WorldWideScience

Sample records for coli purification properties

  1. Escherichia coli photoreactivating enzyme: purification and properties

    International Nuclear Information System (INIS)

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w/ 0 of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected

  2. One-step purification of E. coli elongation factor Tu

    DEFF Research Database (Denmark)

    Knudsen, Charlotte Rohde; Clark, Brian F. C.; Degn, B

    1993-01-01

    The tuf A gene, encoding the E. coli elongation factor Tu, was cloned in the pGEX gene fusion system. Upon expression EF-Tu is fused to glutathione-S-transferase serving as a purification handle with affinity for glutathione immobilised on agarose. This allows purification of EF-Tu in a one...

  3. Purification and properties of Rhizobial DehL expressed in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... Full Length Research Paper. Purification and properties of Rhizobial DehL expressed in Escherichia coli. Fahrul Huyop1*, Nooraini Abdul Rashid1, Roswanira A. B. Wahab2 and Ronald A. Cooper3. 1Industrial Biotechnology Department, University Technology Malaysia, 81310 Skudai, Johor, Malaysia.

  4. Production and Purification Immunoglobulin against E. coli in Egg Yolk

    Directory of Open Access Journals (Sweden)

    Mohammadreza Nassiri

    2016-08-01

    Full Text Available Introduction Chicken is the only avian species in which polyclonal antibodies, like IgG is transported from the hen to the egg yolk in a similar manner as the transport of mammalian IgG from the mother to the fetus. Immunoglobulin Y in the chicken is transported to the egg and accumulates in the egg yolk in large quantities. IgY is an egg yolk antibody that has been used widely for treatment and prevention of infections in humans and animal. IgY is used for passive protection of the pathogen infections such as Escherichia coli, bovine and human rotavirus, bovine coronavirus, salmonella, staphylococcus and Pseudomonas. IgY is a promising candidate as an alternative to antibiotics. Eschericha coli strains of serotype O157: H7 belongs to a family of pathogenic E. coli called enterohemorrhagic E. coli (EHEC strains responsible for hemorrhagic colitis, bloody or non-bloody diarrhea, and hemolytic uremic syndrome in humans. This strain of E. coli pathogenises by adhering to host intestinal epithelium and forming bacterial colonies. The purpose of this study was to produce and purify immunoglobulin Y against E. coli O157:H7 and develop specific polyclonal anti E. coli antibody in the egg yolk. Materials and Methods Sixteen-week-old laying hens (Mashhad, Iran were kept in individual cages with food and water ad libitum. Immunization of hens was performed by intramuscularly injecting killed E. coli O157: H7 with an equal volume of Freund’s complete adjuvant into two sides of chest area (Sigma, USA for the first immunization. Two booster immunizations followed up using complete and incomplete Freund’s adjuvants in two weeks interval. Freund’s adjuvant without antigen was injected to the control group. Two weeks after the last injection, the eggs were collected daily for eight weeks, marked and stored at 4 ºC. In order to IgY purification, eggs were collected. Purification of IgY from egg yolk was based on Polson and using PEG6000. Finally, the

  5. Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme.

    Science.gov (United States)

    Mukherjee, J J; Dekker, E E

    1987-10-25

    Starting with 100 g (wet weight) of a mutant of Escherichia coli K-12 forced to grow on L-threonine as sole carbon source, we developed a 6-step procedure that provides 30-40 mg of homogeneous 2-amino-3-ketobutyrate CoA ligase (also called aminoacetone synthetase or synthase). This ligase, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, has an apparent molecular weight approximately equal to 85,000 and consists of two identical (or nearly identical) subunits with Mr = 42,000. Computer analysis of amino acid composition data, which gives the best fit nearest integer ratio for each residue, indicates a total of 387 amino acids/subunit with a calculated Mr = 42,093. Stepwise Edman degradation provided the N-terminal sequence of the first 21 amino acids. It is a pyridoxal phosphate-dependent enzyme since (a) several carbonyl reagents caused greater than 90% loss of activity, (b) dialysis against buffer containing hydroxylamine resulted in 89% loss of activity coincident with an 86% decrease in absorptivity at 428 nm, (c) incubation of the apoenzyme with 20 microM pyridoxal phosphate showed a parallel recovery (greater than 90%) of activity and 428-nm absorptivity, and (d) reduction of the holoenzyme with NaBH4 resulted in complete inactivation, disappearance of a new absorption maximum at 333 nm. Strict specificity for glycine is shown but acetyl-CoA (100%), n-propionyl-CoA (127%), or n-butyryl-CoA (16%) is utilized in the condensation reaction. Apparent Km values for acetyl-CoA, n-propionyl-CoA, and glycine are 59 microM, 80 microM, and 12 mM, respectively; the pH optimum = 7.5. Added divalent metal ions or sulfhydryl compounds inhibited catalysis of the condensation reaction.

  6. Expression and purification of the Sgm protein from E. coli

    Directory of Open Access Journals (Sweden)

    TATJANA ILIC TOMIC

    2005-06-01

    Full Text Available The sgm gene from Micromonospora zionensis, the producer of the aminoglycoside antibiotic G-52, encodes for Sgm methylasewhich modifies the target site on 16S rRNA and thus protects the producer against its own toxic product. The sgm gene wasmodified by polymerase chain reaction (PCR and cloned in the QIAexpress pQE-30 vector in order to make a construct that places the (His6 tag at the N-terminus of the protein. The resulting expression construct was transformed in the E. coli strain NM522 and the functional activity of the Sgm-His fusion protein was confirmed in vivo. Purification of the (His6-tagged Sgm protein by Ni-NTA affinity chromatography was performed under native conditions and the protein was detected on a sodium dodecyl sulfate polyacrylamide gel. Sgm methylase was purified to homogeneity > 95 %. Polyclonal antibodies raised to purified (His6-tagged Sgm protein were used to identify this protein byWestern blot analysis.

  7. Non-chromatographic purification of recombinant elastin-like polypeptides and their fusions with peptides and proteins from Escherichia coli.

    Science.gov (United States)

    MacEwan, Sarah R; Hassouneh, Wafa; Chilkoti, Ashutosh

    2014-06-09

    Elastin-like polypeptides are repetitive biopolymers that exhibit a lower critical solution temperature phase transition behavior, existing as soluble unimers below a characteristic transition temperature and aggregating into micron-scale coacervates above their transition temperature. The design of elastin-like polypeptides at the genetic level permits precise control of their sequence and length, which dictates their thermal properties. Elastin-like polypeptides are used in a variety of applications including biosensing, tissue engineering, and drug delivery, where the transition temperature and biopolymer architecture of the ELP can be tuned for the specific application of interest. Furthermore, the lower critical solution temperature phase transition behavior of elastin-like polypeptides allows their purification by their thermal response, such that their selective coacervation and resolubilization allows the removal of both soluble and insoluble contaminants following expression in Escherichia coli. This approach can be used for the purification of elastin-like polypeptides alone or as a purification tool for peptide or protein fusions where recombinant peptides or proteins genetically appended to elastin-like polypeptide tags can be purified without chromatography. This protocol describes the purification of elastin-like polypeptides and their peptide or protein fusions and discusses basic characterization techniques to assess the thermal behavior of pure elastin-like polypeptide products.

  8. Solubilization and purification of Escherichia coli expressed GST ...

    African Journals Online (AJOL)

    pGEX-4T-1 vector, and GST-VEGF fusion proteins were expressed in Escherichia coli at 37°C. The inclusion bodies of GST-VEGF fusion proteins were solubilized with N-Lauroylsarcosine (sarkosyl). Briefly, the cell suspension with inclusion body was added with sarkosyl at a final concentration of 1.5%. After the disruption ...

  9. Solubilization and purification of Escherichia coli expressed GST ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... monoclonal antibody, that binds and inhibits VEGF, has ... 50 ml of fresh LB (1:50 dilution) and grown at 37°C to an OD600 = .... produced in E. coli. Curr Opin Biotechnol. 9:497-501. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999). Vascular endothelial growth factor (VEGF) and its receptors. FASEB ...

  10. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system.

    Science.gov (United States)

    Costa, Sofia; Almeida, André; Castro, António; Domingues, Lucília

    2014-01-01

    Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide's immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system.

  11. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system

    Science.gov (United States)

    Costa, Sofia; Almeida, André; Castro, António; Domingues, Lucília

    2014-01-01

    Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide’s immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system. PMID:24600443

  12. Expression and purification of recombinant hemoglobin in Escherichia coli

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela

    2011-01-01

    BACKGROUND: Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe...... a protocol for expressing Hbs with low intrinsic solubilities. Since the alpha- and beta-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression......-translational modifications. CONCLUSION/SIGNIFICANCE: Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need...

  13. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Chandrasekhar Natarajan

    Full Text Available Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus, a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  14. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Science.gov (United States)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela; Weber, Roy E; Moriyama, Hideaki; Storz, Jay F

    2011-01-01

    Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species. As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications. Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  15. High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein.

    Science.gov (United States)

    Salema, Valencio; Fernández, Luis Ángel

    2013-09-01

    Nanobodies (Nbs) are single domain antibodies based on the variable domains of heavy chain only antibodies (HCAbs) found in camelids, also referred to as VHHs. Their small size (ca. 12-15kDa), superior biophysical and antigen binding properties have made Nbs very attractive molecules for multiple biotechnological applications, including human therapy. The most widely used system for the purification of Nbs is their expression in the periplasm of Escherichia coli with a C-terminal hexa-histidine (His6) tag followed by immobilized metal affinity chromatography (IMAC). However, significant variability in the expression levels of different Nbs are routinely observed and a single affinity chromatography step is often not sufficient to obtain Nbs of high purity. Here, we report an alternative method for expression and purification of Nbs from the periplasm of E. coli based on their fusion to maltose binding protein (MBP) in the N-terminus and His6 tag in the C-terminus (MBP-NbHis6). Soluble MBP-NbHis6 fusions were consistently expressed at high levels (⩾12mg/L of induced culture in shake flasks) in the periplasm of E. coli HM140, a strain deficient in several periplasmic proteases. Highly pure MBP-NbHis6 fusions and free NbHis6 (after site specific proteolysis of the fusions), were recovered by amylose and metal affinity chromatography steps. The monomeric nature of the purified NbHis6 was determined by gel filtration chromatography. Lastly, we demonstrated by ELISA that both monomeric NbHis6 and MBP-NbHis6 fusions retained antigen binding activity and specificity, thus facilitating their direct use in antigen recognition assays. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli.

    Science.gov (United States)

    Wei, Quande; Kim, Young Soo; Seo, Jeong Hyun; Jang, Woong Sik; Lee, In Hee; Cha, Hyung Joon

    2005-09-01

    Several fusion strategies have been developed for the expression and purification of small antimicrobial peptides (AMPs) in recombinant bacterial expression systems. However, some of these efforts have been limited by product toxicity to host cells, product proteolysis, low expression levels, poor recovery yields, and sometimes an absence of posttranslational modifications required for biological activity. For the present work, we investigated the use of the baculoviral polyhedrin (Polh) protein as a novel fusion partner for the production of a model AMP (halocidin 18-amino-acid subunit; Hal18) in Escherichia coli. The useful solubility properties of Polh as a fusion partner facilitated the expression of the Polh-Hal18 fusion protein ( approximately 33.6 kDa) by forming insoluble inclusion bodies in E. coli which could easily be purified by inclusion body isolation and affinity purification using the fused hexahistidine tag. The recombinant Hal18 AMP ( approximately 2 kDa) could then be cleaved with hydroxylamine from the fusion protein and easily recovered by simple dialysis and centrifugation. This was facilitated by the fact that Polh was soluble during the alkaline cleavage reaction but became insoluble during dialysis at a neutral pH. Reverse-phase high-performance liquid chromatography was used to further purify the separated recombinant Hal18, giving a final yield of 30% with >90% purity. Importantly, recombinant and synthetic Hal18 peptides showed nearly identical antimicrobial activities against E. coli and Staphylococcus aureus, which were used as representative gram-negative and gram-positive bacteria, respectively. These results demonstrate that baculoviral Polh can provide an efficient and facile platform for the production or functional study of target AMPs.

  17. Escherichia coli PII protein: purification, crystallization and oligomeric structure.

    Science.gov (United States)

    Vasudevan, S G; Gedye, C; Dixon, N E; Cheah, E; Carr, P D; Suffolk, P M; Jeffrey, P D; Ollis, D L

    1994-01-17

    The Escherichia coli signal transduction protein PII, product of the glnB gene, was overproduced and purified. The predicted molecular weight of the protein based on the correct nucleotide sequence is 12,427 and is very close to the value 12,435 obtained by matrix-assisted laser desorption mass spectrometry. Hexagonal crystals of the unuridylylated form of PII with dimensions 0.2 x 0.2 x 0.3 mm were grown and analysed by X-ray diffraction. The crystals belong to space group P6(3) with a = b = 61.6 A, c = 56.3 A and Vm of 2.5 for one subunit in the asymmetric unit. A low-resolution electron density map showed electron density concentrated around a three-fold axis, suggesting the molecule to be a trimer. A sedimentation equilibrium experiment of the meniscus depletion type was used to estimate a molecular weight of 35,000 +/- 1,000 for PII in solution. This result is consistent with the native protein being a homotrimer.

  18. Purification and properties of cowpea mosaic virus RNA replicase

    NARCIS (Netherlands)

    Zabel, P.

    1978-01-01

    This thesis concerns the partial purification and properties of an RNA-dependent RNA polymerase (RNA replicase) produced upon infection of Vigna unguiculata plants with Cowpea Mosaic Virus (CPMV). The enzyme is believed to be coded, at least in part, by the virus genome and to

  19. Purification and Some Properties of a Thermostable α-Amylase ...

    African Journals Online (AJOL)

    This work reports the isolation, purification and some properties of a thermostable α-amylase producing Bacillus subtilis isolated from the soil. Soil samples were collected and screened for thermophilic bacterial strains with amylase activity and to examine the amylase heat tolerance potentiality. The isolate was Gram ...

  20. Engineering Escherichia coli for soluble expression and single step purification of active human lysozyme.

    Science.gov (United States)

    Lamppa, John W; Tanyos, Sam A; Griswold, Karl E

    2013-03-10

    Genetically engineered variants of human lysozyme represent promising leads in the battle against drug-resistant bacterial pathogens, but early stage development and testing of novel lysozyme variants is constrained by the lack of a robust, scalable and facile expression system. While wild type human lysozyme is reportedly produced at 50–80 kg per hectare of land in recombinant rice, this plant-based system is not readily scaled down to bench top production, and it is therefore not suitable for development and characterization of novel lysozyme variants. Here, we describe a novel and efficient expression system capable of producing folded, soluble and functional human lysozyme in Escherichia coli cells. To achieve this goal, we simultaneously co-express multiple protein folding chaperones as well as harness the lysozyme inhibitory protein, Ivy. Our strategy exploits E. coli's ease of culture, short doubling time, and facile genetics to yield upwards of 30 mg/l of soluble lysozyme in a bioreactor system, a 3000-fold improvement over prior efforts in E. coli. Additionally, molecular interactions between lysozyme and a his-tagged Ivy allows for one-step purification by IMAC, yielding as much as 21 mg/l of purified enzyme. We anticipate that our expression and purification platform will facilitate further development of engineered lysozymes having utility in disease treatment and other practical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Overexpression and simple purification of the Thermotoga maritima 6-phosphogluconate dehydrogenase in Escherichia coli and its application for NADPH regeneration

    Directory of Open Access Journals (Sweden)

    Wang Yiran

    2009-06-01

    Full Text Available Abstract Background Thermostable enzymes from thermophilic microorganisms are playing more and more important roles in molecular biology R&D and industrial applications. However, over-production of recombinant soluble proteins from thermophilic microorganisms in mesophilic hosts (e.g. E. coli remains challenging sometimes. Results An open reading frame TM0438 from a hyperthermophilic bacterium Thermotoga maritima putatively encoding 6-phosphogluconate dehydrogenase (6PGDH was cloned and expressed in E. coli. The purified protein was confirmed to have 6PGDH activity with a molecular mass of 53 kDa. The kcat of this enzyme was 325 s-1 and the Km values for 6-phosphogluconate, NADP+, and NAD+ were 11, 10 and 380 μM, respectively, at 80°C. This enzyme had half-life times of 48 and 140 h at 90 and 80°C, respectively. Through numerous approaches including expression vectors, hosts, cultivation conditions, inducers, and codon-optimization of the 6pgdh gene, the soluble 6PGDH expression levels were enhanced to ~250 mg per liter of culture by more than 500-fold. The recombinant 6PGDH accounted for >30% of total E. coli cellular proteins when lactose was used as a low-cost inducer. In addition, this enzyme coupled with glucose-6-phosphate dehydrogenase for the first time was demonstrated to generate two moles of NADPH per mole of glucose-6-phosphate. Conclusion We have achieved a more than 500-fold improvement in the expression of soluble T. maritima 6PGDH in E. coli, characterized its basic biochemical properties, and demonstrated its applicability for NADPH regeneration by a new enzyme cocktail. The methodology for over-expression and simple purification of this thermostable protein would be useful for the production of other thermostable proteins in E. coli.

  2. Expression, purification, and activity assay of peptide deformylase from Escherichia coli and Staphylococcus aureus.

    Science.gov (United States)

    Che, Xuchun; Hu, Jinwei; Wang, Lijuan; Zhu, Zhifeng; Xu, Qiong; Lv, Junqiang; Fu, Zheng; Sun, Yajun; Sun, Jia; Lin, Gang; Lu, Rong; Yao, Zhi

    2011-11-01

    Peptide deformylase (PDF) is considered an attractive target for screening novel antibiotics. The PDF from Escherichia coli and Staphylococcus aureus are representative of the gram-negative species type of PDF (type I PDF) and the gram-positive species type of PDF (type II PDF), respectively. They could be used for screening broad-spectrum antibiotics. Herein, we cloned the def gene by PCR, inserted it into plasmid pET-22b-def, and transformed the plasmid into E. coli BL21 (DE3) cells, then the cells were induced by IPTG to express PDF. E. coli Ni(2+)-PDF was extracted and purified by ion-exchange chromatography and gel filtration chromatography. S. aureus PDFs were extracted and purified using the MagExtractor kit. The nickel form of S. aureus PDF was obtained by adding NiCl(2) to all reagents used for purification. Iron-enriched S. aureus PDF was obtained by adding FeCl(3) to the growth medium for E. coli BL21 (DE3) cells and adding FeCl(3) and catalase to all reagents used for purification. The activities of PDFs were analyzed, compared, and grouped according to the experimental conditions that produced optimal activity, and we used actinonin as an inhibitor of PDF and calculated the IC(50) value. We obtained high expression of E. coli and S. aureus PDF with high activity and stability. The function of PDFs was inhibited by actinonin in a dose-dependent manner. Results may be helpful for future mechanistic investigations of PDF as well as high-throughput screening for other PDF inhibitors.

  3. THE CATALYTIC DOMAIN OF THE DIHYDROLIPOYL TRANSACETYLASE COMPONENT OF THE PYRUVATE-DEHYDROGENASE COMPLEX FROM AZOTOBACTER-VINELANDII AND ESCHERICHIA-COLI - EXPRESSION, PURIFICATION, PROPERTIES AND PRELIMINARY-X-RAY ANALYSIS

    NARCIS (Netherlands)

    SCHULZE, E; WESTPHAL, AH; OBMOLOVA, G; MATTEVI, A; HOL, WGJ; DEKOK, A

    1991-01-01

    Partial sequences of the dihydrolipoyl transacetylase component (E2p) of the pyruvate dehydrogenase complex from Azotobacter vinelandii and Escherichia coli, containing the catalytic domain, were cloned in pUC plasmids and over-expressed in E. coli TG2. A high expression of a homogeneous protein was

  4. Use of polymeric membranes for purification of an E. coli expressed biotherapeutic protein.

    Science.gov (United States)

    Muthukumar, S; Rathore, Anurag S

    2016-01-01

    Polymers have had a significant impact on the field of bioseparations in the past few decades. Most recently, membrane chromatography has emerged as an efficient alternative to the conventional packed-bed chromatography by eliminating the diffusion-related limitations associated with the traditional resin beads. In this article, we examine six membrane adsorbers for purification of granulocyte colony-stimulating factor (GCSF), an Escherichia coli-based biotherapeutic. These adsorbers differ either in their base matrix or in the surface chemistry. The role of interactions between the filter surfaces and the protein molecules in effecting these separations is the focus of the article.

  5. Purification and some properties of G-factor from the silk gland of silkworm

    International Nuclear Information System (INIS)

    Taira, Hideharu; Ejiri, Shin-ichiro; Shimura, Kensuke

    1972-01-01

    Purification of G-factor from the silk gland of silkworms and some of its properties have been studied in comparison with the G-factor from E. coli and rat liver transferase II. In the experiment, GTP-γ- 32 P was prepared from GDP and 32 Pi by photophosphorylation with spinach chloroplasts, and purified by Dowex-1 chromatography. The purified G-factor was homogeneous on disc gel electrophoresis. Molecular weight of 80,000 was estimated from a calibrated Sephadex G-200 column. The purified G-factor exhibited uncoupled ribosome-dependent GTPase activity, and was inhibited by fusidic acid, SH inhibitor, and diphtheria toxin plus NAD. The G-factor from E. coli and that from the silk gland were not interchangeable in GTPase reaction. (Yamanoto, Y.)

  6. [Purification and production of the extracellular 5-aminolevulinate from recombiniant Escherichia coli expressing yeast ALAS].

    Science.gov (United States)

    He, Xiao-Mei; Zhou, Jing; Cheng, Ying; Fan, Jun

    2007-05-01

    Aminolevulinic acid (ALA) is biosynthesized by the enzyme ALA synthase (ALAS). The ALA production has been studied using the overproducing ALAS from several bacteria in Escherchia coil, respectively. However, ALAS from eucaryote expressed in E. coli for producing ALA in the culture is not known. The extracellular ALA production and cell growth were investageted respectively using the recombinant E. coli overproducing Saccharomyces cerevisiae ALAS in shake-flask fermentations. The ALAS activity from the cell extract was assayed. The extracellular ALA was purified by the national-made large-dimension resins and confirmed by the capillary electrophoresis measurements. At 12h after induction at 37 degrees C, the extracellular ALA production was up to 162mg per liter LB culture at initial pH 6.5 with exogenous levulinate, succinate and and glycine at the concentration of 20 mmol/L respectively. The purity of ALA after purification is up to 90%.

  7. Cloning, expression and purification of d-tagatose 3-epimerase gene from Escherichia coli JM109.

    Science.gov (United States)

    He, Xiaoliang; Zhou, Xiaohui; Yang, Zi; Xu, Le; Yu, Yuxiu; Jia, Lingling; Li, Guoqing

    2015-10-01

    An unknown d-tagatose 3-epimerase (DTE) containing a IoIE domain was identified and cloned from Escherichia coli. This gene was subcloned into the prokaryotic expression vector pET-15b, and induced by IPTG in E. coli BL21 expression system. Through His-select gel column purification and fast-protein liquid chromatography, highly purified and stable DTE protein was produced. The molecular weight of the DTE protein was estimated to be 29.8kDa. The latest 83 DTE sequences from public database were selected and analyzed by molecular clustering, multi-sequence alignment. DTEs were roughly divided into five categories. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Engineering Escherichia coli for Soluble Expression and Single Step Purification of Active Human Lysozyme

    Science.gov (United States)

    Lamppa, John W.; Tanyos, Sam A.; Griswold, Karl E.

    2012-01-01

    Genetically engineered variants of human lysozyme represent promising leads in the battle against drug-resistant bacterial pathogens, but early stage development and testing of novel lysozyme variants is constrained by the lack of a robust, scalable and facile expression system. While wild type human lysozyme is reportedly produced at 50 – 80 kg per hectare of land in recombinant rice, this plant-based system is not readily scaled down to bench top production, and it is therefore not suitable for development and characterization of novel lysozyme variants. Here, we describe a novel and efficient expression system capable of producing folded, soluble and functional human lysozyme in E. coli cells. To achieve this goal, we simultaneously co-express multiple protein folding chaperones as well as harness the lysozyme inhibitory protein, Ivy. Our strategy exploits E. coli’s ease of culture, short doubling time, and facile genetics to yield upwards of 30 mg/L of soluble lysozyme in a bioreactor system, a 3000-fold improvement over prior efforts in E. coli. Additionally, molecular interactions between lysozyme and a his-tagged Ivy allows for one-step purification by IMAC chromatography, yielding as much as 21 mg/L of purified enzyme. We anticipate that our expression and purification platform will facilitate further development of engineered lysozymes having utility in disease treatment and other practical applications. PMID:23220215

  9. Homologous high-throughput expression and purification of highly conserved E coli proteins

    Directory of Open Access Journals (Sweden)

    Duchmann Rainer

    2007-06-01

    Full Text Available Abstract Background Genetic factors and a dysregulated immune response towards commensal bacteria contribute to the pathogenesis of Inflammatory Bowel Disease (IBD. Animal models demonstrated that the normal intestinal flora is crucial for the development of intestinal inflammation. However, due to the complexity of the intestinal flora, it has been difficult to design experiments for detection of proinflammatory bacterial antigen(s involved in the pathogenesis of the disease. Several studies indicated a potential association of E. coli with IBD. In addition, T cell clones of IBD patients were shown to cross react towards antigens from different enteric bacterial species and thus likely responded to conserved bacterial antigens. We therefore chose highly conserved E. coli proteins as candidate antigens for abnormal T cell responses in IBD and used high-throughput techniques for cloning, expression and purification under native conditions of a set of 271 conserved E. coli proteins for downstream immunologic studies. Results As a standardized procedure, genes were PCR amplified and cloned into the expression vector pQTEV2 in order to express proteins N-terminally fused to a seven-histidine-tag. Initial small-scale expression and purification under native conditions by metal chelate affinity chromatography indicated that the vast majority of target proteins were purified in high yields. Targets that revealed low yields after purification probably due to weak solubility were shuttled into Gateway (Invitrogen destination vectors in order to enhance solubility by N-terminal fusion of maltose binding protein (MBP, N-utilizing substance A (NusA, or glutathione S-transferase (GST to the target protein. In addition, recombinant proteins were treated with polymyxin B coated magnetic beads in order to remove lipopolysaccharide (LPS. Thus, 73% of the targeted proteins could be expressed and purified in large-scale to give soluble proteins in the range of 500

  10. Reverse osmosis membrane of high urea rejection properties. [water purification

    Science.gov (United States)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  11. Efficient extracellular recombinant production and purification of a Bacillus cyclodextrin glucanotransferase in Escherichia coli.

    Science.gov (United States)

    Sonnendecker, Christian; Wei, Ren; Kurze, Elisabeth; Wang, Jinpeng; Oeser, Thorsten; Zimmermann, Wolfgang

    2017-05-19

    Cyclodextrin glucanotransferases (CGTases) catalyze the synthesis of cyclodextrins, cyclic oligosaccharides composed of glucose monomers that find applications in the pharmaceutical, food, and cosmetic industries. An economic application of these industrially important enzymes requires their efficient production and recovery. In this study, the effect of Sec-type signal peptides on the recombinant expression of a CGTase derived from Bacillus sp. G825-6 was investigated in Escherichia coli BL21(DE3) using a codon-adapted gene. In addition, a novel purification method for the CGTase using starch adsorption was developed. Expression vectors encoding N-terminal PelB, DacD, and the native Bacillus sp. G825-6 CGTase signal peptides (SP) were constructed for the recombinant CGTase. With the DacD SP derived from E. coli, a 3.9- and 3.1-fold increase in total enzyme activity was obtained compared to using the PelB and the native CGTase SP, respectively. DacD enabled a 7.3-fold increase of activity in the extracellular fraction after induction for 24 h compared to the native CGTase SP. After induction for 48 h, 75% of the total activity was detected in the extracellular fraction. By a batch wise adsorption to starch, the extracellular produced CGTase could be purified to homogeneity with a yield of 46.5% and a specific activity of 1637 U/mg. The signal peptide DacD promoted the high-level heterologous extracellular expression of a recombinant CGTase from Bacillus sp. G825-6 with a pET20b(+) vector in E. coli BL21(DE3). A protocol based on starch adsorption enabled a fast and efficient purification of the recombinant enzyme.

  12. Partial purification and some physicochemical properties of ...

    African Journals Online (AJOL)

    It thus produces α-amylase which is thermostable, a property which could be exploited for industrial purposes where hydrolysis of starch and other complex carbohydrates are required. Keywords: Cassava, α-amylase, starch hydrolysis, Aspergillus species, industrial application. African Journal of Biotechnology, Vol 13(52) ...

  13. Complete Solubilization and Purification of Recombinant Human Growth Hormone Produced in Escherichia coli

    Science.gov (United States)

    Seo, Kyung Hye; Yang, Hyo-Jin; Kim, Sook-Kyung; Choi, Jun-Hyuk

    2013-01-01

    High-level expression of recombinant human growth hormone (hGH) in Escherichia coli (E. coli) leads to the formation of insoluble aggregates as inclusion bodies devoid of biological activity. Until recently, significant efforts have been made to improve the recovery of active hGH from inclusion bodies. Here, we developed an efficient procedure for the production of completely soluble hGH by minimizing the formation of inclusion bodies and optimizing protein purification conditions. Under the newly established conditions we were able to obtain most of the total hGH in the soluble fraction. We show that the soluble protein can be efficiently purified in high yield by a series of chromatographic procedures. We analyzed the resulting hGH using various analytical techniques such as reversed-phase high-performance liquid chromatography (RP-HPLC), size-exclusion chromatography (SEC), matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and circular dichroism (CD). These multiple analyses support the conclusion that we obtained highly pure hGH with the expected molecular mass and intact secondary structure. The biological activity of purified hGH was also confirmed by evaluating its growth-promoting effect using a cell proliferation assay. Taken together, we describe a straightforward strategy for the production of completely soluble and biologically active hGH in E. coli. PMID:23409149

  14. Complete solubilization and purification of recombinant human growth hormone produced in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Min-Ji Kim

    Full Text Available High-level expression of recombinant human growth hormone (hGH in Escherichia coli (E. coli leads to the formation of insoluble aggregates as inclusion bodies devoid of biological activity. Until recently, significant efforts have been made to improve the recovery of active hGH from inclusion bodies. Here, we developed an efficient procedure for the production of completely soluble hGH by minimizing the formation of inclusion bodies and optimizing protein purification conditions. Under the newly established conditions we were able to obtain most of the total hGH in the soluble fraction. We show that the soluble protein can be efficiently purified in high yield by a series of chromatographic procedures. We analyzed the resulting hGH using various analytical techniques such as reversed-phase high-performance liquid chromatography (RP-HPLC, size-exclusion chromatography (SEC, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometry, and circular dichroism (CD. These multiple analyses support the conclusion that we obtained highly pure hGH with the expected molecular mass and intact secondary structure. The biological activity of purified hGH was also confirmed by evaluating its growth-promoting effect using a cell proliferation assay. Taken together, we describe a straightforward strategy for the production of completely soluble and biologically active hGH in E. coli.

  15. Data for the co-expression and purification of human recombinant CaMKK2 in complex with calmodulin in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lisa Gerner

    2016-09-01

    Full Text Available Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2 has been implicated in a range of conditions and pathologies from prostate to hepatic cancer. Here, we describe the expression in Escherichia coli and the purification protocol for the following constructs: full-length CaMKK2 in complex with CaM, CaMKK2 ‘apo’, CaMKK2 (165-501 in complex with CaM, and the CaMKK2 F267G mutant. The protocols described have been optimized for maximum yield and purity with minimal purification steps required and the proteins subsequently used to develop a fluorescence-based assay for drug binding to the kinase, “Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2” [1]. Keywords: CaMKK2, Calmodulin, Fermentation

  16. Exploiting interfacial water properties for desalination and purification applications.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu (Los Alamos National Laboratory, Los Alamos, NM); Varma, Sameer; Nyman, May Devan; Alam, Todd Michael; Thuermer, Konrad; Holland, Gregory P.; Leung, Kevin; Liu, Nanguo (University of New Mexico Albuquerque, NM); Xomeritakis, George K. (University of New Mexico Albuquerque, NM); Frankamp, Benjamin L.; Siepmann, J. Ilja (University of Minnesota, Minneapolis, MN); Cygan, Randall Timothy; Hartl, Monika A. (Los Alamos National Laboratory, Los Alamos, NM); Travesset, Alex (Iowa State University, Ames, IA); Anderson, Joshua A. (Iowa State University, Ames, IA); Huber, Dale L.; Kissel, David J. (University of New Mexico Albuquerque, NM); Bunker, Bruce Conrad; Lorenz, Christian Douglas; Major, Ryan C. (University of Minnesota, Minneapolis, MN); McGrath, Matthew J. (University of Minnesota, Minneapolis, MN); Farrow, Darcie; Cecchi, Joseph L. (University of New Mexico Albuquerque, NM); van Swol, Frank B.; Singh, Seema; Rempe, Susan B.; Brinker, C. Jeffrey; Clawson, Jacalyn S.; Feibelman, Peter Julian; Houston, Jack E.; Crozier, Paul Stewart; Criscenti, Louise Jacqueline; Chen, Zhu (University of New Mexico Albuquerque, NM); Zhu, Xiaoyang (University of Minnesota, Minneapolis, MN); Dunphy, Darren Robert (University of New Mexico Albuquerque, NM); Orendorff, Christopher J.; Pless, Jason D.; Daemen, Luke L. (Los Alamos National Laboratory, Los Alamos, NM); Gerung, Henry (University of New Mexico Albuquerque, NM); Ockwig, Nathan W.; Nenoff, Tina Maria; Jiang, Ying-Bing; Stevens, Mark Jackson

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  17. Redesigned purification yields a fully functional PutA protein dimer from Escherichia coli.

    Science.gov (United States)

    Brown, E D; Wood, J M

    1992-06-25

    Proline utilization by Escherichia coli and Salmonella typhimurium requires expression of genes putP (encoding a proline transporter) and putA. Genetic data indicate that the PutA protein is both put repressor and a respiratory chain-linked dehydrogenase. We report a redesigned purification procedure as well as the physical characteristics and biological activities of the PutA protein purified from E. coli. The purified protein was homogeneous as determined by electrophoresis performed under denaturing and nondenaturing conditions. Its N-terminal sequence corresponded to that predicted by the DNA sequence. We showed copurification of proline and delta 1-pyrroline-5-carboxylate dehydrogenase activities. Purified PutA protein bound put DNA in vitro in an electrophoretic band-shift assay and it could be reconstituted to inverted membrane vesicles, yielding proline dehydrogenase activity. The Stokes radius and Svedberg coefficient of the protein were determined to be 7.1 nm and 9.9 S, respectively. These hydrodynamic data revealed that the protein in our preparation was dimeric with a molecular mass of 293 kDa and that it had an irregular shape indicated by the friction factor (f/f0) of 1.6.

  18. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    Science.gov (United States)

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  20. Influence of the amyloid dye Congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification.

    Science.gov (United States)

    Reichhardt, Courtney; McCrate, Oscar A; Zhou, Xiaoxue; Lee, Jessica; Thongsomboon, Wiriya; Cegelski, Lynette

    2016-11-01

    Microbial biofilms are communities of cells characterized by a hallmark extracellular matrix (ECM) that confers functional attributes to the community, including enhanced cohesion, adherence to surfaces, and resistance to external stresses. Understanding the composition and properties of the biofilm ECM is crucial to understanding how it functions and protects cells. New methods to isolate and characterize ECM are emerging for different biofilm systems. Solid-state nuclear magnetic resonance was used to quantitatively track the isolation of the insoluble ECM from the uropathogenic Escherichia coli strain UTI89 and understand the role of Congo red in purification protocols. UTI89 assembles amyloid-integrated biofilms when grown on YESCA nutrient agar. The ECM contains curli amyloid fibers and a modified form of cellulose. Biofilms formed by UTI89 and other E. coli and Salmonella strains are often grown in the presence of Congo red to visually emphasize wrinkled agar morphologies and to score the production of ECM. Congo red is a hallmark amyloid-binding dye and binds to curli, yet also binds to cellulose. We found that growth in Congo red enabled more facile extraction of the ECM from UTI89 biofilms and facilitates isolation of cellulose from the curli mutant, UTI89ΔcsgA. Yet, Congo red has no influence on the isolation of curli from curli-producing cells that do not produce cellulose. Sodium dodecyl sulfate can remove Congo red from curli, but not from cellulose. Thus, Congo red binds strongly to cellulose and possibly weakens cellulose interactions with the cell surface, enabling more complete removal of the ECM. The use of Congo red as an extracellular matrix purification aid may be applied broadly to other organisms that assemble extracellular amyloid or cellulosic materials. Graphical abstract Solid-state NMR was used to quantitatively track the isolation of the insoluble amyloid-associated ECM from uropathogenic E. coli and understand the role of Congo red in

  1. Purification of inclusion bodies using PEG precipitation under denaturing conditions to produce recombinant therapeutic proteins from Escherichia coli.

    Science.gov (United States)

    Chen, Huanhuan; Li, Ninghuan; Xie, Yueqing; Jiang, Hua; Yang, Xiaoyi; Cagliero, Cedric; Shi, Siwei; Zhu, Chencen; Luo, Han; Chen, Junsheng; Zhang, Lei; Zhao, Menglin; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2017-07-01

    It has been documented that the purification of inclusion bodies from Escherichia coli by size exclusion chromatography (SEC) may benefit subsequent refolding and recovery of recombinant proteins. However, loading volume and the high cost of the column limits its application in large-scale manufacturing of biopharmaceutical proteins. We report a novel process using polyethylene glycol (PEG) precipitation under denaturing conditions to replace SEC for rapid purification of inclusion bodies containing recombinant therapeutic proteins. Using recombinant human interleukin 15 (rhIL-15) as an example, inclusion bodies of rhIL-15 were solubilized in 7 M guanidine hydrochloride, and rhIL-15 was precipitated by the addition of PEG 6000. A final concentration of 5% (w/v) PEG 6000 was found to be optimal to precipitate target proteins and enhance recovery and purity. Compared to the previously reported S-200 size exclusion purification method, PEG precipitation was easier to scale up and achieved the same protein yields and quality of the product. PEG precipitation also reduced manufacturing time by about 50 and 95% of material costs. After refolding and further purification, the rhIL-15 product was highly pure and demonstrated a comparable bioactivity with a rhIL-15 reference standard. Our studies demonstrated that PEG precipitation of inclusion bodies under denaturing conditions holds significant potential as a manufacturing process for biopharmaceuticals from E. coli protein expression systems.

  2. In-silico design, expression, and purification of novel chimeric Escherichia coli O157:H7 OmpA fused to LTB protein in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Aytak Novinrooz

    Full Text Available E. coli O157:H7, one of the major EHEC serotypes, is capable of developing bloody diarrhea, hemorrhagic colitis (HC, and fatal hemolytic uremic syndrome (HUS and is accompanied by high annual economic loss worldwide. Due to the increased risk of HC and HUS development following antibiotic therapy, the prevention of infections caused by this pathogen is considered to be one of the most effective ways of avoiding the consequences of this infection. The main aim of the present study was to design, express, and purify a novel chimeric protein to develope human vaccine candidate against E. coli O157:H7 containing loop 2-4 of E. coli O157:H7, outer membrane protein A (OmpA, and B subunit of E. coli heat labile enterotoxin (LTB which are connected by a flexible peptide linker. Several online databases and bioinformatics software were utilized to choose the peptide linker among 537 analyzed linkers, design the chimeric protein, and optimize the codon of the relative gene encoding this protein. Subsequently, the recombinant gene encoding OmpA-LTB was synthesized and cloned into pET-24a (+ expression vector and transferred to E. coli BL21(DE3 cells. The expression of OmpA-LTB chimeric protein was then carried out by induction of cultured E. coli Bl21 (DE3 cells with 1mM isopropyl-β-D-thiogalactopyranoside (IPTG. The purification of OmpA-LTB was then performed by nickel affinity chromatography. Expression and purification were analyzed by sodium dodecyl sulphate poly acrylamide gel electrophoresis. Moreover, the identity of the expressed protein was analyzed by western blotting. SDS-PAGE and western immunoblotting confirmed the successful expression of a 27 KDa recombinant protein after 24 hours at 37°C post-IPTG induction. OmpA-LTB was then successfully purified, using nickel affinity chromatography under denaturing conditions. The yield of purification was 12 mg per liter of culture media. Ultimately, we constructed the successful design and efficient

  3. Purification and characterization of a Shigella conjugate vaccine, produced by glycoengineering Escherichia coli.

    Science.gov (United States)

    Ravenscroft, Neil; Haeuptle, Micha A; Kowarik, Michael; Fernandez, Fabiana S; Carranza, Paula; Brunner, Andreas; Steffen, Michael; Wetter, Michael; Keller, Sacha; Ruch, Corina; Wacker, Michael

    2016-01-01

    Shigellosis remains a major cause of diarrheal disease in developing countries and causes substantial morbidity and mortality in children. Glycoconjugate vaccines consisting of bacterial surface polysaccharides conjugated to carrier proteins are the most effective vaccines for controlling invasive bacterial infections. Nevertheless, the development of a multivalent conjugate vaccine to prevent Shigellosis has been hampered by the complex manufacturing process as the surface polysaccharide for each strain requires extraction, hydrolysis, chemical activation and conjugation to a carrier protein. The use of an innovative biosynthetic Escherichia coli glycosylation system substantially simplifies the production of glycoconjugates. Herein, the Shigella dysenteriae type 1 (Sd1) O-polysaccharide is expressed and its functional assembly on an E. coli glycosyl carrier lipid is demonstrated by HPLC analysis and mass spectrometry. The polysaccharide is enzymatically conjugated to specific asparagine residues of the carrier protein by co-expression of the PglB oligosaccharyltransferase and the carrier protein exotoxin A (EPA) from Pseudomonas aeruginosa. The extraction and purification of the Shigella glycoconjugate (Sd1-EPA) and its detailed characterization by the use of physicochemical methods including NMR and mass spectrometry is described. The report shows for the first time that bioconjugation provides a newly developed and improved approach to produce an Sd1 glycoconjugate that can be characterized using state-of-the-art techniques. In addition, this generic process together with the analytical methods is ideally suited for the production of additional Shigella serotypes, allowing the development of a multivalent Shigella vaccine. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Poly(hydroxyethyl methacrylate) based magnetic nanoparticles for plasmid DNA purification from Escherichia coli lysate

    International Nuclear Information System (INIS)

    Perçin, Işık; Karakoç, Veyis; Akgöl, Sinan; Aksöz, Erol; Denizli, Adil

    2012-01-01

    The aim of this study is to prepare poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine) [PHEMAH] magnetic nanoparticles for plasmid DNA (pDNA) purification from Escherichia coli (E. coli) cell lysate. Magnetic nanoparticles were produced by surfactant free emulsion polymerization. mPHEMAH nanoparticles were characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), electron spin resonance (ESR), thermogravimetric analyses (TGA) and transmission electron microscopy (TEM). Surface area, average particle size and size distribution were also performed. Specific surface area of the mPHEMAH nanoparticles was found to be 1180 m 2 /g. Elemental analysis of MAH for nitrogen was estimated as 0.18 mmol/g polymer. The amount of pDNA adsorbed onto the mPHEMAH nanoparticles first increased and then reached a saturation value at around 1.0 mg/mL of pDNA concentration. Compared with the mPHEMA nanoparticles (50 μg/g polymer), the pDNA adsorption capacity of the mPHEMAH nanoparticles (154 mg/g polymer) was improved significantly due to the MAH incorporation into the polymeric matrix. The maximum pDNA adsorption was achieved at 25 °C. The overall recovery of pDNA was calculated as 92%. The mPHEMAH nanoparticles could be used six times without decreasing the pDNA adsorption capacity significantly. The results indicate that the PHEMAH nanoparticles promise high selectivity for pDNA. - Highlights: ► Magnetic nanoparticles have several advantages over conventional adsorbents. ► MAH acted as the pseudospecific ligand, ligand immobilization step was eliminated. ► pDNA adsorption amount was 154 mg/g. ► Fifty-fold capacity increase was obtained when compared to conventional matrices.

  5. Cloning, overexpression and purification of functionally active Saccharomyces cerevisiae Hop1 protein from Escherichia coli.

    Science.gov (United States)

    Khan, Krishnendu; Madhavan, T P Vipin; Muniyappa, K

    2010-07-01

    One of the major limitations to the application of high-resolution biophysical techniques such as X-crystallography and spectroscopic analyses to structure-function studies of Saccharomyces cerevisiae Hop1 protein has been the non-availability of sufficient quantities of functionally active pure protein. This has, indeed, been the case of many proteins, including yeast synaptonemal complex proteins. In this study, we have performed expression screening in Escherichia coli host strains, capable of high-level expression of soluble S. cerevisiae Hop1 protein. A new protocol has been developed for expression and purification of S. cerevisiae Hop1 protein, based on the presence of hexa-histidine tag and double-stranded DNA-Cellulose chromatography. Recombinant S. cerevisiae Hop1 protein was >98% pure and exhibited DNA-binding activity with high-affinity to the Holliday junction. The availability of the recombinant HOP1 expression vector and active Hop1 protein would facilitate structure-function investigations as well as the generation of appropriate truncated and site-directed mutant proteins, respectively. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Cloning, expression and purification of recombinant streptokinase: partial characterization of the protein expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    L. Avilán

    1997-12-01

    Full Text Available We cloned the streptokinase (STK gene of Streptococcus equisimilis in an expression vector of Escherichia coli to overexpress the profibrinolytic protein under the control of a tac promoter. Almost all the recombinant STK was exported to the periplasmic space and recovered after gentle lysozyme digestion of induced cells. The periplasmic fraction was chromatographed on DEAE Sepharose followed by chromatography on phenyl-agarose. Active proteins eluted between 4.5 and 0% ammonium sulfate, when a linear gradient was applied. Three major STK derivatives of 47.5 kDa, 45 kDa and 32 kDa were detected by Western blot analysis with a polyclonal antibody. The 32-kDa protein formed a complex with human plasminogen but did not exhibit Glu-plasminogen activator activity, as revealed by a zymographic assay, whereas the 45-kDa protein showed a Km = 0.70 µM and kcat = 0.82 s-1, when assayed with a chromogen-coupled substrate. These results suggest that these proteins are putative fragments of STK, possibly derived from partial degradation during the export pathway or the purification steps. The 47.5-kDa band corresponded to the native STK, as revealed by peptide sequencing

  7. Expression and purification of recombinant proteins in Escherichia coli tagged with a small metal-binding protein from Nitrosomonas europaea.

    Science.gov (United States)

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-02-01

    Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Expression, purification, crystallization and preliminary diffraction data characterization of Escherichia coli ribonuclease II (RNase II)

    International Nuclear Information System (INIS)

    McVey, Colin E.; Amblar, Mónica; Barbas, Ana; Cairrão, Fátima; Coelho, Ricardo; Romão, Célia; Arraiano, Cecília M.; Carrondo, Maria A.; Frazão, Carlos

    2006-01-01

    Diffraction data from E. coli RNase II crystals of wild type and of an inactive mutant and its SeMet-derivative form were obtained to 2.44 and 2.74 Å resolution, providing a set of preliminary phases. An improved purification protocol allowed higher reproducibility in the crystallization of the mutant form. RNA degradation is important in the post-transcriptional control of gene expression. The processing, degradation and quality control of RNA is performed by many different classes of ribonucleases. Ribonuclease II (RNase II) is a 643-amino-acid enzyme that degrades single-stranded RNA from its 3′-end, releasing ribonucleoside 5′-monophosphates. RNase II was expressed both as the wild type and as a D209N mutant form. The latter was also produced as an SeMet derivative. The various protein forms were crystallized using the vapour-diffusion method. Wild-type RNase II was crystallized in two crystal forms, both of which belonged to space group P2 1 . X-ray diffraction data were collected to 2.44 and 2.75 Å resolution, with unit-cell parameters a = 56.8, b = 125.7, c = 66.2 Å, β = 111.9° and a = 119.6, b = 57.2, c = 121.2 Å, β = 99.7°, respectively. The RNase II D209N mutant gave crystals that belonged to space group P6 5 , with unit-cell parameters a = b = 86.3, c = 279.2 Å, and diffracted to 2.74 Å. Diffraction data from the mutant and its SeMet derivative enabled the determination of a partial Se-atom substructure by SIRAS

  9. [Purification and properties of NAG A from human kidney].

    Science.gov (United States)

    Yoshida, K

    1992-08-01

    In the present paper, we have reported the purification procedures of N-acetyl-beta, D-glucosaminidase (NAG) A from human renal tissue as well as the enzymatic properties of NAG A. NAG A was purified to homogeneity by gel filtration methods using Sephacry S-400 and S-200, followed by affinity chromatography with TSK DEAE 5-PW. The final activity of the enzyme was 1001 U/ml protein which was 506.6-fold that of the crude extract (supernatant of 20,000 x G of the homogenate). The molecular weight of NAG A was 140 kDa, consisting of two subunits of 30 kDa and 57 kDa. The isoelectric point of the enzyme was 5.60. The optimal pH of the enzyme was between 4.7 and 4.9. The Km value of the enzyme for sodio-m-cresol sulfophtaleinyl-N-acetyl-beta, D-glucosaminide was found 0.177 x 10(-3) mol/l. Lectin affinity chromatographies using concanavalin A and wheat germagglutinin have demonstrated that major sugar-chains of the enzyme were the high mannose type and hybrid type with a fucose residue, and that a small amount of the complex type was contained.

  10. Antibiotic Resistance and Virulence Properties in Escherichia coli ...

    African Journals Online (AJOL)

    This study determined E. coli resistance to commonly used antibiotics together with their virulence properties in Ile-Ife, Nigeria. A total of 137 E. coli isolates from cases of urinary tract infection were tested for their sensitivity to commonly used antibiotics and possession of virulence factors using standard methods.

  11. Functional expression and purification of recombinant Hepcidin25 production in Escherichia coli using SUMO fusion technology.

    Science.gov (United States)

    Sadr, Vahideh; Saffar, Behnaz; Emamzadeh, Rahman

    2017-04-30

    Hepcidin25 is a small cysteine-rich peptide hormone known as a new class of antimicrobial peptides. The purpose of the present study was to express, purify and investigate the antibacterial properties of recombinant human hepcidin25 protein production in Escherichia coli. Human hepcidin25 gene was optimized and fused to a small ubiquitin-related modifier (SUMO) gene for higher expression. Then SUMO-hepcidin25 was cloned into the pET-32a (+) vector and expressed in E. coli Origami. The fusion protein with a molecular weight of approximately 35kDa was analyzed on SDS-PAGE gel. The highest expression was observed after 6h induction and the fusion protein consisted approximately 47% of the total cellular protein. The purified SUMO-hepcidin25 purity was determined to be higher than 95%, with a final yield of 3.9mgl - 1 of media. The recombinant hepcidin25 showed antibacterial activity against both Gram negative (Klebsiella pneumonia) and Gram positive (Staphylococcus aureus and Bacillus cereus) bacteria with minimum inhibitory concentrations (MICs) of 150μgml -1 , 18.7μg/ml -1 and 37.5μg/ml -1 , respectively. These results indicated that thioredoxin and SUMO dual fusion system is an efficient production system for synthesis functional human hepcidin25. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Expression and purification of bioactive soluble murine stem cell factor from recombinant Escherichia coli using thioredoxin as fusion partner.

    Science.gov (United States)

    Bals, Carola; Schambach, Axel; Meyer, Johann; Scheper, Thomas; Rinas, Ursula

    2011-03-10

    Stem cell factor (SCF) known as the c-kit ligand, plays important roles in spermatogenesis, melanogenesis and early stages of hematopoiesis. As for the latter, SCF is essential for growth and expansion of hematopoietic stem and progenitor cells. We herein describe the production of recombinant murine SCF from Escherichia coli as soluble thioredoxin-fusion protein. The formation of insoluble and inactive inclusion bodies, usually observed when SCF is expressed in E. coli, was almost entirely prevented. After purification based on membrane adsorber technology, the fusion protein was subsequently cleaved by TEV protease in order to release mature mSCF. Following dialysis and a final purification step, the target protein was isolated in high purity. Bioactivity of mSCF was proven by different tests (MTT analogous assay, long-term proliferation assay) applying a human megakaryocytic cell line. Furthermore, the biological activity of the uncleaved fusion protein was tested as well. We observed a significant activity, even though it was less than the activity displayed by the purified mSCF. In summary, avoiding inclusion body formation we present an efficient production procedure for mSCF, one of the most important stem cell cytokines. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Purification and properties of Cu-Zn superoxide dismutase extracted from Brucella abortus strain 19

    Energy Technology Data Exchange (ETDEWEB)

    Tabatabai, L.B. (ARS-USDA, Ames, IA (United States))

    1991-03-11

    Recent work showed that a recombinant 20 kDa protein from Brucella abortus expressed in E. coli is a Cu-Zn superoxide dismutase (SOD). Western blot and ELISA results indicated that cattle with brucellosis have antibody to SOD. Here the authors report the purification and properties of the native B. abortus Cu-Zn SOD. SOD was extracted from methanol-killed Brucella abortus strain 19 with 0.1 M sodium citrate-1.0 M sodium chloride solution. The extract was dialyzed and protein precipitated by ammonium sulfate at 70-100% saturation was collected. The SOD was purified by HPLC anion exchange chromatography. SOD activity was assayed with a coupled enzyme assay using xanthine oxidase-cytochrome C reduction assay. The authors determined that the Brucella SOD is present in two molecular forms both inhibitable with KCN with Ki's of 0.32 mM and 4.98 mM, respectively. No other form of SOD was identified in the extract. Polyclonal antibody to SOD and polyclonal antibody to SOD synthetic peptide residues 134-143 inhibited SOD activity by 50% and 13%, respectively. Both SOD and the synthetic peptide inhibited binding of anti-SOD antibody to SOD by 60% and 20%, respectively. Based on these results the SOD and its amphipathic peptide will be considered as candidates for the design of synthetic multiple peptide vaccines and diagnostic reagents for bovine brucellosis.

  14. Expression and Purification of Recombinant Proteins in Escherichia coli with a His6or Dual His6-MBP Tag.

    Science.gov (United States)

    Raran-Kurussi, Sreejith; Waugh, David S

    2017-01-01

    Rapid advances in bioengineering and biotechnology over the past three decades have greatly facilitated the production of recombinant proteins in Escherichia coli. Affinity-based methods that employ protein or peptide based tags for protein purification have been instrumental in this progress. Yet insolubility of recombinant proteins in E. coli remains a persistent problem. One way around this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) is widely acknowledged as a highly effective solubilizing agent. In this chapter, we describe how to construct either a His 6 - or a dual His 6 -MBP tagged fusion protein by Gateway ® recombinational cloning and how to evaluate their yield and solubility. We also describe a simple and rapid procedure to test the solubility of proteins after removing their N-terminal fusion tags by tobacco etch virus (TEV) protease digestion. The choice of whether to use a His 6 tag or a His 6 -MBP tag can be made on the basis of this solubility test.

  15. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the regulator AcrR from Escherichia coli

    International Nuclear Information System (INIS)

    Li, Ming; Qiu, Xi; Su, Chih-Chia; Long, Feng; Gu, Ruoyu; McDermott, Gerry; Yu, Edward W.

    2006-01-01

    The transcriptional regulator AcrR from Escherichia coli has been cloned, overexpressed, purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.5 Å. This paper describes the cloning, expression, purification and preliminary X-ray data analysis of the AcrR regulatory protein. The Escherichia coli AcrR is a member of the TetR family of transcriptional regulators. It regulates the expression of the AcrAB multidrug transporter. Recombinant AcrR with a 6×His tag at the C-terminus was expressed in E. coli and purified by metal-affinity chromatography. The protein was crystallized using hanging-drop vapor diffusion. X-ray diffraction data were collected from cryocooled crystals at a synchrotron light source. The best crystal diffracted to 2.5 Å. The space group was determined to be P3 2 , with unit-cell parameters a = b = 46.61, c = 166.16 Å

  16. Purification and cellular localization of wild type and mutated dihydrolipoyltransacetylases from Azotobacter vinelandii and Escherichia coli expressed in E. coli

    NARCIS (Netherlands)

    Schulze, Egbert; Westphal, Adrie H.; Veenhuis, Marten; Kok, Arie de

    1992-01-01

    Wild type dihydrolipoyltransacetylase(E2p)-components from the pyruvate dehydrogenase complex of A. vinelandii or E. coli, and mutants of A. vinelandii E2p with stepwise deletions of the lipoyl domains or the alanine- and proline-rich region between the binding and the catalytic domain have been

  17. Antibiotic resistance properties of uropathogenic Escherichia coli ...

    African Journals Online (AJOL)

    Purpose: To investigate the antibiotic resistance pattern of uropathogenic Escherichia coli (UPEC) strains isolated from pregnant women with history of recurrent urinary tract infections (RUTIs) and healthy pregnant women. Methods: A total of 485 high vaginal swab specimens were collected from pregnant women with ...

  18. Antibiotic resistance properties of uropathogenic Escherichia coli ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus, ..... and Argentina [28]. CONCLUSION. As far as we know, the present study is the first prevalence report on antibiotic resistance pattern of UPEC strains in ... serogroups profiles of uropathogenic Escherichia coli isolated ...

  19. Expression and purification of SfaX(II), a protein involved in regulating adhesion and motility genes in extraintestinal pathogenic Escherichia coli.

    Science.gov (United States)

    Paracuellos, Patricia; Ohman, Anders; Sauer-Eriksson, A Elisabeth; Uhlin, Bernt Eric

    2012-12-01

    Pathogenic Escherichia coli strains commonly harbor genes involved in formation of fimbriae, such as the sfa(II) fimbrial gene cluster found in uropathogenic and newborn meningitis isolates. The sfaX(II) gene, located at the distal end of the sfa(II) operon, was recently shown to play a role in controlling virulence-related gene expression in extraintestinal pathogenic E. coli (ExPEC). Until now, detailed characterization of the SfaX(II) protein has been hampered by difficulties in obtaining large quantities of soluble protein. By a rational modeling approach, we engineered a Cys70Ser mutation, which successfully improved solubility of the protein. Here, we present the expression, purification, and initial characterization of the recombinant SfaX(IIC70S) mutant. The protein was produced in E. coli BL21 (DE3) cells grown in autoinduction culture media. The plasmid vector harbored DNA encoding the SfaX(IIC70S) protein N-terminally fused with a six histidine (H6) sequence followed by a ZZ tag (a derivative of the Staphylococcus protein A) (H6-ZZ tag). The H6-ZZ tag was cleaved off with Tobacco Etch Virus (TEV) protease and the 166 amino acid full-length homo-dimeric protein was purified using affinity and size-exclusion chromatography. Electrophoretic mobility gel shift assays and atomic force microscopy demonstrated that the protein possesses DNA-binding properties, suggesting that the transcriptional regulatory activity of SfaX(II) can be mediated via direct binding to DNA. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. High-level expression and purification of soluble recombinant FGF21 protein by SUMO fusion in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Huang Yadong

    2010-02-01

    Full Text Available Abstract Background Fibroblast growth factor 21 (FGF21 is a promising drug candidate to combat metabolic diseases. However, high-level expression and purification of recombinant FGF21 (rFGF21 in Escherichia coli (E. coli is difficult because rFGF21 forms inclusion bodies in the bacteria making it difficult to purify and obtain high concentrations of bioactive rFGF21. To overcome this problem, we fused the FGF21 with SUMO (Small ubiquitin-related modifier by polymerase chain reaction (PCR, and expressed the fused gene in E. coli BL21(DE3. Results By inducing with IPTG, SUMO-FGF21 was expressed at a high level. Its concentration reached 30% of total protein, and exceeded 95% of all soluble proteins. The fused protein was purified by DEAE sepharose FF and Ni-NTA affinity chromatography. Once cleaved by the SUMO protease, the purity of rFGF21 by high performance liquid chromatography (HPLC was shown to be higher than 96% with low endotoxin level (in vivo animal experiments showed that rFGF21 produced by using this method, could decrease the concentration of plasma glucose in diabetic rats by streptozotocin (STZ injection. Conclusions This study demonstrated that SUMO, when fused with FGF21, was able to promote its soluble expression of the latter in E. coli, making it more convenient to purify rFGF21 than previously. This may be a better method to produce rFGF21 for pharmaceutical research and development.

  1. A novel multimodal chromatography based single step purification process for efficient manufacturing of an E. coli based biotherapeutic protein product.

    Science.gov (United States)

    Bhambure, Rahul; Gupta, Darpan; Rathore, Anurag S

    2013-11-01

    Methionine oxidized, reduced and fMet forms of a native recombinant protein product are often the critical product variants which are associated with proteins expressed as bacterial inclusion bodies in E. coli. Such product variants differ from native protein in their structural and functional aspects, and may lead to loss of biological activity and immunogenic response in patients. This investigation focuses on evaluation of multimodal chromatography for selective removal of these product variants using recombinant human granulocyte colony stimulating factor (GCSF) as the model protein. Unique selectivity in separation of closely related product variants was obtained using combined pH and salt based elution gradients in hydrophobic charge induction chromatography. Simultaneous removal of process related impurities was also achieved in flow-through leading to single step purification process for the GCSF. Results indicate that the product recovery of up to 90.0% can be obtained with purity levels of greater than 99.0%. Binding the target protein at pHpurification step. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Purification of Escherichia coli L-asparaginase mutants by a native polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Wei, Yujun; Chen, Jianhua; Jia, Ruibo; Wang, Min; Wu, Wutong

    2008-07-01

    The antigenicity of L-asaparaginase (L-ASP) has been problematic for the treatment of leukemia for many years. In order to establish a relationship between the antigenic epitope of L-asparaginase and its antigenicity, several L-asparaginase mutants (mL-ASPs) are constructed and expressed. To effectively purify these enzyme mutants for further investigation, a native preparative polyacrylamide gel electrophoresis is developed. The simplicity and reproducibility of this approach permits the purification of different mutants from the crude enzyme extracts, with a sufficient activity to perform immunological and biological studies. Furthermore, the newly developed method is efficient and cost-effective compared with other methods, such as column chromatography and affinity chromatography. As a result, the enzyme mutants with specific activity of 300 approximately 400 U/mg are obtained by the single-step purification with a high degree of purity.

