WorldWideScience

Sample records for coli purification properties

  1. One-step purification of E. coli elongation factor Tu

    DEFF Research Database (Denmark)

    Knudsen, Charlotte Rohde; Clark, Brian F. C.; Degn, B

    1993-01-01

    The tuf A gene, encoding the E. coli elongation factor Tu, was cloned in the pGEX gene fusion system. Upon expression EF-Tu is fused to glutathione-S-transferase serving as a purification handle with affinity for glutathione immobilised on agarose. This allows purification of EF-Tu in a one...

  2. Escherichia coli photoreactivating enzyme: purification and properties

    International Nuclear Information System (INIS)

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w/ 0 of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected

  3. Purification and Characterization of Recombinant Vaccinia L1R Protein from Escherichia coli

    Science.gov (United States)

    2016-08-01

    RECOMBINANT VACCINIA L1R PROTEIN FROM ESCHERICHIA COLI 1. INTRODUCTION 1.1 Background Vaccinia virus (VACV) is the active component of the...the preparation of the recombinant VACV L1R protein fragment by denaturing , refolding, and purifying material expressed into inclusion bodies in...PURIFICATION AND CHARACTERIZATION OF RECOMBINANT VACCINIA L1R PROTEIN FROM ESCHERICHIA COLI ECBC-TR-1370

  4. Purification and characterization of Escherichia coli MreB protein.

    Science.gov (United States)

    Nurse, Pearl; Marians, Kenneth J

    2013-02-01

    The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μM.

  5. Purification and Characterization of Escherichia coli MreB Protein*

    Science.gov (United States)

    Nurse, Pearl; Marians, Kenneth J.

    2013-01-01

    The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μm. PMID:23235161

  6. Production and Purification Immunoglobulin against E. coli in Egg Yolk

    Directory of Open Access Journals (Sweden)

    Mohammadreza Nassiri

    2016-08-01

    Full Text Available Introduction Chicken is the only avian species in which polyclonal antibodies, like IgG is transported from the hen to the egg yolk in a similar manner as the transport of mammalian IgG from the mother to the fetus. Immunoglobulin Y in the chicken is transported to the egg and accumulates in the egg yolk in large quantities. IgY is an egg yolk antibody that has been used widely for treatment and prevention of infections in humans and animal. IgY is used for passive protection of the pathogen infections such as Escherichia coli, bovine and human rotavirus, bovine coronavirus, salmonella, staphylococcus and Pseudomonas. IgY is a promising candidate as an alternative to antibiotics. Eschericha coli strains of serotype O157: H7 belongs to a family of pathogenic E. coli called enterohemorrhagic E. coli (EHEC strains responsible for hemorrhagic colitis, bloody or non-bloody diarrhea, and hemolytic uremic syndrome in humans. This strain of E. coli pathogenises by adhering to host intestinal epithelium and forming bacterial colonies. The purpose of this study was to produce and purify immunoglobulin Y against E. coli O157:H7 and develop specific polyclonal anti E. coli antibody in the egg yolk. Materials and Methods Sixteen-week-old laying hens (Mashhad, Iran were kept in individual cages with food and water ad libitum. Immunization of hens was performed by intramuscularly injecting killed E. coli O157: H7 with an equal volume of Freund’s complete adjuvant into two sides of chest area (Sigma, USA for the first immunization. Two booster immunizations followed up using complete and incomplete Freund’s adjuvants in two weeks interval. Freund’s adjuvant without antigen was injected to the control group. Two weeks after the last injection, the eggs were collected daily for eight weeks, marked and stored at 4 ºC. In order to IgY purification, eggs were collected. Purification of IgY from egg yolk was based on Polson and using PEG6000. Finally, the

  7. Homologous high-throughput expression and purification of highly conserved E coli proteins

    Directory of Open Access Journals (Sweden)

    Duchmann Rainer

    2007-06-01

    Full Text Available Abstract Background Genetic factors and a dysregulated immune response towards commensal bacteria contribute to the pathogenesis of Inflammatory Bowel Disease (IBD. Animal models demonstrated that the normal intestinal flora is crucial for the development of intestinal inflammation. However, due to the complexity of the intestinal flora, it has been difficult to design experiments for detection of proinflammatory bacterial antigen(s involved in the pathogenesis of the disease. Several studies indicated a potential association of E. coli with IBD. In addition, T cell clones of IBD patients were shown to cross react towards antigens from different enteric bacterial species and thus likely responded to conserved bacterial antigens. We therefore chose highly conserved E. coli proteins as candidate antigens for abnormal T cell responses in IBD and used high-throughput techniques for cloning, expression and purification under native conditions of a set of 271 conserved E. coli proteins for downstream immunologic studies. Results As a standardized procedure, genes were PCR amplified and cloned into the expression vector pQTEV2 in order to express proteins N-terminally fused to a seven-histidine-tag. Initial small-scale expression and purification under native conditions by metal chelate affinity chromatography indicated that the vast majority of target proteins were purified in high yields. Targets that revealed low yields after purification probably due to weak solubility were shuttled into Gateway (Invitrogen destination vectors in order to enhance solubility by N-terminal fusion of maltose binding protein (MBP, N-utilizing substance A (NusA, or glutathione S-transferase (GST to the target protein. In addition, recombinant proteins were treated with polymyxin B coated magnetic beads in order to remove lipopolysaccharide (LPS. Thus, 73% of the targeted proteins could be expressed and purified in large-scale to give soluble proteins in the range of 500

  8. In-silico design, expression, and purification of novel chimeric Escherichia coli O157:H7 OmpA fused to LTB protein in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Aytak Novinrooz

    Full Text Available E. coli O157:H7, one of the major EHEC serotypes, is capable of developing bloody diarrhea, hemorrhagic colitis (HC, and fatal hemolytic uremic syndrome (HUS and is accompanied by high annual economic loss worldwide. Due to the increased risk of HC and HUS development following antibiotic therapy, the prevention of infections caused by this pathogen is considered to be one of the most effective ways of avoiding the consequences of this infection. The main aim of the present study was to design, express, and purify a novel chimeric protein to develope human vaccine candidate against E. coli O157:H7 containing loop 2-4 of E. coli O157:H7, outer membrane protein A (OmpA, and B subunit of E. coli heat labile enterotoxin (LTB which are connected by a flexible peptide linker. Several online databases and bioinformatics software were utilized to choose the peptide linker among 537 analyzed linkers, design the chimeric protein, and optimize the codon of the relative gene encoding this protein. Subsequently, the recombinant gene encoding OmpA-LTB was synthesized and cloned into pET-24a (+ expression vector and transferred to E. coli BL21(DE3 cells. The expression of OmpA-LTB chimeric protein was then carried out by induction of cultured E. coli Bl21 (DE3 cells with 1mM isopropyl-β-D-thiogalactopyranoside (IPTG. The purification of OmpA-LTB was then performed by nickel affinity chromatography. Expression and purification were analyzed by sodium dodecyl sulphate poly acrylamide gel electrophoresis. Moreover, the identity of the expressed protein was analyzed by western blotting. SDS-PAGE and western immunoblotting confirmed the successful expression of a 27 KDa recombinant protein after 24 hours at 37°C post-IPTG induction. OmpA-LTB was then successfully purified, using nickel affinity chromatography under denaturing conditions. The yield of purification was 12 mg per liter of culture media. Ultimately, we constructed the successful design and efficient

  9. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    Science.gov (United States)

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. High Level Expression and Purification of the Clinically Active Antimicrobial Peptide P-113 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kuang-Ting Cheng

    2018-03-01

    Full Text Available P-113, which was originally derived from the human saliva protein histatin 5, is a histidine-rich antimicrobial peptide with the sequence AKRHHGYKRKFH. P-113 is currently undergoing phase II clinical trial as a pharmaceutical agent to fight against fungal infections in HIV patients with oral candidiasis. Previously, we developed a new procedure for the high-yield expression and purification of hG31P, an analogue and antagonist of human CXCL8. Moreover, we have successfully removed lipopolysaccharide (LPS, endotoxin associated with hG31P in the expression with Escherichia coli. In this paper, we have used hG31P as a novel fusion protein for the expression and purification of P-113. The purity of the expressed P-113 is more than 95% and the yield is 4 mg P-113 per liter of E. coli cell culture in Luria-Bertani (LB medium. The antimicrobial activity of the purified P-113 was tested. Furthermore, we used circular dichroism (CD and nuclear magnetic resonance (NMR spectroscopy to study the structural properties of P-113. Our results indicate that using hG31P as a fusion protein to obtain large quantities of P-113 is feasible and is easy to scale up for commercial production. An effective way of producing enough P-113 for future clinical studies is evident in this study.

  11. Simple purification for E. coli putrescine aminopropyl-transferase

    International Nuclear Information System (INIS)

    Gavagan, J.E.; Anton, D.L.

