    NARCIS (Netherlands)

    Sales Barros, Renan; Borst, Jordi; Kleynenberg, Steven; Badr, Celine; Ganji, Rama-Rao; de Bliek, Hubrecht; Zeng-Eyindanga, Landry-Stephane; van den Brink, Henk; Majoie, Charles; Marquering, Henk; Olabarriaga, Silvia Delgado

    2015-01-01

    Acute stroke is the leading cause of disabilities and the fourth cause of death worldwide. The treatment of stroke patients often requires fast collaboration between medical experts and fast analysis and sharing of large amounts of medical data, especially image data. In this situation, cloud

  2. Informatization Level Assessment Framework and Educational Policy Implications

    OpenAIRE

    Ana Sekulovska; Pece Mitrevski

    2018-01-01

    Seeing the informatization as a measure of the educational policy, we propose an informatization level assessment framework and introduce a composite indicator – Education Informatization Index, calculated as a weighted sum by applying the Rank-Order Centroid method for weight designation. Although it is made up of only two main categories (Educational Policy Implementation subindex and Educational Policy Creation subindex) and a total of six individual indicators, it captures well all the so...

  3. Tourism informatics towards novel knowledge based approaches

    CERN Document Server

    Hashimoto, Kiyota; Iwamoto, Hidekazu

    2015-01-01

    This book introduces new trends of theory and practice of information technologies in tourism. The book does not handle only the fundamental contribution, but also discusses innovative and emerging technologies to promote and develop new generation tourism informatics theory and their applications. Some chapters are concerned with data analysis, web technologies, social media, and their case studies. Travel information on the web provided by travelers is very useful for other travelers make their travel plan. A chapter in this book proposes a method for interactive retrieval of information on accommodation facilities to support travelling customers in their travel preparations. Also an adaptive user interface for personalized transportation guidance system is proposed. Another chapter in this book shows a novel support system for the collaborative tourism planning by using the case reports that are collected via Internet. Also, a system for recommending hotels for the users is proposed and evaluated. Other ch...

  4. The history of pathology informatics: A global perspective

    Science.gov (United States)

    Park, Seung; Parwani, Anil V.; Aller, Raymond D.; Banach, Lech; Becich, Michael J.; Borkenfeld, Stephan; Carter, Alexis B.; Friedman, Bruce A.; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron

    2013-01-01

    Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286

  5. Complexity in graduate medical education: a collaborative education agenda for internal medicine and geriatric medicine.

    Science.gov (United States)

    Chang, Anna; Fernandez, Helen; Cayea, Danelle; Chheda, Shobhina; Paniagua, Miguel; Eckstrom, Elizabeth; Day, Hollis

    2014-06-01

    Internal medicine residents today face significant challenges in caring for an increasingly complex patient population within ever-changing education and health care environments. As a result, medical educators, health care system leaders, payers, and patients are demanding change and accountability in graduate medical education (GME). A 2012 Society of General Internal Medicine (SGIM) retreat identified medical education as an area for collaboration between internal medicine and geriatric medicine. The authors first determined a short-term research agenda for resident education by mapping selected internal medicine reporting milestones to geriatrics competencies, and listing available sample learner assessment tools. Next, the authors proposed a strategy for long-term collaboration in three priority areas in clinical medicine that are challenging for residents today: (1) team-based care, (2) transitions and readmissions, and (3) multi-morbidity. The short-term agenda focuses on learner assessment, while the long-term agenda allows for program evaluation and improvement. This model of collaboration in medical education combines the resources and expertise of internal medicine and geriatric medicine educators with the goal of increasing innovation and improving outcomes in GME targeting the needs of our residents and their patients.

  6. Android Mobile Informatics Application for some Hereditary Diseases and Disorders (AMAHD: A complementary framework for medical practitioners and patients

    Directory of Open Access Journals (Sweden)

    Olugbenga Oluwagbemi

    Full Text Available Hereditary diseases and disorders constitute a public health problem. Many people in rural communities of developing countries of the world are particularly ignorant about the cause, modes of transmissions and the treatment plans for such diseases. In some cases, some people lack essential knowledge between common and rare hereditary diseases.It is therefore appropriate and essential to develop a mobile application that will act as an educative resource and a good knowledge base for common and rare hereditary diseases.The aim of this research is to develop AMAHD (Android Mobile Informatics Application for some Hereditary Diseases and Disorders.The objectives of this research are to create an android mobile application that will act as a reference point and provide useful information about various hereditary diseases to medical personnel and professionals; provide additional educational resource to biological and bioinformatics researchers in different higher institutions; and provide a pedagogical, diagnostic and complementary foundational learning tool for African research students in biosciences, bioinformatics, and all other categories of students that currently engage in multidisciplinary research in the aspect of hereditary diseases.Essential data was sourced from relevant literature. We developed AMAHD through an integration of programming languages in Java and XML (Extended Markup Language. SQLite was used to implement the database. We developed a Logical Disjunction Rule-based Algorithm (LDRA for the AMAHD’s diagnosis module.A comparative analysis between existing commercial hereditary mobile applications and AMAHD was conducted and the results presented. A world-wide online survey (spanning Africa, Asia, Europe, America and Australia was conducted to sample the opinion of individuals across the globe on the classification of hereditary diseases as either rare or common, within their respective regions. In addition, an evaluation of

  7. Machine learning in healthcare informatics

    CERN Document Server

    Acharya, U; Dua, Prerna

    2014-01-01

    The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

  8. ON EXPERIENCE OF THE COLLABORATION AND PROJECT MANAGEMENT INFORMATION SYSTEM PODIO IMPLEMENTATION IN THE MEDICAL UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Andrii V. Semenets

    2014-12-01

    Full Text Available The Information Technologies role in the medical university management is analyzed. The importance of the application of the electronic document management in the medical universities is shown. The implementation capabilities of the electronic document management system within a cloud services are shown. A Podio collaboration and project management cloud service features overview is presented. The methodology of the Podio capabilities usage to the medical university task management solving is developed. An approaches to the Podio Workspaces and Applications development for the faculties collaboration and project management in the departments of the medical universities are presented. The examples of the Podio features usage to the work-flow automation of the information-analytical and hardware and software support departments of the Ternopil State Medical University named after I. Ja. Horbachevsky are shown.

  9. Pathology informatics fellowship retreats: The use of interactive scenarios and case studies as pathology informatics teaching tools

    Directory of Open Access Journals (Sweden)

    Roy E Lee

    2012-01-01

    Full Text Available Background: Last year, our pathology informatics fellowship added informatics-based interactive case studies to its existing educational platform of operational and research rotations, clinical conferences, a common core curriculum with an accompanying didactic course, and national meetings. Methods: The structure of the informatics case studies was based on the traditional business school case study format. Three different formats were used, varying in length from short, 15-minute scenarios to more formal multiple hour-long case studies. Case studies were presented over the course of three retreats (Fall 2011, Winter 2012, and Spring 2012 and involved both local and visiting faculty and fellows. Results: Both faculty and fellows found the case studies and the retreats educational, valuable, and enjoyable. From this positive feedback, we plan to incorporate the retreats in future academic years as an educational component of our fellowship program. Conclusions: Interactive case studies appear to be valuable in teaching several aspects of pathology informatics that are difficult to teach in more traditional venues (rotations and didactic class sessions. Case studies have become an important component of our fellowship′s educational platform.

  10. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Susannah

    2011-10-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  11. Research and development and industrial informatization

    International Nuclear Information System (INIS)

    1995-08-01

    This book deals with research and development and industrial informatization with development of technology international trend, the present conditions of scientific technology in the major nations, politics of technical development and trend, process of national research and development, research for industrial research and development, strengthen cooperation for scientific technology among nations, current situation and development of technology by field such as energy, software and system, and technology for industrial informatization.

  12. Embedded librarian within an online health informatics graduate research course: a case study.

    Science.gov (United States)

    Kumar, Sajeesh; Wu, Lin; Reynolds, Rebecca

    2014-01-01

    The Health Sciences Library and the Department of Health Informatics & Information Management at the University of Tennessee Health Science Center in Memphis piloted an embedded librarian project in summer 2012. The value and effectiveness of the pilot project was evaluated by analyzing the content of e-mail questions received from the students and the students' answers to the pre- and post-class surveys. The project received positive feedback from the students and course faculty. Librarians collaborating with teaching faculty and interacting one-on-one with students in health information-intensive courses proved to be helpful for student learning.

  13. An Invitation to Collaborate: The SPIRIT Open Source Health Care Portal

    Science.gov (United States)

    Bray, Brian; Molin, Joseph Dal

    2001-01-01

    The SPIRIT portal is a web site resulting from a joint project of the European Commission 5th Framework Research Programme for Information Society Technologies, Minoru Development (France), Conecta srl (Italy), and Sistema Information Systems (Italy). The portal indexes and disseminates free software, serves as a meeting point for health care informatics researchers, and provides collaboration services to health care innovators. This poster session describes the services of the portal and invites researchers to join a worldwide collaborative community developing evidence based health care solutions.

  14. Transforming consumer health informatics through a patient work framework: connecting patients to context.

    Science.gov (United States)

    Valdez, Rupa S; Holden, Richard J; Novak, Laurie L; Veinot, Tiffany C

    2015-01-01

    Designing patient-centered consumer health informatics (CHI) applications requires understanding and creating alignment with patients' and their family members' health-related activities, referred to here as 'patient work'. A patient work approach to CHI draws on medical social science and human factors engineering models and simultaneously attends to patients, their family members, activities, and context. A patient work approach extends existing approaches to CHI design that are responsive to patients' biomedical realities and personal skills and behaviors. It focuses on the embeddedness of patients' health management in larger processes and contexts and prioritizes patients' perspectives on illness management. Future research is required to advance (1) theories of patient work, (2) methods for assessing patient work, and (3) techniques for translating knowledge of patient work into CHI application design. Advancing a patient work approach within CHI is integral to developing and deploying consumer-facing technologies that are integrated with patients' everyday lives. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com. For numbered affiliations see end of article.

  15. Health information technology and the medical school curriculum.

    Science.gov (United States)

    Triola, Marc M; Friedman, Erica; Cimino, Christopher; Geyer, Enid M; Wiederhorn, Jo; Mainiero, Crystal

    2010-12-01

    Medical schools must teach core biomedical informatics competencies that address health information technology (HIT), including explaining electronic medical record systems and computerized provider order entry systems and their role in patient safety; describing the research uses and limitations of a clinical data warehouse; understanding the concepts and importance of information system interoperability; explaining the difference between biomedical informatics and HIT; and explaining the ways clinical information systems can fail. Barriers to including these topics in the curricula include lack of teachers; the perception that informatics competencies are not applicable during preclinical courses and there is no place in the clerkships to teach them; and the legal and policy issues that conflict with students' need to develop skills. However, curricular reform efforts are creating opportunities to teach these topics with new emphasis on patient safety, team-based medical practice, and evidence-based care. Overarching HIT competencies empower our students to be lifelong technology learners.

  16. The phytophthora genome initiative database: informatics and analysis for distributed pathogenomic research.

    Science.gov (United States)

    Waugh, M; Hraber, P; Weller, J; Wu, Y; Chen, G; Inman, J; Kiphart, D; Sobral, B

    2000-01-01

    The Phytophthora Genome Initiative (PGI) is a distributed collaboration to study the genome and evolution of a particularly destructive group of plant pathogenic oomycete, with the goal of understanding the mechanisms of infection and resistance. NCGR provides informatics support for the collaboration as well as a centralized data repository. In the pilot phase of the project, several investigators prepared Phytophthora infestans and Phytophthora sojae EST and Phytophthora sojae BAC libraries and sent them to another laboratory for sequencing. Data from sequencing reactions were transferred to NCGR for analysis and curation. An analysis pipeline transforms raw data by performing simple analyses (i.e., vector removal and similarity searching) that are stored and can be retrieved by investigators using a web browser. Here we describe the database and access tools, provide an overview of the data therein and outline future plans. This resource has provided a unique opportunity for the distributed, collaborative study of a genus from which relatively little sequence data are available. Results may lead to insight into how better to control these pathogens. The homepage of PGI can be accessed at http:www.ncgr.org/pgi, with database access through the database access hyperlink.

  17. An online app platform enhances collaborative medical student group learning and classroom management.

    Science.gov (United States)

    Peacock, Justin G; Grande, Joseph P

    2016-01-01

    The authors presented their results in effectively using a free and widely-accessible online app platform to manage and teach a first-year pathology course at Mayo Medical School. The authors utilized the Google "Blogger", "Forms", "Flubaroo", "Sheets", "Docs", and "Slides" apps to effectively build a collaborative classroom teaching and management system. Students were surveyed on the use of the app platform in the classroom, and 44 (94%) students responded. Thirty-two (73%) of the students reported that "Blogger" was an effective place for online discussion of pathology topics and questions. 43 (98%) of the students reported that the "Forms/Flubaroo" grade-reporting system was helpful. 40 (91%) of the students used the remote, collaborative features of "Slides" to create team-based learning presentations, and 39 (89%) of the students found those collaborative features helpful. "Docs" helped teaching assistants to collaboratively create study guides or grading rubrics. Overall, 41 (93%) of the students found that the app platform was helpful in establishing a collaborative, online classroom environment. The online app platform allowed faculty to build an efficient and effective classroom teaching and management system. The ease of accessibility and opportunity for collaboration allowed for collaborative learning, grading, and teaching.

  18. Toward More Successful Biomedical Informatics Education Programs and Ecosystems in the Arab World.

    Science.gov (United States)

    Wageih, Mohamed A; Marcano-Cedeño, Alexis; Gómez, Enrique J; Mantas, John

    2015-01-01

    Biomedical & Health Informatics (BMHI) is relatively new in Arab States. However, several programs/ tracks are running, with high promises of expansion. Programs are evaluated by national authorities, not by a specialized body/association. This does not always mean that the program is of an international standard. One of the possible ways of ensuring the quality of these programs is to be evaluated by international agencies. The International Medical Informatics Association (IMIA) has the expertise in the evaluation BMHI education programs. Accredited programs staffs will have the opportunities for Internationalization and to be engaged with other top-notch organizations, which will have great impacts on the overall implementations of the BMHI in the Arab World. The goal of this document is to show to Arab Universities (pilot: Egypt) how to apply for IMIA Accreditation for their programs.

  19. The Teaching of Informatics for Business Students

    Science.gov (United States)

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  20. A crowdsourcing model for creating preclinical medical education study tools.

    Science.gov (United States)

    Bow, Hansen C; Dattilo, Jonathan R; Jonas, Andrea M; Lehmann, Christoph U

    2013-06-01

    During their preclinical course work, medical students must memorize and recall substantial amounts of information. Recent trends in medical education emphasize collaboration through team-based learning. In the technology world, the trend toward collaboration has been characterized by the crowdsourcing movement. In 2011, the authors developed an innovative approach to team-based learning that combined students' use of flashcards to master large volumes of content with a crowdsourcing model, using a simple informatics system to enable those students to share in the effort of generating concise, high-yield study materials. The authors used Google Drive and developed a simple Java software program that enabled students to simultaneously access and edit sets of questions and answers in the form of flashcards. Through this crowdsourcing model, medical students in the class of 2014 at the Johns Hopkins University School of Medicine created a database of over 16,000 questions that corresponded to the Genes to Society basic science curriculum. An analysis of exam scores revealed that students in the class of 2014 outperformed those in the class of 2013, who did not have access to the flashcard system, and a survey of students demonstrated that users were generally satisfied with the system and found it a valuable study tool. In this article, the authors describe the development and implementation of their crowdsourcing model for creating study materials, emphasize its simplicity and user-friendliness, describe its impact on students' exam performance, and discuss how students in any educational discipline could implement a similar model of collaborative learning.

  1. Perceptions of pathology informatics by non-informaticist pathologists and trainees

    Directory of Open Access Journals (Sweden)

    Addie Walker

    2016-01-01

    Full Text Available Background: Although pathology informatics (PI is essential to modern pathology practice, the field is often poorly understood. Pathologists who have received little to no exposure to informatics, either in training or in practice, may not recognize the roles that informatics serves in pathology. The purpose of this study was to characterize perceptions of PI by noninformatics-oriented pathologists and to do so at two large centers with differing informatics environments. Methods: Pathology trainees and staff at Cleveland Clinic (CC and Massachusetts General Hospital (MGH were surveyed. At MGH, pathology department leadership has promoted a pervasive informatics presence through practice, training, and research. At CC, PI efforts focus on production systems that serve a multi-site integrated health system and a reference laboratory, and on the development of applications oriented to department operations. The survey assessed perceived definition of PI, interest in PI, and perceived utility of PI. Results: The survey was completed by 107 noninformatics-oriented pathologists and trainees. A majority viewed informatics positively. Except among MGH trainees, confusion of PI with information technology (IT and help desk services was prominent, even in those who indicated they understood informatics. Attendings and trainees indicated desire to learn more about PI. While most acknowledged that having some level of PI knowledge would be professionally useful and advantageous, only a minority plan to utilize it. Conclusions: Informatics is viewed positively by the majority of noninformatics pathologists at two large centers with differing informatics orientations. Differences in departmental informatics culture can be attributed to the varying perceptions of PI by different individuals. Incorrect perceptions exist, such as conflating PI with IT and help desk services, even among those who claim to understand PI. Further efforts by the PI community could

  2. Ethical Issues in Modern Medical Informatization%现代医学信息化中的伦理问题研究

    Institute of Scientific and Technical Information of China (English)

    龙艺; 田宗远; 陈龙

    2013-01-01

    医学信息化技术广泛地应用于现代医疗各个环节之中,其具有高效、私密和功利性等特征,同时也产生了一些伦理问题.这些伦理问题折射了部分医务工作者对此缺乏足够的重视、对信息化技术的特点缺乏应有的认识、医疗机构对此缺少防范技术和监管等问题.对于信息技术所导致的伦理问题,应当从加强立法、强化和规范医院的管理、加强医疗机构和医务工作者的教育等方面抓起,化解现代医学信息化中的伦理问题.%Medical information technology has been widely used in modern medicine,with high efficiency,privacy and utilitarian characteristics.However,it has brought many relevant ethical issues which reflect the less attention,knowledge deficit and lacking prevention technology and regulation in some medical workers and some medical institutions.Dealing with these ethical problems caused by information technology,we should strengthen legislation,strengthen and regulate the management of hospitals,strengthen the corresponding education in medical institutions,in order to solve ethical problems in modem medical informatization.

  3. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research.

    Science.gov (United States)

    King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  4. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  5. Chapter 17: bioimage informatics for systems pharmacology.

    Directory of Open Access Journals (Sweden)

    Fuhai Li

    2013-04-01

    Full Text Available Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi. Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies.

  6. Health Informatics in the Classroom: An Empirical Study to Investigate Higher Education's Response to Healthcare Transformation

    Science.gov (United States)

    Ashrafi, Noushin; Kuilboer, Jean-Pierre; Joshi, Chaitanya; Ran, Iris; Pande, Priyanka

    2014-01-01

    The explosive advances in information technology combined with the current climate for health care reform have intensified the need for skilled individuals who can develop, understand, and manage medical information systems in organizations. Health Informatics facilitates quality care at a reasonable cost by allowing access to the right data by…

  7. Context Sensitive Health Informatics

    DEFF Research Database (Denmark)

    involves careful consideration of both human and organizational factors. This book presents the proceedings of the Context Sensitive Health Informatics (CSHI) conference, held in Copenhagen, Denmark, in August 2013. The theme of this year’s conference is human and sociotechnical approaches. The Human...... different healthcare contexts. Healthcare organizations, health policy makers and regulatory bodies globally are starting to acknowledge this essential role of human and organizational factors for safe and effective health information technology. This book will be of interest to all those involved......Healthcare information technologies are now routinely deployed in a variety of healthcare contexts. These contexts differ widely, but the smooth integration of IT systems is crucial, so the design, implementation, and evaluation of safe, effective, efficient and easy to adopt health informatics...

  8. Advances in Intelligence and Security Informatics

    CERN Document Server

    Mao, Wenji

    2012-01-01

    The Intelligent Systems Series comprises titles that present state of the art knowledge and the latest advances in intelligent systems. Its scope includes theoretical studies, design methods, and real-world implementations and applications. Traditionally, Intelligence and Security Informatics (ISI) research and applications have focused on information sharing and data mining, social network analysis, infrastructure protection and emergency responses for security informatics. With the continuous advance of IT technologies and the increasing sophistication of national and international securi

  9. Building a Culture of Health Informatics Innovation and Entrepreneurship: A New Frontier.

    Science.gov (United States)

    Househ, Mowafa; Alshammari, Riyad; Almutairi, Mariam; Jamal, Amr; Alshoaib, Saleh

    2015-01-01

    Entrepreneurship and innovation within the health informatics (HI) scientific community are relatively sluggish when compared to other disciplines such as computer science and engineering. Healthcare in general, and specifically, the health informatics scientific community needs to embrace more innovative and entrepreneurial practices. In this paper, we explore the concepts of innovation and entrepreneurship as they apply to the health informatics scientific community. We also outline several strategies to improve the culture of innovation and entrepreneurship within the health informatics scientific community such as: (I) incorporating innovation and entrepreneurship in health informatics education; (II) creating strong linkages with industry and healthcare organizations; (III) supporting national health innovation and entrepreneurship competitions; (IV) creating a culture of innovation and entrepreneurship within healthcare organizations; (V) developing health informatics policies that support innovation and entrepreneurship based on internationally recognized standards; and (VI) develop an health informatics entrepreneurship ecosystem. With these changes, we conclude that embracing health innovation and entrepreneurship may be more readily accepted over the long-term within the health informatics scientific community.

  10. A learning collaborative of CMHCs and CHCs to support integration of behavioral health and general medical care.

    Science.gov (United States)

    Vannoy, Steven D; Mauer, Barbara; Kern, John; Girn, Kamaljeet; Ingoglia, Charles; Campbell, Jeannie; Galbreath, Laura; Unützer, Jürgen

    2011-07-01

    Integration of general medical and mental health services is a growing priority for safety-net providers. The authors describe a project that established a one-year learning collaborative focused on integration of services between community health centers (CHCs) and community mental health centers (CMHCs). Specific targets were treatment for general medical and psychiatric symptoms related to depression, bipolar disorder, alcohol use disorders, and metabolic syndrome. This observational study used mixed methods. Quantitative measures included 15 patient-level health indicators, practice self-assessment of resources and support for chronic disease self-management, and participant satisfaction. Sixteen CHC-CMHC pairs were selected for the learning collaborative series. One pair dropped out because of personnel turnover. All teams increased capacity on one or more patient health indicators. CHCs scored higher than CMHCs on support for chronic disease self-management. Participation in the learning collaborative increased self-assessment scores for CHCs and CMHCs. Participant satisfaction was high. Observations by faculty indicate that quality improvement challenges included tracking patient-level outcomes, workforce issues, and cross-agency communication. Even though numerous systemic barriers were encountered, the findings support existing literature indicating that the learning collaborative is a viable quality improvement approach for enhancing integration of general medical and mental health services between CHCs and CMHCs. Real-world implementation of evidence-based guidelines presents challenges often absent in research. Technical resources and support, a stable workforce with adequate training, and adequate opportunities for collaborator communications are particular challenges for integrating behavioral and general medical services across CHCs and CMHCs.

  11. The Institute for Safe Medication Practices and Poison Control Centers: Collaborating to Prevent Medication Errors and Unintentional Poisonings.

    Science.gov (United States)

    Vaida, Allen J

    2015-06-01

    This article provides an overview on the Institute for Safe Medication Practices (ISMP), the only independent nonprofit organization in the USA devoted to the prevention of medication errors. ISMP developed the national Medication Errors Reporting Program (MERP) and investigates and analyzes errors in order to formulate recommendations to prevent further occurrences. ISMP works closely with the US Food and Drug Administration (FDA), drug manufacturers, professional organizations, and others to promote changes in package design, practice standards, and healthcare practitioner and consumer education. By collaborating with ISMP to share and disseminate information, Poison Control centers, emergency departments, and toxicologists can help decrease unintentional and accidental poisonings.

  12. Perspectives of System Informatics

    National Research Council Canada - National Science Library

    Bjørner, D

    1999-01-01

    The volume comprises extended abstracts of the papers selected for the presentation at the Third International Andrei Ershov Memorial Conference Perspectives of System Informatics, Akademgorodok (Novosibirsk, Russia), July 6-9, 1999...

  13. Omics Informatics: From Scattered Individual Software Tools to Integrated Workflow Management Systems.

    Science.gov (United States)

    Ma, Tianle; Zhang, Aidong

    2017-01-01

    Omic data analyses pose great informatics challenges. As an emerging subfield of bioinformatics, omics informatics focuses on analyzing multi-omic data efficiently and effectively, and is gaining momentum. There are two underlying trends in the expansion of omics informatics landscape: the explosion of scattered individual omics informatics tools with each of which focuses on a specific task in both single- and multi- omic settings, and the fast-evolving integrated software platforms such as workflow management systems that can assemble multiple tools into pipelines and streamline integrative analysis for complicated tasks. In this survey, we give a holistic view of omics informatics, from scattered individual informatics tools to integrated workflow management systems. We not only outline the landscape and challenges of omics informatics, but also sample a number of widely used and cutting-edge algorithms in omics data analysis to give readers a fine-grained view. We survey various workflow management systems (WMSs), classify them into three levels of WMSs from simple software toolkits to integrated multi-omic analytical platforms, and point out the emerging needs for developing intelligent workflow management systems. We also discuss the challenges, strategies and some existing work in systematic evaluation of omics informatics tools. We conclude by providing future perspectives of emerging fields and new frontiers in omics informatics.