  3. Data on enhanced expression and purification of camelid single domain antibodies from Escherichia coli classical inclusion bodies.

    Science.gov (United States)

    Maggi, Maristella; Scotti, Claudia

    2017-06-01

    Heterologous expression of high amounts of recombinant proteins is a milestone for research and industrial purposes. Single domain antibodies (sdAbs) are heavy-chain only antibody fragments with applications in the biotechnological, medical and industrial fields. The simple nature and small size of sdAbs allows for efficient expression of the soluble molecule in different hosts. However, in some cases, it results in low functional protein yield. To overcome this limitation, expression of a 6xHistag sdAb was attempted in different conditions in Escherichia coli BL21(DE3) cells. Data showed that high amount of sdAb can be expressed in E. coli classical inclusion bodies, efficiently extracted by urea in a short-time, and properly purified by metal ion affinity chromatography. These data originate from the research article "Enhanced expression and purification of camelid single domain VHH antibodies from classical inclusion bodies" Maggi and Scotti (2017) [1] (DOI: http://dx.doi.org/10.1016/j.pep.2017.02.007).

  4. Simplified method to obtain enhanced expression of tau protein from E. coli and one-step purification by direct boiling.

    Science.gov (United States)

    KrishnaKumar, V Guru; Gupta, Sharad

    2017-05-28

    Tau is an intrinsically disordered protein responsible for maintaining the structure and stability of axonal microtubules. However, in certain disease conditions including Alzheimer's disease, tau protein may undergo biochemical and structural changes to form intracellular aggregates. Since tau is a proline- and arginine-rich eukaryotic protein, heterologous expression in Escherichia coli often results in poor yield and has been a major technical challenge. In the current work, we have improved the expressed yield of tau by overcoming codon bias problem and established a simplified protocol for efficient extraction. The reported method has two distinct features: (i) enhanced tau expression (upto eightfold) by supplementing deficient tRNAs that aid in rapid translation and (ii) direct boiling of expressed E. coli cells to extract tau with no separate cell lysis step. We further demonstrate that tau extracted by the direct boiling method is similar to tau purified by size-exclusion chromatography exhibiting similar structural and biophysical characteristics including aggregation propensity. Since morphologies and in vitro toxicity of fibrillar tau aggregates were also similar, tau extracted by the one-step direct boiling method can be used for tau aggregation assays without any additional purification.

  5. Purification and characterization of Desulfovibrio vulgaris (Hildenborough) hydrogenase expressed in Escherichia coli.

    NARCIS (Netherlands)

    Voordouw, G.; Hagen, W.R.; Kruse-Wolters, M.; Berkel-Arts, van A.; Veeger, C.

    1987-01-01

    Hydrogenase from Desulfovibrio vulgaris (Hildenborough) is a heterologous dimer of molecular mass 46 + 13.5 kDa. Its two structural genes have been cloned on a 4664-base-pair fragment of known sequence in the vector pUC9. Expression of hydrogenase polypeptides in Escherichia coli transformed with

  6. Optimization of the recombinant production and purification of a self-assembling peptide in Escherichia coli

    NARCIS (Netherlands)

    Rad-Malekshahi, Mazda; Flement, Matthias; Hennink, Wim E.; Mastrobattista, Enrico

    2014-01-01

    Background: Amphiphilic peptides are important building blocks to generate nanostructured biomaterials for drug delivery and tissue engineering applications. We have shown that the self-assembling peptide SA2 (Ac-AAVVLLLWEE) can be recombinantly produced in E. coli when fused to the small

  7. Purification and characterization of recombinant protein kinase CK2 from Zea mays expressed in Escherichia coli

    DEFF Research Database (Denmark)

    Riera, Marta; Pages, Montserrat; Issinger, Olaf Georg

    2003-01-01

    Recombinant protein kinase subunits rmCK2alpha-1 and rmCK2beta-1 from Zea mays were expressed separately in Escherichia coli and assembled to a fully active tetrameric holoenzyme complex in vitro. The obtained maize holoenzyme was purified to homogeneity, biochemically characterized, and compared...

  8. Cloning, expression, purification and initial crystallographic studies of UbiG: a methyltransferase involved in ubiquinone biosynthesis in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Costa, M.A.F.; Magalhaes, R.D.; Nagem, R.A.P. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Ferreira-Junior, J.R.; Barros, M.H. [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    Full text: Ubiquinone is a molecule that functions as an electron carrier in the respiratory chain in living organisms. Some clinical phenotypes, including, encephalomyopathy, has been associated with ubiquinone deficiency, raising the interest in the biosynthetic pathway of this molecule. This pathway was proposed mainly from the results of the genetic analysis of mutants of E. coli. UbiG is a methyltransferase involved in ubiquinone biosynthesis in E. coli. In this work we have cloned, expressed, purified and made initial crystallographic assessments of UbiG for later determination of its three-dimensional structure. The gene encoding UbiG was amplified from E. coli genomic DNA by polymerase chain reaction. The 753 bases pairs amplicon was inserted into the expression plasmid pMCSG7 by ligation independent cloning system and transformed into BL21(DE3) E. coli strain. The expression of UbiG, verified by SDS polyacrylamide gel, showed a protein of approximately 29kDa after IPTG induction. The recombinant UbiG, in the soluble fraction of the cellular lysate, was purified by affinity chromatography and the molecular weight of recombinant UbiG of approximately 29 kDa was confirmed by mass spectrometry. After removal of His-tag by TEV protease, another affinity chromatography was performed and UbiG, without His-tag, was observed in flow-through fraction. In Size-Exclusion Chromatography (SEC), the recombinant UbiG showed a unique peak with correct molecular weight of a monomer. Analysis of CD indicated that recombinant UbiG has 31,80% of alpha helix at 20 deg C and DLS showed that 70.9% of the sample is still monomeric in solution even five days after purification. Initial crystallization studies were performed with Crystal Screen 1 and Crystal Screen 2 from Hampton Research. Needle-shaped microcrystals of UbiG were obtained using a precipitant solution consisting of 0,1M lithium sulfate, 0,1M Tris pH 7,5 and 30% w/v polyethylene glycol 4,000. (author)

  9. Production and purification of immunologically active core protein p24 from HIV-1 fused to ricin toxin B subunit in E. coli

    Directory of Open Access Journals (Sweden)

    Gómez-Lim Miguel A

    2009-02-01

    Full Text Available Abstract Background Gag protein from HIV-1 is a polyprotein of 55 kDa, which, during viral maturation, is cleaved to release matrix p17, core p24 and nucleocapsid proteins. The p24 antigen contains epitopes that prime helper CD4 T-cells, which have been demonstrated to be protective and it can elicit lymphocyte proliferation. Thus, p24 is likely to be an integral part of any multicomponent HIV vaccine. The availability of an optimal adjuvant and carrier to enhance antiviral responses may accelerate the development of a vaccine candidate against HIV. The aim of this study was to investigate the adjuvant-carrier properties of the B ricin subunit (RTB when fused to p24. Results A fusion between ricin toxin B subunit and p24 HIV (RTB/p24 was expressed in E. coli. Affinity chromatography was used for purification of p24 alone and RTB/p24 from cytosolic fractions. Biological activity of RTB/p24 was determined by ELISA and affinity chromatography using the artificial receptor glycoprotein asialofetuin. Both assays have demonstrated that RTB/p24 is able to interact with complex sugars, suggesting that the chimeric protein retains lectin activity. Also, RTB/p24 was demonstrated to be immunologically active in mice. Two weeks after intraperitoneal inoculation with RTB/p24 without an adjuvant, a strong anti-p24 immune response was detected. The levels of the antibodies were comparable to those found in mice immunized with p24 alone in the presence of Freund adjuvant. RTB/p24 inoculated intranasally in mice, also elicited significant immune responses to p24, although the response was not as strong as that obtained in mice immunized with p24 in the presence of the mucosal adjuvant cholera toxin. Conclusion In this work, we report the expression in E. coli of HIV-1 p24 fused to the subunit B of ricin toxin. The high levels of antibodies obtained after intranasal and intraperitoneal immunization of mice demonstrate the adjuvant-carrier properties of RTB when

  10. Water Purification Using Functionalized Cellulosic Fibers with Nonleaching Bacteria Adsorbing Properties.

    Science.gov (United States)

    Ottenhall, Anna; Illergård, Josefin; Ek, Monica

    2017-07-05

    Portable purification systems are easy ways to obtain clean drinking water when there is no large-scale water treatment available. In this study, the potential to purify water using bacteria adsorbing cellulosic fibers, functionalized with polyelectrolytes according to the layer-by-layer method, is investigated. The adsorbed polyelectrolytes create a positive charge on the fiber surface that physically attracts and bonds with bacteria. Three types of cellulosic materials have been modified and tested for the bacterial removal capacity in water. The time, material-water ratio and bacterial concentration dependence, as well as the bacterial removal capacity in water from natural sources, have been evaluated. Freely dispersed bacteria adsorbing cellulosic fibers can remove greater than 99.9% of Escherichia coli from nonturbid water, with the most notable reduction occurring within the first hour. A filtering approach using modified cellulosic fibers is desirable for purification of natural water. An initial filtration test showed that polyelectrolyte multilayer modified cellulosic fibers can remove greater than 99% of bacteria from natural water. The bacteria adsorbing cellulosic fibers do not leach any biocides, and it is an environmentally sustainable and cheap option for disposable water purification devices.

  11. Cloning, purification, crystallization and preliminary crystallographic analysis of LsrR from Escherichia coli

    International Nuclear Information System (INIS)

    Liu, Xiaotian; Wu, Minhao; Sun, Demeng; Zang, Jianye

    2010-01-01

    The E. coli transcription repressor LsrR has been overexpressed, purified and crystallized. Diffraction data were collected to about 3 Å resolution. In Escherichia coli, the lsr operon is composed of six genes lsrACDBFG which regulate uptake and modification of the signalling molecule AI-2. LsrR is a repressor of the lsr operon and itself, which can bind phospho-AI-2 and be released from the promoter region of the operon and thus activate gene expression. LsrR fused with an HHHHHH sequence at the C-terminus was expressed, purified and crystallized in order to determine its structure and elucidate the molecular mechanism of repression. The crystal belonged to space group I222, with unit-cell parameters a = 79.84, b = 116.65, c = 186.04 Å, and was estimated to contain two protein molecules per asymmetric unit

  12. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Abramchik, Yu. A., E-mail: inna@ns.crys.ras.ru; Timofeev, V. I., E-mail: espiov@ibch.ru; Zhukhlistova, N. E., E-mail: tostars@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Muravieva, T. I.; Esipov, R. S. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2015-07-15

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  13. Purification and Characterization of Recombinant Vaccinia L1R Protein from Escherichia coli

    Science.gov (United States)

    2016-08-01

    Vaccinia surface protein, L1R, is critical for viral entry into host cells, and because of its close similarity to its smallpox counterpart, it is a...Chromatography Antigen 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...Escherichia coli. 1.3 VACV L1R Protein VACV L1R is a conserved component of the viral envelope that plays a major role in viral entry at the host

  14. MraZ from Escherichia coli: cloning, purification, crystallization and preliminary X-ray analysis

    International Nuclear Information System (INIS)

    Adams, Melanie A.; Udell, Christian M.; Pal, Gour Pada; Jia, Zongchao

    2005-01-01

    The crystallization and preliminary X-ray diffraction analysis of MraZ, formerly known as hypothetical protein YabB, from Escherichia coli K-12 is presented. The MraZ family of proteins, also referred to as the UPF0040 family, are highly conserved in bacteria and are thought to play a role in cell-wall biosynthesis and cell division. The murein region A (mra) gene cluster encodes MraZ proteins along with a number of other proteins involved in this complex process. To date, there has been no clear functional assignment provided for MraZ proteins and the structure of a homologue from Mycoplasma pneumoniae, MPN314, failed to suggest a molecular function. The b0081 gene from Escherichia coli that encodes the MraZ protein was cloned and the protein was overexpressed, purified and crystallized. This data is presented along with evidence that the E. coli homologue exists in a different oligomeric state to the MPN314 protein

  15. Cloning, expression, purification and characterisation of Erwinia carotovora L-asparaginase in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Meraj Pourhossein

    2014-01-01

    Full Text Available Background: For the past 30 years, bacterial L-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukemia. It is found in a variety of organisms such as microbes, plants and mammals. Their intrinsic low-rate glutaminase activity, however, causes serious side-effects, including neurotoxicity, hepatitis, coagulopathy and other dysfunctions. Erwinia carotovora asparaginase shows decreased glutaminase activity, so it is believed to have fewer side-effects in leukemia therapy. Our aim was to clone, express, purify and characterize E. carotovora asparaginase. Materials and Methods: L-asparaginase from E. carotovora NCYC 1526 (ErA was cloned and expressed in Escherichia coli strain BL21 (DE3. The enzyme was purified to homogeneity by affinity chromatography. Various conditions were tested to maximize the production of recombinant asparaginase in E. coli. Results: A new L. asparaginase from E. carotovora NCYC 1526 (ErA was successfully cloned, expressed and purified in E. coli BL21 (DE3. The specific activity of the enzyme was 430 IU/mg. Conclusion: The results of the present work form the basis for a new engineered form of ErA for future therapeutic use, which could be extended with crystallographic studies.

  16. Expression and Purification of Mini G Proteins fromEscherichia coli.

    Science.gov (United States)

    Carpenter, Byron; Tate, Christopher G

    2017-04-20

    Heterotrimeric G proteins modulate intracellular signalling by transducing information from cell surface G protein-coupled receptors (GPCRs) to cytoplasmic effector proteins. Structural and functional characterisation of GPCR-G protein complexes is important to fully decipher the mechanism of signal transduction. However, native G proteins are unstable and conformationally dynamic when coupled to a receptor. We therefore developed an engineered minimal G protein, mini-G s , which formed a stable complex with GPCRs, and facilitated the crystallisation and structure determination of the human adenosine A 2A receptor (A 2A R) in its active conformation. Mini G proteins are potentially useful tools in a variety of applications, including characterising GPCR pharmacology, binding affinity and kinetic experiments, agonist drug discovery, and structure determination of GPCR-G protein complexes. Here, we describe a detailed protocol for the expression and purification of mini-G s .

  17. Membrane chromatography: protein purification from E. coli lysate using newly designed and commercial anion-exchange stationary phases.

    Science.gov (United States)

    Bhut, Bharat V; Christensen, Kenneth A; Husson, Scott M

    2010-07-23

    This contribution describes the purification of anthrax protective antigen (PA) protein from Escherichia coli lysate using bind-and-elute chromatography with newly designed weak anion-exchange membranes. Protein separation performance of the new AEX membrane adsorber was compared with the commercial Sartobind D membrane adsorber and HiTrap DEAE FF resin column under preparative scale conditions. Dynamic protein binding capacities of all three stationary phases were determined using breakthrough curve analysis. The AEX membrane showed higher binding capacities than the Sartobind D membrane at equivalent volumetric throughput and higher capacities than the HiTrap DEAE FF resin column at 15 times higher volumetric throughput. Anion-exchange chromatography was performed using all three stationary phases to purify PA protein. Quantitative SDS-PAGE analysis of effluent fractions showed that the purity of PA protein was higher for membrane adsorbers than the HiTrap DEAE FF resin column and was the same for the new AEX membrane and Sartobind D membrane adsorbers. The effects of E. coli lysate load volume and volumetric flow rate on PA protein separation resolution using the membrane adsorbers were minor, and the peak elution profile remained un-changed even under conditions where >75% of the total protein dynamic binding capacity of the membranes had been utilized. PA protein peak resolution was higher using pH-gradient elution than with ionic strength gradient elution. Overall, the results clearly demonstrate that membrane chromatography is a high-capacity, high-throughput, high-resolution separation technique, and that resolution in membrane chromatography can be higher than resin column chromatography under preparative conditions and at much higher volumetric throughput. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Purification and Refolding to Amyloid Fibrils of (His)6-tagged Recombinant Shadoo Protein Expressed as Inclusion Bodies in E. coli.

    Science.gov (United States)

    Li, Qiaojing; Richard, Charles-Adrien; Moudjou, Mohammed; Vidic, Jasmina

    2015-12-19

    The Escherichia coli expression system is a powerful tool for the production of recombinant eukaryotic proteins. We use it to produce Shadoo, a protein belonging to the prion family. A chromatographic method for the purification of (His)6-tagged recombinant Shadoo expressed as inclusion bodies is described. The inclusion bodies are solubilized in 8 M urea and bound to a Ni(2+)-charged column to perform ion affinity chromatography. Bound proteins are eluted by a gradient of imidazole. Fractions containing Shadoo protein are subjected to size exclusion chromatography to obtain a highly purified protein. In the final step purified Shadoo is desalted to remove salts, urea and imidazole. Recombinant Shadoo protein is an important reagent for biophysical and biochemical studies of protein conformation disorders occurring in prion diseases. Many reports demonstrated that prion neurodegenerative diseases originate from the deposition of stable, ordered amyloid fibrils. Sample protocols describing how to fibrillate Shadoo into amyloid fibrils at acidic and neutral/basic pHs are presented. The methods on how to produce and fibrillate Shadoo can facilitate research in laboratories working on prion diseases, since it allows for production of large amounts of protein in a rapid and low cost manner.

  19. [Expression, purification and immunogenicity of human papillomavirus type 11 virus-like particles from Escherichia coli].

    Science.gov (United States)

    Yan, Chunyan; Li, Shaowei; Wang, Jin; Wei, Minxi; Huang, Bo; Zhuang, Yudi; Li, Zhongyi; Pan, Huirong; Zhang, Jun; Xia, Ningshao

    2009-11-01

    To produce human papillomavirus type 11 virus-like particles (HPV11 VLPs) from Escherichia coli and to investigate its immunogenicity and type cross neutralization nature. We expressed the major capsid protein of HPV11 (HPV11-L1) in Escherichia coli ER2566 in non fusion fashion and purified by amino sulfate precipitation, ion-exchange chromatography and hydrophobic interaction chromatography, sequentially. Then we removed the reductant DTT to have the purified HPV11-L1 self-assemble into VLPs in vitro. We investigated the morphology of these VLPs with dynamic light scattering and transmission electron microscopy. We assayed the immunogenicity of the resultant HPV11 VLPs by vaccinations on mice and evaluated by HPV6/11/16/18 pseudovirion neutralization cell models. We expressed HPV11 L1 in Escherichia coli with two forms, soluble and inclusion body. The soluble HPV11 L1 with over 95% purity can self assemble to VLPs in high efficiency. Morphologically, these VLPs were globular, homogeneous and with a diameter of - 50 nm, which is quite similar with native HPV11 virions. The half effective dosage (ED50) of HPV11 VLPs is 0.031 microg, and the maximum titer of neutralizing antibody elicited is averaged to 10(6). The cross neutralization activity (against HPV6/16/18) of the anti-HPV11 serum was found to have exact correlation to the inter-type homology in amino acid alignment. We can provide HPV11 VLPs with highly immunogenicity from prokaryote expression system, which may pave a new way for research and development of prophylactic vaccine for HPV11.

  20. Uropathogenic Escherichia coli (UPEC) strains may carry virulence properties of diarrhoeagenic E. coli.

    Science.gov (United States)

    Abe, Cecilia M; Salvador, Fábia A; Falsetti, Ivan N; Vieira, Mônica A M; Blanco, Jorge; Blanco, Jesús E; Blanco, Miguel; Machado, Antônia M O; Elias, Waldir P; Hernandes, Rodrigo T; Gomes, Tânia A T

    2008-04-01

    To analyze whether Escherichia coli strains that cause urinary tract infections (UPEC) share virulence characteristics with the diarrheagenic E. coli (DEC) pathotypes and to recognize their genetic diversity, 225 UPEC strains were examined for the presence of various properties of DEC and UPEC (type of interaction with HeLa cells, serogroups and presence of 30 virulence genes). No correlation between adherence patterns and serogroups was observed. Forty-five serogroups were found, but 64% of the strains belonged to one of the 12 serogroups (O1, O2, O4, O6, O7, O14, O15, O18, O21, O25, O75, and O175) and carried UPEC virulence genes (pap, hly, aer, sfa, cnf). The DEC genes found were: aap, aatA, aggC, agg3C, aggR, astA, eae, ehly, iha, irp2, lpfA(O113), pet, pic, pilS, and shf. Sixteen strains presented aggregative adherence and/or the aatA sequence, which are characteristics of enteroaggregative E. coli (EAEC), one of the DEC pathotypes. In summary, certain UPEC strains may carry DEC virulence properties, mostly associated to the EAEC pathotype. This finding raises the possibility that at least some faecal EAEC strains might represent potential uropathogens. Alternatively, certain UPEC strains may have acquired EAEC properties, becoming a potential cause of diarrhoea.

  1. A simple method for purification of lipopolysaccharides from E. coli 55:B5 using size exclusion chromatography

    International Nuclear Information System (INIS)

    Perdomo, Rolando; Montero, Vivian

    2006-01-01

    Several methods for the extraction of endotoxin or lipopolysaccharide from Gram negative bacteria have been described. However, the product is often contaminated with nucleic acids or proteins in a proportion depending on the extraction method used. Molecular and immunological studies require further purification of the raw LPS. We present here, a simple method for the purification of raw LPS obtained by the standard hot phenol-water procedure using size exclusion chromatography in Sepharose CL-6B. We demonstrated that the using of DNAse and RNAse treatment of the sample before the chromatographic step is necessary to abrogate the nucleic acid contamination in the LPS fraction. The spectrophotometric properties of the pure LPS were verified, supporting the immediate online detection of the LPS and oligonucleotides fractions spectrophotometrically at 206 nm. The mobile phase used (NaCl 0.2 M) do not absorb at 206 nm while maintains the LPS aggregates and therefore, allows the separation of the LPS fraction from the oligoribonucleotide and desoxioligoribonucleotide fractions. The yield of pure LPS was around 98%. Chemical and biological characterizations were conducted in order to assess the feasibility of the procedure developed. (Author)

  2. Expression and purification of functional human mu opioid receptor from E.coli.

    Directory of Open Access Journals (Sweden)

    Yanbin Ma

    Full Text Available N-terminally his-tagged human mu opioid receptor, a G protein-coupled receptor was produced in E.coli employing synthetic codon-usage optimized constructs. The receptor was expressed in inclusion bodies and membrane-inserted in different E.coli strains. By optimizing the expression conditions the expression level for the membrane-integrated receptor was raised to 0.3-0.5 mg per liter of culture. Milligram quantities of receptor could be enriched by affinity chromatography from IPTG induced cultures grown at 18°C. By size exclusion chromatography the protein fraction with the fraction of alpha-helical secondary structure expected for a 7-TM receptor was isolated, by CD-spectroscopy an alpha-helical content of ca. 45% was found for protein solubilised in the detergent Fos-12. Receptor in Fos-12 micelles was shown to bind endomorphin-1 with a K(D of 61 nM. A final yield of 0.17 mg functional protein per liter of culture was obtained.

  3. Purification and characterization of recombinant protein kinase CK2 from Zea mays expressed in Escherichia coli

    DEFF Research Database (Denmark)

    Riera, Marta; Pages, Montserrat; Issinger, Olaf Georg

    2003-01-01

    Recombinant protein kinase subunits rmCK2alpha-1 and rmCK2beta-1 from Zea mays were expressed separately in Escherichia coli and assembled to a fully active tetrameric holoenzyme complex in vitro. The obtained maize holoenzyme was purified to homogeneity, biochemically characterized, and compared...... to CK2 from human. Kinetic measurements of the recombinant maize holoenzyme (rmCK2) revealed k(cat) values for ATP and GTP of 4 and 2s(-1), respectively; whereas the recombinant maize catalytic subunit showed almost equal values for ATP and GTP, i.e., ca. 0.8s(-1). A comparison of the k(cat)/K(m) ratio...

  4. Purification and refolding of a novel β-agarase from inclusion body of E. coli

    Science.gov (United States)

    Zhang, Li; Lu, Xinzhi; Han, Feng; Ma, Cuiping; Yu, Wengong

    2007-01-01

    β-agarase AgaB appears to represent a new family of glycoside hydrolase; it is structurally and functionally different from other known agarases. In the present study, AgaB was expressed with a temperature-inducible expression system in E. coli BL21 (DE3) as a fusion protein bearing a C-terminal hexahistidine tag. The protein existed mainly in the form of inclusion body. After being washed and solubilized, AgaB in inclusion body was denatured and purified to electrophoretic purity by immobilized metal affinity chromatography. The purified AgaB was then refolded using a simple pulse dilution method, and the refolded AgaB showed a high specific hydrolysis activity of about 1600 units /mg protein. Forty milligrams of refolded pure protein were obtained from 1L of culture.

  5. Air purification by cementitious materials : Evaluation of air purifying properties

    NARCIS (Netherlands)

    Hüsken, G.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    This paper addresses the evaluation of the photocatalytic properties of concrete containing titanium dioxide (TiO2). Here, the assessment of the air purifying abilities of the hardened concrete regarding the degradation of nitric oxide (NO) is of major interest. A setup for measuring the performance

  6. Purification and some properties of glucose isomerase from Bacillus ...

    African Journals Online (AJOL)

    The objective of this study is to produce and purify glucose isomerase (GI) from Bacillus megaterium and to determine some of its properties. Soil sample was collected from cassava starch processing site and used immediately for bacterial isolation. Selected isolate produced the best GI activity in a preliminary test.

  7. Production and Purification of the Native Saccharomyces cerevisiae Hsp12 in Escherichia coli.

    Science.gov (United States)

    Léger, Antoine; Hocquellet, Agnès; Dieryck, Wilfrid; Moine, Virginie; Marchal, Axel; Marullo, Philippe; Josseaume, Annabelle; Cabanne, Charlotte

    2017-09-20

    Hsp12 is a small heat shock protein produced in many organisms, including the yeast Saccharomyces cerevisiae. It has been described as an indicator of yeast stress rate and has also been linked to the sweetness sensation of wine. To obtain a sufficient amount of protein, we produced and purified Hsp12 without tag in Escherichia coli. A simple fast two-step process was developed using a microplate approach and a design of experiments. A capture step on an anion-exchange salt-tolerant resin was followed by size exclusion chromatography for polishing, leading to a purity of 97%. Thereafter, specific anti-Hsp12 antibodies were obtained by rabbit immunization. An ELISA was developed to quantify Hsp12 in various strains of Saccharomyces cerevisiae. The antibodies showed high specificity and allowed the quantitation of Hsp12 in the yeast. The quantities of Hsp12 measured in the strains differed in direct proportion to the level of expression found in previous studies.

  8. Efficient Expression and Purification of Recombinant Human Enteropeptidase Light Chain in Esherichia coli

    Directory of Open Access Journals (Sweden)

    Li-Xi Niu

    2015-04-01

    Full Text Available Human enterokinase (synonym: enteropeptidase, EC 3.4.21.9 light chain (hEKL gene was designed and artificially synthesized with built-in codon blas towards Escherichia colicodon preference. The synthetic hEKL gene was cloned into prokaryotic expression vector pMAL-s and transferred into the expression strain E. coli BL21 (DE3. Recombinant hEKL protein with a maltose binding protein (MBP tag was expressed at high levels in soluble form, which yielded about 42% of the total cellular protein. The target protein was then purified to the homogeneity (> 95% by affinity chromatography. The peptide substrate GST-Melittin with enterokinase recognition site was completely cleaved by the purified MBP-hEKL at the molar ratio of 1:5000 (enzyme:substrate. Tricine SDS-PAGE analysis showed that the activity of MBP-hEKL was approximately seven times that of bovine enterokinase catalytic subunit (EKMaxTM, Invitrogen. From 1 L flask culture, 206 mg pure active MBP-hEKL was with specific activity of 1.4×104U/mg.

  9. Codon-Optimized Expression and Purification of Truncated ORF2 Protein of Hepatitis E Virus in Escherichia coli

    Science.gov (United States)

    Farshadpour, Fatemeh; Taherkhani, Reza; Makvandi, Manoochehr; Rajabi Memari, Hamid; Samarbafzadeh, Ali Reza

    2014-01-01

    Background: Hepatitis E virus (HEV) is a causative agent of acute hepatitis among people of different age groups and has high mortality rate of up to 30% among pregnant women. Therefore, primary prevention of HEV infection is essential. Objectives: The aim of this study was to obtain the highly purified truncated open reading frames 2 (ORF2) protein, which might be a future HEV vaccine candidate. Materials and Methods: The truncated orf2 gene (orf2.1), encoding the 112-660 amino acid of HEV capsid protein sequence, was optimized, synthesized, and cloned into pBluescript II SK(+) vector. After subcloning into expression vector pET-30a (+), a 193-nucleotide fragment was deleted from the construct and the recombinant plasmid pET-30a-ORF2.2 (orf2.2 encodes 112-608 amino acid sequence of HEV capsid protein) was constructed and used for transformation of Escherichia coli BL21 cells. After induction with isopropyl-β-D-thiogalactopyranoside (IPTG) and optimizing the conditions of expression, the target protein was highly expressed and purified by Ni2+-chelate affinity chromatography. The expressed and purified protein was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Results: The subcloning was confirmed by PCR, restriction enzyme digestion, and DNA sequencing of recombinant plasmid pET30a-ORF2.2. The results obtained from optimizing the expression conditions showed that the highest expression of the protein was obtained by adding IPTG at a final concentration of 1 mM at 37℃ for four hours. The expression and purification of truncated ORF2 protein was confirmed by SDS-PAGE and western blotting. SDS-PAGE analysis showed a protein band of about 55 kDa. SDS-PAGE of the purified protein revealed that the highest amount of target protein in elution buffer at the pH of 4.5 was obtained. The yield of the purified protein was about 1 mg/L of culture media. Conclusions: In this study, the optimized truncated ORF2 protein

  10. Codon-Optimized Expression and Purification of Truncated ORF2 Protein of Hepatitis E Virus in Escherichia coli.

    Science.gov (United States)

    Farshadpour, Fatemeh; Taherkhani, Reza; Makvandi, Manoochehr; Rajabi Memari, Hamid; Samarbafzadeh, Ali Reza

    2014-07-01

    Hepatitis E virus (HEV) is a causative agent of acute hepatitis among people of different age groups and has high mortality rate of up to 30% among pregnant women. Therefore, primary prevention of HEV infection is essential. The aim of this study was to obtain the highly purified truncated open reading frames 2 (ORF2) protein, which might be a future HEV vaccine candidate. The truncated orf2 gene (orf2.1), encoding the 112-660 amino acid of HEV capsid protein sequence, was optimized, synthesized, and cloned into pBluescript II SK(+) vector. After subcloning into expression vector pET-30a (+), a 193-nucleotide fragment was deleted from the construct and the recombinant plasmid pET-30a-ORF2.2 (orf2.2 encodes 112-608 amino acid sequence of HEV capsid protein) was constructed and used for transformation of Escherichia coli BL21 cells. After induction with isopropyl-β-D-thiogalactopyranoside (IPTG) and optimizing the conditions of expression, the target protein was highly expressed and purified by Ni(2+)-chelate affinity chromatography. The expressed and purified protein was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. The subcloning was confirmed by PCR, restriction enzyme digestion, and DNA sequencing of recombinant plasmid pET30a-ORF2.2. The results obtained from optimizing the expression conditions showed that the highest expression of the protein was obtained by adding IPTG at a final concentration of 1 mM at 37℃ for four hours. The expression and purification of truncated ORF2 protein was confirmed by SDS-PAGE and western blotting. SDS-PAGE analysis showed a protein band of about 55 kDa. SDS-PAGE of the purified protein revealed that the highest amount of target protein in elution buffer at the pH of 4.5 was obtained. The yield of the purified protein was about 1 mg/L of culture media. In this study, the optimized truncated ORF2 protein was expressed in E. coli successfully and the highly purified

  11. Isolation and purification of wheat germ agglutinin and analysis of its properties

    Science.gov (United States)

    Wang, Han

    2017-12-01

    In this paper, the wheat germ agglutinin was isolated and purified by affinity chromatography of chicken ovomucoid as ligand. The physicochemical properties were analyzed. The chicken ovomucoid was isolated from egg white and conjugated to affinity chromatography column agarose gel to prepare affinity adsorbent. The crude extract of wheat germ was freezedried by affinity chromatography. The physicochemical properties were analyzed by SDSpolyacrylamide gel electrophoresis and isoelectric focusing electrophoresis. And the relative molecular mass and isoelectric point of wheat germ agglutinin were obtained, and the high efficiency of purification of wheat germ agglutinin was proved by affinity chromatography.

  12. Enhancement of solubility in Escherichia coli and purification of an aminotransferase from Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B1

    Directory of Open Access Journals (Sweden)

    Hartinger Doris

    2010-08-01

    Full Text Available Abstract Background Fumonisin B1 is a cancerogenic mycotoxin produced by Fusarium verticillioides and other fungi. Sphingopyxis sp. MTA144 can degrade fumonisin B1, and a key enzyme in the catabolic pathway is an aminotransferase which removes the C2-amino group from hydrolyzed fumonisin B1. In order to study this aminotransferase with respect to a possible future application in enzymatic fumonisin detoxification, we attempted expression of the corresponding fumI gene in E. coli and purification of the enzyme. Since the aminotransferase initially accumulated in inclusion bodies, we compared the effects of induction level, host strain, expression temperature, solubility enhancers and a fusion partner on enzyme solubility and activity. Results When expressed from a T7 promoter at 30°C, the aminotransferase accumulated invariably in inclusion bodies in DE3 lysogens of the E. coli strains BL21, HMS174, Rosetta 2, Origami 2, or Rosetta-gami. Omission of the isopropyl-beta-D-thiogalactopyranoside (IPTG used for induction caused a reduction of expression level, but no enhancement of solubility. Likewise, protein production but not solubility correlated with the IPTG concentration in E. coli Tuner(DE3. Addition of the solubility enhancers betaine and sorbitol or the co-enzyme pyridoxal phosphate showed no effect. Maltose-binding protein, used as an N-terminal fusion partner, promoted solubility at 30°C or less, but not at 37°C. Low enzyme activity and subsequent aggregation in the course of purification and cleavage indicated that the soluble fusion protein contained incorrectly folded aminotransferase. Expression in E. coli ArcticExpress(DE3, which co-expresses two cold-adapted chaperonins, at 11°C finally resulted in production of appreciable amounts of active enzyme. Since His tag-mediated affinity purification from this strain was hindered by co-elution of chaperonin, two steps of chromatography with optimized imidazole concentration in the

  13. Ion exchange resins for water purification : properties and characterisation

    International Nuclear Information System (INIS)

    Gokhale, A.S.; Mathur, P.K.; Venkateswarlu, K.S.

    1987-01-01

    The report is divided into three sections. The first section contains a general introduction to ion exchange resins used in various processes, the second section describes characteristic properties of the polymer materials and the inter relation between them. This will, in turn, be useful to interpret the data obtained from the various tests carried out on the resins in the laboratory. In the third section of the report, are given the details of each method used for a particular test to be carried out on a routine basis. Each method describes the principle involved, the reagents and apparatus used in the experiment, the actual procedure and calculations and recording of the data. 3 refs. (author)

  14. Cost effective purification of intein based syntetic cationic antimicrobial peptide expressed in cold shock expression system using salt inducible E. coli GJ1158

    Directory of Open Access Journals (Sweden)

    Seetha Ram Kotra

    2014-03-01

    Full Text Available Objective:Synthetic cationic antimicrobial peptide (SC-AMP is an important and upcoming therapeutic molecule against onventional antibiotics. In this study, an attempt was made to purify the SC-AMP without the enzymatic cleavage of the affinity tag, by using an intein-based system. Methods:The intein sequence was amplified from pTYB11 vector using PCR methodologies and the N-terminal of intein was ligated with SC-AMP. The designed construct, intein-SC-AMP was cloned into MCS region of cold shock expression vector, pCOLDI and the recombinant peptide was purified on a chitin affinity column by cleaving intein with 50 mM DTT without applying enzymatic cleavage. Later the peptide was quantified and its antibacterial activity of the purified peptide was studied using well diffusion method. Results: Initially, intein-SC-AMP was expressed as a fusion protein in both IPTG inducible E. coli BL21(DE3 and salt inducible E. coli GJ1158. Single step purification using CBD (chitin binding domain - intein tag in salt inducible E. coli GJ1158, yields the SC-AMP in the soluble form at a oncentration of 208 mg/L. The antibacterial activity and minimal inhibitory concentration (MIC of the purified SC-AMP was studied against both Gram positive and Gram negative microorganisms. Conclusion: For the first time, single step purification of soluble SC-AMP was carried out using chitin-binding domain affinity tag in salt inducible E. coli GJ1158 without an application of enzymatic cleavage. J Microbiol Infect Dis 2014;4(1:13-19

  15. Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences.

    Science.gov (United States)

    Carvalho, Rimenys Junior; Cabrera-Crespo, Joaquin; Tanizaki, Martha Massako; Gonçalves, Viviane Maimoni

    2012-05-01

    Pneumococcal surface protein A (PspA) is essential for Streptococcus pneumoniae virulence and its use either as a novel pneumococcal vaccine or as carrier in a conjugate vaccine would improve the protection and the coverage of the vaccine. Within this context, the development of scalable production and purification processes of His-tagged recombinant fragment of PspA from clade 3 (rfPspA3) in Escherichia coli BL21(DE3) was proposed. Fed-batch production was performed using chemically defined medium with glucose or glycerol as carbon source. Although the use of glycerol led to lower acetate production, the concentration of cells were similar at the end of both fed-batches, reaching high cell density of E. coli (62 g dry cell weight/L), and the rfPspA3 production was higher with glucose (3.48 g/L) than with glycerol (2.97 g/L). A study of downstream process was also carried out, including cell disruption and clarification steps. Normally, the first chromatography step for purification of His-tagged proteins is metal affinity. However, the purification design using anion exchange followed by metal affinity gave better results for rfPspA3 than the opposite sequence. Performing this new design of chromatography steps, rfPspA3 was obtained with 95.5% and 75.9% purity, respectively, from glucose and glycerol culture. Finally, after cation exchange chromatography, rfPspA3 purity reached 96.5% and 90.6%, respectively, from glucose and glycerol culture, and the protein was shown to have the expected alpha-helix secondary structure.

  16. TROUBLESHOOTING IN EXPRESSION AND PURIFICATION OF RECOMBINANT SEVERE ACUTE RESPIRATORY SYNDROME-ASSOCIATED CORONAVIRUS NUCLEOCAPSID PROTEIN IN Escherichia coli BL21

    Directory of Open Access Journals (Sweden)

    Budiman Bela

    2010-11-01

    Full Text Available Considering importance of N protein for study of viral pathogenesis or development of immunodiagnostic assay, wereported effects of several conditions on purity and homogeneity of recombinant SARS-CoV N protein expressed in E.coli BL21. The SARS-CoV N gene was reverse transcribed and amplified by the reverse transcription-polymerase chainreaction (RT-PCR technique. The amplicons were cloned into pGEX-6P1 and followed by subcloning of the targetgene into pQE-80L. After inserting the recombinant plasmid (pQE80-N into E. coli, the recombinant protein (6 x Histag-N protein fusion was expressed by inducing the bacterial cells with 0.1-0.5 mM isopropyl-1-thio-Dgalactopyranoside(IPTG for 1-5 h. The protein recombinant were extracted from the bacterial cells by NTT buffercontaining 0-20 mM imidazol, and followed by Ni-NTA affinity resin purification. The results showed that induction ofE. coli BL21 with 0.2 mM IPTG for 4 h and followed with lysis of bacterial cells in NTT buffer containing 10 mMimidazol were optimal conditions to obtain the pure recombinant SARS-CoV N protein.

  17. Purification, crystallization and preliminary X-ray analysis of the HsdR subunit of the EcoR124I endonuclease from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Lapkouski, Mikalai [Institute of Physical Biology, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33 Nove Hrady (Czech Republic); Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady (Czech Republic); Panjikar, Santosh [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Kuta Smatanova, Ivana; Csefalvay, Eva, E-mail: jindrova@greentech.cz [Institute of Physical Biology, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33 Nove Hrady (Czech Republic); Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady (Czech Republic)

    2007-07-01

    The purification, crystallization and preliminary diffraction analysis of the HsdR subunit of the EcoR124I endonuclease are described. EcoR124I is a multicomplex enzyme belonging to the type I restriction-modification system from Escherichia coli. Although EcoR124I has been extensively characterized biochemically, there is no direct structural information available about particular subunits. HsdR is a motor subunit that is responsible for ATP hydrolysis, DNA translocation and cleavage of the DNA substrate recognized by the complex. Recombinant HsdR subunit was crystallized using the sitting-drop vapour-diffusion method. Crystals belong to the primitive monoclinic space group, with unit-cell parameters a = 85.75, b = 124.71, c = 128.37 Å, β = 108.14°. Native data were collected to 2.6 Å resolution at the X12 beamline of EMBL Hamburg.

  18. E. coli Surface Properties Differ between Stream Water and Sediment Environments

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-11-01

    Full Text Available The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10mM and 22˚C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity and extracellular polymeric substance (EPS composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

  19. E. coli Surface Properties Differ between Stream Water and Sediment Environments.

    Science.gov (United States)

    Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M

    2016-01-01

    The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .

  20. Soluble expression and purification of the recombinant bioactive peptide precursor BPP-1 in Escherichia coli using a cELP-SUMO dual fusion system.

    Science.gov (United States)

    Rao, Shengqi; Zang, Xiangyu; Yang, Zhenquan; Gao, Lu; Yin, Yongqi; Fang, Weiming

    2016-02-01

    A bioactive peptide precursor (BPP-1, 14.3 kDa/115AA), a newly designed polypeptide that may exert a potential antihypertensive effect in vivo, is composed of many different ACE inhibitory peptides and antioxidant peptides tandemly linked according to the restriction sites of gastrointestinal proteases. In this report, we present a novel method to obtain soluble BPP-1 in Escherichia coli using cationic elastin-like polypeptide and SUMO (cELP-SUMO) tags. The cELP-SUMO-tagged fusion protein was expressed in soluble form at 20 °C for 20 h. After purification based on the inverse transition cycling (ITC) method, the purified cELP-SUMO-CFPP fusion protein was subsequently cleaved by a SUMO protease to release the mature BPP-1. After a subsequent simple salt precipitation process, approximately 167.2 mg of recombinant BPP-1 was obtained from 1 l of bacterial culture with at least 92% purity. The molecular mass (Mr) of the recombinant BPP-1 was confirmed by MALDI-TOF MS to equal 14,347. The purified BPP-1 was subjected to simulated gastrointestinal digestion, and the resulting hydrolysates exhibited notable ACE inhibitory and antioxidant activities in vitro. This report provides the first description of the soluble production of a bioactive peptide multimer with potential ACE inhibitory and antioxidant activities in E. coli using a cELP-SUMO tag. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Expression in Escherichia coli and purification of bioactive antibacterial peptide ABP-CM4 from the Chinese silk worm, Bombyx mori.

    Science.gov (United States)

    Li, Bao-Cun; Zhang, Shuang-Quan; Dan, Wen-Bing; Chen, Yu-Qing; Cao, Peng

    2007-07-01

    The antibacterial peptide CM4 (ABP-CM4), isolated from Chinese Bombys mori, is a 35-residue cationic, amphipathic alpha-helical peptide that exhibits a broad range of antimicrobial activity. To explore a new approach for the expression of ABP-CM4 in E. coli, the gene ABP-CM4, obtained by recursive PCR (rPCR), was cloned into the vector pET32a to construct a fusion expression plasmid. The fusion protein Trx-CM4 was expressed in soluble form, purified by Ni(2+)-chelating chromatography, and cleaved by formic acid to release recombinant CM4. Purification of rCM4 was achieved by affinity chromatography and reverse-phase HPLC. The purified of recombinant peptide showed antimicrobial activities against E. coli K(12)D(31), Penicillium chrysogenum, Aspergillus niger and Gibberella saubinetii. According to the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html), 116 peptides contain a Met residue, but only 5 peptides contain the AspPro site, indicating a broader application of formic acid than CNBr in cleaving fusion protein. The successful application to the expression of the ABP-CM4 indicates that the system is a low-cost, efficient way of producting milligram quantities of ABP-CM4 that is biologically active.

  2. High-Level Soluble Expression and One-step Purification of HTLV-I P19 Protein in Escherichia coli by Fusion Expression.

    Science.gov (United States)

    Mosadeghi, Parvin; Zarnagh, Hafez Heydari; Mohammad-Zadeh, Mohammad; Salehi Moghaddam, Masoud

    2015-12-01

    Expression of HTLV-I p19 protein in an Escherichia coli expression system always leads to the formation of inclusion body. Solubilisation and refolding of the inclusion bodies is complex, time consuming and difficult during large-scale preparation. This study aimed to express and purify a soluble form of recombinant HTLV-I p19 protein in an E. coli expression system. The synthetic DNA encoding the p19 was subcloned into a pGS21a vector along with a His-GST solubility/purification tag. The recombinant pGS21a-p19 vector was then transformed into chemically competent E. coli BL21 (DE3) cells, and expression of the recombinant His-GST-p19 protein was induced by IPTG. Expression and distribution of the His-GST-p19 protein in soluble and insoluble fractions were evaluated using SDS-PAGE. Antigenicity of the His-GST-p19 protein was evaluated using ELISA after purifying the protein using Ni-NTA affinity chromatography, then compared to the results of synthetic immunodominant p19 peptide ELISA. The fusion His-GST-p19 protein accounted for 30% of the total cellular proteins. The SDS-PAGE results indicated that approximately 50% of the expressed His-GST-p19 proteins were soluble and accounted for 50% of the total soluble proteins. ELISA showed that the His-GST tag did not impair the antigenicity of the p19 protein and that the fusion protein reacted with HTLV-I antibodies in a concentration-dependent manner. The results of His-GST-p19 ELISA indicated that specificity of p19 reactivity was compatible to the results of p19 peptide ELISA. Combination of key strategies for the soluble expresion of proteins, like fusion with solubility/purification tags, low IPTG concentration and induction at low temperature, provide an efficient and facile platform for producing soluble  HTLV-I p19 protein.

  3. Mycobacterium tuberculosis HspX/EsxS Fusion Protein: Gene Cloning, Protein Expression, and Purification in Escherichia coli.

    Science.gov (United States)

    Khademi, Farzad; Yousefi-Avarvand, Arshid; Derakhshan, Mohammad; Meshkat, Zahra; Tafaghodi, Mohsen; Ghazvini, Kiarash; Aryan, Ehsan; Sankian, Mojtaba

    2017-10-01

    The purpose of this study was to clone, express, and purify a novel multidomain fusion protein of Micobacterium tuberculosis (Mtb) in a prokaryotic system. An hspX/esxS gene construct was synthesized and ligated into a pGH plasmid, E. coli TOP10 cells were transformed, and the vector was purified. The vector containing the construct and pET-21b (+) plasmid were digested with the same enzymes and the construct was ligated into pET-21b (+). The accuracy of cloning was confirmed by colony PCR and sequencing. E. coli BL21 cells were transformed with the pET-21b (+)/hspX/esxS expression vector and protein expression was evaluated. Finally, the expressed fusion protein was purified on a Ni-IDA column and verified by SDS-PAGE and western blotting. The hspX/esxS gene construct was inserted into pET-21b (+) and recombinant protein expression was induced with IPTG in E. coli BL21 cells. Various concentrations of IPTG were tested to determine the optimum concentration for expression induction. The recombinant protein was expressed in insoluble inclusion bodies. Three molar guanidine HCl was used to solubilize the insoluble protein. An HspX/EsxS Mtb fusion protein was expressed in E. coli and the recombinant protein was purified. After immunological analysis, the HspX/EsxS fusion protein might be an anti-tuberculosis vaccine candidate in future clinical trial studies.

  4. Expression, purification, crystallization and preliminary diffraction studies of the mammalian DAG kinase homologue YegS from Escherichia coli

    International Nuclear Information System (INIS)

    Bakali H, M. Amin; Nordlund, Pär; Hallberg, B. Martin

    2006-01-01

    The overexpression, crystallization and preliminary diffraction analysis of E. coli YegS are reported. yegS is a gene encoding a 32 kDa cytosolic protein with unknown function but with strong sequence homology to a family of structurally uncharacterized eukaryotic non-protein kinases: diacylglycerol kinases, sphingosine kinases and ceramide kinases. Here, the overexpression, crystallization and preliminary diffraction analysis of Escherichia coli YegS are reported. The crystals belong to space group P2 1 , with unit-cell parameters a = 42.4, b = 166.1, c = 48.5 Å, β = 96.97°. The presence of a dimer in the asymmetric unit was estimated to give a Matthews coefficient (V M ) of 2.5 Å 3 Da −1 and a solvent content of 50.8%(v/v). Single-wavelength diffraction data were collected to a resolution of 1.9 Å using synchrotron radiation

  5. Gene synthesis, expression in Escherichia coli, purification and characterization of the recombinant bovine acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Mandrup, S; Højrup, P; Kristiansen, K

    1991-01-01

    -initiation codon were chosen to allow efficient expression in Escherichia coli as well as in yeast. The synthetic gene was inserted into the expression vector pKK223-3 and expressed in E. coli. In maximally induced cultures, recombinant ACBP constitutes 12-15% of total cellular protein. A fraction highly enriched......-terminal acetyl group. The acyl-CoA-binding characteristics of recombinant ACBP did not differ from those of native ACBP, and the two proteins showed the same ability to induce medium-chain acyl-CoA synthesis by goat mammary-gland fatty acid synthetase. It was concluded that the N-terminal acetyl group......A synthetic gene encoding the 86 amino acid residues of mature acyl-CoA-binding protein (ACBP), and the initiating methionine was constructed. The synthetic gene was assembled from eight partially overlapping oligonucleotides. Codon usage and nucleotides surrounding the ATG translation...

  6. Purification, crystallization and preliminary X-ray analysis of isocitrate dehydrogenase kinase/phosphatase from Escherichia coli

    International Nuclear Information System (INIS)

    Zheng, Jimin; Lee, Daniel C.; Jia, Zongchao

    2009-01-01

    Isocitrate dehydrogenase kinase/phosphatase has been crystallized in three different crystal forms. Data were collected from each crystal form for structure determination. The Escherichia coli aceK gene encodes isocitrate dehydrogenase kinase/phosphatase (EC 2.7.11.5), a bifunctional protein that phosphorylates and dephosphorylates isocitrate dehydrogenase (IDH), resulting in its inactivation and activation, respectively. This reversible (de)phosphorylation directs isocitrate, an intermediate of the citric acid cycle, to either go through the full cycle or to enter the glyoxylate bypass. In the present study, the AceK protein from E. coli has been purified and crystallized. Three crystal forms were obtained from very similar crystallization conditions. The crystals belong to space groups P4 1 2 1 2, P3 2 21 and P2 1 2 1 2 1 and diffracted X-rays to resolutions of 2.9, 3.0 and 2.7 Å, respectively

  7. INFLUENCE OF DOXORUBICIN ON ADHESIVE PROPERTIES OF E.COLI

    Directory of Open Access Journals (Sweden)

    O.G. Shapoval

    2008-09-01

    Full Text Available Influence ofantineoplastic drug doxorubicin and amikacin, the aminoglycoside family on adhesive activity of Escherichia coli was studied. Antimicrobialactivity(minimum inhibitory concentration-MIC ofboth drugs against experimental strains using serial two-fold dilution method was determined. Susceptibility of E.coli to amikacin in the presence of Sand j MIC doxorubicin was studied. After 10 passages in beef-extract broth with constant and increasing doxorubicin concentrations in the presence of Sand j MIC doxorubicin, the adhesive activity of initial and passage variants according to theirability to absorb human erythrocytes 1(0 Rh+ was determined. Itwas observed that experimental strains were susceptible to amikacin (MIC 1,5-6,2 mkg/ml butwere resistantto doxorubicin (MIC 1000 mkg/ml. Subinhibitory concentrations of this cytostatic (S and j MIC raised the sensitivity of experimental strains to amikacin and differently effected on adhesive activity of passage variants of E.coli.

  8. Production and secretion of a recombinant Vibrio parahaemolyticus chitinase by Escherichia coli and its purification from the culture medium.

    Science.gov (United States)

    Kadokura, Kazunari; Sakamoto, Yusuke; Saito, Kaori; Ikegami, Takanori; Hirano, Takako; Hakamata, Wataru; Oku, Tadatake; Nishio, Toshiyuki

    2007-11-01

    An open reading frame encoding the chitinase gene and its signal sequence was cloned from the Vibrio parahaemolyticus KN1699 genome. An expression plasmid containing the gene was introduced into Escherichia coli cells, and recombinant chitinase (Pa-rChi) was produced and secreted into the culture medium with the aid of the signal peptide. Pa-rChi was purified and its substrate specificity was determined.

  9. Expression and purification of PprI protein from D.radiodurans R1 in escherichia coli

    International Nuclear Information System (INIS)

    Zhang Yongqin; Zhou Hui; Chen Jie; Yang Zhanshan

    2011-01-01

    In order to express and purify PprI protein from D.radiodurans R1 in E. coli, the full length of pprI gene was gained by PCR amplification using pCMV-HA-pprI as a template. The gene segment was inserted into vector pET-28a after digested by two restriction endonucleases Nco I and EcoR I. Then the recombinant vector pET-28a-His-pprI was transfected into E. coli BL21(DE3) RP. The PprI protein expression was induced by IPTG and the fusion protein was confirmed by SDS-PAGE and Western blotting. The expressive conditions of the protein such as E. coli' A 600 , concentration of IPTG, time and temperature of culture, were optimized. Finally the fusion protein was purified by Ni-NTA His Bind Resins and molecule boult. The experimental results show the fusion protein confirmed by Western blotting is 6 x His-PprI and its molecular weight is 37 kDa. The ladders of PprI protein at molecular weight 37 kDa were different due to difference of the PprI protein expression conditions if E. coli. The PprI protein exists both in supernatant and precipitation. The concentration of purified protein is about 0.15 mg/mL which was measured by BCA method. It is concluded that the recombinant plasmid pET-28a-His-pprI is constructed and the PprI fusion protein is expressed and purified. The results lay a solid foundation for studying the radio-resistance and immunity of PprI protein. (authors)

  10. Fluxing purification and its effect on magnetic properties of high-B{sub s} FeBPSiC amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jing [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870 (China); Wang, Anding, E-mail: anding@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Yue, Shiqiang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Kong, Fengyu [School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315016 (China); Qiu, Keqiang, E-mail: kqqiu@163.com [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870 (China); Chang, Chuntao; Wang, Xinmin [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Liu, Chain-Tsuan, E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2017-07-01

    Highlights: • Surface crystallization in Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbon was inhibited by flux purification. • Amorphous Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbon was made with industrial process and materials. • The ribbons exhibit high B{sub s} of 1.65 T, low H{sub c} of 2 A/m, and high μ{sub e} of 9.7 × 10{sup 3}. • High melting point inclusions trigger the surface crystallization as nuclei. - Abstract: A high-B{sub s} amorphous alloy with the base composition Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} was used to study the effects of fluxing purification on amorphous forming ability and magnetic properties of the alloy prepared with raw materials in industrialization. By using fluxing purification, the surface crystallization was suppressed and fully amorphous Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbons with a maximum thickness of 48 μm were successfully achieved by using an industrial process and materials. The amorphous ribbons made with industrial-purified alloys exhibit excellent magnetic properties, containing high-B{sub s} of 1.65 T, low H{sub c} of 2.0 A/m, and high μ{sub e} of 9.7 × 10{sup 3} at 1 kHz. Impurities in the melting alloys exist in three forms and have different effluences on magnetic properties. The surface crystallization was triggered by the impurities which exist as high melting point inclusions serving as nuclei. Thus, fluxing purification is a feasible way for industrialization of high-B{sub s} FeBPSiC amorphous alloys.

  11. Increased expression and purification of soluble iron-regulatory protein 1 from Escherichia coli co-expressing chaperonins GroES and GroEL

    Directory of Open Access Journals (Sweden)

    H. Carvalho

    2008-04-01

    Full Text Available Iron is an essential metal for all living organisms. However, iron homeostasis needs to be tightly controlled since iron can mediate the production of reactive oxygen species, which can damage cell components and compromise the integrity and/or cause DNA mutations, ultimately leading to cancer. In eukaryotes, iron-regulatory protein 1 (IRP1 plays a central role in the control of intracellular iron homeostasis. This occurs by interaction of IRP1 with iron-responsive element regions at 5' of ferritin mRNA and 3' of transferrin mRNA which, respectively, represses translation and increases mRNA stability. We have expressed IRP1 using the plasmid pT7-His-hIRP1, which codifies for human IRP1 attached to an NH2-terminal 6-His tag. IRP1 was expressed in Escherichia coli using the strategy of co-expressing chaperonins GroES and GroEL, in order to circumvent inclusion body formation and increase the yield of soluble protein. The protein co-expressed with these chaperonins was obtained mostly in the soluble form, which greatly increased the efficiency of protein purification. Metal affinity and FPLC ion exchange chromatography were used in order to obtain highly purified IRP1. Purified protein was biologically active, as assessed by electrophoretic mobility shift assay, and could be converted to the cytoplasmic aconitase form. These results corroborate previous studies, which suggest the use of folding catalysts as a powerful strategy to increase protein solubility when expressing heterologous proteins in E. coli.

  12. Virulence, Antimicrobial Resistance Properties and Phylogenetic Background of Non-H7 Enteropathogenic Escherichia coli O157

    NARCIS (Netherlands)

    Ferdous, Mithila; Kooistra-Smid, Mirjam; Zhou, Kai; Rossen, John W. A.; Friedrich, Alexander W.

    2016-01-01

    Escherichia coli (E.coli) O157 that do not produce Shiga toxin and do not possess flagellar antigen H7 are of diverse H serotypes. In this study, the antibiotic resistance properties, genotype of a set of virulence associated genes and the phylogenetic background of E. coli O157:non-H7 groups were

  13. Purification, crystallization and structure determination of native GroEL from Escherichia coli lacking bound potassium ions

    International Nuclear Information System (INIS)

    Kiser, Philip D.; Lodowski, David T.; Palczewski, Krzysztof

    2007-01-01

    A 3.02 Å crystal structure of native GroEL from E. coli is presented. GroEL is a member of the ATP-dependent chaperonin family that promotes the proper folding of many cytosolic bacterial proteins. The structures of GroEL in a variety of different states have been determined using X-ray crystallography and cryo-electron microscopy. In this study, a 3.02 Å crystal structure of the native GroEL complex from Escherichia coli is presented. The complex was purified and crystallized in the absence of potassium ions, which allowed evaluation of the structural changes that may occur in response to cognate potassium-ion binding by comparison to the previously determined wild-type GroEL structure (PDB code http://www.rcsb.org/pdb/explore.do?structureId), in which potassium ions were observed in all 14 subunits. In general, the structure is similar to the previously determined wild-type GroEL crystal structure with some differences in regard to temperature-factor distribution

  14. Amplification and purification of T4-like escherichia coli phages for phage therapy: from laboratory to pilot scale.

    Science.gov (United States)

    Bourdin, Gilles; Schmitt, Bertrand; Marvin Guy, Laure; Germond, Jacques-Edouard; Zuber, Sophie; Michot, Lise; Reuteler, Gloria; Brüssow, Harald

    2014-02-01

    We investigated the amplification and purification of phage preparations with respect to titer, contamination level, stability, and technical affordability. Using various production systems (wave bags, stirred-tank reactors, and Erlenmeyer flasks), we obtained peak titers of 10(9) to 10(10) PFU/ml for T4-like coliphages. Phage lysates could be sterilized through 0.22-μm membrane filters without titer loss. Phages concentrated by differential centrifugation were not contaminated with cellular debris or bacterial proteins, as assessed by electron microscopy and mass spectrometry, respectively. Titer losses occurred by high-speed pelleting of phages but could be decreased by sedimentation through a sucrose cushion. Alternative phage concentration methods are prolonged medium-speed centrifugation, strong anion-exchange chromatography, and ultrafiltration, but the latter still allowed elevated lipopolysaccharide contamination. T4-like phages could not be pasteurized but maintained their infectivity titer in the cold chain. In the presence of 10 mM magnesium ions, phages showed no loss of titer over 1 month at 30°C.