    1986-01-01

    Putrescine aminopropyltransferase transfers an aminopropyl group from decarboxylated S-adenosylmethionine to putrescine forming spermidine. They have recently developed a rapid assay based on the separation of the spermidine product from the unreacted [ 14 C-met] labeled decarboxylated S-adenosylmethionine substrate by charcoal adsorption. Using this assay they have developed a simple protocol for the purification of putrescine aminopropyltransferase from E. coli HT 527. The procedure involves ammonium sulfate fractionation, phenyl Sepharose chromatography, and FPLC. The enzyme is greater than 80% pure as judged by SDS-PAGE and has an apparent subunit molecular weight of 35,000. The kinetics of this enzyme are being reinvestigated

  12. Purification and some properties of G-factor from the silk gland of silkworm

    International Nuclear Information System (INIS)

    Taira, Hideharu; Ejiri, Shin-ichiro; Shimura, Kensuke

    1972-01-01

    Purification of G-factor from the silk gland of silkworms and some of its properties have been studied in comparison with the G-factor from E. coli and rat liver transferase II. In the experiment, GTP-γ- 32 P was prepared from GDP and 32 Pi by photophosphorylation with spinach chloroplasts, and purified by Dowex-1 chromatography. The purified G-factor was homogeneous on disc gel electrophoresis. Molecular weight of 80,000 was estimated from a calibrated Sephadex G-200 column. The purified G-factor exhibited uncoupled ribosome-dependent GTPase activity, and was inhibited by fusidic acid, SH inhibitor, and diphtheria toxin plus NAD. The G-factor from E. coli and that from the silk gland were not interchangeable in GTPase reaction. (Yamanoto, Y.)

  13. Purification and some properties of G-factor from the silk gland of silkworm

    Energy Technology Data Exchange (ETDEWEB)

    Taira, H; Ejiri, S I; Shimura, K [Tohoku Univ., Sendai (Japan). Faculty of Agriculture

    1972-12-01

    Purification of G-factor from the silk gland of silkworms and some of its properties have been studied in comparison with the G-factor from E. coli and rat liver transferase II. In the experiment, GTP-..gamma..-/sup 32/P was prepared from GDP and /sup 32/Pi by photophosphorylation with spinach chloroplasts, and purified by Dowex-1 chromatography. The purified G-factor was homogeneous on disc gel electrophoresis. Molecular weight of 80,000 was estimated from a calibrated Sephadex G-200 column. The purified G-factor exhibited uncoupled ribosome-dependent GTPase activity, and was inhibited by fusidic acid, SH inhibitor, and diphtheria toxin plus NAD. The G-factor from E. coli and that from the silk gland were not interchangeable in GTPase reaction.

  14. Expression, purification, and activity assay of peptide deformylase from Escherichia coli and Staphylococcus aureus.

    Science.gov (United States)

    Che, Xuchun; Hu, Jinwei; Wang, Lijuan; Zhu, Zhifeng; Xu, Qiong; Lv, Junqiang; Fu, Zheng; Sun, Yajun; Sun, Jia; Lin, Gang; Lu, Rong; Yao, Zhi

    2011-11-01

    Peptide deformylase (PDF) is considered an attractive target for screening novel antibiotics. The PDF from Escherichia coli and Staphylococcus aureus are representative of the gram-negative species type of PDF (type I PDF) and the gram-positive species type of PDF (type II PDF), respectively. They could be used for screening broad-spectrum antibiotics. Herein, we cloned the def gene by PCR, inserted it into plasmid pET-22b-def, and transformed the plasmid into E. coli BL21 (DE3) cells, then the cells were induced by IPTG to express PDF. E. coli Ni(2+)-PDF was extracted and purified by ion-exchange chromatography and gel filtration chromatography. S. aureus PDFs were extracted and purified using the MagExtractor kit. The nickel form of S. aureus PDF was obtained by adding NiCl(2) to all reagents used for purification. Iron-enriched S. aureus PDF was obtained by adding FeCl(3) to the growth medium for E. coli BL21 (DE3) cells and adding FeCl(3) and catalase to all reagents used for purification. The activities of PDFs were analyzed, compared, and grouped according to the experimental conditions that produced optimal activity, and we used actinonin as an inhibitor of PDF and calculated the IC(50) value. We obtained high expression of E. coli and S. aureus PDF with high activity and stability. The function of PDFs was inhibited by actinonin in a dose-dependent manner. Results may be helpful for future mechanistic investigations of PDF as well as high-throughput screening for other PDF inhibitors.

  15. Expression and purification of soluble recombinant Hexastatin in E. coli

    International Nuclear Information System (INIS)

    He Xin; Wen Lei; Song Naling; Wang Dezhi; Zhao Qiren

    2012-01-01

    Purpose: To construct the expression vector of Hexastatin gene, to express and to purify the recombinant protein for further activity research. Methods: The human Hexastatin gene was isolated by RTPCR from EC9706 cells total RNA and cloned into pMD18-T for sequencing. Then the Hexastatin gene was subcloned into pMAL-c4x expression vector and induced to express by IPTG. The recombinant fusion protein was purified with Amylose Resin Heads. Results: RT-PCR product was about 687 bp and its sequence was the same as that of Hexastatin reported. The recombinant protein was expressed in E. coli BL21 with high level and the soluble protein accounted for 24.8% of the total bacterial protein. The purification of recombinant protein purified with Amylose Resin Heads reached more than 90%. Conclusion: The cloning, expression and purification of human Hexastatin have laid a foundation for its anti-angiogenesis therapy for tumor. (authors)

  16. Data for the co-expression and purification of human recombinant CaMKK2 in complex with calmodulin in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lisa Gerner

    2016-09-01

    Full Text Available Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2 has been implicated in a range of conditions and pathologies from prostate to hepatic cancer. Here, we describe the expression in Escherichia coli and the purification protocol for the following constructs: full-length CaMKK2 in complex with CaM, CaMKK2 ‘apo’, CaMKK2 (165-501 in complex with CaM, and the CaMKK2 F267G mutant. The protocols described have been optimized for maximum yield and purity with minimal purification steps required and the proteins subsequently used to develop a fluorescence-based assay for drug binding to the kinase, “Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2” [1]. Keywords: CaMKK2, Calmodulin, Fermentation

  17. Purification of inclusion bodies using PEG precipitation under denaturing conditions to produce recombinant therapeutic proteins from Escherichia coli.

    Science.gov (United States)

    Chen, Huanhuan; Li, Ninghuan; Xie, Yueqing; Jiang, Hua; Yang, Xiaoyi; Cagliero, Cedric; Shi, Siwei; Zhu, Chencen; Luo, Han; Chen, Junsheng; Zhang, Lei; Zhao, Menglin; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2017-07-01

    It has been documented that the purification of inclusion bodies from Escherichia coli by size exclusion chromatography (SEC) may benefit subsequent refolding and recovery of recombinant proteins. However, loading volume and the high cost of the column limits its application in large-scale manufacturing of biopharmaceutical proteins. We report a novel process using polyethylene glycol (PEG) precipitation under denaturing conditions to replace SEC for rapid purification of inclusion bodies containing recombinant therapeutic proteins. Using recombinant human interleukin 15 (rhIL-15) as an example, inclusion bodies of rhIL-15 were solubilized in 7 M guanidine hydrochloride, and rhIL-15 was precipitated by the addition of PEG 6000. A final concentration of 5% (w/v) PEG 6000 was found to be optimal to precipitate target proteins and enhance recovery and purity. Compared to the previously reported S-200 size exclusion purification method, PEG precipitation was easier to scale up and achieved the same protein yields and quality of the product. PEG precipitation also reduced manufacturing time by about 50 and 95% of material costs. After refolding and further purification, the rhIL-15 product was highly pure and demonstrated a comparable bioactivity with a rhIL-15 reference standard. Our studies demonstrated that PEG precipitation of inclusion bodies under denaturing conditions holds significant potential as a manufacturing process for biopharmaceuticals from E. coli protein expression systems.

  18. Cloning, expression and purification of d-tagatose 3-epimerase gene from Escherichia coli JM109.

    Science.gov (United States)

    He, Xiaoliang; Zhou, Xiaohui; Yang, Zi; Xu, Le; Yu, Yuxiu; Jia, Lingling; Li, Guoqing

    2015-10-01

    An unknown d-tagatose 3-epimerase (DTE) containing a IoIE domain was identified and cloned from Escherichia coli. This gene was subcloned into the prokaryotic expression vector pET-15b, and induced by IPTG in E. coli BL21 expression system. Through His-select gel column purification and fast-protein liquid chromatography, highly purified and stable DTE protein was produced. The molecular weight of the DTE protein was estimated to be 29.8kDa. The latest 83 DTE sequences from public database were selected and analyzed by molecular clustering, multi-sequence alignment. DTEs were roughly divided into five categories. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Expression and purification of recombinant proteins in Escherichia coli tagged with a small metal-binding protein from Nitrosomonas europaea.

    Science.gov (United States)

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-02-01

    Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Expression of a prokaryotic P-type ATPase in E. coli Plasma Membranes and Purification by Ni2+-affinity chromatography

    Directory of Open Access Journals (Sweden)

    Geisler Markus

    1998-01-01

    Full Text Available In order to characterize the P-type ATPase from Synechocystis 6803 [Geisler (1993 et al. J. Mol. Biol. 234, 1284] and to facilitate its purification, we expressed an N-terminal 6xHis-tagged version of the ATPase in an ATPase deficient E. coli strain. The expressed ATPase was immunodetected as a dominant band of about 97 kDa localized to the E. coli plasma membranes representing about 20-25% of the membrane protein. The purification of the Synecho-cystis 6xHis-ATPase by single-step Ni-affinity chromatography under native and denaturating conditions is described. ATPase activity and the formation of phosphointermediates verify the full function of the enzyme: the ATPase is inhibited by vanadate (IC50= 119 &mgr;M and the formation of phosphorylated enzyme intermediates shown by acidic PAGE depends on calcium, indicating that the Synechocystis P-ATPase functions as a calcium pump.