  14. A model curriculum of health care informatics for Dutch higher professional education.

    Science.gov (United States)

    Aarts, J.

    1995-01-01

    This paper describes the results of a two year project to design a model curriculum of health care informatics for Dutch higher professional education. The core of the curriculum are sixteen modules which cover the broad range of medical informatics and which are closely related to the profiles of the professions involved (nursing, physiotherapy, speech therapy, occupational therapy and dietetics). The curriculum emphasizes the need of using structured data and information to perform tasks in health care delivery and management, for which modern information technology is indispensable. The model curriculum will enable faculty to redesign existing undergraduate programs and to select the contents they see appropriate. In this way we hope that the model curriculum will contribute to an innovative attitude of future graduating health care professionals. A new three year project just has started to develop learning materials using professional health care software based on the sixteen modules of the curriculum. PMID:8563329

  15. Breakdowns in collaborative information seeking

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2010-01-01

    Collaborative information seeking is integral to many professional activities. In hospital work, the medication process encompasses continual seeking for information and collaborative grounding of information. This study investigates breakdowns in collaborative information seeking through analyses...... of the use of the electronic medication record adopted in a Danish healthcare region and of the reports of five years of medication incidents at Danish hospitals. The results show that breakdowns in collaborative information seeking is a major source of medication incidents, that most of these breakdowns...... are breakdowns in collaborative grounding rather than information seeking, that the medication incidents mainly concern breakdowns in the use of records as opposed to oral communication, that the breakdowns span multiple degrees of separation between clinicians, and that the electronic medication record has...

  16. Health Informatics 3.0 and other increasingly dispersed technologies require even greater trust: promoting safe evidence-based health informatics. Contribution of the IMIA Working Group on Technology Assessment & Quality Development in Health Informatics.

    Science.gov (United States)

    Rigby, M; Ammenwerth, E; Talmon, J; Nykänen, P; Brender, J; de Keizer, N

    2011-01-01

    Health informatics is generally less committed to a scientific evidence-based approach than any other area of health science, which is an unsound position. Introducing the new Web 3.0 paradigms into health IT applications can unleash a further great potential, able to integrate and distribute data from multiple sources. The counter side is that it makes the user and the patient evermore dependent on the 'black box' of the system, and the re-use of the data remote from the author and initial context. Thus anticipatory consideration of uses, and proactive analysis of evidence of effects, are imperative, as only when a clinical technology can be proven to be trustworthy and safe should it be implemented widely - as is the case with other health technologies. To argue for promoting evidence-based health informatics as systems become more powerful and pro-active yet more dispersed and remote; and evaluation as the means of generating the necessary scientific evidence base. To present ongoing IMIA and EFMI initiatives in this field. Critical overview of recent developments in health informatics evaluation, alongside the precedents of other health technologies, summarising current initiatives and the new challenges presented by Health Informatics 3.0. Web 3.0 should be taken as an opportunity to move health informatics from being largely unaccountable to one of being an ethical and responsible science-based domain. Recent and planned activities of the EFMI and IMIA working groups have significantly progressed key initiatives. Concurrent with the emergence of Web 3.0 as a means of new-generation diffuse health information systems comes an increasing need for an evidence-based culture in health informatics.

  17. Empirical research in medical ethics: How conceptual accounts on normative-empirical collaboration may improve research practice

    Science.gov (United States)

    2012-01-01

    Background The methodology of medical ethics during the last few decades has shifted from a predominant use of normative-philosophical analyses to an increasing involvement of empirical methods. The articles which have been published in the course of this so-called 'empirical turn' can be divided into conceptual accounts of empirical-normative collaboration and studies which use socio-empirical methods to investigate ethically relevant issues in concrete social contexts. Discussion A considered reference to normative research questions can be expected from good quality empirical research in medical ethics. However, a significant proportion of empirical studies currently published in medical ethics lacks such linkage between the empirical research and the normative analysis. In the first part of this paper, we will outline two typical shortcomings of empirical studies in medical ethics with regard to a link between normative questions and empirical data: (1) The complete lack of normative analysis, and (2) cryptonormativity and a missing account with regard to the relationship between 'is' and 'ought' statements. Subsequently, two selected concepts of empirical-normative collaboration will be presented and how these concepts may contribute to improve the linkage between normative and empirical aspects of empirical research in medical ethics will be demonstrated. Based on our analysis, as well as our own practical experience with empirical research in medical ethics, we conclude with a sketch of concrete suggestions for the conduct of empirical research in medical ethics. Summary High quality empirical research in medical ethics is in need of a considered reference to normative analysis. In this paper, we demonstrate how conceptual approaches of empirical-normative collaboration can enhance empirical research in medical ethics with regard to the link between empirical research and normative analysis. PMID:22500496

  18. Challenges of safe medication practice in paediatric care--a nursing perspective.

    Science.gov (United States)

    Star, Kristina; Nordin, Karin; Pöder, Ulrika; Edwards, I Ralph

    2013-05-01

    To explore nurses' experiences of handling medications in paediatric clinical practice, with a focus on factors that hinder and facilitate safe medication practices. Twenty nurses (registered nurses) from four paediatric wards at two hospitals in Sweden were interviewed in focus groups. The interviews were analysed using content analysis. Six themes emerged from the analysed interviews: the complexity specific for nurses working on paediatric wards is a hindrance to safe medication practices; nurses' concerns about medication errors cause a considerable psychological burden; the individual nurse works hard for safe medication practices and values support from other nurse colleagues; circumstances out of the ordinary are perceived as critical challenges for maintaining patient safety; nurses value clear instructions, guidelines and routines, but these are often missing, variable or changeable; management, other medical professionals, the pharmacy, the pharmaceutical industry and informatics support need to respond to the requirements of the nurses' working situations to improve safe medication practices. Weaknesses were apparent in the long chain of the medication-delivery process. A joint effort by different professions involved in that delivery process, and a nationwide collaboration between hospitals is recommended to increase safe medication practices in paediatric care. ©2013 Foundation Acta Paediatrica. Published by Blackwell Publishing Ltd.

  19. A network collaboration implementing technology to improve medication dispensing and administration in critical access hospitals.

    Science.gov (United States)

    Wakefield, Douglas S; Ward, Marcia M; Loes, Jean L; O'Brien, John

    2010-01-01

    We report how seven independent critical access hospitals collaborated with a rural referral hospital to standardize workflow policies and procedures while jointly implementing the same health information technologies (HITs) to enhance medication care processes. The study hospitals implemented the same electronic health record, computerized provider order entry, pharmacy information systems, automated dispensing cabinets (ADC), and barcode medication administration systems. We conducted interviews and examined project documents to explore factors underlying the successful implementation of ADC and barcode medication administration across the network hospitals. These included a shared culture of collaboration; strategic sequencing of HIT component implementation; interface among HIT components; strategic placement of ADCs; disciplined use and sharing of workflow analyses linked with HIT applications; planning for workflow efficiencies; acquisition of adequate supply of HIT-related devices; and establishing metrics to monitor HIT use and outcomes.

  20. Collaborative-Group Testing Improves Learning and Knowledge Retention of Human Physiology Topics in Second-Year Medical Students

    Science.gov (United States)

    Vázquez-García, Mario

    2018-01-01

    The present study examined the relationship between second-year medical students' group performance and individual performance in a collaborative-learning environment. In recent decades, university professors in the scientific and humanistic disciplines have successfully put into practice different modalities of collaborative approaches to…

  1. Motives and preferences of general practitioners for new collaboration models with medical specialists: a qualitative study

    Directory of Open Access Journals (Sweden)

    Klazinga Niek S

    2007-01-01

    Full Text Available Abstract Background Collaboration between general practitioners (GPs and specialists has been the focus of many collaborative care projects during the past decade. Unfortunately, quite a number of these projects failed. This raises the question of what motivates GPs to initiate and continue participating with medical specialists in new collaborative care models. The following two questions are addressed in this study: What motivates GPs to initiate and sustain new models for collaborating with medical specialists? What kind of new collaboration models do GPs suggest? Methods A qualitative study design was used. Starting in 2003 and finishing in 2005, we conducted semi-structured interviews with a purposive sample of 21 Dutch GPs. The sampling criteria were age, gender, type of practice, and practice site. The interviews were recorded, fully transcribed, and analysed by two researchers working independently. The resulting motivational factors and preferences were grouped into categories. Results 'Developing personal relationships' and 'gaining mutual respect' appeared to dominate when the motivational factors were considered. Besides developing personal relationships with specialists, the GPs were also interested in familiarizing specialists with the competencies attached to the profession of family medicine. Additionally, they were eager to increase their medical knowledge to the benefit of their patients. The GPs stated a variety of preferences with respect to the design of new models of collaboration. Conclusion Developing personal relationships with specialists appeared to be one of the dominant motives for increased collaboration. Once the relationships have been formed, an informal network with occasional professional contact seemed sufficient. Although GPs are interested in increasing their knowledge, once they have reached a certain level of expertise, they shift their focus to another specialty. The preferences for new collaboration

  2. Characteristics of the Audit Processes for Distributed Informatics Systems

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2009-01-01

    Full Text Available The paper contains issues regarding: main characteristics and examples of the distributed informatics systems and main difference categories among them, concepts, principles, techniques and fields for auditing the distributed informatics systems, concepts and classes of the standard term, characteristics of this one, examples of standards, guidelines, procedures and controls for auditing the distributed informatics systems. The distributed informatics systems are characterized by the following issues: development process, resources, implemented functionalities, architectures, system classes, particularities. The audit framework has two sides: the audit process and auditors. The audit process must be led in accordance with the standard specifications in the IT&C field. The auditors must meet the ethical principles and they must have a high-level of professional skills and competence in IT&C field.

  3. Centralisation of informatics (more effective processes via using new technologies)

    International Nuclear Information System (INIS)

    Cocher, L.

    2004-01-01

    In this paper author deals with next problems of Slovenske elektrarne, Plc (SE): - Centralisation and optimisation of informatics management; - New technologies within Integrated Informatics System IIS-SE: presentation of preliminary Project of 2 nd generation IIS-SE; - Centralisation of the selected data processing. At the present the intensive process of restructuring is taking place in SE, Plc, focused on increasing of the effectiveness of the pursued activities. In connection with this the Informatics section solves two projects: More effective self-management and human resources; Change of Informatics system architecture from decentralised to the centralised ones with an aim to consolidate all information and to make new conditions for higher mobility. (author)

  4. Centralisation of informatics (more effective processes via using new technologies)

    International Nuclear Information System (INIS)

    Cocher, L.

    2004-01-01

    In this presentation author deals with next problems of Slovenske elektrarne, Plc (SE): - Centralisation and optimisation of informatics management; - New technologies within Integrated Informatics System IIS-SE: presentation of preliminary Project of 2 nd generation IIS-SE; - Centralisation of the selected data processing. At the present the intensive process of restructuring is taking place in SE, Plc, focused on increasing of the effectiveness of the pursued activities. In connection with this the Informatics section solves two projects: More effective self-management and human resources; Change of Informatics system architecture from decentralised to the centralised ones with an aim to consolidate all information and to make new conditions for higher mobility

  5. Computer science, biology and biomedical informatics academy: outcomes from 5 years of immersing high-school students into informatics research

    Directory of Open Access Journals (Sweden)

    Andrew J King

    2017-01-01

    Full Text Available The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  6. The role of informatics in patient-centered care and personalized medicine.

    Science.gov (United States)

    Hanna, Matthew G; Pantanowitz, Liron

    2017-06-01

    The practice of cytopathology has dramatically changed due to advances in genomics and information technology. Cytology laboratories have accordingly become increasingly dependent on pathology informatics support to meet the emerging demands of precision medicine. Pathology informatics deals with information technology in the laboratory, and the impact of this technology on workflow processes and staff who interact with these tools. This article covers the critical role that laboratory information systems, electronic medical records, and digital imaging plays in patient-centered personalized medicine. The value of integrated diagnostic reports, clinical decision support, and the use of whole-slide imaging to better evaluate cytology samples destined for molecular testing is discussed. Image analysis that offers more precise and quantitative measurements in cytology is addressed, as well as the role of bioinformatics tools to cope with Big Data from next-generation sequencing. This article also highlights the barriers to the widespread adoption of these disruptive technologies due to regulatory obstacles, limited commercial solutions, poor interoperability, and lack of standardization. Cancer Cytopathol 2017;125(6 suppl):494-501. © 2017 American Cancer Society. © 2017 American Cancer Society.

  7. The Recurrence Relations in Teaching Students of Informatics

    Science.gov (United States)

    Bakoev, Valentin P.

    2010-01-01

    The topic "Recurrence relations" and its place in teaching students of Informatics is discussed in this paper. We represent many arguments about the importance, the necessity and the benefit of studying this subject by Informatics students. They are based on investigation of some fundamental books and textbooks on Discrete Mathematics,…

  8. "MedTRIS" (Medical Triage and Registration Informatics System): A Web-based Client Server System for the Registration of Patients Being Treated in First Aid Posts at Public Events and Mass Gatherings.

    Science.gov (United States)

    Gogaert, Stefan; Vande Veegaete, Axel; Scholliers, Annelies; Vandekerckhove, Philippe

    2016-10-01

    First aid (FA) services are provisioned on-site as a preventive measure at most public events. In Flanders, Belgium, the Belgian Red Cross-Flanders (BRCF) is the major provider of these FA services with volunteers being deployed at approximately 10,000 public events annually. The BRCF has systematically registered information on the patients being treated in FA posts at major events and mass gatherings during the last 10 years. This information has been collected in a web-based client server system called "MedTRIS" (Medical Triage and Registration Informatics System). MedTRIS contains data on more than 200,000 patients at 335 mass events. This report describes the MedTRIS architecture, the data collected, and how the system operates in the field. This database consolidates different types of information with regards to FA interventions in a standardized way for a variety of public events. MedTRIS allows close monitoring in "real time" of the situation at mass gatherings and immediate intervention, when necessary; allows more accurate prediction of resources needed; allows to validate conceptual and predictive models for medical resources at (mass) public events; and can contribute to the definition of a standardized minimum data set (MDS) for mass-gathering health research and evaluation. Gogaert S , Vande veegaete A , Scholliers A , Vandekerckhove P . "MedTRIS" (Medical Triage and Registration Informatics System): a web-based client server system for the registration of patients being treated in first aid posts at public events and mass gatherings. Prehosp Disaster Med. 2016;31(5):557-562.

  9. Incorporating Informatics for Integrating Biology and the Bedside (i2b2) into Predoctoral Trainee Curriculum to Evaluate Student-Generated Hypotheses.

    Science.gov (United States)

    Schieffer, Kathleen M; Peters, Douglas G; Richter, Chesney K; Loc, Welley S; Pawelczyk, James A

    2015-12-01

    As part of the Clinical and Translational Science Institute predoctoral TL1 training program at the Pennsylvania State University, a multidisciplinary team of predoctoral trainees representing the Chemistry, Neurosurgery, Nutritional Sciences, and Public Health Sciences departments were introduced to the NIH-sponsored Informatics for Integrating Biology and the Bedside (i2b2) database to test the following student-generated hypothesis: children with iron deficiency anemia (IDA) are at increased risk of attention deficit-hyperactivity disorder (ADHD). Children aged 4-12 and 4-17 years were categorized into IDA and control groups. De-identified medical records from the Penn State Milton S. Hershey Medical Center (HMC) and the Virginia Commonwealth University Medical Center (VCUMC) were used for the analysis. Overall, ADHD prevalence at each institution was lower than 2011 state estimates. There was a significant association between IDA and ADHD in the 4-17-year-old age group for all children (OR: 1.902 [95% CI: 1.363-2.656]), Caucasian children (OR: 1.802 [95% CI: 1.133-2.864]), and African American children (OR: 1.865 [95% CI: 1.152-3.021]). Clinical and Translational Science Award (CTSA) infrastructure is particularly useful for trainees to answer de novo scientific questions with minimal additional training and technical expertise. Moreover, projects can be expanded by collaborating within the CTSA network. © 2015 Wiley Periodicals, Inc.

  10. Impact Analysis for Risks in Informatics Systems

    OpenAIRE

    Baicu, Floarea; Baches, Maria Alexandra

    2013-01-01

    In this paper are presented methods of impact analysis on informatics system security accidents, qualitative and quantitative methods, starting with risk and informational system security definitions. It is presented the relationship between the risks of exploiting vulnerabilities of security system, security level of these informatics systems, probability of exploiting the weak points subject to financial losses of a company, respectively impact of a security accident on the company. Herewit...

  11. Leveraging Multiactions to Improve Medical Personalized Ranking for Collaborative Filtering

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2017-01-01

    Full Text Available Nowadays, providing high-quality recommendation services to users is an essential component in web applications, including shopping, making friends, and healthcare. This can be regarded either as a problem of estimating users’ preference by exploiting explicit feedbacks (numerical ratings, or as a problem of collaborative ranking with implicit feedback (e.g., purchases, views, and clicks. Previous works for solving this issue include pointwise regression methods and pairwise ranking methods. The emerging healthcare websites and online medical databases impose a new challenge for medical service recommendation. In this paper, we develop a model, MBPR (Medical Bayesian Personalized Ranking over multiple users’ actions, based on the simple observation that users tend to assign higher ranks to some kind of healthcare services that are meanwhile preferred in users’ other actions. Experimental results on the real-world datasets demonstrate that MBPR achieves more accurate recommendations than several state-of-the-art methods and shows its generality and scalability via experiments on the datasets from one mobile shopping app.

  12. Leveraging Multiactions to Improve Medical Personalized Ranking for Collaborative Filtering.

    Science.gov (United States)

    Gao, Shan; Guo, Guibing; Li, Runzhi; Wang, Zongmin

    2017-01-01

    Nowadays, providing high-quality recommendation services to users is an essential component in web applications, including shopping, making friends, and healthcare. This can be regarded either as a problem of estimating users' preference by exploiting explicit feedbacks (numerical ratings), or as a problem of collaborative ranking with implicit feedback (e.g., purchases, views, and clicks). Previous works for solving this issue include pointwise regression methods and pairwise ranking methods. The emerging healthcare websites and online medical databases impose a new challenge for medical service recommendation. In this paper, we develop a model, MBPR (Medical Bayesian Personalized Ranking over multiple users' actions), based on the simple observation that users tend to assign higher ranks to some kind of healthcare services that are meanwhile preferred in users' other actions. Experimental results on the real-world datasets demonstrate that MBPR achieves more accurate recommendations than several state-of-the-art methods and shows its generality and scalability via experiments on the datasets from one mobile shopping app.

  13. Second International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Konar, Amit; Chakraborty, Aruna

    2014-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two-volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 148 scholarly papers, which have been accepted for presentation from over 640 submissions in the second International Conference on Advanced Computing, Networking and Informatics, 2014, held in Kolkata, India during June 24-26, 2014. The first volume includes innovative computing techniques and relevant research results in informatics with selective applications in pattern recognition, signal/image process...

  14. Regenstrief Institute's Medical Gopher: a next-generation homegrown electronic medical record system.

    Science.gov (United States)

    Duke, Jon D; Morea, Justin; Mamlin, Burke; Martin, Douglas K; Simonaitis, Linas; Takesue, Blaine Y; Dixon, Brian E; Dexter, Paul R

    2014-03-01

    Regenstrief Institute developed one of the seminal computerized order entry systems, the Medical Gopher, for implementation at Wishard Hospital nearly three decades ago. Wishard Hospital and Regenstrief remain committed to homegrown software development, and over the past 4 years we have fully rebuilt Gopher with an emphasis on usability, safety, leveraging open source technologies, and the advancement of biomedical informatics research. Our objective in this paper is to summarize the functionality of this new system and highlight its novel features. Applying a user-centered design process, the new Gopher was built upon a rich-internet application framework using an agile development process. The system incorporates order entry, clinical documentation, result viewing, decision support, and clinical workflow. We have customized its use for the outpatient, inpatient, and emergency department settings. The new Gopher is now in use by over 1100 users a day, including an average of 433 physicians caring for over 3600 patients daily. The system includes a wizard-like clinical workflow, dynamic multimedia alerts, and a familiar 'e-commerce'-based interface for order entry. Clinical documentation is enhanced by real-time natural language processing and data review is supported by a rapid chart search feature. As one of the few remaining academically developed order entry systems, the Gopher has been designed both to improve patient care and to support next-generation informatics research. It has achieved rapid adoption within our health system and suggests continued viability for homegrown systems in settings of close collaboration between developers and providers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. HIPAA, HIPAA, Hooray?: Current Challenges and Initiatives in Health Informatics in the United States.

    Science.gov (United States)

    Joshi, Sanjaya

    2008-01-01

    A review of the current challenges, trends and initiatives around the various regulations as related to Health Informatics in the United States is presented. A summary of the functions in a workflow-based approach organized into the process and compliance for HIPAA, secure email and fax communications interfaces, e-prescriptions and patient safety and the health information technology savings claims versus costs follows: HIPAA compliance is complex; data interoperability and integration remains difficult.Email and faxing is possible with current over-the-shelf technologies within the purview of the HIPAA Security and Privacy rule.Integration of e-prescribing and NPI data is an area where health informatics can make a real difference.Medical errors remain high.There are no real savings yet from the usage of health information technologies; the costs for implementation remain high, and the business model has not evolved to meet the needs.Health Information Technology (Health IT) projects continue to have a significant failure rate; Open Source technologies are a viable alternative both for cost reduction and scalability. A discussion on the macro view of health informatics is also presented within the context of healthcare models and a comparison of the U.S. system against other countries.

  16. HIPAA, HIPAA, Hooray? Current Challenges and Initiatives in Health Informatics in the United States

    Directory of Open Access Journals (Sweden)

    Sanjaya Joshi

    2008-01-01

    Full Text Available A review of the current challenges, trends and initiatives around the various regulations as related to Health Informatics in the United States is presented.A summary of the functions in a workflow-based approach organized into the process and compliance for HIPAA, secure email and fax communications interfaces, e-prescriptions and patient safety and the health information technology savings claims versus costs follows: * HIPAA compliance is complex; data interoperability and integration remains difficult. * Email and faxing is possible with current over-the-shelf technologies within the purview of the HIPAA Security and Privacy rule. * Integration of e-prescribing and NPI data is an area where health informatics can make a real difference. * Medical errors remain high. * There are no real savings yet from the usage of health information technologies; the costs for implementation remain high, and the business model has not evolved to meet the needs. * Health Information Technology (Health IT projects continue to have a significant failure rate; Open Source technologies are a viable alternative both for cost reduction and scalability.A discussion on the macro view of health informatics is also presented within the context of healthcare models and a comparison of the U.S. system against other countries.

  17. The twenty first century informatization and artificial intelligence system

    International Nuclear Information System (INIS)

    Noh, Jung Ho

    1999-12-01

    The contents of this book are competition of mental weakness and visually handicapped people, barbarian about the knowledge of commodity, we are living in notion of time of the agricultural age, parade of informatization of fool. Is there a successful case of informatization when it is done as others do?, what is technology of informatization?, there is mistake in traditional information technology from a system of thought, information system, and analysis of improvement of industrial structure case of development for program case of system installation, and a thief free society.

  18. The twenty first century informatization and artificial intelligence system

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jung Ho

    1999-12-15

    The contents of this book are competition of mental weakness and visually handicapped people, barbarian about the knowledge of commodity, we are living in notion of time of the agricultural age, parade of informatization of fool. Is there a successful case of informatization when it is done as others do?, what is technology of informatization?, there is mistake in traditional information technology from a system of thought, information system, and analysis of improvement of industrial structure case of development for program case of system installation, and a thief free society.

  19. The VCU Pressure Ulcer Summit: Collaboration to Operationalize Hospital-Acquired Pressure Ulcer Prevention Best Practice Recommendations.

    Science.gov (United States)

    Brindle, C Tod; Creehan, Sue; Black, Joyce; Zimmermann, Deb

    2015-01-01

    This executive summary reports outcomes of an interprofessional collaboration between experts in pressure ulcer prevention, bedside clinicians, regulatory agencies, quality improvement, informatics experts, and professional nursing organizations. The goal of the collaboration was to develop a framework to assist facilities to operationalize best practice recommendations to sustain organizational culture change in hospital-acquired pressure ulcer prevention, to develop a hospital-acquired pressure ulcer severity score, and to address topics related to the unavoidable pressure ulcer.