  15. Evaluation of a QIAamp DNA stool purification kit for Shiga-toxigenic Escherichia coli detection in bovine fecal swabs by PCR Evaluación del kit QIAamp DNA stool purification para la detección de Escherichia coli productor de toxina Shiga en hisopados de materia fecal bovina por PCR[

    Directory of Open Access Journals (Sweden)

    A. Gioffré

    2004-03-01

    Full Text Available A commercial kit intended for Taq polymerase inhibitor removal was tested to detect Shiga-toxigenic Escherichia coli (STEC by polymersase chain reaction (PCR directly from cattle fecal samples. Forty-five samples were analysed for the presence of stx genes. Results were compared to those obtained by two other methods: amplification of DNA purified by a non-commercial procedure (heat lysis protocol, and amplification of DNA from samples cultured in solid media, commonly used in our lab. Identical numbers of positive samples (33/45, 73 % were obtained with the QIAamp DNA stool purification kit and the culturing procedure, suggesting an adequate removal of inhibitors that interfere in PCR amplification from the feces. Besides, the number of positive samples detected using DNA purified by the non-commercial protocol was lower, 25/39 (64% than that achieved by using the kit. In conclusion, the use of the QIAamp DNA stool purification kit provided a rapid stx gene detection by PCR in bovine fecal samples.Un kit comercial diseñado para la eliminación de inhibidores de la polimerasa Taq fue ensayado para la detección de STEC por PCR en muestras fecales de bovinos. Cuarenta y cinco muestras fueron evaluadas por la presencia de genes stx. Los resultados fueron comparados con aquéllos obtenidos por otros dos métodos: amplificación de ADN purificado por un procedimiento no comercial (protocolo de lisis por calor, y amplificación de ADN de muestras cultivadas en medio sólido, comúnmente usado en nuestro laboratorio. El mismo número de muestras positivas (33/45, 73 %, fueron obtenidas con el QIAamp DNA stool purification kit y el procedimiento de cultivo, sugiriendo una eliminación adecuada de inhibidores que interfieren con la amplificación en materia fecal. Por otro lado, el número de muestras positivas detectadas usando ADN purificado por el protocolo no comercial fue menor, 25/39 (64%. En conclusión, el uso del kit QIAamp DNA stool

  16. Purification of cress seed (Lepidium sativum) gum: Physicochemical characterization and functional properties

    DEFF Research Database (Denmark)

    Razmkhah, Somayeh; Mohammadifar, Mohammad Amin; Razavi, Seyed Mohammad Ali

    2016-01-01

    The aim of the present study was to investigate the effects of different purification methods (ethanol, isopropanol and ethanol-isopropanol) on the physicochemical and functional characteristics of cress seed gum. Sugar composition and molecular weight of the samples varied significantly. All...... the purification methods reduced ash and protein content and molecular weight of cress seed gum. The main decomposition of the purified samples started above 200º C and initial decomposition temperature of the crude gum was 190.21º C. DSC thermograms of the purified gums showed two exothermic events at 257.......81-261.95 ºC and 302.46-311.57 ºC. Crude gum displayed an exothermic peak at 259.42º C. Sample I (purified using isopropanol) imparted the best surface activity among the purified samples as it had the highest protein and uronic acid contents and the lowest Mw. All the purification methods could improve...

  17. Expression, purification, crystallization and preliminary X-ray analysis of Escherichia coli 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase.

    Science.gov (United States)

    Lee, J E; Cornell, K A; Riscoe, M K; Howell, P L

    2001-01-01

    A recombinant form of Escherichia coli 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (E.C. 3.2.2.9) has been purified to homogeneity and crystallized using the hanging-drop vapour-diffusion technique. While several different crystallization conditions were obtained, only one set of conditions yielded crystals suitable for X-ray diffraction analysis. These crystals grow as diamond-shaped wedges, with unit-cell parameters a = 50.92, b = 133.99, c = 70.88 A, alpha = beta = gamma = 90 degrees. The crystals belong to space group P2(1)2(1)2 and diffract to a minimum d spacing of 2.3 A on a MAR345 image plate with a Rigaku RU-200 rotating-anode X-ray generator. On the basis of density calculations, two monomers are predicted per asymmetric unit (Matthews coefficient, V(M) = 2.37 A(3) Da(-1)), with a solvent content of 48%.

  18. A Comparative Study on the Expression, Purification and Functional Characterization of Human Adiponectin in Pichia pastoris and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Hussin A. Rothan

    2012-03-01

    Full Text Available Adiponectin is one of the most bioactive substances secreted by adipose tissue and is involved in the protection against metabolic syndrome, artherosclerosis and type II diabetes. Research into the use of adiponectin as a promising drug for metabolic syndromes requires production of this hormone in high quantities considering its molecular isoforms. The objective of this study is to produce recombinant human adiponectin by Pichia pastoris (P-ADP as a cheap and convenient eukaryotic expression system for potential application in pharmaceutical therapy. For comparison, adiponectin was also expressed using the Escherichia coli (E-ADP expression system. Adiponectin was constructed by overlap-extension PCR, and cloned in standard cloning vector and hosts. Recombinant expression vectors were cloned in the P. pastoris and E. coli host strains, respectively. SDS-PAGE and western blotting were used to detect and analyse expressed recombinant protein in both systems. Adiponectin was purified by affinity chromatography and quantified using the Bradford Assay. The results of this study indicated that P-ADP quantity (0.111 mg/mL was higher than that of E-ADP (0.04 mg/mL and both were produced in soluble form. However, P-ADP was able to form high molecular weights of adiponectin molecules, whilst E-ADP was not able to form isoforms higher than trimer. In addition, P-ADP was more active in lowering blood glucose compared with E-ADP. The two types of proteins were equally efficient and significantly decreased blood triglyceride and increased high density lipoprotein. We conclude that P. pastoris is able to produce high quantity of bioactive adiponectin for potential use in treatment of metabolic syndromes.

  19. Expression of Aspergillus niger N5-5 in E. coli and purification and identification of products.

    Science.gov (United States)

    Zhang, Shuai; Cao, Yong; Cheng, Hao

    2017-12-01

    Due to the feature of high hydrolysis, tannase is widely used in food, beverage, brewing and other fields. However, high cost in producing natural tannase makes it difficult to apply tannase to industry in a large-scale. Microbial expression systems can be used for preparing numerous amount of enzyme at low cost, so in this paper Aspergillus niger N5-5 was expressed using E. coli system. Specific primers were designed based on the Aspergillus niger N5-5 sequence N3 (GenBank, No.: KP677552), and tannase gene tan was promoted to carry 6 His tag and enzyme cutting site which contains NdeI/HindIII using PCR amplification. Then, tannase gene tan was connected to expression vector by NdeI/HindIII enzyme cutting. In this way, recombinant expression vector tan -pET43.1a was formed. Then, the expression vector pET43.1a by NdeI/HindIII enzyme cutting was transformed into E. coli BL21 (DE3) to induce expression of Aspergillus niger N5-5. When the induced fungi were disrupted by the ultrasonic wave, the crude enzyme was extracted and purified by using the IMAC, and then the activity of the crude enzyme and pure enzyme was determined. According to the results of determination of the tannase activity, the tannase activity of the crude enzyme was greatly improved after the crude enzyme was purified, and the specific activity of the pure enzyme was about 8 times of that of the crude enzyme. The results of SDS-PAGE of the pure enzyme showed that the molecular mass of the pure enzyme was about 65 kDa/64-65 kDa, which was consistent with the expected result (64.2 kDa), It can be concluded that the crude enzyme solution was purified successfully. The results of pure enzyme's protein identification by Western Blotting showed that clear protein bands pro -3 were observed. Molecular mass of clear protein bands pro-3 was about 65 kDa, which was in line with the expected results (64.2 kDa). It can be seen that the aforementioned expression protein could be specifically combined

  20. Purification and properties of a ribosomal casein kinase from rabbit reticulocytes

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    A casein kinase was isolated and purifed from rabbit reticulocytes. About 90% of the enzyme activity co-sedimented with the ribosomal fraction, whereas about 10% of the enzyme activity was found in the ribosome-free supernatant. Both casein kinases (the ribosome-bound enzyme as well as the free...

  1. Effect of purification method of β-chitin from squid pen on the properties of β-chitin nanofibers

    OpenAIRE

    Suenaga, Shin; Nikaido, Nozomi; Totani, Kazuhide; Kawasaki, Kazunori; Ito, Yoshihito; Yamashita, Kazuhiko; Osada, Mitsumasa

    2016-01-01

    The relationship between purification methods of β-chitin from squid pen and the physicochemical properties of β-chitin nanofibers (NFs) were investigated. Two types of β-chitin were prepared, with β-chitin (a → b) subjected to acid treatment for decalcification and then base treatment for deproteinization, while β-chitin (b → a) was treated in the opposite order. These β-chitins were disintegrated into NFs using wet pulverization. The β-chitin (b → a) NF dispersion has higher transmittance a...

  2. Expression and purification of swine RAG2 in E. coli for production of porcine RAG2 polyclonal antibodies.

    Science.gov (United States)

    Jin, Yu-Bei; Yang, Wen-Tao; Huang, Ke-Yan; Chen, Hong-Liang; Shonyela, Seria-Masole; Liu, Jing; Liu, Qiong; Feng, Bo; Zhou, You; Zhi, Shu-Li; Jiang, Yan-Long; Wang, Jian-Zhong; Huang, Hai-Bin; Shi, Chun-Wei; Yang, Gui-Lian; Wang, Chun-Feng

    2017-08-01

    Recombination activating gene 2 (RAG2) is necessary for immature B cell differentiation. Antibodies to human and rabbit RAG2 are currently commercially available, but antibodies to swine RAG remain unavailable to date. In this study, the swine RAG2 genes sequence was synthesized and then cloned into a pET-28a vector. The recombinant fusion protein was successfully expressed in E. coli, purified through nickel column chromatography, and further digested with Tobacco Etch Virus protease. The cleaved protein was purified by molecular-exclusion chromatography and named pRAG2. We used pRAG2 to immunize rabbits, collected the serum and purified rabbit anti-pRAG2 polyclonal antibodies. The rabbit anti-pRAG2 polyclonal antibodies were tested via immunofluorescence on eukaryotic cells overexpressing pRAG2 and also able to recognize pig natural RAG2 and human RAG2 protein in western blotting. These results indicated that the prepared rabbit anti-pRAG2 polyclonal antibodies may serve as a tool to detect immature B cell differentiation of swine.

  3. Cloning, expression, purification and characterization of a single chain variable fragment specific to tumor necrosis factor alpha in Escherichia coli.

    Science.gov (United States)

    Sushma, Krishnan; Vijayalakshmi, Mookambeswaran A; Krishnan, Venkataraman; Satheeshkumar, Padikara Kutty

    2011-12-20

    Anti TNF-α molecules have been used as therapeutic agents in a variety of human diseases such as Rheumatoid arthritis, Ankylosing spondylitis, Chron's diseases, Psoriasis, etc., where high levels of TNF-α plays a destructive role. The limitations of the present TNF-α inhibitors in terms of size, tissue penetration and immunogenicity, etc., provoked the search for small anti TNF-α molecules. In the present study, a single chain variable fragment (ScFv) construct was made from a monoclonal antibody of the class IgG raised against TNF-α was used. The anti TNF-α ScFv was well expressed as soluble form in Escherichia coli BL21 (DE3), which was purified to homogeneity by commercial methacrylate monolith-convective interaction media (CIM) supports using two different chemistries, immobilized metal affinity chromatography (IMAC) with copper ions followed by anion exchange chromatography. The anti TNF-α ScFv found to be inhibiting the TNF-α mediated cytotoxicity in MCF-7 cells with an IC(50) of 8μg. Data presented here are promising and encouraging to further optimize anti TNF-α ScFv production in larger scale with higher recovery at a cheaper price for therapeutic purposes. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Protein fusion tags for efficient expression and purification of recombinant proteins in the periplasmic space of E. coli.

    Science.gov (United States)

    Malik, Ajamaluddin

    2016-06-01

    Disulfide bonds occurred in majority of secreted protein. Formation of correct disulfide bonds are must for achieving native conformation, solubility and activity. Production of recombinant proteins containing disulfide bond for therapeutic, diagnostic and various other purposes is a challenging task of research. Production of such proteins in the reducing cytosolic compartment of E. coli usually ends up in inclusion bodies formation. Refolding of inclusion bodies can be difficult, time and labor consuming and uneconomical. Translocation of these proteins into the oxidative periplasmic compartment provides correct environment to undergo proper disulfide bonds formation and thus achieving native conformation. However, not all proteins can be efficiently translocated to the periplasm with the help of bacterial signal peptides. Therefore, fusion to a small well-folded and stable periplasmic protein is more promising for periplasmic production of disulfide bonded proteins. In the past decades, several full-length proteins or domains were used for enhancing translocation and solubility. Here, protein fusion tags that significantly increase the yields of target proteins in the periplasmic space are reviewed.

  5. [Prokaryotic expression, purification and identification of NY-ESO-1/GST fusion protein in E.coli].

    Science.gov (United States)

    Tang, Lei; Song, Chao-jun; Sun, Yuan-jie; Li, Na; Wei, Yu-ying; Sun, Yi; Yang, Kun

    2012-10-01

    To construct an expression plasmid for NY-ESO-1 gene and identify the expression of recombinant protein NY-ESO-1/GST in E.coli. NY-ESO-1 segment was amplified from the testis cDNA library by RT-PCR and cloned into the prokaryotic expression vector pGEX4T-1 downstream tagged by GST to construct the expression plasmid pGEX-4T1-NY-ESO-1. The recombinant vector was transformed to BL21 (DE3) and NY-ESO-1/GST fusion protein was induced expression by IPTG. The protein was purified by urea elution and identified by SDS-PAGE and Western blotting. The NY-ESO-1 segment was successfully amplified and its sequence was identical with that published in GenBank. The BL21 (DE3) pLysS containing the pGEX-4T1-NY-ESO-1 expressed a M(r); 44 000 fusion protein under the induction of IPTG. The purity of the protein was 90%. Western blotting proved that NY-ESO-1/GST had a specific reaction with anti-GST mAb. The prokaryotic expression vector of NY-ESO-1 has been constructed and the fusion protein NY-ESO-1/GST of high purity is successfully expressed.

  6. Recombinant gilthead seabream (Sparus aurata) insulin-like growth factor-I: subcloning, expression in Escherichia coli, purification and characterization.

    Science.gov (United States)

    Fine, M; Amuly, R; Sandowski, Y; Marchant, T A; Chan, S J; Gertler, A; Funkenstein, B

    1997-04-01

    Gilthead seabream (Sparus aurata) insulin-like growth factor-I (gsIGF-I) cDNA coding for the mature protein was cloned in a pGEM-3Z vector, and then transferred into prokaryotic expression vector pET-11a and expressed in Escherichia coli BL21(DE3) cells upon induction with isopropyl thiogalactoside. The expressed protein contained within the inclusion-body pellet was solubilized in 4.5 M urea, refolded for 24 h at pH 11.3 in the presence of catalytic amounts of cysteine and purified to over 98% purity, as a monomeric methionyl-gsIGF-I. Amino acid composition and N-terminal sequence confirmed the identity to be the predicted protein. Binding assays of the 125I-gsIGF-I to gilthead seabream or carp (Cyprinus carpio) sera resulted in high specific binding, indicating the existence of one or more IGF-binding proteins. In binding experiments to crude gilthead seabream brain homogenate, using human (h) IGF-I as a ligand, the respective IC50 value of hIGF-I was about fourfold lower than that of gsIGF-I. Recombinant gsIGF-I exhibited mitogenic activity in a mouse mammary gland-derived MME-L1 cell line which was approximately 200-fold lower than that of hIGF-1. Binding experiments to intact MME-L1 cells suggests that this difference most likely results from a correspondingly lower affinity for IGF-I receptor in these cells. In contrast, the activities of gsIGF-I and hIGF-I measured by 35S uptake by gill arches from the goldfish (Carassius auratus) were identical, indicating that the recombinant gsIGF-I is biologically active.

  7. Escherichia coli Isolates Causing Asymptomatic Bacteriuria in Catheterized and Noncatheterized Individuals Possess Similar Virulence Properties

    DEFF Research Database (Denmark)

    Watts, Rebecca E; Hancock, Viktoria; Ong, Cheryl-lynn Y

    2010-01-01

    patients (catheter-associated ABU [CA-ABU]) and noncatheterized patients. Here, we compared the virulence properties of a collection of ABU and CA-ABU nosocomial E. coli isolates in terms of antibiotic resistance, phylogenetic grouping, specific UTI-associated virulence genes, hemagglutination...

  8. Expression in E. coli and purification of the fibrillogenic fusion proteins TTR-sfGFP and β2M-sfGFP.

    Science.gov (United States)

    Solovyov, K V; Polyakov, D S; Grudinina, N A; Egorov, V V; Morozova, I V; Aleynikova, T D; Shavlovsky, M M

    2011-01-01

    The possibility of obtaining recombinant fibrillogenic fusion proteins such as transthyretin (TTR) and β2-microglobulin (β2M) with a superfolder green fluorescent protein (sfGFP) was studied. According to the literature data, sfGFP is resistant to denaturating influences, does not aggregate during renaturation, possesses improved kinetic characteristics of folding, and folds well when fused to different polypeptides. The corresponding DNA constructs for expression in Escherichia coli were created. It could be shown that during expression of these constructs in E. coli, soluble forms of the fusion proteins are synthesized. Efficient isolation of the fusion proteins was performed with the help of nickel-affinity chromatography. For this purpose a polyhistidine sequence (6-His-tag) was incorporated into the C-terminus of the sfGFP. We could show that the purified fusion proteins contained full-size sequences of the most amyloidogenic TTR variant, TTR(L55P) and β2M, and also sfGFP possessing fluorescent properties. In the course of fibrillogenesis both fusion proteins demonstrated their ability to form fibrils that were clearly detectable by atomic force microscopy. Furthermore, with the help of confocal microscopy we were able to reveal structures (exhibiting fluorescence) that are formed during fibrillogenesis. Thus, the use of sfGFP has made it possible to avoid formation of inclusion bodies (IB) during the synthesis of recombinant fusion proteins and to obtain soluble forms of TTR(L55P) and β2M that are suitable for further studies.

  9. Expression, purification and characterization of the authentic form of human growth hormone receptor antagonist G120R-hGH obtained in Escherichia coli periplasmic space.

    Science.gov (United States)

    Menezes, Ana C S C; Suzuki, Miriam F; Oliveira, João E; Ribela, Maria T C P; Furigo, Isadora C; Donato, José; Bartolini, Paolo; Soares, Carlos R J

    2017-03-01

    The human growth hormone receptor antagonist G120R-hGH precludes dimerization of GH and prolactin receptors and consequently JAK/STAT signaling. Some modifications in this antagonist resulted in a drug specific for the GH receptor, called Pegvisomant (Somavert ® ). However, the original G120R-hGH is usually synthesized in bacterial cytoplasm as inclusion bodies, not being a commercial product. The present work describes the synthesis and characterization of G120R-hGH secreted into bacterial periplasm and obtained with a vector based on a constitutive lambda-PL promoter. This antagonist can be useful for studies aiming at investigating the effects of a simultaneous inhibition of GH and prolactin signaling, as a potential anti-tumoral or anti-diabetic compound. G120R-hGH, synthesized using the W3110 E. coli strain, showed a yield of 1.34 ± 0.24 μg/ml/A 600 (∼0.79 mg G120R-hGH/g of wet weight cells) after cultivation at 30 °C up to 3 A 600 units and induction at 37 °C, for 6 h, with final 4.3 ± 0.3 A 600 . A laboratory scale purification was carried out using three chromatographic steps with a total yield of 32%, reaching 98% purity. The obtained protein was characterized by SDS-PAGE, Western Blotting, Mass spectrometry, RP-HPLC, HPSEC and in vitro proliferation bioassay. The proliferation assay, based on Ba/F3-LLP cells, shows that G120R-hGH (100 ng/ml) significantly inhibited (64%) the proliferative action of hGH (1 ng/ml). This is the first time that G120R-hGH is synthesized in bacterial periplasmic space and therefore correctly folded, without the initial methionine. The reasons for a divergent efficacy for antagonizing hGH versus hPRL is currently unknown and deserves further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Purification and some properties of pectinesterase from potato (Solanum tuberosum L.) alpha cultivar

    OpenAIRE

    Montañez Sáenz, Julio; Téllez, Alejandro; Garza, Heliodoro de la; Reyes, María de la Luz; Contreras-Esquivel, Juan Carlos; Aguilar, Cristóbal Noé

    2000-01-01

    Pectinesterase was extracted from potato alpha cultivar, purified and partially characterized The used protocol resulted in a 58.8-fold purification (51 850.2 units/mg protein) with 15.5% recovery of pectinesterase activity. The purified enzyme had a molecular weight of 27 kDa and its isoelectric point was around 4.5 with pH and temperature optima of 8.0 and 60°C, respectively. The purified enzyme had a single symmetric peak of specific activity after chromatographic steps. The homogeneity of...

  11. A fusion protein of the synthetic IgG-binding domain and aequorin: Expression and purification from E. coli cells and its application.

    Science.gov (United States)

    Inouye, Satoshi; Sahara-Miura, Yuiko

    2017-09-01

    Aequorin is a Ca 2+ -binding photoprotein that is a complex of apoaequorin (apoAQ) and 2-peroxycoelenterazine. In this study, the fusion protein (ZZ-apoAQ) composed of the synthetic IgG-binding domain (ZZ domain) derived from Staphylococcus aureus protein A and apoAQ was expressed into the periplasmic space of Escherichia coli cells. ZZ-apoAQ was highly purified using Ni-chelate affinity chromatography followed by IgG affinity chromatography. ZZ-AQ was prepared from purified ZZ-apoAQ by incubation with coelenterazine and was characterized, including its luminescence properties. ZZ-AQ could be used as a reporter for detecting IgG and the measurable range of IgG coated on a 96-well plate was 1-1000 ng/mL. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Arnvig, Kirsten; Hove-Jensen, Bjarne; Switzer, Robert L.

    1990-01-01

    Phosphoribosyl-diphosphate (PPRibP) synthetase from Bacillus subtiliis has been purified to near homogeneity from an Escherichia coli Δprs strain bearing the cloned B. subtilis prs gene, encoding PPRibP synthentase, on a plasmid. The Mr of the subunit (34,000) and its amino-terminal amino acid se...

  13. Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei and Saccharomyces boulardii probiotic properties.

    Science.gov (United States)

    Martins, Flaviano S; Silva, Aparecida A; Vieira, Angélica T; Barbosa, Flávio H F; Arantes, Rosa M E; Teixeira, Mauro M; Nicoli, Jacques Robert

    2009-08-01

    The present work investigates some probiotic properties of four different microorganisms (Bifidobacterium animalis var. lactis BB-12, Escherichia coli EMO, Lactobacillus casei and Saccharomyces boulardii). In vitro and in vivo tests were carried out to compare cell wall hydrophobicity, production of antagonistic substances, survival capacity in the gastrointestinal tract of germ-free mice without pathological consequence, and immune modulation by stimulation of Küpffer cells, intestinal sIgA and IL-10 levels. In vitro antagonism against pathogenic bacteria and yeast was only observed for the probiotic bacteria B. animalis and L. casei. The hydrophobic property of the cell wall was higher for B. animalis and E. coli EMO, and this property could be responsible for a better ability to colonize the gastrointestinal tract of germ-free mice. Higher levels of sIgA were observed mainly for S. boulardii, followed by E. coli EMO and B. animalis, and only S. boulardii induced a significant higher level of IL-10. In conclusion, for a probiotic use, S. boulardii presented better characteristics in terms of immunomodulation, and B. animalis and L. casei for antagonistic substance production. The knowledge of the different probiotic properties could be used to choice the better microorganism depending on the therapeutic or prophylactic application.

  14. Isolation, Purification and Characterization of Antimicrobial Agent Antagonistic to Escherichia coli ATCC 10536 Produced by Bacillus pumilus SAFR-032 Isolated from the Soil of Unaizah, Al Qassim Province of Saudi Arabia.

    Science.gov (United States)

    S Alanazi, Abdurrahman; Qureshi, Kamal Ahmad; Elhassan, Gamal Osman; I El-Agamy, Elsayed

    Escherichia coli is one of the most common pathogenic bacteria, which cause urinary tract infections in infants as well as in adult human beings. Due to the emergence of antibiotic resistance in E. coli, there is a great demand of new antimicrobial agent for the treatment of infections caused by such E. coli. This study aims to isolate, identify and characterize the native soil-bacterial strains predominate in the soil of Unaizah city, which produce antimicrobial agent antagonistic to E. coli ATCC 10536, followed by isolation, purification and characterization of antimicrobial agent. Pour plate, spread plate and 16S rRNA sequence analysis methods were followed for the isolation and identification of soil bacteria. Ammonium sulphate and dialysis (MWCO-8 KD) methods were followed for the isolation and partial purification of antimicrobial agent from the cell free broths. The characterization of antimicrobial agent was carried out by determining the minimum inhibitory concentration and effects of temperature and pH on the antimicrobial stability. Out of the twenty five soil samples, only one soil-bacterial strain was found to produce antimicrobial agent antagonistic to E. coli ATCC 10536. The isolated soil bacterium was identified as Bacillus pumilus SAFR-032. The soil isolate was characterized and results suggest that 30°C temperature and pH 7.0 were the optimum growth parameters and soybean casein digest broth was the best fermentation medium, whereas the highest production of antimicrobial agent was at 35°C temperature, pH 7.0, shaking at 150-220 rpm and at 60th h of incubation. The maximum yield of antimicrobial agent was obtained at 60% of (NH 4) 2SO 4. The results of characterization of antimicrobial agent suggest that the maximum and minimum antimicrobial activities were at pH 3.0 and 8.0, respectively, whereas antimicrobial activity was unaffected by temperature. The antimicrobial agent was highly stable at varying range of temperature 50-120°C. Minimum

  15. Purification and properties of a ribosomal casein kinase from rabbit reticulocytes

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    A casein kinase was isolated and purifed from rabbit reticulocytes. About 90% of the enzyme activity co-sedimented with the ribosomal fraction, whereas about 10% of the enzyme activity was found in the ribosome-free supernatant. Both casein kinases (the ribosome-bound enzyme as well as the free...... enzyme) showed identical activity and the same molecular weight. On sodium dodecyl sulphate/polyacrylamide-gel electrophoresis a single band of about 70 000 mol.wt. was observed. Sucrose-gradient analysis, however, showed that the enzyme activity sedimented with a s20,w of approx. 7.5S. This observation...... suggested that the casein kinase is a dimer composed of subunits of identical molecular weight. The enzyme utilizes GTP as well as ATP as a phosphoryl donor. It preferentially phosphorylates acidic proteins, in particular the model substrates casein and phosvitin. Casein kinase is cyclic AMP...

  16. Cloning, expression, and purification of the His(6)-tagged hyper-thermostable dUTPase from Pyrococcus woesei in Escherichia coli: application in PCR

    DEFF Research Database (Denmark)

    Dabrowski, Slawomir; Ahring, Birgitte Kiær

    2003-01-01

    The gene encoding dUTPase from Pyrococcus woesei was cloned into Escherichia coli expression system. It shows 100% gene identity to homologous gene in Pyrococcus furiosus. The expression of N-terminal His(6)-tagged Pwo dUTPase was performed in E coli BL21(DE3)pLysS and E. coli Rosetta(DE3)pLysS s...

  17. Purification and Biochemical Properties of Phytochromobilin Synthase from Etiolated Oat Seedlings1

    Science.gov (United States)

    McDowell, Michael T.; Lagarias, J. Clark

    2001-01-01

    Plant phytochromes are dependent on the covalent attachment of the linear tetrapyrrole chromophore phytochromobilin (PΦB) for photoactivity. In planta, biliverdin IXα (BV) is reduced by the plastid-localized, ferredoxin (Fd)-dependent enzyme PΦB synthase to yield 3Z-PΦB. Here, we describe the >50,000-fold purification of PΦB synthase from etioplasts from dark-grown oat (Avena sativa L. cv Garry) seedlings using traditional column chromatography and preparative electrophoresis. Thus, PΦB synthase is a very low abundance enzyme with a robust turnover rate. We estimate the turnover rate to be >100 s−1, which is similar to that of mammalian NAD(P)H-dependent BV reductase. Oat PΦB synthase is a monomer with a subunit mass of 29 kD. However, two distinct charged forms of the enzymes were identified by native isoelectric focusing. The ability of PΦB synthase to reduce BV is dependent on reduced 2Fe-2S Fds. A Km for spinach (Spinacea oleracea) Fd was determined to be 3 to 4 μm. PΦB synthase has a high affinity for its bilin substrate, with a sub-micromolar Km for BV. PMID:11500553

  18. Purification and biochemical properties of phytochromobilin synthase from etiolated oat seedlings.

    Science.gov (United States)

    McDowell, M T; Lagarias, J C

    2001-08-01

    Plant phytochromes are dependent on the covalent attachment of the linear tetrapyrrole chromophore phytochromobilin (P Phi B) for photoactivity. In planta, biliverdin IX alpha (BV) is reduced by the plastid-localized, ferredoxin (Fd)-dependent enzyme P Phi B synthase to yield 3Z-P Phi B. Here, we describe the >50,000-fold purification of P Phi B synthase from etioplasts from dark-grown oat (Avena sativa L. cv Garry) seedlings using traditional column chromatography and preparative electrophoresis. Thus, P Phi B synthase is a very low abundance enzyme with a robust turnover rate. We estimate the turnover rate to be >100 s(-1), which is similar to that of mammalian NAD(P)H-dependent BV reductase. Oat P Phi B synthase is a monomer with a subunit mass of 29 kD. However, two distinct charged forms of the enzymes were identified by native isoelectric focusing. The ability of P Phi B synthase to reduce BV is dependent on reduced 2Fe-2S Fds. A K(m) for spinach (Spinacea oleracea) Fd was determined to be 3 to 4 microM. P Phi B synthase has a high affinity for its bilin substrate, with a sub-micromolar K(m) for BV.

  19. Mammalian folylpoly-γ-glutamate synthetase. 1. Purification and general properties of the hog liver enzyme

    International Nuclear Information System (INIS)

    Cichowicz, D.J.; Shane, B.

    1987-01-01

    Folylpolyglutamate synthetase was purified 30,000-150,000-fold from hog liver. Purification required the use of protease inhibitors, and the protein was purified to homogeneity in two forms. Both forms of the enzyme were monomers of M/sub r/ 62,000 and had similar specific activities. The specific activity of the homogeneous protein was over 2000-fold higher than reported for partially purified folylpolyglutamate synthetases from other mammalian sources. Enzyme activity was absolutely dependent on the presence of a reducing agent and a monovalent cation, of which K + was most effective. The purified enzyme catalyzed a MgATP-dependent addition of glutamate to tetrahydrofolate with the concomitant stoichiometric formation of MgADP and phosphate. Under conditions that resembled the expected substrate and enzyme concentrations in hog liver, tetrahydrofolate was metabolized to long glutamate chain length derivatives with the hexaglutamate, the major in vivo folate derivative, predominating. Enzyme activity was maximal at about pH 9.5. The high-pH optimum was primarily due to an increase in the K/sub m/ value for the L-glutamate substrate at lower pH values, and the reaction proceeded effectively at physiological pH provided high levels of glutamate were supplied

  20. Extracellular lipase of Aspergillus niger NRRL3; production, partial purification and properties.

    Science.gov (United States)

    Adham, Nehad Z; Ahmed, E M

    2009-03-01

    Four strains of Aspergillus niger were screened for lipase production. Each was cultivated on four different media differing in their contents of mineral components and sources of carbon and nitrogen. Aspergillus niger NRRL3 produced maximal activity (325U/ml) when grown in 3% peptone, 0.05% MgSO(4).7H(2)O, 0.05% KCl, 0.2% K(2)HPO(4) and 1% olive oil:glucose (0.5:0.5). A. niger NRRL3 lipase was partially purified by ammonium sulphate precipitation. The majority of lipase activity (48%) was located in fraction IV precipitated at 50-60% of saturation with a 18-fold enzyme purification. The optimal pH of the partial purified lipase preparation for the hydrolysis of emulsified olive oil was 7.2 and the optimum temperature was 60°C. At 70°C, the enzyme retained more than 90% of its activity. Enzyme activity was inhibited by Hg(2+) and K(+), whereas Ca(2+) and Mn(2+) greatly stimulated its activity. Additionally, the formed lipase was stored for one month without any loss in the activity.

  1. A new mannose-specific lectin from daylily (Hemerocallis fulva L. rhizome: purification and properties

    Directory of Open Access Journals (Sweden)

    V. O. Antonyuk

    2013-04-01

    Full Text Available A new lectin was purified from the daylily (Hemerocallis fulva L. with the yield of approximately 10 mg per kg of fresh plant rhizome. The purification procedure was based on application of the affinity chromathography on the column with yeast mannan and the ion-exchange chromatography on the column with DEAE-Toyopearl. The lectin possessed low affinity for α-methyl-D-mannopyranoside, D-fructose, D-turanose and 2-acetamido-D-galactopyranose and hight affinity for the yeast mannan. The lectin bound with greatly less affinity for the mannose-containig glycoproteins, such as ovoalbumin, ovomucoid and horseradish peroxidase. According to the results of electrophoresis in 20% DSNa-PAGE, the lectin consists of subunits of 12 kDa molecular weight. According to the results of gel-chromatography on the Toyopearl HW-55, the lectin’s molecular weight is 48 kDa. It agglutinated rabbit erythrocytes very well, while rat and guinea-pig erythrocytes were agglutinated worse, and human erythrocytes were not agglutinated at all. Lectin’s dialysis against 1% EDTA or heating to 60 ºC for 60 min did not stop its hemagglutinating activity.

  2. Purification of Biotransformation Products of Cis-Isoflavan-4-ol by Biphenyl Dioxygenase of Pseudomonas pseudoalcaligenes KF707 Strain Expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Tri Ratna Sulistiyani

    2013-04-01

    Full Text Available Isoflavone has multiple beneficial effects on human health, especially through its antioxidant and anticancer activities. The biotransformation of isoflavone using byphenyl dioxygenase could be performed to extend the diversity of flavonoids and to improve their biological and physiological properties. Biotransformation of two enantiomers (3R, 4R-cis-isoflavan-4-ol and (3S, 4S-cis-isoflavan-4-ol by E. coli JM109 (pJHF108 carrying a biphenyl dioxygenase gene from P. pseudoalcaligenesKF707 produced two products, designated as CM1 andCM2. The products had a retention time of 11.9 and 14.6 min, respectively, and the same absorption peaks at 204, 220, and 275 nm. CM1 and CM2 had [M-H2O+H]+ at m/z 225. Based on the molecular mass and hydrolysis products, we proposed that epoxidation occurred on cis-isoflavan-4-ol. Chloroform extraction instead of ethyl acetate extraction was performed to improve the stability of cismetabolites, CM1 and CM2.

  3. Purification and some properties of pectinesterase from potato (Solanum tuberosum L. alpha cultivar

    Directory of Open Access Journals (Sweden)

    Julio Montañez Sáenz

    2000-01-01

    Full Text Available Pectinesterase was extracted from potato alpha cultivar, purified and partially characterized The used protocol resulted in a 58.8-fold purification (51 850.2 units/mg protein with 15.5% recovery of pectinesterase activity. The purified enzyme had a molecular weight of 27 kDa and its isoelectric point was around 4.5 with pH and temperature optima of 8.0 and 60°C, respectively. The purified enzyme had a single symmetric peak of specific activity after chromatographic steps. The homogeneity of the purified pectinesterase was confirmed by gel filtration and polyacrylamide electrophoresis gel.A pectinesterase foi extraída da batata (cultivar do alfa, purificada e parcialmente caracterizada. O protocolo usado levou a uma proteína purificada 58,8 vezes (51 850,2 units/mg da proteína com uma recuperação de 15,5 % da atividade da proteína. A enzima purificada apresentou um peso molecular de 27 kDa e seu ponto isoelétrico foi ao redor 4,5. A pectinesterase exibiu pH e temperatura ótimos de respectivamente 8,0 e 60°C. A enzima purificada apresentou um único pico simétrico de atividade específica após as etapas de cromatografia. A homogeneidade da pectinesterase purificada foi confirmada por filtração em gel e por eletroforese em gel de poliacrilamida.

  4. Purification and characterization of a lectin with high hemagglutination property isolated from Allium altaicum.

    Science.gov (United States)

    Upadhyay, Santosh Kumar; Saurabh, Sharad; Singh, Rahul; Rai, Preeti; Dubey, Neeraj Kumar; Chandrashekar, K; Negi, Kuldeep Singh; Tuli, Rakesh; Singh, P K

    2011-08-01

    A lectin was purified from the leaves of Allium altaicum and corresponding gene was cloned. The lectin namely Allium altaicum agglutinin (AAA) was ~24 kDa homodimeric protein and similar to a typical garlic leaf lectin. It was synthesized as 177 amino acid residues pre-proprotein, which consisted of 28 and 43 amino acid long N and C-terminal signal peptides, respectively. The plant expressed this protein more in scapes and flowers in comparison to the bulbs and leaves. Hemagglutination activity (with rabbit erythrocytes) was 1,428 fold higher as compared to Allium sativum leaf agglutinin (ASAL) although, the insecticidal activity against cotton aphid (Aphis gossypii) was relatively low. Glycan array revealed that AAA had higher affinity towards GlcAb1-3Galb as compared to ASAL. Homology analysis showed 57-94% similarity with other Allium lectins. The mature protein was expressed in E. coli as a fusion with SUMO peptide in soluble and biologically active form. Recombinant protein retained high hemagglutination activity.

  5. Effect of purification method of β-chitin from squid pen on the properties of β-chitin nanofibers.

    Science.gov (United States)

    Suenaga, Shin; Nikaido, Nozomi; Totani, Kazuhide; Kawasaki, Kazunori; Ito, Yoshihito; Yamashita, Kazuhiko; Osada, Mitsumasa

    2016-10-01

    The relationship between purification methods of β-chitin from squid pen and the physicochemical properties of β-chitin nanofibers (NFs) were investigated. Two types of β-chitin were prepared, with β-chitin (a→b) subjected to acid treatment for decalcification and then base treatment for deproteinization, while β-chitin (b→a) was treated in the opposite order. These β-chitins were disintegrated into NFs using wet pulverization. The β-chitin (b→a) NF dispersion has higher transmittance and viscosity than the β-chitin (a→b) NF dispersion. For the first time, we succeeded in obtaining 3D images of the β-chitin NF dispersion in water by using quick-freeze deep-etch replication with high-angle annular dark field scanning transmission electron microscopy. The β-chitin (b→a) NF dispersion has a denser and more uniform 3D network structure than the β-chitin (a→b) NF dispersion. Widths of the β-chitin (a→b) and (b→a) NFs were approximately 8-25 and 3-10nm, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Virulence, Antimicrobial Resistance Properties and Phylogenetic Background of Non-H7 EnteropathogenicEscherichia coliO157.

    Science.gov (United States)

    Ferdous, Mithila; Kooistra-Smid, Anna M D; Zhou, Kai; Rossen, John W A; Friedrich, Alexander W

    2016-01-01

    Escherichia coli ( E .coli) O157 that do not produce Shiga toxin and do not possess flagellar antigen H7 are of diverse H serotypes. In this study, the antibiotic resistance properties, genotype of a set of virulence associated genes and the phylogenetic background of E. coli O157:non-H7 groups were compared. Whole genome sequencing was performed on fourteen O157:non-H7 isolates collected in the STEC-ID-net study. The genomes were compared with E. coli O157 genomes and a typical Enteropathogenic E. coli (tEPEC) genome downloaded from NCBI. Twenty-six (86%) of the analyzed genomes had the intimin encoding gene eae but of different types mostly correlating with their H types, e.g., H16, H26, H39, and H45 carried intimin type ε, β, κ, and α, respectively. They belonged to several E. coli phylogenetic groups, i.e., to phylogenetic group A, B1, B2, and D. Seven (50%) of our collected O157:non-H7 isolates were resistant to two or more antibiotics. Several mobile genetic elements, such as plasmids, insertion elements, and pathogenicity islands, carrying a set of virulence and resistance genes were found in the E. coli O157:non-H7 isolates. Core genome phylogenetic analysis showed that O157:non-H7 isolates probably evolved from different phylogenetic lineages and were distantly related to the E. coli O157:H7 lineage. We hypothesize that independent acquisition of mobile genetic elements by isolates of different lineages have contributed to the different molecular features of the O157:non-H7 strains. Although distantly related to the STEC O157, E. coli O157:non-H7 isolates from multiple genetic background could be considered as pathogen of concern for their diverse virulence and antibiotic resistance properties.

  7. Purification and some properties of a novel maltohexaose-producing exo-amylase from Aerobacter aerogenes.

    Science.gov (United States)

    Kainuma, K; Wako, K; Kobayashi, S; Nogami, A; Suzuki, S

    1975-12-18

    Maltohexaose producing amylase (EC 3.2.1.-) is the fourth known exo-amylase, the three previously known being glucoamylase, beta-amylase and Pseudomonas stutzeri maltotetraose producing amylase. The enzyme after release from Aerobacter aerogenes cells by 0.1% sodium lauryl sulfate extraction was purified by ammonium sulfate precipitation, DEAE-Sephadex column chromatography and Sephadex G-100 gel filtration to 80-fold of the original sodium lauryl sulfate extract activity, It gave a single band on disc electrophoresis, and the molecular weight by gel filtration was 54 000. This amylase showed maximal activity at 50 degrees C and pH 6.80. The pH stability range was relatively wide, the enzyme retaining more than 90% of its initial activity in the range of 6.50-9.0. 80% of the activity was retained after 15 min at 50 degrees C. This enzyme produced maltohexaose from starch, amylose and amylopectin by exo-attack, but did not act on alpha- or beta-cyclodextrin, pullulan or maltohexaitol. Also the enzyme acted on beta-limit dextrins of amylopectin and glycogen to form branched oligosaccharides. The unusual reaction of this enzyme on beta-limit dextrin is discussed from the standpoint of the stereochemistry of 1,4-alpha- and 1,6-alpha-glucosidic bonds. This is the anomalous amylase for which it is recognized that 1,6-alpha-glucosidic linkages in the substrates can mimic the effect of 1,4-alpha-bonds, as previously observed in pseudo-priming reactions of E. coli phosphorylase.

  8. Virulence factors, serogroups and antimicrobial resistance properties of Escherichia coli strains in fermented dairy products.

    Science.gov (United States)

    Dehkordi, Farhad Safarpoor; Yazdani, Farshad; Mozafari, Jalal; Valizadeh, Yousef

    2014-04-07

    From a clinical perspective, it is essential to know the microbial safety of fermented dairy products. Doogh and kashk are fermented dairies. These products are used by millions of people but their microbial qualities are unknown. Shiga toxin producing Escherichia coli (STEC) is one of the most commonly detected pathogens in the cases of food poisoning and food-borne illnesses. The present investigation was carried out in order to study the molecular characterization and antimicrobial resistance properties of STEC strains isolated from fermented dairy products. Six hundred fermented dairy samples were collected and immediately transferred to the laboratory. All samples were cultured immediately and those that were E. coli-positive were analyzed for the presence of O157 , O26, O103, O111, O145, O45, O91, O113, O121 and O128 STEC serogroups, tetA, tetB, blaSHV, CITM, cmlA, cat1, aadA1, dfrA1, qnr, aac (3)-IV, sul1 and ereA antibiotic resistance genes and stx1, stx2, eaeA, ehly, cnf1, cnf2, iutA, cdtB, papA, traT, sfaS and fyuA virulence factors using PCR. Antimicrobial susceptibility testing was performed also using disk diffusion methodology with Mueller-Hinton agar. Fifty out of 600 (8.33%) dairy samples harbored E. coli. In addition, yoghurt was the most commonly contaminated dairy. O157 (26%) and O26 (12%) were the most commonly detected serogroups. A significant difference was found between the frequency of Attaching and Effacing E. coli and Enterohaemorrhagic E. coli (P resistance against tetracycline (tetA and tetB) (76% and 70%, respectively), cephalothin (blaSHV) (38%), ampicillin (CITM) (36%) and gentamicin (aac (3)-IV) (32%) were the most commonly detected. High resistance levels to tetracycline (84%), penicillin (46%), ampicillin (38%) and streptomycin (36%) were observed. Fermented dairy products can easily become contaminated by antibiotic resistant STEC strains. Our findings should raise awareness about antibiotic resistance in Iran. Clinicians should

  9. Effect of pore formers on properties of tape cast porous sheets for electrochemical flue gas purification

    DEFF Research Database (Denmark)

    Schmidt, Cristine Grings; Kammer Hansen, Kent; Andersen, Kjeld Bøhm

    2016-01-01

    permeability measurements, mercury porosimetry and pore orientation measurements, to investigate the role of the different pore formers on the properties after sintering at a temperature of 1250°C. Those tapes prepared from different non-spherical pore formers with comparable porosity of about 43%, showed...

  10. Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1

    International Nuclear Information System (INIS)

    Small, Evan; Eggler, Aimee; Mesecar, Andrew D.

    2010-01-01

    Research highlights: → A novel expression strategy was used to purify Cul3-Rbx1 from E. coli. → The Cul3-Rbx1 complex is fully active and catalyzes ubiquitination of Nrf2 in vitro. → Cul3, Rbx1, and Keap1 form a complex with unique stoichiometry of 1:1:2. -- Abstract: The Cullin3-based E3 ubiquitin ligase complex is thought to play an important role in the cellular response to oxidative stress and xenobiotic assault. While limited biochemical studies of the ligase's role in these complex signaling pathways are beginning to emerge, structural studies are lagging far behind due to the inability to acquire sufficient quantities of full-length, highly pure and active Cullin3. Here we describe the design and construction of an optimized expression and purification system for the full-length, human Cullin3-RINGBox 1 (Rbx1) protein complex from Escherichia coli. The dual-expression system is comprised of codon-optimized Cullin3 and Rbx1 genes co-expressed from a single pET-Duet-1 plasmid. Rapid purification of the Cullin3-Rbx1 complex is achieved in two steps via an affinity column followed by size-exclusion chromatography. Approximately 15 mg of highly pure and active Cullin3-Rbx1 protein from 1 L of E. coli culture can be achieved. Analysis of the quaternary structure of the Cullin3-Rbx1 and Cullin3-Rbx1-Keap1 complexes by size-exclusion chromatography and analytical ultracentrifugation indicates a 1:1 stoichiometry for the Cullin3-Rbx1 complex (MW = 111 kDa), and a 1:1:2 stoichiometry for the Cullin3-Rbx1-Keap1 complex (MW = 280 kDa). This latter complex has a novel quaternary structural organization for cullin E3 ligases, and it is fully active based on an in vitro Cullin3-Rbx1-Keap1-Nrf2 ubiquitination activity assay that was developed and optimized in this study.

  11. Cloning, purification, crystallization and preliminary X-ray diffraction studies of Escherichia coli PapD-like protein (EcpD)

    International Nuclear Information System (INIS)

    Pandey, Nishant Kumar; Pal, Ravi Kant; Kashyap, Maruthi; Bhavesh, Neel Sarovar

    2012-01-01

    The Escherichia coli PapD-like protein (EcpD), from uropathogenic Escherichia coli (UPEC), which is a periplasmic chaperon of Yad fimbriae was cloned, overexpressed, purified and crystallized. The crystals obtained diffracted X-rays to 1.67 Å resolution and belonged to space group C222 1 . Many Gram-negative bacteria are characterized by hair-like proteinaceous appendages on their surface known as fimbriae. In uropathogenic strains of Escherichia coli, fimbriae mediate attachment by binding to receptors on the host cell, often contributing to virulence and disease. E. coli PapD-like protein (EcpD) is a periplasmic chaperone that plays an important role in the proper folding and guiding of Yad fimbrial proteins to the outer membrane usher protein in a process known as pilus biogenesis. EcpD is essential for pilus biogenesis in uropathogenic E. coli and plays an important role in virulence. In the present study, EcpD was cloned, overexpressed, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to 1.67 Å resolution and belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 100.3, b = 127.6, c = 45.9 Å. There was a single molecule in the asymmetric unit and the corresponding Matthews coefficient was calculated to be 3.02 Å 3 Da −1 , with 59% solvent content. Initial phases were determined by molecular replacement

  12. Rapid purification of high activity Taq DNA polymerase expressed in ...

    African Journals Online (AJOL)

    A simplified method is described here for the preparation of a thermostable Taq DNA polymerase enzyme from Escherichia coli (E. coli) strain DH5a carrying the pTTQ18 expression vector transformed with the Taq polymerase gene. Standard purifications were done with 1 litre batch cultures of E. coli cells and produced ...

  13. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  14. Phosphoenolpyruvate-Dependent Mannitol Phosphotransferase System of Escherichia coli : Overexpression, Purification, and Characterization of the Enzymatically Active C-Terminal Domain of Enzyme IImtl Equivalent to Enzyme IIImtl

    NARCIS (Netherlands)

    Weeghel, R.P. van; Keck, W.; Robillard, G.T.

    1991-01-01

    The extreme C-terminus (Ser-490 to Lys-637) of the Escherichia coli EII(mtl) was subcloned to test structural and mechanistic proposals about the existence of an EIII-like domain in this enzyme. Oligonucleotide-directed mutagenesis was used to produce a unique NcoI restriction site and, at the same

  15. PENICILLIN-BINDING PROTEIN 2X OF STREPTOCOCCUS-PNEUMONIAE - EXPRESSION IN ESCHERICHIA-COLI AND PURIFICATION OF A SOLUBLE ENZYMATICALLY ACTIVE DERIVATIVE

    NARCIS (Netherlands)

    LAIBLE, G; KECK, W; LURZ, R; MOTTL, H; FRERE, JM; JAMIN, M; HAKENBECK, R

    1992-01-01

    A 2.5-kb DNA fragment including the structural gene coding for the penicillin-binding protein 2x (PBP 2x) of Streptococcus pneumoniae has been cloned into the vector pJDC9 and expressed in Escherichia coli. Mapping of RNA polymerase binding sites by electron microscopy indicated that the pbpX

  16. Purification and properties of NAD(P)H: (quinone-acceptor) oxidoreductase of sugarbeet cells.

    Science.gov (United States)

    Trost, P; Bonora, P; Scagliarini, S; Pupillo, P

    1995-12-01

    NAD(P)H:(quinone-acceptor) oxidoreductase [NAD(P)H-QR], a plant cytosolic protein, was purified from cultured sugarbeet cells by a combination of ammonium sulfate fractionation, FPLC Superdex 200 gel filtration, Q-Sepharose anion-exchange chromatography, and a final Blue Sepharose CL-6B affinity chromatography with an NADPH gradient. The subunit molecular mass is 24 kDa and the active protein (94 kDa) is a tetramer. The isoelectric point is 4.9. The enzyme was characterized by ping-pong kinetics and extremely elevated catalytic capacity. It prefers NADPH over NADH as electron donor (kcat/Km ratios of 1.7 x 10(8) M-1 S-1 and 8.3 x 10(7) M-1 S-1 for NADPH and NADH, respectively, with benzoquinone as electron acceptor). The acridone derivative 7-iodo-acridone-4-carboxylic acid is an efficient inhibitor (I0.5 = 5 x 10(-5) M), dicumarol is weakly inhibitory. The best acceptor substances are hydrophilic, short-chain quinones such as ubiquinone-0 (Q-0), benzoquinone and menadione, followed by duroquinone and ferricyanide, whereas hydrophobic quinones, cytochrome c and oxygen are reduced at negligible rates at best. Quinone acceptors are reduced by a two-electron reaction with no apparent release of free semiquinonic intermediates. This and the above properties suggest some relationship of NAD(P)H-QR to DT-diaphorase, an animal flavoprotein which, however, has distinct structural properties and is strongly inhibited by dicumarol. It is proposed that NAD(P)H-QR by scavenging unreduced quinones and making them prone to conjugation may act in plant tissues as a functional equivalent of DT-diaphorase.

  17. Purification and physicochemical properties of α-amylase from irradiated wheat

    International Nuclear Information System (INIS)

    Machaiah, J.P.; Vakil, U.K.

    1981-01-01

    α-Amylases from control and gamma-irradiated (at 0.2 and 2.0 kGy dose levels) wheat seedlings were purified to homogeneity and characterized. The molecular weight of the enzyme from a 2 kGy irradiated sample was slightly lower than that of the control; other general and catalytic properties also showed some differences. α-Amylase from the irradiated (2kGy) sample had a narrow range of pH optimum and was inactivated faster at alkaline pH and by heat treatment than the enzyme from unirradiated wheat. A high apparent Michaelis constant (Ksub(m)) and a low maximal velocity (Vsub(max)) for the hydrolysis of soluble starch catalyzed by the enzyme from irradiated (2kGy) wheat, suggested some modifications in the formation of the substrate α-amylase complex. Further, of the total number of amino acid residues lost on irradiation, dicarboxylic amino acids constituted the largest percentage; these structural alterations in the enzyme may be responsible for its partial inactivation. The total sugars liberated upon amylolysis of starch with the 2kGy irradiated enzyme were lower than control, and there was accumulation of higher maltodextrins in the place of maltose. (auth.)

  18. Purification and properties of a transglutaminase produced by a Bacillus circulans strain isolated from the Amazon environment.

    Science.gov (United States)

    de Barros Soares, Luís Henrique; Assmann, Francine; Záchia Ayub, Marco Antônio

    2003-06-01

    A new microbial transglutaminase (EC 2.3.2.13) from a Bacillus circulans strain isolated from the aquatic Amazonian environment was purified and characterized. Enzyme purification started with (NH(4))(2)SO(4) 'salting out' and proceeded with liquid chromatography on Q-Sepharose FF and octyl-Sepharose 4 FF. The purification factor was approx. 150-fold with a yield of 32%. The enzyme's molecular mass was estimated as 45000 Da on SDS/PAGE. The purified transglutaminase had an optimum temperature of 47 degrees C, the optimum pH of the reaction was 7 and it presented no calcium-dependent activity.

  19. Purification technologies for colloidal nanocrystals.

    Science.gov (United States)

    Shen, Yi; Gee, Megan Y; Greytak, A B

    2017-01-10

    Almost all applications of colloidal nanocrystals require some type of purification or surface modification process following nanocrystal growth. Nanocrystal purification - the separation of nanocrystals from undesired solution components - can perturb the surface chemistry and thereby the physical properties of colloidal nanocrystals due to changes in solvent, solute concentrations, and exposure of the nanocrystal surface to oxidation or hydrolysis. For example, nanocrystal quantum dots frequently exhibit decreased photoluminescence brightness after precipitation from the growth solvent and subsequent redissolution. Consequently, purification is an integral part of the synthetic chemistry of colloidal nanocrystals, and the effect of purification methods must be considered in order to accurately compare and predict the behavior of otherwise similar nanocrystal samples. In this Feature Article we examine established and emerging approaches to the purification of colloidal nanoparticles from a nanocrystal surface chemistry viewpoint. Purification is generally achieved by exploiting differences in properties between the impurities and the nanoparticles. Three distinct properties are typically manipulated: polarity (relative solubility), electrophoretic mobility, and size. We discuss precipitation, extraction, electrophoretic methods, and size-based methods including ultracentrifugation, ultrafiltration, diafiltration, and size-exclusion chromatography. The susceptibility of quantum dots to changes in surface chemistry, with changes in photoluminescence decay associated with surface chemical changes, extends even into the case of core/shell structures. Accordingly, the goal of a more complete description of quantum dot surface chemistry has been a driver of innovation in colloidal nanocrystal purification methods. We specifically examine the effect of purification on surface chemistry and photoluminescence in quantum dots as an example of the challenges associated with

  20. [Cloning of Escherichia coli K12 xylose isomerase (glucose isomerase) and studying the enzymatic properties of its expression product].

    Science.gov (United States)

    Rozanov, A S; Zagrebel'nyĭ, S N; Beklemishchev, A B

    2009-01-01

    The coding region of Escherichia coli K12 xylose (glucose) isomerase gene was inserted into the pRAC expression vector and cloned in E. coli BL21 (DE3) cells. After induction of expression of the cloned gene, the proportion of recombinant xylose isomerase accounted for 40% of the total protein content. As a result of one-stage purification by affinity chromatography, a protein preparation of 90% purity was obtained. The recombinant enzyme catalyzed the isomerization of glucose to fructose and exhibited maximum activity (0.8 U/mg) at 45 degrees C and pH 6.8. The enzyme required Mg2+ ions as a cofactor. When Mg2+ and Co2+ ions were simultaneously present in the reaction medium, the enzyme activity increased by 15-20%. Complete replacement of Mg2+ with Co2+ decreased the enzyme activity. In the presence of Ca2+ at concentrations comparable to the concentration of Mg2+, the enzyme was not inhibited, although published data reported inhibition of similar enzymes by Ca2+. The recombinant enzyme exhibited a very low thermostability: it underwent a slow inactivation when incubated at 45 degrees C and was completely inactivated after incubation at 65 degrees C for 1 h.

  1. Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli.

    Science.gov (United States)

    Sequeira, Ana Filipa; Turchetto, Jeremy; Saez, Natalie J; Peysson, Fanny; Ramond, Laurie; Duhoo, Yoan; Blémont, Marilyne; Fernandes, Vânia O; Gama, Luís T; Ferreira, Luís M A; Guerreiro, Catarina I P I; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are large, complex libraries of bioactive, disulphide-rich peptides. These peptides, and their novel biological activities, are of increasing pharmacological and therapeutic importance. However, recombinant expression of venom peptides in Escherichia coli remains difficult due to the significant number of cysteine residues requiring effective post-translational processing. There is also an urgent need to develop high-throughput recombinant protocols applicable to the production of reticulated peptides to enable efficient screening of their drug potential. Here, a comprehensive study was developed to investigate how synthetic gene design, choice of fusion tag, compartment of expression, tag removal conditions and protease recognition site affect levels of solubility of oxidized venom peptides produced in E. coli. The data revealed that expression of venom peptides imposes significant pressure on cysteine codon selection. DsbC was the best fusion tag for venom peptide expression, in particular when the fusion was directed to the bacterial periplasm. While the redox activity of DsbC was not essential to maximize expression of recombinant fusion proteins, redox activity did lead to higher levels of correctly folded target peptides. With the exception of proline, the canonical TEV protease recognition site tolerated all other residues at its C-terminus, confirming that no non-native residues, which might affect activity, need to be incorporated at the N-terminus of recombinant peptides for tag removal. This study reveals that E. coli is a convenient heterologous host for the expression of soluble and functional venom peptides. Using the optimal construct design, a large and diverse range of animal venom peptides were produced in the µM scale. These results open up new possibilities for the high-throughput production of recombinant disulphide-rich peptides in E. coli.

  2. CONSTRUCTION, EXPRESSION AND PURIFICATION OF RECOMBINANT PRE-MATURE PEPTIDE OF PLANTARICIN F FROM Lactobacillus plantarum S34 IN Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kusdianawati Kusdianawati

    2015-09-01

    Full Text Available Plantaricin is one of bacteriocins that have the potential to be used as food preservative. Plantaricin is safe for human consumption because it can be easily degraded by proteolytic enzymes. The objective of this study was to express and purify recombinant pre-mature peptide of plantaricin F from Lactobacillus plantarum S34 in Escherichia coli. Plantaricin gene-specific primer was used to obtain pln F structural gene amplicon from L. plantarum S34. This amplicon was cloned in pET32a vector and expressed in E. coli BL21 (DE3 pLysS. Pre-mature plantaricin F peptide was expressed as Histagged-fusion protein and separated by Co2+-chelating affinity chromatography. L. plantarum S34-derived pre-mature plantaricin F peptide fused with thioredoxin-(His6tag had successfully been expressed in E. coli BL21 (DE3 pLysS using pET32a as an expression vector. The fused recombinant pln F as pre-mature state expressed had a molecular mass of +24 kDa, meanwhile the fused recombinant that contained only the leader peptide of pln F appeared as +20 kDa based on SDS-PAGE separations. The optimal production of fused recombinant pln F as soluble fraction was obtained when culture condition was added with 0.5 mM of IPTG and incubated at 22°C for 5 hours (OD~1. Furthermore, the expression of fused recombinant pln F as its pre-mature peptide pointed out that the pln F’s leader peptide could be proteolytically cleaved by a system in heterologous cells. Overall, heterologous pln F production as pre-mature peptide fused with thioredoxin-(His6tag had been well established. From this research, we expect plantaricin F can be expressed and purified in E. coli.

  3. Hamiltonian purification

    Energy Technology Data Exchange (ETDEWEB)

    Orsucci, Davide [Scuola Normale Superiore, I-56126 Pisa (Italy); Burgarth, Daniel [Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom); Facchi, Paolo; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Nakazato, Hiromichi; Yuasa, Kazuya [Department of Physics, Waseda University, Tokyo 169-8555 (Japan); Giovannetti, Vittorio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy)

    2015-12-15

    The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.

  4. Optimized conditions for high-level solubilization and purification of ...

    African Journals Online (AJOL)

    Optimized conditions for high-level solubilization and purification of recombinant camel growth hormone in Escherichia coli. MAN Saqib, M Fatima, IN Awan, MI Shahzad, SKA Rizvi, M Mukhtar, A Khanum ...

  5. Functional Properties of Mouse Chitotriosidase Expressed in the Periplasmic Space of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Masahiro Kimura

    Full Text Available Chitotriosidase (Chit1 is an enzyme associated with various diseases, including Gaucher disease, chronic obstructive pulmonary disease, Alzheimer disease and cystic fibrosis. In this study, we first expressed mouse mature Chit1 fused with V5 and (His6 tags at the C-terminus (Chit1-V5-His in the cytoplasm of Escherichia coli and found that most of the expressed protein was insoluble. In contrast, Chit1 tagged with Protein A at the N-terminus and V5-His at the C-terminus, was expressed in the periplasmic space of E. coli as a soluble protein and successfully purified. We evaluated the chitinolytic properties of the recombinant enzyme using 4-nitrophenyl N,N'-diacetyl-β-D-chitobioside [4NP-chitobioside, 4NP-(GlcNAc2] and found that its activity was comparable to CHO cells-expressed Chit1-V5-His. Optimal conditions for the E. coli-produced Chit1 were pH ~5.0 at 50°C. Chit1 was stable after 1 h incubation at pH 5.0~11.0 on ice and its chitinolytic activity was lost at pH 2.0, although the affinity to chitin remained unchanged. Chit1 efficiently cleaved crystalline and colloidal chitin substrates as well as oligomers of N-acetyl-D-glucosamine (GlcNAc releasing primarily (GlcNAc2 fragments at pH 5.0. On the other hand, (GlcNAc3 was relatively resistant to digestion by Chit1. The degradation of 4NP-(GlcNAc2 and (GlcNAc3 was less evident at pH 7.0~8.0, while (GlcNAc2 production from colloidal chitin and (GlcNAc6 at these pH conditions remained strong at the neutral conditions. Our results indicate that Chit1 degrades chitin substrates under physiological conditions and suggest its important pathophysiological roles in vivo.