  1. Enhanced extraction and purification of plasmid DNA from escherichia coli by applying a hybrid magnetic nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.J. da; Chavez-Guajardo, A.E.; Medina-llamas, J.C.; Alcaraz-Espinoza, J.J.; Melo, C.P. de [Universidade Federal de Pernambuco (UFPE), PE (Brazil)

    2016-07-01

    Full text: Plasmid DNA (pDNA), a special kind of nucleic acid usually found in bacteria, is a small molecule physically distinct from chromosomal DNA that can replicate independently. This genetic material has been used in a wide set of biotechnological methodologies, such as genetic engineering, production of recombinant drugs and gene therapy, among others. In all these applications, the extraction and purification of pDNA appears as a crucial step. In this work, we describe the synthesis of a polyaniline and maghemite (PANI/?-Fe2O3) magnetic nanocomposite (MNC) and its use in a new Escherichia coli (E. coli) pDNA extraction and purification protocol. We have used transmission electron microscopy (TEM), UV-Vis spectroscopy, infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and magnetic measurements to characterize the MNC, which was synthesized through an emulsion polymerization method. The yield, purity and quality of the pDNA extracted by using our proposed MNC protocol were evaluated through UV-Vis, agarose gel electrophoreses and PCR techniques, respectively. After comparing our results to those obtained by use of a commercial kit (Promega Wizard Plus SV Minipreps), we suggest that the novel protocol here proposed appears as a competitive alternative methodology. Not only the purification step can be completed within only 10 min, but the high adsorption capacity of the MNC results in pDNA yields that are almost twice the best values obtained by using the commercial kit. Hence, this new MNC methodology can be of general interest and find widespread use in different types of biomedical applications. (author)

  2. Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli.

    Science.gov (United States)

    Chiang, Chung-Jen; Chen, Hong-Chen; Chao, Yun-Peng; Tzen, Jason T C

    2005-06-15

    Nattokinase, a serine protease, and pronattokinase, when expressed in Escherichia coli, formed insoluble aggregates without enzymatic activity. For functional expression and purification, nattokinase or pronattokinase was first overexpressed in E. coli as an insoluble recombinant protein linked to the C terminus of oleosin, a structural protein of seed oil bodies, by an intein fragment. Artificial oil bodies were reconstituted with triacylglycerol, phospholipid, and the insoluble recombinant protein thus formed. Soluble nattokinase was subsequently released through self-splicing of intein induced by temperature alteration, with the remaining oleosin-intein residing in oil bodies and the leading propeptide of pronattokinase, when present, spontaneously cleaved in the process. Active nattokinase with fibrinolytic activity was harvested by concentrating the supernatant. Nattokinase released from oleosin-intein-pronattokinase exhibited 5 times higher activity than that released from oleosin-intein-nattokinase, although the production yields were similar in both cases. Furthermore, active nattokinase could be harvested in the same system by fusing pronattokinase to the N terminus of oleosin via a different intein linker, with self-splicing induced by 1,4-dithiothreitol. These results have shown a great potential of this system for bacterial expression and purification of functional recombinant proteins.

  3. Lambda Red-mediated mutagenesis and efficient large scale affinity purification of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I).

    Science.gov (United States)

    Pohl, Thomas; Uhlmann, Mareike; Kaufenstein, Miriam; Friedrich, Thorsten

    2007-09-18

    The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.

  4. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the regulator AcrR from Escherichia coli

    International Nuclear Information System (INIS)

    Li, Ming; Qiu, Xi; Su, Chih-Chia; Long, Feng; Gu, Ruoyu; McDermott, Gerry; Yu, Edward W.

    2006-01-01

    The transcriptional regulator AcrR from Escherichia coli has been cloned, overexpressed, purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.5 Å. This paper describes the cloning, expression, purification and preliminary X-ray data analysis of the AcrR regulatory protein. The Escherichia coli AcrR is a member of the TetR family of transcriptional regulators. It regulates the expression of the AcrAB multidrug transporter. Recombinant AcrR with a 6×His tag at the C-terminus was expressed in E. coli and purified by metal-affinity chromatography. The protein was crystallized using hanging-drop vapor diffusion. X-ray diffraction data were collected from cryocooled crystals at a synchrotron light source. The best crystal diffracted to 2.5 Å. The space group was determined to be P3 2 , with unit-cell parameters a = b = 46.61, c = 166.16 Å

  5. Redesigned purification yields a fully functional PutA protein dimer from Escherichia coli.

    Science.gov (United States)

    Brown, E D; Wood, J M

    1992-06-25

    Proline utilization by Escherichia coli and Salmonella typhimurium requires expression of genes putP (encoding a proline transporter) and putA. Genetic data indicate that the PutA protein is both put repressor and a respiratory chain-linked dehydrogenase. We report a redesigned purification procedure as well as the physical characteristics and biological activities of the PutA protein purified from E. coli. The purified protein was homogeneous as determined by electrophoresis performed under denaturing and nondenaturing conditions. Its N-terminal sequence corresponded to that predicted by the DNA sequence. We showed copurification of proline and delta 1-pyrroline-5-carboxylate dehydrogenase activities. Purified PutA protein bound put DNA in vitro in an electrophoretic band-shift assay and it could be reconstituted to inverted membrane vesicles, yielding proline dehydrogenase activity. The Stokes radius and Svedberg coefficient of the protein were determined to be 7.1 nm and 9.9 S, respectively. These hydrodynamic data revealed that the protein in our preparation was dimeric with a molecular mass of 293 kDa and that it had an irregular shape indicated by the friction factor (f/f0) of 1.6.

  6. Enhancement of solubility in Escherichia coli and purification of an aminotransferase from Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B1

    Directory of Open Access Journals (Sweden)

    Hartinger Doris

    2010-08-01

    Full Text Available Abstract Background Fumonisin B1 is a cancerogenic mycotoxin produced by Fusarium verticillioides and other fungi. Sphingopyxis sp. MTA144 can degrade fumonisin B1, and a key enzyme in the catabolic pathway is an aminotransferase which removes the C2-amino group from hydrolyzed fumonisin B1. In order to study this aminotransferase with respect to a possible future application in enzymatic fumonisin detoxification, we attempted expression of the corresponding fumI gene in E. coli and purification of the enzyme. Since the aminotransferase initially accumulated in inclusion bodies, we compared the effects of induction level, host strain, expression temperature, solubility enhancers and a fusion partner on enzyme solubility and activity. Results When expressed from a T7 promoter at 30°C, the aminotransferase accumulated invariably in inclusion bodies in DE3 lysogens of the E. coli strains BL21, HMS174, Rosetta 2, Origami 2, or Rosetta-gami. Omission of the isopropyl-beta-D-thiogalactopyranoside (IPTG used for induction caused a reduction of expression level, but no enhancement of solubility. Likewise, protein production but not solubility correlated with the IPTG concentration in E. coli Tuner(DE3. Addition of the solubility enhancers betaine and sorbitol or the co-enzyme pyridoxal phosphate showed no effect. Maltose-binding protein, used as an N-terminal fusion partner, promoted solubility at 30°C or less, but not at 37°C. Low enzyme activity and subsequent aggregation in the course of purification and cleavage indicated that the soluble fusion protein contained incorrectly folded aminotransferase. Expression in E. coli ArcticExpress(DE3, which co-expresses two cold-adapted chaperonins, at 11°C finally resulted in production of appreciable amounts of active enzyme. Since His tag-mediated affinity purification from this strain was hindered by co-elution of chaperonin, two steps of chromatography with optimized imidazole concentration in the

  7. E. coli Surface Properties Differ between Stream Water and Sediment Environments

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-11-01

    Full Text Available The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10mM and 22˚C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity and extracellular polymeric substance (EPS composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

  8. E. coli Surface Properties Differ between Stream Water and Sediment Environments.

    Science.gov (United States)

    Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M

    2016-01-01

    The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .

  9. Cost effective purification of intein based syntetic cationic antimicrobial peptide expressed in cold shock expression system using salt inducible E. coli GJ1158

    Directory of Open Access Journals (Sweden)

    Seetha Ram Kotra

    2014-03-01

    Full Text Available Objective:Synthetic cationic antimicrobial peptide (SC-AMP is an important and upcoming therapeutic molecule against onventional antibiotics. In this study, an attempt was made to purify the SC-AMP without the enzymatic cleavage of the affinity tag, by using an intein-based system. Methods:The intein sequence was amplified from pTYB11 vector using PCR methodologies and the N-terminal of intein was ligated with SC-AMP. The designed construct, intein-SC-AMP was cloned into MCS region of cold shock expression vector, pCOLDI and the recombinant peptide was purified on a chitin affinity column by cleaving intein with 50 mM DTT without applying enzymatic cleavage. Later the peptide was quantified and its antibacterial activity of the purified peptide was studied using well diffusion method. Results: Initially, intein-SC-AMP was expressed as a fusion protein in both IPTG inducible E. coli BL21(DE3 and salt inducible E. coli GJ1158. Single step purification using CBD (chitin binding domain - intein tag in salt inducible E. coli GJ1158, yields the SC-AMP in the soluble form at a oncentration of 208 mg/L. The antibacterial activity and minimal inhibitory concentration (MIC of the purified SC-AMP was studied against both Gram positive and Gram negative microorganisms. Conclusion: For the first time, single step purification of soluble SC-AMP was carried out using chitin-binding domain affinity tag in salt inducible E. coli GJ1158 without an application of enzymatic cleavage. J Microbiol Infect Dis 2014;4(1:13-19

  10. Expression and Purification of Recombinant Proteins in Escherichia coli with a His6 or Dual His6-MBP Tag.

    Science.gov (United States)

    Raran-Kurussi, Sreejith; Waugh, David S

    2017-01-01

    Rapid advances in bioengineering and biotechnology over the past three decades have greatly facilitated the production of recombinant proteins in Escherichia coli. Affinity-based methods that employ protein or peptide based tags for protein purification have been instrumental in this progress. Yet insolubility of recombinant proteins in E. coli remains a persistent problem. One way around this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) is widely acknowledged as a highly effective solubilizing agent. In this chapter, we describe how to construct either a His 6 - or a dual His 6 -MBP tagged fusion protein by Gateway ® recombinational cloning and how to evaluate their yield and solubility. We also describe a simple and rapid procedure to test the solubility of proteins after removing their N-terminal fusion tags by tobacco etch virus (TEV) protease digestion. The choice of whether to use a His 6 tag or a His 6 -MBP tag can be made on the basis of this solubility test.