  20. Improving the quality of the evidence base of health informatics.

    Science.gov (United States)

    Talmon, Jan

    2008-11-06

    Evaluation of health informatics technology has had attention from quite a few researchers in health informatics in the last few decades. In the early nineties of the past century several working groups and research projects have discussed evaluation methods and methodologies. Despite these activities, evaluation of health informatics has not received the recognition it deserves. In this presentation we will reiterate the arguments put forward in the Declaration of Innsbruck to consider evaluation an essential element of the evidence base of health informatics. Not only are evaluation studies essential, it is also required that such studies are properly reported. A joint effort of the IMIA, EFMI and AMIA working groups on evaluation has resulted in a guideline for reporting the results of evaluation studies of health informatics applications (STARE-HI). STARE-HI is currently endorsed by EFMI. The general assembly of IMIA has adopted STARE-HI as an official IMIA document. Endorsement from AMIA is being sought. A pilot study in which STARE-HI was applied to assess the quality of current reporting clearly indicates that there is quite some room for improvement. Application of guidelines such as STARE-HI would contribute to a further improvement of the evidence base of health informatics and would open the road for high quality reviews and meta-analyses.

  1. Informatics and communication in a state public health department: a case study.

    Science.gov (United States)

    Hills, Rebecca A; Turner, Anne M

    2008-11-06

    State and local health departments are witnessing growth in the area of informatics. As new informatics projects commence, existing methods of communication within the health department may not be sufficient. We gathered information about roles and communication between a development team and a user group working simultaneously on an informatics project in a state public health department in an effort to better define how communication and role definition is best used within an informatics project.

  2. Philosophy of Information and Fundamental Problems of Modern Informatics

    Directory of Open Access Journals (Sweden)

    Konstantin Kolin

    2011-10-01

    Full Text Available Actual philosophical and scientifically methodological problems of modern Informatics as fundamental science and a complex scientific direction are considered. Communication of these problems with prospects of development of Informatics and fundamental science as a whole is shown.

  3. Informatics and Nursing in a Post-Nursing Informatics World: Future Directions for Nurses in an Automated, Artificially Intelligent, Social-Networked Healthcare Environment.

    Science.gov (United States)

    Booth, Richard G

    2016-01-01

    The increased adoption and use of technology within healthcare and society has influenced the nursing informatics specialty in a multitude of fashions. Namely, the nursing informatics specialty currently faces a range of important decisions related to its knowledge base, established values and future directions - all of which are in need of development and future-proofing. In light of the increased use of automation, artificial intelligence and big data in healthcare, the specialty must also reconceptualize the roles of both nurses and informaticians to ensure that the nursing profession is ready to operate within future digitalized healthcare ecosystems. To explore these goals, the author of this manuscript outlines an examination of technological advancements currently taking place within healthcare, and also proposes implications for the nursing role and the nursing informatics specialty. Finally, recommendations and insights towards how the roles of nurses and informaticians might evolve or be shaped in the growing post-nursing informatics era are presented. Copyright © 2016 Longwoods Publishing.

  4. A Successful US Academic Collaborative Supporting Medical Education in a Postconflict Setting

    Directory of Open Access Journals (Sweden)

    Patricia McQuilkin MD

    2014-12-01

    Full Text Available This article describes a model employed by the Academic Collaborative to Support Medical Education in Liberia to augment medical education in a postconflict setting where the health and educational structures and funding are very limited. We effectively utilized a cohort of visiting US pediatric faculty and trainees for short-term but recurrent clinical work and teaching. This model allows US academic medical centers, especially those with smaller residency programs, to provide global health experiences for faculty and trainees while contributing to the strengthening of medical education in the host country. Those involved can work toward a goal of sustainable training with a strengthened host country specialty education system. Partnerships such as ours evolve over time and succeed by meeting the needs of the host country, even during unanticipated challenges, such as the Ebola virus outbreak in West Africa.

  5. RAS - Target Identification - Informatics

    Science.gov (United States)

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  6. The Synergy of applying virtual collaboration tools and problem-based approach for development of knowledge sharing skills : empirical research

    OpenAIRE

    Schoop, Eric; Kriaučiūnienė, Roma; Brundzaitė, Rasa

    2004-01-01

    This article analyses the needs and possibilities to educate new type of virtual collaboration skills for the university students, who are currently studying in business and information systems area. We investigate the possibility to incorporate problem-based group learning and computer supported tools into university curricula. The empirical research results are presented, which summarize experiences of using the virtual collaborative learning (VCL) environment, provided by Business informat...

  7. Informatics, Data Mining, Econometrics and Financial Economics: A Connection

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); W.-K. Wong (Wing-Keung)

    2015-01-01

    textabstractThis short communication reviews some of the literature in econometrics and financial economics that is related to informatics and data mining. We then discuss some of the research on econometrics and financial economics that could be extended to informatics and data mining beyond the

  8. A Model for Clinical Informatics Education for Residents: Addressing an Unmet Need.

    Science.gov (United States)

    Mai, Mark V; Luo, Brooke T; Orenstein, Evan W; Luberti, Anthony A

    2018-04-01

    Opportunities for education in clinical informatics exist throughout the spectrum of formal education extending from high school to postgraduate training. However, physicians in residency represent an underdeveloped source of potential informaticians. Despite the rapid growth of accredited fellowship programs since clinical informatics became a board-eligible subspecialty in 2011, few resident physicians are aware of their role at the intersection of clinical medicine and health information technology or associated opportunities. In an effort to educate and engage residents in clinical informatics, Children's Hospital of Philadelphia has developed a three-pronged model: (1) an elective rotation with hands-on project experience; (2) a longitudinal experience that offers increased exposure and mentorship; and (3) a resident founded and led working group in clinical informatics. We describe resident participation in these initiatives and lessons learned, as well as resident perceptions of how these components have positively influenced informatics knowledge and career choices. Since inception of this model, five residents have pursued the clinical informatics fellowship. This educational model supports resident involvement in hospital-wide informatics efforts with tangible projects and promotes wider engagement through educational opportunities commensurate with the resident's level of interest. Schattauer GmbH Stuttgart.

  9. Developing a collaborative community partnership program in medical asepsis with tattoo studios.

    Science.gov (United States)

    Bechtel, G A; Garrett, C; Grover, S

    1995-10-01

    The possibility of transmission of infectious agents during tattooing has become a legitimate issue of concern for health care providers. A collaborative educational program was developed by a county health department, College of Nursing, and tattoo artists to address issues of medical asepsis with the goal of producing a mechanism for certification of tattoo studios. The group's effort was enhanced by recognizing each other's value systems and by the mutual need for a successful program. A framework for developing, implementing, and evaluating community partnerships was addressed. This program demonstrated that community health nurses can play an instrumental role in collaborating with both health care providers and personal-service workers to minimize transmission of infectious agents during cosmetic procedures.

  10. Computer science education for medical informaticians.

    Science.gov (United States)

    Logan, Judith R; Price, Susan L

    2004-03-18

    The core curriculum in the education of medical informaticians remains a topic of concern and discussion. This paper reports on a survey of medical informaticians with Master's level credentials that asked about computer science (CS) topics or skills that they need in their employment. All subjects were graduates or "near-graduates" of a single medical informatics Master's program that they entered with widely varying educational backgrounds. The survey instrument was validated for face and content validity prior to use. All survey items were rated as having some degree of importance in the work of these professionals, with retrieval and analysis of data from databases, database design and web technologies deemed most important. Least important were networking skills and object-oriented design and concepts. These results are consistent with other work done in the field and suggest that strong emphasis on technical skills, particularly databases, data analysis, web technologies, computer programming and general computer science are part of the core curriculum for medical informatics.

  11. The exploration of the exhibition informatization

    Science.gov (United States)

    Zhang, Jiankang

    2017-06-01

    The construction and management of exhibition informatization is the main task and choke point during the process of Chinese exhibition industry’s transformation and promotion. There are three key points expected to realize a breakthrough during the construction of Chinese exhibition informatization, and the three aspects respectively are adopting service outsourcing to construct and maintain the database, adopting advanced chest card technology to collect various kinds of information, developing statistics analysis to maintain good cutomer relations. The success of Chinese exhibition informatization mainly calls for mature suppliers who can provide construction and maintenance of database, the proven technology, a sense of data security, advanced chest card technology, the ability of data mining and analysis and the ability to improve the exhibition service basing on the commercial information got from the data analysis. Several data security measures are expected to apply during the process of system developing, including the measures of the terminal data security, the internet data security, the media data security, the storage data security and the application data security. The informatization of this process is based on the chest card designing. At present, there are several types of chest card technology: bar code chest card; two-dimension code card; magnetic stripe chest card; smart-chip chest card. The information got from the exhibition data will help the organizers to make relevant service strategies, quantify the accumulated indexes of the customers, and improve the level of the customer’s satisfaction and loyalty, what’s more, the information can also provide more additional services like the commercial trips, VIP ceremonial reception.

  12. Developing an Open Source, Reusable Platform for Distributed Collaborative Information Management in the Early Detection Research Network

    Science.gov (United States)

    Hart, Andrew F.; Verma, Rishi; Mattmann, Chris A.; Crichton, Daniel J.; Kelly, Sean; Kincaid, Heather; Hughes, Steven; Ramirez, Paul; Goodale, Cameron; Anton, Kristen; hide

    2012-01-01

    For the past decade, the NASA Jet Propulsion Laboratory, in collaboration with Dartmouth University has served as the center for informatics for the Early Detection Research Network (EDRN). The EDRN is a multi-institution research effort funded by the U.S. National Cancer Institute (NCI) and tasked with identifying and validating biomarkers for the early detection of cancer. As the distributed network has grown, increasingly formal processes have been developed for the acquisition, curation, storage, and dissemination of heterogeneous research information assets, and an informatics infrastructure has emerged. In this paper we discuss the evolution of EDRN informatics, its success as a mechanism for distributed information integration, and the potential sustainability and reuse benefits of emerging efforts to make the platform components themselves open source. We describe our experience transitioning a large closed-source software system to a community driven, open source project at the Apache Software Foundation, and point to lessons learned that will guide our present efforts to promote the reuse of the EDRN informatics infrastructure by a broader community.

  13. Fellowship training at John Hopkins: programs leading to careers in librarianship and informatics as informaticians or informationists.

    Science.gov (United States)

    Campbell, Jayne M; Roderer, Nancy K

    2005-01-01

    Preparing librarians to meet the information challenges faced in the current and future health care environments is critical. At Johns Hopkins University, three NLM-funded fellowship programs provide opportunities for librarians to utilize the rich environments of the Welch Medical Library and the Division of Health Sciences Informatics in support of life-long learning.

  14. Data, Staff, and Money: Leadership Reflections on the Future of Public Health Informatics.

    Science.gov (United States)

    Leider, Jonathon P; Shah, Gulzar H; Williams, Karmen S; Gupta, Akrati; Castrucci, Brian C

    Health informatics can play a critical role in supporting local health departments' (LHDs') delivery of certain essential public health services and improving evidence base for decision support. However, LHDs' informatics capacities are below an optimum level. Efforts to build such capacities face ongoing challenges. Moreover, little is known about LHD leaders' desires for the future of public health informatics. Conduct a qualitative analysis of LHDs' future informatics plans, perceived barriers to accomplishing those plans, and potential impact of future advances in public health informatics on the work of the public health enterprise. This research presents findings from 49 in-depth key informant interviews with public health leaders and informatics professionals from LHDs, representing insights from across the United States. Interviewees were selected on the basis of the size of the population their LHD serves, as well as level of informatics capacity. Interviews were transcribed, verified, and double coded. Major barriers to doing more with informatics included staff capacity and training, financial constraints, dependency on state health agency, and small LHD size/lack of regionalization. When asked about the role of leadership in expanding informatics, interviewees said that leaders could make it a priority through (1) learning more about informatics and (2) creating appropriate budgets for integrated information systems. Local health department leaders said that they desired data that were timely and geographically specific. In addition, LHD leaders said that they desired greater access to clinical data, especially around chronic disease indicators. Local health department leadership desires to have timely or even real-time data. Local health departments have a great potential to benefit from informatics, particularly electronic health records in advancing their administrative practices and service delivery, but financial and human capital represents the

  15. A core curriculum for clinical fellowship training in pathology informatics

    Directory of Open Access Journals (Sweden)

    David S McClintock

    2012-01-01

    Full Text Available Background: In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. Materials and Methods: The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. Results: Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1 Information Fundamentals, (2 Information Systems, (3 Workflow and Process, and (4 Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012. Discussion: The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world

  16. A stimulus to define informatics and health information technology.

    Science.gov (United States)

    Hersh, William

    2009-05-15

    Despite the growing interest by leaders, policy makers, and others, the terminology of health information technology as well as biomedical and health informatics is poorly understood and not even agreed upon by academics and professionals in the field. The paper, presented as a Debate to encourage further discussion and disagreement, provides definitions of the major terminology used in biomedical and health informatics and health information technology. For informatics, it focuses on the words that modify the term as well as individuals who practice the discipline. Other categories of related terms are covered as well, from the associated disciplines of computer science, information technology and health information management to the major application categories of applications used. The discussion closes with a classification of individuals who work in the largest segment of the field, namely clinical informatics. The goal of presenting in Debate format is to provide a starting point for discussion to reach a documented consensus on the definition and use of these terms.

  17. [Role of self-leadership in the relationship between organizational culture and informatics competency].

    Science.gov (United States)

    Kim, Myoung Soo

    2009-10-01

    The purpose of this study was to identify the moderating and mediating effects of self-leadership in the relationship between organizational culture and nurses' informatics competency. Participants in this study were 297 nurses from the cities of Busan and Ulsan. The scales of organizational culture, self-leadership and informatics competency for nurses were used in this study. Descriptive statistics, Pearson correlation coefficient, stepwise multiple regression were used for data analysis. Nursing informatics competency of the participants was relatively low with a mean score 3.02. There were significant positive correlations between subcategories of perceived organizational culture, self-leadership and nursing informatics competency. Self-leadership was a moderator and a mediator between organizational culture and informatics competency. Based on the results of this study, self-leadership promotion strategies to improve nursing informatics competency are needed.

  18. Applications of the pipeline environment for visual informatics and genomics computations

    Directory of Open Access Journals (Sweden)

    Genco Alex

    2011-07-01

    Full Text Available Abstract Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The

  19. Unravelling the tangled taxonomies of health informatics

    Directory of Open Access Journals (Sweden)

    David Barrett

    2014-08-01

    Full Text Available Even though informatics is a term used commonly in healthcare, it can be a confusing and disengaging one. Many definitions exist in the literature, and attempts have been made to develop a clear taxonomy. Despite this, informatics is still a term that lacks clarity in both its scope and the classification of sub-terms that it encompasses.This paper reviews the importance of an agreed taxonomy and explores the challenges of establishing exactly what is meant by health informatics (HI. It reviews what a taxonomy should do, summarises previous attempts at categorising and organising HI and suggests the elements to consider when seeking to develop a system of classification.The paper does not provide all the answers, but it does clarify the questions. By plotting a path towards a taxonomy of HI, it will be possible to enhance understanding and optimise the benefits of embracing technology in clinical practice.

  20. Design of Cognitive Interfaces for Personal Informatics Feedback

    DEFF Research Database (Denmark)

    Jensen, Camilla Birgitte Falk

    to personal informatics systems, and propose an approach to design cognitive interfaces, which considers both users’ motivations, needs, and goals. In this thesis I propose a new personal informatics framework, the feedback loop, which incorporates lean agile design principles. Including hierarchical modeling...... of goals, activities, and tasks to create minimal viable products. While considering how micro-interactions based on an understanding of data, couples with user needs and the context they appear in, can contribute to creating cognitive interfaces. Designing cognitive interfaces requires a focus....... For instance, examining emotional responses to pleasant and unpleasant media content from brain activity, reveals the large amount of data and extensive analysis required to apply this to future personal informatics systems. In addition we analyse challenges related to temporal aspects of the feedback loop...

  1. An action research study of collaborative strategic reading in English with Saudi medical students

    OpenAIRE

    Al-Roomy, Muhammad

    2013-01-01

    This is an investigative action research study on ways of improving the reading comprehension skills of Arabic medical school students. The study first analysed the difficulties of teaching and learning English and reading in English in a Saudi university medical college. An intervention was planned and implemented based on Collaborative Strategic Reading (CSR –Klingner and Vaughn, 1996). This involved using group work to teach explicitly a set of reading strategies to a class of students who...

  2. Nurse Leadership and Informatics Competencies: Shaping Transformation of Professional Practice.

    Science.gov (United States)

    Kennedy, Margaret Ann; Moen, Anne

    2017-01-01

    Nurse leaders must demonstrate capacities and develop specific informatics competencies in order to provide meaningful leadership and support ongoing transformation of the healthcare system. Concurrently, staff informatics competencies must be planned and fostered to support critical principles of transformation and patient safety in practice, advance evidence-informed practice, and enable nursing to flourish in complex digital environments across the healthcare continuum. In addition to nurse leader competencies, two key aspects of leadership and informatics competencies will be addressed in this chapter - namely, the transformation of health care and preparation of the nursing workforce.

  3. Characteristics of Information Systems and Business Informatics Study Programs

    Science.gov (United States)

    Helfert, Markus

    2011-01-01

    Over the last decade there is an intensive discussion within the Information Systems (IS) and Informatics community about the characteristics and identity of the discipline. Simultaneously with the discussion, there is an ongoing debate on essential skills and capabilities of IS and Business Informatics graduates as well as the profile of IS…

  4. CER Hub: An informatics platform for conducting comparative effectiveness research using multi-institutional, heterogeneous, electronic clinical data.

    Science.gov (United States)

    Hazlehurst, Brian L; Kurtz, Stephen E; Masica, Andrew; Stevens, Victor J; McBurnie, Mary Ann; Puro, Jon E; Vijayadeva, Vinutha; Au, David H; Brannon, Elissa D; Sittig, Dean F

    2015-10-01

    Comparative effectiveness research (CER) requires the capture and analysis of data from disparate sources, often from a variety of institutions with diverse electronic health record (EHR) implementations. In this paper we describe the CER Hub, a web-based informatics platform for developing and conducting research studies that combine comprehensive electronic clinical data from multiple health care organizations. The CER Hub platform implements a data processing pipeline that employs informatics standards for data representation and web-based tools for developing study-specific data processing applications, providing standardized access to the patient-centric electronic health record (EHR) across organizations. The CER Hub is being used to conduct two CER studies utilizing data from six geographically distributed and demographically diverse health systems. These foundational studies address the effectiveness of medications for controlling asthma and the effectiveness of smoking cessation services delivered in primary care. The CER Hub includes four key capabilities: the ability to process and analyze both free-text and coded clinical data in the EHR; a data processing environment supported by distributed data and study governance processes; a clinical data-interchange format for facilitating standardized extraction of clinical data from EHRs; and a library of shareable clinical data processing applications. CER requires coordinated and scalable methods for extracting, aggregating, and analyzing complex, multi-institutional clinical data. By offering a range of informatics tools integrated into a framework for conducting studies using EHR data, the CER Hub provides a solution to the challenges of multi-institutional research using electronic medical record data. Copyright © 2015. Published by Elsevier Ireland Ltd.

  5. Experiences of nurse practitioners and medical practitioners working in collaborative practice models in primary healthcare in Australia - a multiple case study using mixed methods.

    Science.gov (United States)

    Schadewaldt, Verena; McInnes, Elizabeth; Hiller, Janet E; Gardner, Anne

    2016-07-29

    In 2010 policy changes were introduced to the Australian healthcare system that granted nurse practitioners access to the public health insurance scheme (Medicare) subject to a collaborative arrangement with a medical practitioner. These changes facilitated nurse practitioner practice in primary healthcare settings. This study investigated the experiences and perceptions of nurse practitioners and medical practitioners who worked together under the new policies and aimed to identify enablers of collaborative practice models. A multiple case study of five primary healthcare sites was undertaken, applying mixed methods research. Six nurse practitioners, 13 medical practitioners and three practice managers participated in the study. Data were collected through direct observations, documents and semi-structured interviews as well as questionnaires including validated scales to measure the level of collaboration, satisfaction with collaboration and beliefs in the benefits of collaboration. Thematic analysis was undertaken for qualitative data from interviews, observations and documents, followed by deductive analysis whereby thematic categories were compared to two theoretical models of collaboration. Questionnaire responses were summarised using descriptive statistics. Using the scale measurements, nurse practitioners and medical practitioners reported high levels of collaboration, were highly satisfied with their collaborative relationship and strongly believed that collaboration benefited the patient. The three themes developed from qualitative data showed a more complex and nuanced picture: 1) Structures such as government policy requirements and local infrastructure disadvantaged nurse practitioners financially and professionally in collaborative practice models; 2) Participants experienced the influence and consequences of individual role enactment through the co-existence of overlapping, complementary, traditional and emerging roles, which blurred perceptions of

  6. Sciences, computing, informatics: who is the keeper of the real faith?

    OpenAIRE

    Benvenuti, Laura; van der Vet, P.E.; van der Veer, Gerrit C.; Sloep, P.; van Eekelen, M.

    2011-01-01

    Computing, or informatics as we call it in Europe, covers many areas. In this paper we will discuss an important difference between two of these areas: software engineering and information systems. Epistemology, the study of the question: "What grounds can we justifiably have for believing the truth of assertions about reality?", is complex in informatics. This question has different answers, depending on the area we investigate. Curricula in informatics do not discuss this difference explici...

  7. A survey of informatics platforms that enable distributed comparative effectiveness research using multi-institutional heterogeneous clinical data

    Science.gov (United States)

    Sittig, Dean F.; Hazlehurst, Brian L.; Brown, Jeffrey; Murphy, Shawn; Rosenman, Marc; Tarczy-Hornoch, Peter; Wilcox, Adam B.

    2012-01-01

    Comparative Effectiveness Research (CER) has the potential to transform the current healthcare delivery system by identifying the most effective medical and surgical treatments, diagnostic tests, disease prevention methods and ways to deliver care for specific clinical conditions. To be successful, such research requires the identification, capture, aggregation, integration, and analysis of disparate data sources held by different institutions with diverse representations of the relevant clinical events. In an effort to address these diverse demands, there have been multiple new designs and implementations of informatics platforms that provide access to electronic clinical data and the governance infrastructure required for inter-institutional CER. The goal of this manuscript is to help investigators understand why these informatics platforms are required and to compare and contrast six, large-scale, recently funded, CER-focused informatics platform development efforts. We utilized an 8-dimension, socio-technical model of health information technology use to help guide our work. We identified six generic steps that are necessary in any distributed, multi-institutional CER project: data identification, extraction, modeling, aggregation, analysis, and dissemination. We expect that over the next several years these projects will provide answers to many important, and heretofore unanswerable, clinical research questions. PMID:22692259

  8. A survey of informatics platforms that enable distributed comparative effectiveness research using multi-institutional heterogenous clinical data.

    Science.gov (United States)

    Sittig, Dean F; Hazlehurst, Brian L; Brown, Jeffrey; Murphy, Shawn; Rosenman, Marc; Tarczy-Hornoch, Peter; Wilcox, Adam B

    2012-07-01

    Comparative effectiveness research (CER) has the potential to transform the current health care delivery system by identifying the most effective medical and surgical treatments, diagnostic tests, disease prevention methods, and ways to deliver care for specific clinical conditions. To be successful, such research requires the identification, capture, aggregation, integration, and analysis of disparate data sources held by different institutions with diverse representations of the relevant clinical events. In an effort to address these diverse demands, there have been multiple new designs and implementations of informatics platforms that provide access to electronic clinical data and the governance infrastructure required for interinstitutional CER. The goal of this manuscript is to help investigators understand why these informatics platforms are required and to compare and contrast 6 large-scale, recently funded, CER-focused informatics platform development efforts. We utilized an 8-dimension, sociotechnical model of health information technology to help guide our work. We identified 6 generic steps that are necessary in any distributed, multi-institutional CER project: data identification, extraction, modeling, aggregation, analysis, and dissemination. We expect that over the next several years these projects will provide answers to many important, and heretofore unanswerable, clinical research questions.

  9. Personal Informatics in the Wild: Hacking Habits for Health & Happiness

    DEFF Research Database (Denmark)

    Li, Ian; Froehlich, Jon; Larsen, Jakob Eg

    2013-01-01

    Personal informatics is a class of systems that help people collect personal information to improve selfknowledge. Improving self-knowledge can foster selfinsight and promote positive behaviors, such as healthy living and energy conservation. The development of personal informatics applications p...

  10. Bits and bytes: the future of radiology lies in informatics and information technology.

    Science.gov (United States)

    Brink, James A; Arenson, Ronald L; Grist, Thomas M; Lewin, Jonathan S; Enzmann, Dieter

    2017-09-01

    Advances in informatics and information technology are sure to alter the practice of medical imaging and image-guided therapies substantially over the next decade. Each element of the imaging continuum will be affected by substantial increases in computing capacity coincident with the seamless integration of digital technology into our society at large. This article focuses primarily on areas where this IT transformation is likely to have a profound effect on the practice of radiology. • Clinical decision support ensures consistent and appropriate resource utilization. • Big data enables correlation of health information across multiple domains. • Data mining advances the quality of medical decision-making. • Business analytics allow radiologists to maximize the benefits of imaging resources.

  11. The Anesthesiologist-Informatician: A Survey of Physicians Board-Certified in Both Anesthesiology and Clinical Informatics.