  6. Functional Properties of Mouse Chitotriosidase Expressed in the Periplasmic Space of Escherichia coli

    Science.gov (United States)

    Sekine, Kazutaka; Yoshikawa, Satoshi; Sato, Akira; Okawa, Kazuaki; Kashimura, Akinori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Yamanaka, Daisuke; Ohno, Naohito; Bauer, Peter O

    2016-01-01

    Chitotriosidase (Chit1) is an enzyme associated with various diseases, including Gaucher disease, chronic obstructive pulmonary disease, Alzheimer disease and cystic fibrosis. In this study, we first expressed mouse mature Chit1 fused with V5 and (His)6 tags at the C-terminus (Chit1-V5-His) in the cytoplasm of Escherichia coli and found that most of the expressed protein was insoluble. In contrast, Chit1 tagged with Protein A at the N-terminus and V5-His at the C-terminus, was expressed in the periplasmic space of E. coli as a soluble protein and successfully purified. We evaluated the chitinolytic properties of the recombinant enzyme using 4-nitrophenyl N,N’-diacetyl-β-D-chitobioside [4NP-chitobioside, 4NP-(GlcNAc)2] and found that its activity was comparable to CHO cells-expressed Chit1-V5-His. Optimal conditions for the E. coli-produced Chit1 were pH ~5.0 at 50°C. Chit1 was stable after 1 h incubation at pH 5.0~11.0 on ice and its chitinolytic activity was lost at pH 2.0, although the affinity to chitin remained unchanged. Chit1 efficiently cleaved crystalline and colloidal chitin substrates as well as oligomers of N-acetyl-D-glucosamine (GlcNAc) releasing primarily (GlcNAc)2 fragments at pH 5.0. On the other hand, (GlcNAc)3 was relatively resistant to digestion by Chit1. The degradation of 4NP-(GlcNAc)2 and (GlcNAc)3 was less evident at pH 7.0~8.0, while (GlcNAc)2 production from colloidal chitin and (GlcNAc)6 at these pH conditions remained strong at the neutral conditions. Our results indicate that Chit1 degrades chitin substrates under physiological conditions and suggest its important pathophysiological roles in vivo. PMID:27716783

  7. High yield expression and single-step purification of Toxoplasma gondii SAG1, GRA1, and GRA7 antigens in Escherichia coli

    DEFF Research Database (Denmark)

    Hiszczynska-Sawicka, E.; Brillowska-Dabrowska, A.; Dabrowski, Slawomir

    2003-01-01

    This report describes a simple, highly efficient and reproducible method for obtaining large quantities of highly pure recombinant Toxoplasma gondii antigens, which can be used for diagnostic application. The obtained T gondii SAG1, GRA1, and GRA7 antigens (as fusion proteins), expressed...... in Escherichia coli, contained polyhistidine tags at the N- and C-ends that allowed single-step isolation by metal-affinity chromatography on Ni2+-IDA-Sepharose columns. The immunoreactivity of the recombinant antigens was tested in an enzyme-linked immunosorbent assay (ELISA) format for potential application...

  8. [Study on no-fusion expression and purification of Glycine max dehydration-responsive element-binding protein (GmDREB1) expressed in E. coli].

    Science.gov (United States)

    Gong, Zhaolong; Zhuo, Qin; Wu, Jinghuan; Piao, Jianhua; Yang, Xiaoguang

    2013-05-01

    To obtain enough GmDREB1 protein comparable with native protein for further safety assessment of the protein. The GmDREB1 gene was cloned into no-fusion expression vector pBV220 and the recombinant vector pBV220-GmDREB1 was obtained. The constructed vector was transformed into expression host E. coli DH5a. The protein expression was optimized by improving the codon, induced expression conditions and selecting the appropriate vector. The protein was obtained by cation exchange chromatography and gel filtration chromatography and identified by N-terminal amino acid sequencing, western blotting and activity determination. The soluble protein was expressed efficiently in E. coli DH5a containing the optimized target gene by 42 degrees C induction for 3 hours and the purified protein consistent with the native protein was obtained through the chromatography. The results of this study illustrated that the GmDREB1 protein could be acquired through prokaryotic host expression which had comparable N-terminal amino acid sequences, immunogenicity and biological activities with those of native GmDREB1 protein.

  9. Extração, purificação e caracterização físico-química da proteína verde fluorescente recombinante (GFPuv expressa em Escherichia coli Extraction, purification and physical-chemical characterization of recombinant green fluorescent protein (GFPuv expressed in Escherichia coli cells

    Directory of Open Access Journals (Sweden)

    Eb Chiarini

    2003-12-01

    Full Text Available O aumento do uso da proteína verde fluorescente (GFPuv como ferramenta de pesquisas biotecnológicas requer um estudo mais cuidadoso das propriedades bioquímicas e físicas da molécula de GFPuv. Este trabalho teve como objetivo a aplicação de métodos físicos e químicos para o isolamento, a extração da GFPuv de células de Escherichia coli DH5-±, purificação da proteína, e o estudo da estabilidade desta em diferentes valores de pH. Células de E. coli expressando GFPuv foram submetidas a quatro ciclos sucessivos de congelamento e descongelamento intercalados por sonicação (CDS, para promover a permeação seletiva da GFPuv. Os permeados foram submetidos à extração por partição em três fases (TPP e posterior purificação por eluição da proteína em coluna cromatográfica de interação hidrofóbica (HIC.Obteve-se rendimento semelhante em GFPuv no 1º ciclo de permeação seletiva (CDS e por extração (TPP associada à purificação (HIC para os quais impurezas não foram visualizadas por eletroforese. As estruturas moleculares da GFPuv extraída e purificada mostraram-se inalteradas em valores de pH entre 6,0 e 9,8, e foram confirmadas nos espectros de emissão e de excitação.The recombinant green fluorescent protein (GFPuv has been used as a marker in several research fields. The purpose of the present work was to evaluate the influence of the selective physical permeation procedure applied to the cells of Escherichia coli for the extraction of GFPuv in relation to the chemical procedures of extraction and purification. Transformed cells (0.92-1.44 mg/mL of E. coli DH5-a expressing GFPuv were submitted to four cycles (1º, 2º, 3º, 4º of freezing (-20 ºC/ 0.83 ºC/ min/thawing interlaid by sonication (3 pulses/6 s/25 vibrations. The intracellular permeate with GFPuv in buffer solution (Tris-HCl 25 mM pH 8.0 + b-mercaptoethanol (1 mM + PMSF (0.1 mM was submitted to the three-phase partitioning (TPP method and

  10. Purification and subunit structure of a putative K sup + -channel protein identified by its binding properties for dendrotoxin I

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, H.; Lazdunski, M. (Centre National de la Recherche Scientifique, Nice (France))

    1988-07-01

    The binding protein for the K{sup +}-channel toxin dendrotoxin I was purified from a detergent extract of rat brain membranes. The purification procedure utilized chromatography on DEAE-Trisacryl, affinity chromatography on a dendrotoxin-I-Aca 22 column, and wheat germ agglutinin-Affigel 10 with a final 3,800- to 4,600-fold enrichment and a recovery of 8-16%. The high affinity (K{sub d}, 40-100 pM) and specificity of the binding site are retained throughout the purification procedure. Analysis of the purified material on silver-stained NaDodSO{sub 4}/polyacrylamide gel revealed three bands of M{sub r} 76,000-80,000, 38,000 and 35,000. Interestingly, the binding site for {sup 125}I-labeled mast cell degranulating peptide, another putative K{sup +}-channel ligand from bee venom, which induces long-term potentiation in hippocampus, seems to reside on the same protein complex, as both binding sites copurify through the entire purification protocol.

  11. Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin I

    International Nuclear Information System (INIS)

    Rehm, H.; Lazdunski, M.

    1988-01-01

    The binding protein for the K + -channel toxin dendrotoxin I was purified from a detergent extract of rat brain membranes. The purification procedure utilized chromatography on DEAE-Trisacryl, affinity chromatography on a dendrotoxin-I-Aca 22 column, and wheat germ agglutinin-Affigel 10 with a final 3,800- to 4,600-fold enrichment and a recovery of 8-16%. The high affinity (K d , 40-100 pM) and specificity of the binding site are retained throughout the purification procedure. Analysis of the purified material on silver-stained NaDodSO 4 /polyacrylamide gel revealed three bands of M r 76,000-80,000, 38,000 and 35,000. Interestingly, the binding site for 125 I-labeled mast cell degranulating peptide, another putative K + -channel ligand from bee venom, which induces long-term potentiation in hippocampus, seems to reside on the same protein complex, as both binding sites copurify through the entire purification protocol

  12. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies.

    Science.gov (United States)

    Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko

    2014-02-01

    T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.

  13. Expression and purification of a novel therapeutic single-chain variable fragment antibody against BNP from inclusion bodies of Escherichia coli.

    Science.gov (United States)

    Bu, Dawei; Zhou, Yuwei; Tang, Jian; Jing, Fang; Zhang, Wei

    2013-12-01

    Abnormal brain natriuretic peptide (BNP) secretion is regarded as the dominating mechanism of cerebral salt wasting syndrome (CSW), which results from a renal loss of sodium and water during intracranial disease leading to hyponatremia. Scale preparation of therapeutic single-chain variable fragment (scFv) that can neutralize elevated circulating BNP may have potential value for clinical use. In this report, we used a recently isolated humanized anti-BNP scFv fragment (3C1) as model antibody (Ab) to evaluate the potential of scale production of this therapeutic protein. The truncated gene encoding for scFv fragment cloned in pET22b (+) was mainly overexpressed as inclusion bodies in Escherichia coli (E. coli) Rosetta (DE3) pLysS cells. The insoluble fragment was solubilized and purified by Ni-NTA agarose resin under denaturation conditions, and recovered via an effective refolding buffer containing 50 mM Tris-HCl, pH 8.0, 0.15 M NaCl, 1 mM EDTA, 0.5 M arginine, 2 mM GSH, 1 mM GSSG, and 5% glycerol. The refolded scFv fragment was concentrated by PEG20000, and dialyzed in PBS (containing 5% glycerol, pH 7.4). The final yield was approximately 10.2 mg active scFv fragment per liter of culture (3.4 g wet weight cells). The scFv fragment was more than 95% pure assessed by SDS-PAGE assay. Recombinant scFv fragment with His tag displayed its immunoreactivity with anti-His tag Ab by western blotting. ELISA showed the scFv fragment specifically bound to BNP, and it displayed similar activity as the traditional anti-BNP monoclonal Ab (mAb). Thus, the current strategy allows convenient small-scale production of this therapeutic protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Functional Properties of the Catalytic Domain of Mouse Acidic Mammalian Chitinase Expressed in Escherichia coli

    Science.gov (United States)

    Kashimura, Akinori; Kimura, Masahiro; Okawa, Kazuaki; Suzuki, Hirotaka; Ukita, Atsushi; Wakita, Satoshi; Okazaki, Kana; Ohno, Misa; Bauer, Peter O.; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka

    2015-01-01

    Mouse acidic mammalian chitinase (AMCase) plays important physiological roles in defense and nutrition. AMCase is composed of an N-terminal catalytic domain (CatD) and a C-terminal chitin-binding domain (CBD). We expressed CatD of mouse AMCase as a recombinant fusion protein with Protein A and V5-His in Escherichia coli (Protein A-CatD-V5-His), evaluated its functional properties and compared them to the full-length AMCase (Protein A-AMCase-V5-His). Under our experimental conditions, the chitinolytic activity of both proteins against 4-nitrophenyl N,N'-diacetyl-β-d-chitobioside was equivalent with regard to their specific enzymatic activities, optimal pH and temperature as well as to the pH and temperature stability. CatD bound to chitin beads and cleaved the N-acetylglucosamine hexamer, colloidal and crystalline chitin as well as the shrimp shell, and released primarily N,N'-diacetylchitobiose fragments at pH 2.0. These results indicate that the primary structure of CatD is sufficient to form a proper tertiary structure required for chitinolytic activity, recognize chitin substrates and degrade them in the absence of a CBD. Our recombinant proteins can be used for further studies evaluating pathophysiological roles of AMCase in different diseases. PMID:25689423

  15. Functional Properties of the Catalytic Domain of Mouse Acidic Mammalian Chitinase Expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Akinori Kashimura

    2015-02-01

    Full Text Available Mouse acidic mammalian chitinase (AMCase plays important physiological roles in defense and nutrition. AMCase is composed of an N-terminal catalytic domain (CatD and a C-terminal chitin-binding domain (CBD. We expressed CatD of mouse AMCase as a recombinant fusion protein with Protein A and V5-His in Escherichia coli (Protein A-CatD-V5-His, evaluated its functional properties and compared them to the full-length AMCase (Protein A-AMCase-V5-His. Under our experimental conditions, the chitinolytic activity of both proteins against 4-nitrophenyl N,N'-diacetyl-β-d-chitobioside was equivalent with regard to their specific enzymatic activities, optimal pH and temperature as well as to the pH and temperature stability. CatD bound to chitin beads and cleaved the N-acetylglucosamine hexamer, colloidal and crystalline chitin as well as the shrimp shell, and released primarily N,N'-diacetylchitobiose fragments at pH 2.0. These results indicate that the primary structure of CatD is sufficient to form a proper tertiary structure required for chitinolytic activity, recognize chitin substrates and degrade them in the absence of a CBD. Our recombinant proteins can be used for further studies evaluating pathophysiological roles of AMCase in different diseases.

  16. Expression and structural and functional properties of human ferritin L-chain from Escherichia coli

    International Nuclear Information System (INIS)

    Levi, S.; Salfeld, J.; Franceschinelli, F.; Cozzi, A.; Dorner, M.H.; Arosio, P.

    1989-01-01

    The human ferritin L-chain cDNA was cloned into a vector for overproduction in Escherichia coli, under the regulation of a λ promoter. The plasmid obtained contains the full L-chain coding region modified at the first two codons. It is able to direct the synthesis of the L-chain which can constitute up to 15% of the total soluble protein of bacterial extract. The L-chains assemble to form a ferritin homopolymer with electrophoretic mobility, molecular weight, thermal stability, spectroscopic, and immunological properties analogous to natural ferritin from human liver (95% L-chain). This recombinant L-ferritin is able to incorporate and retain iron in solution at physiological pH values. At variance with the H-ferritin, the L form does not uptake iron at acidic pH values and does not show detectable ferroxidase activity. It is concluded that ferritin L-chain lacks the ferroxidase site present in the H-chain and that the two chains may have specialized functions in intracellular iron metabolism

  17. Functional properties of the catalytic domain of mouse acidic mammalian chitinase expressed in Escherichia coli.

    Science.gov (United States)

    Kashimura, Akinori; Kimura, Masahiro; Okawa, Kazuaki; Suzuki, Hirotaka; Ukita, Atsushi; Wakita, Satoshi; Okazaki, Kana; Ohno, Misa; Bauer, Peter O; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka

    2015-02-13

    Mouse acidic mammalian chitinase (AMCase) plays important physiological roles in defense and nutrition. AMCase is composed of an N-terminal catalytic domain (CatD) and a C-terminal chitin-binding domain (CBD). We expressed CatD of mouse AMCase as a recombinant fusion protein with Protein A and V5-His in Escherichia coli (Protein A-CatD-V5-His), evaluated its functional properties and compared them to the full-length AMCase (Protein A-AMCase-V5-His). Under our experimental conditions, the chitinolytic activity of both proteins against 4-nitrophenyl N,N'-diacetyl-β-D-chitobioside was equivalent with regard to their specific enzymatic activities, optimal pH and temperature as well as to the pH and temperature stability. CatD bound to chitin beads and cleaved the N-acetylglucosamine hexamer, colloidal and crystalline chitin as well as the shrimp shell, and released primarily N,N'-diacetylchitobiose fragments at pH 2.0. These results indicate that the primary structure of CatD is sufficient to form a proper tertiary structure required for chitinolytic activity, recognize chitin substrates and degrade them in the absence of a CBD. Our recombinant proteins can be used for further studies evaluating pathophysiological roles of AMCase in different diseases.

  18. Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Yacoby, I.; Tegler, L. T.; Pochekailov, S.; Zhang, S.; King, P. W.

    2012-04-01

    Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus, led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.

  19. Escherichia coli expression and purification of four antimicrobial peptides fused to a family 3 carbohydrate-binding module (CBM) from Clostridium thermocellum.

    Science.gov (United States)

    Guerreiro, Catarina I P D; Fontes, Carlos M G A; Gama, Miguel; Domingues, Lucília

    2008-05-01

    Antimicrobial peptides (AMPs) are molecules that act in a wide range of physiological defensive mechanisms developed to counteract bacteria, fungi, parasites and viruses. Several hundreds of AMPs have been identified and characterized. These molecules are presently gaining increasing importance, as a consequence of their remarkable resistance to microorganism adaptation. Carbohydrate-binding modules (CBMs) are non-catalytic domains that anchor glycoside hydrolases into complex carbohydrates. Clostridium thermocellum produces a multi-enzyme complex of cellulases and hemicellulases, termed the cellulosome, which is organized by the scaffoldin protein CipA. Binding of the cellulosome to the plant cell wall results from the action of CipA family 3 CBM (CBM3), which presents a high affinity for crystalline cellulose. Here CipA family 3 CBM was fused to four different AMPs using recombinant DNA technology and the fusion recombinant proteins were expressed at high levels in Escherichia coli cells. CBM3 does not present antibacterial activity and does not bind to the bacterial surface. However, the four recombinant proteins retained the ability to bind cellulose, suggesting that CBM3 is a good candidate polypeptide to direct the binding of AMPs into cellulosic supports. A comprehensive characterization of the antimicrobial activity of the recombinant fusion proteins is currently under evaluation.

  20. Pinus taeda phenylpropenal double-bond reductase: purification, cDNA cloning, heterologous expression in Escherichia coli, and subcellular localization in P. taeda.

    Science.gov (United States)

    Kasahara, Hiroyuki; Jiao, Ying; Bedgar, Diana L; Kim, Sung-Jin; Patten, Ann M; Xia, Zhi-Qiang; Davin, Laurence B; Lewis, Norman G

    2006-08-01

    A phenylpropenal double-bond reductase (PPDBR) was obtained from cell suspension cultures of loblolly pine (Pinus taeda L.). Following trypsin digestion and amino acid sequencing, the cDNA encoding this protein was subsequently cloned, with the functional recombinant protein expressed in Escherichia coli and characterized. PPDBR readily converted both dehydrodiconiferyl and coniferyl aldehydes into dihydrodehydrodiconiferyl and dihydroconiferyl aldehydes, when NADPH was added as cofactor. However, it was unable to reduce directly either the double bond of dehydrodiconiferyl or coniferyl alcohols in the presence of NADPH. During this reductive step, the corresponding 4-proR hydrogen was abstracted from [4R-3H]-NADPH during hydride transfer. This is thus the first report of a double-bond reductase involved in phenylpropanoid metabolism, and which is presumed to be involved in plant defense. In situ mRNA hybridization indicated that the PPDBR transcripts in P. taeda stem sections were localized to the vascular cambium, as well as to radial and axial parenchyma cell types. Additionally, using P. taeda cell suspension culture crude protein extracts, dehydrodiconiferyl and coniferyl alcohols could be dehydrogenated to afford dehydrodiconiferyl and coniferyl aldehydes. Furthermore, these same extracts were able to convert dihydrodehydrodiconiferyl and dihydroconiferyl aldehydes into the corresponding alcohols. Taken together, these results indicate that in the crude extracts dehydrodiconiferyl and coniferyl alcohols can be converted to dihydrodehydrodiconiferyl and dihydroconiferyl alcohols through a three-step process, i.e. by initial phenylpropenol oxidation, then sequential PPDBR and phenylpropanal reductions, respectively.

  1. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of CofB, the minor pilin subunit of CFA/III from human enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Kawahara, Kazuki; Oki, Hiroya; Fukakusa, Shunsuke; Maruno, Takahiro; Kobayashi, Yuji; Motooka, Daisuke; Taniguchi, Tooru; Honda, Takeshi; Iida, Tetsuya; Nakamura, Shota; Ohkubo, Tadayasu

    2015-06-01

    Colonization factor antigen III (CFA/III) is one of the virulence factors of human enterotoxigenic Escherichia coli (ETEC) that forms the long, thin, proteinaceous fibres of type IV pili through assembly of its major and minor subunits CofA and CofB, respectively. The crystal structure of CofA has recently been reported; however, the lack of structural information for CofB, the largest among the known type IV pilin subunits, hampers a comprehensive understanding of CFA/III pili. In this study, constructs of wild-type CofB with an N-terminal truncation and the corresponding SeMet derivative were cloned, expressed, purified and crystallized. The crystals belonged to the rhombohedral space group R32, with unit-cell parameters a = b = 103.97, c = 364.57 Å for the wild-type construct and a = b = 103.47, c = 362.08 Å for the SeMet-derivatized form. Although the diffraction quality of these crystals was initially very poor, dehydration of the crystals substantially improved the resolution limit from ∼ 4.0 to ∼ 2.0 Å. The initial phase was solved by the single-wavelength anomalous dispersion (SAD) method using a dehydrated SeMet CofB crystal, which resulted in an interpretable electron-density map.

  2. Expression, purification, and characterization of a dentin phosphoprotein produced by Escherichia coli, and its odontoblastic differentiation effects on human dental pulp cells.

    Science.gov (United States)

    Yun, Ye-Rang; Jeon, Eunyi; Lee, Sujin; Kang, Wonmo; Kim, Sang-Gi; Kim, Hae-Won; Suh, Chang Kook; Jang, Jun-Hyeog

    2012-08-01

    To investigate the functions of recombinant human dentin phosphoprotein (rhDPP), we examined cell adhesion, viability and the odontoblastic differentiation activity of human dental pulp cells (hDPCs). Firstly, rhDPP was constructed using pBAD-HisA plasmid in Escherichia coli. Cell adhesion and viability of hDPCs by rhDPP was examined using a crystal violet assay and a MTT assay, ALP, mineralization activity and odontoblastic differentiation-related mRNA levels of hDPCs were measured to elucidate the odontoblastic differentiation effect of rhDPP on hDPCs. Initially, rhDPP significantly and dose-dependently increased hDPCs adhesion versus the untreated control (p < 0.05). Cell viability was also significantly increased by rhDPP at 5 days (p < 0.001). Furthermore, the odontoblastic differentiation effect of rhDPP was verified by measuring ALP activity, mineralization activity and the mRNA levels of odontoblastic differentiation markers. Taken together, rhDPP is expected to play an important role on hDPCs, thereby suggesting its potential use for tooth repair and regeneration.

  3. Uranium hexafluoride purification

    International Nuclear Information System (INIS)

    Araujo, Eneas F. de

    1986-01-01

    Uranium hexafluoride might contain a large amount of impurities after manufacturing or handling. Three usual methods of purification of uranium hexafluoride were presented: selective sorption, sublimation, and distillation. Since uranium hexafluoride usually is contaminated with hydrogen fluoride, a theoretical study of the phase equilibrium properties was performed for the binary system UF 6 -HF. A large deviation from the ideal solution behaviour was observed. A purification unity based on a constant reflux batch distillation process was developed. A procedure was established in order to design the re boiler, condenser and packed columns for the UF 6 -HF mixture separation. A bench scale facility for fractional distillation of uranium hexafluoride was described. Basic operations for that facility and results extracted from several batches were discussed. (author)

  4. A simple procedure for the purification of active fractions in aqueous extracts of plants with allelopathic properties

    Directory of Open Access Journals (Sweden)

    Fabian Borghetti

    2013-03-01

    Full Text Available Most studies conducted to test the allelopathic activity of plant parts have made use of water as solvent. However, the presence of polar, water-soluble substances, such as proteins and carbohydrates, tends to hamper the purification of active compounds. In this study, we present a simple purification procedure that separates the active fraction of the extract from the undesirable substances, thus facilitating the search for active molecules through standard chromatographic methods. Aqueous leaf extracts of three Cerrado species (Caryocar brasiliense, Qualea parviflora and Eugenia dysenterica were prepared at 5% concentration (w/v and stored at 4ºC (crude extracts. After 24 h, these solutions were filtered and freeze-dried. The powder obtained was dissolved in methanol, filtered again, evaporated and dissolved in water for bioassays (purified extracts. For the bioassays, seedlings of Sesamum indicum were grown for five days in aqueous solutions prepared from crude and purified extracts at concentrations ranging from 0.1% to 1.0% (w/v. Seedling growth in distilled water was set as a control. In comparison with the control, we found that test solutions prepared from both crude and purified extracts significantly inhibited sesame seedling growth. However, solutions prepared from purified extracts were two to ten times more inhibitory to seedling growth than were those prepared from crude extracts. The inhibition of root growth ranged from 35% to 77%, depending on the plant species, at a concentration as low as 0.1%. Roots were more affected than were shoots. The effects of purified extracts on seedling morphology were similar to those observed when crude extracts were employed, indicating that the procedure of purification of crude extracts did not interfere with the mode of action of the active substances

  5. Purification of trioctylphosphine oxide by liquid extracting

    International Nuclear Information System (INIS)

    Meddour, Laaldja

    1996-04-01

    Many methods of TOPO synthesis are known in the litterature. Neverthless, the purification methods still unknown or quite known. In this work, we have proposed to develop a new method of purification and we have used the extraction properties of TOPO. This method consist to extracting the molybdene with TOPO in acid medium

  6. Expression and purification of recombinant Shiga toxin 2B from ...

    African Journals Online (AJOL)

    sunny t

    (SDS-PAGE) and StxB2 yield was 450 µg ml-1 confirmed by Bradford assay. Recombinant Stx2B protein was produced in highly pure yield using HaloTag technology. Key words: Escherichia coli O157:H7, StxB gene, expression, HaloTag technology, purification. INTRODUCTION. Enterohemorrhagic Escherichia coli ...

  7. Purification of recombinant C-terminus polyhistidine tagged human ...

    African Journals Online (AJOL)

    Dell

    2012-05-03

    . ... E. coli TOP 10F' and P. pastoris KM71H (arg4 aox1::ARG4) strains. E. coli TOP 10F' and P. pastoris KM71H ..... I-guided inquiry-purification and characterization of a fusion protein: Histidine tag, malate dehydrogenase, and ...

  8. Expression and purification of an FGF9 fusion protein in E. coli, and the effects of the FGF9 subfamily on human hepatocellular carcinoma cell proliferation and migration.

    Science.gov (United States)

    Wang, Shen; Lin, Haipeng; Zhao, Tiantian; Huang, Sisi; Fernig, David G; Xu, Nuo; Wu, Fenfang; Zhou, Mi; Jiang, Chao; Tian, Haishan

    2017-11-01

    Fibroblast growth factor (FGF) 9 has oncogenic activity and plays an important role in the development of ovarian, lung, prostate, and gastric cancers. In the present study, with the aim of reducing the cost of utilizing growth factors in cancer research, a simple and efficient method for the preparation of recombinant human (rh)FGF9 in Escherichia coli was established. The rhFGF9 fusion protein (6 × His-TEV-rhFGF9) and the native protein released by tobacco etch virus (TEV) protease were obtained using a Ni-NTA system, with > 95% purity. Both purified forms of rhFGF9, with and without fusion tags, significantly stimulated the proliferation of NIH3T3 cells. The FGF9 subfamily, including FGF9, FGF16, and FGF20, in addition to rhFGF16, rhFGF9, and rhFGF20, were shown to stimulate the proliferation and migration of HuH7 human hepatocellular carcinoma (HCC) cells. Mechanistic studies revealed that the stimulation of HuH7 cell proliferation and migration with rhFGF9 and rhFGF20 were associated with the activation of the extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) pathways and matrix metalloproteinase-26 (MMP26). Inhibition of the ERK and NF-κB pathways blocked cell migration, and NF-κB was demonstrated to be regulated by ERK. Therefore, the present study demonstrates a simple method for the preparation of biologically active rhFGF9 protein. Furthermore, the results indicate that exogenous rhFGF9- and rhFGF20-activated ERK/NF-κB signal transduction pathways play important roles in the regulation of HCC cell proliferation and migration, and this discovery helps to find the potential for new solutions of the treatment of liver cancer.

  9. Properties of the periplasmic ModA molybdate-binding protein of Escherichia coli.

    Science.gov (United States)

    Rech, S; Wolin, C; Gunsalus, R P

    1996-02-02

    The modABCD operon, located at 17 min on the Escherichia coli chromosome, encodes the protein components of a high affinity molybdate uptake system. Sequence analysis of the modA gene (GenBank L34009) predicts that it encodes a periplasmic binding protein based on the presence of a leader-like sequence at its N terminus. To examine the properties of the ModA protein, the modA structural gene was overexpressed, and its product was purified. The ModA protein was localized to the periplasmic space of the cell, and it was released following a gentle osmotic shock. The N-terminal sequence of ModA confirmed that a leader region of 24 amino acids was removed upon export from the cell. The apparent size of ModA is 31.6 kDa as determined by gel sieve chromatography, whereas it is 22.5 kDa when examined by SDS-polyacrylamide gel electrophoresis. A ligand-dependent protein mobility shift assay was devised using a native polyacrylamide gel electrophoresis protocol to examine binding of molybdate and other anions to the ModA periplasmic protein. Whereas molybdate and tungstate were bound with high affinity (approximately 5 microM), sulfate, chromate, selenate, phosphate, and chlorate did not bind even when tested at 2 mM. A UV spectral assay revealed apparent Kd values of binding for molybdate and tungstate of 3 and 7 microM, respectively. Strains defective in the modA gene were unable to transport molybdate unless high levels of the anion were supplied in the medium. Therefore the modA gene product is essential for high affinity molybdate uptake by the cell. Tungstate interference of molybdate acquisition by the cell is apparently due in part to the high affinity of the ModA protein for this anion.

  10. Shiga toxin-producing Escherichia coli isolated from chicken meat in Iran: serogroups, virulence factors, and antimicrobial resistance properties.

    Science.gov (United States)

    Momtaz, Hassan; Jamshidi, Alireza

    2013-05-01

    The aim of the current study was to determine the virulence factors, serogroups, and antibiotic resistance properties of Shiga toxin-producing Escherichia coli isolated from chicken meat samples. A total of 422 chicken meat samples were collected from 5 townships of Iran. Specimens were immediately transferred to the laboratory in a cooler with an ice pack. Samples were cultured, and the positive culture samples were analyzed by PCR assays. Finally, the antimicrobial susceptibility test was performed using the disk diffusion method in Mueller-Hinton agar. According to the results, out of 422 samples, 146 (34.59%) were confirmed to be E. coli positive and among E. coli-positive samples, 51 (34.93%) and 31 (21.23%) were from attaching and effacing E. coli (AEEC) and enterohemorrhagic E. coli (EHEC) subgroups, respectively. All of the EHEC-positive samples had all stx1, eaeA, and ehly virulence genes, whereas only 5 (9.80%) of AEEC subgroup had all stx1, stx2, and eaeA genes. As the data revealed, O157 was the most prevalent and O111 was the least prevalent strains in the Shiga toxin-producing E. coli (STEC) population. Among STEC strains, sulI and blaSHV had the highest and lowest incidence rate, respectively. There was a high resistance to tetracycline (76.82%), followed by chloramphenicol (73.17%) and nitrofurantoin (63.41%), but there was low resistance to cephalotine (7.31%) antibiotics in isolated strains. Results shows that the PCR technique has a high performance for detection of serogroups, virulence genes, and antibiotic resistance genes in STEC strains. This study is the first prevalence report of detection of virulence genes, serogroups, and antibiotic resistance properties of STEC strains isolated from chicken meat samples in Iran. Based on the results, chicken meat is one of the main sources of STEC strains and its virulence factors in Iran, so an accurate meat inspection would reduce disease outbreaks.

  11. Cloning and properties of the Salmonella typhimurium tricarboxylate transport operon in Escherichia coli

    International Nuclear Information System (INIS)

    Widenhorn, K.A.; Boos, W.; Somers, J.M.; Kay, W.W.

    1988-01-01

    The tricarboxylate transport operon (tctI) was cloned in Escherichia coli as a 12-kilobase (kb) fragment from an EcoRI library of the Salmonella typhimurium chromosome in λgtWES. It was further subcloned as a 12-kb fragment into pACYC184 and as an 8-kb fragment into pBR322. By insertional mutagenesis mediated by λTn5, restriction mapping, and phenotypic testing, the tctI operon was localized to a 4.5-kb region. The tctC gene which encodes a periplasmic binding protein (C-protein) was located near the center of the insert. E. coli/tctI clones on either multicopy or single-copy vectors grew on the same tricarboxylates as S. typhimurium, although unusually long growth lags were observed. E. coli/tctI clones exhibited similar [ 14 C] fluorocitrate transport kinetics to those of S. typhimurium, whereas E. coli alone was virtually impermeable to [ 14 C] fluorocitrate. The periplasmic C proteins (C1 and C2 isoelectric forms) were produced in prodigious quantities from the cloned strains. Motile E. coli/tctI clones were not chemotactic toward citrate, whereas tctI deletion mutants of S. typhimurium were. Taken together, these observations indicate that tctI is not an operon involved in chemotaxis

  12. Cloning and properties of the Salmonella typhimurium tricarboxylate transport operon in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Widenhorn, K.A.; Boos, W.; Somers, J.M.; Kay, W.W.

    1988-02-01

    The tricarboxylate transport operon (tctI) was cloned in Escherichia coli as a 12-kilobase (kb) fragment from an EcoRI library of the Salmonella typhimurium chromosome in lambdagtWES. It was further subcloned as a 12-kb fragment into pACYC184 and as an 8-kb fragment into pBR322. By insertional mutagenesis mediated by lambdaTn5, restriction mapping, and phenotypic testing, the tctI operon was localized to a 4.5-kb region. The tctC gene which encodes a periplasmic binding protein (C-protein) was located near the center of the insert. E. coli/tctI clones on either multicopy or single-copy vectors grew on the same tricarboxylates as S. typhimurium, although unusually long growth lags were observed. E. coli/tctI clones exhibited similar (/sup 14/C) fluorocitrate transport kinetics to those of S. typhimurium, whereas E. coli alone was virtually impermeable to (/sup 14/C) fluorocitrate. The periplasmic C proteins (C1 and C2 isoelectric forms) were produced in prodigious quantities from the cloned strains. Motile E. coli/tctI clones were not chemotactic toward citrate, whereas tctI deletion mutants of S. typhimurium were. Taken together, these observations indicate that tctI is not an operon involved in chemotaxis.

  13. Effects of administration of four different doses of Escherichia coli phytase on femur properties of 16-week-old turkeys.

    Science.gov (United States)

    Tatara, Marcin R; Krupski, Witold; Kozłowski, Krzysztof; Drażbo, Aleksandra; Jankowski, Jan

    2015-03-18

    The enzyme phytase is able to initiate the release of phosphates from phytic acid, making it available for absorption within gastrointestinal tract and following utilization. The aim of the study was to determine effects of Escherichia coli phytase administration on morphological, densitometric and mechanical properties of femur in 16-week-old turkeys. One-day-old BUT Big-6 males were assigned to six weight-matched groups. Turkeys receiving diet with standard phosphorus (P) and calcium (Ca) content belonged to the positive control group (Group I). Negative control group (Group II) consisted of birds fed diet with lowered P and Ca content. Turkeys belonging to the remaining groups have received the same diet as group II but enriched with graded levels of Escherichia coli phytase: 125 (Group III), 250 (Group IV), 500 (Group V) and 1000 (Group VI) FTU/kg. At the age of 112 days of life, the final body weights were determined and the turkeys were sacrificed to obtain right femur for analyses. Geometric and densitometric properties of femur were determined using quantitative computed tomography (QCT) technique, while mechanical evaluation was performed in three-point bending test. Phytase administration increased cross-sectional area, second moment of inertia, mean relative wall thickness, cortical bone mineral density and maximum elastic strength decreasing cortical bone area of femur (P properties of femur were observed in turkeys receiving 125 and 250 FTU/kg of the diet. Phytase administration at the dosages of 500 and 1000 FTU/kg of the diet improved the final body weight in turkeys. The results obtained in this study indicate a possible practical application of Escherichia coli phytase in turkey feeding to improve skeletal system properties and function.

  14. 130 kDa phosphatase from the liver of labeo rohita: isolation: purification and some kinetic properties

    International Nuclear Information System (INIS)

    Siddiqua, A.; Sherazi, M.; Shah, A.H.; Khan, A.R.; Khan, H.U.

    2009-01-01

    An isoenzyme of high molecular weight acid phosphatase (HM-ACP) from the live of fish rohu (Labeo Rohita) was isolated and purified to homogeneity. The enzyme had specific activity of 14.96 U/mg and a recovery of about 4%. The purification procedure included ammonium sulphate precipitation and series of chromatographic separations on SP-Sephadex C-50, CM-Cellulose and Sephacryl HR-200 columns. Nealry 500-folds purification was achieved. The molecular weight was estimated to be 120-130 kDa by polyacrylamide gel electrophoresis (PAGE) of native enzyme and 130 kDa by gel filtration on calibrated Sephadex G-100 column. sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) under reduced and non-reduced condition showed a band corresponding to 66 kDa confirming the dimeric nature of enzyme. para nitrophenyl phosphate and flavin mononucleotide were hydrolyzed effectively by the enzyme and found to be good substrates. Optimum temperature for the enzyme was 50 degree C and temperature stability was 0 degree-50 degree C. Similarly optimum ph for the enzyme was 5.4 and ph stability was 4.8-6.0. The K/sub m/ for the p-nitrophenyl phosphate was estimated to be 0.15 mM. The enzyme was competitively inhibited by the phosphate, vanadate, molybdate, tartrate, fluoride and pyridoxal-5-PO/sub 4/ while pyridoxamine-5-PO/sub 4/ showed poor inhibition. Metal ions such as Ag/sup +/, Cu/sup ++/ Zn/sup ++/ showed strong inhibition on the enzyme activity while other divalent ions like Mg/sup ++/, Mn/sup ++/ and Co/sup ++/ were found to be poor inhibitors. Modifiers like EDTA, methanol, ethanol, acetone and glycerol had no effect on the enzyme's activity. (author)

  15. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II

    Energy Technology Data Exchange (ETDEWEB)

    Tykvart, J.; Sacha, P.; Barinka, C.; Knedlik, T.; Starkova, J.; Lubkowski, J.; Konvalinka, J. (Gilead); (NCI); (Czech Academy)

    2012-02-07

    Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo. We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.

  16. Nanomechanical Water Purification Device, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Seldon Laboratories, LLC, proposes a lightweight, low-pressure water purification device that harnesses the unique properties of carbon nanotubes and will operate...

  17. Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress

    NARCIS (Netherlands)

    Mika, Jacek T.; van den Bogaart, Geert; Veenhoff, Liesbeth; Krasnikov, Victor; Poolman, Bert

    We determined the diffusion coefficients (D) of (macro)molecules of different sizes (from ~0.5 to 600 kDa) in the cytoplasm of live Escherichia coli cells under normal osmotic conditions and osmotic upshift. D values decreased with increasing molecular weight of the molecules. Upon osmotic upshift,

  18. Properties of putrescine uptake by PotFGHI and PuuP and their physiological significance in Escherichia coli.

    Science.gov (United States)

    Terui, Yusuke; Saroj, Sunil D; Sakamoto, Akihiko; Yoshida, Taketo; Higashi, Kyohei; Kurihara, Shin; Suzuki, Hideyuki; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2014-03-01

    Properties of putrescine uptake by PotFGHI and PuuP and their physiological significance were studied using a polyamine biosynthesis and uptake deficient Escherichia coli KK3131 transformed with pACYC184 containing potFGHI or puuP. Putrescine uptake activity of E. coli KK3131 transformed with pACYC184-PotFGHI was higher than that of E. coli 3131 transformed with pACYC-PuuP when cells were cultured in the absence of putrescine. Putrescine uptake by PotFGHI was both ATP and membrane potential dependent, while that by PuuP was membrane potential dependent. Feedback inhibition by polyamines occurred at the PotFGHI uptake system but not at the PuuP uptake system. Expression of PuuP was reduced in the presence of PuuR, a negative regulator for PuuP, and expression of PuuR was positively regulated by glucose, which reduces the level of cAMP. The complex of cAMP and CRP (cAMP receptor protein) inhibited the expression of PuuR in the absence of glucose. Thus, the growth rate of E. coli KK3131 in the presence of both 0.4% (22.2 mM) glucose and 10 mM putrescine was in the order of cells transformed with pACYC-PotFGHI > pACYC-PuuP > pACYC-PuuP + PuuR, which was parallel with the polyamine content in cells. The results indicate that PotFGHI is necessary for rapid cell growth in the presence of glucose as an energy source. When glucose in medium was depleted, however, PuuP was absolutely necessary for cell growth in the presence of putrescine, because accumulation of putrescine to a high level by PuuP was necessary for utilization of putrescine as an energy source.

  19. Purification and Physico-Chemical Properties of Milk Clotting Enzyme Produced by Mucor Lamprosporus Comparable with Calf Rennet

    International Nuclear Information System (INIS)

    Moussa, L.A.; El-Fouly, M.Z.; El-Kabbany, H.; Kamel, Z.M.; Moubasher, M.H.

    1999-01-01

    Fractional precipitation of the crude enzyme produced by Mucor Lamprosporus fungus using 70% ammonium sulfate gave the highest MCA at 40 degree. Further purification of the partially purified enzyme was achieved by using Sephadex G-100 and rechromatographed on DEAE Sephadex A-50 and gave 22.5 fold then the crude enzyme with 301% enzyme recovery. Addition of NaCl to the skim milk caused pronounced decline in MCA of the enzyme while addition of 160 ppm of NaCl increased the MCA from 26.6 su/ml to 200 su/ml. The optimum temperature of the skin milk which induced the maximum activity of the purified enzyme in skim milk was found to be 40 degree while preheating the enzyme at 50 degree for 10 min caused a complete inhibition. Mild acidic condition did not affect the activity of the purified enzyme which remained almost stable till pH 6.0 while at pH 7.0 or more, the enzyme completely lost its clotting activity. The present data also showed that Mucor Lamprosporus rennin like enzyme exhibited higher activity than calf rennet

  20. Vegetables and Restaurant Salads as a Reservoir for Shiga Toxigenic Escherichia coli: Distribution of Virulence Factors, O-Serogroups, and Antibiotic Resistance Properties.

    Science.gov (United States)

    Shakerian, Amir; Rahimi, Ebrahim; Emad, Pardis

    2016-07-01

    Close contact of vegetables with soil, polluted water, and animal manure and unsanitary conditions during processing of restaurant salads led us to study the distribution of virulence factors, O-serogroups, and antibiotic resistance properties in Shiga toxigenic Escherichia coli (STEC) isolated from vegetables and salads. Samples of vegetables and salad (n = 420) were collected and evaluated for the presence of E. coli using culture and a PCR assay. Total prevalence of E. coli in studied samples was 49.5%. E. coli was found in 49.6% of vegetable samples and 49% of salad samples. Leek and traditional salad had the highest incidence of E. coli. Significant differences in the incidence of E. coli were found between the hot and cold seasons. Of the 149 E. coli isolates from vegetable samples, 130 (87%) were STEC, and of the 59 E. coli isolates from salad samples, 50 (84%) were STEC. The most commonly detected virulence factors were stx1 and eaeA. A significant difference was found between the frequency of the attaching and effacing and the enterohemorrhagic E. coli subtypes. Serogroups O26 (46% of isolates), O157 (14%), O121 (10%), and O128 (9%) were the most commonly detected serogroups among the STEC strains. The tetA, sul1, aac(3)-IV, dfrA1, blaSHV, and CITM antibiotic resistance genes were found in 96, 47.7, 90, 51, 27, and 93% of isolates, respectively. The highest levels of resistance were found against ampicillin (96.6% of isolates), tetracycline (87%), and gentamicin (90%). This study shows the importance of vegetables and salads as potential sources of E. coli infection.

  1. Study on the Comprehensive Properties and Microstructures of A3-3 Matrix Graphite Related to the High Temperature Purification Treatment

    Directory of Open Access Journals (Sweden)

    Xiangwen Zhou

    2018-01-01

    Full Text Available At the beginning, a comparative analysis was made on the oxidation corrosion rate and ash content of A3-3 matrix graphite (MG pebbles lathed before and after high temperature purification (HTP treatment. Their oxidation corrosion rate and ash contents were almost identical, which indicated that the HTP process was to purify the entire MG pebbles and not limited on the surfaces. Furthermore, the multiple mechanical and thermal properties of MG treated without and with the treatment of HTP at ~1900°C were compared and their microstructure features were characterized as well. As the crush strength, oxidation corrosion rate, and erosion rate of MG without HTP treatment did not satisfy the specifications, the comprehensive properties and purity of MG with HTP were improved in various degrees through the HTP process so that all performances met the requirements of the A3-3 MG. The improvement of crush strength and erosion rate of MG in the HTP process could be mainly attributed to the upgradation of ordered microstructure and corresponding increase of density. However, the enhancement of oxidation corrosion rate was due to the synergistic effects of microstructural optimization and reduction of impurity elements, especially the transition metal elements of MG in the HTP process.

  2. Stimulation of the natural self-purification of soil

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, F.

    1983-01-01

    Connected with the determination of the sanitary norm of cadmium in soil, examinations were performed to appoint the self-purification index. This index is the highest permissible concentration of a noxious chemical substance in soil not yet injuring the irreversible process of natural self-purification. As criterions of the self-purification were selected normal and potential respiration, quantity of bacteria, actinomyceta, fungi, proteolytic, nitrifying, and cellulolytic micro-organisms, inhibition of Bacillus subtilis and Phormidium autumnale, survival and increasing ability of Escherichia coli, Streptococcus faecalis and Salmonella give. Among the influence of various concentrations of cadmium, the self-purification index of 500 mg Cd++/kg was determined. Offered are methodical improvements for the determination of self-purification indices.

  3. Cytotoxic and mutagenic properties of O4-alkylthymidine lesions in Escherichia coli cells.

    Science.gov (United States)

    Wang, Pengcheng; Amato, Nicholas J; Zhai, Qianqian; Wang, Yinsheng

    2015-12-15

    Due to the abundant presence of alkylating agents in living cells and the environment, DNA alkylation is generally unavoidable. Among the alkylated DNA lesions, O(4)-alkylthymidine (O(4)-alkyldT) are known to be highly mutagenic and persistent in mammalian tissues. Not much is known about how the structures of the alkyl group affect the repair and replicative bypass of the O(4)-alkyldT lesions, or how the latter process is modulated by translesion synthesis polymerases. Herein, we synthesized oligodeoxyribonucleotides harboring eight site-specifically inserted O(4)-alkyldT lesions and examined their impact on DNA replication in Escherichia coli cells. We showed that the replication past all the O(4)-alkyldT lesions except (S)- and (R)-sBudT was highly efficient, and these lesions directed very high frequencies of dGMP misincorporation in E. coli cells. While SOS-induced DNA polymerases play redundant roles in bypassing most of the O(4)-alkyldT lesions, the bypass of (S)- and (R)-sBudT necessitated Pol V. Moreover, Ada was not involved in the repair of any O(4)-alkyldT lesions, Ogt was able to repair O(4)-MedT and, to a lesser extent, O(4)-EtdT and O(4)-nPrdT, but not other O(4)-alkyldT lesions. Together, our study provided important new knowledge about the repair of the O(4)-alkyldT lesions and their recognition by the E. coli replication machinery. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Expression and purification of the metal-containing monooxygenases tryptophan hydroxylase and dopamine β-hydroxylase

    DEFF Research Database (Denmark)

    Karlsen, Pernille Efferbach

    -hyperactive disorder (ADHD) among others. Since all these diseases are the cause of huge economical and personal costs it is very important to gain more knowledge of TPH and DβH since these two enzymes could be possible targets for medicine against the diseases mentioned above. TPH a three-domain, iron...... have been purified and crystallized. This project concern the human neuronal TPH or TPH2. In an attempt to overcome the problems with recombinant TPH two stability and solubility optimized variants of TPH2 are designed. Escherichia coli (E. coli) expression strains for these variants and full length...... human TPH2 are constructed and the expression levels analysed. Moreover purification of the three TPH2 variants are compared. As earlier reported in other studies, TPH2 expressed in this project was also unstable and only partly soluble, and these properties were not improved by the introduction...

  5. Cloning and properties of the Salmonella typhimurium tricarboxylate transport operon in Escherichia coli.

    OpenAIRE

    Widenhorn, K A; Boos, W; Somers, J M; Kay, W W

    1988-01-01

    The tricarboxylate transport operon (tctI) was cloned in Escherichia coli as a 12-kilobase (kb) fragment from an EcoRI library of the Salmonella typhimurium chromosome in lambda gtWES. It was further subcloned as a 12-kb fragment into pACYC184 and as an 8-kb fragment into pBR322. By insertional mutagenesis mediated by lambda Tn5, restriction mapping, and phenotypic testing, the tctI operon was localized to a 4.5-kb region. The tctC gene which encodes a periplasmic binding protein (C protein) ...

  6. The streptococcal flavoprotein NADH peroxidase: Purification, analysis of structural and redox properties, and identification of the active-site cysteinyl derivate

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.B.

    1988-01-01

    The NADH peroxidase of Streptococcus faecalis 10C1, purified to homogeneity, was studied using a variety of structural and spectroscopic techniques. The cofactor content of the enzyme was established using standard techniques, including atomic absorption analyses for the metal content. The native and subunit molecular weights of the protein were obtained through a combination of analytical ultracentrifugation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, amino acid composition, and flavin content. Redox properties were studied by spectral titrations with substrates and/or chemical reductants. An essential oxidized cysteinyl derivative within the enzyme was identified through thio titrations of oxidized and reduced enzyme with 5,5{prime}-dithiobis(2-nitrobenzoic acid), reductive alkylation of the enzyme with iodo(2-{sup 14}C)acetamide, and performic acid oxidation of enzyme labelled metabolically with ({sup 35}S)cysteine. Proteolytic digestion of radiolabelled enzyme followed by peptide purification by high performance liquid chromatography and automated Edman degradation yielded amino acid sequences of the cysteine-containing tryptic and chymotryptic peptides. Preliminary mass spectral analysis of the chymotryptic peptide was performed to probe the structure of the oxidized cysteinyl derivative.

  7. The streptococcal flavoprotein NADH peroxidase: Purification, analysis of structural and redox properties, and identification of the active-site cysteinyl derivate

    International Nuclear Information System (INIS)

    Poole, L.B.

    1988-01-01

    The NADH peroxidase of Streptococcus faecalis 10C1, purified to homogeneity, was studied using a variety of structural and spectroscopic techniques. The cofactor content of the enzyme was established using standard techniques, including atomic absorption analyses for the metal content. The native and subunit molecular weights of the protein were obtained through a combination of analytical ultracentrifugation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, amino acid composition, and flavin content. Redox properties were studied by spectral titrations with substrates and/or chemical reductants. An essential oxidized cysteinyl derivative within the enzyme was identified through thio titrations of oxidized and reduced enzyme with 5,5'-dithiobis(2-nitrobenzoic acid), reductive alkylation of the enzyme with iodo[2- 14 C]acetamide, and performic acid oxidation of enzyme labelled metabolically with [ 35 S]cysteine. Proteolytic digestion of radiolabelled enzyme followed by peptide purification by high performance liquid chromatography and automated Edman degradation yielded amino acid sequences of the cysteine-containing tryptic and chymotryptic peptides. Preliminary mass spectral analysis of the chymotryptic peptide was performed to probe the structure of the oxidized cysteinyl derivative

  8. Expression, purification and preliminary diffraction studies of PhnP

    DEFF Research Database (Denmark)

    Podzelinska, Kateryna; He, Shumei; Soares, Alexei

    2008-01-01

    PhnP belongs to a 14-gene operon that supports the growth of Escherichia coli on alkylphosphonates as a sole source of phosphorus; however, the exact biochemistry of phosphonate degradation by this pathway is poorly understood. The protein was recombinantly expressed in Escherichia coli and purif......PhnP belongs to a 14-gene operon that supports the growth of Escherichia coli on alkylphosphonates as a sole source of phosphorus; however, the exact biochemistry of phosphonate degradation by this pathway is poorly understood. The protein was recombinantly expressed in Escherichia coli...

  9. Antibacterial properties of Kurdistan Gundelia tournefortii ethanolic extract against Staphylococcus aureus and Escherichia coli

    Directory of Open Access Journals (Sweden)

    B. Ayoubi

    2016-08-01

    Full Text Available Due to the ever-increasing of antibiotic-resistance microorganisms and the tendency towards the application of natural preservatives, in the present study the ethanolic extract of stalk portion of  Kurdistan Gundelia tournefertti L. was extracted in rotary evaporator. The antibacterial effect (MIC and MBC of the extract was investigated against Staphylococcus aureus and Escherichia coli. using agar dilution assay on Muller-Hinton agar. The experiment was conducted with 3 replicates and probity analysis of the data was analyzed using SAS 9.2 software.Result showed that both MIC and MBC for S. aureus was62.5 µg/ml. Moreover, the MBC and MIC values for E. coli were estimated at 31.25 µg/ml and 15.62 µg/ml, respectively.Since ethanolic extract of G. tournefertti was highly effectiveon indicator bacteria,it can be used in combination with the other preservatives to protect foods from foodborne organisms.

  10. Virulence property, phylogenetic background, and resistance pattern of Escherichia coli isolates from wound infections

    Directory of Open Access Journals (Sweden)

    Arindam Chakraborty

    2017-01-01

    Full Text Available Aims: The aim of the present study was to characterize the E. coli isolates from surgical wounds, traumatic wounds, and from foot ulcers on the basis of virulence and drug resistance. Subjects and Methods: A total of forty E. coli strains isolated from wound infections were studied. Phylogenetic background, virulence factors (VFs, and antibiotic resistance profiles were determined by phenotypic and genotypic methods. Correlation between phylogenetic groups, VFs, and drug resistance pattern were analyzed. Results: Analysis of virulence gene possession among the isolates indicated that a maximum number were carrying the fimH (39 strains; 97.5% gene, followed by iutA (27; 67.5%, papC (16; 4%, hlyA (5; 12.5%, cnf1 ( 5; 12.5%, and neuC (1; 2.5%, respectively. The phylogroups B2 (32.5% and D (42.5% were more common. Thirty isolates (75% were found to be positive for extended-spectrum β-lactamase genes. CIT type of plasmid-mediated AmpC was seen only in 6 (15% isolates. Most effective antibiotics were carbapenem and sulfamethoxazole-trimethoprim groups of drugs. Conclusions: Our findings indicate that adherence factors and iron uptake systems are two of the more important CFs expressed by such isolates, and such strains are also observed to exhibit a higher degree of drug resistance. Carbapenems and co-trimoxazole may be considered as reliable and successful alternative medications for these isolates.

  11. Helicase properties of the Escherichia coli UvrAb protein complex

    International Nuclear Information System (INIS)

    Oh, E.Y.; Grossman, L.

    1987-01-01

    The Escherichia coli UvrA protein has an associated ATPase activity with a turnover number affected by the presence of UvrB protein as well as by DNA. Specifically, the structure of DNA significantly influences the turnover rate of the UvrAB ATPase activity. Double-stranded DNA maximally activates the turnover rate 10-fold whereas single-stranded DNA maximally activates the turnover rate 20-fold, suggesting that the mode of interaction of UvrAB protein with different DNAs is distinctive. We have previously shown that the UvrAB protein complex, driven by the binding energy of ATP, can locally unwind supercoiled DNA. The nature of the DNA unwinding activity and single-stranded DNA activation of ATPase activity suggest potential helicase activity. In the presence of a number of helicase substrates, the UvrAB complex, indeed, manifests a strand-displacement activity-unwinding short duplexes and D-loop DNA, thereby generating component DNA structures. The energy for the activity is derived from ATP or dATP hydrolysis. Unlike the E. coli DnaB, the UvrAB helicase is sensitive to UV-induced photoproducts

  12. Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties.

    Science.gov (United States)

    Haushalter, Robert W; Kim, Woncheol; Chavkin, Ted A; The, Lionadi; Garber, Megan E; Nhan, Melissa; Adams, Paul D; Petzold, Christopher J; Katz, Leonard; Keasling, Jay D

    2014-11-01

    Microbial fermentation is emerging as an increasingly important resource for the production of fatty acids to serve as precursors for renewable diesel as well as detergents, lubricants and other industrial chemicals, as an alternative to traditional sources of reduced carbon such as petroleum. A major disadvantage of fuels derived from biological sources is their undesirable physical properties such as high cloud and pour points, and high viscosity. Here we report the development of an Escherichia coli strain that efficiently produces anteiso-branched fatty acids, which can be converted into downstream products with lower cloud and pour points than the mixtures of compounds produced via the native metabolism of the cell. This work addresses a serious limitation that must be overcome in order to produce renewable biodiesel and oleochemicals that perform as well as their petroleum-based counterparts. Published by Elsevier Inc.

  13. Cytotoxic and Mutagenic Properties of C3'-Epimeric Lesions of 2'-Deoxyribonucleosides in Escherichia coli Cells.

    Science.gov (United States)

    Wang, Pengcheng; Amato, Nicholas J; Wang, Yinsheng

    2017-07-25

    Reactive oxygen species (ROS), resulting from endogenous metabolism and/or environmental exposure, can induce damage to the 2-deoxyribose moiety in DNA. Specifically, a hydrogen atom from each of the five carbon atoms in 2-deoxyribose can be abstracted by hydroxyl radical, and improper chemical repair of the ensuing radicals formed at the C1', C3', and C4' positions can lead to the stereochemical inversion at these sites to yield epimeric 2-deoxyribose lesions. Although ROS-induced single-nucleobase lesions have been well studied, the biological consequences of the C3'-epimeric lesions of 2'-deoxynucleosides, i.e., 2'-deoxyxylonucleosides (dxN), have not been comprehensively investigated. Herein, we assessed the impact of dxN lesions on the efficiency and fidelity of DNA replication in Escherichia coli cells by conducting a competitive replication and adduct bypass assay with single-stranded M13 phage containing a site-specifically incorporated dxN. Our results revealed that, of the four dxN lesions, only dxG constituted a strong impediment to DNA replication, and intriguingly, dxT and dxC conferred replication bypass efficiencies higher than those of the unmodified counterparts. In addition, the three SOS-induced DNA polymerases (Pol II, Pol IV, and Pol V) did not play any appreciable role in bypassing these lesions. Among the four dxNs, only dxA directed a moderate frequency of dCMP misincorporation. These results provided important insights into the impact of the C3'-epimeric lesions on DNA replication in E. coli cells.

  14. Biochemical properties and physiological roles of NADP-dependent malic enzyme in Escherichia coli.

    Science.gov (United States)

    Wang, Baojuan; Wang, Peng; Zheng, Enxia; Chen, Xiangxian; Zhao, Hanjun; Song, Ping; Su, Ruirui; Li, Xiaoning; Zhu, Guoping

    2011-10-01

    Malic enzymes catalyze the reversible oxidative decarboxylation of L-malate using NAD(P)(+) as a cofactor. NADP-dependent malic enzyme (MaeB) from Escherichia coli MG1655 was expressed and purified as a fusion protein. The molecular weight of MaeB was about 83 kDa, as determined by SDS-PAGE. The recombinant MaeB showed a maximum activity at pH 7.8 and 46°C. MaeB activity was dependent on the presence of Mn(2+) but was strongly inhibited by Zn(2+). In order to understand the physiological roles, recombinant E. coli strains (icd (NADP)/ΔmaeB and icd (NAD)/ΔmaeB) containing NADP-dependent isocitrate dehydrogenase (IDH), or engineered NAD-dependent IDH with the deletion of the maeB gene, were constructed using homologous recombination. During growth on acetate, icd (NAD)/ΔmaeB grew poorly, having a growth rate only 60% that of the wild-type strain (icd (NADP)). Furthermore, icd (NADP)/ΔmaeB exhibited a 2-fold greater adaptability to acetate than icd (NAD)/ΔmaeB, which may be explained by more NADPH production for biosynthesis in icd (NADP)/ΔmaeB due to its NADP-dependent IDH. These results indicated that MaeB was important for NADPH production for bacterial growth on acetate. We also observed that MaeB activity was significantly enhanced (7.83-fold) in icd (NAD), which was about 3-fold higher than that in icd (NADP), when switching from glucose to acetate. The marked increase of MaeB activity was probably induced by the shortage of NADPH in icd (NAD). Evidently, MaeB contributed to the NADPH generation needed for bacterial growth on two carbon compounds.

  15. Type II Collagen and Gelatin from Silvertip Shark (Carcharhinus albimarginatus Cartilage: Isolation, Purification, Physicochemical and Antioxidant Properties

    Directory of Open Access Journals (Sweden)

    Elango Jeevithan

    2014-06-01

    Full Text Available Type II acid soluble collagen (CIIA, pepsin soluble collagen (CIIP and type II gelatin (GII were isolated from silvertip shark (Carcharhinus albimarginatus cartilage and examined for their physicochemical and antioxidant properties. GII had a higher hydroxyproline content (173 mg/g than the collagens and cartilage. CIIA, CIIP and GII were composed of two identical α1 and β chains and were characterized as type II. Amino acid analysis of CIIA, CIIP and GII indicated imino acid contents of 150, 156 and 153 amino acid residues per 1000 residues, respectively. Differing Fourier transform infrared (FTIR spectra of CIIA, CIIP and GII were observed, which suggested that the isolation process affected the secondary structure and molecular order of collagen, particularly the triple-helical structure. The denaturation temperature of GII (32.5 °C was higher than that of CIIA and CIIP. The antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl radicals and the reducing power of CIIP was greater than that of CIIA and GII. SEM microstructure of the collagens depicted a porous, fibrillary and multi-layered structure. Accordingly, the physicochemical and antioxidant properties of type II collagens (CIIA, CIIP and GII isolated from shark cartilage were found to be suitable for biomedical applications.