  11. Expression, purification and insights into structure and folding of the ADAM22 pro domain

    DEFF Research Database (Denmark)

    Sørensen, Hans Peter; Jacobsen, Jonas; Nielbo, Steen

    2008-01-01

    . To understand the functions of human ADAM pro domains and to determine three-dimensional structures, we have screened promising targets for expression and purification properties when using Escherichia coli as the host. The pro domain of ADAM22 (ADAM22-P) expressed in E. coli was folded, as determined by CD...... and NMR spectroscopy. An ADAM22-P fragment encoding residues 26-199 could be expressed in high amounts, remained soluble above 1 mM, and was suitable for structural studies by NMR spectroscopy. CD spectroscopy and predictions suggest that the secondary structure in ADAM22-P consists of beta...

  12. High-level expression and purification of soluble recombinant FGF21 protein by SUMO fusion in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Huang Yadong

    2010-02-01

    Full Text Available Abstract Background Fibroblast growth factor 21 (FGF21 is a promising drug candidate to combat metabolic diseases. However, high-level expression and purification of recombinant FGF21 (rFGF21 in Escherichia coli (E. coli is difficult because rFGF21 forms inclusion bodies in the bacteria making it difficult to purify and obtain high concentrations of bioactive rFGF21. To overcome this problem, we fused the FGF21 with SUMO (Small ubiquitin-related modifier by polymerase chain reaction (PCR, and expressed the fused gene in E. coli BL21(DE3. Results By inducing with IPTG, SUMO-FGF21 was expressed at a high level. Its concentration reached 30% of total protein, and exceeded 95% of all soluble proteins. The fused protein was purified by DEAE sepharose FF and Ni-NTA affinity chromatography. Once cleaved by the SUMO protease, the purity of rFGF21 by high performance liquid chromatography (HPLC was shown to be higher than 96% with low endotoxin level (in vivo animal experiments showed that rFGF21 produced by using this method, could decrease the concentration of plasma glucose in diabetic rats by streptozotocin (STZ injection. Conclusions This study demonstrated that SUMO, when fused with FGF21, was able to promote its soluble expression of the latter in E. coli, making it more convenient to purify rFGF21 than previously. This may be a better method to produce rFGF21 for pharmaceutical research and development.

  13. Purification and properties of cowpea mosaic virus RNA replicase

    NARCIS (Netherlands)

    Zabel, P.

    1978-01-01

    This thesis concerns the partial purification and properties of an RNA-dependent RNA polymerase (RNA replicase) produced upon infection of Vigna unguiculata plants with Cowpea Mosaic Virus (CPMV). The enzyme is believed to be coded, at least in part, by the virus genome and to

  14. Strep-Tagged Protein Purification.

    Science.gov (United States)

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.

  15. Antibiotic Resistance and Virulence Properties in Escherichia coli ...

    African Journals Online (AJOL)

    This study determined E. coli resistance to commonly used antibiotics together with their virulence properties in Ile-Ife, Nigeria. A total of 137 E. coli isolates from cases of urinary tract infection were tested for their sensitivity to commonly used antibiotics and possession of virulence factors using standard methods.

  16. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    Science.gov (United States)

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  17. A general procedure for small-scale purification of fimbriae expressed by porcine enterotoxigenic Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Ana Cristina Campal Espinosa

    2008-01-01

    Full Text Available Fimbriae expression by enterotoxigenic Escherichia coli strains is a complex process which is controlled by global and local transcriptional regulators and post-transcriptional control. It is influenced by factors such as bacterial growth rate, culture medium composition, pH and temperature. Fimbrial expression could thus frequently become lost. Bacterial culture procedures favouring fimbrial expression are thus needed. The fimbriated bacterial population was therefore enriched by static culture in Mueller–Hinton broth. Fimbrial expression was then maintained by making it grow consecutively in agar CFA and Minca or minimal broth according to the fimbrial serotype. Maximum fimbrial expression was reached after 4h or 5h in culture. The fimbriae were extracted by heat -shock treatment and precipitated with 40% ammonium sulphate. Further purification was carried out by molecular exclusion and sodium deoxycholate treatment. This methodology integrates known procedures in a simple and reproducible process for obtaining F4, F5, F6 and F41 fimbriae in sufficient quantities for their subsequent use in producing antibodies, immunoassays and other studies (at laboratory level requiring high-purity preparations (80% to maintain their native structure. Key words: Enterotoxigenic Escherichia coli; fimbriae; Minca; minimal medium; CFA.

  18. TROUBLESHOOTING IN EXPRESSION AND PURIFICATION OF RECOMBINANT SEVERE ACUTE RESPIRATORY SYNDROME-ASSOCIATED CORONAVIRUS NUCLEOCAPSID PROTEIN IN Escherichia coli BL21

    Directory of Open Access Journals (Sweden)

    Budiman Bela

    2010-11-01

    Full Text Available Considering importance of N protein for study of viral pathogenesis or development of immunodiagnostic assay, wereported effects of several conditions on purity and homogeneity of recombinant SARS-CoV N protein expressed in E.coli BL21. The SARS-CoV N gene was reverse transcribed and amplified by the reverse transcription-polymerase chainreaction (RT-PCR technique. The amplicons were cloned into pGEX-6P1 and followed by subcloning of the targetgene into pQE-80L. After inserting the recombinant plasmid (pQE80-N into E. coli, the recombinant protein (6 x Histag-N protein fusion was expressed by inducing the bacterial cells with 0.1-0.5 mM isopropyl-1-thio-Dgalactopyranoside(IPTG for 1-5 h. The protein recombinant were extracted from the bacterial cells by NTT buffercontaining 0-20 mM imidazol, and followed by Ni-NTA affinity resin purification. The results showed that induction ofE. coli BL21 with 0.2 mM IPTG for 4 h and followed with lysis of bacterial cells in NTT buffer containing 10 mMimidazol were optimal conditions to obtain the pure recombinant SARS-CoV N protein.

  19. Purification and characterization of the d-xylose isomerase gene from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Ho, N W.Y.; Rosenfeld, S; Stevis, P; Tsao, G T

    1983-11-01

    A DNA fragment containing both the Escherichia coli D-xylose isomerase (D-xylose ketol-isomerase, EC 5.3.1.5) gene and the D-xylulokinase (ATP: D-xylulose 5-phosphotransferase, EC 2.7.1.17) gene has been cloned on an E. coli plasmid. The D-xylose isomerase gene was separated from the D-xylulokinase gene by the construction of a new deletion plasmid, pLX7. The D-xylose isomerase gene cloned on pLX7 was found still to be an intact gene. The precise location of the D-xylose isomerase gene on the plasmid pLX7 was further determined by the construction of two more plasmids, pLX8 and pLX9. This is believed to be the first D-xylose isomerase gene that has been isolated and extensively purified from any organism. D-Xylose isomerase, the enzyme product of the D-xylose isomerase gene, is responsible for the conversion of D-xylose to D-xylulose, as well as D-glucose to D-fructose. It is widely believed that yeast cannot ferment D-xylose to ethanol primarily because of the lack of D-xylose isomerase in yeast. D-Xylose isomerase (also known as D-glucose isomerase) is also used for the commercial production of high-fructose syrups. The purification of the D-xylose isomerase gene may lead to the following industrial applications: (1) cloning and expression of the gene in yeast to make the latter organism capable of directly fermenting D-xylose to ethanol, and (2) cloning of the gene on a high-copy-number plasmid in a proper host to overproduce the enzyme, which should have a profound impact on the high-fructose syrup technology. 14 references.