    Science.gov (United States)

    Poterack, Karl A; Epstein, Richard H; Dexter, Franklin

    2018-03-12

    All 36 physicians board-certified in both anesthesiology and clinical informatics as of January 1, 2016, were surveyed via e-mail, with 26 responding. Although most (25/26) generally expressed satisfaction with the clinical informatics boards, and view informatics expertise as important to anesthesiology, most (24/26) thought it unlikely or highly unlikely that substantial numbers of anesthesiology residents would pursue clinical informatics fellowships. Anesthesiologists wishing to qualify for the clinical informatics board examination under the practice pathway need to devote a substantive amount of worktime to informatics. There currently are options outside of formal fellowship training to acquire the knowledge to pass.

  12. A national survey on the current status of informatics residency education in pharmacy.

    Science.gov (United States)

    Blash, Anthony; Saltsman, Connie L; Steil, Condit

    2017-11-01

    Upon completion of their post-graduate training, pharmacy informatics residents need to be prepared to interact with clinical and technology experts in the new healthcare environment. This study describes pharmacy informatics residency programs within the United States. Preliminary information for all pharmacy informatics residency programs was accessed from program webpages. An email was sent out to programs asking them to respond to a six-item questionnaire. This questionnaire was designed to elicit information on attributes of the program, behaviors of the preceptors and residents, and attitudes of the residency directors. Of 22 pharmacy informatics residencies identified, nineteen (86%) participated. Twenty (91%) were second post-graduate year (PGY2) residencies. Ten (45%) were accredited by the American Society of Health-System Pharmacists (ASHP), while eight (36%) were candidates for accreditation. Hospital (17/22, 77%) and administrative offices (3/22, 14%) were the predominant training sites for pharmacy informatics residents. Large institutions were the predominant training environment for the pharmacy informatics resident, with 19 of 22 (86%) institutions reporting a licensed bed count of 500 or more. The median (range) number of informatics preceptors at a site was six to eight. Regarding barriers to pharmacy informatics residency education, residency directors reported that residents did not feel prepared based on the limited availability of curricular offerings. In the United States, relatively few residencies are explicitly focused on pharmacy informatics. Most of these are accredited and hospital affiliated, especially with large institutions (>500 beds). Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Fifteen years medical information sciences: the Amsterdam curriculum

    NARCIS (Netherlands)

    Jaspers, Monique W.; Fockens, Paul; Ravesloot, Jan H.; Limburg, Martien; Abu-Hanna, Ameen

    2004-01-01

    Objectives: To inform the medical informatics community on the rational, goals, evolution and present contents of the Medical Information Sciences program of the University of Amsterdam and our achievements. Methods: We elaborate on the history of our program, the philosophy, contents and

  14. Optimization and Data Analysis in Biomedical Informatics

    CERN Document Server

    Pardalos, Panos M; Xanthopoulos, Petros

    2012-01-01

    This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines

  15. A collaborative effort of medical and educational facilities for radiation safety training of nurses

    International Nuclear Information System (INIS)

    Matsuda, Naoki; Yoshida, Masahiro; Takao, Hideaki

    2004-01-01

    The radiation safety training course has been conducted for nurses of the university hospital by the collaboration of medical and educational staffs in Nagasaki University. This course was given for 6 hours covering basics of radiation, effects on human body, tips for radiation protection in clinical settings, and practical training, to more than 350 nurses overall. The pre-instruction survey by questionnaire revealed that 60% of nurses felt fears about radiation when they care for patients, which reduced to less than 15% in the post-instruction survey. The course also motivated nurses to give an answer patients' questions about radiation safety. In contrast, more than 30% of nurses were aware of neither their glass badge readings nor the maximum dose limit of radiation exposure even after the course. These results suggested that medical-educational collaborative training for nurses were effective on reducing nurses' fears about radiation and that repeated and continuous education would be necessary to establish their practice for radiation protection. (author)

  16. Neonatal Informatics: Transforming Neonatal Care Through Translational Bioinformatics

    Science.gov (United States)

    Palma, Jonathan P.; Benitz, William E.; Tarczy-Hornoch, Peter; Butte, Atul J.; Longhurst, Christopher A.

    2012-01-01

    The future of neonatal informatics will be driven by the availability of increasingly vast amounts of clinical and genetic data. The field of translational bioinformatics is concerned with linking and learning from these data and applying new findings to clinical care to transform the data into proactive, predictive, preventive, and participatory health. As a result of advances in translational informatics, the care of neonates will become more data driven, evidence based, and personalized. PMID:22924023

  17. The diversity and disparity in biomedical informatics (DDBI) workshop.

    Science.gov (United States)

    Southerland, William M; Swamidass, S Joshua; Payne, Philip R O; Wiley, Laura; Williams-DeVane, ClarLynda

    2018-01-01

    The Diversity and Disparity in Biomedical Informatics (DDBI) workshop will be focused on complementary and critical issues concerned with enhancing diversity in the informatics workforce as well as diversity in patient cohorts. According to the National Institute of Minority Health and Health Disparities (NIMHD) at the NIH, diversity refers to the inclusion of the following traditionally underrepresented groups: African Americans/Blacks, Asians (>30 countries), American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Latino or Hispanic (20 countries). Gender, culture, and socioeconomic status are also important dimensions of diversity, which may define some underrepresented groups. The under-representation of specific groups in both the biomedical informatics workforce as well as in the patient-derived data that is being used for research purposes has contributed to an ongoing disparity; these groups have not experienced equity in contributing to or benefiting from advancements in informatics research. This workshop will highlight innovative efforts to increase the pool of minority informaticians and discuss examples of informatics research that addresses the health concerns that impact minority populations. This workshop topics will provide insight into overcoming pipeline issues in the development of minority informaticians while emphasizing the importance of minority participation in health related research. The DDBI workshop will occur in two parts. Part I will discuss specific minority health & health disparities research topics and Part II will cover discussions related to overcoming pipeline issues in the training of minority informaticians.

  18. 2nd International Conference on Advanced Intelligent Systems and Informatics

    CERN Document Server

    Shaalan, Khaled; Gaber, Tarek; Azar, Ahmad; Tolba, M

    2017-01-01

    This book gathers the proceedings of the 2nd International Conference on Advanced Intelligent Systems and Informatics (AISI2016), which took place in Cairo, Egypt during October 24–26, 2016. This international interdisciplinary conference, which highlighted essential research and developments in the field of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE) and sponsored by the IEEE Computational Intelligence Society (Egypt chapter) and the IEEE Robotics and Automation Society (Egypt Chapter). The book’s content is divided into four main sections: Intelligent Language Processing, Intelligent Systems, Intelligent Robotics Systems, and Informatics.

  19. THE MAIN PSYCHOLOGICAL AND PEDAGOGICAL REQUIREMENTS OF INFORMATICS TEXTBOOKS FOR 6TH

    Directory of Open Access Journals (Sweden)

    Popel M.

    2017-03-01

    Full Text Available In the article the psychological characteristics of pupils 6th grade: rapid psychophysical development and crises inherent in early adolescence. For a comparative analysis of knowledge of pupils as the fifth and sixth grades by training years (2013-2014, 2014-2015 the dependence of quality of knowledge from the problems of adolescence. The specifics of semantic informatics textbooks for 6th grade is taking into account the age and characteristics of pupils need reflected on the psychological and educational requirements. Presents the basic functions performed by the textbook as a teaching tool, particularly in informatics. Considered the requirements set by the modern informatics textbook T. P. Sokolowski. Analysis of current informatics textbooks for 6th grade on the example of studying the topic "Algorithms and their performers' and found some problems in their content. Considering completed research were summarized and singled the basic psychological and pedagogical requirements to be met by informatics textbooks for 6th grade. As the prospects for further research appears analysis electronic editions of informatics and refinement requirements for defined existing textbooks considering psychological characteristics of young adolescents.

  20. Innovation in transformative nursing leadership: nursing informatics competencies and roles.

    Science.gov (United States)

    Remus, Sally; Kennedy, Margaret Ann

    2012-12-01

    In a recent brief to the Canadian Nurses Association's National Expert Commission on the Health of Our Nation, the Academy of Canadian Executive Nurses (ACEN) discussed leadership needs in the Canadian healthcare system, and promoted the pivotal role of nursing executives in transforming Canada's healthcare system into an integrated patient-centric system. Included among several recommendations was the need to develop innovative leadership competencies that enable nurse leaders to lead and advance transformative health system change. This paper focuses on an emerging "avant-garde executive leadership competency" recommended for today's health leaders to guide health system transformation. Specifically, this competency is articulated as "state of the art communication and technology savvy," and it implies linkages between nursing informatics competencies and transformational leadership roles for nurse executive. The authors of this paper propose that distinct nursing informatics competencies are required to augment traditional executive skills to support transformational outcomes of safe, integrated, high-quality care delivery through knowledge-driven care. International trends involving nursing informatics competencies and the evolution of new corporate informatics roles, such as chief nursing informatics officers (CNIOs), are demonstrating value and advanced transformational leadership as nursing executive roles that are informed by clinical data. Copyright © 2013 Longwoods Publishing.

  1. Empowerment evaluation: a collaborative approach to evaluating and transforming a medical school curriculum.

    Science.gov (United States)

    Fetterman, David M; Deitz, Jennifer; Gesundheit, Neil

    2010-05-01

    Medical schools continually evolve their curricula to keep students abreast of advances in basic, translational, and clinical sciences. To provide feedback to educators, critical evaluation of the effectiveness of these curricular changes is necessary. This article describes a method of curriculum evaluation, called "empowerment evaluation," that is new to medical education. It mirrors the increasingly collaborative culture of medical education and offers tools to enhance the faculty's teaching experience and students' learning environments. Empowerment evaluation provides a method for gathering, analyzing, and sharing data about a program and its outcomes and encourages faculty, students, and support personnel to actively participate in system changes. It assumes that the more closely stakeholders are involved in reflecting on evaluation findings, the more likely they are to take ownership of the results and to guide curricular decision making and reform. The steps of empowerment evaluation include collecting evaluation data, designating a "critical friend" to communicate areas of potential improvement, establishing a culture of evidence, encouraging a cycle of reflection and action, cultivating a community of learners, and developing reflective educational practitioners. This article illustrates how stakeholders used the principles of empowerment evaluation to facilitate yearly cycles of improvement at the Stanford University School of Medicine, which implemented a major curriculum reform in 2003-2004. The use of empowerment evaluation concepts and tools fostered greater institutional self-reflection, led to an evidence-based model of decision making, and expanded opportunities for students, faculty, and support staff to work collaboratively to improve and refine the medical school's curriculum.

  2. Using the Theory of Planned Behaviour to examine health professional students' behavioural intentions in relation to medication safety and collaborative practice.

    Science.gov (United States)

    Lapkin, Samuel; Levett-Jones, Tracy; Gilligan, Conor

    2015-08-01

    Safe medication practices depend upon, not only on individual responsibilities, but also effective communication and collaboration between members of the medication team. However, measurement of these skills is fraught with conceptual and practical difficulties. The aims of this study were to explore the utility of a Theory of Planned Behaviour-based questionnaire to predict health professional students' behavioural intentions in relation to medication safety and collaborative practice; and to determine the contribution of attitudes, subjective norms, and perceived control to behavioural intentions. A descriptive cross-sectional survey based upon the Theory of Planned Behaviour was designed and tested. A convenience sample of 65 undergraduate pharmacy, nursing and medicine students from one semi-metropolitan Australian university were recruited for the study. Participants' behavioural intentions, attitudes, subjective norms, and perceived control to behavioural intentions in relation to medication safety were measured using an online version of the Theory of Planned Behaviour Medication Safety Questionnaire. The Questionnaire had good internal consistency with a Cronbach's alpha of 0.844. The three predictor variables of attitudes, subjective norms, and perceived control accounted for between 30 and 46% of the variance in behavioural intention; this is a strong prediction in comparison to previous studies using the Theory of Planned Behaviour. Data analysis also indicated that attitude was the most significant predictor of participants' intention to collaborate with other team members to improve medication safety. The results from this study provide preliminary support for the Theory of Planned Behaviour-Medication Safety Questionnaire as a valid instrument for examining health professional students' behavioural intentions in relation to medication safety and collaborative practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. On the road to personalised and precision geomedicine: medical geology and a renewed call for interdisciplinarity.

    Science.gov (United States)

    Kamel Boulos, Maged N; Le Blond, Jennifer

    2016-01-28

    Our health depends on where we currently live, as well as on where we have lived in the past and for how long in each place. An individual's place history is particularly relevant in conditions with long latency between exposures and clinical manifestations, as is the case in many types of cancer and chronic conditions. A patient's geographic history should routinely be considered by physicians when diagnosing and treating individual patients. It can provide useful contextual environmental information (and the corresponding health risks) about the patient, and should thus form an essential part of every electronic patient/health record. Medical geology investigations, in their attempt to document the complex relationships between the environment and human health, typically involve a multitude of disciplines and expertise. Arguably, the spatial component is the one factor that ties in all these disciplines together in medical geology studies. In a general sense, epidemiology, statistical genetics, geoscience, geomedical engineering and public and environmental health informatics tend to study data in terms of populations, whereas medicine (including personalised and precision geomedicine, and lifestyle medicine), genetics, genomics, toxicology and biomedical/health informatics more likely work on individuals or some individual mechanism describing disease. This article introduces with examples the core concepts of medical geology and geomedicine. The ultimate goals of prediction, prevention and personalised treatment in the case of geology-dependent disease can only be realised through an intensive multiple-disciplinary approach, where the various relevant disciplines collaborate together and complement each other in additive (multidisciplinary), interactive (interdisciplinary) and holistic (transdisciplinary and cross-disciplinary) manners.

  4. Interrogating the druggable genome with structural informatics.

    Science.gov (United States)

    Hambly, Kevin; Danzer, Joseph; Muskal, Steven; Debe, Derek A

    2006-08-01

    Structural genomics projects are producing protein structure data at an unprecedented rate. In this paper, we present the Target Informatics Platform (TIP), a novel structural informatics approach for amplifying the rapidly expanding body of experimental protein structure information to enhance the discovery and optimization of small molecule protein modulators on a genomic scale. In TIP, existing experimental structure information is augmented using a homology modeling approach, and binding sites across multiple target families are compared using a clique detection algorithm. We report here a detailed analysis of the structural coverage for the set of druggable human targets, highlighting drug target families where the level of structural knowledge is currently quite high, as well as those areas where structural knowledge is sparse. Furthermore, we demonstrate the utility of TIP's intra- and inter-family binding site similarity analysis using a series of retrospective case studies. Our analysis underscores the utility of a structural informatics infrastructure for extracting drug discovery-relevant information from structural data, aiding researchers in the identification of lead discovery and optimization opportunities as well as potential "off-target" liabilities.

  5. The Health Information Technology Competencies Tool: Does It Translate for Nursing Informatics in the United States?

    Science.gov (United States)

    Sipes, Carolyn; Hunter, Kathleen; McGonigle, Dee; West, Karen; Hill, Taryn; Hebda, Toni

    2017-12-01

    Information technology use in healthcare delivery mandates a prepared workforce. The initial Health Information Technology Competencies tool resulted from a 2-year transatlantic effort by experts from the US and European Union to identify approaches to develop skills and knowledge needed by healthcare workers. It was determined that competencies must be identified before strategies are established, resulting in a searchable database of more than 1000 competencies representing five domains, five skill levels, and more than 250 roles. Health Information Technology Competencies is available at no cost and supports role- or competency-based queries. Health Information Technology Competencies developers suggest its use for curriculum planning, job descriptions, and professional development.The Chamberlain College of Nursing informatics research team examined Health Information Technology Competencies for its possible application to our research and our curricular development, comparing it originally with the TIGER-based Assessment of Nursing Informatics Competencies and Nursing Informatics Competency Assessment of Level 3 and Level 4 tools, which examine informatics competencies at four levels of nursing practice. Additional analysis involved the 2015 Nursing Informatics: Scope and Standards of Practice. Informatics is a Health Information Technology Competencies domain, so clear delineation of nursing-informatics competencies was expected. Researchers found TIGER-based Assessment of Nursing Informatics Competencies and Nursing Informatics Competency Assessment of Level 3 and Level 4 differed from Health Information Technology Competencies 2016 in focus, definitions, ascribed competencies, and defined levels of expertise. When Health Information Technology Competencies 2017 was compared against the nursing informatics scope and standards, researchers found an increase in the number of informatics competencies but not to a significant degree. This is not surprising

  6. Evaluation of the Effects of Flipped Learning of a Nursing Informatics Course.

    Science.gov (United States)

    Oh, Jina; Kim, Shin-Jeong; Kim, Sunghee; Vasuki, Rajaguru

    2017-08-01

    This study evaluated the effects of flipped learning in a nursing informatics course. Sixty-four undergraduate students attending a flipped learning nursing informatics course at a university in South Korea participated in this study in 2013. Of these, 43 students participated at University A, and 46 students participated at University B, as a comparison group. Three levels of Kirkpatrick's evaluation model were used: level one (the students' satisfaction), level two (achievement on the course outcomes), and level three (self-perceived nursing informatics competencies). Students of the flipped learning course reported positive effects above the middle degree of satisfaction (level one) and achieved the course outcomes (level two). In addition, self-perceived nursing informatics competencies (level three) of the flipped learning group were higher than those of the comparison group. A flipped learning nursing informatics course is an effective teaching strategy for preparing new graduate nurses in the clinical setting. [J Nurs Educ. 2017;56(8):477-483.]. Copyright 2017, SLACK Incorporated.

  7. The Association of Academic Health Sciences Libraries' collaboration with the Association of American Medical Colleges, Medical Library Association, and other organizations.

    Science.gov (United States)

    Jenkins, Carol G; Bader, Shelley A

    2003-04-01

    The Association of Academic Health Sciences Libraries has made collaboration with other organizations a fundamental success strategy throughout its twenty-five year history. From the beginning its relationships with Association of American Medical Colleges and with the Medical Library Association have shaped its mission and influenced its success at promoting academic health sciences libraries' roles in their institutions. This article describes and evaluates those relationships. It also describes evolving relationships with other organizations including the National Library of Medicine and the Association of Research Libraries.

  8. MEANS OF FORMATION OF PROFESSIONAL COMPETENCE OF FUTURE TEACHERS OF INFORMATICS

    Directory of Open Access Journals (Sweden)

    Kateryna P. Osadcha

    2010-09-01

    Full Text Available Teacher of Informatics has been in business in an environment that constantly change and modify, so his training requires the diversity of forms, methods, approaches and teaching technologies as well as learning tools that foster professional competence of students - future teachers of informatics. This article describes the use of author the Internet information resources, electronic textbook, multimedia training programs to ensure the process of studying professional disciplines in the context of the formation of professional competence of future teachers of informatics.

  9. Informatics competencies for nurse leaders: protocol for a scoping review.

    Science.gov (United States)

    Kassam, Iman; Nagle, Lynn; Strudwick, Gillian

    2017-12-14

    Globally, health information technologies are now being used by nurses in a variety of settings. However, nurse leaders often do not have the necessary strategic and tactical informatics competencies to adequately ensure their effective adoption and use. Although informatics competencies and competency frameworks have been identified and developed, to date there has not been review or consolidation of the work completed in this area. In order to address this gap, a scoping review is being conducted. The objectives of this scoping review are to: (1) identify informatics competencies of relevance to nurse leaders, (2) identify frameworks or theories that have been used to develop informatics competencies for nurse leaders, (3) identify instruments used to assess the informatics competencies of nurse leaders and (4) examine the psychometric properties of identified instruments. Using the Arksey and O'Malley five-step framework, a literature review will be conducted using a scoping review methodology. The search will encompass academic and grey literature and include two primary databases and five secondary databases. Identified studies and documents will be independently screened for eligibility by two reviewers. Data from the studies and documents will be extracted and compiled into a chart. Qualitative data will be subject to a thematic analysis and descriptive statistics applied to the quantitative data. Ethical approval was not required for this study. Results will be used to inform a future study designed to validate an instrument used to evaluate informatics competencies for nurse leaders within a Canadian context. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Advances in intelligent analysis of medical data and decision support systems

    CERN Document Server

    Iantovics, Barna

    2013-01-01

    This volume is a result of the fruitful and vivid discussions during the MedDecSup'2012 International Workshop bringing together a relevant body of knowledge, and new developments in the increasingly important field of medical informatics. This carefully edited book presents new ideas aimed at the development of intelligent processing of various kinds of medical information and the perfection of the contemporary computer systems for medical decision support. The book presents advances of the medical information systems for intelligent archiving, processing, analysis and search-by-content which will improve the quality of the medical services for every patient and of the global healthcare system. The book combines in a synergistic way theoretical developments with the practicability of the approaches developed and presents the last developments and achievements in  medical informatics to a broad range of readers: engineers, mathematicians, physicians, and PhD students.

  11. Assessing the current state of dental informatics in saudi arabia: the new frontier.

    Science.gov (United States)

    Al-Nasser, Lubna; Al-Ehaideb, Ali; Househ, Mowafa

    2014-01-01

    Dental informatics is an emerging field that has the potential to transform the dental profession. This study aims to summarize the current applications of dental informatics in Saudi Arabia and to identify the challenges facing expansion of dental informatics in the Saudi context. Search for published articles and specialized forum entries was conducted, as well as interviews with dental professionals familiar with the topic. Results indicated that digital radiography/analysis and administrative management of dental practice are the commonest applications used. Applications in Saudi dental education included: web-based learning systems, computer-based assessments and virtual technology for clinical skills' teaching. Patients' education software, electronic dental/oral health records and the potential of dental research output from electronic databases are yet to be achieved in Saudi Arabia. Challenges facing Saudi dental informatics include: lack of IT infrastructure/support, social acceptability and financial cost. Several initiatives are taken towards the research in dental informatics. Still, more investments are needed to fully achieve the potential of various application of informatics in dental education, practice and research.

  12. The Evolution of Data-Information-Knowledge-Wisdom in Nursing Informatics.

    Science.gov (United States)

    Ronquillo, Charlene; Currie, Leanne M; Rodney, Paddy

    2016-01-01

    The data-information-knowledge-wisdom (DIKW) model has been widely adopted in nursing informatics. In this article, we examine the evolution of DIKW in nursing informatics while incorporating critiques from other disciplines. This includes examination of assumptions of linearity and hierarchy and an exploration of the implicit philosophical grounding of the model. Two guiding questions are considered: (1) Does DIKW serve clinical information systems, nurses, or both? and (2) What level of theory does DIKW occupy? The DIKW model has been valuable in advancing the independent field of nursing informatics. We offer that if the model is to continue to move forward, its role and functions must be explicitly addressed.

  13. Panel: Eco-informatics and decision making managing our natural resources

    Science.gov (United States)

    Gushing, J.B.; Wilson, T.; Martin, F.; Schnase, J.; Spengler, S.; Sugarbaker, L.; Pardo, T.

    2006-01-01

    This panel responds to the December 2004 workshop on Eco-Informatics and Decision Making [1], which addressed how informatics tools can help with better management of natural resources and policy making. The workshop was jointly sponsored by the NSF, NBII, NASA, and EPA. Workshop participants recommended that informatics research in four IT areas be funded: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, they recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. This panel brings issues raised in that workshop to the attention of digital government researchers.

  14. Reducing Health Cost: Health Informatics and Knowledge Management as a Business and Communication Tool

    Science.gov (United States)

    Gyampoh-Vidogah, Regina; Moreton, Robert; Sallah, David

    Health informatics has the potential to improve the quality and provision of care while reducing the cost of health care delivery. However, health informatics is often falsely regarded as synonymous with information management (IM). This chapter (i) provides a clear definition and characteristic benefits of health informatics and information management in the context of health care delivery, (ii) identifies and explains the difference between health informatics (HI) and managing knowledge (KM) in relation to informatics business strategy and (iii) elaborates the role of information communication technology (ICT) KM environment. This Chapter further examines how KM can be used to improve health service informatics costs, and identifies the factors that could affect its implementation and explains some of the reasons driving the development of electronic health record systems. This will assist in avoiding higher costs and errors, while promoting the continued industrialisation of KM delivery across health care communities.

  15. Technology for Improving Medication Monitoring in Nursing Homes

    National Research Council Canada - National Science Library

    Lapane, Kate L; Cameron, Kathleen; Feinberg, Janice

    2005-01-01

    .... While clinical informatics systems have focused on the reduction of medication errors at the point of prescribing, dispensing, or administration, few have proposed the use of information technology...

  16. TRANING BACHELORS OF BUSINESS INFORMATICS TO SOLVE PRACTICAL PROBLEMS OF MARKETING

    Directory of Open Access Journals (Sweden)

    Л В Дегтярева

    2016-12-01

    Full Text Available In article need of an integrated approach is proved when training bachelors of business informatics for the solution of practical problems of marketing and the example of realization of such approach is given. The illustrated example proves need of use of an integrated approach for training of bachelors of business informatics, in particular, on such disciplines as the mathematics, informatics and marketing where theoretical knowledge uniting, give already synergetic effect in practical refraction. Such integration undergoes already biennial testing at our university and yields positive result.

  17. A large-scale mass casualty simulation to develop the non-technical skills medical students require for collaborative teamwork.