  16. Type II Collagen and Gelatin from Silvertip Shark (Carcharhinus albimarginatus) Cartilage: Isolation, Purification, Physicochemical and Antioxidant Properties

    Science.gov (United States)

    Jeevithan, Elango; Bao, Bin; Bu, Yongshi; Zhou, Yu; Zhao, Qingbo; Wu, Wenhui

    2014-01-01

    Type II acid soluble collagen (CIIA), pepsin soluble collagen (CIIP) and type II gelatin (GII) were isolated from silvertip shark (Carcharhinus albimarginatus) cartilage and examined for their physicochemical and antioxidant properties. GII had a higher hydroxyproline content (173 mg/g) than the collagens and cartilage. CIIA, CIIP and GII were composed of two identical α1 and β chains and were characterized as type II. Amino acid analysis of CIIA, CIIP and GII indicated imino acid contents of 150, 156 and 153 amino acid residues per 1000 residues, respectively. Differing Fourier transform infrared (FTIR) spectra of CIIA, CIIP and GII were observed, which suggested that the isolation process affected the secondary structure and molecular order of collagen, particularly the triple-helical structure. The denaturation temperature of GII (32.5 °C) was higher than that of CIIA and CIIP. The antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl radicals and the reducing power of CIIP was greater than that of CIIA and GII. SEM microstructure of the collagens depicted a porous, fibrillary and multi-layered structure. Accordingly, the physicochemical and antioxidant properties of type II collagens (CIIA, CIIP) and GII isolated from shark cartilage were found to be suitable for biomedical applications. PMID:24979271

  17. Purification of camel liver catalase by zinc chelate affinity chromatography and pH gradient elution: An enzyme with interesting properties.

    Science.gov (United States)

    Chafik, Abdelbasset; Essamadi, Abdelkhalid; Çelik, Safinur Yildirim; Mavi, Ahmet

    2017-12-01

    Climate change and increasing temperatures are global concerns. Camel (Camelus dromedarius) lives most of its life under high environmental stress in the desert and represent ideal model for studying desert adaptation among mammals. Catalase plays a key role in protecting cells against oxidative stress. For the first time, catalase from camel liver was purified to homogeneity by zinc chelate affinity chromatography using pH gradient elution, a better separation was obtained. A purification fold of 201.81 with 1.17% yield and a high specific activity of 1132539.37U/mg were obtained. The native enzyme had a molecular weight of 268kDa and was composed of four subunits of equal size (65kDa). The enzyme showed optimal activity at a temperature of 45°C and pH 7.2. Thiol reagents, β-Mercaptoethanol and D,L-Dithiothreitol, inhibited the enzyme activity. The enzyme was inhibited by Al 3+ , Cd 2+ and Mg 2+ , whereas Ca 2+ , Co 2+ and Ni 2+ stimulated the catalase activity. Reduced glutathione has no effect on catalase activity. The K m and V max of the enzyme for hydrogen peroxide were 37.31mM and 6185157U/mg, respectively. Sodium azide inhibited the enzyme noncompetitively with K i value of 14.43μM, the IC 50 was found to be 16.71μM. The properties of camel catalase were different comparing to those of mammalian species. Relatively higher molecular weight, higher optimum temperature, protection of reduced glutathione from hydrogen peroxide oxidation and higher affinity for hydrogen peroxide and sodium azide, these could be explained by the fact that camel is able to live in the intense environmental stress in the desert. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bactericidal properties of the antimicrobial peptide Ib-AMP4 from Impatiens balsamina produced as a recombinant fusion-protein in Escherichia coli.

    Science.gov (United States)

    Fan, Xiaobo; Schäfer, Holger; Reichling, Jürgen; Wink, Michael

    2013-10-01

    Antimicrobial peptides (AMPs) represent a novel class of powerful natural antimicrobial agents. As AMPs are bactericidal, production of AMPs in recombinant bacteria is far from trivial. We report the production of Impatiens balsamina antimicrobial peptide 4 (Ib-AMP4, originally isolated from Impatiens balsamina) in Escherichia coli as a fusion protein and investigate Ib-AMP4's antimicrobial effects on human pathogens. A plasmid vector pET32a-Trx-Ib-AMP4 was constructed and transferred into E. coli. After induction, a soluble fusion protein was expressed successfully. The Ib-AMP4 peptide was obtained with a purity of over 90% after nickel affinity chromatography, ultrafiltration, enterokinase cleavage and sephadex size exclusion chromatography. For maximum activity, Ib-AMP4, which possesses two disulfide bonds, required activation with 5 μg/mL H2 O2 . Antimicrobial assays showed that Ib-AMP4 could efficiently target clinical multiresistant isolates including methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamase-producing E. coli. Time kill experiments revealed that Ib-AMP4 is bactericidal within 10 min after application. Haemolysis and cytotoxicity assays implied selectivity towards bacteria, an important prerequisite for clinical applications. Ib-AMP4 might be an interesting candidate for clinical studies involving patients with septicemia or for coating clinical devices, such as catheters. The method described here may be applicable for expression and purification of other AMPs with multiple disulfide bridges. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. [Properties of alkaline pectate lyase from recombinant strain E. coli JM109 (pHsh PL)].

    Science.gov (United States)

    Zhuge, Bin; Du, Guocheng; Zhuge, Jian; Chen, Jian

    2008-01-01

    Alkaline pectate lyase (PL) from recombinant strain E. coli JM109 (pHsh PL) was purified by a three-step process including (NH4)2SO4 precipitation followed by dialysis and chromatography. The purified enzyme appeared homologous on SDS-PAGE. The specific activity of the purified enzyme reached 1079 U/mg. The optimal pH and temperature were in the ranges of pH 9.0 to 10.0 and 50 degrees C to 66 degrees C. The enzyme was preferable in optimal pH range in enzymatic retting of flax. Enzyme activity slightly increased in the presence of Mg2+ ion, whereas decreased in the presence of other ions, especially Fe2+. The K(m) of the purified enzyme for polygalacturonic acid was 20.93 mg/L, the V(max) for polygalacturonic acid hydrolysis was 105.3 micromol of unsaturated products per min and Ea was 21.74 kJ/mol. The results of the decay constant (k(d)) analysis on condition of PL bonding polygalacturonic acid (k(d) = 0.02 min(-1)) and PL without polygalacturonic acid (k(d) = 0.0342 min(-1)) showed the substrate was helpful to decrease thermal inactivation of PL. The products (unsaturated oligomers) from polygalacturonic acid degraded by PL were analyzed by electrospray ionization mass spectrometry(ESI-MS). The following data were obtained: ESI-MS m/z, 350.82 (unsaturated bigalacturonic acid, uG2), 527.04 (unsaturated trigalacturonic acid, uG3). However, m/z 175 (unsaturated galacturonic acid, uGI) was not found. These results indicate that the final PGA degradation products was a mixture of unsaturated oligo-galacturonides including uG3 and uG2 except for uG1. It suggests that the recombinant PL cannot degrade uG3 and uG2.

  20. Purification of a beta-galactosidase from cotyledons of Hymenaea courbaril L. (Leguminosae). Enzyme properties and biological function.

    Science.gov (United States)

    de Alcântara, P H N; Martim, L; Silva, C O; Dietrich, S M C; Buckeridge, M S

    2006-01-01

    Beta-galactosidases are enzymes that can be found in most living beings and in the plant kingdom its activity and genes have been detected in several tissues such as ripening fruits, developing leaves and flowers and storage tissues such as cotyledons. In plants, their activities are usually associated with the secondary metabolism or with oligosaccharide or polysaccharide degradation. Polysaccharide specific beta-galactosidases include beta-galactanases, which attack pectic polymers and beta-galactosidases that attack xyloglucans (XG). In the present work we purified an XG-specific beta-galactosidase (named hcbetagal) from cotyledons of developing seedlings of Hymenaea courbaril, a legume tree from the Neotropical region of the world. The enzyme has a molecular weight of 52-62 kDa and was shown to attack specifically xyloglucan oligosaccharides (XGOs) but not the polymer. It has a pH optimum between 3 and 4 and at this pH range the enzyme increases activity linearly up to 50 degrees C. Kinetic studies showed that hcbetagal is inhibited competitively by free galactose (K(i) = 3.7). The biochemical properties of hcbetagal as a whole suggest that it is involved in storage xyloglucan mobilisation during seedling development. Its high specificity towards XGOs, the low pH optimum and the fact that it is inhibited by its product (galactose) suggest that hcbetagal might be one of the biochemical control points in xyloglucan catabolism in vivo. A possible relationship with functional stability of the wall during cell death as cotyledons undergo senescence is discussed.

  1. Expression and Purification of Coat Protein of Citrus Tristeza Virus ...

    African Journals Online (AJOL)

    transformed to BL21™ star (DE3) of E. coli expression competent cell were also compared using discontinues SDS-PAGE. Large scale recombinant protein production and purification. Large scale recombinant protein production was conducted using four one liter flask containing 250 ml 2xYT broth media consists of 100 ...

  2. Cloning, high-level expression, purification and characterization of a ...

    African Journals Online (AJOL)

    The staphylokinase (Sak) is emerging as an important thrombolytic agent for the treatment of patients suffering from cardiovascular disease. Hence in this study, we reported the cloning, high-level expression, purification and characterization of the Sak variant SakøC from Staphylococcus aureus QT08 in Escherichia coli ...

  3. E. Coli

    Science.gov (United States)

    ... E. coli is used to irrigate the crops. What Foods Can Cause E. Coli Infections? E. coli can ... for: Kids Being Safe in the Kitchen Botulism Food Poisoning What Are Germs? View more Partner Message About Us ...

  4. Rapid cloning and purification of proteins: gateway vectors for protein purification by self-cleaving tags.

    Science.gov (United States)

    Gillies, Alison R; Hsii, Judy F; Oak, Seachol; Wood, David W

    2008-10-01

    We have combined Invitrogen's Gateway cloning technology with self-cleaving purification tags to generate a new system for rapid production of recombinant protein products. To accomplish this, we engineered our previously reported DeltaI-CM cleaving intein to include a Gateway cloning recognition sequence, and demonstrated that the resulting Gateway-competent intein is unaffected. This intein can therefore be used in several previously reported purification methods, while at the same time being compatible with Gateway cloning. We have incorporated this intein into a set of Gateway vectors, which include self-cleaving elastin-like polypeptide (ELP), chitin binding domain (CBD), phasin (polyhydroxybutyrate-binding), or maltose binding domain (MBD) tags. These vectors were verified by Gateway cloning of TEM-1 beta-lactamase and Escherichia coli catalase genes, and the expressed target proteins were purified using the four methods encoded on the vectors. The purification methods were unaffected by replacing the DeltaI-CM intein with the Gateway intein. It was observed that some purification methods were more appropriate for each target than others, suggesting utility of this technology for rapid process identification and optimization. The modular design of the Gateway system and intein purification method suggests that any tag and promoter can be trivially added to this system for the development of additional expression vectors. This technology could greatly facilitate process optimization, allowing several targets and methods to be tested in a high-throughput manner.

  5. ANTIMICROBIAL PROPERTIES OF HYDROXYAPATITE COATINGS CONTAINING OF CHITOSAN AND SILVER ON TITANIUM SUBSTRATES IN RELATION TO MICROORGANISMS E.COLI ATCC 25922

    Directory of Open Access Journals (Sweden)

    Sukhodub LB

    2013-03-01

    Full Text Available In this work it was studied the antibacterial properties of coatings based on HA, with Chitosan and silver ions additions, produced by substrates termodeposition method from aqueous solutions with varying concentrations of Chitosan (0.025 and 0.1 g/l and silver (1 mg/l as the antimicrobial components as well as three-part cover, consisting of a film of Chitosan, HA and silver. Study on antibacterial properties of composite coatings on the pathogen E.coli ATCC 25922 was held by Spectrophotometric measurement and analysis of optical density of suspensions, containing samples. 3 series of measurements data were averaged. The results showed that the concentration of antimicrobial components have indicated a bacteriostatic effect of coatings on the culture of E. coli AS ATCC 25922 in physiological solution at a temperature of 37 °C. The most effective was the three-part cover consisting of a film of chitosan, HA and silver.

  6. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress.

    Directory of Open Access Journals (Sweden)

    Grégory Francius

    Full Text Available The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM and electrokinetics (electrophoresis. Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus. From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively. Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the

  7. The Borexino purification system

    Science.gov (United States)

    Benziger, Jay

    2014-05-01

    Purification of 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system of combined distillation, water extraction, gas stripping and filtration. The purification system removed K, U and Th by distillation of the pseudocumene solvent and the PPO fluor. Noble gases, Rn, Kr and Ar were removed by gas stripping. Distillation was also employed to remove optical impurities and reduce the attenuation of scintillation light. The success of the purification system has facilitated the first time real time detection of low energy solar neutrinos.

  8. Surface processes during purification of InP quantum dots

    Directory of Open Access Journals (Sweden)

    Natalia Mordvinova

    2014-08-01

    Full Text Available Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.

  9. Purification, characterization of phytase enzyme from Lactobacillus ...

    African Journals Online (AJOL)

    Purification, characterization of phytase enzyme from Lactobacillus plantarum bacteria and determination of its kinetic properties. ... Many of the cereal grains, legumes and oilseeds store phosphorus in phytate form. Phytases can be produced by plants, animals and microorganisms. However, the ones with microbial origin ...

  10. Preparation, phase structure and microwave dielectric properties of CoLi2/3Ti4/3O4 ceramic

    International Nuclear Information System (INIS)

    Zhou, Huanfu; Liu, Xiaobin; Chen, Xiuli; Fang, Liang

    2012-01-01

    Graphical abstract: For chemical compatibility tests with silver electrode, mixtures of ceramic powders with 20 wt% Ag powders were cofired and analyzed to detect interactions between the low-fired samples and electrodes. XRD patterns and backscattered electron image of CoLi 2/3 Ti 4/3 O 4 ceramics added with 1.5 wt% BCB cofired with Ag at 900 °C for 2 h are presented in . Backscattered electron image analysis reveals no interaction to form new phases after firing. This observation is also confirmed by the evidence of no difference between the XRD patterns before and after firing. It is obvious that the reaction of low-fired CoLi 2/3 Ti 4/3 O 4 ceramics with Ag electrodes did not occur. Highlights: ► A new microwave dielectric ceramic with good properties was reported. ► The addition of BaCu(B 2 O 5 ) can lower the sintering temperature from 1050 °C to 900 °C. ► The addition of BaCu(B 2 O 5 ) does not induce degradation of properties. ► BCB added CoLi 2/3 Ti 4/3 O 4 ceramics can co-fire with Ag electrode. -- Abstract: A new low loss microwave dielectric ceramic with composition of CoLi 2/3 Ti 4/3 O 4 was prepared by a conventional solid-state reaction method. The compound has a cubic spinel structure [Fd-3m (227)] similar to MgFe 2 O 4 with lattice parameters of a = 8.3939 Å, V = 591.42 Å 3 , Z = 8 and ρ = 4.30 g/cm 3 . This ceramic has a low sintering temperature (∼1050 °C) and good microwave dielectric properties with relative permittivity of 21.4, Q × f value of 35,000 GHz and τ f value of −22 ppm/°C. Furthermore, the addition of BaCu(B 2 O 5 ) (BCB) can effectively lower the sintering temperature from 1050 °C to 900 °C and does not induce much degradation of the microwave dielectric properties. Compatibility with Ag electrode indicates that the BCB added CoLi 2/3 Ti 4/3 O 4 ceramics are good candidates for LTCC applications.

  11. Gel purification of RNA.

    Science.gov (United States)

    Nilsen, Timothy W

    2013-02-01

    For many applications, including size selection of RNAs and purification of in vitro transcription products, it is necessary to purify RNAs on a denaturing gel. This procedure describes how to purify transcripts that have been synthesized in vitro. It is useful for labeled or unlabeled RNAs when sufficient mass is present. It can also be used to isolate small RNAs. In general, RNA purification by denaturing gel electrophoresis is practical only when the size of the desired RNA is 600 nucleotides or less.

  12. Anti-Escherichia coli O157:H7 Properties of Purple Prairie Clover and Sainfoin Condensed Tannins

    Directory of Open Access Journals (Sweden)

    Yuxi Wang

    2013-02-01

    Full Text Available Condensed tannins (CT from purple prairie clover (PPC; Dalea purpurea Vent. and sainfoin (SF; Onobrychis viciifolia were assessed for anti-Escherichia coli activity by comparing their ability to react with proteins and liposome, cause cell aggregation, and alter outer membrane (OM morphology and permeability. The PPC CT had greater (P < 0.01 protein-precipitating capacity than SF CT using either bovine serum albumin or ribulose 1,5-disphosphate carboxylase as model proteins. Minimum inhibitory concentration of PPC CT for two strains of E. coli and five strains of E. coli O157:H7 was four to six times lower than that of SF CT. E. coli exposed to 10 µg/mL of both CT had higher (P < 0.05 OM permeability than controls and was greater (P < 0.05 for PPC than for SF CT. Addition of both CT at 50 and 200 µg/mL caused cell aggregation which was more evident (P < 0.05 for PPC than for SF CT. Transmission electron microscopy showed electron dense material on the cell surface when cells were exposed to 50 µg/mL of PPC CT. The greater anti-E. coli activity of PPC than SF CT was due to its enhanced ability to precipitate protein that increased OM permeability and promoted cell aggregation.

  13. Anti-Escherichia coli O157:H7 properties of purple prairie clover and sainfoin condensed tannins.

    Science.gov (United States)

    Liu, Xiu-Li; Hao, Yong-Qing; Jin, Long; Xu, Zhong-Jun; McAllister, Tim A; Wang, Yuxi

    2013-02-08

    Condensed tannins (CT) from purple prairie clover (PPC; Dalea purpurea Vent.) and sainfoin (SF; Onobrychis viciifolia) were assessed for anti-Escherichia coli activity by comparing their ability to react with proteins and liposome, cause cell aggregation, and alter outer membrane (OM) morphology and permeability. The PPC CT had greater (P < 0.01) protein-precipitating capacity than SF CT using either bovine serum albumin or ribulose 1,5-disphosphate carboxylase as model proteins. Minimum inhibitory concentration of PPC CT for two strains of E. coli and five strains of E. coli O157:H7 was four to six times lower than that of SF CT. E. coli exposed to 10 µg/mL of both CT had higher (P < 0.05) OM permeability than controls and was greater (P < 0.05) for PPC than for SF CT. Addition of both CT at 50 and 200 µg/mL caused cell aggregation which was more evident (P < 0.05) for PPC than for SF CT. Transmission electron microscopy showed electron dense material on the cell surface when cells were exposed to 50 µg/mL of PPC CT. The greater anti-E. coli activity of PPC than SF CT was due to its enhanced ability to precipitate protein that increased OM permeability and promoted cell aggregation.

  14. Proteins of the kidney microvillar membrane. Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent- and proteinase-solubilized forms

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Norén, O; Sjöström, H

    1980-01-01

    Aminopeptidase A (aspartate aminopeptidase, EC 3.4.11.7) was purified 2000-fold from pig kidney cortex. The essential step in the purification was chromatography on an immunoadsorbent column prepared from a rabbit antiserum raised against pig intestinal aminopeptidase A. Glutamyl and aspartyl...... revealed 1 g-atom of Ca/143000 g of protein. Two forms of the enzyme were purified: an amphipathic form solubilized from the membrane by Triton X-100 (detergent form) and a hydrophilic form released by incubation with trypsin (proteinase form). The detergent form exhibited charge-shift in crossed...... protein....

  15. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Harlow, Kenneth W.; King, Cheryl J.

    1986-01-01

    of ADP. The nucleotide sequence of the E. coli prs gene has been determined and the coding segment established. The deduced amino acid sequence of P-Rib-PP synthetase contained 314 amino acid residues and the molecular weight was calculated as 34,060. The initiation site of transcription was determined......Phosphoribosylpyrophosphate (P-Rib-PP) synthetase of Escherichia coli has been purified to near homogeneity from a strain harboring the prs gene, encoding P-Rib-PP synthetase, on a multicopy plasmid. Analysis of the enzyme showed that it required inorganic phosphate for activity and for stability...

  16. Overview of the purification of recombinant proteins.

    Science.gov (United States)

    Wingfield, Paul T

    2015-04-01

    When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same. Copyright © 2015 John Wiley & Sons, Inc.

  17. Application of an E. coli signal sequence as a versatile inclusion body tag

    NARCIS (Netherlands)

    Jong, Wouter S.P.; Vikström, David; Houben, Diane; Berg van Saparoea, H. Bart; de Gier, Jan Willem; Luirink, Joen

    2017-01-01

    Background: Heterologous protein production in Escherichia coli often suffers from bottlenecks such as proteolytic degradation, complex purification procedures and toxicity towards the expression host. Production of proteins in an insoluble form in inclusion bodies (IBs) can alleviate these

  18. Expression of proteins in Escherichia coli as fusions with maltose-binding protein to rescue non-expressed targets in a high-throughput protein-expression and purification pipeline

    International Nuclear Information System (INIS)

    Hewitt, Stephen N.; Choi, Ryan; Kelley, Angela; Crowther, Gregory J.; Napuli, Alberto J.; Van Voorhis, Wesley C.

    2011-01-01

    The rescue of protein-expression levels by cloning genes into MBP-fusion vector is described. Despite recent advances, the expression of heterologous proteins in Escherichia coli for crystallization remains a nontrivial challenge. The present study investigates the efficacy of maltose-binding protein (MBP) fusion as a general strategy for rescuing the expression of target proteins. From a group of sequence-verified clones with undetectable levels of protein expression in an E. coli T7 expression system, 95 clones representing 16 phylogenetically diverse organisms were selected for recloning into a chimeric expression vector with an N-terminal histidine-tagged MBP. PCR-amplified inserts were annealed into an identical ligation-independent cloning region in an MBP-fusion vector and were analyzed for expression and solubility by high-throughput nickel-affinity binding. This approach yielded detectable expression of 72% of the clones; soluble expression was visible in 62%. However, the solubility of most proteins was marginal to poor upon cleavage of the MBP tag. This study offers large-scale evidence that MBP can improve the soluble expression of previously non-expressing proteins from a variety of eukaryotic and prokaryotic organisms. While the behavior of the cleaved proteins was disappointing, further refinements in MBP tagging may permit the more widespread use of MBP-fusion proteins in crystallographic studies

  19. Solid State Air Purification System

    Data.gov (United States)

    National Aeronautics and Space Administration — The solid state air purification project will explore feasibility of a new air purification system based on a liquid membrane, capable of purifying carbon dioxide...

  20. Cell surface acid-base properties of Escherichia coli and Bacillus brevis and variation as a function of growth phase, nitrogen source and C:N ratio.

    Science.gov (United States)

    Hong, Yongsuk; Brown, Derick G

    2006-07-01

    Potentiometric titration has been conducted to systematically examine the acid-base properties of the cell surfaces of Escherichia coli K-12 and Bacillus brevis as a function of growth phase, nitrogen source (ammonium or nitrate), and carbon to nitrogen (C:N) ratio of the growth substrate. The two bacterial species revealed four distinct proton binding sites, with pK(a) values in the range of 3.08-4.05 (pK(1)), 4.62-5.57 (pK(2)), 6.47-7.30 (pK(3)), and 9.68-10.89 (pK(4)) corresponding to phosphoric/carboxylic, carboxylic, phosphoric, and hydroxyl/amine groups, respectively. Two general observations in the data are that for B. brevis the first site concentration (N(1)), corresponding to phosphoric/carboxylic groups (pK(1)), varied as a function of nitrogen source, while for E. coli the fourth site concentration (N(4)), corresponding to hydroxyl/amine groups (pK(4)), varied as a function of C:N ratio. Correspondingly, it was found that N(1) was the highest of the four site concentrations for B. brevis and N(4) was the highest for E. coli. The concentrations of the remaining sites showed little variation. Finally, comparison between the titration data and a number of cell surface compositional studies in the literature indicates one distinct difference between the two bacteria is that pK(4) of the Gram-negative E. coli can be attributed to hydroxyl groups while that of the Gram-positive B. brevis can be attributed to amine groups.

  1. High-Throughput Production of Proteins in E. coli for Structural Studies.

    Science.gov (United States)

    Black, Charikleia; Barker, John J; Hitchman, Richard B; Kwong, Hok Sau; Festenstein, Sam; Acton, Thomas B

    2017-01-01

    We have developed a standardized and efficient workflow for high-throughput (HT) protein expression in E. coli and parallel purification which can be tailored to the downstream application of the target proteins. It includes a one-step purification for the purposes of functional assays and a two-step protocol for crystallographic studies, with the option of on-column tag removal.

  2. Purification of lipases.

    Science.gov (United States)

    Taipa, M A; Aires-Barros, M R; Cabral, J M

    1992-11-01

    Interest on lipases from different sources (microorganisms, animals and plants) has markedly increased in the last decade due to the potential applications of lipases in industry and in medicine. Microbial and mammalian lipases have been purified to homogeneity, allowing the successful determination of their primary aminoacid sequence and, more recently, of the three-dimensional structure. The X-ray studies of pure lipases will enable the establishment of the structure-function relationships and contribute for a better understanding of the kinetic mechanisms of lipase action on hydrolysis, synthesis and group exchange of esters. This article reviews the separation and purification techniques that were used in the recovery of microbial, mammalian and plant lipases. Several purification procedures are analysed taking into account the sequence of the methods and the number of times each method is used. Novel purification methods based on liquid-liquid extraction, membrane processes and immunopurification are also reviewed.

  3. Water purification in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Giammarchi, M. [Infn Milano (Italy); Balata, M.; Ioannucci, L.; Nisi, S. [Laboratori Nazionali del Gran Sasso (Italy); Goretti, A.; Ianni, A. [Princeton University (United States); Miramonti, L. [Dip. di Fisica dell' Università di Milano e Infn (Italy)

    2013-08-08

    Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.

  4. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the mannitol-specific enzyme III/sup mtl/ of Staphylococcus aureus and Staphylococcus carnosus and homology with the enzyme II/sup mtl/ of Escherichia coli

    International Nuclear Information System (INIS)

    Reiche, B.; Frank, R.; Deutscher, J.; Meyer, N.; Hengstenberg, W.

    1988-01-01

    Enzyme III/sup mtl/ is part of the mannitol phosphotransferase system of Staphylococcus aureus and Staphylococcus carnosus and is phosphorylated by phosphoenolpyruvate in a reaction sequence requiring enzyme I (phosphoenolpyruvate-protein phosphotransferase) and the histidine-containing protein HPr. In this paper, the authors report the isolation of III/sup mtl/ from both S. aureus and S. carnosus and the characterization of the active center. After phosphorylation of III/sup mtl/ with [ 32 P]PEP, enzyme I, and HPr, the phosphorylated protein was cleaved with endoproteinase GLu(C). The amino acid sequence of the S. aureus peptide carrying the phosphoryl group was found to be Gln-Val-Val-Ser-Thr-Phe-Met-Gly-Asn-Gly-Leu-Ala-Ile-Pro-His-Gly-Thr-Asp-Asp. The corresponding peptide from S. carnosus shows an equal sequence except that the first residue is Ala instead of Gln. These peptides both contain a single histidyl residue which they assume to carry the phosphoryl group. All proteins of the PTS so far investigated indeed carry the phosphoryl group attached to a histidyl residue. According to sodium dodecyl sulfate gels, the molecular weight of the III/sup mtl/ proteins was found to be 15,000. They have also determined the N-terminal sequence of both proteins. Comparison of the III/sup mtl/ peptide sequences and the C-terminal part of the enzyme II/sup mtl/ of Escherichia coli reveals considerable sequence homology, which supports the suggestion that II/sup mtl/ of E. coli is a fusion protein of a soluble III protein with a membrane-bound enzyme II

  5. Shiga Toxigenic Escherichia coli in Iranian Pediatric Patients With and Without Diarrhea: O-Serogroups, Virulence Factors and Antimicrobial Resistance Properties

    Science.gov (United States)

    Dormanesh, Banafshe; Siroosbakhat, Soheila; Karimi Goudarzi, Peyman; Afsharkhas, Ladan

    2015-01-01

    Background: Shiga-toxigenic Escherichia coli is an important human pathogen cause of diarrhea, hemorrhagic colitis, hemolytic uremic syndrome and thrombotic thrombocytopenic purpura in humans is a significant public health. Objectives: The aim of this study was to determine the molecular characteristics and antimicrobial resistance properties of Shiga toxigenic Escherichia coli (STEC) strains with respect to their seasonal, age and geographical distributions in Iranian pediatric patients with and without diarrhea. Patients and Methods: Four hundred and eighty swab samples were taken from pediatric patients with and without diarrhea of four major provinces of Iran. Swab samples were immediately cultured and the positive culture samples were analyzed by the polymerase chain reaction (PCR) method. Finally, antimicrobial susceptibility testing was performed using the disk diffusion method in Mueller-Hinton agar. Results: In total, 118 out of 200 diarrheic stool samples (59%) and 77 out of 280 non-diarrheic stool samples (27.5%) were positive for E. coli. Samples taken from one to ten months old cases (73.33%) and those from Shiraz province (81.13%) were the most commonly infected. Samples taken in the summer season (91.66%) were the most commonly infected. A significant difference was shown between AEEC and EHEC strains of E. coli. The genes encoding Shiga toxins and intimin protein were the most commonly detected in all strains. O26 (33.33%), O111 (18.18%) and O91 (12.12%) serogroups had the highest incidence in patients with and without diarrhea. Prevalence of the genes that encode resistance against ampicillin (CITM), gentamicin (aac(3)-IV) and tetracycline (tetA) were 80.30%, 75.75% and 65.15%, respectively. The STEC strains harbored the highest levels of resistance against ampicillin (84.84%), gentamycin (78.78%), tetracycline (50%) and sulfamethoxazole (40.90%) antibiotics. We found that 55.08% of diarrheic and 1.29% of non-diarrheic E. coli isolates were

  6. Profiling and quantitative evaluation of three Nickel-Coated magnetic matrices for purification of recombinant proteins: lelpful hints for the optimized nanomagnetisable matrix preparation

    Directory of Open Access Journals (Sweden)

    Zarei Saeed

    2011-08-01

    Full Text Available Abstract Background Several materials are available in the market that work on the principle of protein magnetic fishing by their histidine (His tags. Little information is available on their performance and it is often quoted that greatly improved purification of histidine-tagged proteins from crude extracts could be achieved. While some commercial magnetic matrices could be used successfully for purification of several His-tagged proteins, there are some which have been proved to operate just for a few extent of His-tagged proteins. Here, we address quantitative evaluation of three commercially available Nickel nanomagnetic beads for purification of two His-tagged proteins expressed in Escherichia coli and present helpful hints for optimized purification of such proteins and preparation of nanomagnetisable matrices. Results Marked differences in the performance of nanomagnetic matrices, principally on the basis of their specific binding capacity, recovery profile, the amount of imidazole needed for protein elution and the extent of target protein loss and purity were obtained. Based on the aforesaid criteria, one of these materials featured the best purification results (SiMAG/N-NTA/Nickel for both proteins at the concentration of 4 mg/ml, while the other two (SiMAC-Nickel and SiMAG/CS-NTA/Nickel did not work well with respect to specific binding capacity and recovery profile. Conclusions Taken together, functionality of different types of nanomagnetic matrices vary considerably. This variability may not only be dependent upon the structure and surface chemistry of the matrix which in turn determine the affinity of interaction, but, is also influenced to a lesser extent by the physical properties of the protein itself. Although the results of the present study may not be fully applied for all nanomagnetic matrices, but provide a framework which could be used to profiling and quantitative evaluation of other magnetisable matrices and also

  7. Sodium purification in Rapsodie

    International Nuclear Information System (INIS)

    Giraud, B.

    1968-01-01

    This report is one of a series of publications presenting the main results of tests carried out during the start-up of the first french fast neutron reactor: Rapsodie. The article presents the sodium purification techniques used in the reactor cooling circuits both from the constructional point of view and with respect to results obtained during the first years working. (author) [fr

  8. Overexpression and purification of U24 from human herpesvirus type-6 in E. coli: unconventional use of oxidizing environments with a maltose binding protein-hexahistine dual tag to enhance membrane protein yield

    Directory of Open Access Journals (Sweden)

    Straus Suzana K

    2011-06-01

    Full Text Available Abstract Background Obtaining membrane proteins in sufficient quantity for biophysical study and biotechnological applications has been a difficult task. Use of the maltose binding protein/hexahistidine dual tag system with E.coli as an expression host is emerging as a high throughput method to enhance membrane protein yield, solubility, and purity, but fails to be effective for certain proteins. Optimizing the variables in this system to fine-tune for efficiency can ultimately be a daunting task. To identify factors critical to success in this expression system, we have selected to study U24, a novel membrane protein from Human Herpesvirus type-6 with potent immunosuppressive ability and a possible role in the pathogenesis of the disease multiple sclerosis. Results We expressed full-length U24 as a C-terminal fusion to a maltose binding protein/hexahistidine tag and examined the effects of temperature, growth medium type, cell strain type, oxidizing vs. reducing conditions and periplasmic vs. cytoplasmic expression location. Temperature appeared to have the greatest effect on yield; at 37°C full-length protein was either poorly expressed (periplasm or degraded (cytoplasm whereas at 18°C, expression was improved especially in the periplasm of C41(DE3 cells and in the cytoplasm of oxidizing Δtrx/Δgor mutant strains, Origami 2 and SHuffle. Expression of the fusion protein in these strains were estimated to be 3.2, 5.3 and 4.3 times greater, respectively, compared to commonly-used BL21(DE3 cells. We found that U24 is isolated with an intramolecular disulfide bond under these conditions, and we probed whether this disulfide bond was critical to high yield expression of full-length protein. Expression analysis of a C21SC37S cysteine-free mutant U24 demonstrated that this disulfide was not critical for full-length protein expression, but it is more likely that strained metabolic conditions favour factors which promote protein expression. This

  9. Ash study for biogas purification

    International Nuclear Information System (INIS)

    Juarez V, R. I.

    2016-01-01

    This work evaluates the ashes generated from the wood and coal combustion process of the thermoelectric plant in Petacalco, Guerrero (Mexico) in order to determine its viability as a filter in the biogas purification process. The ash is constituted by particles of morphology and different chemical properties, so it required a characterization of the same by different analytical techniques: as was scanning electron microscopy and X-ray diffraction, in order to observe the microstructure and determine the elemental chemical composition of the particles. Prior to the analysis, a set of sieves was selected to classify as a function of particle size. Four different types of ashes were evaluated: one generated by the wood combustion (wood ash) and three more of the Petacalco thermoelectric generated by the coal combustion (wet fly ash, dry fly ash and dry bottom ash). (Author)

  10. The disulfide-rich Metridia luciferase refolded from E. coli inclusion bodies reveals the properties of a native folded enzyme produced in insect cells.

    Science.gov (United States)

    Markova, Svetlana V; Larionova, Marina D; Gorbunova, Darya A; Vysotski, Eugene S

    2017-10-01

    The bioluminescence of a marine copepod Metridia longa is determined by a small secreted coelenterazine-dependent luciferase that uses coelenterazine as a substrate of enzymatic reaction to generate light (λ max =480nm). To date, four different isoforms of the luciferase differing in size, sequences, and properties have been cloned by functional screening. All of them contain ten conserved Cys residues that suggests up to five SS intramolecular bonds per luciferase molecule. Whereas the use of copepod luciferases as bioluminescent reporters in biomedical research in vivo is growing from year to year, their application for in vitro assays is still limited by the difficulty in obtaining significant amounts of luciferase. The most cost-effective host for producing recombinant proteins is Escherichia coli. However, prokaryotic and eukaryotic cells maintain the reductive environment in cytoplasm that hinders the disulfide bond formation and consequently the proper folding of luciferase. Here we report the expression of the MLuc7 isoform of M. longa luciferase in E. coli cells and the efficient procedure for refolding from inclusion bodies yielding a high-active monomeric protein. Furthermore, in a set of identical experiments we demonstrate that bioluminescent and structural features of MLuc7 produced in bacterial cells are identical to those of MLuc7 isoform produced from culture medium of insect cells. Although the yield of high-purity protein is only 6mg/L, the application of E. coli cells to produce the luciferase is simpler and more cost-effective than the use of insect cells. We expect that the suggested technology of Metridia luciferase production allows obtaining of sufficient amounts of protein both for the development of novel in vitro analytical assays with the use of MLuc7 as a label and for structural studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Taurolidine antiadhesive properties on interaction with E. coli; its transformation in biological environment and interaction with bacteria cell wall.

    Science.gov (United States)

    Caruso, Francesco; Darnowski, James W; Opazo, Cristian; Goldberg, Alexander; Kishore, Nina; Agoston, Elin S; Rossi, Miriam

    2010-01-28

    The taurine amino-acid derivative, taurolidine, bis-(1,1-dioxoperhydro-1,2,4-thiabiazinyl-4)methane, shows broad antibacterial action against gram-positive and gram-negative bacteria, mycobacteria and some clinically relevant fungi. It inhibits, in vitro, the adherence of Escherichia coli and Staphylococcus aureus to human epithelial and fibroblast cells. Taurolidine is unstable in aqueous solution and breaks down into derivatives which are thought to be responsible for the biological activity. To understand the taurolidine antibacterial mechanism of action, we provide the experimental single crystal X-ray diffraction results together with theoretical methods to characterize the hydrolysis/decomposition reactions of taurolidine. The crystal structure features two independent molecules linked through intermolecular H-bonds with one of them somewhat positively charged. Taurolidine in a biological environment exists in equilibrium with taurultam derivatives and this is described theoretically as a 2-step process without an energy barrier: formation of cationic taurolidine followed by a nucleophilic attack of O(hydroxyl) on the exocyclic C(methylene). A concerted mechanism describes the further hydrolysis of the taurolidine derivative methylol-taurultam. The interaction of methylol-taurultam with the diaminopimelic NH(2) group in the E. coli bacteria cell wall (peptidoglycan) has a negative DeltaG value (-38.2 kcal/mol) but a high energy barrier (45.8 kcal/mol) suggesting no reactivity. On the contrary, taurolidine docking into E. coli fimbriae protein, responsible for bacteria adhesion to the bladder epithelium, shows it has higher affinity than mannose (the natural substrate), whereas methylol-taurultam and taurultam are less tightly bound. Since taurolidine is readily available because it is administered in high doses after peritonitis surgery, it may successfully compete with mannose explaining its effectiveness against bacterial infections at laparoscopic lesions.

  12. Taurolidine antiadhesive properties on interaction with E. coli; its transformation in biological environment and interaction with bacteria cell wall.

    Directory of Open Access Journals (Sweden)

    Francesco Caruso

    Full Text Available The taurine amino-acid derivative, taurolidine, bis-(1,1-dioxoperhydro-1,2,4-thiabiazinyl-4methane, shows broad antibacterial action against gram-positive and gram-negative bacteria, mycobacteria and some clinically relevant fungi. It inhibits, in vitro, the adherence of Escherichia coli and Staphylococcus aureus to human epithelial and fibroblast cells. Taurolidine is unstable in aqueous solution and breaks down into derivatives which are thought to be responsible for the biological activity. To understand the taurolidine antibacterial mechanism of action, we provide the experimental single crystal X-ray diffraction results together with theoretical methods to characterize the hydrolysis/decomposition reactions of taurolidine. The crystal structure features two independent molecules linked through intermolecular H-bonds with one of them somewhat positively charged. Taurolidine in a biological environment exists in equilibrium with taurultam derivatives and this is described theoretically as a 2-step process without an energy barrier: formation of cationic taurolidine followed by a nucleophilic attack of O(hydroxyl on the exocyclic C(methylene. A concerted mechanism describes the further hydrolysis of the taurolidine derivative methylol-taurultam. The interaction of methylol-taurultam with the diaminopimelic NH(2 group in the E. coli bacteria cell wall (peptidoglycan has a negative DeltaG value (-38.2 kcal/mol but a high energy barrier (45.8 kcal/mol suggesting no reactivity. On the contrary, taurolidine docking into E. coli fimbriae protein, responsible for bacteria adhesion to the bladder epithelium, shows it has higher affinity than mannose (the natural substrate, whereas methylol-taurultam and taurultam are less tightly bound. Since taurolidine is readily available because it is administered in high doses after peritonitis surgery, it may successfully compete with mannose explaining its effectiveness against bacterial infections at

  13. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination.

    Science.gov (United States)

    Różańska, Anna; Chmielarczyk, Agnieszka; Romaniszyn, Dorota; Sroka-Oleksiak, Agnieszka; Bulanda, Małgorzata; Walkowicz, Monika; Osuch, Piotr; Knych, Tadeusz

    2017-07-20

    Background: Hospital equipment made from copper alloys can play an important role in complementing traditional methods of disinfection. Aims of the study: The aim of this study was to assess the dynamics of the antimicrobial properties of selected copper alloys in different simulations of environmental conditions (with organic contamination vs. without organic contamination), and to test alternatives to the currently used testing methods. Materials and Methods: A modification of Japanese standard JIS Z 2801 as well as Staphylococcus aureus (SA) and Escherichia coli (EC) suspended in NaCl vs. tryptic soy broth (TSB) were used in tests performed on seven commonly used copper alloys, copper, and stainless steel. Results: A much faster reduction of the bacterial suspension was observed for the inoculum prepared in NaCl than in TSB. A faster reduction for EC than for SA was observed in the inoculum prepared in NaCl. The opposite results were found for the inoculum based on TSB. A significant correlation between the copper concentration in the copper alloys and the time and degree of bacterial suspension reduction was only observed in the case of EC. Conclusions: This study confirmed the antimicrobial properties of copper alloys, and additionally showed that Staphylococcus aureus was more resistant than Escherichia coli in the variant of the experiment without organic contamination. However, even for SA, a total reduction of the bacterial inoculum's density took no longer than 2 h. Under conditions simulating organic contamination, all of the tested alloys were shown to have bactericidal or bacteriostatic properties, which was contrary to the results from stainless steel.

  14. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination

    Directory of Open Access Journals (Sweden)

    Anna Różańska

    2017-07-01

    Full Text Available Background: Hospital equipment made from copper alloys can play an important role in complementing traditional methods of disinfection. Aims of the study: The aim of this study was to assess the dynamics of the antimicrobial properties of selected copper alloys in different simulations of environmental conditions (with organic contamination vs. without organic contamination, and to test alternatives to the currently used testing methods. Materials and Methods: A modification of Japanese standard JIS Z 2801 as well as Staphylococcus aureus (SA and Escherichia coli (EC suspended in NaCl vs. tryptic soy broth (TSB were used in tests performed on seven commonly used copper alloys, copper, and stainless steel. Results: A much faster reduction of the bacterial suspension was observed for the inoculum prepared in NaCl than in TSB. A faster reduction for EC than for SA was observed in the inoculum prepared in NaCl. The opposite results were found for the inoculum based on TSB. A significant correlation between the copper concentration in the copper alloys and the time and degree of bacterial suspension reduction was only observed in the case of EC. Conclusions: This study confirmed the antimicrobial properties of copper alloys, and additionally showed that Staphylococcus aureus was more resistant than Escherichia coli in the variant of the experiment without organic contamination. However, even for SA, a total reduction of the bacterial inoculum’s density took no longer than 2 h. Under conditions simulating organic contamination, all of the tested alloys were shown to have bactericidal or bacteriostatic properties, which was contrary to the results from stainless steel.

  15. Feasibility Study on Manufacturing Lightweight Aggregates from Water Purification Sludge

    Science.gov (United States)

    Peng, Ching-Fang; Chen, How-Ji

    2018-02-01

    This study mainly discussed the feasibility of manufacturing lightweight aggregates from water purification sludge in Taiwan. They were analysed for the physical and chemical composition before the sintering test for lightweight aggregates in a laboratory. Then the physical and mechanical properties of the synthesized aggregates were assessed. The result showed that the chemical composition of sludge in the water purification plants was within the appropriate range for manufacturing lightweight aggregate as proposed in the literature. The sintering test demonstrated that the particle density of aggregates from the ten types of water purification sludge were mostly less than 1.8 g/cm3. In addition, the dry unit weight, the organic impurity, the ignition loss, and other characteristics of synthesized aggregates met the requirement of CNS standards, while its water absorption and crushing strength also fulfilled the general commercial specifications. Therefore, reclamation of water purification sludge for production of lightweight aggregate is indeed feasible.

  16. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli

    International Nuclear Information System (INIS)

    Tran, Phong A; Biswas, Dhee P; O’Connor, Andrea J; O’Brien-Simpson, Neil; Reynolds, Eric C; Pantarat, Namfon

    2016-01-01

    Antimicrobial agents that have no or low cytotoxicity and high specificity are desirable to have no or minimal side effects. We report here the low cytotoxicity of polyvinyl alcohol-stabilized selenium (Se) nanoparticles and their differential effects on growth of S. aureus, a gram-positive bacterium and E. coli, a gram-negative bacterium. The nanoparticles were synthesised through redox reactions in an aqueous environment at room temperature and were characterised using UV visible spectrophotometry, transmission electron microscopy, dynamic light scattering and x-ray photoelectron spectroscopy. The nanoparticles showed low toxicity toward fibroblasts which remained more than 70% viable at Se concentrations as high as 128 ppm. The nanoparticles also exhibited very low haemolysis with only 18% of maximal lysis observed at a Se concentration of 128 ppm. Importantly, the nanoparticles showed strong growth inhibition toward S. aureus at a concentration as low as 1 ppm. Interestingly, growth of E. coli was unaffected at all concentrations tested. This study therefore strongly suggests that these nanoparticles should be investigated further to understand this differential effect as well as for potential advanced antimicrobial applications such as S. aureus infection—resisting, non-cytotoxic coatings for medical devices. (paper)

  17. Shiga (Vero-toxin producing Escherichia coli isolated from the hospital foods; virulence factors, o-serogroups and antimicrobial resistance properties

    Directory of Open Access Journals (Sweden)

    Reza Ranjbar

    2017-01-01

    Full Text Available Abstract Background According to the presence of the weak, diabetic and immunosuppressive patients in hospitals, hospital foods should have a high quality and safety. Cooking a lot of foods higher than daily requirement, storage of cooked foods in an inappropriate condition and presence of nurses and servants in distribution of food to patients are the main reasons caused contamination of hospital foods. Shiga toxigenic Escherichia coli is one of the common cause of food poisoning in hospitals. The present research was carried out to study the distribution of virulence factors, O-serogroups and antibiotic resistance properties in STEC strains recovered from Iranian hospital food samples. Methods Five-hundred and eighty raw and cooked food samples were collected and immediately transferred to the laboratory. E. coli-positive strains were subjected to PCR and disk diffusion method. Results Thirty-nine out of 580 (6.72% hospital food samples were contaminated with E. coli. Raw (20% and cooked meat (6% were the most commonly contaminated samples. Raw samples had the higher prevalence of E. coli (P <0.01. Samples which were collected in the summer season had the highest prevalence of bacteria (64.10%. Significant difference was seen between the prevalence of EHEC and AEEC subtypes (P <0.01. The most commonly detected virulence factors in both EHEC and AEEC subtypes were stx1 and eae. The most commonly detected serogroups were O26 (43.75% and O157 (25% and there were no positive results for O103, O145, O91, O113 and O128 serogroups. Aac (3-IV (100%, CITM (100% and tetA (62.50% were the most commonly detected antibiotic resistance genes. STEC strains harbored the highest levels of resistance against ampicillin (93.75%, gentamycin (93.75%, tetracycline (87.50% and ciprofloxacin (81.25%. All of the STEC strains were resistant to at least 3 antibiotics, while the prevalence of resistance against more than 12 antibiotics were 12.50%. Conclusions High

  18. Production of Protein Kinases in E. coli.

    Science.gov (United States)

    Dodson, Charlotte A

    2017-01-01

    Recombinant protein expression is widely used to generate milligram quantities of protein kinases for crystallographic, enzymatic, or other biophysical assays in vitro. Expression in E. coli is fast, cheap, and reliable. Here I present a detailed protocol for the production of human Aurora-A kinase. I begin with transformation of a suitable plasmid into an expression strain of E. coli, followed by growth and harvesting of bacterial cell cultures. Finally, I describe the purification of Aurora-A to homogeneity using immobilized metal affinity and size exclusion chromatographies.

  19. Study of Antibacterial Efficacy of Hybrid Chitosan-Silver Nanoparticles for Prevention of Specific Biofilm and Water Purification

    Directory of Open Access Journals (Sweden)

    Somnath Ghosh

    2011-01-01

    Full Text Available Antibacterial efficacy of silver nanoparticles (Ag NPs deposited alternatively layer by layer (LBL on chitosan polymer in the form of a thin film over a quartz plate and stainless steel strip has been studied. An eight-bilayer chitosan/silver (Cs/Ag8 hybrid was prepared having a known concentration of silver. Techniques such as UV-visible spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES, and atomic force microscopy (AFM were carried out to understand and elucidate the physical nature of the film. Gram-negative bacteria, Escherichia coli (E. coli, were used as a test sample in saline solution for antibacterial studies. The growth inhibition at different intervals of contact time and, more importantly, the antibacterial properties of the hybrid film on repeated cycling in saline solution have been demonstrated. AFM studies are carried out for the first time on the microbe to know the morphological changes affected by the hybrid film. The hybrid films on aging (3 months are found to be as bioactive as before. Cytotoxicity experiments indicated good biocompatibility. The hybrid can be a promising bioactive material for the prevention of biofilms specific to E. coli and in purification of water for safe drinking.

  20. Purification and Properties of Extracellular Lipases with Transesterification Activity and 1,3-Regioselectivity fromRhizomucor mieheiandRhizopus oryzae.

    Science.gov (United States)

    Takó, Miklós; KotogÁn, Alexandra; Papp, TamÁs; Kadaikunnan, Shine; Alharbi, Naiyf S; VÁgvölgyi, Csaba

    2017-02-28

    Rhizomucor miehei NRRL 5282 and Rhizopus oryzae NRRL 1526 can produce lipases with high synthetic activities in wheat bran-based solid-state culture. In this study, the purification and biochemical characterization of the lipolytic activities of these lipases are presented. SDS-PAGE indicated a molecular mass of about 55 and 35 kDa for the purified R. miehei and Rh. oryzae enzymes, respectively. p -Nitrophenyl palmitate ( p NPP) hydrolysis was maximal at 40°C and pH 7.0 for the R. miehei lipase, and at 30°C and pH 5.2 for the Rh. oryzae enzyme. The enzymes showed almost equal affinity to p NPP, but the V max of the Rh. oryzae lipase was about 1.13 times higher than that determined for R. miehei using the same substrate. For both enzymes, a dramatic loss of activity was observed in the presence of 5 mM Hg 2+ , Zn 2+ , or Mn 2+ , 10 mM N -bromosuccinimide or sodium dodecyl sulfate, and 5-10% (v/v) of hexanol or butanol. At the same time, they proved to be extraordinarily stable in the presence of n -hexane, cyclohexane, n -heptane, and isooctane. Moreover, isopentanol up to 10% (v/v) and propionic acid in 1 mM concentrations increased the p NPP hydrolyzing activity of R. miehei lipase. Both enzymes had 1,3-regioselectivity, and efficiently hydrolyzed p -nitrophenyl ( p NP) esters with C8-C16 acids, exhibiting maximum activity towards p NP-caprylate ( R. miehei ) and pNP-dodecanoate ( Rh. oryzae ). The purified lipases are promising candidates for various biotechnological applications.

  1. [The characteristics of biological properties of E. coli O104:H4--the causative agent of large-scale alimentary ictus in Germany may 2001].

    Science.gov (United States)

    Kaftyreva, L A; Egorova, S A; Makarova, M A; Zabrovskaia, A V; Matveeva, Z N; Syzhaeva, L V; Artamononva, Iu A

    2012-01-01

    The review presents the characteristics of E. coli O104:H4, the causative agent of large-scale alimentary ictus in Germany in spring time 2011. The antigenic characteristics and factors of E. coli pathogenicity are taken into account. The causative agent has a combination of pathogenic factors of two groups of diarrheigenic Escherichia: shigella similar toxin, specific for entero-hemorrhagic E. coli and adhesins of enteroaggregative E. coli.

  2. Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions.

    Science.gov (United States)

    Becker, D F; Thomas, E A

    2001-04-17

    The PutA flavoprotein from Escherichia coli is both a transcriptional repressor and a membrane-associated proline dehydrogenase. PutA represses transcription of the putA and putP genes by binding to the control region DNA of the put regulon (put intergenic DNA). Previous work has shown that FAD has a role in regulating the transcriptional repressor and membrane binding functions of the PutA protein. To test the influence of the FAD redox state on PutA--DNA interactions, we characterized the redox properties of the PutA flavoprotein from E. coli. At pH 7.5, an E(m)(E--FAD/E--FADH(2)) of --0.076 V for the two-electron reduction of PutA-bound FAD was determined by potentiometric titrations. Stabilization of semiquinone species was not observed during potentiometric measurements. Dithionite reduction of PutA, however, caused formation of red anionic semiquinone. The E(m) value for the proline/Delta(1)-pyrroline-5-carboxylate couple was determined to be --0.123 V, demonstrating the reduction of PutA by proline is favored by a potential difference (Delta E degrees ') of more than 0.045 V. Characterization of the PutA redox properties in the presence of put intergenic DNA revealed an E(m)(E(DNA)--FAD/E(DNA)--FADH(2)) of --0.086 V. The 10 mV negative shift in E(m) corresponds to just a 2.3-fold increase in the dissociation constant of PutA with the DNA upon reduction of FAD. Thus, it appears the FAD redox state has little influence on the overall PutA--DNA interactions.

  3. EI of the Phosphotransferase System of Escherichia coli: Mathematical Modeling Approach to Analysis of Its Kinetic Properties

    Directory of Open Access Journals (Sweden)

    T. A. Karelina

    2011-01-01

    Full Text Available The mathematical model of the operation of the first enzyme of the Escherichia coli phosphotransferase system, EI, is proposed. Parameters of the kinetic model describing the operation of EI under different conditions are identified on the basis of a large amount of known experimental data. The verified model is employed to predict modes of operation of EI under both in vivo physiological conditions and in vitro nonphysiological conditions. The model predicts that under in vivo physiological conditions, the rate of phosphotransfer from EI to the second protein of the phosphotransferase system HPr by the dimer is much higher than by the monomer. A hypothesis is proposed on the basis of calculations that the transfer by a monomer plays a role in the regulation of chemotaxis. At submicromolar pyruvate concentration, the model predicts nonmonotonic dependence of the phosphotransfer rate on the substrate (PEP concentration.

  4. Rapid screening platform for stabilization of scFvs in Escherichia coli.

    Science.gov (United States)

    Miller, Brian R; Glaser, Scott M; Demarest, Stephen J

    2009-01-01

    The poor biophysical properties of antibody fragments such as scFvs and diabodies can preclude their use as therapeutic agents. The non-ideal biophysical properties and insufficient thermal stability of antibody fragments often leads to poor expression, poor solubility, and a predisposition of the proteins to aggregate. We have developed a general platform for engineering stability into antibody fragments. By promoting Escherichia coli cultures to secrete scFvs directly into growth media, automated screening methods can be applied to empirically evaluate multiple stability design strategies including rational, sequence-based, and structure-based designs. Once stabilized, these antibody fragments demonstrate improved expression and durability during purification, handling, and storage. Stabilized antibody fragments can also be used as building blocks for multivalent or bispecific antibody-like molecules.

  5. Nanotechnology for water treatment and purification

    CERN Document Server

    Apblett, Allen

    2014-01-01

    This book describes the latest progress in the application of nanotechnology for water treatment and purification. Leaders in the field present both the fundamental science and a comprehensive overview of the diverse range of tools and technologies that have been developed in this critical area. Expert chapters present the unique physicochemical and surface properties of nanoparticles and the advantages that these provide for engineering applications that ensure a supply of safe drinking water for our growing population. Application areas include generating fresh water from seawater, preventing contamination of the environment, and creating effective and efficient methods for remediation of polluted waters. The chapter authors are leading world-wide experts in the field with either academic or industrial experience, ensuring that this comprehensive volume presents the state-of-the-art in the integration of nanotechnology with water treatment and purification. Covers both wastewater and drinking water treatmen...

  6. Using of Mineral Recourses for Water Purification

    International Nuclear Information System (INIS)

    Tumanova, I.V.; Nazarenko, O.B.; Anna, Yu.

    2009-01-01

    Pollution of surface waters results in necessity of underground waters using for drinking. Underground waters are characterized by the high quantity of heavy metals salts. This led to development of methods reducing the concentration of the metal salts in water. Wide spread occurrence, cheapness and high sorption properties of nature minerals allow to consider them as perspective sorbents for different impurities extraction, including dissoluble compounds of heavy metals. Reachable purification efficiency with mineral resources use for the moment satisfies sanitary indexes and standards presenting to portable water in Russia. In given material there are presented the results of research of artificial sorbent and certain minerals sorption characteristics, which are typical for West Siberia. For purification quality improvement from Fe and Mn ions there are suggested to use the method of boiling bed.

  7. E. Coli

    Science.gov (United States)

    ... E. coli can cause diarrhea, while others cause urinary tract infections, respiratory illness and pneumonia, and other illnesses. More Questions & Answers Symptoms Prevention For Health Professionals Surveillance Publications Multistate Outbreaks ...

  8. Fast and efficient protein purification using membrane adsorber systems.

    Science.gov (United States)

    Suck, Kirstin; Walter, Johanna; Menzel, Frauke; Tappe, Alexander; Kasper, Cornelia; Naumann, Claudia; Zeidler, Robert; Scheper, Thomas

    2006-02-10

    The purification of proteins from complex cell culture samples is an essential step in proteomic research. Traditional chromatographic methods often require several steps resulting in time consuming and costly procedures. In contrast, protein purification via membrane adsorbers offers the advantage of fast and gentle but still effective isolation. In this work, we present a new method for purification of proteins from crude cell extracts via membrane adsorber based devices. This isolation procedure utilises the membranes favourable pore structure allowing high flow rates without causing high back pressure. Therefore, shear stress to fragile structures is avoided. In addition, mass transfer takes place through convection rather than diffusion, thus allowing very rapid separation processes. Based on this membrane adsorber technology the separation of two model proteins, human serum albumin (HSA) and immungluboline G (IgG) is shown. The isolation of human growth hormone (hGH) from chinese hamster ovary (CHO) cell culture supernatant was performed using a cation exchange membrane. The isolation of the enzyme penicillin acylase from the crude Escherichia coli supernatant was achieved using an anion exchange spin column within one step at a considerable purity. In summary, the membrane adsorber devices have proven to be suitable tools for the purification of proteins from different complex cell culture samples.

  9. The purification of hypertensin II.

    Science.gov (United States)

    SKEGGS, L T; KAHN, J R; SHUMWAY, N P

    1956-03-01

    The enzymatic conversion of hypertensin I to hypertensin II is described together with the subsequent purification of the product by means of counter-current distribution. Improved methods are also presented for the preparation of renin and its substrate, as well as in methods for the reaction of these materials and the purification of the resulting hypertensin I.

  10. The effect of pyrite on Escherichia coli in water: proof-of-concept for the elimination of waterborne bacteria by reactive minerals.

    Science.gov (United States)

    Friedlander, Lonia R; Puri, Neha; Schoonen, Martin A A; Wali Karzai, A

    2015-03-01

    We present proof-of-concept results for the elimination of waterborne bacteria by reactive minerals. We exposed Escherichia coli MG1655 suspended in water to the reactive mineral pyrite (FeS₂) at room temperature and ambient light. This slurry eliminates 99.9% of bacteria in fewer than 4 hours. We also exposed Escherichia coli to pyrite leachate (supernatant liquid from slurry after 24 hours), which eliminates 99.99% of bacteria over the same time-scale. Unlike SOlar water DISinfection (SODIS), our results do not depend on the presence of ultraviolet (UV) light. We confirmed this by testing proposed SODIS additive and known photo-catalyst anatase (TiO₂) for antibacterial properties and found that, in contrast to pyrite, it does not eliminate E. coli under our experimental conditions. Previous investigations of naturally antibiotic minerals have focused on the medical applications of antibiotic clays, and thus have not been conducted under experimental conditions resembling those found in water purification. In our examination of the relevant literature, we have not found previously reported evidence for the use of reactive minerals in water sanitization. The results from this proof-of-concept experiment may have important implications for future directions in household water purification research.

  11. Protein production and purification.

    Science.gov (United States)

    Gräslund, Susanne; Nordlund, Pär; Weigelt, Johan; Hallberg, B Martin; Bray, James; Gileadi, Opher; Knapp, Stefan; Oppermann, Udo; Arrowsmith, Cheryl; Hui, Raymond; Ming, Jinrong; dhe-Paganon, Sirano; Park, Hee-won; Savchenko, Alexei; Yee, Adelinda; Edwards, Aled; Vincentelli, Renaud; Cambillau, Christian; Kim, Rosalind; Kim, Sung-Hou; Rao, Zihe; Shi, Yunyu; Terwilliger, Thomas C; Kim, Chang-Yub; Hung, Li-Wei; Waldo, Geoffrey S; Peleg, Yoav; Albeck, Shira; Unger, Tamar; Dym, Orly; Prilusky, Jaime; Sussman, Joel L; Stevens, Ray C; Lesley, Scott A; Wilson, Ian A; Joachimiak, Andrzej; Collart, Frank; Dementieva, Irina; Donnelly, Mark I; Eschenfeldt, William H; Kim, Youngchang; Stols, Lucy; Wu, Ruying; Zhou, Min; Burley, Stephen K; Emtage, J Spencer; Sauder, J Michael; Thompson, Devon; Bain, Kevin; Luz, John; Gheyi, Tarun; Zhang, Fred; Atwell, Shane; Almo, Steven C; Bonanno, Jeffrey B; Fiser, Andras; Swaminathan, Sivasubramanian; Studier, F William; Chance, Mark R; Sali, Andrej; Acton, Thomas B; Xiao, Rong; Zhao, Li; Ma, Li Chung; Hunt, John F; Tong, Liang; Cunningham, Kellie; Inouye, Masayori; Anderson, Stephen; Janjua, Heleema; Shastry, Ritu; Ho, Chi Kent; Wang, Dongyan; Wang, Huang; Jiang, Mei; Montelione, Gaetano T; Stuart, David I; Owens, Raymond J; Daenke, Susan; Schütz, Anja; Heinemann, Udo; Yokoyama, Shigeyuki; Büssow, Konrad; Gunsalus, Kristin C

    2008-02-01

    In selecting a method to produce a recombinant protein, a researcher is faced with a bewildering array of choices as to where to start. To facilitate decision-making, we describe a consensus 'what to try first' strategy based on our collective analysis of the expression and purification of over 10,000 different proteins. This review presents methods that could be applied at the outset of any project, a prioritized list of alternate strategies and a list of pitfalls that trip many new investigators.