  20. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    Science.gov (United States)

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  1. Production and purification of immunologically active core protein p24 from HIV-1 fused to ricin toxin B subunit in E. coli

    Directory of Open Access Journals (Sweden)

    Gómez-Lim Miguel A

    2009-02-01

    Full Text Available Abstract Background Gag protein from HIV-1 is a polyprotein of 55 kDa, which, during viral maturation, is cleaved to release matrix p17, core p24 and nucleocapsid proteins. The p24 antigen contains epitopes that prime helper CD4 T-cells, which have been demonstrated to be protective and it can elicit lymphocyte proliferation. Thus, p24 is likely to be an integral part of any multicomponent HIV vaccine. The availability of an optimal adjuvant and carrier to enhance antiviral responses may accelerate the development of a vaccine candidate against HIV. The aim of this study was to investigate the adjuvant-carrier properties of the B ricin subunit (RTB when fused to p24. Results A fusion between ricin toxin B subunit and p24 HIV (RTB/p24 was expressed in E. coli. Affinity chromatography was used for purification of p24 alone and RTB/p24 from cytosolic fractions. Biological activity of RTB/p24 was determined by ELISA and affinity chromatography using the artificial receptor glycoprotein asialofetuin. Both assays have demonstrated that RTB/p24 is able to interact with complex sugars, suggesting that the chimeric protein retains lectin activity. Also, RTB/p24 was demonstrated to be immunologically active in mice. Two weeks after intraperitoneal inoculation with RTB/p24 without an adjuvant, a strong anti-p24 immune response was detected. The levels of the antibodies were comparable to those found in mice immunized with p24 alone in the presence of Freund adjuvant. RTB/p24 inoculated intranasally in mice, also elicited significant immune responses to p24, although the response was not as strong as that obtained in mice immunized with p24 in the presence of the mucosal adjuvant cholera toxin. Conclusion In this work, we report the expression in E. coli of HIV-1 p24 fused to the subunit B of ricin toxin. The high levels of antibodies obtained after intranasal and intraperitoneal immunization of mice demonstrate the adjuvant-carrier properties of RTB when

  2. Antimicrobial Peptide Production and Purification.

    Science.gov (United States)

    Suda, Srinivas; Field, Des; Barron, Niall

    2017-01-01

    Antimicrobial peptides (AMPs) are natural defense compounds which are synthesized as ribosomal gene-encoded pre-peptides and produced by all living organisms. AMPs are small peptides, usually cationic and typically have hydrophobic residues which interact with cell membranes and have either a narrow or broad spectrum of biological activity. AMPs are isolated from the natural host or heterologously expressed in other hosts such as Escherichia coli. The proto-typical lantibiotic Nisin is a widely used AMP that is produced by the food-grade organism Lactococcus lactis. Although AMP production and purification procedures require optimization for individual AMPs, the Nisin production and purification protocol outlined in this chapter can be easily applied with minor modifications for the production and purification of other lantibiotics or AMPs. While Nisin is produced and secreted into the supernatant, steps to recover Nisin from both cell-free supernatant and cell pellet are outlined in detail.

  3. Purification and properties of poliovirus RNA polymerase expressed in Escherichia coli

    International Nuclear Information System (INIS)

    Plotch, S.J.; Palant, O.; Gluzman, Y.

    1989-01-01

    A cDNA clone encoding the RNA polymerase of poliovirus has been expressed in Escherichia coli under the transcriptional control of a T7 bacteriophage promoter. This poliovirus enzyme was designed to contain only a single additional amino acid, the N-terminal methionine. The recombinant enzyme has been purified to near homogeneity, and polyclonal antibodies have been prepared against it. The enzyme exhibits poly(A)-dependent oligo(U)-primed ply(U) polymerase activity as well as RNA polymerase activity. In the presence of an oligo(U) primer, the enzyme catalyzes the synthesis of a full-length copy of either poliovirus or globin RNA templates. In the absence of added primer, RNA products up to twice the length of the template are synthesized. When incubated in the presence of a single nucleoside triphosphate, [α- 32 P]UTP, the enzyme catalyzes the incorporation of radioactive label into template RNA. These results are discussed in light of previously proposed models of poliovirus RNA synthesis in vitro

  4. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  5. Recombinant protein production data after expression in the bacterium Escherichia coli

    Directory of Open Access Journals (Sweden)

    J. Enrique Cantu-Bustos

    2016-06-01

    Full Text Available Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]. Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP tagged with CusF, using Ag(I metal affinity chromatography.

  6. Purification of bone morphogenetic protein-2 from refolding mixtures using mixed-mode membrane chromatography.

    Science.gov (United States)

    Gieseler, Gesa; Pepelanova, Iliyana; Stuckenberg, Lena; Villain, Louis; Nölle, Volker; Odenthal, Uwe; Beutel, Sascha; Rinas, Ursula; Scheper, Thomas

    2017-01-01

    In this study, we present the development of a process for the purification of recombinant human bone morphogenetic protein-2 (rhBMP-2) using mixed-mode membrane chromatography. RhBMP-2 was produced as inclusion bodies in Escherichia coli. In vitro refolding using rapid dilution was carried out according to a previously established protocol. Different membrane chromatography phases were analyzed for their ability to purify BMP-2. A membrane phase with salt-tolerant properties resulting from mixed-mode ligand chemistry was able to selectively purify BMP-2 dimer from refolding mixtures. No further purification or polishing steps were necessary and high product purity was obtained. The produced BMP-2 exhibited a biological activity of 7.4 × 10 5  U/mg, comparable to commercial preparations. Mixed-mode membrane chromatography can be a valuable tool for the direct purification of proteins from solutions with high-conductivity, for example refolding buffers. In addition, in this particular case, it allowed us to circumvent the use of heparin-affinity chromatography, thus allowing the design of an animal-component-free process.

  7. Poly(hydroxyethyl methacrylate) based magnetic nanoparticles for plasmid DNA purification from Escherichia coli lysate

    International Nuclear Information System (INIS)

    Perçin, Işık; Karakoç, Veyis; Akgöl, Sinan; Aksöz, Erol; Denizli, Adil

    2012-01-01

    The aim of this study is to prepare poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine) [PHEMAH] magnetic nanoparticles for plasmid DNA (pDNA) purification from Escherichia coli (E. coli) cell lysate. Magnetic nanoparticles were produced by surfactant free emulsion polymerization. mPHEMAH nanoparticles were characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), electron spin resonance (ESR), thermogravimetric analyses (TGA) and transmission electron microscopy (TEM). Surface area, average particle size and size distribution were also performed. Specific surface area of the mPHEMAH nanoparticles was found to be 1180 m 2 /g. Elemental analysis of MAH for nitrogen was estimated as 0.18 mmol/g polymer. The amount of pDNA adsorbed onto the mPHEMAH nanoparticles first increased and then reached a saturation value at around 1.0 mg/mL of pDNA concentration. Compared with the mPHEMA nanoparticles (50 μg/g polymer), the pDNA adsorption capacity of the mPHEMAH nanoparticles (154 mg/g polymer) was improved significantly due to the MAH incorporation into the polymeric matrix. The maximum pDNA adsorption was achieved at 25 °C. The overall recovery of pDNA was calculated as 92%. The mPHEMAH nanoparticles could be used six times without decreasing the pDNA adsorption capacity significantly. The results indicate that the PHEMAH nanoparticles promise high selectivity for pDNA. - Highlights: ► Magnetic nanoparticles have several advantages over conventional adsorbents. ► MAH acted as the pseudospecific ligand, ligand immobilization step was eliminated. ► pDNA adsorption amount was 154 mg/g. ► Fifty-fold capacity increase was obtained when compared to conventional matrices.

  8. Reverse osmosis membrane of high urea rejection properties. [water purification

    Science.gov (United States)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  9. Immunopurification of adenomatous polyposis coli (APC) proteins

    Science.gov (United States)

    2013-01-01

    Background The adenomatous polyposis coli (APC) tumour suppressor gene encodes a 2843 residue (310 kDa) protein. APC is a multifunctional protein involved in the regulation of β-catenin/Wnt signalling, cytoskeletal dynamics and cell adhesion. APC mutations occur in most colorectal cancers and typically result in truncation of the C-terminal half of the protein. Results In order to investigate the biophysical properties of APC, we have generated a set of monoclonal antibodies which enable purification of recombinant forms of APC. Here we describe the characterisation of these anti-APC monoclonal antibodies (APC-NT) that specifically recognise endogenous APC both in solution and in fixed cells. Full-length APC(1–2843) and cancer-associated, truncated APC proteins, APC(1–1638) and APC(1–1311) were produced in Sf9 insect cells. Conclusions Recombinant APC proteins were purified using a two-step affinity approach using our APC-NT antibodies. The purification of APC proteins provides the basis for detailed structure/function analyses of full-length, cancer-truncated and endogenous forms of the protein. PMID:24156781

  10. Poly(hydroxyethyl methacrylate) based magnetic nanoparticles for plasmid DNA purification from Escherichia coli lysate

    Energy Technology Data Exchange (ETDEWEB)

    Percin, Is Latin-Small-Letter-Dotless-I k [Department of Biology, Hacettepe University, Ankara (Turkey); Karakoc, Veyis [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey); Akgoel, Sinan [Department of Biochemistry, Ege University, Izmir (Turkey); Aksoez, Erol [Department of Biology, Hacettepe University, Ankara (Turkey); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2012-07-01

    The aim of this study is to prepare poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine) [PHEMAH] magnetic nanoparticles for plasmid DNA (pDNA) purification from Escherichia coli (E. coli) cell lysate. Magnetic nanoparticles were produced by surfactant free emulsion polymerization. mPHEMAH nanoparticles were characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), electron spin resonance (ESR), thermogravimetric analyses (TGA) and transmission electron microscopy (TEM). Surface area, average particle size and size distribution were also performed. Specific surface area of the mPHEMAH nanoparticles was found to be 1180 m{sup 2}/g. Elemental analysis of MAH for nitrogen was estimated as 0.18 mmol/g polymer. The amount of pDNA adsorbed onto the mPHEMAH nanoparticles first increased and then reached a saturation value at around 1.0 mg/mL of pDNA concentration. Compared with the mPHEMA nanoparticles (50 {mu}g/g polymer), the pDNA adsorption capacity of the mPHEMAH nanoparticles (154 mg/g polymer) was improved significantly due to the MAH incorporation into the polymeric matrix. The maximum pDNA adsorption was achieved at 25 Degree-Sign C. The overall recovery of pDNA was calculated as 92%. The mPHEMAH nanoparticles could be used six times without decreasing the pDNA adsorption capacity significantly. The results indicate that the PHEMAH nanoparticles promise high selectivity for pDNA. - Highlights: Black-Right-Pointing-Pointer Magnetic nanoparticles have several advantages over conventional adsorbents. Black-Right-Pointing-Pointer MAH acted as the pseudospecific ligand, ligand immobilization step was eliminated. Black-Right-Pointing-Pointer pDNA adsorption amount was 154 mg/g. Black-Right-Pointing-Pointer Fifty-fold capacity increase was obtained when compared to conventional matrices.