    Science.gov (United States)

    Jorm, Christine; Roberts, Chris; Lim, Renee; Roper, Josephine; Skinner, Clare; Robertson, Jeremy; Gentilcore, Stacey; Osomanski, Adam

    2016-03-08

    There is little research on large-scale complex health care simulations designed to facilitate student learning of non-technical skills in a team-working environment. We evaluated the acceptability and effectiveness of a novel natural disaster simulation that enabled medical students to demonstrate their achievement of the non-technical skills of collaboration, negotiation and communication. In a mixed methods approach, survey data were available from 117 students and a thematic analysis undertaken of both student qualitative comments and tutor observer participation data. Ninety three per cent of students found the activity engaging for their learning. Three themes emerged from the qualitative data: the impact of fidelity on student learning, reflexivity on the importance of non-technical skills in clinical care, and opportunities for collaborative teamwork. Physical fidelity was sufficient for good levels of student engagement, as was sociological fidelity. We demonstrated the effectiveness of the simulation in allowing students to reflect upon and evidence their acquisition of skills in collaboration, negotiation and communication, as well as situational awareness and attending to their emotions. Students readily identified emerging learning opportunities though critical reflection. The scenarios challenged students to work together collaboratively to solve clinical problems, using a range of resources including interacting with clinical experts. A large class teaching activity, framed as a simulation of a natural disaster is an acceptable and effective activity for medical students to develop the non-technical skills of collaboration, negotiation and communication, which are essential to team working. The design could be of value in medical schools in disaster prone areas, including within low resource countries, and as a feasible intervention for learning the non-technical skills that are needed for patient safety.

  18. The Euratom informatics architecture

    International Nuclear Information System (INIS)

    Blerot, J.F.; Kschwendt, H.

    1991-01-01

    Open systems and standards in a multi product environment are the EURATOM guidelines. Consequently, the OSI model, UNIX (POSIX) and X/OPEN specifications determine the EURATOM informatic strategy. The major objectives are the development of secured telecommunications, the migration to open systems and the integration of data processing from measurements in the plants to accountancy the headquarters

  19. Continued multidisciplinary project-based learning - implementation in health informatics.

    Science.gov (United States)

    Wessel, C; Spreckelsen, C

    2009-01-01

    Problem- and project-based learning are approved methods to train students, graduates and post-graduates in scientific and other professional skills. The students are trained on realistic scenarios in a broader context. For students specializing in health informatics we introduced continued multidisciplinary project-based learning (CM-PBL) at a department of medical informatics. The training approach addresses both students of medicine and students of computer science. The students are full members of an ongoing research project and develop a project-related application or module, or explore or evaluate a sub-project. Two teachers guide and review the students' work. The training on scientific work follows a workflow with defined milestones. The team acts as peer group. By participating in the research team's work the students are trained on professional skills. A research project on a web-based information system on hospitals built the scenario for the realistic context. The research team consisted of up to 14 active members at a time, who were scientists and students of computer science and medicine. The well communicated educational approach and team policy fostered the participation of the students. Formative assessment and evaluation showed a considerable improvement of the students' skills and a high participant satisfaction. Alternative education approaches such as project-based learning empower students to acquire scientific knowledge and professional skills, especially the ability of life-long learning, multidisciplinary team work and social responsibility.

  20. On-line integration of computer controlled diagnostic devices and medical information systems in undergraduate medical physics education for physicians.

    Science.gov (United States)

    Hanus, Josef; Nosek, Tomas; Zahora, Jiri; Bezrouk, Ales; Masin, Vladimir

    2013-01-01

    We designed and evaluated an innovative computer-aided-learning environment based on the on-line integration of computer controlled medical diagnostic devices and a medical information system for use in the preclinical medical physics education of medical students. Our learning system simulates the actual clinical environment in a hospital or primary care unit. It uses a commercial medical information system for on-line storage and processing of clinical type data acquired during physics laboratory classes. Every student adopts two roles, the role of 'patient' and the role of 'physician'. As a 'physician' the student operates the medical devices to clinically assess 'patient' colleagues and records all results in an electronic 'patient' record. We also introduced an innovative approach to the use of supportive education materials, based on the methods of adaptive e-learning. A survey of student feedback is included and statistically evaluated. The results from the student feedback confirm the positive response of the latter to this novel implementation of medical physics and informatics in preclinical education. This approach not only significantly improves learning of medical physics and informatics skills but has the added advantage that it facilitates students' transition from preclinical to clinical subjects. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. The Harvard Medical School Academic Innovations Collaborative: transforming primary care practice and education.

    Science.gov (United States)

    Bitton, Asaf; Ellner, Andrew; Pabo, Erika; Stout, Somava; Sugarman, Jonathan R; Sevin, Cory; Goodell, Kristen; Bassett, Jill S; Phillips, Russell S

    2014-09-01

    Academic medical centers (AMCs) need new approaches to delivering higher-quality care at lower costs, and engaging trainees in the work of high-functioning primary care practices. In 2012, the Harvard Medical School Center for Primary Care, in partnership with with local AMCs, established an Academic Innovations Collaborative (AIC) with the goal of transforming primary care education and practice. This novel two-year learning collaborative consisted of hospital- and community-based primary care teaching practices, committed to building highly functional teams, managing populations, and engaging patients. The AIC built on models developed by Qualis Health and the Institute for Healthcare Improvement, optimized for the local AMC context. Foundational elements included leadership engagement and development, application of rapid-cycle process improvement, and the creation of teams to care for defined patient populations. Nineteen practices across six AMCs participated, with nearly 260,000 patients and 450 resident learners. The collaborative offered three 1.5-day learning sessions each year featuring shared learning, practice coaches, and improvement measures, along with monthly data reporting, webinars, and site visits. Validated self-reports by transformation teams showed that practices made substantial improvement across all areas of change. Important factors for success included leadership development, practice-level resources, and engaging patients and trainees. The AIC model shows promise as a path for AMCs to catalyze health system transformation through primary care improvement. In addition to further evaluating the impact of practice transformation, expansion will require support from AMCs and payers, and the application of similar approaches on a broader scale.

  2. Consumer Health Informatics: Promoting Patient Self-care Management of Illnesses and Health.

    Science.gov (United States)

    Jung, Minsoo

    Consumer health informatics (CHI) is propelling important changes for medical providers and the lives of patients through information and communications technology. Independently, medical consumers seek, collect, and use health information for decision making. However, when constructing a CHI-based medical platform, high technology must be applied in a fully understandable and usable format for both health care providers and consumers. This study examines the present status of CHI and its effect on medical consumers. For the development of CHI, we discuss the need for tailored health communications and capacity building with chronic patients at the medical center. First, empowerment is a key characteristic needed for medical consumer health care management. However, promoting patient self-care management of illnesses and health is necessary to create conjugation where cooperation with medical service providers is possible. Also, establishing a health care delivery system that will support cooperation is necessary. Second, tailored health communications can uniquely construct the health information of patients, which prevents unnecessary or excessive information from leading patients to confused and inappropriate decisions. Ultimately, through the present environment of health communication, the innovation of a consumer health care information system has become the tide of the times and the positive effect of improved health can be expected.

  3. Do photographs, older adults’ narratives and collaborative dialogue foster anticipatory reflection (“preflection” in medical students?

    Directory of Open Access Journals (Sweden)

    Gabrielle Brand

    2016-11-01

    Full Text Available Abstract Background In changing higher education environments, medical educators are increasingly challenged to prepare new doctors to care for ageing populations. The Depth of Field: Exploring Ageing resource (DOF uses photographs, reflective questioning prompts, older adults’ narratives and collaborative dialogue to foster anticipatory reflection or ‘preflection’ in medical students prior to their first geriatric medicine clinical placement. The aim of this research is to explore whether photographs, narratives and small group collaborative dialogue fosters reflective learning, enhances reflective capacity and has the potential to shift medical students’ attitudes towards caring for older adults. Methods This study used a mixed method evaluation design, measuring attitudes using pre and post questionnaire responses and individual written reflections drawn from 128 second year medical students, exploring their perceptions toward older adults. Results Quantitative and qualitative data indicated that the DOF session generated reflective learning that resulted in positive shifts in medical students’ perceptions towards older adults. The qualitative reflections were captured in four main themes: the opportunity provided to Envision working with older adults; the Tension created to challenge learners’ misinformed assumptions, and the work of Dismantling those assumptions, leading to Seeing older people as individuals. Conclusions These findings highlight how visual and narrative methodologies can be used as an effective reflective learning tool to challenge medical students’ assumptions around ageing and how these may influence their care of older adults.

  4. Global Health, Medical Anthropology, and Social Marketing: Steps to the Ecology of Collaboration.

    Science.gov (United States)

    Whiteford, Linda

    2015-06-01

    Anthropology and global health have long been a focus of research for both biological and medical anthropologists. Research has looked at physiological adaptations to high altitudes, community responses to water-borne diseases, the integration of traditional and biomedical approaches to health, global responses to HIV/AIDS, and more recently, to the application of cultural approaches to the control of the Ebola epidemic. Academic anthropology has employed theory and methods to extend knowledge, but less often to apply that knowledge. However, anthropologists outside of the academy have tackled global health issues such as family planning and breast-feeding by bringing together applied medical anthropology and social marketing. In 2014, that potent and provocative combination resulted in the University of South Florida in Tampa, Florida being made the home of an innovative center designed to combine academic and applied anthropology with social marketing in order to facilitate social change. This article discusses how inter- and intra-disciplinary research/application has led to the development of Florida's first World Health Organization Collaborating Center (WHO CC), and the first such center to focus on social marketing, social change and non-communicable diseases. This article explains the genesis of the Center and presents readers with a brief overview, basic principles and applications of social marketing by reviewing a case study of a water conservation project. The article concludes with thoughts on the ecology of collaboration among global health, medical anthropology and social marketing practitioners.

  5. Nursing Informatics Competencies Among Nursing Students and Their Relationship to Patient Safety Competencies: Knowledge, Attitude, and Skills.

    Science.gov (United States)

    Abdrbo, Amany Ahmed

    2015-11-01

    With implementation of information technology in healthcare settings to promote safety and evidence-based nursing care, a growing emphasis on the importance of nursing informatics competencies has emerged. This study assessed the relationship between nursing informatics and patient safety competencies among nursing students and nursing interns. A descriptive, cross-sectional correlational design with a convenience sample of 154 participants (99 nursing students and 55 interns) completed the Self-assessment of Nursing Informatics Competencies and Patient Safety Competencies. The nursing students and interns were similar in age and years of computer experience, and more than half of the participants in both groups had taken a nursing informatics course. There were no significant differences between competencies in nursing informatics and patient safety except for clinical informatics role and applied computer skills in the two groups of participants. Nursing informatics competencies and patient safety competencies were significantly correlated except for clinical informatics role both with patient safety knowledge and attitude. These results provided feedback to adjust and incorporate informatics competencies in the baccalaureate program and to recommend embracing the nursing informatics course as one of the core courses, not as an elective course, in the curriculum.

  6. Quo Vadis, Informatics Education?--Towards a More Up-to-Date Informatics Education

    Science.gov (United States)

    Zsakó, László; Horváth, Gyozo

    2017-01-01

    Informatics education has been in a cul-de-sac for several years (not only in Hungary), being less and less able to meet the needs of the industry and higher education. In addition, the latest PISA survey shows that--to put it a little strongly--the majority of the x-, y- and z generations are digital illiterates. The aim of this paper to examine…

  7. Historical Roots of International Biomedical and Health Informatics: The Road to IFIP-TC4 and IMIA through Cybernetic Medicine and the Elsinore Meetings.

    Science.gov (United States)

    Kulikowski, C A

    2017-08-01

    Background: It is 50 years since the International Federation of Information Processing (IFIP) Societies approved the formation of a new Technical Committee (TC) 4 on Medical Information Processing under the leadership of Professor Francois Grémy, which was the direct precursor of the International Medical Informatics Association (IMIA). Objectives: The goals of this paper are to give a very brief overview of early international developments leading to informatics in medicine, with the origins of the applications of computers to medicine in the USA and Europe, and two meetings - of the International Society of Cybernetic Medicine, and the Elsinore Meetings on Hospital Information Systems-that took place in 1966. These set the stage for the formation of IFIP-TC4 the following year, with later sponsorship of the first MEDINFO in 1974, setting the path for the evolution to IMIA. Methods: This paper reviews and analyzes some of the earliest research and publications, together with two critical contrasting meetings in 1966 involving international activities in what evolved into biomedical and health informatics in terms of their probable influence on the formation of IFIP-TC4. Conclusion: The formation of IFIP-TC 4 in 1967 by Francois Grémy arose out of his concerns for merging, at an international level, the diverse strands from the more abstract work on cybernetic medicine and its basis in biophysical and neural modeling, with the more concrete and health-oriented medical information processing that was developing at the time for hospitals and clinical decision-making. Georg Thieme Verlag KG Stuttgart.

  8. Creativity as a Key Driver for Designing Context Sensitive Health Informatics.

    Science.gov (United States)

    Zhou, Chunfang; Nøhr, Christian

    2017-01-01

    In order to face the increasing challenges of complexity and uncertainty in practice of health care, this paper aims to discuss how creativity can contribute to design new technologies in health informatics systems. It will firstly introduce the background highlighting creativity as a missing element in recent studies on context sensitive health informatics. Secondly, the concept of creativity and its relationship with activities of technology design will be discussed from a socio-culture perspective. This will be thirdly followed by understanding the roles of creativity in designing new health informatics technologies for meeting needs of high context sensitivity. Finally, a series of potential strategies will be suggested to improve creativity among technology designers working in healthcare industries. Briefly, this paper innovatively bridges two areas studies on creativity and context sensitive health informatics by issues of technology design that also indicates its important significances for future research.

  9. 3rd International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Chaki, Nabendu

    2016-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 132 scholarly articles, which have been accepted for presentation from over 550 submissions in the Third International Conference on Advanced Computing, Networking and Informatics, 2015, held in Bhubaneswar, India during June 23–25, 2015.

  10. Educational impact of an assessment of medical students' collaboration in health care teams.

    Science.gov (United States)

    Olupeliyawa, Asela; Balasooriya, Chinthaka; Hughes, Chris; O'Sullivan, Anthony

    2014-02-01

    This paper explores how structured feedback and other features of workplace-based assessment (WBA) impact on medical students' learning in the context of an evaluation of a workplace-based performance assessment: the teamwork mini-clinical evaluation exercise (T-MEX). The T-MEX enables observation-based measurement of and feedback on the behaviours required to collaborate effectively as a junior doctor within the health care team. The instrument is based on the mini-clinical evaluation exercise (mini-CEX) format and focuses on clinical encounters such as consultations with medical and allied health professionals, discharge plan preparation, handovers and team meetings. The assessment was implemented during a 6-week period in 2010 with 25 medical students during their final clinical rotation. Content analysis was conducted on the written feedback provided by 23 assessors and the written reflections and action plans proposed by the 25 student participants (in 88 T-MEX forms). Semi-structured interviews with seven assessors and three focus groups with 14 student participants were conducted and the educational impact was explored through thematic analysis. The study enabled the identification of features of WBA that promote the development of collaborative competencies. The focus of the assessment on clinical encounters and behaviours important for collaboration provided opportunities for students to engage with the health care team and highlighted the role of teamwork in these encounters. The focus on specific behaviours and a stage-appropriate response scale helped students identify learning goals and facilitated the provision of focused feedback. Incorporating these features within an established format helped students and supervisors to engage with the instrument. Extending the format to include structured reflection enabled students to self-evaluate and develop plans for improvement. The findings illuminate the mechanisms by which WBA facilitates learning. The

  11. Materials Informatics: Statistical Modeling in Material Science.

    Science.gov (United States)

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Understanding the Essence of Caring from the Lived Experiences of Filipino Informatics Nurses.

    Science.gov (United States)

    Macabasag, Romeo Luis A; Diño, Michael Joseph S

    2018-04-01

    Caring is considered a unique concept in nursing because it subsumes all intrinsic attributes of nursing as a human helping discipline. Scholars have argued that caring is usually seen as an encounter between nurses and patients, but how about nurses with minimal or absent nurse-patient encounters, like informatics nurses? In this study, we explored the meaning of the phenomenon of caring to present lived experiences of caring, namely caring as actions of coming in between; caring as expressed within embodied relations; and caring and the path traversed by informatics nurses. The informatics nurse-cyborg-patient triad speaks of Filipino informatics nurses' insightful understanding of the phenomenon of caring.

  13. The Methodical Approaches to the Research of Informatization of the Global Economic Development

    Directory of Open Access Journals (Sweden)

    Kazakova Nadezhda A.

    2018-03-01

    Full Text Available The article is aimed at researching the identification of global economic development informatization. The complex of issues connected with research of development of informatization of the world countries in the conditions of globalization is considered. The development of informatization in the global economic space, which facilitates opening of new markets for international trade enterprises, international transnational corporations and other organizations, which not only provide exports, but also create production capacities for local producers. The methodical approach which includes three stages together with formation of the input information on the status of informatization of the global economic development of the world countries has been proposed.

  14. Health Departments’ Engagement in Emergency Preparedness Activities: The Influence of Health Informatics Capacity

    OpenAIRE

    Gulzar H. Shah; Bobbie Newell; Ruth E. Whitworth

    2016-01-01

    Background: Local health departments (LHDs) operate in a complex and dynamic public health landscape, with changing demands on their emergency response capacities. Informatics capacities might play an instrumental role in aiding LHDs emergency preparedness. This study aimed to explore the extent to which LHDs’ informatics capacities are associated with their activity level in emergency preparedness and to identify which health informatics capacities are associated with improved em...

  15. Cross-standard user description in mobile, medical oriented virtual collaborative environments

    Science.gov (United States)

    Ganji, Rama Rao; Mitrea, Mihai; Joveski, Bojan; Chammem, Afef

    2015-03-01

    By combining four different open standards belonging to the ISO/IEC JTC1/SC29 WG11 (a.k.a. MPEG) and W3C, this paper advances an architecture for mobile, medical oriented virtual collaborative environments. The various users are represented according to MPEG-UD (MPEG User Description) while the security issues are dealt with by deploying the WebID principles. On the server side, irrespective of their elementary types (text, image, video, 3D, …), the medical data are aggregated into hierarchical, interactive multimedia scenes which are alternatively represented into MPEG-4 BiFS or HTML5 standards. This way, each type of content can be optimally encoded according to its particular constraints (semantic, medical practice, network conditions, etc.). The mobile device should ensure only the displaying of the content (inside an MPEG player or an HTML5 browser) and the capturing of the user interaction. The overall architecture is implemented and tested under the framework of the MEDUSA European project, in partnership with medical institutions. The testbed considers a server emulated by a PC and heterogeneous user devices (tablets, smartphones, laptops) running under iOS, Android and Windows operating systems. The connection between the users and the server is alternatively ensured by WiFi and 3G/4G networks.

  16. GIFT-Cloud: A data sharing and collaboration platform for medical imaging research.

    Science.gov (United States)

    Doel, Tom; Shakir, Dzhoshkun I; Pratt, Rosalind; Aertsen, Michael; Moggridge, James; Bellon, Erwin; David, Anna L; Deprest, Jan; Vercauteren, Tom; Ourselin, Sébastien

    2017-02-01

    Clinical imaging data are essential for developing research software for computer-aided diagnosis, treatment planning and image-guided surgery, yet existing systems are poorly suited for data sharing between healthcare and academia: research systems rarely provide an integrated approach for data exchange with clinicians; hospital systems are focused towards clinical patient care with limited access for external researchers; and safe haven environments are not well suited to algorithm development. We have established GIFT-Cloud, a data and medical image sharing platform, to meet the needs of GIFT-Surg, an international research collaboration that is developing novel imaging methods for fetal surgery. GIFT-Cloud also has general applicability to other areas of imaging research. GIFT-Cloud builds upon well-established cross-platform technologies. The Server provides secure anonymised data storage, direct web-based data access and a REST API for integrating external software. The Uploader provides automated on-site anonymisation, encryption and data upload. Gateways provide a seamless process for uploading medical data from clinical systems to the research server. GIFT-Cloud has been implemented in a multi-centre study for fetal medicine research. We present a case study of placental segmentation for pre-operative surgical planning, showing how GIFT-Cloud underpins the research and integrates with the clinical workflow. GIFT-Cloud simplifies the transfer of imaging data from clinical to research institutions, facilitating the development and validation of medical research software and the sharing of results back to the clinical partners. GIFT-Cloud supports collaboration between multiple healthcare and research institutions while satisfying the demands of patient confidentiality, data security and data ownership. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Wellbeing Understanding in High Quality Healthcare Informatics and Telepractice.

    Science.gov (United States)

    Fiorini, Rodolfo A; De Giacomo, Piero; L'Abate, Luciano

    2016-01-01

    The proper use of healthcare informatics technology and multidimensional conceptual clarity are fundamental to create and boost outstanding clinical and telepractice results. Avoiding even terminology ambiguities is mandatory for high quality of care service. For instance, well-being or wellbeing is a different way to write the same concept only, or there is a good deal of ambiguity around the meanings of these terms the way they are written. In personal health, healthcare and healthcare informatics, this kind of ambiguity and lack of conceptual clarity has been called out repeatedly over the past 50 years. It is time to get the right, terse scenario. We present a brief review to develop and achieve ultimate wellbeing understanding for practical high quality healthcare informatics and telepractice application. This article presents an innovative point of view on deeper wellbeing understanding towards its increased clinical effective application.

  18. Health Informatics and E-health Curriculum for Clinical Health Profession Degrees.

    Science.gov (United States)

    Gray, Kathleen; Choo, Dawn; Butler-Henderson, Kerryn; Whetton, Sue; Maeder, Anthony

    2015-01-01

    The project reported in this paper models a new approach to making health informatics and e-health education widely available to students in a range of Australian clinical health profession degrees. The development of a Masters level subject uses design-based research to apply educational quality assurance practices which are consistent with university qualification frameworks, and with clinical health profession education standards; at the same time it gives recognition to health informatics as a specialised profession in its own right. The paper presents details of (a) design with reference to the Australian Qualifications Framework and CHIA competencies, (b) peer review within a three-university teaching team, (c) external review by experts from the professions, (d) cross-institutional interprofessional online learning, (e) methods for evaluating student learning experiences and outcomes, and (f) mechanisms for making the curriculum openly available to interested parties. The project has sought and found demand among clinical health professionals for formal health informatics and e-health education that is designed for them. It has helped the educators and organisations involved to understand the need for nuanced and complementary health informatics educational offerings in Australian universities. These insights may aid in further efforts to address substantive and systemic challenges that clinical informatics faces in Australia.

  19. Open Issues in Design Informatics

    DEFF Research Database (Denmark)

    McMahon, Chris

    2017-01-01

    Design informatics—the use of computers as a means of generating, communicating and sharing data, information and knowledge in design—has been a central theme in design research and practice for many years. This paper reviews the recent progress of research in design informatics, and makes...

  20. Quantum Bio-Informatics:From Quantum Information to Bio-Informatics

    CERN Document Server

    Freudenberg, W; Ohya, M

    2008-01-01

    The purpose of this volume is examine bio-informatics and quantum information, which are growing rapidly at present, and to attempt to connect the two, with a view to enumerating and solving the many fundamental problems they entail. To this end, we look for interdisciplinary bridges in mathematics, physics, and information and life sciences. In particular, research into a new paradigm for information science and life science on the basis of quantum theory is emphasized. Sample Chapter(s). Markov Fields on Graphs (599 KB). Contents: Markov Fields on Graphs (L Accardi & H Ohno); Some Aspects of

  1. The teaching of drug development to medical students: collaboration between the pharmaceutical industry and medical school.

    Science.gov (United States)

    Stanley, A G; Jackson, D; Barnett, D B

    2005-04-01

    Collaboration between the medical school at Leicester and a local pharmaceutical company, AstraZeneca, led to the design and implementation of an optional third year special science skills module teaching medical students about drug discovery and development. The module includes didactic teaching about the complexities of the drug discovery process leading to development of candidate drugs for clinical investigation as well as practical experience of the processes involved in drug evaluation preclinically and clinically. It highlights the major ethical and regulatory issues concerned with the production and testing of novel therapies in industry and the NHS. In addition it helps to reinforce other areas of the medical school curriculum, particularly the understanding of clinical study design and critical appraisal. The module is assessed on the basis of a written dissertation and the critical appraisal of a drug advertisement. This paper describes the objectives of the module and its content. In addition we outline the results of an initial student evaluation of the module and an assessment of its impact on student knowledge and the opinion of the pharmaceutical industry partner. This module has proven to be popular with medical students, who acquire a greater understanding of the work required for drug development and therefore reflect more favourably on the role of pharmaceutical companies in the UK.

  2. Achieving benefit for patients in primary care informatics: the report of a international consensus workshop at Medinfo 2007.