  12. Gas purification project

    International Nuclear Information System (INIS)

    Broothaerts, J.; Claes, J.; Collard, G.; Goossens, W.; Harnie, R.; Heylen, P.; Vaesen, J.; Beukelaer, R. de; Dubois, G.; Glibert, R.; Mestrez, J.; Zahlen, A.

    1975-06-01

    Conceptual and experimental studies on LMFBR reprocessing and reactor off-gas purification systems are summarized. Iodine sorption on zeolites, low-temperature adsorption of noble gases on charcoal and catalytic oxidation of hydrogen, simulating tritium, are being studied in laboratory set-ups. A pilot loop with 25 m 3 h -1 throughput has been constructed. Results are quoted from the first phase of the iodine removal programme by scrubbing systems. Further extension of the test loop, comprising off-gases conditioning to removal of krypton in a cryodistillation unit, has been prepared. Delay-bed studies on 133 Xe extraction from LWR off-gases are reported. (author)

  13. Air/Water Purification

    Science.gov (United States)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  14. Water Purification Product

    Science.gov (United States)

    2004-01-01

    Ecomaster, an affiliate of BioServe Space Technologies, this PentaPure technology has been used to purify water for our nation's Space Shuttle missions since 1981. WTC-Ecomaster of Mirneapolis, Minnesota manufactures water purification systems under the brand name PentaPure (TM). BioServe researcher Dr. George Marchin, of Kansas State University, first demonstrated the superiority of this technology and licensed it to WTC. Marchin continues to perform microgravity research in the development of new technologies for the benefit of life on Earth.

  15. Properties of adenyl cyclase and cyclic adenosine 3',5'-monophosphate receptor protein-deficient mutants of Escherichia coli

    International Nuclear Information System (INIS)

    Kumar, S.

    1976-01-01

    Several spontaneous cya and crp mutants of Escherichia coli have been selected as clones simultaneously resistant to phage lambda and nalidixic acid and characterized. Both cya and crp mutants have been found to grow as cocci with increased doubling times. They have increased resistance to some mutagens (methylmethanesulfonate, ultraviolet light, gamma rays), antibiotics (nalidixic acid, ampicillin), phages (lambda, T6), sublethal heat and hypotonic shock, and decreased resistance to neutral detergents (sodium dodecyl sulfate, sodium deoxycholate), a protein synthesis inhibitor (streptomycin), and a respiratory inhibitor (sodium azide). The nature of changes in cell parameters indicate fundamental alterations in the envelope structure of the cya and crp mutant cells. The new cya and crp mutants have been found to be multiply carbohydrate negative and nonmotile in conformity with similar previously isolated mutants. Studies of revertants and phi 80 cya + and phi 80 cya transductants indicated that the pleiotropic phenotype is related to a single mutational event at the cya or the crp locus in the mutants

  16. Purification and properties of a novel quizalofop-p-ethyl-hydrolyzing esterase involved in quizalofop-p-ethyl degradation by Pseudomonas sp. J-2.

    Science.gov (United States)

    Zhang, Hui; Li, Mengya; Li, Jie; Wang, Guangli; Liu, Yuan

    2017-05-10

    Quizalofop-p-ethyl (QPE) is a post-emergence herbicide that effectively controls grass weeds and is often detected in the environment. However, the biochemical and molecular mechanisms of QPE degradation in the environment remains unclear. In this study, a highly effective QPE-degrading bacterial strain J-2 was isolated from acclimated activated sludge and identified as a Pseudomonas sp., containing the QPE breakdown metabolite quizalofop acid (QA) identified by Liquid Chromatography-Ion Trap-Mass Spectrometry (LC-IT-MS n ) analysis. A novel QPE hydrolase esterase-encoding gene qpeH was cloned from strain J-2 and functionally expressed in Escherichia coli BL21 (DE3). The specific activity of recombinant QpeH was 198.9 ± 2.7 U mg -1 for QPE with K m and K cat values of 41.3 ± 3.6 μM and 127.3 ± 4.5 s -1 . The optimal pH and temperature for the recombinant QpeH were 8.0 and 30 °C, respectively and the enzyme was activated by Ca 2+ , Cd 2+ , Li + , Fe 3+ and Co 2+ and inhibited by Ni 2+ , Fe 2+ , Ag + , DEPC, SDS, Tween 80, Triton X, β-mercaptoethanol, PMSF, and pCMB. In addition, the catalytic efficiency of QpeH toward different AOPP herbicides in descending order was as follows: fenoxaprop-P-ethyl > quizalofop-P-tefuryl > QPE > haloxyfop-P-methyl > cyhalofopbutyl > clodinafop-propargyl. On the basis of the phylogenetic analysis and multiple sequence alignment, the identified enzyme QpeH, was clustered with esterase family V, suggesting a new member of this family because of its low similarity of amino acid sequence with esterases reported previously.

  17. Cloning and determination of biochemical properties of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli into pET28a vector

    Directory of Open Access Journals (Sweden)

    Jamil Kheirvari Khezerloo

    2017-12-01

    Full Text Available Urinary tract infections are one of the most common infectious diseases that lead to significant health problems in the world. Urinary tract infections are referred to any infection in any part of the renal system. Uropathogenic Escherichia coli, Proteus mirabilis, and Klebsiella are main organisms that are involved in these infections. After identifying same protective and conserved virulence sequences in these microorganisms with similarity upper than 80%, sequences of synthetic gene was provided by bioinformatics techniques and ordered from Thermo Fisher Scientific Company. PCR amplification of this gene was performed by specific primers designed for this purpose. Construction of gene was performed by overlap PCR. The synthetic gene was cloned into pET28a vector. Our gene was amplified in E. coli Top10 tested. To confirm cloning, three methods including colony PCR, digestion and sequencing were used. First, two techniques were performed using horizontal electrophoresis, and also the synthetic gene showed significant homology with the sequence (99% Identified in sequencing. Sequencing of this gene showed that fusion was constructed correctly. Determination of biochemical properties such as 3D structure, Ramachandran and comparison of Non-redundant Set of PDB structure was done by bioinformatic software and had exact and expectable results. A large part of the health system in the world is occupied by a urinary tract infection and governments spend a huge amount of money for the treatment and recovery of patients with these infections. On the other hands, antibiotic resistance in the not-far future will be a disaster for medical societies. This is the most important reason for the emergence of vaccine production against urinary tract infections.

  18. In Vitro Evaluation of Swine-Derived Lactobacillus reuteri: Probiotic Properties and Effects on Intestinal Porcine Epithelial Cells Challenged with Enterotoxigenic Escherichia coli K88.

    Science.gov (United States)

    Wang, Zhilin; Wang, Li; Chen, Zhuang; Ma, Xianyong; Yang, Xuefen; Zhang, Jian; Jiang, Zongyong

    2016-06-28

    Probiotics are considered as the best effective alternatives to antibiotics. The aim of this study was to characterize the probiotic potential of lactobacilli for use in swine farming by using in vitro evaluation methods. A total of 106 lactic acid bacterial isolates, originating from porcine feces, were first screened for the capacity to survive stresses considered important for putative probiotic strains. Sixteen isolates showed notable acid and bile resistance, antibacterial activity, and adherence to intestinal porcine epithelial cells (IPEC-1). One isolate, LR1, identified as Lactobacillus reuteri, was selected for extensive study of its probiotic and functional properties in IPEC-1 cell models. L. reuteri LR1 exhibited good adhesion to IPEC-1 cells and could inhibit the adhesion of enterotoxigenic Escherichia coli (ETEC) to IPEC-1 cells. L. reuteri LR1 could also modulate transcript and protein expression of cytokines involved in inflammation in IPEC-1 cells; the Lactobacillus strain inhibited the ETEC-induced expression of proinflammatory transcripts (IL-6 and TNF-α) and protein (IL-6), and increased the level of anti-inflammatory cytokine (IL-10). Measurement of the permeation of FD-4 showed that L. reuteri LR1 could maintain barrier integrity in monolayer IPEC-1 cells exposed to ETEC. Immunolocalization experiments showed L. reuteri LR1 could also prevent ETEC-induced tight junction ZO-1 disruption. Together, these results indicate that L. reuteri LR1 exhibits desirable probiotic properties and could be a potential probiotic for use in swine production.

  19. Purification and characterization of riproximin from Ximenia americana fruit kernels.

    Science.gov (United States)

    Bayer, Helene; Ey, Noreen; Wattenberg, Andreas; Voss, Cristina; Berger, Martin R

    2012-03-01

    Highly pure riproximin was isolated from the fruit kernels of Ximenia americana, a defined, seasonally available and potentially unlimited herbal source. The newly established purification procedure included an initial aqueous extraction, removal of lipids with chloroform and subsequent chromatographic purification steps on a strong anion exchange resin and lactosyl-Sepharose. Consistent purity and stable biological properties were shown over several purification batches. The purified, kernel-derived riproximin was characterized in comparison to the African plant material riproximin and revealed highly similar biochemical and biological properties but differences in the electrophoresis pattern and mass spectrometry peptide profile. Our results suggest that although the purified fruit kernel riproximin consists of a mixture of closely related isoforms, it provides a reliable basis for further research and development of this type II ribosome inactivating protein (RIP). Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Escherichia coli

    Science.gov (United States)

    Qian, Cunzhong; Hou, Jiafa

    2017-10-01

    The present study aimed to investigate whether Escherichia coli virulence affects the roles of sex hormone receptors in female dogs with simulated pyometra. A total of 33 healthy, nulliparous, crossbred female dogs were divided into four groups, with 10 dogs in each of the three experimental groups and 3 dogs in the control group. Estradiol was administrated to female dogs in group 1 continuously at 0.6-4.8 mg/kg twice daily for 12 days (the dose doubled every three days), followed by intramuscular injection of 0.2-1.8 mg/kg progesterone. The progesterone was administrated with an initial dose of 0.2 µg/kg and increased 0.2 mg/kg every three days, twice daily until the maximum of 1.8 mg/kg for 24 days and maintained at 1.8 mg/kg for 19 days. Progesterone only was administrated at 1.8 mg/kg in group 2 (twice daily) for 55 continuous days and only estradiol was administered with an initial dose of 0.6 µg/kg (dose doubled every 3 days for 12 days) in group 3 twice daily and maintained at 4.8 mg/kg for the following 43 days. A strongly virulent E. coli strain, nau-b, and a weakly virulent strain, nau-i, were screened. On the 12th day of diestrus, 5 female dogs in each of the experimental groups were inoculated with E. coli nau-i strain, while the other five in each group were inoculated with nau-b strain. Histopathological changes of uterine tissues were microscopically observed 50 days after E. coli inoculation and hormone receptor expression levels were detected by quantitative polymerase chain reaction. Simulated pyometra was observed in dogs administrated with progesterone alone or progesterone combined with estradiol. The clinical symptoms and histopathological observation demonstrated that inoculation with strongly virulent E. coli strain, nau-b, caused earlier onset of pyometra symptoms and more severe pyometra symptoms compared with the weakly virulent E. coli strain, nau-i. Furthermore, estrogen and progesterone receptor levels in dogs with pyometra

  1. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin

    Science.gov (United States)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia

    2002-01-01

    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  2. Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag.

    Science.gov (United States)

    Bataille, Laure; Dieryck, Wilfrid; Hocquellet, Agnès; Cabanne, Charlotte; Bathany, Katell; Lecommandoux, Sébastien; Garbay, Bertrand; Garanger, Elisabeth

    2015-06-01

    Elastin-like polypeptides (ELPs) are biodegradable polymers with interesting physico-chemical properties for biomedical and biotechnological applications. The recombinant expression of hydrophobic elastin-like polypeptides is often difficult because they possess low transition temperatures, and therefore form aggregates at sub-ambient temperatures. To circumvent this difficulty, we expressed in Escherichia coli three hydrophobic ELPs (VPGIG)n with variable lengths (n=20, 40, and 60) in fusion with the maltose-binding protein (MBP). Fusion proteins were soluble and yields of purified MBP-ELP ranged between 66 and 127mg/L culture. After digestion of the fusion proteins by enterokinase, the ELP moiety was purified by using inverse transition cycling. The purified fraction containing ELP40 was slightly contaminated by traces of undigested fusion protein. Purification of ELP60 was impaired because of co-purification of the MBP tag during inverse transition cycling. ELP20 was successfully purified to homogeneity, as assessed by gel electrophoresis and mass spectrometry analyses. The transition temperature of ELP20 was measured at 15.4°C in low salt buffer. In conclusion, this method can be used to produce hydrophobic ELP of low molecular mass. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Rapid and simple purification of elastin-like polypeptides directly from whole cells and cell lysates by organic solvent extraction.

    Science.gov (United States)

    VerHeul, Ross; Sweet, Craig; Thompson, David H

    2018-03-26

    Elastin-like polypeptides (ELP) are a well-known class of proteins that are being increasingly utilized in a variety of biomedical applications, due to their beneficial physicochemical properties. A unifying feature of ELP is their demonstration of a sequence tunable inverse transition temperature (Tt) that enables purification using a simple, straightforward process called inverse transition cycling (ITC). Despite the utility of ITC, the process is inherently limited to ELP with an experimentally accessible Tt. Since the underlying basis for the ELP Tt is related to its high overall hydrophobicity, we anticipated that ELP would be excellent candidates for purification by organic extraction. We report the first method for rapidly purifying ELP directly from whole E. coli cells or clarified lysates using pure organic solvents and solvent mixtures, followed by aqueous back extraction. Our results show that small ELP and a large ELP-fusion protein can be isolated in high yield from whole cells or cell lysates with greater than 95% purity in less than 30 min and with very low levels of LPS and DNA contamination.

  4. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  5. Effect of charcoal on water purification

    OpenAIRE

    Suzuki, Hirotaka; Kawahigashi, Tatsuo

    2014-01-01

    [Abstract] A natural basin system purifies water through self-purification, but the water pollution load of a river might exceed its self-purification capacity. Charcoal, which is used for other uses aside from heating, such as air purification, was evaluated experimentally for water quality purification. The experiment described herein is based on simple water quality measurements. Some experimentally obtained results are discussed.

  6. The effectiveness of novel bacteriocin derived from Escherichia coli colonized in the fermented pineapple Ananas comosus (L. Merr. against pathogenic bacteria isolated from aquaculture sites

    Directory of Open Access Journals (Sweden)

    S. W. Lee

    2014-11-01

    Full Text Available Aim: The aim was to evaluate antimicrobial property of bacteriocin isolated from Escherichia coli against pathogenic bacteria from aquaculture sites. Materials and Methods: E. coli was isolated from fermented pineapple Ananas comosus using eosin methylene blue agar. The antimicrobial activity of the isolated E. coli was screened using hole-plate diffusion method. The bacterial strain that showed the widest inhibition zone was selected and grown in tryptic soy broth, followed by partial purification of bacteriocin by using ammonium sulphate. Bacteriocin derived from the E. coli was subjected to the antimicrobial test against 55 bacteria strains namely Aeromonas hydrophila (n=10, Citrobacter freundii (n=5, Edwardsiella tarda (n=10, Flavobacterium spp. (n=10, Pseudomonas spp. (n=10, Vibrio parahaemolyticus (n=5 and Vibrio alginolyticus (n=5 by using twofold broth microdilution method to determine minimum inhibitory concentration (MIC values of the bacteriocin against the tested bacteria. Results: The results of the present study showed that the MIC values of the partially purified bacteriocin against present pathogenic bacteria isolates ranged from 7.81 to 31.25 ppm whereas the MIC values of kanamycin (positive control ranged from 15.63 to 125 ppm. Conclusion: The results of the present study showed the bacteriocin derived from E. coli can control all the present bacterial isolates indicating the huge potential of the bacteriocin as a new antimicrobial agent for aquaculture uses.

  7. Magnetic Purification of Antibodies

    Science.gov (United States)

    Dhadge, Vijaykumar Laxman

    This work aimed at the development of magnetic nanoparticles for antibody purification and at the evaluation of their performance in Magnetic fishing and in a newly developed hybrid technology Magnetic Aqueous Two Phase Systems. Magnetic materials were produced by coprecipitation and solvothermal approaches. Natural polymers such as dextran, extracellular polysaccharide and gum Arabic were employed for coating of iron oxide magnetic supports. Polymer coated magnetic supports were then modified with synthetic antibody specific ligands,namely boronic acid, a triazine ligand (named 22/8) and an Ugi ligand (named A2C7I1). To optimize the efficacy of magnetic nanoparticles for antibody magnetic fishing, various solutions of pure and crude antibody solutions along with BSA as a non-specific binding protein were tested. The selectivity of magnetic nanoparticle for antibody, IgG, was found effective with boronic acid and ligand 22/8. Magnetic supports were then studied for their performance in high gradient magnetic separator for effective separation capability as well as higher volume handling capability. The magnetic materials were also supplemented to aqueous two phase systems, devising a new purification technology. For this purpose, magnetic particles modified with boronic acid were more effective. This alternative strategy reduced the time of operation,maximized separation capability (yield and purity), while reducing the amount of salt required. Boronic acid coated magnetic particles bound 170 +/- 10 mg hIgG/g MP and eluted 160 +/- 5 mg hIgG/g MP, while binding only 15 +/- 5 mg BSA/g MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 x 105 M-1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed/g MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely

  8. COMPARATIVE PHYSIOCHEMICAL ANALYSIS OF HYDROPHOBINS PRODUCED IN ESCHERICHIA COLI AND PICHIA PASTORIS.

    Science.gov (United States)

    Przylucka, Agnes; Akcapinar, Gunseli Bayram; Bonazza, Klaus; Mello-de-Sousa, Thiago M; Mach-Aigner, Astrid R; Lobanov, Victor; Grothe, Hinrich; Kubicek, Christian P; Reimhult, Erik; Druzhinina, Irina S

    2017-11-01

    Hydrophobins (HFBs) are small surface-active proteins secreted by filamentous fungi. Being amphiphilic, they spontaneously form layers that convert surfaces from hydrophilic to hydrophobic and vice versa. We have compared properties of the class II HFB4 and HFB7 from Trichoderma virens as produced in Escherichia coli and Pichia pastoris. Since the production in E. coli required denaturation/renaturation steps because of inclusion bodies, this treatment was also applied to HFBs produced and secreted in yeast. The protein yields for both systems were similar. Both HFBs produced by E. coli proved less active on PET compared to HFBs produced in P. pastoris. HFBs produced in E. coli decreased the hydrophilicity of glass the most, which correlated with the adsorption of a more dense protein layer on glass compared to HFBs produced in P. pastoris. The hydrophobins produced in P. pastoris formed highly structured monolayers. Layers of hydrophobins produced in E. coli were less prone to self-organization. Our data suggests that irrespective of the production host, the HFBs could be used in various applications that are based on their surface activity. However, the production host and the subsequent purification procedure will influence the stability of HFB layers. In the area of high-value biomedical devices and nanomaterials, where the formation of highly ordered protein monolayers is essential, our results point to P. pastoris as the preferred production host. Furthermore, the choice of an appropriate hydrophobin for a given application appears to be equally important. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Purification and properties of a 3 alpha-hydroxysteroid dehydrogenase of rat liver cytosol and its inhibition by anti-inflammatory drugs.

    OpenAIRE

    Penning, T M; Mukharji, I; Barrows, S; Talalay, P

    1984-01-01

    An NAD(P)-dependent 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) was purified to homogeneity from rat liver cytosol, where it is responsible for most if not all of the capacity for the oxidation of androsterone, 1-acenaphthenol and benzenedihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene). The dehydrogenase has many properties (substrate specificity, pI, Mr, amino acid composition) in common with the dihydrodiol dehydrogenase (EC 1.3.1.20) purified from the same source [Vogel, Bentley...

  10. Escherichia Coli

    Science.gov (United States)

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  11. Acrylic purification and coatings

    International Nuclear Information System (INIS)

    Kuzniak, Marcin

    2011-01-01

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  12. Extraction and purification of formonometin from Trifolium pratense L ...

    African Journals Online (AJOL)

    Extraction and purification of formonometin from Trifolium pratense L: Physicochemical properties of its complex with lecithin. ... that there was no significant difference (p < 0.05) between the peak intensity of the physical mixture and the complex, while FT-IR analysis indicated interaction between formononetin and lecithin.

  13. Properties of the mitochondrial carrier of adenine-nucleotide after purification. Study of the transport protein under isolated form and reincorporated form in phospho-lipidic vesicles

    International Nuclear Information System (INIS)

    Brandolin, Gerard

    1983-01-01

    The first part of this research thesis addresses the reconstitution of the ADP/ATP transport by incorporation of the specific carrier, isolated in presence of detergent, in phospholipids vesicles. Fundamental properties of the reconstituted transport are identical to that of transport in mitochondria, notably as far as the exchange stoichiometry, the turn over and the transport Km are concerned, as well as the asymmetric orientation of the carrier in the membrane. The second part of this research addresses the study of interactions of specific ligands with the ADP/ATP transport protein in presence of detergent. The study of the variations of the intrinsic fluorescence of the isolated ADP/ATP carrier highlights conformational changes exclusively induced by the presence of transportable nucleotides which are modulated in a different manner by carboxy-atractyloside or bongkrekic acid. Moreover, by using the isolated protein, a detailed analysis of binding parameters of fluorescent analogues of ATP is reported [fr

  14. Solubilization and purification of Escherichia coli expressed GST ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Lauroylsarcosine (sarkosyl). Briefly, the cell suspension with inclusion body was added with sarkosyl at a final concentration of. 1.5%. After the disruption of cells, the clarified supernatant containing sarkosyl was added with Triton. X-100 ...

  15. Extraction and purification of plutonium by a tertiary amine

    International Nuclear Information System (INIS)

    Trentinian, M. de; Chesne, A.; Commissariat a l'Energie Atomique, Saclay

    1960-01-01

    Trilaurylamine diluted with a paraffinic solvent (dodecane) was studied as part of the research dealing with the separation and purification of plutonium. The physical properties (solubility of nitrates in the amine as a function of temperature) and the resistance to radiations of this substance were examined. The extraction characteristics of nitric solutions of plutonium, uranium and certain fission products are given as a function of the following factors: concentration of the various ions in solution, valency states. A method of plutonium purification based on these results is presented. (author) [fr

  16. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface.

    Science.gov (United States)

    Montanaro, Jacqueline; Inic-Kanada, Aleksandra; Ladurner, Angela; Stein, Elisabeth; Belij, Sandra; Bintner, Nora; Schlacher, Simone; Schuerer, Nadine; Mayr, Ulrike Beate; Lubitz, Werner; Leisch, Nikolaus; Barisani-Asenbauer, Talin

    2015-01-01

    To target chronic inflammatory ocular surface diseases, a drug delivery platform is needed that is safe, possesses immunomodulatory properties, and can be used either for drug delivery, or as a foreign antigen carrier. A new therapeutic approach that we have previously proposed uses nonliving bacterial ghosts (BGs) as a carrier-delivery system which can be engineered to carry foreign antigens and/or be loaded with therapeutic drugs. The parent strain chosen for development of our BG delivery system is the probiotic Escherichia coli strain Nissle 1917 (EcN), whose intrinsic properties trigger the innate immune system with the flagella and fimbriae used to attach and stimulate epithelial cells. In previous studies, we have shown that EcN BGs are safe for the ocular surface route, but evidence that EcN BGs retain flagella and fimbriae after transformation, has never been visually confirmed. In this study, we used different visualization techniques to determine whether flagella and fimbriae are retained on EcN BGs engineered either for drug delivery or as a foreign antigen carrier. We have also shown by immunoelectron microscopy that EcN retains two foreign antigens after processing to become EcN BGs. Furthermore, we demonstrated that BGs derived from EcN and expressing a foreign antigen attachment to conjunctival epithelial cells in vitro without causing reduced cell viability. These results are an important step in constructing a delivery system based on a nonliving probiotic that is suitable for use in ocular surface diseases pairing immunomodulation and targeted delivery.

  17. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate.

    Science.gov (United States)

    Weber, Eva; Guth, Christina; Weiss, Ingrid M

    2012-01-01

    Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO(3) (-) as the first ionic interaction partner, but not necessarily for Ca(2+). The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals.

  18. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate.

    Directory of Open Access Journals (Sweden)

    Eva Weber

    Full Text Available Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO(3 (- as the first ionic interaction partner, but not necessarily for Ca(2+. The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals.

  19. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    Science.gov (United States)

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  20. Purification and biochemical properties of a thermostable, haloalkaline cellulase fromBacillus licheniformisAMF-07 and its application for hydrolysis of different cellulosic substrates to bioethanol production.

    Science.gov (United States)

    Azadian, Fatemeh; Badoei-Dalfard, Arastoo; Namaki-Shoushtari, Abdolhamid; Hassanshahian, Mehdi

    2016-09-01

    A thermophilic strain AMF-07, hydrolyzing carboxymethylcellulose (CMC) was isolated from Kerman hot spring and was identified as Bacillus licheniformis based on 16S rRNA sequence homology. The carboxymethylcellulase (CMCase) enzyme produced by the B. licheniformis was purified by (NH4)2SO4 precipitation, ion exchange and gel filtration chromatography. The purified enzyme gave a single band on SDS- PAGE with a molecular weight of 37 kDa. The CMCase enzyme was highly active and stable over broad ranges of temperature (40-80ºC), pH (6.0-10.0) and NaCl concentration (10-25%) with an optimum at 70ºC, pH 9.0 and 20% NaCl, which showed excellent thermostable, alkali-stable and halostable properties. Moreover, it displayed high activity in the presence of cyclohexane (134%) and chloroform (120%). Saccharification of rice bran and wheat bran by the CMCase enzyme resulted in respective yields of 24 and 32 g L-1 reducing sugars. The enzymatic hydrolysates of rice bran were then used as the substrate for ethanol production by Saccharomyces cerevisiae . Fermentation of cellulosic hydrolysate using S. cerevisiae , reached maximum ethanol production about 0.125 g g-1 dry substrate (pretreated wheat bran). Thus, the purified cellulase from B. licheniformis AMF-07 utilizing lignocellulosic biomass could be greatly useful to develop industrial processes.

  1. Bromelain: an overview of industrial application and purification strategies.

    Science.gov (United States)

    Arshad, Zatul Iffah Mohd; Amid, Azura; Yusof, Faridah; Jaswir, Irwandi; Ahmad, Kausar; Loke, Show Pau

    2014-09-01

    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.

  2. Enhanced expression of rabies virus surface G-protein in Escherichia coli using SUMO fusion.

    Science.gov (United States)

    Singh, Ankit; Yadav, Dinesh; Rai, Krishan Mohan; Srivastava, Meenal; Verma, Praveen C; Singh, Pradhyumna K; Tuli, Rakesh

    2012-01-01

    Fusion systems are known to increase the expression of difficult to express recombinant proteins in soluble form to facilitate their purification. Rabies glycoprotein was also tough to express at sufficient level in soluble form in both E. coli and plant. The present work was aimed to over-express and purify this membrane protein from soluble extract of E. coli. Fusion of Small Ubiqutin like Modifier (SUMO) with rabies glycoprotein increased ~1.5 fold higher expression and ~3.0 fold solubility in comparison to non-fused in E. coli. The SUMO fusion also simplified the purification process. Previously engineered rabies glycoprotein gene in tobacco plants provides complete protection to mice, but the expression was very low for purification. Our finding demonstrated that the SUMO-fusion was useful for enhancing expression and solubility of the membrane protein and again proves to be a good alternative technology for applications in biomedical and pharmaceutical research.

  3. Purification and properties of a 3 alpha-hydroxysteroid dehydrogenase of rat liver cytosol and its inhibition by anti-inflammatory drugs.

    Science.gov (United States)

    Penning, T M; Mukharji, I; Barrows, S; Talalay, P

    1984-01-01

    An NAD(P)-dependent 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) was purified to homogeneity from rat liver cytosol, where it is responsible for most if not all of the capacity for the oxidation of androsterone, 1-acenaphthenol and benzenedihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene). The dehydrogenase has many properties (substrate specificity, pI, Mr, amino acid composition) in common with the dihydrodiol dehydrogenase (EC 1.3.1.20) purified from the same source [Vogel, Bentley, Platt & Oesch (1980) J. Biol. Chem. 255, 9621-9625]. Since 3 alpha-hydroxysteroids are by far the most efficient substrates, the enzyme is more appropriately designated a 3 alpha-hydroxysteroid dehydrogenase. It also promotes the NAD(P)H-dependent reductions of quinones (e.g. 9,10-phenanthrenequinone, 1,4-benzoquinone), aromatic aldehydes (4-nitrobenzaldehyde) and aromatic ketones (4-nitroacetophenone). The dehydrogenase is not inhibited by dicoumarol, disulfiram, hexobarbital or pyrazole. The mechanism of the powerful inhibition of this enzyme by both non-steroidal and steroidal anti-inflammatory drugs [Penning & Talalay (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4504-4508] was examined with several substrates. Most non-steroidal anti-inflammatory drugs are competitive inhibitors (e.g. Ki for indomethacin, 0.20 microM for 9,10-phenanthrenequinone reduction at pH 6.0, and 0.835 microM for androsterone oxidation at pH 7.0), except for salicylates, which act non-competitively (e.g. Ki for aspirin, 650 microM for androsterone oxidation). The inhibitory potency of these agents falls sharply as the pH is increased from 6 to 9. Most anti-inflammatory steroids are likewise competitive inhibitors, except for the most potent (betamethasone and dexamethasone), which act non-competitively. The enzyme is inhibited competitively by arachidonic acid and various prostaglandins. PMID:6435601

  4. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract.

    Science.gov (United States)

    Kupz, Andreas; Fischer, André; Nies, Dietrich H; Grass, Gregor; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M

    2013-09-01

    Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.

  5. Escherichia coli

    Science.gov (United States)

    Nyanga, Peter Lokamar; Onyuka, Jackson; Webale, Mark Kilongosi; Were, Tom; Budambula, Valentine

    2017-01-01

    In the present study, we investigated the prevalence of E. coli pathotypes and Shigella sero-groups and their antimicrobial profiles among diarrheic children in Nairobi city, Kenya. Although diarrheagenic E. coli pathotypes and Shigella sero-groups are leading causes of diarrhea in children under five years in developing countries, their distribution and antimicrobial resistance vary from place to place and over time in a given region. In a cross-sectional study, we enrolled diarrheic children (n=354) under five years seeking treatment at Mbagathi Hospital, Nairobi city, Kenya,. Stool samples were collected from all children for bacterial culture. Bacterial isolation and identification was performed by conventional microbiological methods. Polymerase chain amplification was used to detect aspU, aggR, andpcvd432 for EAEC, est and elt for ETEC, eae for EPEC, stx for EHEC, and ipaH for EIEC and Shigella species. Antimicrobial profile was determined by disk diffusion method. The prevalence of EAEC, ETEC, EPEC (eae), EIEC (ipaH) was 21.2%, 10.5%, 4.5%, and 0.6%, respectively, while that of mixed infection was 0.6%for ETEC/EAEC and 0.3%for EAEC/EPEC/ETEC. No EHEC strain was isolated. Pathogenetic analysis for EAEC showed that5.9% carried aspU,8.2% possessed both aspU and aggR and 7.1% had a combination of aspU, aggR andpcvd432 while that of ETEC was 2.3% for elt, 6.5% for both elt and est and 1.7% for est. The combination of aspU with aggR, elt and est, and pcvd432 with aggR, aspU and est was 0.3% for each case of ETEC/EAEC mixed infection. The aspU gene co-existed with aggR, pcvd432, eae and elt in the EAEC/EPEC/ETEC mixed infection. The prevalence of S. boydii , S. dysenteriae , S. flexneriand, S. sonnei was 0.8%, 0.6%, 1.7%, and 0.8%, respectively. No E. coli pathotype and shigella co-infection was detected. In addition, both E. coli pathotypes and Shigella species were resistant to ampicillin, trimethoprim/sulfamethoxazole, streptomycin, chloramphenicol and

  6. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  7. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    Directory of Open Access Journals (Sweden)

    Kamela O. Alegre

    2015-03-01

    Full Text Available Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS. Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

  8. Large-scale functional purification of recombinant HIV-1 capsid.

    Directory of Open Access Journals (Sweden)

    Magdeleine Hung

    Full Text Available During human immunodeficiency virus type-1 (HIV-1 virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.

  9. Rapid purification of recombinant histones.

    Science.gov (United States)

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  10. A Phosphorylation Tag for Uranyl Mediated Protein Purification and Photo Assisted Tag Removal

    DEFF Research Database (Denmark)

    Zhang, Qiang; Jørgensen, Thomas. J. D.; Nielsen, Peter E

    2014-01-01

    of enzymes available for this purpose. In the present study, we demonstrate the utility of the divalent uranyl ion in a new procedure for protein purification and tag removal. By employment of a GFP (green florescence protein) recombinant protein we show that uranyl binding to a phosphorylated C-terminal tag......Most protein purification procedures include an affinity tag fused to either the N or C-terminal end of the protein of interest as well as a procedure for tag removal. Tag removal is not straightforward and especially tag removal from the C-terminal end is a challenge due to the characteristics...... enables target protein purification from an E. coli extract by immobilized uranyl affinity chromatography. Subsequently, the tag can be efficiently removed by UV-irradiation assisted uranyl photocleavage. We therefore suggest that the divalent uranyl ion (UO22+) may provide a dual function in protein...

  11. E. Coli and Pregnancy

    Science.gov (United States)

    ... chat Live Help Fact Sheets Share Escherichia coli (E. coli) Friday, 01 September 2017 In every pregnancy, a ... risk. This sheet talks about whether exposure to E. coli may increase the risk for birth defects over ...

  12. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface

    Directory of Open Access Journals (Sweden)

    Montanaro J

    2015-07-01

    Full Text Available Jacqueline Montanaro,1 Aleksandra Inic-Kanada,1 Angela Ladurner,1 Elisabeth Stein,1 Sandra Belij,1 Nora Bintner,1 Simone Schlacher,1 Nadine Schuerer,1 Ulrike Beate Mayr,2 Werner Lubitz,2 Nikolaus Leisch,3 Talin Barisani-Asenbauer11Laura Bassi Centres of Expertise, OCUVAC – Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria; 2BIRD-C GmbH & Co KG, Kritzendorf, Austria; 3Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, AustriaAbstract: To target chronic inflammatory ocular surface diseases, a drug delivery platform is needed that is safe, possesses immunomodulatory properties, and can be used either for drug delivery, or as a foreign antigen carrier. A new therapeutic approach that we have previously proposed uses nonliving bacterial ghosts (BGs as a carrier-delivery system which can be engineered to carry foreign antigens and/or be loaded with therapeutic drugs. The parent strain chosen for development of our BG delivery system is the probiotic Escherichia coli strain Nissle 1917 (EcN, whose intrinsic properties trigger the innate immune system with the flagella and fimbriae used to attach and stimulate epithelial cells. In previous studies, we have shown that EcN BGs are safe for the ocular surface route, but evidence that EcN BGs retain flagella and fimbriae after transformation, has never been visually confirmed. In this study, we used different visualization techniques to determine whether flagella and fimbriae are retained on EcN BGs engineered either for drug delivery or as a foreign antigen carrier. We have also shown by immunoelectron microscopy that EcN retains two foreign antigens after processing to become EcN BGs. Furthermore, we demonstrated that BGs derived from EcN and expressing a foreign antigen attachment to conjunctival epithelial cells in vitro without causing reduced cell viability. These results

  13. Purification of crime scene DNA extracts using centrifugal filter devices.

    Science.gov (United States)

    Norén, Lina; Hedell, Ronny; Ansell, Ricky; Hedman, Johannes

    2013-04-24

    The success of forensic DNA analysis is limited by the size, quality and purity of biological evidence found at crime scenes. Sample impurities can inhibit PCR, resulting in partial or negative DNA profiles. Various DNA purification methods are applied to remove impurities, for example, employing centrifugal filter devices. However, irrespective of method, DNA purification leads to DNA loss. Here we evaluate the filter devices Amicon Ultra 30 K and Microsep 30 K with respect to recovery rate and general performance for various types of PCR-inhibitory crime scene samples. Recovery rates for DNA purification using Amicon Ultra 30 K and Microsep 30 K were gathered using quantitative PCR. Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the general performance and inhibitor-removal properties of the two filter devices. Additionally, the outcome of long-term routine casework DNA analysis applying each of the devices was evaluated. Applying Microsep 30 K, 14 to 32% of the input DNA was recovered, whereas Amicon Ultra 30 K retained 62 to 70% of the DNA. The improved purity following filter purification counteracted some of this DNA loss, leading to slightly increased electropherogram peak heights for blood on denim (Amicon Ultra 30 K and Microsep 30 K) and saliva on envelope (Amicon Ultra 30 K). Comparing Amicon Ultra 30 K and Microsep 30 K for purification of DNA extracts from mock crime scene samples, the former generated significantly higher peak heights for rape case samples (P-values crime scene samples and for consistency between different PCR-based analysis systems, such as quantification and STR analysis. In order to maximize the possibility to obtain complete STR DNA profiles and to create an efficient workflow, the level of DNA purification applied should be correlated to the inhibitor-tolerance of the STR analysis system used.

  14. Purification and physicochemical properties of - amylase from ...

    African Journals Online (AJOL)

    presence of maltose and maltodextrin but not glucose in the starch hydrolysate (2 h of reaction). This result indicated that the amylolytic enzyme of P. americana is an -amylase (an endoamylase). The purified -amylase hydrolysed maltopentose, maltohexose and maltoheptose. Maltose, maltotriose and maltotetrose were not ...

  15. Purification and biochemical properties of carboxylesterase from ...

    African Journals Online (AJOL)

    Carboxylesterase was purified from Fasciola gigantica through ammonium sulfate precipitation, chromatography on DEAE-Sepharose and gel filtration on a sephacryl S300. Three enzymes (EI, EII and EIII) were separated. EII and EIII were purified to homogeneity. The molecular weight of EII and EIII enzyme were 66 and ...

  16. RELIGION AND PURIFICATION OF SOUL

    Directory of Open Access Journals (Sweden)

    Azam Khodashenas Pelko

    2010-11-01

    Full Text Available The Jainism emphasizes three major teachings about the purification of the soul (jiva, Ahimsa, Aparigrapha and anekantwad. Jainism, The focus of this religion has been purification of the soul by means of right conduct, right faith and right knowledge. The ultimate goal of Hinduism is Moksha or liberation (total freedom. In Hinduism, purification of the soul is a goal that one must work to attain. The Buddhism is the science of pursuing the aim of making the human mind perfect, and of purifying the human soul. The knowledge of purifying of the soul and softening of the hearts is as essential for human. They having the correct motivations means purifying our souls from hypocrisy, caprice, and heedlessness. The primary goal of Taoism may be described as the mystical intuition of the Tao, which is the way, the undivided unity, and the ultimate Reality. According to the Christianity access to truth cannot be conceived without purity of the soul

  17. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  18. Partial Purification and Characterization of Extracellular Protease ...

    African Journals Online (AJOL)

    Nigerian Journal of Basic and Applied Sciences ... Purification of the enzyme by gel filtration chromatography on Sephadex G75 following ammonium sulphate precipitation gave 2.26 fold increase in purification with specific activity of 46.13 units/mg protein while purification on Sephadex CM50 resulted in reduced ...

  19. High-throughput purification of recombinant proteins using self-cleaving intein tags.

    Science.gov (United States)

    Coolbaugh, M J; Shakalli Tang, M J; Wood, D W

    2017-01-01

    High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Expression and purification of biologically active recombinant human paraoxonase 1 from a Drosophila S2 stable cell line.

    Science.gov (United States)

    Yun, Hyeongseok; Yu, Jiyeon; Kim, Sumi; Lee, Nari; Lee, Jinhee; Lee, Sungrae; Kim, Nam Doo; Yu, Chiho; Rho, Jaerang

    2017-03-01

    Many pesticides and chemical warfare nerve agents are highly toxic organophosphorus compounds (OPs), which inhibit acetylcholinesterase activity. Human paraoxonase 1 (PON1) has demonstrated significant potential for use as a catalytic bioscavenger capable of hydrolyzing a broad range of OPs. However, there are several limitations to the use of human PON1 as a catalytic bioscavenger, including the relatively difficult purification of PON1 from human plasma and its dependence on the presence of hydrophobic binding partners to maintain stability. Therefore, research efforts to efficiently produce recombinant human PON1 are necessary. In this study, we developed a Drosophila S2 stable cell line expressing recombinant human PON1. The recombinant human PON1 was fused with the human immunoglobulin Fc domain (PON1-hFc) to improve protein stability and purification efficiency. We purified the recombinant human PON1-hFc from the S2 stable cell line and characterized its enzymatic properties for OP hydrolysis. We purified the recombinant human PON1-hFc from the S2 stable cell line and characterized its enzymatic properties for OP hydrolysis compared with those of the recombinant human PON1 derived from E. coli. We observed that the recombinant human PON1-hFc is functionally more stable for OP hydrolyzing activities compared to the recombinant human PON1. The catalytic efficiency of the recombinant PON1-hFc towards diisopropyl fluorophosphate (DFP, 0.26 × 10 6  M -1  min -1 ) and paraoxon hydrolysis (0.015 × 10 6  M -1  min -1 ) was 1.63- and 1.24-fold higher, respectively, than the recombinant human PON1. Thus, we report that the recombinant PON1-hFc exerts hydrolytic activity against paraoxon and DFP. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Combinatorial Method for Overexpression of Membrane Proteins in Escherichia coli*

    Science.gov (United States)

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-01-01

    Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters. PMID:20525689

  2. Combinatorial method for overexpression of membrane proteins in Escherichia coli.

    Science.gov (United States)

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-07-30

    Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.

  3. Online Oxide Contamination Measurement and Purification Demonstration

    Science.gov (United States)

    Bradley, D. E.; Godfroy, T. J.; Webster, K. L.; Garber, A. E.; Polzin, K. A.; Childers, D. J.

    2011-01-01

    Liquid metal sodium-potassium (NaK) has advantageous thermodynamic properties indicating its use as a fission reactor coolant for a surface (lunar, martian) power system. A major area of concern for fission reactor cooling systems is system corrosion due to oxygen contaminants at the high operating temperatures experienced. A small-scale, approximately 4-L capacity, simulated fission reactor cooling system employing NaK as a coolant was fabricated and tested with the goal of demonstrating a noninvasive oxygen detection and purification system. In order to generate prototypical conditions in the simulated cooling system, several system components were designed, fabricated, and tested. These major components were a fully-sealed, magnetically-coupled mechanical NaK pump, a graphite element heated reservoir, a plugging indicator system, and a cold trap. All system components were successfully demonstrated at a maximum system flow rate of approximately 150 cc/s at temperatures up to 550 C. Coolant purification was accomplished using a cold trap before and after plugging operations which showed a relative reduction in oxygen content.

  4. PURIFICATION AND CHARACTERISATION OF ALKALINE ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    phosphatase activity upon phosphate deprivation with much of the enzyme released into the medium during osmotic shock, indicating .... shaking. Protein purification. Three millilitres of overnight culture (400 ml) was harvested by centrifugation at 6000x g for 1 min. The supernatant was decanted and pellet washed twice in ...

  5. Bioinspired Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Alfredo Gonzalez-Perez

    2016-06-01

    Full Text Available Water scarcity issues associated with inadequate access to clean water and sanitation is a ubiquitous problem occurring globally. Addressing future challenges will require a combination of new technological development in water purification and environmental remediation technology with suitable conservation policies. In this scenario, new bioinspired materials will play a pivotal role in the development of more efficient and environmentally friendly solutions. The role of amphiphilic self-assembly on the fabrication of new biomimetic membranes for membrane separation like reverse osmosis is emphasized. Mesoporous support materials for semiconductor growth in the photocatalytic degradation of pollutants and new carriers for immobilization of bacteria in bioreactors are used in the removal and processing of different kind of water pollutants like heavy metals. Obstacles to improve and optimize the fabrication as well as a better understanding of their performance in small-scale and pilot purification systems need to be addressed. However, it is expected that these new biomimetic materials will find their way into the current water purification technologies to improve their purification/removal performance in a cost-effective and environmentally friendly way.

  6. Escherichia coli pathotypes

    Science.gov (United States)

    Escherichia coli strains are important commensals of the intestinal tract of humans and animals; however, pathogenic strains, including diarrhea-inducing E. coli and extraintestinal pathogenic E. coli. Intestinal E. coli pathotypes may cause a dehydrating watery diarrhea, or more severe diseases su...

  7. Antimicrobial properties of lactic acid bacteria and yeast-LAB cultures isolated from traditional fermented milk against pathogenic Escherichia coli and Salmonella enteritidis strains.

    Science.gov (United States)

    Mufandaedza, J; Viljoen, B C; Feresu, S B; Gadaga, T H

    2006-04-15

    The survival and growth of Escherichia coli 3339 and Salmonella enteritidis 949575 isolated from human clinical samples, in milk fermented with lactic acid bacteria (LAB) and yeast strains previously isolated from Zimbabwean naturally fermented milk (NFM) was studied. The LAB starter cultures used were Lactococcus lactis subsp. lactis biovar. diacetylactis C1 alone (C1) or in combination with Candida kefyr 23 (C1/23), L. lactis subsp. lactis Lc261 alone (LC261) or in combination with C. kefyr 23 (Lc261/23). The growth of the same pathogens in milk fermented with a commercial DL culture (CH-N 22) and spontaneously fermented raw milk was also monitored. The C1 and C1/23 cultures significantly (Pfermentation, both E. coli 3339 and S. enteritidis 949575 counts were significantly (Pmilk. However, in naturally fermented milk and the DL cultured milk, both E. coli 3339 and S. enteritidis 949575 grew and reached high populations of about 9 and 8.8 log cfu ml(-1), respectively, after 18 h. When E. coli 3339 was inoculated into previously fermented milk, the viable counts were significantly (Pfermented NFM and the commercial DL- (CH-N 22) cultured milk. The C1 strain, therefore, offered the best protection against the pathogens. Its inhibitory effect was mainly related to fast acid production.

  8. Nanocellulose-Based Materials for Water Purification.

    Science.gov (United States)

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P

    2017-03-05

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present-in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  9. Nanocellulose-Based Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Hugo Voisin

    2017-03-01

    Full Text Available Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  10. Functional expression of spider neurotoxic peptide huwentoxin-I in E. coli.

    Directory of Open Access Journals (Sweden)

    Er Meng

    Full Text Available The coding sequence of huwentoxin-I, a neurotoxic peptide isolated from the venom of the Chinese spider Ornithoctonus huwena, was amplified by PCR using the cDNA library constructed from the spider venom glands. The cloned fragment was inserted into the expression vector pET-40b and transformed into the E. coli strain BL21 (DE3. The expression of a soluble fusion protein, disulfide interchange protein (DsbC-huwentoxin-I, was auto-induced in the periplasm of E. coli in the absence of IPTG. After partial purification using a Ni-NTA column, the expressed fusion protein was digested using enterokinase to release heteroexpressed huwentoxin-I and was further purified using RP-HPLC. The resulting peptide was subjected to gel electrophoresis and mass spectrometry analysis. The molecular weight of the heteroexpressed huwentoxin-I was 3750.69, which is identical to that of the natural form of the peptide isolated from spider venom. The physiological properties of the heteroexpressed huwentoxin-I were further analyzed using a whole-cell patch clamp assay. The heteroexpressed huwentoxin-I was able to block currents generated by human Na(v1.7 at an IC₅₀ of 640 nmole/L, similar to that of the natural huwentoxin-I, which is 630 nmole/L.

  11. Functional Expression of Spider Neurotoxic Peptide Huwentoxin-I in E. coli

    Science.gov (United States)

    Zhang, Hui; Liu, Yan-Bo; Peng, Kuan; Liang, Songping; Zhang, Dong-Yi

    2011-01-01

    The coding sequence of huwentoxin-I, a neurotoxic peptide isolated from the venom of the Chinese spider Ornithoctonus huwena, was amplified by PCR using the cDNA library constructed from the spider venom glands. The cloned fragment was inserted into the expression vector pET-40b and transformed into the E. coli strain BL21 (DE3). The expression of a soluble fusion protein, disulfide interchange protein (DsbC)-huwentoxin-I, was auto-induced in the periplasm of E. coli in the absence of IPTG. After partial purification using a Ni-NTA column, the expressed fusion protein was digested using enterokinase to release heteroexpressed huwentoxin-I and was further purified using RP-HPLC. The resulting peptide was subjected to gel electrophoresis and mass spectrometry analysis. The molecular weight of the heteroexpressed huwentoxin-I was 3750.69, which is identical to that of the natural form of the peptide isolated from spider venom. The physiological properties of the heteroexpressed huwentoxin-I were further analyzed using a whole-cell patch clamp assay. The heteroexpressed huwentoxin-I was able to block currents generated by human Nav1.7 at an IC50 of 640 nmole/L, similar to that of the natural huwentoxin-I, which is 630 nmole/L. PMID:21731778

  12. Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin.

    Science.gov (United States)

    Wang, Lang-Hong; Zeng, Xin-An; Wang, Man-Sheng; Brennan, Charles S; Gong, Deming

    2018-02-01

    In this work, modifications of cell membrane fluidity, fatty acid composition and fatty acid biosynthesis-associated genes of Escherichia coli ATCC 25922 (E. coli) and Staphylococcus aureus ATCC 6538 (S. aureus), during growth in the presence of naringenin (NAR), one of the natural antibacterial components in citrus plants, was investigated. Compared to E. coli, the growth of S. aureus was significantly inhibited by NAR in low concentrations. Combination of gas chromatography-mass spectrometry with fluorescence polarization analysis revealed that E. coli and S. aureus cells increased membrane fluidity by altering the composition of membrane fatty acids after exposure to NAR. For example, E. coli cells produced more unsaturated fatty acids (from 18.5% to 43.3%) at the expense of both cyclopropane and saturated fatty acids after growth in the concentrations of NAR from 0 to 2.20mM. For S. aureus grown with NAR at 0 to 1.47mM, the relative proportions of anteiso-branched chain fatty acids increased from 37.2% to 54.4%, whereas iso-branched and straight chain fatty acids decreased from 30.0% and 33.1% to 21.6% and 23.7%, respectively. Real time q-PCR analysis showed that NAR at higher concentrations induced a significant down-regulation of fatty acid biosynthesis-associated genes in the bacteria, with the exception of an increased expression of fabA gene. The minimum inhibitory concentration (MIC) of NAR against these two bacteria was determined, and both of bacteria underwent morphological changes after exposure to 1.0 and 2.0 MIC. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. In-vitro binding assay study of 99mTc-flouroquinolones with E. coli ...

    African Journals Online (AJOL)

    Muhammad Abdul Qadir

    2014-10-28

    Oct 28, 2014 ... and dead Escherichia coli, Salmonella and Ps. aeruginosa bac- terial strains. 2. Material and methods. All reagents and solvents used in this study were of reagent grade purity and were used without further purification. All apparatus used were freshly autoclaved and were free from any micro-organisms.

  14. Escherichia coli Phosphoenolpyruvate Dependent Phosphotransferase System. Copurification of HPr and α1-6 Glucan

    NARCIS (Netherlands)

    Dooijewaard, G.; Roossien, F.F.; Robillard, G.T.

    1979-01-01

    A rapid, high-yield procedure has been developed for the purification of HPr from the Escherichia coli phosphoenolpyruvate dependent phosphotransferase system. During this procedure, the protein copurifies with a 2500-dalton homopolysaccharide which we have identified as α1-6 glucan. The results of

  15. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli

    DEFF Research Database (Denmark)

    Sørensen, Hans; Mortensen, Kim

    2005-01-01

    for the production of protein preparations bound for downstream purification and processing. Eschericia coli is a frequently used host, since it facilitates protein expression by its relative simplicity, its inexpensive and fast high density cultivation, the well known genetics and the large number of compatible...... protein in an unmodified form or by applying modifications using expressivity and solubility tags....

  16. Decolorization of dyes by recombinase CotA from Escherichia coli ...

    African Journals Online (AJOL)

    The CotA laccase could efficiently decolorize anthraquinone and azo dyes in 24 h. The decolourization capacity of this recombinant laccase suggested that it could be a useful biocatalyst for the treatment of dye-containing effluents. Key words: Recombinant CotA laccase, Escherichia coli, purification, dye decolorization.

  17. Recombinant protein production data after expression in the bacterium Escherichia coli

    Directory of Open Access Journals (Sweden)

    J. Enrique Cantu-Bustos

    2016-06-01

    Full Text Available Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]. Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP tagged with CusF, using Ag(I metal affinity chromatography.

  18. Tensile deformation of polytetrafluoroethylene hollow fiber membranes used for water purification.

    Science.gov (United States)

    Yonezu, Akio; Iio, Shouichi; Itonaga, Takehiro; Yamamura, Hiroshi; Chen, Xi

    2014-01-01

    The tensile deformation behavior of polytetrafluoroethylene (PTFE) hollow fiber membranes is studied. PTFE membranes at present have sub-micron pores with an open cell structure, which plays a critical role in water purification. One of the main challenges in water purification is that the pore structure becomes covered with biofouling, leading to blocked pores. To maintain the capacity for water purification, physical cleaning along with mechanical deformation is usually conducted. Thus, it is crucial to understand the mechanical properties, in particular the deformation behavior, of the membrane fibers. Using uniaxial tension experiments, we established a fundamental discrete model to describe the deformation behavior of a porous structure using a finite element method. The present model enables the prediction of the macroscopic deformation behavior of the membrane, by taking into account the changes of pore structure. The insight may be useful for porous membrane fabrication and provide insights for the reliable operation of water purification.

  19. Statistical and Judgmental Criteria for Scale Purification

    DEFF Research Database (Denmark)

    Wieland, Andreas; Durach, Christian F.; Kembro, Joakim

    2017-01-01

    of scale purification, to critically analyze the current state of scale purification in supply chain management (SCM) research and to provide suggestions for advancing the scale-purification process. Design/methodology/approach A framework for making scale-purification decisions is developed and used......Purpose “Scale purification” – the process of eliminating items from multi-item scales – is widespread in empirical research, but studies that critically examine the implications of this process are scarce. The goals of this research are threefold: to discuss the methodological underpinning...... to analyze and critically reflect on the application of scale purification in leading SCM journals. Findings This research highlights the need for rigorous scale-purification decisions based on both statistical and judgmental criteria. By applying the proposed framework to the SCM discipline, a lack...

  20. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  1. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Harlow, Kenneth W.; King, Cheryl J.

    1986-01-01

    Phosphoribosylpyrophosphate (P-Rib-PP) synthetase of Escherichia coli has been purified to near homogeneity from a strain harboring the prs gene, encoding P-Rib-PP synthetase, on a multicopy plasmid. Analysis of the enzyme showed that it required inorganic phosphate for activity and for stability...... the UAA translation stop codon, within a Thy-rich region following an inverted repeat sequence, indicative of an rho-independent transcription terminator....

  2. Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli

    Science.gov (United States)

    Bhat, Supriya V.; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E. S.

    2018-01-01

    Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro, and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force – laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage. PMID:29472899

  3. Technological assumptions for biogas purification.

    Science.gov (United States)

    Makareviciene, Violeta; Sendzikiene, Egle

    2015-01-01

    Biogas can be used in the engines of transport vehicles and blended into natural gas networks, but it also requires the removal of carbon dioxide, hydrogen sulphide, and moisture. Biogas purification process flow diagrams have been developed for a process enabling the use of a dolomite suspension, as well as for solutions obtained by the filtration of the suspension, to obtain biogas free of hydrogen sulphide and with a carbon dioxide content that does not exceed 2%. The cost of biogas purification was evaluated on the basis of data on biogas production capacity and biogas production cost obtained from local water treatment facilities. It has been found that, with the use of dolomite suspension, the cost of biogas purification is approximately six times lower than that in the case of using a chemical sorbent such as monoethanolamine. The results showed travelling costs using biogas purified by dolomite suspension are nearly 1.5 time lower than travelling costs using gasoline and slightly lower than travelling costs using mineral diesel fuel.

  4. Generation of monoclonal antibodies for the assessment of protein purification by recombinant ribosomal coupling

    DEFF Research Database (Denmark)

    Kristensen, Janni; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk

    2005-01-01

    -His is among the fusion proteins used in our previous study for ribosomal coupling of C-terminally His-tagged green fluorescent protein. To assess the efficiency of separation of target protein from ribosomes, by site-specific proteolysis, we required monoclonal antibodies directed against rpL23 and GFP. We......We recently described a conceptually novel method for the purification of recombinant proteins with a propensity to form inclusion bodies in the cytoplasm of Escherichia coli. Recombinant proteins were covalently coupled to the E. coli ribosome by fusing them to ribosomal protein 23 (rpL23......) followed by expression in an rpL23 deficient strain of E. coli. This allowed for the isolation of ribsomes with covalently coupled target proteins which could be efficiently purified by centrifugation after in vitro proteolysis at a specific site incorporated between rpL23 and the target protein. rpL23-GFP...

  5. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli

    Science.gov (United States)

    2013-01-01

    Background Oats contain hydroxycinnamoyl anthranilates, also named avenanthramides (Avn), which have beneficial health properties because of their antioxidant, anti-inflammatory, and antiproliferative effects. The microbial production of hydroxycinnamoyl anthranilates is an eco-friendly alternative to chemical synthesis or purification from plant sources. We recently demonstrated in yeast (Saccharomyces cerevisiae) that coexpression of 4-coumarate: CoA ligase (4CL) from Arabidopsis thaliana and hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT) from Dianthus caryophyllusenabled the biological production of several cinnamoyl anthranilates upon feeding with anthranilate and various cinnamates. Using engineering strategies to overproduce anthranilate and hydroxycinnamates, we describe here an entire pathway for the microbial synthesis of two Avns from glucose in Escherichia coli. Results We first showed that coexpression of HCBT and Nt4CL1 from tobacco in the E. coli anthranilate-accumulating strain W3110 trpD9923 allowed the production of Avn D [N-(4′-hydroxycinnamoyl)-anthranilic acid] and Avn F [N-(3′,4′-dihydroxycinnamoyl)-anthranilic acid] upon feeding with p-coumarate and caffeate, respectively. Moreover, additional expression in this strain of a tyrosine ammonia-lyase from Rhodotorula glutinis (RgTAL) led to the conversion of endogenous tyrosine into p-coumarate and resulted in the production of Avn D from glucose. Second, a 135-fold improvement in Avn D titer was achieved by boosting tyrosine production using two plasmids that express the eleven genes necessary for tyrosine synthesis from erythrose 4-phosphate and phosphoenolpyruvate. Finally, expression of either the p-coumarate 3-hydroxylase Sam5 from Saccharothrix espanensis or the hydroxylase complex HpaBC from E. coli resulted in the endogenous production of caffeate and biosynthesis of Avn F. Conclusion We established a biosynthetic pathway for the microbial

  6. Influence of the drying method in chitosans purification step

    International Nuclear Information System (INIS)

    Fonseca, Ana C.M.; Batista, Jorge G.S.; Bettega, Antonio; Lima, Nelson B. de

    2015-01-01

    Currently, the study of extracellular biopolymers properties has received prominence for being easy extraction and purification. Chitosan has been an attractive proposition for applications in various fields such as engineering, biotechnology, medicine and pharmacology. For such applications, it is necessary purification of chitosan to obtain a product more concentrated and free of undesirable impurities. However, at this stage of the process of obtaining the biopolymer may occur morphological and physicochemical changes. This study evaluated the influence of the drying process after purification of a commercial chitosan sample and the importance of this step and its cost/benefit in applications requiring a high degree of purity. The method of drying influenced in the organoleptic properties and in the main characteristics of material. Analysis of the crystal structure by X-ray diffraction showed that the degree of crystallinity, X (%), in the purified chitosan samples was lower when compared with the unpurified sample. The degree of acetylation, DA (%), was analyzed by spectroscopy infrared with no significant changes on the three drying methods assessed, unlike the viscosimetric molecular weight, M v , determined by capillary viscometry. (author)

  7. Comparing Russian and Finnish standards of water purification

    OpenAIRE

    Maria, Pupkova

    2012-01-01

    The subject of this thesis is water purification. The first aim of this thesis is to consider different ways of water purification. The second aim is to compare Finnish and Russian standards of water purification. The third one is to show water purification methods on the pattern of Mikkeli water purification plan. Water purification methods of water intended for human consumption will be described.Combined tables will be done according to the quality requirement of drinking water of both,...

  8. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommi A.; Tanner, John J., E-mail: tannerjj@missouri.edu [Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  9. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    International Nuclear Information System (INIS)

    White, Tommi A.; Tanner, John J.

    2005-01-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ 1 -pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2 1 2 1 2 1 , with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative

  10. Purification of bacteriophage M13 by anion exchange chromatography.

    Science.gov (United States)

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Uranium hexafluoride purification; Purificacao de hexafluoreto de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Eneas F. de

    1986-07-01

    Uranium hexafluoride might contain a large amount of impurities after manufacturing or handling. Three usual methods of purification of uranium hexafluoride were presented: selective sorption, sublimation, and distillation. Since uranium hexafluoride usually is contaminated with hydrogen fluoride, a theoretical study of the phase equilibrium properties was performed for the binary system UF{sub 6}-HF. A large deviation from the ideal solution behaviour was observed. A purification unity based on a constant reflux batch distillation process was developed. A procedure was established in order to design the re boiler, condenser and packed columns for the UF{sub 6}-HF mixture separation. A bench scale facility for fractional distillation of uranium hexafluoride was described. Basic operations for that facility and results extracted from several batches were discussed. (author)

  12. Antibody Fragments and Their Purification by Protein L Affinity Chromatography

    Directory of Open Access Journals (Sweden)

    Gustav Rodrigo

    2015-09-01

    Full Text Available Antibodies and related proteins comprise one of the largest and fastest-growing classes of protein pharmaceuticals. A majority of such molecules are monoclonal antibodies; however, many new entities are antibody fragments. Due to their structural, physiological, and pharmacological properties, antibody fragments offer new biopharmaceutical opportunities. In the case of recombinant full-length antibodies with suitable Fc regions, two or three column purification processes centered around Protein A affinity chromatography have proven to be fast, efficient, robust, cost-effective, and scalable. Most antibody fragments lack Fc and suitable affinity for Protein A. Adapting proven antibody purification processes to antibody fragments demands different affinity chromatography. Such technology must offer the unit operation advantages noted above, and be suitable for most of the many different types of antibody fragments. Protein L affinity chromatography appears to fulfill these criteria—suggesting its consideration as a key unit operation in antibody fragment processing.