  11. A novel multimodal chromatography based single step purification process for efficient manufacturing of an E. coli based biotherapeutic protein product.

    Science.gov (United States)

    Bhambure, Rahul; Gupta, Darpan; Rathore, Anurag S

    2013-11-01

    Methionine oxidized, reduced and fMet forms of a native recombinant protein product are often the critical product variants which are associated with proteins expressed as bacterial inclusion bodies in E. coli. Such product variants differ from native protein in their structural and functional aspects, and may lead to loss of biological activity and immunogenic response in patients. This investigation focuses on evaluation of multimodal chromatography for selective removal of these product variants using recombinant human granulocyte colony stimulating factor (GCSF) as the model protein. Unique selectivity in separation of closely related product variants was obtained using combined pH and salt based elution gradients in hydrophobic charge induction chromatography. Simultaneous removal of process related impurities was also achieved in flow-through leading to single step purification process for the GCSF. Results indicate that the product recovery of up to 90.0% can be obtained with purity levels of greater than 99.0%. Binding the target protein at pHproduct variants using the combined pH and salt based elution gradient and removal of the host cell impurities in flow-through are the key novel features of the developed multimodal chromatographic purification step. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Yacoby, I.; Tegler, L. T.; Pochekailov, S.; Zhang, S.; King, P. W.

    2012-04-01

    Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus, led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.

  13. Purification and properties of Cu-Zn superoxide dismutase extracted from Brucella abortus strain 19

    Energy Technology Data Exchange (ETDEWEB)

    Tabatabai, L.B. (ARS-USDA, Ames, IA (United States))

    1991-03-11

    Recent work showed that a recombinant 20 kDa protein from Brucella abortus expressed in E. coli is a Cu-Zn superoxide dismutase (SOD). Western blot and ELISA results indicated that cattle with brucellosis have antibody to SOD. Here the authors report the purification and properties of the native B. abortus Cu-Zn SOD. SOD was extracted from methanol-killed Brucella abortus strain 19 with 0.1 M sodium citrate-1.0 M sodium chloride solution. The extract was dialyzed and protein precipitated by ammonium sulfate at 70-100% saturation was collected. The SOD was purified by HPLC anion exchange chromatography. SOD activity was assayed with a coupled enzyme assay using xanthine oxidase-cytochrome C reduction assay. The authors determined that the Brucella SOD is present in two molecular forms both inhibitable with KCN with Ki's of 0.32 mM and 4.98 mM, respectively. No other form of SOD was identified in the extract. Polyclonal antibody to SOD and polyclonal antibody to SOD synthetic peptide residues 134-143 inhibited SOD activity by 50% and 13%, respectively. Both SOD and the synthetic peptide inhibited binding of anti-SOD antibody to SOD by 60% and 20%, respectively. Based on these results the SOD and its amphipathic peptide will be considered as candidates for the design of synthetic multiple peptide vaccines and diagnostic reagents for bovine brucellosis.

  14. High-throughput purification of recombinant proteins using self-cleaving intein tags.

    Science.gov (United States)

    Coolbaugh, M J; Shakalli Tang, M J; Wood, D W

    2017-01-01

    High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Exploiting interfacial water properties for desalination and purification applications.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu (Los Alamos National Laboratory, Los Alamos, NM); Varma, Sameer; Nyman, May Devan; Alam, Todd Michael; Thuermer, Konrad; Holland, Gregory P.; Leung, Kevin; Liu, Nanguo (University of New Mexico Albuquerque, NM); Xomeritakis, George K. (University of New Mexico Albuquerque, NM); Frankamp, Benjamin L.; Siepmann, J. Ilja (University of Minnesota, Minneapolis, MN); Cygan, Randall Timothy; Hartl, Monika A. (Los Alamos National Laboratory, Los Alamos, NM); Travesset, Alex (Iowa State University, Ames, IA); Anderson, Joshua A. (Iowa State University, Ames, IA); Huber, Dale L.; Kissel, David J. (University of New Mexico Albuquerque, NM); Bunker, Bruce Conrad; Lorenz, Christian Douglas; Major, Ryan C. (University of Minnesota, Minneapolis, MN); McGrath, Matthew J. (University of Minnesota, Minneapolis, MN); Farrow, Darcie; Cecchi, Joseph L. (University of New Mexico Albuquerque, NM); van Swol, Frank B.; Singh, Seema; Rempe, Susan B.; Brinker, C. Jeffrey; Clawson, Jacalyn S.; Feibelman, Peter Julian; Houston, Jack E.; Crozier, Paul Stewart; Criscenti, Louise Jacqueline; Chen, Zhu (University of New Mexico Albuquerque, NM); Zhu, Xiaoyang (University of Minnesota, Minneapolis, MN); Dunphy, Darren Robert (University of New Mexico Albuquerque, NM); Orendorff, Christopher J.; Pless, Jason D.; Daemen, Luke L. (Los Alamos National Laboratory, Los Alamos, NM); Gerung, Henry (University of New Mexico Albuquerque, NM); Ockwig, Nathan W.; Nenoff, Tina Maria; Jiang, Ying-Bing; Stevens, Mark Jackson

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  16. Elimination of Escherichia coli and Salmonella in Clam by Using Zeolite in a Station of Depuration.

    Science.gov (United States)

    Gdoura, Morsi; Sellami, Hanen; Khannous, Lamia; Ketata, Najib; Neila, Idriss Ben; Traore, Al Ibrahim; Chekir, Zouhair; Gdoura, Radhouane

    2017-09-01

      The application of natural zeolite for water and wastewater treatment has been carried out and is still a promising technique in environmental cleaning processes. Natural zeolite can be used to improve the purification process of clams (Ruditapes decussatus). Thus, our study aimed at improving the clam purification system in order to reduce Escherichia coli and eliminate Salmonella in samples artificially contaminated with this bacterium using a natural zeolite to replace the biological filter. The results showed that zeolite used in a depuration system improved the clam purification process. Moreover, natural zeolite exhibited high performance in the adsorption of bacteria and allowed to reduce the Escherichia coli abundance in 24 h, thus ensuring purified clams conformity with the ISO 16649-3 standard. These results indicate the beneficial effects of using zeolite in the adsorption of bacteria and the reduction in the abundance of Escherichia coli and set the Salmonella from marine organisms.

  17. Overview of the purification of recombinant proteins.

    Science.gov (United States)

    Wingfield, Paul T

    2015-04-01

    When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same. Copyright © 2015 John Wiley & Sons, Inc.

  18. Cloning, expression, purification and initial crystallographic studies of UbiG: a methyltransferase involved in ubiquinone biosynthesis in Escherichia coli

    International Nuclear Information System (INIS)

    Costa, M.A.F.; Magalhaes, R.D.; Nagem, R.A.P.; Ferreira-Junior, J.R.; Barros, M.H.

    2012-01-01

    Full text: Ubiquinone is a molecule that functions as an electron carrier in the respiratory chain in living organisms. Some clinical phenotypes, including, encephalomyopathy, has been associated with ubiquinone deficiency, raising the interest in the biosynthetic pathway of this molecule. This pathway was proposed mainly from the results of the genetic analysis of mutants of E. coli. UbiG is a methyltransferase involved in ubiquinone biosynthesis in E. coli. In this work we have cloned, expressed, purified and made initial crystallographic assessments of UbiG for later determination of its three-dimensional structure. The gene encoding UbiG was amplified from E. coli genomic DNA by polymerase chain reaction. The 753 bases pairs amplicon was inserted into the expression plasmid pMCSG7 by ligation independent cloning system and transformed into BL21(DE3) E. coli strain. The expression of UbiG, verified by SDS polyacrylamide gel, showed a protein of approximately 29kDa after IPTG induction. The recombinant UbiG, in the soluble fraction of the cellular lysate, was purified by affinity chromatography and the molecular weight of recombinant UbiG of approximately 29 kDa was confirmed by mass spectrometry. After removal of His-tag by TEV protease, another affinity chromatography was performed and UbiG, without His-tag, was observed in flow-through fraction. In Size-Exclusion Chromatography (SEC), the recombinant UbiG showed a unique peak with correct molecular weight of a monomer. Analysis of CD indicated that recombinant UbiG has 31,80% of alpha helix at 20 deg C and DLS showed that 70.9% of the sample is still monomeric in solution even five days after purification. Initial crystallization studies were performed with Crystal Screen 1 and Crystal Screen 2 from Hampton Research. Needle-shaped microcrystals of UbiG were obtained using a precipitant solution consisting of 0,1M lithium sulfate, 0,1M Tris pH 7,5 and 30% w/v polyethylene glycol 4,000. (author)