    Science.gov (United States)

    de Lusignan, Simon; Teasdale, Sheila

    2007-01-01

    Landmark reports suggest that sharing health data between clinical computer systems should improve patient safety and the quality of care. Enhancing the use of informatics in primary care is usually a key part of these strategies. To synthesise the learning from the international use of informatics in primary care. The workshop was attended by 21 delegates drawn from all continents. There were presentations from USA, UK and the Netherlands, and informal updates from Australia, Argentina, and Sweden and the Nordic countries. These presentations were discussed in a workshop setting to identify common issues. Key principles were synthesised through a post-workshop analysis and then sorted into themes. Themes emerged about the deployment of informatics which can be applied at health service, practice and individual clinical consultation level: 1 At the health service or provider level, success appeared proportional to the extent of collaboration between a broad range of stakeholders and identification of leaders. 2 Within the practice much is currently being achieved with legacy computer systems and apparently outdated coding systems. This includes prescribing safety alerts, clinical audit and promoting computer data recording and quality. 3 In the consultation the computer is a 'big player' and may make traditional models of the consultation redundant. We should make more efforts to share learning; develop clear internationally acceptable definitions; highlight gaps between pockets of excellence and real-world practice, and most importantly suggest how they might be bridged. Knowledge synthesis from different health systems may provide a greater understanding of how the third actor (the computer) is best used in primary care.

  3. Mathematics of the quantum informatics. An introduction; Mathematik der Quanteninformatik. Eine Einfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Wolfgang

    2016-07-01

    Starting from the physical foundations all mathematics required for the quantum informatics are introduced and explained. The essential aspects of the quantum informatics are mathematically formulated. All statements made are also proved in the book.

  4. 50th Anniversary International Medical Informatics Association (IMIA) History Working Group and Its Projects.

    Science.gov (United States)

    Kulikowski, Casimir A; Mihalas, George; Greenes, Robert; Yacubsohn, Valerio; Park, Hyeoun-Ae

    2017-01-01

    The IMIA History Working Group has as its first goal the editing of a volume of contributions from pioneers and leaders in the field of biomedical and health informatics (BMHI) to commemorate the 50th anniversary of IMIA's predecessor IFIP-TC4. This paper describes how the IMIA History WG evolved from an earlier Taskforce, and has focused on producing the edited book of original contributions. We describe its proposed outline of objectives for the personal stories, and national and regional society narratives, together with some comments on the evolution of Medinfo meeting contributions over the years, to provide a reference source for the early motivations of the scientific, clinical, educational, and professional changes that have influenced the historical course of our field.

  5. Integrating best evidence into patient care: a process facilitated by a seamless integration with informatics tools.

    Science.gov (United States)

    Giuse, Nunzia B; Williams, Annette M; Giuse, Dario A

    2010-07-01

    The Vanderbilt University paper discusses how the Eskind Biomedical Library at Vanderbilt University Medical Center transitioned from a simplistic approach that linked resources to the institutional electronic medical record system, StarPanel, to a value-added service that is designed to deliver highly relevant information. Clinical teams formulate complex patient-specific questions via an evidence-based medicine literature request basket linked to individual patient records. The paper transitions into discussing how the StarPanel approach acted as a springboard for two additional projects that use highly trained knowledge management librarians with informatics expertise to integrate evidence into both order sets and a patient portal, MyHealth@Vanderbilt.

  6. Selected Topics on Business Informatics Research: Editorial Introduction to Issue 6 of CSIMQ

    OpenAIRE

    Maggi, Fabrizio Maria; Matulevičius, Raimundas

    2016-01-01

    Business informatics research bridges management and engineering domains and facilitates communication between scientific and practical applications. The sixth issue of the journal of Complex Systems Informatics and Modeling Quarterly contains four publications that present the extended papers from the workshops of the 14th International Conference on Perspectives in Business Informatics Research (BIR 2015) that was organized in Tartu, Estonia, 26-28 August, 2015. The BIR 2015 workshops captu...

  7. eMedOffice: A web-based collaborative serious game for teaching optimal design of a medical practice

    Directory of Open Access Journals (Sweden)

    Hannig Andreas

    2012-10-01

    Full Text Available Abstract Background Preparing medical students for the takeover or the start-up of a medical practice is an important challenge in Germany today. Therefore, this paper presents a computer-aided serious game (eMedOffice developed and currently in use at the RWTH Aachen University Medical School. The game is part of the attempt to teach medical students the organizational and conceptual basics of the medical practice of a general practitioner in a problem-based learning environment. This paper introduces methods and concepts used to develop the serious game and describes the results of an evaluation of the game's application in curricular courses at the Medical School. Results Results of the conducted evaluation gave evidence of a positive learning effect of the serious game. Educational supervisors observed strong collaboration among the players inspired by the competitive gaming aspects. In addition, an increase in willingness to learn and the exploration of new self-invented ideas were observed and valuable proposals for further prospective enhancements were elicited. A statistical analysis of the results of an evaluation provided a clear indication of the positive learning effect of the game. A usability questionnaire survey revealed a very good overall score of 4.07 (5=best, 1=worst. Conclusions We consider web-based, collaborative serious games to be a promising means of improving medical education. The insights gained by the implementation of eMedOffice will promote the future development of more effective serious games for integration into curricular courses of the RWTH Aachen University Medical School.

  8. The Application of Informatics in Delineating the Proof of Concept for Creating Knowledge of the Value Added by Interprofessional Practice and Education

    Directory of Open Access Journals (Sweden)

    Frank Cerra

    2015-11-01

    Full Text Available The resurgence of interest in the promise of interprofessional education and collaborative practice (IPECP to positively impact health outcomes, requires the collection of appropriate data that can be analyzed and from which information and knowledge linking IPECP interventions to improved health outcomes might be produced and reported to stakeholders such as health systems, policy makers and regulators, payers, and accreditation agencies. To generate such knowledge the National Center for Interprofessional Practice and Education at the University of Minnesota has developed three strategies, the first two of which are: (1 creating an IPECP research agenda, and (2 a national Nexus Innovation Network (NIN of intervention projects that are generating data that are being input and housed in a National Center Data Repository (NCDR. In this paper, the informatics platform supporting the work of these first two strategies is presented as the third interconnected strategy for knowledge generation. The proof of concept for the informatics strategy is developed in this paper by describing: data input from the NIN into the NCDR, the linking and merging of those data to produce analyzable data files that incorporate institutional and individual level data, and the production of meaningful analyses to create and provide relevant information and knowledge. This paper is organized around the concepts of data, information and knowledge—the three conceptual foundations of informatics.

  9. The Application of Informatics in Delineating the Proof of Concept for Creating Knowledge of the Value Added by Interprofessional Practice and Education.

    Science.gov (United States)

    Cerra, Frank; Pacala, James; Brandt, Barbara F; Lutfiyya, May Nawal

    2015-11-12

    The resurgence of interest in the promise of interprofessional education and collaborative practice (IPECP) to positively impact health outcomes, requires the collection of appropriate data that can be analyzed and from which information and knowledge linking IPECP interventions to improved health outcomes might be produced and reported to stakeholders such as health systems, policy makers and regulators, payers, and accreditation agencies. To generate such knowledge the National Center for Interprofessional Practice and Education at the University of Minnesota has developed three strategies, the first two of which are: (1) creating an IPECP research agenda, and (2) a national Nexus Innovation Network (NIN) of intervention projects that are generating data that are being input and housed in a National Center Data Repository (NCDR). In this paper, the informatics platform supporting the work of these first two strategies is presented as the third interconnected strategy for knowledge generation. The proof of concept for the informatics strategy is developed in this paper by describing: data input from the NIN into the NCDR, the linking and merging of those data to produce analyzable data files that incorporate institutional and individual level data, and the production of meaningful analyses to create and provide relevant information and knowledge. This paper is organized around the concepts of data, information and knowledge-the three conceptual foundations of informatics.

  10. Biomedical and health informatics education and research at the Information Technology Institute in Egypt.

    Science.gov (United States)

    Hussein, R; Khalifa, A

    2011-01-01

    During the last decade, Egypt has experienced a revolution in the field of Information and Communication Technology (ICT) that has had a corresponding impact on the field of healthcare. Since 1993, the Information Technology Institute (ITI) has been leading the development of the Information Technology (IT) professional training and education in Egypt to produce top quality IT professionals who are considered now the backbone of the IT revolution in Egypt. For the past five years, ITI has been adopting the objective of building high caliber health professionals who can effectively serve the ever-growing information society. Academic links have been established with internationally renowned universities, e.g., Oregon Health and Science University (OHSU) in US, University of Leipzig in Germany, in addition those with the Egyptian Fellowship Board in order to enrich ITI Medical Informatics Education and Research. The ITI Biomedical and Health Informatics (BMHI) education and training programs target fresh graduates as well as life-long learners. Therefore, the program's learning objectives are framed within the context of the four specialization tracks: Healthcare Management (HCM), Biomedical Informatics Research (BMIR), Bioinformatics Professional (BIP), and Healthcare Professional (HCP). The ITI BMHI research projects tackle a wide-range of current challenges in this field, such as knowledge management in healthcare, providing tele-consultation services for diagnosis and treatment of infectious diseases for underserved regions in Egypt, and exploring the cultural and educational aspects of Nanoinformatics. Since 2006, ITI has been positively contributing to develop the discipline of BMHI in Egypt in order to support improved healthcare services.

  11. SuperAssist: A User-Assistant Collaborative Environment for the supervision of medical instrument use at home

    NARCIS (Netherlands)

    Blanson Henkemans, O.A.; Neerincx, M.A.; Lindenberg, J.; Mast, C.A.P.G. van der

    2007-01-01

    With the rise of Transmural care, patients increasingly use medical instruments at home. Maintenance and troubleshooting greatly determines the safety and accuracy of these instruments. For the supervision of these complex tasks, we developed a User-Assistant Collaborative Environment (U-ACE). We

  12. A newly developed assessment tool on collaborative role of doctor–pharmacist in patient medication management

    Directory of Open Access Journals (Sweden)

    Mayur Porwal

    2016-02-01

    Full Text Available Background Poor communication is one of the most important common factor contributing to medication errors. Despite their common history, there are many intellectual and practical differences between the professions of medicine and pharmacy that eventually affects patient care and health outcomes. Objectives. The main objective of the study is to evaluate the coordination and teamwork between pharmacist and doctor to provide betterment in the care of the patient health. Material and methods . A questionnaire of 10 questions was developed each for the patient, pharmacist and doctor posted on District Hospital, Moradabad (U.P., India and data collected from the patient and medical professionals through questionnaire were analyzed for collaborative role of doctor-pharmacist with respect to patient care. The results were analyzed using Graph Pad Prism 5. Results. The data obtained from the questionnaire highlights a significant effort between pharmacist and doctors. However, some patients often doubt in the skills of pharmacist for treatment outcome, but the majority of people responds positive to doctor-pharmacist role as they prove to be fruitful in removing medication errors. Conclusions . To facilitate the patient care, doctor-pharmacist alliance is necessary, desired and should be motivated as professed by the respondents. Collaboration is an important element of effective patient-focused health care delivery.

  13. Interdisciplinary Collaboration in Medication-Related Falls Prevention in Older Adults.

    Science.gov (United States)

    Huang, Lisa; Turner, Jazmin; Brandt, Nicole J

    2018-04-01

    The older adult population continues to steadily increase. Largely attributed to longer life spans and aging of the Baby Boomer generation, continued growth of this population is expected to affect a multitude of challenging public health concerns. Specifically, falls in older adults are prevalent but overlooked concerns. Health care providers are well-positioned to provide valuable interventions in this aspect. An interdisciplinary, team-based approach of health care providers is required to maximize falls prevention through patient-centered and collaborative care. The current article highlights the implications of inappropriate medication use and the need to improve care coordination to tackle this public health issue affecting older adults. [Journal of Gerontological Nursing, 44(4), 11-15.]. Copyright 2018, SLACK Incorporated.

  14. Impact of a collaborative interprofessional learning experience upon medical and social work students in geriatric health care.

    Science.gov (United States)

    Gould, Paul Robert; Lee, Youjung; Berkowitz, Shawn; Bronstein, Laura

    2015-01-01

    Interprofessional collaborative practice is increasingly recognized as an essential model in health care. This study lends preliminary support to the notion that medical students (including residents) and social work students develop a broader understanding of one another's roles and contributions to enhancing community-dwelling geriatric patients' health, and develop a more thorough understanding of the inherent complexities and unique aspects of geriatric health care. Wilcoxon Signed Rank Tests of participants' scores on the Index of Interdisciplinary Collaboration (IIC) indicated the training made significant changes to the students' perception of interprofessional collaboration. Qualitative analysis of participants' statements illustrated (1) benefits of the IPE experience, including complementary roles in holistic interventions; and (2) challenges to collaboration. The findings suggest that interprofessional educational experiences have a positive impact upon students' learning and strategies for enhanced care of geriatric patients.

  15. Conversion of National Health Insurance Service-National Sample Cohort (NHIS-NSC) Database into Observational Medical Outcomes Partnership-Common Data Model (OMOP-CDM).

    Science.gov (United States)

    You, Seng Chan; Lee, Seongwon; Cho, Soo-Yeon; Park, Hojun; Jung, Sungjae; Cho, Jaehyeong; Yoon, Dukyong; Park, Rae Woong

    2017-01-01

    It is increasingly necessary to generate medical evidence applicable to Asian people compared to those in Western countries. Observational Health Data Sciences a Informatics (OHDSI) is an international collaborative which aims to facilitate generating high-quality evidence via creating and applying open-source data analytic solutions to a large network of health databases across countries. We aimed to incorporate Korean nationwide cohort data into the OHDSI network by converting the national sample cohort into Observational Medical Outcomes Partnership-Common Data Model (OMOP-CDM). The data of 1.13 million subjects was converted to OMOP-CDM, resulting in average 99.1% conversion rate. The ACHILLES, open-source OMOP-CDM-based data profiling tool, was conducted on the converted database to visualize data-driven characterization and access the quality of data. The OMOP-CDM version of National Health Insurance Service-National Sample Cohort (NHIS-NSC) can be a valuable tool for multiple aspects of medical research by incorporation into the OHDSI research network.

  16. Formation of the portfolio of projects for informatization programs

    Directory of Open Access Journals (Sweden)

    Ion Bolun

    2009-12-01

    Full Text Available in informatization programs are approached: criteria of efficiency, general problem, aggregate problem in continuous form, general problem in discrete form and solving of problems. As criterion of informatization projects' economic efficiency, the total profit maximization due to investments is used. In preliminary calculations, the opportunity of considering continuous dependences of profit on the volume of investments by domain activities is grounded. Eleven classes of such dependences are investigated and analytical solutions and algorithms for solving formulated problems are described.

  17. Public health informatics and information systems

    CERN Document Server

    Magnuson, J A

    2013-01-01

    In a revised edition, this book covers all aspects of public health informatics, and discusses the creation and management of an information technology infrastructure that is essential in linking state and local organizations in their efforts to gather data.

  18. A Study on Impact of Informatization on Tourist Behavior : Analysis of Anime Pilgrimage

    OpenAIRE

    岡本, 健

    2009-01-01

    This paper shows impact of informatization on tourist behavior in Japan. This research adopts analysis of "Anime Pilgrimage" in order to accomplish the above mentioned objective. Recently, in Japan, some of anime fans make "Anime Pilgrimage" which is a kind of tourist behavior. It would appear that this behavior was affected by informatization strongly. As a result, it was found that "Anime Pilgrim" was affected by informatization not only before "Anime Pilgrimage" but also throughout "Anime ...

  19. The Great Chains of Computing: Informatics at Multiple Scales

    Directory of Open Access Journals (Sweden)

    Kevin Kirby

    2011-10-01

    Full Text Available The perspective from which information processing is pervasive in the universe has proven to be an increasingly productive one. Phenomena from the quantum level to social networks have commonalities that can be usefully explicated using principles of informatics. We argue that the notion of scale is particularly salient here. An appreciation of what is invariant and what is emergent across scales, and of the variety of different types of scales, establishes a useful foundation for the transdiscipline of informatics. We survey the notion of scale and use it to explore the characteristic features of information statics (data, kinematics (communication, and dynamics (processing. We then explore the analogy to the principles of plenitude and continuity that feature in Western thought, under the name of the "great chain of being", from Plato through Leibniz and beyond, and show that the pancomputational turn is a modern counterpart of this ruling idea. We conclude by arguing that this broader perspective can enhance informatics pedagogy.

  20. Visioning future emergency healthcare collaboration

    DEFF Research Database (Denmark)

    Söderholm, Hanna M.; Sonnenwald, Diane H.

    2010-01-01

    physicians, nurses, administrators, and information technology (IT) professionals working at large and small medical centers, and asked them to share their perspectives regarding 3DMC's potential benefits and disadvantages in emergency healthcare and its compatibility and/or lack thereof......New video technologies are emerging to facilitate collaboration in emergency healthcare. One such technology is 3D telepresence technology for medical consultation (3DMC) that may provide richer visual information to support collaboration between medical professionals to, ideally, enhance patient......, and resources. Both common and unique perceptions regarding 3DMC emerged,illustrating the need for 3DMC, and other collaboration technologies,to support interwoven situational awareness across different technological frames....

  1. Analysis on Big Data Problems and Technique Supports of Archives Informatization

    Directory of Open Access Journals (Sweden)

    Du Xiaoyan

    2017-06-01

    Full Text Available [Purpose/significance] The realistic questions of the archives informatization management are faced with data size rapidly increasing, and their types and structures more diverse and complex. [Method/process] Based on the essential attribute of archives in this paper, the big data characteristics of digital archives in their storage and utilization links were analyzed, and the support of new big data techniques in the course of archives informatization, and their applications to the storage and utilization of digital archives and knowledge discovery were researched. [Result/conclusion] Modern processing technology for big data would not only bring certain supports for the management of archives informatization, but also promote the development of its theory and practice.

  2. The state of information and communication technology and health informatics in ghana.

    Science.gov (United States)

    Achampong, Emmanuel Kusi

    2012-01-01

    Information and Communication Technology (ICT) has become a major tool in delivery of health services and has had an innovative impact on quality of life. ICT is affecting the way healthcare is delivered to clients. In this paper, we discuss the state of ICT and health informatics in Ghana. We also discuss the state of various relevant infrastructures for the successful implementation of ehealth projects. We analyse the past and present state of health informatics in Ghana, in comparison to other African countries. We also review the challenges facing successful implementation of health informatics projects in Ghana and suggest possible solutions.

  3. Selected Topics on Business Informatics Research: Editorial Introduction to Issue 6 of CSIMQ

    Directory of Open Access Journals (Sweden)

    Fabrizio Maria Maggi

    2016-04-01

    Full Text Available Business informatics research bridges management and engineering domains and facilitates communication between scientific and practical applications. The sixth issue of the journal of Complex Systems Informatics and Modeling Quarterly contains four publications that present the extended papers from the workshops of the 14th International Conference on Perspectives in Business Informatics Research (BIR 2015 that was organized in Tartu, Estonia, 26-28 August, 2015. The BIR 2015 workshops captured important and novel topics on information logistics and knowledge supply, security and compliance in business processes, and use of ontologies in information systems. Within this context the fifth publication included in this issue complements the topic of the business informatics research with the investigation of a model-driven approach on the gesture-based interaction in information systems.

  4. IMIA Educational Recommendations and Nursing Informatics

    NARCIS (Netherlands)

    Mantas, John; Hasman, Arie

    2017-01-01

    The updated version of the IMIA educational recommendations has given an adequate guidelines platform for developing educational programs in Biomedical and Health Informatics at all levels of education, vocational training, and distance learning. This chapter will provide a brief introduction of the

  5. Synthesizing community wisdom: A model for sharing cancer-related resources through social networking and collaborative partnerships.

    Science.gov (United States)

    Weiss, Jacob B; Lorenzi, Nancy M; Lorenzi, Nancy

    2008-11-06

    Despite the availability of community-based support services, cancer patients and survivors are not aware of many of these resources. Without access to community programs, cancer survivors are at risk for lower quality of care and lower quality of life. At the same time, non-profit community organizations lack access to advanced consumer informatics applications to effectively promote awareness of their services. In addition to the current models of print and online resource guides, new community-driven informatics approaches are needed to achieve the goal of comprehensive care for cancer survivors. We present the formulation of a novel model for synthesizing a local communitys collective wisdom of cancer-related resources through a combination of online social networking technologies and real-world collaborative partnerships. This approach can improve awareness of essential, but underutilized community resources.

  6. Handbook of evaluation methods for health informatics

    National Research Council Canada - National Science Library

    Brender, Jytte

    2006-01-01

    .... Amsterdam: lOS Press, Studies in Health Technology and Informatics 1997; 42, with permission. This book is printed on acid-free paper. (~ Copyright 92006, Elsevier Inc. All rights reserved. No part ...

  7. Patient Privacy, Consent, and Identity Management in Health Information Exchange: Issues for the Military Health System

    Science.gov (United States)

    2013-01-01

    JPC-1b Joint Program Committee-1b on Health Information Technology and Medical Informatics MAeHC Massachusetts eHealth Collaborative MHS Military...efficiency of care. The second study, by the eHealth Initiative (2011), surveyed communities across the United States with initiatives to share health...Simon et al. (2009) conducted focus groups involving 64 participants in several rural towns participating in the Massachusetts eHealth Collaborative

  8. Collaborative diagramming during problem based learning in medical education: Do computerized diagrams support basic science knowledge construction?

    NARCIS (Netherlands)

    de Leng, Bas; Gijlers, Aaltje H.

    2015-01-01

    Aim: To examine how collaborative diagramming affects discussion and knowledge construction when learning complex basic science topics in medical education, including its effectiveness in the reformulation phase of problem-based learning. Methods: Opinions and perceptions of students (n = 70) and

  9. The imaging 3.0 informatics scorecard.

    Science.gov (United States)

    Kohli, Marc; Dreyer, Keith J; Geis, J Raymond

    2015-04-01

    Imaging 3.0 is a radiology community initiative to empower radiologists to create and demonstrate value for their patients, referring physicians, and health systems. In image-guided health care, radiologists contribute to the entire health care process, well before and after the actual examination, and out to the point at which they guide clinical decisions and affect patient outcome. Because imaging is so pervasive, radiologists who adopt Imaging 3.0 concepts in their practice can help their health care systems provide consistently high-quality care at reduced cost. By doing this, radiologists become more valuable in the new health care setting. The authors describe how informatics is critical to embracing Imaging 3.0 and present a scorecard that can be used to gauge a radiology group's informatics resources and capabilities. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Computer, Informatics, Cybernetics and Applications : Proceedings of the CICA 2011

    CERN Document Server

    Hua, Ertian; Lin, Yun; Liu, Xiaozhu

    2012-01-01

    Computer Informatics Cybernetics and Applications offers 91 papers chosen for publication from among 184 papers accepted for presentation to the International Conference on Computer, Informatics, Cybernetics and Applications 2011 (CICA 2011), held in Hangzhou, China, September 13-16, 2011. The CICA 2011 conference provided a forum for engineers and scientists in academia, industry, and government to address the most innovative research and development including technical challenges and social, legal, political, and economic issues, and to present and discuss their ideas, results, work in progress and experience on all aspects of Computer, Informatics, Cybernetics and Applications. Reflecting the broad scope of the conference, the contents are organized in these topical categories: Communication Technologies and Applications Intelligence and Biometrics Technologies Networks Systems and Web Technologies Data Modeling and Programming Languages Digital Image Processing Optimization and Scheduling Education and In...

  11. New approaches to health promotion and informatics education using Internet in the Czech Republic.

    Science.gov (United States)

    Zvárová, J

    2005-01-01

    The paper describes nowadays information technology skills in the Czech Republic. It focuses on informatics education using Internet, ECDL concept and the links between computer literacy among health care professionals and quality of health care. Everyone understands that the main source of wealth of any nation is information management and the efficient transformation of information into knowledge. There appear completely new decisive factors for the economics of the near future based on circulation and exchange information. It is clear that modern health care cannot be built without information and communication technologies. We discuss several approaches how to contribute to some topics of information society in health care, namely the role of electronic health record, structured information, extraction of information from free medical texts and sharing knowledge stored in medical guidelines.

  12. An analysis of application of health informatics in Traditional Medicine: A review of four Traditional Medicine Systems.