  13. Purification of uranium metal

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Shikama, Tatsuo; Ochiai, Akira.

    1993-01-01

    We developed the system for purifying uranium metal and its metallic compounds and for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. The degree of the purity of uranium metal was examined by the conventional electrical resistivity measurement and by the chemical analysis using the inductive coupled plasma emission spectrometry (ICP). The results show that some metallic impurities evaporated by the r.f. heating and other usual metallic impurities moved to the end of a rod with a molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained high purified uranium metal of 99.99% up with regarding to metallic impurities. The maximum residual resistivity ratio, the r.r.r., so far obtained was about 17-20. Using the purified uranium, we are attempting to grow a highly pure uranium-titanium single crystals. (author)

  14. Recombinant Protein Expression in Escherichia coli (E.coli): What We Need to Know.

    Science.gov (United States)

    Hayat, Seyed Mohammad Gheibi; Farahani, Najmeh; Golichenari, Behrouz; Sahebkar, Amir Hosein

    2018-01-31

    Host, vector, and culture conditions (including cultivation media) are considered among the three main elements contributing to a successful production of recombinant proteins. Accordingly, one of the most common hosts to produce recombinant therapeutic proteins is Escherichia coli. A comprehensive literature review was performed to identify important factors affecting production of recombinant proteins in Escherichia coli. Escherichia coli is taken into account as the easiest, quickest, and cheapest host with a fully known genome. Thus, numerous modifications have been carried out on Escherichia coli to optimize it as a good candidate for protein expression and; as a result, several engineered strains of Escherichia coli have been designed. In general; host strain, vector, and cultivation parameters are recognized as crucial ones determining success of recombinant protein expression in Escherichia coli. In this review, the role of host, vector, and culture conditions along with current pros and cons of different types of these factors leading to success of recombinant protein expression in Escherichia coli were discussed. Successful protein expression in Escherichia coli necessitates a broad knowledge about physicochemical properties of recombinant proteins, selection among common strains of Escherichia coli and vectors, as well as factors related to media including time, temperature, and inducer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. E. Coli Infections

    Science.gov (United States)

    E. coli is the name of a type of bacteria that lives in your intestines. Most types of E. coli are harmless. However, some types can make you ... type causes travelers' diarrhea. The worst type of E. coli causes bloody diarrhea, and can sometimes cause kidney ...

  16. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein.

    Science.gov (United States)

    Karakus, Cebrail; Uslu, Merve; Yazici, Duygu; Salih, Barik A

    2016-05-15

    Immobilized metal affinity chromatography (IMAC) technique is used for fast and reliable purification of histidine(His)-tagged recombinant proteins. The technique provides purification under native and denaturing conditions. The aim of this study is to evaluate three commercially available IMAC kits (Thermo Scientific, GE Healthcare and Qiagen) for the purification of a 6xHis-tagged recombinant CagA (cytotoxin-associated gene A) protein from IPTG-induced Escherichia coli BL21(DE3) culture. The kits were tested according to the manufacturer instructions and the protein was purified with only GE Healthcare and Qiagen kits under denaturing conditions. 1% (w/v) SDS was used as denaturing agent in PBS instead of extraction reagent of Thermo Scientific kit to lyse bacterial cells from 100ml culture. The 6xHis-tagged recombinant protein was purified by the three kits equally. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Continuous Purification of Colloidal Quantum Dots in Large-Scale Using Porous Electrodes in Flow Channel

    Science.gov (United States)

    Lim, Hosub; Woo, Ju Young; Lee, Doh Chang; Lee, Jinkee; Jeong, Sohee; Kim, Duckjong

    2017-11-01

    Colloidal Quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.

  18. Engineering a recyclable elastin-like polypeptide capturing scaffold for non-chromatographic protein purification.

    Science.gov (United States)

    Liu, Fang; Chen, Wilfred

    2013-01-01

    Previously, we reported a non-chromatographic protein purification method exploiting the highly specific interaction between the dockerin and cohesin domains from Clostridium thermocellum and the reversible aggregation property of elastin-like polypeptide (ELP) to provide fast and cost-effective protein purification. However, the bound dockerin-intein tag cannot be completely dissociated from the ELP-cohesin capturing scaffold due to the high binding affinity, resulting in a single-use approach. In order to further reduce the purification cost by recycling the ELP capturing scaffold, a truncated dockerin domain with the calcium-coordinating function partially impaired was employed. We demonstrated that the truncated dockerin domain was sufficient to function as an effective affinity tag, and the target protein was purified directly from cell extracts in a single binding step followed by intein cleavage. The efficient EDTA-mediated dissociation of the bound dockerin-intein tag from the ELP-cohesin capturing scaffold was realized, and the regenerated ELP capturing scaffold was reused in another purification cycle without any decrease in the purification efficiency. This recyclable non-chromatographic based affinity method provides an attractive approach for efficient and cost-effective protein purification. © 2013 American Institute of Chemical Engineers.

  19. Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs

    Science.gov (United States)

    2014-01-01

    Background Lipases including the lipase from Burkholderia cepacia are in a main focus in biotechnology research since many years because of their manifold possibilities for application in industrial processes. The application of Burkholderia cepacia lipase for these processes appears complicated because of the need for support by a chaperone, the lipase specific foldase. Purification and reconstitution protocols therefore interfere with an economic implementation of such enzymes in industry. Autodisplay is a convenient method to express a variety of passenger proteins on the surface of E. coli. This method makes subsequent purification steps to obtain the protein of interest unnecessary. If enzymes are used as passengers, the corresponding cells can simply be applied as whole cell biocatalysts. Furthermore, enzymes surface displayed in this manner often acquire stabilization by anchoring within the outer membrane of E. coli. Results The lipase and its chaperone foldase from B. cepacia were co-expressed on the surface of E. coli via autodisplay. The whole cell biocatalyst obtained thereby exhibited an enzymatic activity of 2.73 mU mL-1 towards the substrate p-nitrophenyl palmitate when applied in an OD578 =1. Outer membrane fractions prepared from the same culture volume showed a lipase activity of 4.01 mU mL-1. The lipase-whole cell biocatalyst as well as outer membrane preparations thereof were used in a standardized laundry test, usually adopted to determine the power of washing agents. In this test, the lipase whole cell biocatalyst and the membrane preparation derived thereof exhibited the same lipolytic activity as the purified lipase from B. cepacia and a lipase preparation which is already applied in commercial washing agents. Conclusions Co-expression of both the lipase and its chaperone foldase on the surface of E. coli yields a lipid degrading whole cell biocatalyst. Therefore the chaperone supported folding process, absolutely required for the lipolytic

  20. Investigation of potential antibacterial properties of methanol extracts from fungus Ganoderma applanatum.

    Science.gov (United States)

    Moradali, Mohammad-Fata; Mostafavi, Hossien; Hejaroude, Ghorban-Ali; Tehrani, Abbas Sharifi; Abbasi, Mehrdad; Ghods, Shirin

    2006-01-01

    In this study we searched for antibacterial compounds in methanol extracts of three layers (tube layer, context and cutis) of Ganoderma applanatum fruit body against Bacillus subtilis ATCC 6051 as a gram-positive bacterium and Escherichia coli ATCC 25922 and Pseudomonas syringae pv. syringae DPIC 219 as gram-negative bacteria. We found antibacterial properties in all three layers only against gram-negative bacteria. The fractions were isolated and purified by thin layer chromatography (TLC) and high-performance liquid chromatography. After purification, four major compounds - A, B, C and D - were tested for antibacterial properties, and B and D were found to possess antibacterial properties. The results of TLC and spectral data, including mass spectra and (1)H NMR of compounds B and C, showed that they were saturated fatty acids and compound D was palmitic acid (hexadecanoic acid) (16:0).

  1. Mild and cost-effective green fluorescent protein purification employing small synthetic ligands.

    Science.gov (United States)

    Pina, Ana Sofia; Dias, Ana Margarida G C; Ustok, Fatma Isik; El Khoury, Graziella; Fernandes, Cláudia S M; Branco, Ricardo J F; Lowe, Christopher R; Roque, A Cecília A

    2015-10-30

    The green fluorescent protein (GFP) is a useful indicator in a broad range of applications including cell biology, gene expression and biosensing. However, its full potential is hampered by the lack of a selective, mild and low-cost purification scheme. In order to address this demand, a novel adsorbent was developed as a generic platform for the purification of GFP or GFP fusion proteins, giving GFP a dual function as reporter and purification tag. After screening a solid-phase combinatorial library of small synthetic ligands based on the Ugi-reaction, the lead ligand (A4C7) selectively recovered GFP with 94% yield and 94% purity under mild conditions and directly from Escherichia coli extracts. Adsorbents containing the ligand A4C7 maintained the selectivity to recover other proteins fused to GFP. The performance of A4C7 adsorbents was compared with two commercially available methods (immunoprecipitation and hydrophobic interaction chromatography), confirming the new adsorbent as a low-cost viable alternative for GFP purification. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells.

    Science.gov (United States)

    Scotter, Andrew J; Kuntz, Douglas A; Saul, Michelle; Graham, Laurie A; Davies, Peter L; Rose, David R

    2006-06-01

    We present a system for the expression and purification of recombinant sea raven type II antifreeze protein, a cysteine-rich, C-type lectin-like globular protein that has proved to be a difficult target for recombinant expression and purification. The cDNAs encoding the pro- and mature forms of the sea raven protein were cloned into a modified pMT Drosophila expression vector. These constructs produced N-terminally His(6)-tagged pro- and mature forms of the type II antifreeze protein under the control of a metallothionein promoter when transfected into Drosophila melanogaster S2 cells. Upon induction of stable cell lines the two proteins were expressed at high levels and secreted into the medium. The proteins were then purified from the cell medium in a simple and rapid protocol using immobilized metal affinity chromatography and specific protease cleavage by tobacco etch virus protease. The proteins demonstrated antifreeze activity indistinguishable from that of wild-type sea raven antifreeze protein purified from serum as illustrated by ice affinity purification, ice crystal morphology, and their ability to inhibit ice crystal growth. This expression and purification system gave yields of 95 mg/L of fully active mature sea raven type II AFP and 9.6 mg/L of the proprotein. This surpasses all previous attempts to express this protein in Escherichia coli, baculovirus-infected fall armyworm cells and Pichia pastoris and will provide sufficient protein for structural analysis.

  3. Commercial Charcoal Characterisation For Water Purification

    International Nuclear Information System (INIS)

    Saryati; Sumardjo; Sutisna; Handayani, Ari; Suprapti, Siti

    2001-01-01

    In order to provide a drinking water purification substance, has been studied the charcoal characterisation that based on a porous profile and an adsorption properties of the charcoal. There were using the commercial charcoal like wood charcoals, coconut shell charcoals and activated charcoals. The porous profile was studied by using an electron microscope SEM-EDX and the adsorption properties was studied by using the water sample simulation that contains several metal ions. The concentration of all ions was ten times greater that the maximum ions concentration that permissible in the drinking water. From the grain surface microscopic analysis was shown that the pore structure of the wood charcoal was more regular than the coconut shell charcoal. Mean while the activated charcoal has pore more than wood and coconut shell charcoal. Grains size was not an adsorption parameter. The absorptivitas charcoal was affected by pH solution, but this effect was not linear proportion. There are no significant deference in the adsorptivitas among the tree charcoals that has been studied for Al 3 + , Cr 3+ , Ag 1 +, and Pb 2+ ions the adsorption was large enough (> 60%), for Mn 2+ , Fe 3+ , Se 4+ , Cd 2+ and Ba 2+ ions was 20%-60% dan for Mg 2+ , Na 1+ , Ca 2+ , and Zn 2+ ions was less than 20 %. Generally the wood and coconut shell charcoal absorptivity in the pH 4 solutions was lower than in the pH 5-7 solutions

  4. Purification of rhamnolipid using colloidal magnetic nanoparticles ...

    African Journals Online (AJOL)

    Phospholipid-coated colloidal magnetic nanoparticles with mean magnetite core size of 9 nm are shown to be effective ion exchange media for the recovery and purification of Rhaminolipid from culture mixtures. These particles have high adsorption capacity for purification (an order of magnitude larger than the best ...

  5. Purification and characterization of amidase from acrylamide ...

    African Journals Online (AJOL)

    An amidase from a newly isolated acrylamide-degrading bacterium Burkholderia sp. strain DR.Y27 was purified to homogeneity by a combination of anion exchange and gel filtration chromatography. The purification strategy achieved 11.15 of purification fold and a yield of 1.55%. The purified amidase consisted of four ...

  6. Construction and immunogenic properties of a chimeric protein comprising CfaE, CfaB and LTB against Enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Gheibi Hayat, Seyed-Mohammad; Mousavi Gargari, Seyed-Latif; Nazarian, Shahram

    2016-11-01

    ETEC (Enterotoxigenic Escherichia coli) is a major cause of diarrhea in developing countries and children. ETEC has two virulence factors including colonization factors antigen (CFA) and labile enterotoxins (LTs). CFA/I consists the major pilin subunit CfaB and a minor adhesive subunit, CfaE. In this study a tripartite fusion protein containing CfaB, CfaE and LTB was designed. In silico analysis of the tertiary structure of the chimeric protein showed a protein with three main domains linked together with linkers. Linear and conformational B-cell epitopes were identified. A chimera consisting cfaB, cfaE and ltB(BET)was then synthesized with E. coli codon bias in pUC57 and sub cloned into pET32 vector. Recombinant protein was expressed and purified by affinity chromatography and confirmed by western blotting. Mice were immunized with recombinant protein and the antibody titer and specificity of the sera were analyzed by ELISA. The efficiency of the immune sera against ETEC was evaluated by binding assay and GM1-ELISA. VaxiJen analysis of the protein showed high antigenicity. Post-immune sera contained high titers of anti-BET IgG. Pretreatment of ETEC cells with sera from immunized mice decreased their ability to adhere to cells of the human colon adenocarcinoma cell line HT29. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  7. Ion exchange purification of scandium

    Science.gov (United States)

    Herchenroeder, L.A.; Burkholder, H.R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.

  8. Method for purification of gases

    Energy Technology Data Exchange (ETDEWEB)

    Hastrup, N.E.

    1981-11-17

    The present invention is directed to a method for selective purification of gases. The method comprises feeding an exhaust gas containing a solid impurity and a gaseous impurity to a separator. A substantial portion of the solid impurity is separated. Then, the partially-purified gas is fed to a spray dryer. That gas is sprayed with an absorption agent to separate gaseous impurities. Then, the further, partially-purified gas is fed to another separator to separate remaining solid impurity. An exhaust gas which is substantially free of solid and gaseous impurities and fly ash having a desired quality are recovered.

  9. THE PURIFICATION OF HYPERTENSIN I

    Science.gov (United States)

    Skeggs, Leonard T.; Marsh, Walton H.; Kahn, Joseph R.; Shumway, Norman P.

    1954-01-01

    The purification of hypertensin I has been described. The final product which is four times as powerful a pressor agent as l-arterenol, is obtained with an over-all recovery of 40 per cent. The product consists of a single component in countercurrent distribution, having a nitrogen content of 15.97 per cent and a specific activity of 7050 Goldblatt units per mg. of N or 1125 units per mg. of solid. Acid hydrolysis and paper chromatography indicate in a preliminary fashion that there are about nine amino acids present in the intact polypeptide. PMID:13201713

  10. Preparative Purification of Liriodendrin from Sargentodoxa cuneata by Macroporous Resin

    Science.gov (United States)

    Li, Di-Hua; Wang, Yan; Lv, Yuan-Shan; Liu, Jun-Hong; Yang, Lei; Zhang, Shu-Kun; Zhuo, Yu-Zhen

    2015-01-01

    The preparative purification of liriodendrin from Sargentodoxa cuneata using macroporous resin combined with crystallization process was evaluated. The properties of adsorption/desorption of liriodendrin on eight macroporous resins were investigated systematically. X-5 resin was selected as the most suitable medium for liriodendrin purification. The adsorption of liriodendrin on X-5 resin fitted well with the pseudo-second-order kinetic model and Langmuir isotherm model. Dynamic adsorption/desorption tests were performed using a glass column packed with X-5 resin to optimize the separation process of liriodendrin. After one treatment with X-5 resin, the content of liriodendrin in the product was increased 48.73-fold, from 0.85% to 41.42%, with a recovery yield of 88.9%. 97.48% liriodendrin was obtained by further crystallization and determined by HPLC. The purified product possessed strong antioxidant activity. In conclusion, purification of liriodendrin might expend its further pharmacological researches and further applications in pharmacy. PMID:26236742

  11. A comprehensive review on biodiesel purification and upgrading

    Directory of Open Access Journals (Sweden)

    Hamed Bateni

    2017-09-01

    Full Text Available Serious environmental concerns regarding the use of fossil-based fuels have raised awareness regarding the necessity of alternative clean fuels and energy carriers. Biodiesel is considered a clean, biodegradable, and non-toxic diesel substitute produced via the transesterification of triglycerides with an alcohol in the presence of a proper catalyst. After initial separation of the by-product (glycerol, the crude biodiesel needs to be purified to meet the standard specifications prior to marketing. The presence of impurities in the biodiesel not only significantly affects its engine performance but also complicates its handling and storage. Therefore, biodiesel purification is an essential step prior to marketing. Biodiesel purification methods can be classified based on the nature of the process into equilibrium-based, affinity-based, membrane-based, reaction-based, and solid-liquid separation processes. The main adverse properties of biodiesel – namely moisture absorption, corrosiveness, and high viscosity – primarily arise from the presence of oxygen. To address these issues, several upgrading techniques have been proposed, among which catalytic (hydrodeoxygenation using conventional hydrotreating catalysts, supported metallic materials, and most recently transition metals in various forms appear promising. Nevertheless, catalyst deactivation (via coking and/or inadequacy of product yields necessitate further research. This paper provides a comprehensive overview on the techniques and methods used for biodiesel purification and upgrading.

  12. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  13. The purification process on scintillator material (SrI{sub 2}: Eu) by zone-refinement technique

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Raja; Daniel, D. Joseph; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, Sri SivaSubramaniya Nadar College of Engineering, Kalavakkam, Tamilnadu-603 110 (India)

    2015-06-24

    The thermal properties of Europium doped strontium iodide was analyzed through Thermogravimetric (TG) and differential thermal analyses (DTA). The melting point of europium doped strontium iodide is around 531°C. The hydrated and oxyhalide impurities were found before melting temperature. In order to remove these impurities we have done purification process by Zone-refinement technique. The effective output of purification of zone refining was also observed through the segregation of impurities.

  14. Cloning and Expression of Phytase appA Gene from Shigella sp. CD2 in Pichia pastoris and Comparison of Properties with Recombinant Enzyme Expressed in E. coli.

    Directory of Open Access Journals (Sweden)

    Moushree Pal Roy

    Full Text Available The phytase gene appAS was isolated from Shigella sp. CD2 genomic library. The 3.8 kb DNA fragment contained 1299 bp open reading frame encoding 432 amino acid protein (AppAS with 22 amino acid signal peptide at N-terminal and three sites of N-glycosylation. AppAS contained the active site RHGXRXP and HDTN sequence motifs, which are conserved among histidine acid phosphatases. It showed maximum identity with phytase AppA of Escherichia coli and Citrobacter braakii. The appAS was expressed in Pichia pastoris and E. coli to produce recombinant phytase rAppAP and rAppAE, respectively. Purified glycosylated rAppAP and nonglycosylated rAppAE had specific activity of 967 and 2982 U mg(-1, respectively. Both had pH optima of 5.5 and temperature optima of 60°C. Compared with rAppAE, rAppAP was 13 and 17% less active at pH 3.5 and 7.5 and 11 and 18% less active at temperature 37 and 50°C, respectively; however, it was more active at higher incubation temperatures. Thermotolerance of rAppAP was 33% greater at 60°C and 24% greater at 70°C, when compared with rAppAE. Both the recombinant enzymes showed high specificity to phytate and resistance to trypsin. To our knowledge, this is the first report on cloning and expression of phytase from Shigella sp.

  15. Biochemical properties of MutT2 proteins from Mycobacterium tuberculosis and M. smegmatis and their contrasting antimutator roles in Escherichia coli.

    Science.gov (United States)

    Sang, Pau Biak; Varshney, Umesh

    2013-04-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, is at increased risk of accumulating damaged guanine nucleotides such as 8-oxo-dGTP and 8-oxo-GTP because of its residency in the oxidative environment of the host macrophages. By hydrolyzing the oxidized guanine nucleotides before their incorporation into nucleic acids, MutT proteins play a critical role in allowing organisms to avoid their deleterious effects. Mycobacteria possess several MutT proteins. Here, we purified recombinant M. tuberculosis MutT2 (MtuMutT2) and M. smegmatis MutT2 (MsmMutT2) proteins from M. tuberculosis (a slow grower) and M. smegmatis (fast growing model mycobacteria), respectively, for their biochemical characterization. Distinct from the Escherichia coli MutT, which hydrolyzes 8-oxo-dGTP and 8-oxo-GTP, the mycobacterial proteins hydrolyze not only 8-oxo-dGTP and 8-oxo-GTP but also dCTP and 5-methyl-dCTP. Determination of kinetic parameters (Km and Vmax) revealed that while MtuMutT2 hydrolyzes dCTP nearly four times better than it does 8-oxo-dGTP, MsmMutT2 hydrolyzes them nearly equally. Also, MsmMutT2 is about 14 times more efficient than MtuMutT2 in its catalytic activity of hydrolyzing 8-oxo-dGTP. Consistent with these observations, MsmMutT2 but not MtuMutT2 rescues E. coli for MutT deficiency by decreasing both the mutation frequency and A-to-C mutations (a hallmark of MutT deficiency). We discuss these findings in the context of the physiological significance of MutT proteins.

  16. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Leppla, Stephen H., E-mail: sleppla@niaid.nih.gov [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  17. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    International Nuclear Information System (INIS)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui; Leppla, Stephen H.

    2013-01-01

    Highlights: ► Non-infectious and protease-deficient Bacillus anthracis protein expression system. ► Successful expression and purification of a tumor-targeted fusion protein drug. ► Very low endotoxin contamination of purified protein. ► Efficient protein secretion simplifies purification. ► Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  18. FTIR nanobiosensors for Escherichia coli detection

    Directory of Open Access Journals (Sweden)

    Stefania Mura

    2012-07-01

    Full Text Available Infections due to enterohaemorrhagic E. coli (Escherichia coli have a low incidence but can have severe and sometimes fatal health consequences, and thus represent some of the most serious diseases due to the contamination of water and food. New, fast and simple devices that monitor these pathogens are necessary to improve the safety of our food supply chain. In this work we report on mesoporous titania thin-film substrates as sensors to detect E. coli O157:H7. Titania films treated with APTES ((3-aminopropyltriethoxysilane and GA (glutaraldehyde were functionalized with specific antibodies and the absorption properties monitored. The film-based biosensors showed a detection limit for E. coli of 1 × 102 CFU/mL, constituting a simple and selective method for the effective screening of water samples.

  19. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Sygmund Christoph

    2011-12-01

    Full Text Available Abstract Background FAD dependent glucose dehydrogenase (GDH currently raises enormous interest in the field of glucose biosensors. Due to its superior properties such as high turnover rate, substrate specificity and oxygen independence, GDH makes its way into glucose biosensing. The recently discovered GDH from the ascomycete Glomerella cingulata is a novel candidate for such an electrochemical application, but also of interest to study the plant-pathogen interaction of a family of wide-spread, crop destroying fungi. Heterologous expression is a necessity to facilitate the production of GDH for biotechnological applications and to study its physiological role in the outbreak of anthracnose caused by Glomerella (anamorph Colletotrichum spp. Results Heterologous expression of active G. cingulata GDH has been achieved in both Escherichia coli and Pichia pastoris, however, the expressed volumetric activity was about 4800-fold higher in P. pastoris. Expression in E. coli resulted mainly in the formation of inclusion bodies and only after co-expression with molecular chaperones enzymatic activity was detected. The fed-batch cultivation of a P. pastoris transformant resulted in an expression of 48,000 U L-1 of GDH activity (57 mg L-1. Recombinant GDH was purified by a two-step purification procedure with a yield of 71%. Comparative characterization of molecular and catalytic properties shows identical features for the GDH expressed in P. pastoris and the wild-type enzyme from its natural fungal source. Conclusions The heterologous expression of active GDH was greatly favoured in the eukaryotic host. The efficient expression in P. pastoris facilitates the production of genetically engineered GDH variants for electrochemical-, physiological- and structural studies.

  20. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris.

    Science.gov (United States)

    Sygmund, Christoph; Staudigl, Petra; Klausberger, Miriam; Pinotsis, Nikos; Djinović-Carugo, Kristina; Gorton, Lo; Haltrich, Dietmar; Ludwig, Roland

    2011-12-12

    FAD dependent glucose dehydrogenase (GDH) currently raises enormous interest in the field of glucose biosensors. Due to its superior properties such as high turnover rate, substrate specificity and oxygen independence, GDH makes its way into glucose biosensing. The recently discovered GDH from the ascomycete Glomerella cingulata is a novel candidate for such an electrochemical application, but also of interest to study the plant-pathogen interaction of a family of wide-spread, crop destroying fungi. Heterologous expression is a necessity to facilitate the production of GDH for biotechnological applications and to study its physiological role in the outbreak of anthracnose caused by Glomerella (anamorph Colletotrichum) spp. Heterologous expression of active G. cingulata GDH has been achieved in both Escherichia coli and Pichia pastoris, however, the expressed volumetric activity was about 4800-fold higher in P. pastoris. Expression in E. coli resulted mainly in the formation of inclusion bodies and only after co-expression with molecular chaperones enzymatic activity was detected. The fed-batch cultivation of a P. pastoris transformant resulted in an expression of 48,000 U L⁻¹ of GDH activity (57 mg L⁻¹). Recombinant GDH was purified by a two-step purification procedure with a yield of 71%. Comparative characterization of molecular and catalytic properties shows identical features for the GDH expressed in P. pastoris and the wild-type enzyme from its natural fungal source. The heterologous expression of active GDH was greatly favoured in the eukaryotic host. The efficient expression in P. pastoris facilitates the production of genetically engineered GDH variants for electrochemical-, physiological- and structural studies.

  1. Purification of recombinant Aβ(1-42) and pGlu-Aβ(3-42) using preparative SDS-PAGE.

    Science.gov (United States)

    Spahn, Claudia; Wermann, Michael; Eichentopf, Rico; Hause, Gerd; Schlenzig, Dagmar; Schilling, Stephan

    2017-08-01

    Recombinant expression and purification of amyloid peptides represents a common basis for investigating the molecular mechanisms of amyloid formation and toxicity. However, the isolation of the recombinant peptides is hampered by inefficient separation from contaminants such as the fusion protein required for efficient expression in E. coli. Here, we present a new approach for the isolation of highly purified Aβ(1-42) and pGlu-Aβ(3-42), which is based on a separation using preparative SDS-PAGE. The method relies on the purification of the Aβ fusion protein by affinity chromatography followed by preparative SDS-PAGE under reducing conditions and subsequent removal of detergents by precipitation. The application of preparative SDS-PAGE represents the key step to isolate highly pure recombinant Aβ, which has been applied for characterization of aggregation and toxicity. Thereby, the yield of the purification strategy was  >60%. To the best of our knowledge, this is the first description of an electrophoresis-based method for purification of a recombinant Aβ peptide. Therefore, the method might be of interest for isolation of other amyloid peptides, which are critical for conventional purification strategies due to their aggregation propensity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Purification

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    2017-01-01

    In Arequipa, Peru’s second largest city, engineers work hard to control water flows and provide different sectors with clean and sufficient water. In 2011, only 10 percent of the totality of water used daily by Arequipa’s then close to 1 million people—in households, tourism, industry, and mining......—was treated before it was returned to the river where it continues its flow downstream towards cultivated fields and, finally, into the Pacific Ocean. It takes specialized knowledge and manifold technologies to manage water and sustain life in Arequipa, and engineers are central actors for making water flow....... Examining the ecology of water management, this article asks to what extent we can talk of a way of knowing and enacting water that is particular to engineers. Through engineering practices, a technical domain emerges as separate from and superior to political and social domains. This production...

  3. Cloning, purification, and characterization of a thermophilic ribulokinase from Anoxybacillus kestanbolensis AC26Sari

    OpenAIRE

    TOKGÖZ, Müslüm; İNAN, Kadriye; BELDÜZ, Ali Osman; GEDİKLİ, Öznur; ÇANAKÇI, Sabriye

    2015-01-01

    The gene encoding ribulokinase araB from Anoxybacillus kestanbolensis AC26Sari was cloned and sequenced. The recombinant protein was expressed in Escherichia coli BL21 under the control of isopropyl-b-D-thiogalactopyranoside-inducible T7 promoter. The enzyme, designated as AC26RK, was purified with the MagneHis Protein Purification System. The molecular mass of the native protein, as determined by SDS-PAGE, was about 61 kDa. AC26RK was active throughout a broad pH (pH 5.0-10.0) and temperatur...

  4. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  5. Purification Protocols for Extracellular Vesicles.

    Science.gov (United States)

    Lane, Rebecca E; Korbie, Darren; Trau, Matt; Hill, Michelle M

    2017-01-01

    This chapter provides a description of some of the standard methods used for the isolation of extracellular vesicles (EVs) from a variety of biological fluids, including cell culture media, urine, plasma and serum. The methods presented include ultracentrifugation, ultrafiltration, proprietary polymer-based reagents, size exclusion chromatography, density gradient separation, and immunoaffinity capture. Ultracentrifugation methods use high speed centrifugation to pellet vesicles, whilst polymer-based reagents are added to the sample to facilitate vesicle precipitation using lower speeds. Ultrafiltration involves the concentration of vesicles from a large volume of biological fluid using a centrifugal filter unit. Size exclusion chromatography and density gradient separation are both designed to allow the separation of vesicles from other nonvesicular debris. Immunoaffinity capture methods use antibody-coated beads to selectively isolate vesicles displaying a surface marker of interest. Ultimately, the choice of purification method for an individual experiment is influenced by time, cost, and equipment considerations, as well as the sample requirements for any downstream analyses.

  6. Preparation, purification and characterization of 125I-glucagon used for radioimmunoassay

    International Nuclear Information System (INIS)

    Ruehlmann, C.; Poege, A.; Stollmaier, P.; Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung)

    1988-01-01

    A method for the radioactive labelling of glucagon with Na 125 I with the help of chloramine T for the use in radioimmunoassay is described. The purification of 125 I-glucagon with polyacrylamide gel electrophoresis, the characterization of the tracer, its stability and the immunological properties are described. (author)

  7. ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli

    OpenAIRE

    ANGGREINI, RAHAYU

    2015-01-01

    2015 RAHAYU ANGGREINI coli Penelitian ini bertujuan untuk melakukan identifikasi cemaran bakteri E. coli O157:H7 pada daging sapi di kota Makassar. Sampel pada penelitian ini sebanyak 72 sampel Kata Kunci : Daging sapi, pasar tradisional, E. coli, E. coli O157:H7, kontaminasi bakteri, identifikasi E. coli O157:H7.

  8. Purification, crystallization and preliminary X-ray structure analysis of the laccase from Ganoderma lucidum

    International Nuclear Information System (INIS)

    Lyashenko, Andrey V.; Belova, Oksana; Gabdulkhakov, Azat G.; Lashkov, Alexander A.; Lisov, Alexandr V.; Leontievsky, Alexey A.; Mikhailov, Al’bert M.

    2011-01-01

    The purification, crystallization and preliminary X-ray structure analysis of the laccase from G. lucidum are reported. The ligninolytic enzymes of the basidiomycetes play a key role in the global carbon cycle. A characteristic property of these enzymes is their broad substrate specificity, which has led to their use in various biotechnologies, thus stimulating research into the three-dimensional structures of ligninolytic enzymes. This paper presents the purification, crystallization and preliminary X-ray analysis of the laccase from the ligninolytic basidiomycete Ganoderma lucidum

  9. Purification of beta-acetylglucosaminase and beta-galactosidase from ram testis.

    Science.gov (United States)

    Caygill, J C; Roston, C P; Jevons, F R

    1966-02-01

    1. The presence of beta-galactosidase (EC 3.2.1.23) in an acetic acid extract of ram testis is reported. Some properties of the crude enzyme preparation were studied. 2. The purification of beta-acetylglucosaminase (EC 3.2.1.30) and of beta-galactosidase from the ram-testis extract by ammonium sulphate precipitation and chromatography on a CM-cellulose column is described. 3. The final purifications of the separated enzymes achieved were for the beta-acetylglucosaminase 35 times and for the beta-galactosidase 99 times. 4. The possibility of using DEAE-cellulose and Sephadex G-200 to purify the enzymes was investigated.

  10. Purification and characterization of thermostable glucoamylase from ...

    African Journals Online (AJOL)

    Thermostable glucoamylase from Rhizopus oligosporus SK5 mutant was purified in a 3-step purification using Imarsil, activated charcoal and Sephadex-G-100 to achieve a 40-fold purification. The enzyme was optimally active at pH 5.0 and temperature of 80 °C. It exhibited a half-life of 60 minutes at 70 °C. Its stability was ...

  11. The Optimisation of the Expression of Recombinant Surface Immunogenic Protein of Group B Streptococcus in Escherichia coli by Response Surface Methodology Improves Humoral Immunity.

    Science.gov (United States)

    Díaz-Dinamarca, Diego A; Jerias, José I; Soto, Daniel A; Soto, Jorge A; Díaz, Natalia V; Leyton, Yessica Y; Villegas, Rodrigo A; Kalergis, Alexis M; Vásquez, Abel E

    2018-03-01

    Group B Streptococcus (GBS) is the leading cause of neonatal meningitis and a common pathogen in livestock and aquaculture industries around the world. Conjugate polysaccharide and protein-based vaccines are under development. The surface immunogenic protein (SIP) is a conserved protein in all GBS serotypes and has been shown to be a good target for vaccine development. The expression of recombinant proteins in Escherichia coli cells has been shown to be useful in the development of vaccines, and the protein purification is a factor affecting their immunogenicity. The response surface methodology (RSM) and Box-Behnken design can optimise the performance in the expression of recombinant proteins. However, the biological effect in mice immunised with an immunogenic protein that is optimised by RSM and purified by low-affinity chromatography is unknown. In this study, we used RSM for the optimisation of the expression of the rSIP, and we evaluated the SIP-specific humoral response and the property to decrease the GBS colonisation in the vaginal tract in female mice. It was observed by NI-NTA chromatography that the RSM increases the yield in the expression of rSIP, generating a better purification process. This improvement in rSIP purification suggests a better induction of IgG anti-SIP immune response and a positive effect in the decreased GBS intravaginal colonisation. The RSM applied to optimise the expression of recombinant proteins with immunogenic capacity is an interesting alternative in the evaluation of vaccines in preclinical phase, which could improve their immune response.

  12. Purification of antibody against Ara h 2 by a homemade immunoaffinity chromatography column.

    Science.gov (United States)

    Wu, Zhihua; Li, Kun; Zhan, Shaode; Tong, Ping; Li, Xin; Yang, Anshu; Chen, Hongbing

    2017-09-14

    Antibodies are used extensively in numerous applications both in vivo and in vitro. To purify anti-Ara h 2 polyclonal antibody, a homemade immunoaffinity chromatography (IAC) column method was established. The properties of homemade column were compared with those of the mAb affinity protein G (MPG) agarose high flow, a commercially available column successfully used in capturing polyclonal antibodies. During antibody purification from rabbits' antiserum against Ara h 2, the column capacity, recovery, and purification factor were characterized for IAC and MPG. The homemade IAC could separate the corresponding antibody with higher specificity and lower cost but with lower recovery and column capacity than those of MPG. Thus, the homemade IAC is a specific, inexpensive, and suitable method that can be used for various laboratory purifications.

  13. Utilization of internal purification rejects; Sisaeisen puhdistuksen rejektikonsentraattien kelvollistaminen - KLT 02

    Energy Technology Data Exchange (ETDEWEB)

    Manner, H.; Nissen, M.

    1998-12-31

    This was a preliminary study which is part of a larger programme. The aim of the programme is to determine the properties and process ability of the concentrates which come from the internal purification of waters from the papermaking process. It is very important to know the properties and process ability of these purification concentrates in order to find the best methods of separating, reprocessing and utilizing them. The objective of this preliminary study was to ascertain the basic properties of these internal purification concentrates. It was also of interest to analyse the properties of papermaking waters and the state of internal purification today in paper mills. The state of papermaking waters and their internal purification were clarified by a literature review and by analyses of different types of waters. It was found that in mechanical pulping organic dissolved and colloidal substances were present in the water. Also there was a lot of dissolved and colloidal substances in waters from machines producing wood-containing paper grades. The salt content and chemical oxygen demand are critical values concerning the reuse of circulation waters. In mechanical pulping the convection of dissolved and colloidal substances to the paper machine can be reduced by the washing stage. Thus, the amount of dissolved and colloidal substances in the paper machine circulation waters can be reduced. In a paper machine, a disk filter removes fibers and fines from the circulation waters, but dissolved and colloidal substances are not removed. Also the properties of different kind of membrane filtration concentrates were analyzed. The total residue of membrane concentrates is low. For example, they can not be burned purely. The chemical oxygen demand of membrane concentrates is high. The most important subjects for further investigation are the improvement of fractionation and condensability. Furthermore procedures must be found to lower the chemical oxygen demand. One

  14. Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities.

    Science.gov (United States)

    Tan, Shu Min; Ambrosi, Adriano; Khezri, Bahareh; Webster, Richard D; Pumera, Martin

    2014-04-21

    The electrochemical properties of graphene are highly sensitive to residual metallic impurities that persist despite various purification efforts. To accurately evaluate the electrochemical performance of graphene, highly purified materials free of metallic impurities are required. In this study, the partial purification of chemically reduced graphene oxides prepared via Hummers (CRGO-HU) and Staudenmaier (CRGO-ST) oxidation methods was performed through cyclic voltammetric (CV) scans executed in nitric acid, followed by CV measurements of cumene hydroperoxide (CHP). The purification of graphene was monitored by the changes in the peak current and potential of CHP which is sensitive to iron impurities. The CRGOs were characterised by inductively coupled plasma-mass spectrometry (ICP-MS), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and CV. The micrographs revealed CRGOs of similar morphologies, but with greater defects in CRGO-HU. The dependencies of CHP peak current and peak potential on the number of purification cycles exhibit greater efficiency of removing iron impurities from CRGO-HU than CRGO-ST. This can be attributed to the oxidative method that is used in CRGO-HU production, which exposes more defect sites for iron impurities to reside in. This facile electrochemical purification of graphenes can be utilised as a routine preparation and cleaning method of graphene before electrochemical measurements for analytes that show exceptional sensitivity towards electrocatalytic metallic impurities in sp(2) nanocarbon materials.

  15. PURIFICATION AND CHARACTERIZATION OF POLY-HYDROXYBUTYRATE (PHB IN CUPRIAVIDUS NECATOR

    Directory of Open Access Journals (Sweden)

    Sergio Leon De Rooy

    2010-06-01

    Full Text Available Purification and characterization of biodegradable plastic namely Polyhydroxybutyrate (PHB in Cupriavidus necator have been carried out. C. necator was grown on a Ramsay medium with fixed substrate conditions and optimized for time. Stepwise purification of PHB was carried out, by using hydrogen peroxide and chloroform. The effect of temperature, time, and hydrogen peroxide concentration on the purification were also evaluated. The extracted PHB was studied with XRD, FTIR and 1H-NMR and 13C-NMR to determine its structure and purity. Yield and crystallinity were also studied with HPLC and XRD, respectively. The results of the research showed that higher concentrations of hydrogen peroxide gave better yields, whereas higher temperatures and longer lysis times led to different results. Higher crystallinity was observed when purification temperatures were elevated, but higher hydrogen peroxide concentration and longer extraction time gave varying crystallinity. The highest yield ca 66.10 % DCW was reached by purification using H2O2 20 %, at 100 oC for 2 h. The results of   TGA analysis indicated that the purity of the PHB obtained was about 75 % and by using DSC, it was found that the PHB showed good thermal properties.   Keywords:  PHB, recovery, hydrogen peroxide, characterization

  16. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang; Nixon, B.Tracy; (IIT); (Penn)

    2009-10-06

    Except for apyrases, ATPases generally target only the {gamma}-phosphate of a nucleotide. Some non-apyrase ATPases from thermophilic microorganisms are reported to hydrolyze ADP as well as ATP, which has been described as a novel property of the ATPases from extreme thermophiles. Here, we describe an apparent ADP hydrolysis by highly purified preparations of the AAA+ ATPase NtrC1 from an extremely thermophilic bacterium, Aquifex aeolicus. This activity is actually a combination of the activities of the ATPase and contaminating adenylate kinase (AK) from Escherichia coli, which is present at 1/10 000 of the level of the ATPase. AK catalyzes conversion of two molecules of ADP into AMP and ATP, the latter being a substrate for the ATPase. We raise concern that the observed thermotolerance of E. coli AK and its copurification with thermostable proteins by commonly used methods may confound studies of enzymes that specifically catalyze hydrolysis of nucleoside diphosphates or triphosphates. For example, contamination with E. coli AK may be responsible for reported ADPase activities of the ATPase chaperonins from Pyrococcus furiosus, Pyrococcus horikoshii, Methanococcus jannaschii and Thermoplasma acidophilum; the ATP/ADP-dependent DNA ligases from Aeropyrum pernix K1 and Staphylothermus marinus; or the reported ATP-dependent activities of ADP-dependent phosphofructokinase of P. furiosus. Purification methods developed to separate NtrC1 ATPase from AK also revealed two distinct forms of the ATPase. One is tightly bound to ADP or GDP and able to bind to Q but not S ion exchange matrixes. The other is nucleotide-free and binds to both Q and S ion exchange matrixes.

  17. Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria

    NARCIS (Netherlands)

    Castonguay, MH; van der Schaaf, S; Koester, W; Krooneman, J; Harmsen, H; Landini, P; van der Meer, W.

    Laboratory strains of Escherichia coli do not show significant ability to attach to solid surfaces and to form biofilms. We compared the adhesion properties of the E. coli PHL565 laboratory strain to eight environmental E. coli isolates: only four isolates displayed adhesion properties to glass

  18. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    Science.gov (United States)

    Peña-Soler, Esther; Fernandez, Francisco J; López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J; Quintana, Juan F; Rudd, Kenneth E; Coll, Miquel; Vega, M Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  19. Physicochemical properties of apple puree-alginate films containing plant essential oils and oil compounds active against Escherichia coli 0157:H7

    Science.gov (United States)

    The use of edible films as carriers of antimicrobial plant essential oils and other phytochemicals constitutes an approach for external protection of food systems to reduce surface microbial populations and to enhance oxygen-barrier properties, thus enhancing food safety as well as shelf life. To de...

  20. Purification processes for coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, D.K.; Primack, H.S.

    1977-01-01

    It is apparent from the discussion that many routes can be taken to achieve acid-gas removal and sulfur recovery from coal gas. The selection of the optimum purification system is a major task. The type of coal, type of gasifier and the upstream processing all strongly influence the selection. Several generalizations can be made: (1) The cost of the purification sections of a high-Btu gas plant is significant--perhaps 10 to 30% of the capital cost of the coal conversion facility. (2) The cost of purifying gas produced from high-sulfur coal feed is more expensive than the cost for purifying gas produced from low-sulfur coal. (3) The choice of an acid-gas removal system will often be a function of system pressure. The economical choice will usually be: (a) amine-based systems at atmospheric pressure; (b) hot-carbonate systems at moderate pressure or (c) physical-solvent systems at higher pressure. (4) For a high-Btu, high-sulfur case: (a) A selective acid-gas removal system with a Claus plant is probably more economical than a non-selective acid-gas system with liquid oxidation of the H/sub 2/S in the regenerator off-gas. (b) Even moderately selective systems can produce an H/sub 2/S-rich gas suitable for a Claus plant. The CO/sub 2/-rich gas may or may not require further sulfur removal, depending on the selectivity. (5) For a high-Btu, low-sulfur case: (a) The hot carbonate and tertiary amine systems may not be sufficiently selective to produce a gas suitable for feed to a Claus process while a physical solvent system may be. Therefore, the physical solvent system may be expected to be more economical. (b) The regenerated gas from the bulk CO/sub 2/ removal system following a selective physical solvent system may require further sulfur removal, depending upon the sulfur level in the initial feedstock and the selectivity of the system selected.

  1. Ni2+-based immobilized metal ion affinity chromatography of lactose operon repressor protein from Escherichia coli.

    Science.gov (United States)

    Velkov, Tony; Jones, Alun; Lim, Maria L R

    2008-01-01

    A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni(2+)-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor.

  2. Metabolism of D-arabinose: origin of a D-ribulokinase activity in Escherichia coli.

    Science.gov (United States)

    LeBlanc, D J; Mortlock, R P

    1971-04-01

    The kinase responsible for the phosphorylation of d-ribulose was purified 45.5-fold from a strain of Escherichia coli K-12 capable of growth on d-arabinose with no separation of d-ribulo- or l-fuculokinase activities. Throughout the purification, the ratios of activities remained essentially constant. A nonadditive effect of combining both substrates in an assay mixture; identical K(m) values for adenosine triphosphate with either l-fuculose or d-ribulose as substrate; and, the irreversible loss of activity on both substrates, after removal of magnesium ions from the enzyme preparation, suggest that the dual activity is due to the same enzyme. A fourfold greater affinity of the enzyme for l-fuculose than for d-ribulose, as well as a higher relative activity on l-fuculose, suggest that the natural substrate for this enzyme is l-fuculose. The product of the purified enzyme, with d-ribulose as substrate, was prepared. The ratio of total phosphorous to ribulose phosphate was 1.01:1, indicating that the product was ribulose monophosphate. The behavior of the kinase product in the cysteine-carbazole and orcinol reactions, as well as the results of periodate oxidation assays, provided evidence that it was not d-ribulose-5-phosphate. Reaction of this compound with a cell-free extract of E. coli possessing l-fuculose-l-phosphate aldolase activity resulted in the production of dihydroxyacetone phosphate and glycolaldehyde. The kinase product failed to reduce 2,3,5-triphenyltetrazolium and possessed a half-life of approximately 1.5 min in the presence of 1 n HCl at 100 C. These properties suggested that the phosphate group was attached to carbon atom 1 of d-ribulose.

  3. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production

    Directory of Open Access Journals (Sweden)

    Bottomley Stephen P

    2006-03-01

    Full Text Available Abstract Background In the past few years, both automated and manual high-throughput protein expression and purification has become an accessible means to rapidly screen and produce soluble proteins for structural and functional studies. However, many of the commercial vectors encoding different solubility tags require different cloning and purification steps for each vector, considerably slowing down expression screening. We have developed a set of E. coli expression vectors with different solubility tags that allow for parallel cloning from a single PCR product and can be purified using the same protocol. Results The set of E. coli expression vectors, encode for either a hexa-histidine tag or the three most commonly used solubility tags (GST, MBP, NusA and all with an N-terminal hexa-histidine sequence. The result is two-fold: the His-tag facilitates purification by immobilised metal affinity chromatography, whilst the fusion domains act primarily as solubility aids during expression, in addition to providing an optional purification step. We have also incorporated a TEV recognition sequence following the solubility tag domain, which allows for highly specific cleavage (using TEV protease of the fusion protein to yield native protein. These vectors are also designed for ligation-independent cloning and they possess a high-level expressing T7 promoter, which is suitable for auto-induction. To validate our vector system, we have cloned four different genes and also one gene into all four vectors and used small-scale expression and purification techniques. We demonstrate that the vectors are capable of high levels of expression and that efficient screening of new proteins can be readily achieved at the laboratory level. Conclusion The result is a set of four rationally designed vectors, which can be used for streamlined cloning, expression and purification of target proteins in the laboratory and have the potential for being adaptable to a high

  4. Generation of Active Bovine Terminal Deoxynucleotidyl Transferase (TdT in E.coli

    Directory of Open Access Journals (Sweden)

    Wee Liang Kuan

    2010-01-01

    Full Text Available A synthetic gene encoding bovine terminal deoxynucleotidyl transferase (TdT was generated, cloned into an expression vector and expressed in E.coli. The effects of altering culture and induction conditions on the nature of recombinant protein production were investigated. This led to the expression of active recombinant bovine TdT in E.coli. After purification and characterisation, the activity of the enzyme was assessed in a biological assay for apoptosis. The process described in this report enables the economical production of TdT for high throughput applications.

  5. Generation of Active Bovine Terminal Deoxynucleotidyl Transferase (TdT in E.coli

    Directory of Open Access Journals (Sweden)

    Wee Liang Kuan

    2010-08-01

    Full Text Available A synthetic gene encoding bovine terminal deoxynucleotidyl transferase (TdT was generated, cloned into an expression vector and expressed in E.coli. The effects of altering culture and induction conditions on the nature of recombinant protein production were investigated. This led to the expression of active recombinant bovine TdT in E.coli. After purification and characterisation, the activity of the enzyme was assessed in a biological assay for apoptosis. The process described in this report enables the economical production of TdT for high throughput applications.

  6. Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA.

    Science.gov (United States)

    Baban, Berevan A; Vinod, Madhavan P; Tanner, John J; Becker, Donald F

    2004-09-01

    The PutA flavoprotein from Escherichia coli combines DNA-binding, proline dehydrogenase (PRODH), and Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) activities onto a single polypeptide. Recently, an X-ray crystal structure of PutA residues 87-612 was solved which identified a D370-Y540 hydrogen bond pair in the PRODH active site that appears to have an important role in shaping proline binding and the FAD redox environment. To examine the role of D370-Y540 in the PRODH active site, mutants D370A, Y540F, and D370A/Y540F were characterized in a form of PutA containing only residues 86-601 (PutA86-601) designed to mimic the known structural region of PutA (87-612). Disruption of the D370-Y540 pair only slightly diminished k(cat), while more noticeable affects were observed in K(m). The mutant D370A/Y540F showed the most significant changes in the pH dependence of k(cat)/K(m) and K(m) relative to wild-type PutA86-601 with an apparent pK(a) value of about 8.2 for the pH-dependent decrease in K(m). From the pH profile of D370A/Y540F inhibition by l-tetrahydro-2-furoic acid (l-THFA), the pH dependency of K(m) in D370A/Y540F is interpreted as resulting from the deprotonation of the proline amine in the E-S complex. Replacement of D370 and Y540 produces divergent effects on the E(m) for bound FAD. At pH 7.0, E(m) values of -0.026, -0.089 and -0.042 V were determined for the two-electron reduction of bound FAD in D370A, Y540F and D370A/Y540F, respectively. The 40-mV positive shift in E(m) determined for D370A relative to wild-type PutA86-601 (E(m)=-0.066 V, pH 7.0) indicates D370 has a key role in modulating the FAD redox environment.

  7. Dialysis membranes for blood purification.

    Science.gov (United States)

    Sakai, K

    2000-01-01

    All of the artificial membranes in industrial use, such as a reverse-osmosis membrane, dialysis membrane, ultrafiltration membrane, microfiltration membrane and gas separation membrane, also have therapeutic applications. The most commonly used artificial organ is the artificial kidney, a machine that performs treatment known as hemodialysis. This process cleanses the body of a patient with renal failure by dialysis and filtration, simple physicochemical processes. Hemodialysis membranes are used to remove accumulated uremic toxins, excess ions and water from the patient via the dialysate, and to supply (deficit) insufficient ions from the dialysate. Dialysis membranes used clinically in the treatment of patients with renal failure account for by far the largest volume of membranes used worldwide; more than 70 million square meters are used a year. Almost all dialyzers now in use are of the hollow-fiber type. A hollow-fiber dialyzer contains a bundle of approximately 10000 hollow fibers, each with an inner diameter of about 200 microm when wet. The membrane thickness is about 20-45 microm, and the length is 160-250 mm. The walls of the hollow fibers function as the dialysis membrane. Various materials, including cellulose-based materials and synthetic polymers, are used for dialysis membranes. This paper reviews blood purification, hemodialysis and dialysis membranes.

  8. Tandem SUMO fusion vectors for improving soluble protein expression and purification.

    Science.gov (United States)

    Guerrero, Fernando; Ciragan, Annika; Iwaï, Hideo

    2015-12-01

    Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A dual protease approach for expression and affinity purification of recombinant proteins.

    Science.gov (United States)

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.

  10. Reverse micellar extraction systems for the purification of pharmaceutical grade plasmid DNA.

    Science.gov (United States)

    Streitner, Nadine; Voss, Carsten; Flaschel, Erwin

    2007-08-31

    Plasmid DNA as an active pharmaceutical ingredient (API) is gaining more and more importance. For the production of multigram quantities of this substance robust and scalable processes comprising several purification steps have to be designed. One main challenge is the initial separation of plasmid DNA and RNA in such a purification scheme. In this study we investigated the distribution of plasmid DNA and RNA in reverse micellar two-phase systems which is considered to be the basis for the development of an extractive purification step that can easily be integrated into common processes. For this purpose the distribution of the 4.6kb plasmid pUT649 and Escherichia coli RNA in systems comprising isooctane, ethylhexanol, and the surfactant methyltrioctylammoniumchloride (TOMAC) under the influence of different salts was studied. Anion concentrations at which the partitioning behaviour for nucleic acids inverted (inversion point) were identified. Systems capable of separating RNA from plasmid DNA were further analysed and applied to extract RNA from plasmid DNA out of a preconditioned cleared lysate. The capability of reverse micellar systems for plasmid form separation was also shown by capillary and agarose gel electrophoresis.

  11. Efficient purification of recombinant proteins fused to maltose-binding protein by mixed-mode chromatography.

    Science.gov (United States)

    Cabanne, Charlotte; Pezzini, Jérôme; Joucla, Gilles; Hocquellet, Agnès; Barbot, Caroline; Garbay, Bertrand; Santarelli, Xavier

    2009-05-15

    Two mixed-mode resins were evaluated as an alternative to conventional affinity resins for the purification of recombinant proteins fused to maltose-binding protein (MPB). We purified recombinant MBP, MBP-LacZ and MBP-Leap2 from crude Escherichia coli extracts. Mixed-mode resins allowed the efficient purification of MBP-fused proteins. Indeed, the quantity of purified proteins was significantly higher with mixed-mode resins, and their purity was equivalent to that obtained with affinity resins. By using purified MBP, MBP-LacZ and MBP-Leap2, the dynamic binding capacity of mixed-mode resins was 5-fold higher than that of affinity resins. Moreover, the recovery for the three proteins studied was in the 50-60% range for affinity resins, and in the 80-85% range for mixed-mode resins. Mixed-mode resins thus represent a powerful alternative to the classical amylose or dextrin resins for the purification of recombinant proteins fused to maltose-binding protein.

  12. Uji Aktivitas Antibakteri Jamur Endofit Akar Bakau Avicennia Marina Terhadap Bakteri Staphylococcus Aureus Dan Escherichia Coli

    OpenAIRE

    Liwang, Firdy

    2014-01-01

    : In this his study we used endophytic fungi isolated from the roots of mangrove Avicennia marina growing on tidal zone around Tasik Ria Minahasa, North Sulawesi. The fungi were isolated and then tested the antibacterial effect against Staphylococcus aureus and Escherichia coli. Potato Dextrose agar was used in order to isolate the target fungi. The fungi began to grow on the second day after inoculation. Differentiation and purification processes to isolate the fungus obtained by observing f...

  13. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives

    OpenAIRE

    Jia, Baolei; Jeon, Che Ok

    2016-01-01

    The ease of genetic manipulation, low cost, rapid growth and number of previous studies have made Escherichia coli one of the most widely used microorganism species for producing recombinant proteins. In this post-genomic era, challenges remain to rapidly express and purify large numbers of proteins for academic and commercial purposes in a high-throughput manner. In this review, we describe several state-of-the-art approaches that are suitable for the cloning, expression and purification, co...

  14. Targeted amino-terminal acetylation of recombinant proteins in E. coli.

    Directory of Open Access Journals (Sweden)

    Matthew Johnson

    2010-12-01

    Full Text Available One major limitation in the expression of eukaryotic proteins in bacteria is an inability to post-translationally modify the expressed protein. Amino-terminal acetylation is one such modification that can be essential for protein function. By co-expressing the fission yeast NatB complex with the target protein in E.coli, we report a simple and widely applicable method for the expression and purification of functional N-terminally acetylated eukaryotic proteins.

  15. Photocatalytic materials and technologies for air purification.

    Science.gov (United States)

    Ren, Hangjuan; Koshy, Pramod; Chen, Wen-Fan; Qi, Shaohua; Sorrell, Charles Christopher

    2017-03-05

    Since there is increasing concern for the impact of air quality on human health, the present work surveys the materials and technologies for air purification using photocatalytic materials. The coverage includes (1) current photocatalytic materials for the decomposition of chemical contaminants and disinfection of pathogens present in air and (2) photocatalytic air purification systems that are used currently and under development. The present work focuses on five main themes. First, the mechanisms of photodegradation and photodisinfection are explained. Second, system designs for photocatalytic air purification are surveyed. Third, the photocatalytic materials used for air purification and their characteristics are considered, including both conventional and more recently developed photocatalysts. Fourth, the methods used to fabricate these materials are discussed. Fifth, the most significant coverage is devoted to materials design strategies aimed at improving the performance of photocatalysts for air purification. The review concludes with a brief consideration of promising future directions for materials research in photocatalysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ionic behavior of treated water at a water purification plant

    OpenAIRE

    Yanagida, Kazumi; Kawahigashi, Tatsuo

    2012-01-01

    [Abstract] Water at each processing stage in a water purification plant was extracted and analyzed to investigate changes of water quality. Investigations of water at each processing stage at the water purification plant are discussed herein.

  17. Simplified riboprobe purification using translucent straws as gel tubes.

    Science.gov (United States)

    Kol, S; Ben-Shlomo, I; Adashi, E Y; Rohan, R M

    1996-01-01

    Gel purification of radioactive riboprobes enhances the quality of the ribonuclease protection assay. A simple and effective method for riboprobe purification is described. The method uses acrylamide gels in plastic tubes to achieve electrophoretic separation of the RNA polymerase products.

  18. Protein purification protocols [Methods in molecular biology, v. 59

    National Research Council Canada - National Science Library

    Doonan, Shawn

    1996-01-01

    ... both chemical and molecular methods, and how to dry and store the purified protein. Protein Purification Protocols provides all that is needed to design and carry out a successful purification program...

  19. Genomic Comparative Study of Bovine Mastitis Escherichia coli.

    Science.gov (United States)

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes.

  20. Genomic Comparative Study of Bovine Mastitis Escherichia coli

    Science.gov (United States)

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E.; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes. PMID:26809117

  1. Dual UV irradiation-based metal oxide nanoparticles for enhanced antimicrobial activity in Escherichia coli and M13 bacteriophage

    Directory of Open Access Journals (Sweden)

    Jin SE

    2017-11-01

    Full Text Available Su-Eon Jin,1 Woochul Hwang,2 Hyo Jung Lee,3 Hyo-Eon Jin3 1Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon, 2ECOSET Co., Ltd., Ansan, 3College of Pharmacy, Ajou University, Suwon, Korea Abstract: Metal oxide (MO nanoparticles have been studied as nano-antibiotics due to their antimicrobial activities even in antibiotic-resistant microorganisms. We hypothesized that a hybrid system of dual UV irradiation and MO nanoparticles would have enhanced antimicrobial activities compared with UV or MO nanoparticles alone. In this study, nanoparticles of ZnO, ZnTiO3, MgO, and CuO were selected as model nanoparticles. A dual UV collimated beam device of UV-A and UV-C was developed depending upon the lamp divided by coating. Physicochemical properties of MO nanoparticles were determined using powder X-ray diffractometry (PXRD, Brunauer-Emmett-Teller analysis, and field emission-scanning electron microscopy with energy-dispersive X-ray spectroscopy. Atomic force microscopy with an electrostatic force microscopy mode was used to confirm the surface topology and electrostatic characteristics after dual UV irradiation. For antimicrobial activity test, MO nanoparticles under dual UV irradiation were applied to Escherichia coli and M13 bacteriophage (phage. The UV-A and UV-C showed differential intensities in the coated and uncoated areas (UV-A, coated = uncoated; UV-C, coated << uncoated. MO nanoparticles showed sharp peaks in PXRD patterns, matched to pure materials. Their primary particle sizes were less than 100 nm with irregular shapes, which had an 8.6~25.6 m2/g of specific surface area with mesopores of 22~262 nm. The electrostatic properties of MO nanoparticles were modulated after UV irradiation. ZnO, MgO, and CuO nanoparticles, except ZnTiO3 nanoparticles, showed antibacterial effects on E. coli. Antimicrobial effects on E. coli and phages were also enhanced after cyclic exposure of dual UV and MO nanoparticle

  2. Enterohemorrhagic Escherichia coli (EHEC

    Directory of Open Access Journals (Sweden)

    Abdullah Kilic

    2011-08-01

    Full Text Available Escherichia coli is a bacterium that is commonly found in the gut of humans and warm-blooded animals. Most strains of E. coli are harmless for human. E. coli O157:H7 is the most common member of a group of pathogenic E. coli strains known variously as enterohaemorrhagic, verocytotoxin-producing, or Shiga-toxin-producing organisms. EHEC bacterium is the major cause of haemorrhagic colitis and haemolytic uraemic syndrome. The reservoir of this pathogen appears to be mainly cattle and other ruminants such as camels. It is transmitted to humans primarily through consumption of contaminated foods. [TAF Prev Med Bull 2011; 10(4.000: 387-388

  3. Influence of pore former on porosity and mechanical properties of Ce0.9Gd0.1O1.95 electrolytes for flue gas purification

    DEFF Research Database (Denmark)

    Charlas, Benoit; Schmidt, Cristine Grings; Frandsen, Henrik Lund

    2016-01-01

    excitation technique (Young modulus) and flexural strength measurements, to investigate the role of the different pore formers on the properties of the compounds. The compared techniques used to evaluate porosity give consistent results. The ratio between open and total porosities, evaluated from mercury...