  19. Cloning, expression, purification and initial crystallographic studies of UbiG: a methyltransferase involved in ubiquinone biosynthesis in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Costa, M.A.F.; Magalhaes, R.D.; Nagem, R.A.P. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Ferreira-Junior, J.R.; Barros, M.H. [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    Full text: Ubiquinone is a molecule that functions as an electron carrier in the respiratory chain in living organisms. Some clinical phenotypes, including, encephalomyopathy, has been associated with ubiquinone deficiency, raising the interest in the biosynthetic pathway of this molecule. This pathway was proposed mainly from the results of the genetic analysis of mutants of E. coli. UbiG is a methyltransferase involved in ubiquinone biosynthesis in E. coli. In this work we have cloned, expressed, purified and made initial crystallographic assessments of UbiG for later determination of its three-dimensional structure. The gene encoding UbiG was amplified from E. coli genomic DNA by polymerase chain reaction. The 753 bases pairs amplicon was inserted into the expression plasmid pMCSG7 by ligation independent cloning system and transformed into BL21(DE3) E. coli strain. The expression of UbiG, verified by SDS polyacrylamide gel, showed a protein of approximately 29kDa after IPTG induction. The recombinant UbiG, in the soluble fraction of the cellular lysate, was purified by affinity chromatography and the molecular weight of recombinant UbiG of approximately 29 kDa was confirmed by mass spectrometry. After removal of His-tag by TEV protease, another affinity chromatography was performed and UbiG, without His-tag, was observed in flow-through fraction. In Size-Exclusion Chromatography (SEC), the recombinant UbiG showed a unique peak with correct molecular weight of a monomer. Analysis of CD indicated that recombinant UbiG has 31,80% of alpha helix at 20 deg C and DLS showed that 70.9% of the sample is still monomeric in solution even five days after purification. Initial crystallization studies were performed with Crystal Screen 1 and Crystal Screen 2 from Hampton Research. Needle-shaped microcrystals of UbiG were obtained using a precipitant solution consisting of 0,1M lithium sulfate, 0,1M Tris pH 7,5 and 30% w/v polyethylene glycol 4,000. (author)

  20. Purification and some kinetic properties of catalase from parsley (Petroselinum hortense Hoffm., Apiaceae) leaves.

    Science.gov (United States)

    Oztürk, Lokman; Bülbül, Metin; Elmastas, Mahfuz; Ciftçi, Mehmet

    2007-01-01

    In this study, catalase (CAT: EC 1.11.1.6) was purified from parsley (Petroselinum hortense) leaves; analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps, including preparation of homogenate, ammonium sulfate fractionation, and fractionation by DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 9.5% and had a specific activity of 1126 U (mg proteins)(-1). The overall purification was about 5.83-fold. A temperature of 4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured at 240 nm. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acryl amide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for the enzyme. The molecular weight was found to be 183.29 kDa by Sephadex G-200 gel filtration chromatography. The stable pH, optimum pH, and ionic strength were determined for phosphate and Tris-HCl buffer systems. In addition, K(M) and V(max) values for H(2)O(2), at optimum pH and 25 degrees C, were determined by means of Lineweaver-Burk plots.

  1. Expression in Escherichia coli and purification of bioactive antibacterial peptide ABP-CM4 from the Chinese silk worm, Bombyx mori.

    Science.gov (United States)

    Li, Bao-Cun; Zhang, Shuang-Quan; Dan, Wen-Bing; Chen, Yu-Qing; Cao, Peng

    2007-07-01

    The antibacterial peptide CM4 (ABP-CM4), isolated from Chinese Bombys mori, is a 35-residue cationic, amphipathic alpha-helical peptide that exhibits a broad range of antimicrobial activity. To explore a new approach for the expression of ABP-CM4 in E. coli, the gene ABP-CM4, obtained by recursive PCR (rPCR), was cloned into the vector pET32a to construct a fusion expression plasmid. The fusion protein Trx-CM4 was expressed in soluble form, purified by Ni(2+)-chelating chromatography, and cleaved by formic acid to release recombinant CM4. Purification of rCM4 was achieved by affinity chromatography and reverse-phase HPLC. The purified of recombinant peptide showed antimicrobial activities against E. coli K(12)D(31), Penicillium chrysogenum, Aspergillus niger and Gibberella saubinetii. According to the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html), 116 peptides contain a Met residue, but only 5 peptides contain the AspPro site, indicating a broader application of formic acid than CNBr in cleaving fusion protein. The successful application to the expression of the ABP-CM4 indicates that the system is a low-cost, efficient way of producting milligram quantities of ABP-CM4 that is biologically active.

  2. Expression and purification of recombinant Shiga toxin 2B from ...

    African Journals Online (AJOL)

    Expression and purification of recombinant Shiga toxin 2B from Escherichia coli O157:H7. ... (SDS-PAGE) and StxB2 yield was 450 μg ml-1 confirmed by Bradford assay. Recombinant Stx2B protein was produced in highly pure yield using ...

  3. Isolation and purification of wheat germ agglutinin and analysis of its properties

    Science.gov (United States)

    Wang, Han

    2017-12-01

    In this paper, the wheat germ agglutinin was isolated and purified by affinity chromatography of chicken ovomucoid as ligand. The physicochemical properties were analyzed. The chicken ovomucoid was isolated from egg white and conjugated to affinity chromatography column agarose gel to prepare affinity adsorbent. The crude extract of wheat germ was freezedried by affinity chromatography. The physicochemical properties were analyzed by SDSpolyacrylamide gel electrophoresis and isoelectric focusing electrophoresis. And the relative molecular mass and isoelectric point of wheat germ agglutinin were obtained, and the high efficiency of purification of wheat germ agglutinin was proved by affinity chromatography.

  4. Purification and properties of an O-acetyl-transferase from Escherichia coli that can O-acetylate polysialic acid sequences

    International Nuclear Information System (INIS)

    Higa, H.; Varki, A.

    1986-01-01

    Certain strains of bacteria synthesize an outer polysialic acid (K1) capsule. Some strains of K1 + E.coli are also capable of adding O-acetyl-esters to the exocyclic hydroxyl groups of the sialic acid residues. Both the capsule and the O-acetyl modification have been correlated with differences in antigenicity and pathogenicity. The authors have developed an assay for an O-acetyl-transferase in E.coli that transfers O-[ 3 H]acetyl groups from [ 3 H]acetyl-Coenzyme A to colominic acid (fragments of the polysialic acid capsule). Using this assay, the enzyme was solubilized, and purified ∼ 600-fold using a single affinity chromatography step with Procion Red-A Agarose. The enzyme also binds to Coenzyme A Sepharose, and can be eluted with high salt or Coenzyme A. The partially purified enzyme has a pH optimum of 7.0 - 7.5, is unaffected by divalent cations, is inhibited by high salt concentrations, is inhibited by Coenzyme A (50% inhibition at 100 μM), and shows an apparent Km for colominic acid of 3.7 mM (sialic acid concentration). This enzyme could be involved in the O-acetyl +/- form variation seen in some strains of K1 + E.coli

  5. Cloning, expression and purification of recombinant streptokinase: partial characterization of the protein expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    L. Avilán

    1997-12-01

    Full Text Available We cloned the streptokinase (STK gene of Streptococcus equisimilis in an expression vector of Escherichia coli to overexpress the profibrinolytic protein under the control of a tac promoter. Almost all the recombinant STK was exported to the periplasmic space and recovered after gentle lysozyme digestion of induced cells. The periplasmic fraction was chromatographed on DEAE Sepharose followed by chromatography on phenyl-agarose. Active proteins eluted between 4.5 and 0% ammonium sulfate, when a linear gradient was applied. Three major STK derivatives of 47.5 kDa, 45 kDa and 32 kDa were detected by Western blot analysis with a polyclonal antibody. The 32-kDa protein formed a complex with human plasminogen but did not exhibit Glu-plasminogen activator activity, as revealed by a zymographic assay, whereas the 45-kDa protein showed a Km = 0.70 µM and kcat = 0.82 s-1, when assayed with a chromogen-coupled substrate. These results suggest that these proteins are putative fragments of STK, possibly derived from partial degradation during the export pathway or the purification steps. The 47.5-kDa band corresponded to the native STK, as revealed by peptide sequencing

  6. High-yield expression in Escherichia coli, purification and application of budding yeast K2 killer protein.

    Science.gov (United States)

    Podoliankaitė, Monika; Lukša, Juliana; Vyšniauskis, Gintautas; Sereikaitė, Jolanta; Melvydas, Vytautas; Serva, Saulius; Servienė, Elena

    2014-07-01

    Saccharomyces cerevisiae K2 toxin is a highly active extracellular protein, important as a biocontrol agent for biotechnological applications in the wine industry. This protein is produced at negligible levels in yeast, making difficult to isolate it in amounts sufficient for investigation and generation of analysis tools. In this work, we demonstrate the use of a bacterial system for expression of the recombinant K2 protein, suitable for generation of antibodies specific for toxin of the yeast origin. Synthesis of the full-length S. cerevisiae K2 preprotoxin in Escherichia coli was found to be toxic to the host cell, resulting in diminished growth. Such effect was abolished by the introduction of the C-terminal truncation into K2 protein, directing it into non-toxic inclusion body fraction. The obtained protein is of limited solubility thus, facilitating the purification by simple and efficient chromatography-free procedure. The protein aggregates were successfully refolded into a soluble form yielding sufficient amounts of a tag-less truncated K2 protein suitable for polyclonal antibody production. Antibodies were raised in rabbit and found to be specific for detection of both antigen and native S. cerevisiae K2 toxin.

  7. Surface processes during purification of InP quantum dots

    Directory of Open Access Journals (Sweden)

    Natalia Mordvinova

    2014-08-01

    Full Text Available Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.

  8. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    International Nuclear Information System (INIS)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui; Leppla, Stephen H.