    Science.gov (United States)

    Raja Ikram, Raja Rina; Abd Ghani, Mohd Khanapi; Abdullah, Noraswaliza

    2015-11-01

    This paper shall first investigate the informatics areas and applications of the four Traditional Medicine systems - Traditional Chinese Medicine (TCM), Ayurveda, Traditional Arabic and Islamic Medicine and Traditional Malay Medicine. Then, this paper shall examine the national informatics infrastructure initiatives in the four respective countries that support the Traditional Medicine systems. Challenges of implementing informatics in Traditional Medicine Systems shall also be discussed. The literature was sourced from four databases: Ebsco Host, IEEE Explore, Proquest and Google scholar. The search term used was "Traditional Medicine", "informatics", "informatics infrastructure", "traditional Chinese medicine", "Ayurveda", "traditional Arabic and Islamic medicine", and "traditional malay medicine". A combination of the search terms above was also executed to enhance the searching process. A search was also conducted in Google to identify miscellaneous books, publications, and organization websites using the same terms. Amongst major advancements in TCM and Ayurveda are bioinformatics, development of Traditional Medicine databases for decision system support, data mining and image processing. Traditional Chinese Medicine differentiates itself from other Traditional Medicine systems with documented ISO Standards to support the standardization of TCM. Informatics applications in Traditional Arabic and Islamic Medicine are mostly ehealth applications that focus more on spiritual healing, Islamic obligations and prophetic traditions. Literature regarding development of health informatics to support Traditional Malay Medicine is still insufficient. Major informatics infrastructure that is common in China and India are automated insurance payment systems for Traditional Medicine treatment. National informatics infrastructure in Middle East and Malaysia mainly cater for modern medicine. Other infrastructure such as telemedicine and hospital information systems focus its

  13. The informatics teaching with the use of networks.

    Directory of Open Access Journals (Sweden)

    Eduardo Hernández Martín

    2013-09-01

    Full Text Available To achieve a differentiated teaching learning process in informatics, in which each student should be able to keep his/her own rhythm, is one of the most complex themes to deal with at any educational level. The present work is the result of the scientific methodological work in the Educative Informatics discipline, it is pretended to reflect about the way of using the UCP LAN in the teaching learning process. To carry out the article some documents such as the disciplines and subjects study syllabuses were revised, the information obtained from an updated bibliography was analyzed – synthesized and itwas exemplified with a theory practical lesson.

  14. The Western New York regional electronic health record initiative: Healthcare informatics use from the registered nurse perspective.

    Science.gov (United States)

    Sackett, Kay M; Erdley, W Scott; Jones, Janice

    2006-01-01

    This paper describes a select population of Western New York (WNY) Registered Nurses' (RN) perspectives on the use of healthcare informatics and the adoption of a regional electronic health record (EHR). A three part class assignment on healthcare informatics used a Strengths, Weaknesses, Opportunities, Threats (SWOT) Analysis, and a Healthcare Informatics Schemata: A paradigm shift over time(c) timeline to determine RN perspectives about healthcare informatics use at their place of employment. Qualitative analysis of 41 RNs who completed the SWOT analysis provided positive and negative themes related to perceptions about healthcare informatics and EHR use at their place of employment. 29 healthcare organizations were aggregated by year on the timeline from 1950 through 2000. Information suggests that, RNs have the capacity to positively drive the adoption of EHRs and healthcare informatics in WNY.

  15. The UAB Informatics Institute and 2016 CEGS N-GRID de-identification shared task challenge.

    Science.gov (United States)

    Bui, Duy Duc An; Wyatt, Mathew; Cimino, James J

    2017-11-01

    Clinical narratives (the text notes found in patients' medical records) are important information sources for secondary use in research. However, in order to protect patient privacy, they must be de-identified prior to use. Manual de-identification is considered to be the gold standard approach but is tedious, expensive, slow, and impractical for use with large-scale clinical data. Automated or semi-automated de-identification using computer algorithms is a potentially promising alternative. The Informatics Institute of the University of Alabama at Birmingham is applying de-identification to clinical data drawn from the UAB hospital's electronic medical records system before releasing them for research. We participated in a shared task challenge by the Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-Scale and RDoC Individualized Domains (N-GRID) at the de-identification regular track to gain experience developing our own automatic de-identification tool. We focused on the popular and successful methods from previous challenges: rule-based, dictionary-matching, and machine-learning approaches. We also explored new techniques such as disambiguation rules, term ambiguity measurement, and used multi-pass sieve framework at a micro level. For the challenge's primary measure (strict entity), our submissions achieved competitive results (f-measures: 87.3%, 87.1%, and 86.7%). For our preferred measure (binary token HIPAA), our submissions achieved superior results (f-measures: 93.7%, 93.6%, and 93%). With those encouraging results, we gain the confidence to improve and use the tool for the real de-identification task at the UAB Informatics Institute. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Examining the Relationship Between Nursing Informatics Competency and the Quality of Information Processing.

    Science.gov (United States)

    Al-Hawamdih, Sajidah; Ahmad, Muayyad M

    2018-03-01

    The purpose of this study was to examine nursing informatics competency and the quality of information processing among nurses in Jordan. The study was conducted in a large hospital with 380 registered nurses. The hospital introduced the electronic health record in 2010. The measures used in this study were personal and job characteristics, self-efficacy, Self-Assessment Nursing Informatics Competencies, and Health Information System Monitoring Questionnaire. The convenience sample consisted of 99 nurses who used the electronic health record for at least 3 months. The analysis showed that nine predictors explained 22% of the variance in the quality of information processing, whereas the statistically significant predictors were nursing informatics competency, clinical specialty, and years of nursing experience. There is a need for policies that advocate for every nurse to be educated in nursing informatics and the quality of information processing.

  17. Evidence-based patient choice and consumer health informatics in the Internet age.

    Science.gov (United States)

    Eysenbach, G; Jadad, A R

    2001-01-01

    In this paper we explore current access to and barriers to health information for consumers. We discuss how computers and other developments in information technology are ushering in the era of consumer health informatics, and the potential that lies ahead. It is clear that we witness a period in which the public will have unprecedented ability to access information and to participate actively in evidence-based health care. We propose that consumer health informatics be regarded as a whole new academic discipline, one that should be devoted to the exploration of the new possibilities that informatics is creating for consumers in relation to health and health care issues.

  18. Journal of Innovation in Health Informatics: building on the 20-year history of a BCS Health peer review journal

    Directory of Open Access Journals (Sweden)

    Simon de Lusignan

    2015-02-01

    Full Text Available After 20-years as Informatics in Primary Care the journal is renamed Journal of Innovation in Health Informatics. The title was carefully selected to reflect that:(1 informatics provides the opportunity to innovate rather than simply automates;(2 implementing informatics solutions often results in unintended consequences, and many implementations fail and benefits and innovations may go unrecognised;(3 health informatics is a boundary spanning discipline and is by its very nature likely to give rise to innovation.Informatics is an innovative science, and informaticians need to innovate across professional and discipline boundaries.

  19. Using informatics and the electronic medical record to describe antimicrobial use in the clinical management of diarrhea cases at 12 companion animal practices.

    Directory of Open Access Journals (Sweden)

    R Michele Anholt

    Full Text Available Antimicrobial drugs may be used to treat diarrheal illness in companion animals. It is important to monitor antimicrobial use to better understand trends and patterns in antimicrobial resistance. There is no monitoring of antimicrobial use in companion animals in Canada. To explore how the use of electronic medical records could contribute to the ongoing, systematic collection of antimicrobial use data in companion animals, anonymized electronic medical records were extracted from 12 participating companion animal practices and warehoused at the University of Calgary. We used the pre-diagnostic, clinical features of diarrhea as the case definition in this study. Using text-mining technologies, cases of diarrhea were described by each of the following variables: diagnostic laboratory tests performed, the etiological diagnosis and antimicrobial therapies. The ability of the text miner to accurately describe the cases for each of the variables was evaluated. It could not reliably classify cases in terms of diagnostic tests or etiological diagnosis; a manual review of a random sample of 500 diarrhea cases determined that 88/500 (17.6% of the target cases underwent diagnostic testing of which 36/88 (40.9% had an etiological diagnosis. Text mining, compared to a human reviewer, could accurately identify cases that had been treated with antimicrobials with high sensitivity (92%, 95% confidence interval, 88.1%-95.4% and specificity (85%, 95% confidence interval, 80.2%-89.1%. Overall, 7400/15,928 (46.5% of pets presenting with diarrhea were treated with antimicrobials. Some temporal trends and patterns of the antimicrobial use are described. The results from this study suggest that informatics and the electronic medical records could be useful for monitoring trends in antimicrobial use.

  20. An informatics agenda for public health: summarized recommendations from the 2011 AMIA PHI Conference

    Science.gov (United States)

    Goodman, Kenneth W; Gotham, Ivan J; Holmes, John H; Lang, Lisa; Miner, Kathleen; Potenziani, David D; Richards, Janise; Turner, Anne M; Fu, Paul C

    2012-01-01

    The AMIA Public Health Informatics 2011 Conference brought together members of the public health and health informatics communities to revisit the national agenda developed at the AMIA Spring Congress in 2001, assess the progress that has been made in the past decade, and develop recommendations to further guide the field. Participants met in five discussion tracks: technical framework; research and evaluation; ethics; education, professional training, and workforce development; and sustainability. Participants identified 62 recommendations, which clustered into three key themes related to the need to (1) enhance communication and information sharing within the public health informatics community, (2) improve the consistency of public health informatics through common public health terminologies, rigorous evaluation methodologies, and competency-based training, and (3) promote effective coordination and leadership that will champion and drive the field forward. The agenda and recommendations from the meeting will be disseminated and discussed throughout the public health and informatics communities. Both communities stand to gain much by working together to use these recommendations to further advance the application of information technology to improve health. PMID:22395299

  1. Developing Workforce Capacity in Public Health Informatics: Core Competencies and Curriculum Design

    Directory of Open Access Journals (Sweden)

    Douglas R. Wholey

    2018-05-01

    Full Text Available We describe a master’s level public health informatics (PHI curriculum to support workforce development. Public health decision-making requires intensive information management to organize responses to health threats and develop effective health education and promotion. PHI competencies prepare the public health workforce to design and implement these information systems. The objective for a Master’s and Certificate in PHI is to prepare public health informaticians with the competencies to work collaboratively with colleagues in public health and other health professions to design and develop information systems that support population health improvement. The PHI competencies are drawn from computer, information, and organizational sciences. A curriculum is proposed to deliver the competencies and result of a pilot PHI program is presented. Since the public health workforce needs to use information technology effectively to improve population health, it is essential for public health academic institutions to develop and implement PHI workforce training programs.

  2. Developing Workforce Capacity in Public Health Informatics: Core Competencies and Curriculum Design

    Science.gov (United States)

    Wholey, Douglas R.; LaVenture, Martin; Rajamani, Sripriya; Kreiger, Rob; Hedberg, Craig; Kenyon, Cynthia

    2018-01-01

    We describe a master’s level public health informatics (PHI) curriculum to support workforce development. Public health decision-making requires intensive information management to organize responses to health threats and develop effective health education and promotion. PHI competencies prepare the public health workforce to design and implement these information systems. The objective for a Master’s and Certificate in PHI is to prepare public health informaticians with the competencies to work collaboratively with colleagues in public health and other health professions to design and develop information systems that support population health improvement. The PHI competencies are drawn from computer, information, and organizational sciences. A curriculum is proposed to deliver the competencies and result of a pilot PHI program is presented. Since the public health workforce needs to use information technology effectively to improve population health, it is essential for public health academic institutions to develop and implement PHI workforce training programs. PMID:29770321

  3. The Adverse Drug Event Collaborative: a joint venture to measure medication-related patient harm.

    Science.gov (United States)

    Seddon, Mary E; Jackson, Aaron; Cameron, Chris; Young, Mary L; Escott, Linda; Maharaj, Ashika; Miller, Nigel

    2012-01-25

    To measure the extent of patient harm caused by medications (rate of Adverse Drug Events) in three DHBs, using a standardised trigger tool method. Counties Manukau, Capital and Coast and Canterbury DHBs decided to work collaboratively to implement the ADE Trigger Tool (TT). Definitions of ADE were agreed on and triggers refined. A random sample of closed charts (from March 2010 to February 2011) was obtained excluding patients who were admitted for <48 hours, children under the age of 18 and psychiatric admissions. In each DHB trained reviewers scanned these in a structured way to identify any of the 19 triggers. If triggers were identified, a more detailed, though time-limited review of the chart was done to determine whether an ADE had occurred. The severity of patient harm was categorised using the National Coordinating Council for Medication Error Reporting and Prevention Index. No attempt was made to determine preventability of harm and ADEs from acts of omission were excluded. The ADE TT was applied to 1210 charts and 353 ADE were identified, with an average rate of 28.9/100 admissions and 38/1,000 bed days. 94.5% of the ADE identified were in the lower severity scales with temporary harm, however in 5 patients it was considered that the ADE contributed to their death, 9 required an intervention to sustain life and 4 suffered permanent harm. The most commonly implicated drugs were morphine and other opioids, anticoagulants, antibiotics, Non Steroidal Anti-Inflammatory Drugs (NSAIDs) and diuretics. Patients who suffered an ADE were more likely to be female, older with more complex medical illnesses, and have a longer length of stay. The rate of medication-related harm identified by the ADE TT is considerably higher than that identified through traditional voluntary reporting mechanisms. The ADE TT provides a standardised measure of harm over time that can be used to determine trends and the effect of medication safety improvement programmes. This study not

  4. Clinical exome sequencing reports: current informatics practice and future opportunities.

    Science.gov (United States)

    Swaminathan, Rajeswari; Huang, Yungui; Astbury, Caroline; Fitzgerald-Butt, Sara; Miller, Katherine; Cole, Justin; Bartlett, Christopher; Lin, Simon

    2017-11-01

    The increased adoption of clinical whole exome sequencing (WES) has improved the diagnostic yield for patients with complex genetic conditions. However, the informatics practice for handling information contained in whole exome reports is still in its infancy, as evidenced by the lack of a common vocabulary within clinical sequencing reports generated across genetic laboratories. Genetic testing results are mostly transmitted using portable document format, which can make secondary analysis and data extraction challenging. This paper reviews a sample of clinical exome reports generated by Clinical Laboratory Improvement Amendments-certified genetic testing laboratories at tertiary-care facilities to assess and identify common data elements. Like structured radiology reports, which enable faster information retrieval and reuse, structuring genetic information within clinical WES reports would help facilitate integration of genetic information into electronic health records and enable retrospective research on the clinical utility of WES. We identify elements listed as mandatory according to practice guidelines but are currently missing from some of the clinical reports, which might help to organize the data when stored within structured databases. We also highlight elements, such as patient consent, that, although they do not appear within any of the current reports, may help in interpreting some of the information within the reports. Integrating genetic and clinical information would assist the adoption of personalized medicine for improved patient care and outcomes. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Incorporating healthcare informatics into the strategic planning process in nursing education.

    Science.gov (United States)

    Sackett, Kay; Jones, Janice; Erdley, W Scott

    2005-01-01

    The purpose of this article is to describe the incorporation of healthcare informatics into the strategic planning process in nursing education. An exemplar from the University at Buffalo, the State University of New York School of Nursing, is interwoven throughout the article. The challenges and successes inherent in a paradigm shift embracing the multifaceted adoption of technology in higher education are illustrated. The paradigm shift that necessitated this change, the need for informatics standards and competencies identified by regulatory agencies and the relationship of the triad mission of the Academy which includes research, teaching and service are then elucidated. Information pertinent to the strategic planning process is described including the use of a strengths, weaknesses, opportunities and threats (SWOT) analysis to facilitate the integration of a healthcare informatics model into a nursing curriculum.

  6. Semantic modeling and interoperability in product and process engineering a technology for engineering informatics

    CERN Document Server

    2013-01-01

    In the past decade, feature-based design and manufacturing has gained some momentum in various engineering domains to represent and reuse semantic patterns with effective applicability. However, the actual scope of feature application is still very limited. Semantic Modeling and Interoperability in Product and Process Engineering provides a systematic solution for the challenging engineering informatics field aiming at the enhancement of sustainable knowledge representation, implementation and reuse in an open and yet practically manageable scale.   This semantic modeling technology supports uniform, multi-facet and multi-level collaborative system engineering with heterogeneous computer-aided tools, such as CADCAM, CAE, and ERP.  This presented unified feature model can be applied to product and process representation, development, implementation and management. Practical case studies and test samples are provided to illustrate applications which can be implemented by the readers in real-world scenarios. �...

  7. Institutional paradoxes of informatization of state and municipal governance in modern Russia

    Directory of Open Access Journals (Sweden)

    Nikolay Vasilyevich Lukashov

    2015-06-01

    Full Text Available Objective to show that the informatization of state and municipal governance in modern Russia should be aimed directly at reducing costs and improving productivity of the state and municipal authorities and not at the achievement of indirect performance indicators like ldquothe proportion of documents in digital formquot. Methods the method of analysis of the research object condition at various stages of its development the synthesis of cognition elements followed by synthesis and transition from the singular to the general. General scientific specific and private scientific research methods were used. Results basing on the analysis of informatization of state and municipal management it is shown that the main reason for its low efficiency is the current evaluation system based on indirect indicators. Scientific novelty the efficiency and effectiveness of informatization of state and municipal management are considered from the point of view of consistency and optimal allocation of resources. The scientific justification of performance indicators of informatization in the sphere of state and municipal management is proposed which is characterized by the blurring of the quality criteria difficult to express in monetary terms. Examples of such criteria are cost of rendering of state municipal services physical geographical by mode of operation by convenience accessibility of services time of waiting in queue and length of obtaining the service by a citizen regardless of in which form traditional or digital it is rendered. Practical value the article considers the problems of selecting the efficiency criteria of social control informatization. Specific measures are proposed aimed at improving the efficiency of informatization including in the framework of realization of the Federal program of the Russian Federation quotInformational societyquot for 20122020. nbsp

  8. A Multidisciplinary PBL Approach for Teaching Industrial Informatics and Robotics in Engineering

    Science.gov (United States)

    Calvo, Isidro; Cabanes, Itziar; Quesada, Jeronimo; Barambones, Oscar

    2018-01-01

    This paper describes the design of an industrial informatics course, following the project-based learning methodology, and reports the experience of four academic years (from 2012-13 to 2015-16). Industrial Informatics is a compulsory course taught in the third year of the B.Sc. degree in industrial electronics and automation engineering at the…

  9. Cognitive informatics in health and biomedicine case studies on critical care, complexity and errors

    CERN Document Server

    Patel, Vimla L; Cohen, Trevor

    2014-01-01

    This interdisciplinary book offers an introduction to cognitive informatics, focusing on key examples drawn from the application of methods and theories from cognitive informatics to challenges specific to the practice of critical-care medicine.

  10. THE CONCEPT OF VOCATIONAL TRAINING OF FUTURE ELEMENTARY SCHOOL TEACHER TO INFORMATICS TRAINING

    Directory of Open Access Journals (Sweden)

    Olena Sagan

    2016-09-01

    Full Text Available In the article the problem of professional training of future elementary school teacher to teach Informatics of junior schoolchild is revealed. Rapid development of information and communication technologies actualizes the high-quality requirements to informational competent members of society. Transformation of content of primary education, namely putting Informatics in the curricula, exerted impact on a social request of the elementary school teacher who doesn’t only thoroughly use means of information technologies, but also teaches Informatics as invariant discipline of elementary school. In work it is designed the methodical model of training of future elementary school teacher for teaching Informatics, its purpose is forming of methodology informational competence at future elementary school teacher, which is based on theoretical and practical readiness for teaching Informatics of junior schoolchild and is shown in abilities to organize of the teaching and educational process. Finding of a ratio of essential results of training in higher education institution and general and professional competences which were determined by means of expert evaluations became a basis of a substantial component of system. We design the expected result in the form of competence-based model of future elementary school teacher in a perspective of its preparation for the decision the informational and the methodology-informational tasks of elementary school.

  11. Topical directions of informatics in memory of V. M. Glushkov

    CERN Document Server

    Sergienko, Ivan V

    2014-01-01

    This work is devoted to the late Ukrainian computer scientist V. M. Glushkov  on the 90th anniversary of his birthday. Dr. Glushkov is known for his contribution to the world computer science and technology, and this volume analyzes the ideas and paths of development of informatics formulated by him, and demonstrates their important role in constructing computer technologies of basic research in the fields of applied mathematics, theories of computer programming, and computing systems.   A significant portion of the monograph is devoted to the elucidation of new results obtained  in the field of mathematical modeling of complicated processes, creation of new methods for solving and investigating optimization problems in different statements, and development of computer technologies for investigations in the field of economy, biology, medicine, and information security in systems.   The monograph will be of particular interest to informatics specialists and experts using methods of informatics and computer...

  12. Perspectives on Clinical Informatics: Integrating Large-Scale Clinical, Genomic, and Health Information for Clinical Care

    Directory of Open Access Journals (Sweden)

    In Young Choi

    2013-12-01

    Full Text Available The advances in electronic medical records (EMRs and bioinformatics (BI represent two significant trends in healthcare. The widespread adoption of EMR systems and the completion of the Human Genome Project developed the technologies for data acquisition, analysis, and visualization in two different domains. The massive amount of data from both clinical and biology domains is expected to provide personalized, preventive, and predictive healthcare services in the near future. The integrated use of EMR and BI data needs to consider four key informatics areas: data modeling, analytics, standardization, and privacy. Bioclinical data warehouses integrating heterogeneous patient-related clinical or omics data should be considered. The representative standardization effort by the Clinical Bioinformatics Ontology (CBO aims to provide uniquely identified concepts to include molecular pathology terminologies. Since individual genome data are easily used to predict current and future health status, different safeguards to ensure confidentiality should be considered. In this paper, we focused on the informatics aspects of integrating the EMR community and BI community by identifying opportunities, challenges, and approaches to provide the best possible care service for our patients and the population.

  13. Open Source software and social networks: Disruptive alternatives for medical imaging

    International Nuclear Information System (INIS)

    Ratib, Osman; Rosset, Antoine; Heuberger, Joris

    2011-01-01

    In recent decades several major changes in computer and communication technology have pushed the limits of imaging informatics and PACS beyond the traditional system architecture providing new perspectives and innovative approach to a traditionally conservative medical community. Disruptive technologies such as the world-wide-web, wireless networking, Open Source software and recent emergence of cyber communities and social networks have imposed an accelerated pace and major quantum leaps in the progress of computer and technology infrastructure applicable to medical imaging applications. Methods: This paper reviews the impact and potential benefits of two major trends in consumer market software development and how they will influence the future of medical imaging informatics. Open Source software is emerging as an attractive and cost effective alternative to traditional commercial software developments and collaborative social networks provide a new model of communication that is better suited to the needs of the medical community. Observations: Evidence shows that successful Open Source software tools have penetrated the medical market and have proven to be more robust and cost effective than their commercial counterparts. Developed by developers that are themselves part of the user community, these tools are usually better adapted to the user's need and are more robust than traditional software programs being developed and tested by a large number of contributing users. This context allows a much faster and more appropriate development and evolution of the software platforms. Similarly, communication technology has opened up to the general public in a way that has changed the social behavior and habits adding a new dimension to the way people communicate and interact with each other. The new paradigms have also slowly penetrated the professional market and ultimately the medical community. Secure social networks allowing groups of people to easily communicate

  14. Open Source software and social networks: Disruptive alternatives for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ratib, Osman, E-mail: osman.ratib@hcuge.ch [Department of Medical Imaging and Information Sciences, University Hospital of Geneva, 24, rue Micheli-du-Crest, 1205 Geneva (Switzerland); Rosset, Antoine; Heuberger, Joris [Department of Medical Imaging and Information Sciences, University Hospital of Geneva, 24, rue Micheli-du-Crest, 1205 Geneva (Switzerland)

    2011-05-15

    In recent decades several major changes in computer and communication technology have pushed the limits of imaging informatics and PACS beyond the traditional system architecture providing new perspectives and innovative approach to a traditionally conservative medical community. Disruptive technologies such as the world-wide-web, wireless networking, Open Source software and recent emergence of cyber communities and social networks have imposed an accelerated pace and major quantum leaps in the progress of computer and technology infrastructure applicable to medical imaging applications. Methods: This paper reviews the impact and potential benefits of two major trends in consumer market software development and how they will influence the future of medical imaging informatics. Open Source software is emerging as an attractive and cost effective alternative to traditional commercial software developments and collaborative social networks provide a new model of communication that is better suited to the needs of the medical community. Observations: Evidence shows that successful Open Source software tools have penetrated the medical market and have proven to be more robust and cost effective than their commercial counterparts. Developed by developers that are themselves part of the user community, these tools are usually better adapted to the user's need and are more robust than traditional software programs being developed and tested by a large number of contributing users. This context allows a much faster and more appropriate development and evolution of the software platforms. Similarly, communication technology has opened up to the general public in a way that has changed the social behavior and habits adding a new dimension to the way people communicate and interact with each other. The new paradigms have also slowly penetrated the professional market and ultimately the medical community. Secure social networks allowing groups of people to easily

  15. Open Source software and social networks: disruptive alternatives for medical imaging.

    Science.gov (United States)

    Ratib, Osman; Rosset, Antoine; Heuberger, Joris

    2011-05-01

    In recent decades several major changes in computer and communication technology have pushed the limits of imaging informatics and PACS beyond the traditional system architecture providing new perspectives and innovative approach to a traditionally conservative medical community. Disruptive technologies such as the world-wide-web, wireless networking, Open Source software and recent emergence of cyber communities and social networks have imposed an accelerated pace and major quantum leaps in the progress of computer and technology infrastructure applicable to medical imaging applications. This paper reviews the impact and potential benefits of two major trends in consumer market software development and how they will influence the future of medical imaging informatics. Open Source software is emerging as an attractive and cost effective alternative to traditional commercial software developments and collaborative social networks provide a new model of communication that is better suited to the needs of the medical community. Evidence shows that successful Open Source software tools have penetrated the medical market and have proven to be more robust and cost effective than their commercial counterparts. Developed by developers that are themselves part of the user community, these tools are usually better adapted to the user's need and are more robust than traditional software programs being developed and tested by a large number of contributing users. This context allows a much faster and more appropriate development and evolution of the software platforms. Similarly, communication technology has opened up to the general public in a way that has changed the social behavior and habits adding a new dimension to the way people communicate and interact with each other. The new paradigms have also slowly penetrated the professional market and ultimately the medical community. Secure social networks allowing groups of people to easily communicate and exchange information

  16. Informatics methods to enable sharing of quantitative imaging research data.

    Science.gov (United States)

    Levy, Mia A; Freymann, John B; Kirby, Justin S; Fedorov, Andriy; Fennessy, Fiona M; Eschrich, Steven A; Berglund, Anders E; Fenstermacher, David A; Tan, Yongqiang; Guo, Xiaotao; Casavant, Thomas L; Brown, Bartley J; Braun, Terry A; Dekker, Andre; Roelofs, Erik; Mountz, James M; Boada, Fernando; Laymon, Charles; Oborski, Matt; Rubin, Daniel L

    2012-11-01

    The National Cancer Institute Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community. We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN. There are a variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network. As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. A broadband multimedia collaborative system for advanced teleradiology and medical imaging diagnosis.