  4. Human granulocyte colony stimulating factor (hG-CSF: cloning, overexpression, purification and characterization

    Directory of Open Access Journals (Sweden)

    Vanz Ana LS

    2008-04-01

    Full Text Available Abstract Background Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Results Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3 host cells in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4% to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. Conclusion The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost

  5. Purification and characterization of angiotensin-1 converting enzyme

    African Journals Online (AJOL)

    user

    2013-04-10

    Apr 10, 2013 ... al., 1999), meat (Jang and Lee, 2005) and marine resources (Je et al., ... species that have been blooming on the offshore areas of. Korea, China and ..... Lim et al. 1893. Table 1. Purification yield and ACE-inhibitory activity of each step. Fraction. Purification step. Purification yield (%). IC50 (μg/ml). W/H.

  6. Laboratory technology for hydrogen purification in liquefying installations

    International Nuclear Information System (INIS)

    Avram, I.; David, E.; Dordea, M.; Peculea, M.; Pop, F.; Stanciu, V.; Varzaru, O.; Panu, E.; Curuia, M.; Fron, P.; Balint, I.; Culcer, M.; Roman, T.; Smeureanu, N.

    1995-01-01

    This paper presents the development of a laboratory installation for purification of the hydrogen to be liquefied. The purification is achieved by the procedure of physical adsorption at low temperature. This procedure implies the use of materials with extensive active surfaces such as activated carbon, molecular sieves and silica gels. The main stages of the purification process are described

  7. Tandem Affinity Purification Approach Coupled to Mass Spectrometry to Identify Post-translational Modifications of Histones Associated with Chromatin-Binding Proteins.

    Science.gov (United States)

    Beyer, Sophie; Robin, Philippe; Ait-Si-Ali, Slimane

    2017-01-01

    Protein purification by tandem affinity purification (TAP)-tag coupled to mass spectrometry analysis is usually used to reveal protein complex composition. Here we describe a TAP-tag purification of chromatin-bound proteins along with associated nucleosomes, which allow exhaustive identification of protein partners. Moreover, this method allows exhaustive identification of the post-translational modifications (PTMs) of the associated histones. Thus, in addition to partner characterization, this approach reveals the associated epigenetic landscape that can shed light on the function and properties of the studied chromatin-bound protein.

  8. Purification non-aqueous solution of quantum dots CdSe- CdS-ZnS from excess organic substance-stabilizer by use PE- HD membrane

    International Nuclear Information System (INIS)

    Kosolapova, K; Al-Alwani, A; Gorbachev, I; Glukhovskoy, E

    2015-01-01

    Recently, a new simple method for the purification of CdSe-CdS-ZnS quantum dots by using membrane filtration, the filtration process, successfully separated the oleic acid from quantum dots through membranes purification after synthesis; purification of quantum dots is a very significant part of post synthetical treatment that determines the properties of the material. We explore the possibilities of the Langmuir-Blodgett technique to make such layers, using quantum dots as a model system. The Langmuir monolayer of quantum dots were then investigated the surface pressure-area isotherm. From isotherm, we found the surface pressure monolayer changed with time. (paper)

  9. Recombinant allergen Lol p II: expression, purification and characterization.

    Science.gov (United States)

    Tamborini, E; Brandazza, A; De Lalla, C; Musco, G; Siccardi, A G; Arosio, P; Sidoli, A

    1995-05-01

    Pollen from perennial rye grass (Lolium perenne) is a major cause of type I allergies worldwide. It contains complex mixtures of proteins, among which Lol p II is a major allergen. Previously, we have reported the cloning and sequencing of Lol p II and its expression in fusion with the heavy chain of human ferritin as carrier polypeptide (Sidoli et al., 1993, J. biol. Chem. 268, 21819-21825). Here, we describe the expression, purification and characterization of a recombinant Lol p II overproduced as a non-fusion protein in the periplasm of E. coli. The recombinant allergen was expressed in high yields and was easily purified in milligram amounts. It competed with the natural Lol p II for binding to specific IgE, and it induced allergic responses in skin prick tests, indicating to be immunologically analogous to the natural protein. Biochemical analyses indicate that recombinant Lol p II is a highly stable and soluble monomeric molecule which behaves like a small globular protein.

  10. Simplified, enhanced protein purification using an inducible, autoprocessing enzyme tag.

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2009-12-01

    Full Text Available We introduce a new method for purifying recombinant proteins expressed in bacteria using a highly specific, inducible, self-cleaving protease tag. This tag is comprised of the Vibrio cholerae MARTX toxin cysteine protease domain (CPD, an autoprocessing enzyme that cleaves exclusively after a leucine residue within the target protein-CPD junction. Importantly, V. cholerae CPD is specifically activated by inositol hexakisphosphate (InsP(6, a eukaryotic-specific small molecule that is absent from the bacterial cytosol. As a result, when His(6-tagged CPD is fused to the C-terminus of target proteins and expressed in Escherichia coli, the full-length fusion protein can be purified from bacterial lysates using metal ion affinity chromatography. Subsequent addition of InsP(6 to the immobilized fusion protein induces CPD-mediated cleavage at the target protein-CPD junction, releasing untagged target protein into the supernatant. This method condenses affinity chromatography and fusion tag cleavage into a single step, obviating the need for exogenous protease addition to remove the fusion tag(s and increasing the efficiency of tag separation. Furthermore, in addition to being timesaving, versatile, and inexpensive, our results indicate that the CPD purification system can enhance the expression, integrity, and solubility of intractable proteins from diverse organisms.

  11. Cloning, expression, purification and characterization of tryptophan hydroxylase variants

    DEFF Research Database (Denmark)

    Boesen, Jane

    in the anion exchange, indicating that the protein still exists in different oligomer forms. This was also observed in the gel filtration. Variants of both hTPH1 and hTPH2 containing the regulatory domain or parts of it were constructed and tested for expression in Escherichia coli as well as solubility....... It was observed that changes in the amino acid sequence of the regulatory domain by point mutations or truncations in the N-terminal had a huge impact on the solubility of the protein and caused the protein to be insoluble. The regulatory domain of human TPH1 (rhTPH1), and two fusion proteins of rhTPH1 fused...... to the green fluorescent protein (GFP) in the C-terminal and the glutathione S-transferase (GST) in the N-terminal, respectively, were expressed in a soluble form. The purification trials of the variants containing the regulatory domain showed that a high salt concentration was necessary to stabilize...

  12. Expression, Purification, and Characterisation of Dehydroquinate Synthase from Pyrococcus furiosus

    Directory of Open Access Journals (Sweden)

    Leonardo Negron

    2011-01-01

    Full Text Available Dehydroquinate synthase (DHQS catalyses the second step of the shikimate pathway to aromatic compounds. DHQS from the archaeal hyperthermophile Pyrococcus furiosus was insoluble when expressed in Escherichia coli but was partially solubilised when KCl was included in the cell lysis buffer. A purification procedure was developed, involving lysis by sonication at 30∘C followed by a heat treatment at 70∘C and anion exchange chromatography. Purified recombinant P. furiosus DHQS is a dimer with a subunit Mr of 37,397 (determined by electrospray ionisation mass spectrometry and is active over broad pH and temperature ranges. The kinetic parameters are KM (3-deoxy-D-arabino-heptulosonate 7-phosphate 3.7 μM and kcat 3.0 sec-1 at 60∘C and pH 6.8. EDTA inactivates the enzyme, and enzyme activity is restored by several divalent metal ions including (in order of decreasing effectiveness Cd2+, Co2+, Zn2+, and Mn2+. High activity of a DHQS in the presence of Cd2+ has not been reported for enzymes from other sources, and may be related to the bioavailability of Cd2+ for P. furiosus. This study is the first biochemical characterisation of a DHQS from a thermophilic source. Furthermore, the characterisation of this hyperthermophilic enzyme was carried out at elevated temperatures using an enzyme-coupled assay.

  13. Purification of contaminated groundwater by membrane technology

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Soo; Chung, Chin Ki; Kim, Byoung Gon [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    The objective of this study is to apply the membrane separation technology to the purification of contaminated ground water in Korea. Under this scope, the purification was aimed to the drinking water level. The scale of the membrane system was chosen to a small filtration plant for local clean water supplies and/or heavy purifiers for buildings and public uses. The actual conditions of ground water contamination in Korea was surveyed to determine the major components to remove under the drinking water requirements. To set up a hybrid process with membrane methods, conventional purification methods were also investigated for the comparison purpose. The research results are summarized as follows : 1) Contamination of the groundwater in Korea has been found to be widespread across the country. The major contaminant were nitrate, bacteria, and organic chlorides. Some solvents and heavy metals are also supposed to exist in the ground water of industrial complexes, cities, and abandoned mines. 2) The purification methods currently used in public filtration plants appear not to be enough for new contaminants from recent industrial expanding. The advanced purification technologies generally adopted for this problem have been found to be unsuitable due to their very complicated design and operation, and lack of confidence in the purification performance. 3) The reverse osmosis tested with FilmTec FT30 membrane was found to remove nitrate ions in water with over 90 % efficiency. 4) The suitable membrane process for the contaminated groundwater in Korea has been found to be the treatments composed of activated carbon, microfiltration, reverse osmosis or ultrafiltration, and disinfection. The activated carbon treatment could be omitted for the water of low organic contaminants. The microfiltration and the reverse osmosis treatments stand for the conventional methods of filtration plants and the advanced methods for hardly removable components, respectively. It is recommended

  14. Taxonomy Icon Data: Escherichia coli [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Escherichia coli Escherichia coli Escherichia_coli_L.png Escherichia_coli_NL.png Escherichia..._coli_S.png Escherichia_coli_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Escherichia+co...li&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Escherichia+coli&t=NL http://biosciencedbc.jp/taxono...my_icon/icon.cgi?i=Escherichia+coli&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Escherichia+coli&t=NS ...

  15. Bismuth Oxysulfide and Its Polymer Nanocomposites for Efficient Purification

    Directory of Open Access Journals (Sweden)

    Yidong Luo

    2018-03-01

    Full Text Available The danger of toxic organic pollutants in both aquatic and air environments calls for high-efficiency purification material. Herein, layered bismuth copper oxychalcogenides, BiCuSO, nanosheets of high photocatalytic activity were introduced to the PVDF (Polyvinylidene Fluoride. The fibrous membranes provide an easy, efficient, and recyclable way to purify organic pollutant. The physical and photophysical properties of the BiCuSO and its polymer composite were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, ultraviolet-visible diffuse reflection spectroscopy (DRS, X-ray photoelectron spectroscopy (XPS, electron spin resonance (EPR. Photocatalysis of Congo Red reveals that the BiCuSO/PVDF shows a superior photocatalytic activity of a 55% degradation rate in 70 min at visible light. The high photocatalytic activity is attributed to the exposed active {101} facets and the triple vacant associates V B i ‴ V O • • V B i ‴ . By engineering the intrinsic defects on the surface of bismuth oxysulfide, high solar-driven photocatalytic activity can be approached. The successful fabrication of the bismuth oxysulfide and its polymer nanocomposites provides an easy and general approach for high-performance purification materials for various applications.

  16. PARTIAL PURIFICATION AND CHARACTERIZATION OF ALKALOPHILIC PROTEASE FROM PSEUDOMONAS AERUGINOSA

    Directory of Open Access Journals (Sweden)

    R. Satheeskumar

    2013-10-01

    Full Text Available Partial purification and characterization of alkalophilic protease production from Pseudomonas aeruginosa was isolated from the gut of marine and coastal waters shrimp Penaeus monodon. The protease production was assayed in submerged fermentation to produce maximum protease activity (423 ± 0.09 U/ml. The enzyme was precipitated with ammonium sulphate and partially purified by ion exchange chromatography through DEAE Sephadex A-50 column. In 10th fraction showed maximum protease activity (734 ± 0.18 U/ml with increase in purification fold. The molecular weight of protease from Pseudomonas aeruginosa was recorded as 60 kDa. The stability of protease was tested at various pH and temperature; it showed maximum protease activity at pH-9 and temperature 50ºC. Among the various surfactants tested for enzyme stability, maximum activity was retained in poly ethylene glycol. The compatibility of protease enzyme with various commercial detergents; the enzyme retained maximum protease activity in tide. The results are indicated that all these properties make the bacterial proteases are most suitable for wide industrial applications.

  17. Properties of hydrogenase from Megasphaera elsdenii

    NARCIS (Netherlands)

    Dijk, van C.

    1980-01-01

    This thesis is concerned with the purification and properties of hydrogenase from the obligate anaerobic rumen bacterium Megasphaera elsdenii. In chapter 1 the motives underlying this thesis, the physiological role of hydrogenase in some heterotrophs, including

  18. ESBL-Producing Escherichia coli

    DEFF Research Database (Denmark)

    Hertz, Frederik Boetius

    in E.coli is increasing and especially isolates producing Extended-Spectrum Beta-Lactamases (ESBL) have been reported worldwide. Treatment of UTI is usually initiated by the general practitioners and a significant proportion of clinical isolates are now resistant to first line antibiotics. The global...... dissemination of resistant E.coli has in particular been driven by the spread of a few specific E.coli-lineages and it seems that there is a difference between the sequence types found among resistant E.coli, ESBL-producing E.coli and antibiotic susceptible E.coli. The overall objectives of this thesis were...... to investigate (i) antibiotics involved in selection of ESBL-producing E.coli, in an experimental mouse model in vivo, (ii) risk factors for UTI with ESBL-producing E.coli and (iii) to describe the phylogenetic composition of E.coli populations with different resistance patterns. We found that different...

  19. Expression, purification and characterization of the interferon ...

    Indian Academy of Sciences (India)

    Earlier, we had reported that expression of recombinant human RNase L caused RNA-degradation and cell-growth inhibition in E. coli without the need for exogenous 2-5A. Expression of human RNase L in E. coli usually leads to problems of leaky expression, low yield and degradation of the recombinant protein, which ...

  20. Expression, purification and characterization of the interferon ...

    Indian Academy of Sciences (India)

    2012-01-19

    Jan 19, 2012 ... recombinant human RNase L caused RNA-degradation and cell-growth inhibition in E. coli without the need for exogenous ... full-length, soluble and biochemically active recombinant human RNase L as GST-RNase L fusion protein from E. coli .... RNase L is also involved in various diseases, e.g. chronic.

  1. A novel strategy for the purification of a recombinant protein using ceramic fluorapatite-binding peptides as affinity tags.

    Science.gov (United States)

    Islam, Tuhidul; Aguilar-Yañez, José Manuel; Simental-Martínez, Jesús; Ortiz-Alcaraz, Cesar Ivan; Rito-Palomares, Marco; Fernandez-Lahore, Marcelo

    2014-04-25

    In recent years, affinity fusion-tag systems have become a popular technique for the purification of recombinant proteins from crude extracts. However, several drawbacks including the high expense and low stability of ligands, their leakage during operation, and difficulties in immobilization, make it important to further develop the method. The present work is concerned with the utilization of a ceramic fluorapatite (CFT)-based chromatographic matrix to overcome these drawbacks. A heptapeptide library exhibiting a range of properties have been synthesized and subjected to ceramic fluorapatite (CFT) chromatography to characterize their retention behavior as a function of pH and composition of the binding buffer. The specific binding and elution behavior demonstrates the possible application of CFT-binding peptides as tags for enhancing the selective recovery of proteins by CFT chromatography. To materialize this strategy, a phage-derived CFT-specific sequence KPRSVSG (Tag1) with/without a consecutive hexalysine sequence, KKKKKKKPRSVSG (Tag2), were fused at the C-terminus of an enhanced green fluorescent protein (eGFP). The resulting gene constructs H-eGFP, H-eGFP-Tag1 and H-eGFP-Tag2 were expressed in Escherichia coli strain BL-21, and the clarified cell lysate was applied to the CFT column equilibrated with binding buffer (20-50mM sodium phosphate, pH 6-8.4). Sodium phosphate (500mM) or 1M NaCl in the respective binding buffer was used to elute the fused proteins, and the chromatographic fractions were analyzed by gel electrophoresis. Both the yield and purity were over 90%, demonstrating the potential application of the present strategy. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Mycobacterium tuberculosis cAMP Receptor Protein (Rv3676) Differs from the Escherichia coli Paradigm in Its cAMP Binding and DNA Binding Properties and Transcription Activation Properties*

    Science.gov (United States)

    Stapleton, Melanie; Haq, Ihtshamul; Hunt, Debbie M.; Arnvig, Kristine B.; Artymiuk, Peter J.; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRPMt) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRPMt homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRPMt was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRPMt-binding sites (CRP1 at −58.5 and CRP2 at −37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRPMt concentrations in the absence of cAMP, is a repressing site. Binding of CRPMt to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRPMt to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP. PMID:20028978

  3. Lethal and mutagenic properties of MMS-generated DNA lesions in Escherichia coli cells deficient in BER and AlkB-directed DNA repair.

    Science.gov (United States)

    Sikora, Anna; Mielecki, Damian; Chojnacka, Aleksandra; Nieminuszczy, Jadwiga; Wrzesinski, Michal; Grzesiuk, Elzbieta

    2010-03-01

    Methylmethane sulphonate (MMS), an S(N)2-type alkylating agent, generates DNA methylated bases exhibiting cytotoxic and mutagenic properties. Such damaged bases can be removed by a system of base excision repair (BER) and by oxidative DNA demethylation catalysed by AlkB protein. Here, we have shown that the lack of the BER system and functional AlkB dioxygenase results in (i) increased sensitivity to MMS, (ii) elevated level of spontaneous and MMS-induced mutations (measured by argE3 --> Arg(+) reversion) and (iii) induction of the SOS response shown by visualization of filamentous growth of bacteria. In the xth nth nfo strain additionally mutated in alkB gene, all these effects were extreme and led to 'error catastrophe', resulting from the presence of unrepaired apurinic/apyrimidinic (AP) sites and 1-methyladenine (1meA)/3-methylcytosine (3meC) lesions caused by deficiency in, respectively, BER and AlkB dioxygenase. The decreased level of MMS-induced Arg(+) revertants in the strains deficient in polymerase V (PolV) (bearing the deletion of the umuDC operon), and the increased frequency of these revertants in bacteria overproducing PolV (harbouring the pRW134 plasmid) indicate the involvement of PolV in the error-prone repair of 1meA/3meC and AP sites. Comparison of the sensitivity to MMS and the induction of Arg(+) revertants in the double nfo alkB and xth alkB, and the quadruple xth nth nfo alkB mutants showed that the more AP sites there are in DNA, the stronger the effect of the lack of AlkB protein. Since the sum of MMS-induced Arg(+) revertants in xth, nfo and nth xth nfo and alkB mutants is smaller than the frequency of these revertants in the BER(-) alkB(-) strain, we consider two possibilities: (i) the presence of AP sites in DNA results in relaxation of its structure that facilitates methylation and (ii) additional AP sites are formed in the BER(-) alkB(-) mutants.

  4. Purification and characterization of xylanase from Aspergillus ...

    African Journals Online (AJOL)

    Xylanase was subjected to a three-step purification scheme involving ammonium sulphate precipitation, gel filtration chromatography and anion exchange chromatography. Purity was verified by running the extracted protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and a single band was ...

  5. Expression, purification and characterization of the interferon ...

    Indian Academy of Sciences (India)

    2012-01-19

    Jan 19, 2012 ... utilizing a single-step affinity purification with an appreciable yield of the highly purified protein. Recombinant RNase L was characterized by SDS-PAGE, immunoblotting and MALDI-TOF analysis. A semi-quantitative agarose-gel-based ribonuclease assay was developed for measuring its 2-5A-dependent ...

  6. Purification and characterization of circulating Onchocerca volvulus ...

    African Journals Online (AJOL)

    ... high antigen titres were separately pooled and subjected to affinity purification using immunosorbent columns prepared using human and rabbit anti-O. volvulus IgG antibodies. Eluates of purified circulating O. volvulus antigens were concentrated, and then the protein contents were determined using the Bradford method.

  7. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Purpose: To develop processes for effective isolation and purification of recombinant human plasminogen activator (rhPA) from transgenic rabbit milk. Methods: Immunoaffinity chromatography was selected and improved by a special polyol-responsive monoclonal antibody (PR-mAb). Alteplase was used as immunogen ...

  8. Expression and Purification of Soluble, Biologically Active ...

    African Journals Online (AJOL)

    Expression and Purification of Soluble, Biologically Active Recombinant Dipeptidyl Peptidase 4 (DPP4/CD26/ADAbp) Comprising the Extracellular Domain in the Yeast, Pichia ... Purpose: To investigate Pichia pastoris expression system for producing clinically usable, high-quality dipeptidyl peptidase 4 recombinant protein.

  9. Purification and characterisation of Cyclodextrin glycosyltransferase ...

    African Journals Online (AJOL)

    EXPER

    2012-06-05

    Jun 5, 2012 ... affinity chromatography were 25.8 and 17.8%, respectively. ... industrial applications according to its characteristic found in the current study. ..... and single step purification of cyclodextrin glycosyltransferase from alkalophilic Bacillus firmus by ion extchange chromatography. Biochem. Eng. J., 39: 510-515.

  10. Partial Purification and Characterization of Extracellular Protease ...

    African Journals Online (AJOL)

    USER

    ABSTRACT: Microbial proteases have wide industrial applications and proteases of the lactic acid bacteria (LAB) have received special attention ... Purification of the enzyme by gel filtration chromatography on Sephadex G75 following ammonium .... Gel filtration and ion exchange chromatography. The dialysate was ...

  11. Purification and Characterization of Thermostable Cellulase from ...

    African Journals Online (AJOL)

    CMCase was purified with ion-exchange and gel filtration chromatography. Results: Sequence-based identification of species belonging to the ... industrial application such as biofuel, animal feed industry, paper industry and clarification of fruit juices. Keywords: Thermostable cellulase, Sugarcane bagasse, Purification, ...

  12. Purification And Characterization Of Marine Bacillus Thuringiensis ...

    African Journals Online (AJOL)

    Urease was purified to homogeneity from Bacillus thuringiensis N2 using different purification steps namely, 55% acetone precipitation, DEAE-Sephadex A50 anion exchange column and Sephadex G120-200 gel filtration chromatography. The enzyme was purified 95.27 fold and showed a final specific activity of 10.48 ...

  13. Purification and Characterization of Thermostable Cellulase from ...

    African Journals Online (AJOL)

    ... after incubation at 80 °C for 60 min. Conclusion: Due to its high temperature stability, the purified XM70-CMCase may be useful for industrial application such as biofuel, animal feed industry, paper industry and clarification of fruit juices. Keywords: Thermostable cellulase, Sugarcane bagasse, Purification, Characterization ...

  14. Heparin affinity purification of extracellular vesicles

    NARCIS (Netherlands)

    Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.

    2015-01-01

    Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely

  15. Purification and characterization of a thermostable glucoamylase ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... Department of Biology, Faculty of Science and Arts, Adnan Menderes University, 09010, Aydın, Turkey. ... Raw corn starch adsorption of GA was found ...... GP-21 in solid state fermentation. J. Ind. Microbiol. Biotechnol. 22: 622-626. Mamo G, Gessesse A (1999b). Purification and characterization of two.

  16. Isolation, purification and effects of hypoglycemic functional ...

    African Journals Online (AJOL)

    user

    2012-04-12

    Apr 12, 2012 ... Key words: Hypoglycemic activity, polysaccharides, Inonotus obliquus, isolation, purification. INTRODUCTION. Obesity, high blood glucose and diabetes which are the significant chronic diseases and causes of death in modern society and they are largely caused by diet. Worldwide, scientists have focused ...

  17. Partial purification and characterization of polygalacturonase ...

    African Journals Online (AJOL)

    Partial purification and characterization of polygalacturonase-inhibitor proteins from pearl millet. ... Protein separation of the two peaks by gel electrophoresis showed prominent bands between 29 and 43 kDa, consistent with the molecular weights of the known plant PGIPs. The two PGIP peaks were further studied for their ...

  18. Partial purification and biochemical characterization of acid ...

    African Journals Online (AJOL)

    Mung bean (Vigna radiata) is one of the important crops of the North Eastern Region of India. In the present study, acid phosphatase enzyme was isolated and partially purified from germinated local mung bean seeds. The sequential partial purification process was performed using ammonium sulphate precipitation method.

  19. Purification of functionalized DNA origami nanostructures.

    Science.gov (United States)

    Shaw, Alan; Benson, Erik; Högberg, Björn

    2015-05-26

    The high programmability of DNA origami has provided tools for precise manipulation of matter at the nanoscale. This manipulation of matter opens up the possibility to arrange functional elements for a diverse range of applications that utilize the nanometer precision provided by these structures. However, the realization of functionalized DNA origami still suffers from imperfect production methods, in particular in the purification step, where excess material is separated from the desired functionalized DNA origami. In this article we demonstrate and optimize two purification methods that have not previously been applied to DNA origami. In addition, we provide a systematic study comparing the purification efficacy of these and five other commonly used purification methods. Three types of functionalized DNA origami were used as model systems in this study. DNA origami was patterned with either small molecules, antibodies, or larger proteins. With the results of our work we aim to provide a guideline in quality fabrication of various types of functionalized DNA origami and to provide a route for scalable production of these promising tools.

  20. Purification, Characterization and Antibacterial Mechanism of ...

    African Journals Online (AJOL)

    Purpose: To carry out the extraction, purification and biological characterization, and assess the antibacterial activity of bacteriocin from Lactobacillus acidophilus XH1. Methods: Chloroform extraction method was used for bacteriocin extraction while characterization of bacteriocin was carried out by flat-dug well agar ...

  1. Thioredoxin from Escherichia coli

    International Nuclear Information System (INIS)

    Holmgren, A.; Ohlsson, I.; Grankvist, M.L.

    1978-01-01

    A competition radioimmunoassay for Escherichia coli thioredoxin using 125 I-labeled thioredoxin-S 2 and a double antibody technique was developed. The method permits determination of picomole amounts of thioredoxin in crude cell extracts and was used to study the localization of thioredoxin cell fractions. E. coli B was calculated to have approximately 10,000 copies of thioredoxin per cell mainly located in the soluble fraction after separation of the membrane and soluble fractions by gentle lysis and centrifugation. E. coli B tsnC mutants which are defective in the replication of phage T7 DNA in vivo and in vitro were examined for their content of thioredoxin. E. coli B tsnC 7004 contained no detectable level of thioredoxin in cell-free extracts examined under a variety of conditions. The results strongly suggest that tsnC 7004 is a nonsense or deletion mutant. Two other E. coli tsnC mutants, 7007 and 7008, contained detectable levels of thioredoxin in crude extracts as measured by thioredoxin reductase and gave similar immunoprecipitation reactions as the parent strain B/1. By radioimmunoassay incompletely cross-reacting material was present in both strains. These results show that tsnC 7007 and 7008 belong to a type of thioredoxin mutants with missence mutations in the thioredoxin gene affecting the function of thioredoxin as subunit in phage T7 DNA polymerase

  2. Peptidoglycan Hydrolases of Escherichia coli

    Science.gov (United States)

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  3. Charge, size distribution and hydrophobicity of viruses: Effect of propagation and purification methods.

    Science.gov (United States)

    Shi, Hang; Tarabara, Volodymyr V

    2018-02-10

    Two virus propagation methods (in broth and on double agar overlay) and three purification procedures (PEG precipitation, centrifugal diafiltration and CsCl density gradient centrifugation) were comparatively evaluated using MS2 and P22 bacteriophages as model viruses. The prepared stocks were characterized in terms of electrophoretic mobility as a function of pH, particle size distribution, surface tension components and overall hydrophobicity of the virus, as well as the percentage of infectious and total virus recovered. The obtained data were used to rank the purification methods according to six criteria of likely practical relevance. Regardless of the purification method applied, virus propagation in broth media resulted in higher purity virus stocks as the growth on double agar overlay introduced difficult-to-remove residual agar. CsCl density gradient centrifugation gave the highest quality bacteriophage suspensions, recovered infectious P22 at least as efficiently as the other two purification methods and selected for intact P22 virions over damaged ones. The impurities remaining in the virus suspension after PEG precipitation and centrifugal diafiltration broadened the size distribution and interfered with electrophoretic mobility measurements. The residual impurities had a major impact on the free energy of virus-virus interfacial interaction (the quantitative measure of virus hydrophobicity/hydrophilicity) leading to an incorrect determination of P22 bacteriophage as hydrophilic. The trends in measured physicochemical properties can be rationalized by considering impurity-coated virions as permeable soft particles. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology

    Directory of Open Access Journals (Sweden)

    Li Li

    2010-01-01

    Full Text Available Abstract Research in plant molecular biology involves DNA purification on a daily basis. Although different commercial kits enable convenient extraction of high-quality DNA from E. coli cells, PCR and agarose gel samples as well as plant tissues, each kit is designed for a particular type of DNA extraction work, and the cost of purchasing these kits over a long run can be considerable. Furthermore, a simple method for the isolation of binary plasmid from Agrobacterium tumefaciens cells with satisfactory yield is lacking. Here we describe an easy protocol using homemade silicon dioxide matrix and seven simple solutions for DNA extraction from E. coli and A. tumefaciens cells, PCR and restriction digests, agarose gel slices, and plant tissues. Compared with the commercial kits, this protocol allows rapid DNA purification from diverse sources with comparable yield and purity at negligible cost. Following this protocol, we have demonstrated: (1 DNA fragments as small as a MYC-epitope tag coding sequence can be successfully recovered from an agarose gel slice; (2 Miniprep DNA from E. coli can be eluted with as little as 5 μl water, leading to high DNA concentrations (>1 μg/μl for efficient biolistic bombardment of Arabidopsis seedlings, polyethylene glycol (PEG-mediated Arabidopsis protoplast transfection and maize protoplast electroporation; (3 Binary plasmid DNA prepared from A. tumefaciens is suitable for verification by restriction analysis without the need for large scale propagation; (4 High-quality genomic DNA is readily isolated from several plant species including Arabidopsis, tobacco and maize. Thus, the silicon dioxide matrix-based DNA purification protocol offers an easy, efficient and economical way to extract DNA for various purposes in plant research.

  5. A new methodology to determine the isoeluotropic conditions on ultra-performance flash purification stationary phases from analytical reversed liquid chromatography stationary phase.

    Science.gov (United States)

    Héron, Sylvie; Charbonneau, Didier; Albisson, Pauline; Estievenart, Guillaume; Groni, Sihem; Tchapla, Alain

    2015-06-05

    Nowadays, the determination of the experimental chromatographic conditions to be used in Reversed Phase Liquid Ultra-Performance Flash Purification is still challenging. This is due to four different items. In most cases, flash purification stationary phases are not available with geometry of column used in analytical chromatography. The flash purification columns are single-use only. From the point of view of selectivity and retention, few RPLC phases exist with properties of separation identical for analytical and flash purification supports. Characterization methods and databases used for comparing analytical RPLC columns do not include stationary phases for RP flash purification columns. The goal of this work is to develop a new method development strategy which permits the determination of the experimental chromatographic conditions on RP ultra-performance flash purification columns. It relies on the knowledge of any isocratic conditions obtained on any given initial reversed stationary phase. The final conditions to implement on the RP ultra-performance flash purification phase enable either to keep the retention range of a selected solute constant, or to set it around a previously chosen value. The rules of transfer in linear gradient mode are also described. The methodology was valid, whatever the initial RP stationary and mobile phases, for different chemical classes, whatever the bonding, particle diameter, porous or core shell particle, towards different RP alkyl and analogues stationary and mobile phases. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Escherichia coli O26 IN RAW BUFFALO MILK: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    A. Rella

    2013-02-01

    Full Text Available Escherichia coli O26 is considered to be one of the most important food-borne pathogen. In this study, 120 buffalo milk samples collected in Lazio and in Apulia regions were tested for the presence of E. coli O26. One buffalo milk sample (0,8% tested positive for E. coli O26; the isolate was positive at the verocytotoxicity test and it showed resistance properties to different antimicrobial classes. These preliminary results highlight the need to monitor the foods of animal origin used for production and eaten by a wide range of persons, respect VTEC organism.

  7. Property (

    CERN Document Server

    Ershov, Mikhail; Kassabov, Martin

    2017-01-01

    The authors introduce and study the class of groups graded by root systems. They prove that if \\Phi is an irreducible classical root system of rank \\geq 2 and G is a group graded by \\Phi, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of G. As the main application of this theorem the authors prove that for any reduced irreducible classical root system \\Phi of rank \\geq 2 and a finitely generated commutative ring R with 1, the Steinberg group {\\mathrm St}_{\\Phi}(R) and the elementary Chevalley group \\mathbb E_{\\Phi}(R) have property (T). They also show that there exists a group with property (T) which maps onto all finite simple groups of Lie type and rank \\geq 2, thereby providing a "unified" proof of expansion in these groups.

  8. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery.

    Science.gov (United States)

    Turchetto, Jeremy; Sequeira, Ana Filipa; Ramond, Laurie; Peysson, Fanny; Brás, Joana L A; Saez, Natalie J; Duhoo, Yoan; Blémont, Marilyne; Guerreiro, Catarina I P D; Quinton, Loic; De Pauw, Edwin; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large

  9. [Separation and purification of proanthocyanidins from rose by macroporous resins].

    Science.gov (United States)

    Yao, Yu-cui; Li, Xiang-rong

    2008-08-01

    To study the separation and purification technology for proanthocyanidins from rose and establish the best operating conditions. Evaluated by static adsorption capacity and elution ratio, five types of macroporous resins including D101, D1300, NKA, AB-8, NKA-II were tested to separate and purify proanthocyanidins. And evaluated by product purity, the concentration of extract sample, pH of extract sample, concentration of eluant and flow rate of elution had been investigated. D101 type macroporous resin showed the best property and was suitable for purifying proanthocyanidins from rose. The best operating conditions were as follows: 1.25 mg/ml as the concentration of extract sample, 2 as the pH value of extract sample, 70% ethanol equeous solution as the eluant and 2 ml/min as the flow rate of elution. This study can supply a method to separate and purify proanthocyanidins from rose.

  10. Purification Of Water From Nsukka Water Pond Using Solar Still.

    Directory of Open Access Journals (Sweden)

    Ugwuoke E.C

    2015-08-01

    Full Text Available Abstract This work presents the analysis of a solar water distillation system. There is important need for good drinking water in the world today due to harmful effect of water borne diseases. Most water from rivers ponds seas are either salty or brackish and require purification before drinking. The water used in this work is collected from pond at Nsukka Urban and the experiment was performed at University of Nigeria Nsukka. Twenty litres of water was used for the experiment and 4 litres was obtained as the maximum volume after 10 days .The average temperature recorded during the experiment was 29C. The chemical and physical properties of the distillate correspond to world Health Organization Standard.

  11. Purification and characterization of amine oxidase from soybean seedlings.

    Science.gov (United States)

    Vianello, F; Di Paolo, M L; Stevanato, R; Gasparini, R; Rigo, A

    1993-11-15

    A simple and rapid procedure for purification of soybean seedling amine oxidase is reported. The crude enzyme, obtained by ammonium sulfate fractionation was purified by ion-exchange chromatography on a cellulose phosphate column and batch affinity chromatography on 6-aminohexyl-Sepharose. Cyclohexylamine, a competitive inhibitor, was utilized to elute the enzyme. A homogeneous enzyme was obtained with a yield higher than 25%, the content of minor components being lauryl sulfate-polyacrylamide gel electrophoresis. The enzyme is a dimer and contains two Cu2+ ion per molecule. Its EPR spectrum is typical of Cu2+ in a tetragonal symmetry. The enzyme oxidizes cadaverine at high rate, the specific activity being 4.3 mukat/mg. Molecular, spectroscopic, and kinetic properties of this enzyme are reported.

  12. Partial purification and characterization of the glucagon receptor

    International Nuclear Information System (INIS)

    Horuk, R.; Wright, D.E.

    1983-01-01

    Specific labeling of liver plasma membrane glucagon receptors has been achieved by the photoincorporation of a 125 I-labeled photoderivative of glucagon, Nsup(E)-4-azidophenylamidinoglucagon. Identification of glucagon receptors was facilitated by irradiating membranes in the presence of excess unlabeled glucagon. Isoelectric focusing of radioiodinated membrane proteins revealed one major band of glucagon displaceable material which had an isoelectric point of 5.85. When this material was isolated and run on SDS-polyacrylamide gels a major labeled band of Msub(r) 55000 was obtained which had properties consistent with those of the glucagon receptor. These studies indicate that a purification of the glucagon receptor of >700-fold can be attained through the use of isoelectric focusing and SDS-polyacrylamide electrophoresis. (Auth.)

  13. The Mycoplasma arthritidis superantigen MAM: purification and identification of an active peptide.

    OpenAIRE

    Atkin, C L; Wei, S; Cole, B C

    1994-01-01

    The prototypical superantigen MAM is an extracellular T-cell mitogen produced by Mycoplasma arthritidis, an organism which causes chronic proliferative arthritis of rodents. We here describe purification of MAM to homogeneity. Pure MAM exhibits all of the major properties previously described for partially purified MAM, including preference for H-2E molecules in presention to T cells, V beta T-cell receptor specificity for T-cell activation, and in vivo inhibition of T-cell functions but enha...

  14. On the use of magnetic separation for purification of aqueous radioactive solutions from oils

    International Nuclear Information System (INIS)

    Shchebetkovskij, V.N.; Vyatkin, V.E.; Gurevich, D.M.; Bochkov, A.A.

    1984-01-01

    Using model systems, simulating oiled condensate that is formed during evaporation of water radioactive wastes, a possibility is shown to use the method of magnetic separation for waste purification from oil. Introduction of a dispersed ferromagnetic powder in the system to stabilize oil drops and to impart ''quasiferromagnetic'' properties to them, is a necessary condition for the efficient oil separation. Using as an example 137 Cs absorption, the adsorbability of ferromagnetic powders relative to radionuclides in the system investigated is assessed

  15. Sealed operation, and circulation and purification of gas in the HARPO TPC

    Science.gov (United States)

    Frotin, M.; Gros, P.; Attié, D.; Bernard, D.; Dauvois, V.; Delbart, A.; Durand, D.; Geerebaert, Y.; Legand, S.; Magnier, P.; Poilleux, P.; Semeniouk, I.

    2018-02-01

    HARPO is a time projection chamber (TPC) demonstrator of a gamma-ray telescope and polarimeter in the MeV-GeV range, for a future space mission. We present the evolution of the TPC performance over a five month sealed-mode operation, by the analysis of cosmic-ray data, followed by the fast and complete recovery of the initial gas properties using a lightweight gas circulation and purification system.

  16. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R: partial purification and properties of methionyl-transfer ribonucleic acid synthetase and methionyl-transfer ribonucleic acid formyltransferase.

    Science.gov (United States)

    Samuel, C E; Rabinowitz, J C

    1974-04-01

    The initiation of protein synthesis by Streptococcus faecalis R grown in folate-free culture occurs without N-formylation or N-acylation of methionyl-tRNA(f) (Met). Methionyl-tRNA synthetase and methionyl-tRNA formyltransferase were partially purified from S. faecalis grown under normal culture conditions in the presence of folate (plus-folate); the general properties of the enzymes were determined and compared with the properties of the enzymes purified from wild-type cells grown in the absence of folate (minus-folate). S. faecalis methionyl-tRNA synthetase displays optimal activity at pH values between 7.2 and 7.8, requires Mg(2+), and has an apparent molecular weight of 106,000, as determined by gel filtration, and 127,000, as determined by sucrose density gradient centrifugation. The K(m) values of plus-folate methionyl-tRNA synthetase for each of the three substrates in the aminoacylation reaction (l-methionine, adenosine triphosphate, and tRNA) are nearly identical to the respective substrate Michaelis constants of minus-folate methionyl-tRNA synthetase. Furthermore, both plus- and minus-folate S. faecalis methionyl-tRNA synthetases catalyze, at equal rates, the aminoacylation of tRNA(f) (Met) and tRNA(m) (Met) isolated from either plus-folate or minus-folate cells. S. faecalis methionyl-tRNA formyltransferase displays optimal activity at pH values near 7.0, is stimulated by Mg(2+), and has an apparent molecular weight of approximately 29,900 when estimated by sucrose density gradient centrifugation. The K(m) value of plus-folate formyltransferase for plus-folate Met-tRNA(f) (Met) does not differ significantly from that of minus-folate formyltransferase for minus-folate Met-tRNA(f) (Met). Both enzymes can utilize either 10-formyltetrahydrofolate or 10-formyltetrahydropteroyltriglutamate as the formyl donor; the Michaelis constant for the monoglutamyl pteroyl coenzyme is slightly less than that of the triglutamyl pteroyl coenzyme for both transformylases

  17. The Extraction and Partial Purification of Bacterial DNA as a Practical Exercise for GCE Advanced Level Students.

    Science.gov (United States)

    Falconer, A. C.; Hayes, L. J.

    1986-01-01

    Describes a relatively simple method of extraction and purification of bacterial DNA. This technique permits advanced secondary-level science students to obtain adequate amounts of DNA from very small pellets of bacteria and to observe some of its polymer properties. (ML)

  18. 76 FR 20542 - Escherichia coli

    Science.gov (United States)

    2011-04-13

    ... Escherichia coli O157:H7, sequence negative for shiga toxins I and II, and grown on atoxigenic host bacteria... specific to Escherichia coli O157:H7, sequence negative for shiga toxins I and II, and grown on atoxigenic... exemption from the requirement of a tolerance for residues of Escherichia coli O157:H7 Specific...

  19. Fusion expression of pedA gene to obtain biologically active pediocin PA-1 in Escherichia coli *

    OpenAIRE

    Liu, Shan-na; Han, Ye; Zhou, Zhi-jiang

    2011-01-01

    Two heterologous expression systems using thioredoxin (trxA) as a gene fusion part in Escherichia coli were developed to produce recombinant pediocin PA-1. Pediocin PA-1 structural gene pedA was isolated from Pediococcus acidilactici PA003 by the method of polymerase chain reaction (PCR), then cloned into vector pET32a(+), and expressed as thioredoxin-PedA fusion protein in the host strain E. coli BL21 (DE3). The fusion protein was in the form of inclusion body and was refolded before purific...

  20. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    Directory of Open Access Journals (Sweden)

    Figura Grzegorz

    2011-05-01

    Full Text Available Abstract Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity

  1. Combination of membrane technologies for purification of L (+) - lactic acid from juice of banana (Musa AAA, variety Cavendish cultivar Gram naine) obtained from an agroindustrial waste

    International Nuclear Information System (INIS)

    Murillo Viera, Esteban

    2013-01-01

    The process that has allowed recovery and purification of the L (+)-acid present in the juice fermented waste produced from banana was developed, treated enzymatically, using tangential nanofiltration. The effect of the enzymatic treatment was evaluated on physical chemical parameters of fermented banana juice. The process parameters of centrifugal clarification and microfiltration were characterized on banana juice as activities prior operations to recovery and purification of lactic acid. The temperature and the transmembrane pressure on the permeate flow and the performance of recovery and purification of lactic acid were evaluated by the ultrafiltration and nanofiltration processes. The properties physico-chemical the banana juice fermented and of the liquid filtrate obtained at the stage recovery and purification of lactic acid were compared by ultrafiltration [es

  2. Effect of Different Purification Techniques on the Characteristics of Heteropolysaccharide-Protein Biopolymer from Durian (Durio zibethinus Seed

    Directory of Open Access Journals (Sweden)

    Hamed Mirhosseini

    2012-09-01

    Full Text Available Natural biopolymers from plant sources contain many impurities (e.g., fat, protein, fiber, natural pigment and endogenous enzymes, therefore, an efficient purification process is recommended to minimize these impurities and consequently improve the functional properties of the biopolymer. The main objective of the present study was to investigate the effect of different purification techniques on the yield, protein content, solubility, water- and oil-holding capacity of a heteropolysaccharide-protein biopolymer obtained from durian seed. Four different purification methods using different chemicals and solvents (i.e., A (isopropanol and ethanol, B (isopropanol and acetone, C (saturated barium hydroxide, and D (Fehling solution] to liberate the purified biopolymer from its crude form were compared. In most cases, the purification process significantly (p < 0.05 improved the physicochemical properties of heteropolysaccharide-protein biopolymer from durian fruit seed. The present work showed that the precipitation using isopropanol and acetone (Method B resulted in the highest purification yield among all the tested purification techniques. The precipitation using saturated barium hydroxide (Method C led to induce the highest solubility and relatively high capacity of water absorption. The current study reveals that the precipitation using Fehling solution (Method D most efficiently eliminates the protein fraction, thus providing more pure biopolymer suitable for biological applications.

  3. Structure of the nifQ gene from Enterobacter agglomerans 333 and its overexpression in Escherichia coli.

    Science.gov (United States)

    Siddavattam, D; Singh, M; Klingmüller, W

    1993-06-01

    The nifQ gene, involved in early stages of iron-molybdenum cofactor (FeMo-co) biosynthesis, was identified downstream of the nifB and nifF genes of Enterobacter agglomerans. This gene was cloned and its nucleotide sequence determined. The amino acid sequence, as deduced from the nucleotide sequence, revealed an accumulation of cysteine amino acid residues at the C-terminal end of the protein. The cysteine cluster showed the following consensus sequence Cys-X4-Cys-X2-Cys-X5-Cys, which is a typical characteristic of metal-binding proteins. Further, the nifQ gene was cloned downstream of strong transcriptional (bacteriophage lambda PLPR) and translational (atpE) signals of the expression vector pCYTEXP1 and expressed as an unfused, soluble protein in Escherichia coli. The molecular mass of 19 kDa, as deduced by SDS-PAGE, is in good agreement with the molecular mass deduced from the nucleotide sequence. The availability of high-level expression clones should facilitate purification of large quantities of the recombinant NifQ protein and elucidation of its properties.

  4. Escherichia coli in chronic inflammatory bowel diseases: An update on adherent invasive Escherichia coli pathogenicity.

    Science.gov (United States)

    Martinez-Medina, Margarita; Garcia-Gil, Librado Jesus

    2014-08-15

    Escherichia coli (E. coli), and particularly the adherent invasive E. coli (AIEC) pathotype, has been increasingly implicated in the ethiopathogenesis of Crohn's disease (CD). E. coli strains with similar pathogenic features to AIEC have been associated with other intestinal disorders such as ulcerative colitis, colorectal cancer, and coeliac disease, but AIEC prevalence in these diseases remains largely unexplored. Since AIEC was described one decade ago, substantial progress has been made in deciphering its mechanisms of pathogenicity. However, the molecular bases that characterize the phenotypic properties of this pathotype are still not well resolved. A review of studies focused on E. coli populations in inflammatory bowel disease (IBD) is presented here and we discuss about the putative role of this species on each IBD subtype. Given the relevance of AIEC in CD pathogenesis, we present the latest research findings concerning AIEC host-microbe interactions and pathogenicity. We also review the existing data regarding the prevalence and abundance of AIEC in CD and its association with other intestinal diseases from humans and animals, in order to discuss the AIEC disease- and host-specificity. Finally, we highlight the fact that dietary components frequently found in industrialized countries may enhance AIEC colonization in the gut, which merits further investigation and the implementation of preventative measures.

  5. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice

    Science.gov (United States)

    de Boer, Ernie; Rodriguez, Patrick; Bonte, Edgar; Krijgsveld, Jeroen; Katsantoni, Eleni; Heck, Albert; Grosveld, Frank; Strouboulis, John

    2003-06-01

    Proteomic approaches require simple and efficient protein purification methodologies that are amenable to high throughput. Biotinylation is an attractive approach for protein complex purification due to the very high affinity of avidin/streptavidin for biotinylated templates. Here, we describe an approach for the single-step purification of transcription factor complex(es) based on specific in vivo biotinylation. We expressed the bacterial BirA biotin ligase in mammalian cells and demonstrated very efficient biotinylation of a hematopoietic transcription factor bearing a small (23-aa) artificial peptide tag. Biotinylation of the tagged transcription factor altered neither the factor's protein interactions or DNA binding properties in vivo nor its subnuclear distribution. Using this approach, we isolated the biotin-tagged transcription factor and at least one other known interacting protein from crude nuclear extracts by direct binding to streptavidin beads. Finally, this method works efficiently in transgenic mice, thus raising the prospect of using biotinylation tagging in protein complex purification directly from animal tissues. Therefore, BirA-mediated biotinylation of tagged proteins provides the basis for the single-step purification of proteins from mammalian cells.

  6. A Strategy for Production of Correctly Folded Disulfide-Rich Peptides in the Periplasm of E. coli.

    Science.gov (United States)

    Saez, Natalie J; Cristofori-Armstrong, Ben; Anangi, Raveendra; King, Glenn F

    2017-01-01

    Recombinant expression of disulfide-reticulated peptides and proteins is often challenging. We describe a method that exploits the periplasmic disulfide-bond forming machinery of Escherichia coli and combines this with a cleavable, solubility-enhancing fusion tag to obtain higher yields of correctly folded target protein than is achievable via cytoplasmic expression. The protocols provided herein cover all aspects of this approach, from vector construction and transformation to purification of the cleaved target protein and subsequent quality control.

  7. HOUSEHOLD PURIFICATION OF FLUORIDE CONTAMINATED MAGADI (TRONA)

    DEFF Research Database (Denmark)

    Nielsen, Joan Maj; Dahi, Elian

    1997-01-01

    Purification of fluoride contaminated magadi is studied using bone char sorption and calcium precipitation. The bone char treatment is found to be workable both in columns and in batches where the magadi is dissolved in water prior to treatment. The concentrations in the solutions were 89 g magadi....../L and 95 and 400 mg F/L respectively in natural and synthetic solutions. The fluoride removal capacities observed were 4.6 mg F/g bone char for the column system and 2.7 mg F/g bone char for the batch system in case of synthetic magadi solution. It is however concluded that the batch system is the best...... treatment method. A procedure for purification of fluoride contaminated magadi at household level is described....

  8. The Viability of Photocatalysis for Air Purification

    Directory of Open Access Journals (Sweden)

    Stephen O. Hay

    2015-01-01

    Full Text Available Photocatalytic oxidation (PCO air purification technology is reviewed based on the decades of research conducted by the United Technologies Research Center (UTRC and their external colleagues. UTRC conducted basic research on the reaction rates of various volatile organic compounds (VOCs. The knowledge gained allowed validation of 1D and 3D prototype reactor models that guided further purifier development. Colleagues worldwide validated purifier prototypes in simulated realistic indoor environments. Prototype products were deployed in office environments both in the United States and France. As a result of these validation studies, it was discovered that both catalyst lifetime and byproduct formation are barriers to implementing this technology. Research is ongoing at the University of Connecticut that is applicable to extending catalyst lifetime, increasing catalyst efficiency and extending activation wavelength from the ultraviolet to the visible wavelengths. It is critical that catalyst lifetime is extended to realize cost effective implementation of PCO air purification.

  9. Nanomaterials and Water Purification: Opportunities and Challenges

    International Nuclear Information System (INIS)

    Savage, Nora; Diallo, Mamadou S.

    2005-01-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification

  10. Nanomaterials and Water Purification: Opportunities and Challenges

    Science.gov (United States)

    Savage, Nora; Diallo, Mamadou S.

    2005-10-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification.

  11. Development of partitioning process: purification of DIDPA

    International Nuclear Information System (INIS)

    Watanabe, Masayuki; Morita, Yasuji; Kubota, Masumitsu

    1998-04-01

    The partitioning process has developed and demonstrated that the solvent extraction with diisodecylphosphoric acid (DIDPA) can successfully separate transuranium elements from a high-level liquid waste. In the solvent extraction, DIDPA is decomposed by radiolysis and hydrolysis. The main degradation product is monoisodecyl phosphoric acid (MIDPA). Ethylene glycol has been used for removing the product by a solvent extraction method. However this method has two drawbacks that two phases separate slowly and the used ethylene glycol is not regeneratable. First it was found that the addition of acetone or methanol with 20 volume % improved the phase separation. Then a new purification method was developed by using an aqueous solution of methanol or acetone. The new purification method is as excellent as the ethylene glycol method for the removal of MIDPA. (author)

  12. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    Science.gov (United States)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  13. Dual UV irradiation-based metal oxide nanoparticles for enhanced antimicrobial activity in Escherichia coli and M13 bacteriophage.

    Science.gov (United States)

    Jin, Su-Eon; Hwang, Woochul; Lee, Hyo Jung; Jin, Hyo-Eon

    2017-01-01

    Metal oxide (MO) nanoparticles have been studied as nano-antibiotics due to their antimicrobial activities even in antibiotic-resistant microorganisms. We hypothesized that a hybrid system of dual UV irradiation and MO nanoparticles would have enhanced antimicrobial activities compared with UV or MO nanoparticles alone. In this study, nanoparticles of ZnO, ZnTiO 3 , MgO, and CuO were selected as model nanoparticles. A dual UV collimated beam device of UV-A and UV-C was developed depending upon the lamp divided by coating. Physicochemical properties of MO nanoparticles were determined using powder X-ray diffractometry (PXRD), Brunauer-Emmett-Teller analysis, and field emission-scanning electron microscopy with energy-dispersive X-ray spectroscopy. Atomic force microscopy with an electrostatic force microscopy mode was used to confirm the surface topology and electrostatic characteristics after dual UV irradiation. For antimicrobial activity test, MO nanoparticles under dual UV irradiation were applied to Escherichia coli and M13 bacteriophage (phage). The UV-A and UV-C showed differential intensities in the coated and uncoated areas (UV-A, coated = uncoated; UV-C, coated ≪ uncoated). MO nanoparticles showed sharp peaks in PXRD patterns, matched to pure materials. Their primary particle sizes were less than 100 nm with irregular shapes, which had an 8.6~25.6 m 2 /g of specific surface area with mesopores of 22~262 nm. The electrostatic properties of MO nanoparticles were modulated after UV irradiation. ZnO, MgO, and CuO nanoparticles, except ZnTiO 3 nanoparticles, showed antibacterial effects on E. coli . Antimicrobial effects on E. coli and phages were also enhanced after cyclic exposure of dual UV and MO nanoparticle treatment using the uncoated area, except ZnO nanoparticles. Our results demonstrate that dual UV-MO nanoparticle hybrid system has a potential for disinfection. We anticipate that it can be developed as a next-generation disinfection system in

  14. Entanglement of purification: from spin chains to holography

    Science.gov (United States)

    Nguyen, Phuc; Devakul, Trithep; Halbasch, Matthew G.; Zaletel, Michael P.; Swingle, Brian

    2018-01-01

    Purification is a powerful technique in quantum physics whereby a mixed quantum state is extended to a pure state on a larger system. This process is not unique, and in systems composed of many degrees of freedom, one natural purification is the one with minimal entanglement. Here we study the entropy of the minimally entangled purification, called the entanglement of purification, in three model systems: an Ising spin chain, conformal field theories holographically dual to Einstein gravity, and random stabilizer tensor networks. We conjecture values for the entanglement of purification in all these models, and we support our conjectures with a variety of numerical and analytical results. We find that such minimally entangled purifications have a number of applications, from enhancing entanglement-based tensor network methods for describing mixed states to elucidating novel aspects of the emergence of geometry from entanglement in the AdS/CFT correspondence.

  15. Purification of crude biodiesel using dry washing and membrane technologies

    Directory of Open Access Journals (Sweden)

    I.M. Atadashi

    2015-12-01

    Full Text Available Purification of crude biodiesel is mandatory for the fuel to meet the strict international standard specifications for biodiesel. Therefore, this paper carefully analyzed recently published literatures which deal with the purification of biodiesel. As such, dry washing technologies and the most recent membrane biodiesel purification process have been thoroughly examined. Although purification of biodiesel using dry washing process involving magnesol and ion exchange resins provides high-quality biodiesel fuel, considerable amount of spent absorbents is recorded, besides the skeletal knowledge on its operating process. Further, recent findings have shown that biodiesel purification using membrane technique could offer high-quality biodiesel fuel with less wastewater discharges. Thus, both researchers and industries are expected to benefit from the development of membrane technique in purifying crude biodiesel. As well biodiesel purification via membranes has been shown to be environmentally friendly. For these reasons, it is important to explore and exploit membrane technology to purify crude biodiesel.

  16. Conductive diamond electrodes for water purification

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2007-12-01

    Full Text Available Nowadays, synthetic diamond has been studied for its application in wastewater treatment, electroanalysis, organic synthesis and sensor areas; however, its use in the water disinfection/purification is its most relevant application. The new electrochemistry applications of diamond electrodes open new perspectives for an easy, effective, and chemical free water treatment. This article highlights and summarizes the results of a selection of papers dealing with electrochemical disinfection using synthetic diamond films.

  17. Propagation and Purification of Baculovirus oryctes Huger

    Directory of Open Access Journals (Sweden)

    Susamto Somowiyarjo

    1995-12-01

    Full Text Available An isolate of Baculovirus oryctes, a possible biological control agent for coconut beetle (Oryctes rhinoceros Huger from East Java was propagated and purified. The virus could be transmitted by feeding the imago with 10% sucrose containing virus from homogenate of infected beetles. Effectivity of virus to 9 healthy females by sexual copulation. Virus be succesfully purified by a method of Payne. Key words: Baculovirus oryctes, transmission, purification

  18. EXTRACTION, PURIFICATION ET CARACTERISATION DE DEUX ...

    African Journals Online (AJOL)

    AISA

    cristallinité, son complexe avec la lignine et les autres composés qui lui sont associés. (Arunik et al., 1988). Pour pouvoir hydrolyser les polymères naturels, nous avons entrepris l'extraction, la purification, l'homogénéisation et la déter- mination des propriétés physico-chimiques de deux cellulases des ouvriers du termite ...

  19. HPLC purification of recombinant NcGRA6 antigen improves enzyme-linked immunosorbent assay for serodiagnosis of bovine neosporosis.

    Science.gov (United States)

    Jenkins, M C; Fetterer, R; Schares, G; Björkman, C; Wapenaar, W; McAllister, M; Dubey, J P

    2005-08-10

    The gene for a dense granule protein (NcGRA6) of Neospora caninum was expressed in Escherichia coli as a His-tag fusion protein and purified by NiNTA affinity chromatography. In a preliminary study, high binding of antibodies from N. caninum-negative cows was observed in enzyme-linked immunosorbent assay (ELISA) using NiNTA-purified NcGRA6. Analysis of NiNTA eluates revealed a significant number of E. coli proteins that co-purified with recombinant NcGRA6. In an attempt to improve the relative sensitivity and specificity of the NcGRA6-based ELISA, the rNcGRA6 eluates were subjected to a secondary purification using reverse phase-high performance liquid chromatography (RP-HPLC). Analysis of RP-HPLC eluates by SDS-PAGE/silver staining revealed the purification of recombinant NcGRA6 from contaminating E. coli proteins. ELISAs using the RP-HPLC purified NcGRA6 (dELISA) or singly purified NcGRA6 (sELISA) for identifying seropositive and seronegative cows in a beef herd experiencing an epidemic outbreak of neosporosis were compared to standard assays based on native tachyzoite protein-immunofluorescence antibody test, immunoblot assay, and ISCOM-ELISA. The relative sensitivity, specificity, and kappa value of the NcGRA6d-ELISA were greatly improved over the NcGRA6s-ELISA when compared to the three native antigen immunoassays. These results indicate that removal of contaminating E. coli proteins improves the performance of recombinant NcGRA6 ELISA in diagnosing bovine neosporosis, and may have applicability to the use of recombinant proteins in diagnosing other infectious agents.

  20. A cytochrome c fusion protein domain for convenient detection, quantification, and enhanced production of membrane proteins in Escherichia coli--expression and characterization of cytochrome-tagged Complex I subunits.

    Science.gov (United States)

    Gustavsson, Tobias; Trane, Maria; Moparthi, Vamsi K; Miklovyte, Egle; Moparthi, Lavanya; Górecki, Kamil; Leiding, Thom; Arsköld, Sindra Peterson; Hägerhäll, Cecilia

    2010-08-01

    Overproduction of membrane proteins can be a cumbersome task, particularly if high yields are desirable. NADH:quinone oxidoreductase (Complex I) contains several very large membrane-spanning protein subunits that hitherto have been impossible to express individually in any appreciable amounts in Escherichia coli. The polypeptides contain no prosthetic groups and are poorly antigenic, making optimization of protein production a challenging task. In this work, the C-terminal ends of the Complex I subunits NuoH, NuoL, NuoM, and NuoN from E. coli Complex I and the bona fide antiporters MrpA and MrpD were genetically fused to the cytochrome c domain of Bacillus subtilis cytochrome c(550). Compared with other available fusion-protein tagging systems, the cytochrome c has several advantages. The heme is covalently bound, renders the proteins visible by optical spectroscopy, and can be used to monitor, quantify, and determine the orientation of the polypeptides in a plethora of experiments. For the antiporter-like subunits NuoL, NuoM, and NuoN and the real antiporters MrpA and MrpD, unprecedented amounts of holo-cytochrome fusion proteins could be obtained in E. coli. The NuoHcyt polypeptide was also efficiently produced, but heme insertion was less effective in this construct. The cytochrome c(550) domain in all the fusion proteins exhibited normal spectra and redox properties, with an E(m) of about +170 mV. The MrpA and MrpD antiporters remained functional after being fused to the cytochrome c-tag. Finally, a his-tag could be added to the cytochrome domain, without any perturbations to the cytochrome properties, allowing efficient purification of the overexpressed fusion proteins.