    Science.gov (United States)

    Gómez, E J; del Pozo, F; Ortiz, E J; Malpica, N; Rahms, H

    1998-09-01

    This paper presents a new telemedicine system currently in routine clinical usage, developed within the European Union (EU) ACTS BONAPARTE project (1). The telemedicine system is developed on an asynchronous transfer mode (ATM) multimedia hardware/software platform comprising the following set of telemedicine services: synchronous cooperative work, high-quality video conference, multimedia mail, medical image digitizing, processing, storing and printing, and local and remote transparent database access. The medical information handled by the platform conforms to the Digital Imaging and Communications in Medicine (DICOM) 3.0 medical imaging standard. The telemedicine system has been installed for clinical routines in three Spanish hospitals since November 1997 and has been used in an average of one/two clinical sessions per week. At each clinical session, a usability and clinical evaluation of the system was carried out. Evaluation is carried out through direct observation of interactions and questionnaire-based subjective data. The usability evaluation methodology and the results of the system usability study are also presented in this article. The experience gained from the design, development, and evaluation of the telemedicine system is providing an indepth knowledge of the benefits and difficulties involved in the installation and clinical usage of this type of high-usability and advanced multimedia telemedicine system in the field of teleradiology and collaborative medical imaging diagnosis.

  18. PRINCIPLES, BASES, AND LAWS OF FUNDAMENTAL INFORMATICS

    Directory of Open Access Journals (Sweden)

    Gennady N. Zverev

    2013-01-01

    Full Text Available This paper defines the goals and problems of fundamental informatics, formulates principal laws of information universe and constructive bases of information objects and processes. The classification of semantics types of knowledge and skills is presented. 

  19. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  20. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Directory of Open Access Journals (Sweden)

    Rahul Uppal

    2016-01-01

    Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  1. An exploratory study of the potential learning benefits for medical students in collaborative drawing: creativity, reflection and 'critical looking'.

    Science.gov (United States)

    Lyon, Philippa; Letschka, Patrick; Ainsworth, Tom; Haq, Inam

    2013-06-17

    Building on a series of higher educational arts/medicine initiatives, an interdisciplinary drawing module themed on the human body was developed for both year 3 Craft students and year 3 Medicine degree students. This became the subject of a research project exploring how the collaborative approach to drawing adopted on this module impacted on the students' learning. In this article, emphasis is given to issues thought to have most potential relevance to medical education. Using an ethnographic research design, the methods adopted were: direct observation of all aspects of the module sessions, audio and video recordings and photographs of the sessions, the incorporation of a semi-structured discussion at the end of each session, and anonymous student questionnaires. A number of key themes emerged. The complex, phased and multi-sensory nature of the 'critical looking' skills developed through the drawing exercises was seen as of potential value in medical education, being proposed as analogous to processes involved in clinical examination and diagnosis. The experience of interdisciplinary collaborative drawing was significant to the students as a creative, participatory and responsive form of learning. The emphasis on the physical experience of drawing and the thematic use of the human body as drawing subject led to reflective discussions about bodily knowledge and understanding. There were indications that students had a meta-cognitive awareness of the learning shifts that had occurred and the sessions provoked constructive self-reflective explorations of pre-professional identity. This preliminary study suggests, through the themes identified, that there may be potential learning outcomes for medical students in this model of interdisciplinary collaborative drawing of the human body. Further research is needed to explore their applicability and value to medical education. There is a need to explore in more depth the beliefs, motivations and learning styles of

  2. Building an International Collaboration for GeoInformatics

    Science.gov (United States)

    Snyder, W. S.; Lehnert, K.; Klump, J.

    2005-12-01

    Geoinformatics (cyberinfrastructure for the geosciences) is being developed as a linked system of sites that provide to the Earth science community a library of research data research-grade tools to manipulate, mine, analyze and model interdisciplinary data, and mechanisms to provide the necessary computational resources for these activities. Our science is global in scope and hence, geoinformatics (GI) must be an international effort. How do we build this international GI? What are the main challenges presented by the political, cultural, organizational, and technical diversity of the global science community that we need to address to achieve a truly global cyberinfrastructure for the Geosciences? GI needs to be developed in an internet-like fashion establishing connections among independent globally distributed sites (`nodes') that will share, link, and integrate their data holdings and services. Independence of the GI pieces with respect to goals, scope, and approaches is critical to sustain commitment from people to build a GI node for which they feel ownership and get credit. This should not be fought by funding agencies - and certainly not by state and federal agencies. Communication, coordination, and collaboration are the core efforts to build the connections, but incentives and resources are required to advance and support them. Part of the coordination effort is development and maintenance of standards. Who should set these standards and govern their modification? Do we need an official international body to do so, and should this be a "governing body" or an "advisory body"? What role should international commissions and bodies such as CODATA/ICSU or IUGS-CGI, international societies and unions, the national geological surveys and other federal agencies play? Guidance from the science community is key to construct a system that geo-researchers will want to use, and that meets their needs. Only when the community endorses GI as a fundamental platform to

  3. [Empathy, inter-professional collaboration, and lifelong medical learning in Spanish and Latin-American physicians-in-training who start their postgraduate training in hospitals in Spain. Preliminary outcomes].

    Science.gov (United States)

    San-Martín, Montserrat; Roig-Carrera, Helena; Villalonga-Vadell, Rosa M; Benito-Sevillano, Carmen; Torres-Salinas, Miquel; Claret-Teruel, Gemma; Robles, Bernabé; Sans-Boix, Antonia; Alcorta-Garza, Adelina; Vivanco, Luis

    2017-01-01

    To identify similarities and differences in empathy, abilities toward inter-professional collaboration, and lifelong medical learning, between Spanish and Latin-American physicians-in-training who start their posgraduate training in teaching hospitals in Spain. Observational study using self-administered questionnaires. Five teaching hospitals in the province of Barcelona, Spain. Spanish and Latin-American physicians-in-training who started their first year of post-graduate medical training. Empathy was measured using the Jefferson scale of empathy. Abilities for inter-professional collaboration were measured using the Jefferson scale attitudes towards nurse-physician collaboration. Learning was measured using the Jefferson scale of medical lifelong learning scale. From a sample of 156 physicians-in-training, 110 from Spain and 40 from Latin America, the Spanish group showed the highest empathy (pempathy and inter-professional collaboration for the whole sample (r=+0.34; pempathy in the development of inter-professional collaboration abilities. In Latin-American physicians who start posgraduate training programs, lifelong learning abilities have a positive influence on the development of other professional competencies. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  4. Medical Physics Residency Consortium: collaborative endeavors to meet the ABR 2014 certification requirements

    Science.gov (United States)

    Parker, Brent C.; Duhon, John; Yang, Claus C.; Wu, H. Terry; Hogstrom, Kenneth R.

    2014-01-01

    In 2009, Mary Bird Perkins Cancer Center (MBPCC) established a Radiation Oncology Physics Residency Program to provide opportunities for medical physics residency training to MS and PhD graduates of the CAMPEP‐accredited Louisiana State University (LSU)‐MBPCC Medical Physics Graduate Program. The LSU‐MBPCC Program graduates approximately six students yearly, which equates to a need for up to twelve residency positions in a two‐year program. To address this need for residency positions, MBPCC has expanded its Program by developing a Consortium consisting of partnerships with medical physics groups located at other nearby clinical institutions. The consortium model offers the residents exposure to a broader range of procedures, technology, and faculty than available at the individual institutions. The Consortium institutions have shown a great deal of support from their medical physics groups and administrations in developing these partnerships. Details of these partnerships are specified within affiliation agreements between MBPCC and each participating institution. All partner sites began resident training in 2011. The Consortium is a network of for‐profit, nonprofit, academic, community, and private entities. We feel that these types of collaborative endeavors will be required nationally to reach the number of residency positions needed to meet the 2014 ABR certification requirements and to maintain graduate medical physics training programs. PACS numbers: 01.40.Fk, 01.40.gb PMID:24710434

  5. Collaborative-group testing improves learning and knowledge retention of human physiology topics in second-year medical students.

    Science.gov (United States)

    Vázquez-García, Mario

    2018-06-01

    The present study examined the relationship between second-year medical students' group performance and individual performance in a collaborative-learning environment. In recent decades, university professors in the scientific and humanistic disciplines have successfully put into practice different modalities of collaborative approaches to teaching. Essentially, collaborative approach refers to a variety of techniques that involves the joint intellectual effort of a small group of students, which encourages interaction and discussion among students and professors. The present results show the efficacy of collaborative learning, which, furthermore, allowed students to participate actively in the physiology class. Average student's grades were significantly higher when they engaged in single-best-response, multiple-choice tests as a student team, compared with taking the same examinations individually. The method improved notably knowledge retention, as learning is more effective when performed in the context of collaborative partnership. A selected subset of questions answered wrongly in an initial test, both individually and collectively, was used on a second test to examine student retention of studied material. Grade averages were significantly improved, both individually and groupwise, when students responded to the subset of questions a second time, 1, 2, or 3 wk after the first attempt. These results suggest that the collaborative approach to teaching allowed a more effective understanding of course content, which meant an improved capacity for retention of human physiology knowledge.

  6. AI in medical education--another grand challenge for medical informatics.

    Science.gov (United States)

    Lillehaug, S I; Lajoie, S P

    1998-03-01

    The potential benefits of artificial intelligence in medicine (AIM) were never realized as anticipated. This paper addresses ways in which such potential can be achieved. Recent discussions of this topic have proposed a stronger integration between AIM applications and health information systems, and emphasize computer guidelines to support the new health care paradigms of evidence-based medicine and cost-effectiveness. These proposals, however, promote the initial definition of AIM applications as being AI systems that can perform or aid in diagnoses. We challenge this traditional philosophy of AIM and propose a new approach aiming at empowering health care workers to become independent self-sufficient problem solvers and decision makers. Our philosophy is based on findings from a review of empirical research that examines the relationship between the health care personnel's level of knowledge and skills, their job satisfaction, and the quality of the health care they provide. This review supports addressing the quality of health care by empowering health care workers to reach their full potential. As an aid in this empowerment process we argue for reviving a long forgotten AIM research area, namely, AI based applications for medical education and training. There is a growing body of research in artificial intelligence in education that demonstrates that the use of artificial intelligence can enhance learning in numerous domains. By examining the strengths of these educational applications and the results from previous AIM research we derive a framework for empowering medical personnel and consequently raising the quality of health care through the use of advanced AI based technology.

  7. Telemedicine and distributed medical intelligence.

    Science.gov (United States)

    Warner, D; Tichenor, J M; Balch, D C

    1996-01-01

    Recent trends in health care informatics and telemedicine indicate that systems are being developed with a primary focus on technology and business, not on the process of medicine itself. The authors present a new model of health care information, distributed medical intelligence, which promotes the development of an integrative medical communication system addressing the process of providing expert medical knowledge to the point of need. The model incorporates audio, video, high-resolution still images, and virtual reality applications into an integrated medical communications network. Three components of the model (care portals, Docking Station, and the bridge) are described. The implementation of this model at the East Carolina University School of Medicine is also outlined.

  8. 10th International Conference on Health Informatics

    CERN Document Server

    2017-01-01

    The purpose of the International Conference on Health Informatics is to bring together researchers and practitioners interested in the application of information and communication technologies (ICT) to healthcare and medicine in general and to the support of persons with special needs in particular.

  9. Collaboration between a college of pharmacy and a for-profit health system at an academic medical center.

    Science.gov (United States)

    Bird, Matthew L; Dunn, Rebecca L; Hagemann, Tracy M; Burton, Michael E; Britton, Mark L; St Cyr, Mark B

    2012-07-01

    The genesis and growth of a successful 14-year partnership between the University of Oklahoma (OU) college of pharmacy and the OU Medical Center (OUMC) department of pharmacy are described. Pursuant to a 1998 joint operating agreement, the medical center and pharmacy school have achieved a high degree of collaboration on a wide range of educational and clinical initiatives. The close relationship has conferred a number of benefits on both institutions, including (1) expanded experiential education opportunities for pharmacy students, (2) joint faculty and staff funding arrangements that have facilitated the development and accreditation of OU pharmacy residency programs, and (3) patient care initiatives that have increased awareness of pharmacists' important contributions in areas such as venous thromboembolism prophylaxis, antibiotic stewardship, and core measures compliance. In addition to the formal integration of the college of pharmacy into the OUMC organizational structure, ongoing teamwork by clinicians and administrators at the two institutions has strengthened the 14-year partnership while helping to identify creative solutions to evolving communications, technology, and reimbursement challenges. Potential growth opportunities include the expansion of pharmacy services into additional service areas and greater involvement by OU pharmacy school faculty in the training of medical, nursing, and allied health professionals. A large for-profit academic medical center and a college of pharmacy developed a successful collaboration that is mutually beneficial and provides increased clinical, educational, and scholarly opportunities, advancing the mission of both institutions.

  10. Translational Research from an Informatics Perspective

    Science.gov (United States)

    Bernstam, Elmer; Meric-Bernstam, Funda; Johnson-Throop, Kathy A.; Turley, James P.; Smith, Jack W.

    2007-01-01

    Clinical and translational research (CTR) is an essential part of a sustainable global health system. Informatics is now recognized as an important en-abler of CTR and informaticians are increasingly called upon to help CTR efforts. The US National Institutes of Health mandated biomedical informatics activity as part of its new national CTR grant initiative, the Clinical and Translational Science Award (CTSA). Traditionally, translational re-search was defined as the translation of laboratory discoveries to patient care (bench to bedside). We argue, however, that there are many other kinds of translational research. Indeed, translational re-search requires the translation of knowledge dis-covered in one domain to another domain and is therefore an information-based activity. In this panel, we will expand upon this view of translational research and present three different examples of translation to illustrate the point: 1) bench to bedside, 2) Earth to space and 3) academia to community. We will conclude with a discussion of our local translational research efforts that draw on each of the three examples.

  11. A survey of scientific production and collaboration rate among of medical library and information sciences in ISI, scopus and Pubmed databases during 2001-2010.

    Science.gov (United States)

    Yousefy, Alireza; Malekahmadi, Parisa

    2013-01-01

    Research is essential for development. In other words, scientific development of each country can be evaluated by researchers' scientific production. Understanding and assessing the activities of researchers for planning and policy making is essential. The significance of collaboration in the production of scientific publications in today's complex world where technology is everything is very apparent. Scientists realized that in order to get their work wildly used and cited to by experts, they must collaborate. The collaboration among researchers results in the development of scientific knowledge and hence, attainment of wider information. The main objective of this research is to survey scientific production and collaboration rate in philosophy and theoretical bases of medical library and information sciences in ISI, SCOPUS, and Pubmed databases during 2001-2010. This is a descriptive survey and scientometrics methods were used for this research. Then data gathered via check list and analyzed by the SPSS software. Collaboration rate was calculated according to the formula. Among the 294 related abstracts about philosophy, and theoretical bases of medical library and information science in ISI, SCOPUS, and Pubmed databases during 2001-2010, the year 2007 with 45 articles has the most and the year 2003 with 16 articles has the least number of related collaborative articles in this scope. "B. Hjorland" with eight collaborative articles had the most one among Library and Information Sciences (LIS) professionals in ISI, SCOPUS, and Pubmed. Journal of Documentation with 29 articles and 12 collaborative articles had the most related articles. Medical library and information science challenges with 150 articles had first place in number of articles. Results also show that the most elaborative country in terms of collaboration point of view and number of articles was US. "University of Washington" and "University Western Ontario" are the most elaborative affiliation from

  12. 2012 International Conference on Cybernetics and Informatics

    CERN Document Server

    2014-01-01

    Cybernetics and informatics being a high-profile and fast-moving fields, the papers included in this proceedings will command a wide professional and academic readership. This book covers the very latest developments in the field of cybernetics and informatics. The 2012 conference in Chongqing, China, combined a focus on innovative technologies with an emphasis on sustainable solutions and strategies. Attended by leading figures from academia and industry whose work is represented here, the conference allowed effective cross-pollination between the theoretical and applied sectors of the field. Conference organizers received more than 1,000 papers, of which only ten percent were chosen to be featured in this publication. All of the papers are at the leading edge of developments, and so this book will not only ensure that the very best current work is disseminated, but that it also acts as a spur to future research.

  13. The Value of Electronic Medical Record Implementation in Mental Health Care: A Case Study.

    Science.gov (United States)

    Riahi, Sanaz; Fischler, Ilan; Stuckey, Melanie I; Klassen, Philip E; Chen, John

    2017-01-05

    Electronic medical records (EMR) have been implemented in many organizations to improve the quality of care. Evidence supporting the value added to a recovery-oriented mental health facility is lacking. The goal of this project was to implement and customize a fully integrated EMR system in a specialized, recovery-oriented mental health care facility. This evaluation examined the outcomes of quality improvement initiatives driven by the EMR to determine the value that the EMR brought to the organization. The setting was a tertiary-level mental health facility in Ontario, Canada. Clinical informatics and decision support worked closely with point-of-care staff to develop workflows and documentation tools in the EMR. The primary initiatives were implementation of modules for closed loop medication administration, collaborative plan of care, clinical practice guidelines for schizophrenia, restraint minimization, the infection prevention and control surveillance status board, drug of abuse screening, and business intelligence. Medication and patient scan rates have been greater than 95% since April 2014, mitigating the adverse effects of medication errors. Specifically, between April 2014 and March 2015, only 1 moderately severe and 0 severe adverse drug events occurred. The number of restraint incidents decreased 19.7%, which resulted in cost savings of more than Can $1.4 million (US $1.0 million) over 2 years. Implementation of clinical practice guidelines for schizophrenia increased adherence to evidence-based practices, standardizing care across the facility. Improved infection prevention and control surveillance reduced the number of outbreak days from 47 in the year preceding implementation of the status board to 7 days in the year following. Decision support to encourage preferential use of the cost-effective drug of abuse screen when clinically indicated resulted in organizational cost savings. EMR implementation allowed Ontario Shores Centre for Mental Health

  14. Research and practice of informatization construction in waste treatment and management

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun; Yu Ren; Xiang Xinmin

    2013-01-01

    The goal, content and requirement of the informatization construction in waste treatment and management in nuclear power system are discussed in the paper, as well as some key problems in this process. Taking the engineering practice of informatization construction in a waste treatment center as an example, the composition and architecture of the information system, the consideration and the solution methods of some key problems in system design and development are introduced in the paper. (authors)

  15. Medical informatics--an Australian perspective.

    Science.gov (United States)

    Hannan, T

    1991-06-01

    Computers, like the X-ray and stethoscope can be seen as clinical tools, that provide physicians with improved expertise in solving patient management problems. As tools they enable us to extend our clinical information base, and they also provide facilities that improve the delivery of the health care we provide. Automation (computerisation) in the health domain will cause the computer to become a more integral part of health care management and delivery before the start of the next century. To understand how the computer assists those who deliver and manage health care, it is important to be aware of its functional capabilities and how we can use them in medical practice. The rapid technological advances in computers over the last two decades has had both beneficial and counterproductive effects on the implementation of effective computer applications in the delivery of health care. For example, in the 1990s the computer hobbyist is able to make an investment of less than $10,000 on computer hardware that will match or exceed the technological capacities of machines of the 1960s. These rapid technological advances, which have produced a quantum leap in our ability to store and process information, have tended to make us overlook the need for effective computer programmes which will meet the needs of patient care. As the 1990s begin, those delivering health care (eg, physicians, nurses, pharmacists, administrators ...) need to become more involved in directing the effective implementation of computer applications that will provide the tools for improved information management, knowledge processing, and ultimately better patient care.

  16. 12th International Conference on Informatics in Control, Automation and Robotics

    CERN Document Server

    Gusikhin, Oleg; Madani, Kurosh; Sasiadek, Jurek

    2016-01-01

    The present book includes a set of selected extended papers from the 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2014), held in Vienna, Austria, from 1 to 3 September 2014. The conference brought together researchers, engineers and practitioners interested in the application of informatics to Control, Automation and Robotics. Four simultaneous tracks will be held, covering Intelligent Control Systems, Optimization, Robotics, Automation, Signal Processing, Sensors, Systems Modelling and Control, and Industrial Engineering, Production and Management. Informatics applications are pervasive in many areas of Control, Automation and Robotics. ICINCO 2014 received 301 submissions, from 49 countries, in all continents. After a double blind paper review performed by the Program Committee, 20% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, ba...

  17. 12th International Conference on Informatics in Control, Automation and Robotics

    CERN Document Server

    Madani, Kurosh; Gusikhin, Oleg; Sasiadek, Jurek

    2016-01-01

    The present book includes a set of selected extended papers from the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2015), held in Colmar, France, from 21 to 23 July 2015. The conference brought together researchers, engineers and practitioners interested in the application of informatics to Control, Automation and Robotics. Four simultaneous tracks will be held, covering Intelligent Control Systems, Optimization, Robotics, Automation, Signal Processing, Sensors, Systems Modelling and Control, and Industrial Engineering, Production and Management. Informatics applications are pervasive in many areas of Control, Automation and Robotics. ICINCO 2015 received 214 submissions, from 42 countries, in all continents. After a double blind paper review performed by the Program Committee, 14% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based ...

  18. HEALTH CARE INFORMATIZATION: PROBLEMS, SOLVED AND UNSOLVED. QUESTION OF EFFICIENCY AND SINGULARITY

    Directory of Open Access Journals (Sweden)

    О. P. Mintser

    2013-11-01

    Full Text Available The considered questions of transformation of basic presentation are in relation to health care informatization. One idea is postulated. Although from the moment of researches beginning in this direction passed more then 50 years, complete clarity in determination to the best strategy of informatization is not defined. New risks are marked. It's related with the origin of technological and informative singularity.

  19. Collaborative diagramming during problem based learning in medical education: Do computerized diagrams support basic science knowledge construction?

    Science.gov (United States)

    De Leng, Bas; Gijlers, Hannie

    2015-05-01

    To examine how collaborative diagramming affects discussion and knowledge construction when learning complex basic science topics in medical education, including its effectiveness in the reformulation phase of problem-based learning. Opinions and perceptions of students (n = 70) and tutors (n = 4) who used collaborative diagramming in tutorial groups were collected with a questionnaire and focus group discussions. A framework derived from the analysis of discourse in computer-supported collaborative leaning was used to construct the questionnaire. Video observations were used during the focus group discussions. Both students and tutors felt that collaborative diagramming positively affected discussion and knowledge construction. Students particularly appreciated that diagrams helped them to structure knowledge, to develop an overview of topics, and stimulated them to find relationships between topics. Tutors emphasized that diagramming increased interaction and enhanced the focus and detail of the discussion. Favourable conditions were the following: working with a shared whiteboard, using a diagram format that facilitated distribution, and applying half filled-in diagrams for non-content expert tutors and\\or for heterogeneous groups with low achieving students. The empirical findings in this study support the findings of earlier more descriptive studies that diagramming in a collaborative setting is valuable for learning complex knowledge in medicine.

  20. Development of a Regional Nursing Research Partnership for Academic and Practice Collaborations

    Directory of Open Access Journals (Sweden)

    Heather L. Tubbs-Cooley

    2013-01-01

    Full Text Available Background. Collaborative nursing research across academic and practice settings is imperative to generate knowledge to improve patient care. Models of academic/practice partnerships for nursing research are lacking. This paper reports data collected before and during a one-day retreat for nurse researchers and administrators from local universities and health care organizations designed to establish a regional nursing research partnership. Methods. Quantitative and qualitative methods were used to address the study aims: (1 to assess research involvement and institutional research resources; (2 to assess interest in and concerns regarding cross-institutional collaborations; and (3 to describe perceptions of the purpose of a partnership and resources needed to ensure success. Results. Participants (n=49 had differing perceptions of accessibility to resources; participants in practice settings reported less accessibility to resources, notably grant development, informatics, and research assistant support. Participants were interested in collaboration although concerns about conflict of interest were expressed. Four themes related to partnering were identified: harnessing our nursing voice and identity; developing as researchers; staying connected; and positioning for a collaborative project. Conclusion. Academic-practice research collaborations will become increasingly important with health care system changes. Strategies to develop and sustain productive partnerships should be supported.