    2013-01-01

    Highlights: ► Non-infectious and protease-deficient Bacillus anthracis protein expression system. ► Successful expression and purification of a tumor-targeted fusion protein drug. ► Very low endotoxin contamination of purified protein. ► Efficient protein secretion simplifies purification. ► Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  9. Fluxing purification and its effect on magnetic properties of high-B{sub s} FeBPSiC amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jing [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870 (China); Wang, Anding, E-mail: anding@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Yue, Shiqiang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Kong, Fengyu [School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315016 (China); Qiu, Keqiang, E-mail: kqqiu@163.com [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870 (China); Chang, Chuntao; Wang, Xinmin [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Liu, Chain-Tsuan, E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2017-07-01

    Highlights: • Surface crystallization in Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbon was inhibited by flux purification. • Amorphous Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbon was made with industrial process and materials. • The ribbons exhibit high B{sub s} of 1.65 T, low H{sub c} of 2 A/m, and high μ{sub e} of 9.7 × 10{sup 3}. • High melting point inclusions trigger the surface crystallization as nuclei. - Abstract: A high-B{sub s} amorphous alloy with the base composition Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} was used to study the effects of fluxing purification on amorphous forming ability and magnetic properties of the alloy prepared with raw materials in industrialization. By using fluxing purification, the surface crystallization was suppressed and fully amorphous Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbons with a maximum thickness of 48 μm were successfully achieved by using an industrial process and materials. The amorphous ribbons made with industrial-purified alloys exhibit excellent magnetic properties, containing high-B{sub s} of 1.65 T, low H{sub c} of 2.0 A/m, and high μ{sub e} of 9.7 × 10{sup 3} at 1 kHz. Impurities in the melting alloys exist in three forms and have different effluences on magnetic properties. The surface crystallization was triggered by the impurities which exist as high melting point inclusions serving as nuclei. Thus, fluxing purification is a feasible way for industrialization of high-B{sub s} FeBPSiC amorphous alloys.

  10. Expression, purification and characterization of soluble red rooster laforin as a fusion protein in Escherichia coli.

    Science.gov (United States)

    Brewer, M Kathryn; Husodo, Satrio; Dukhande, Vikas V; Johnson, Mary Beth; Gentry, Matthew S

    2014-04-02

    The gene that encodes laforin, a dual-specificity phosphatase with a carbohydrate-binding module, is mutated in Lafora disease (LD). LD is an autosomal recessive, fatal progressive myoclonus epilepsy characterized by the intracellular buildup of insoluble, hyperphosphorylated glycogen-like particles, called Lafora bodies. Laforin dephosphorylates glycogen and other glucans in vitro, but the structural basis of its activity remains unknown. Recombinant human laforin when expressed in and purified from E. coli is largely insoluble and prone to aggregation and precipitation. Identification of a laforin ortholog that is more soluble and stable in vitro would circumvent this issue. In this study, we cloned multiple laforin orthologs, established a purification scheme for each, and tested their solubility and stability. Gallus gallus (Gg) laforin is more stable in vitro than human laforin, Gg-laforin is largely monomeric, and it possesses carbohydrate binding and phosphatase activity similar to human laforin. Gg-laforin is more soluble and stable than human laforin in vitro, and possesses similar activity as a glucan phosphatase. Therefore, it can be used to model human laforin in structure-function studies. We have established a protocol for purifying recombinant Gg-laforin in sufficient quantity for crystallographic and other biophysical analyses, in order to better understand the function of laforin and define the molecular mechanisms of Lafora disease.

  11. A simple method for purification of lipopolysaccharides from E. coli 55:B5 using size exclusion chromatography

    International Nuclear Information System (INIS)

    Perdomo, Rolando; Montero, Vivian

    2006-01-01

    Several methods for the extraction of endotoxin or lipopolysaccharide from Gram negative bacteria have been described. However, the product is often contaminated with nucleic acids or proteins in a proportion depending on the extraction method used. Molecular and immunological studies require further purification of the raw LPS. We present here, a simple method for the purification of raw LPS obtained by the standard hot phenol-water procedure using size exclusion chromatography in Sepharose CL-6B. We demonstrated that the using of DNAse and RNAse treatment of the sample before the chromatographic step is necessary to abrogate the nucleic acid contamination in the LPS fraction. The spectrophotometric properties of the pure LPS were verified, supporting the immediate online detection of the LPS and oligonucleotides fractions spectrophotometrically at 206 nm. The mobile phase used (NaCl 0.2 M) do not absorb at 206 nm while maintains the LPS aggregates and therefore, allows the separation of the LPS fraction from the oligoribonucleotide and desoxioligoribonucleotide fractions. The yield of pure LPS was around 98%. Chemical and biological characterizations were conducted in order to assess the feasibility of the procedure developed. (Author)

  12. Expression and purification of recombinant hemoglobin in Escherichia coli

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela

    2011-01-01

    BACKGROUND: Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe...

  13. Role of solar ultraviolet radiation in 'natural' water purification

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, J; Buckles, J D; Moeller, J R [Kentucky Univ., Lexington (USA)

    1976-07-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated.

  14. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin

    Science.gov (United States)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia

    2002-01-01

    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  15. Decolorization of dyes by recombinase CotA from Escherichia coli ...

    African Journals Online (AJOL)

    The CotA laccase could efficiently decolorize anthraquinone and azo dyes in 24 h. The decolourization capacity of this recombinant laccase suggested that it could be a useful biocatalyst for the treatment of dye-containing effluents. Key words: Recombinant CotA laccase, Escherichia coli, purification, dye decolorization.

  16. Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei and Saccharomyces boulardii probiotic properties.

    Science.gov (United States)

    Martins, Flaviano S; Silva, Aparecida A; Vieira, Angélica T; Barbosa, Flávio H F; Arantes, Rosa M E; Teixeira, Mauro M; Nicoli, Jacques Robert

    2009-08-01

    The present work investigates some probiotic properties of four different microorganisms (Bifidobacterium animalis var. lactis BB-12, Escherichia coli EMO, Lactobacillus casei and Saccharomyces boulardii). In vitro and in vivo tests were carried out to compare cell wall hydrophobicity, production of antagonistic substances, survival capacity in the gastrointestinal tract of germ-free mice without pathological consequence, and immune modulation by stimulation of Küpffer cells, intestinal sIgA and IL-10 levels. In vitro antagonism against pathogenic bacteria and yeast was only observed for the probiotic bacteria B. animalis and L. casei. The hydrophobic property of the cell wall was higher for B. animalis and E. coli EMO, and this property could be responsible for a better ability to colonize the gastrointestinal tract of germ-free mice. Higher levels of sIgA were observed mainly for S. boulardii, followed by E. coli EMO and B. animalis, and only S. boulardii induced a significant higher level of IL-10. In conclusion, for a probiotic use, S. boulardii presented better characteristics in terms of immunomodulation, and B. animalis and L. casei for antagonistic substance production. The knowledge of the different probiotic properties could be used to choice the better microorganism depending on the therapeutic or prophylactic application.

  17. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Leppla, Stephen H., E-mail: sleppla@niaid.nih.gov [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  18. Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1

    International Nuclear Information System (INIS)

    Small, Evan; Eggler, Aimee; Mesecar, Andrew D.

    2010-01-01

    Research highlights: → A novel expression strategy was used to purify Cul3-Rbx1 from E. coli. → The Cul3-Rbx1 complex is fully active and catalyzes ubiquitination of Nrf2 in vitro. → Cul3, Rbx1, and Keap1 form a complex with unique stoichiometry of 1:1:2. -- Abstract: The Cullin3-based E3 ubiquitin ligase complex is thought to play an important role in the cellular response to oxidative stress and xenobiotic assault. While limited biochemical studies of the ligase's role in these complex signaling pathways are beginning to emerge, structural studies are lagging far behind due to the inability to acquire sufficient quantities of full-length, highly pure and active Cullin3. Here we describe the design and construction of an optimized expression and purification system for the full-length, human Cullin3-RINGBox 1 (Rbx1) protein complex from Escherichia coli. The dual-expression system is comprised of codon-optimized Cullin3 and Rbx1 genes co-expressed from a single pET-Duet-1 plasmid. Rapid purification of the Cullin3-Rbx1 complex is achieved in two steps via an affinity column followed by size-exclusion chromatography. Approximately 15 mg of highly pure and active Cullin3-Rbx1 protein from 1 L of E. coli culture can be achieved. Analysis of the quaternary structure of the Cullin3-Rbx1 and Cullin3-Rbx1-Keap1 complexes by size-exclusion chromatography and analytical ultracentrifugation indicates a 1:1 stoichiometry for the Cullin3-Rbx1 complex (MW = 111 kDa), and a 1:1:2 stoichiometry for the Cullin3-Rbx1-Keap1 complex (MW = 280 kDa). This latter complex has a novel quaternary structural organization for cullin E3 ligases, and it is fully active based on an in vitro Cullin3-Rbx1-Keap1-Nrf2 ubiquitination activity assay that was developed and optimized in this study.

  19. Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1

    Energy Technology Data Exchange (ETDEWEB)

    Small, Evan [Department of Biochemistry, University of Illinois at Chicago, Chicago, IL 60607 (United States); Eggler, Aimee [Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-1971 (United States); Mesecar, Andrew D., E-mail: amesecar@purdue.edu [Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-1971 (United States)

    2010-10-01

    Research highlights: {yields} A novel expression strategy was used to purify Cul3-Rbx1 from E. coli. {yields} The Cul3-Rbx1 complex is fully active and catalyzes ubiquitination of Nrf2 in vitro. {yields} Cul3, Rbx1, and Keap1 form a complex with unique stoichiometry of 1:1:2. -- Abstract: The Cullin3-based E3 ubiquitin ligase complex is thought to play an important role in the cellular response to oxidative stress and xenobiotic assault. While limited biochemical studies of the ligase's role in these complex signaling pathways are beginning to emerge, structural studies are lagging far behind due to the inability to acquire sufficient quantities of full-length, highly pure and active Cullin3. Here we describe the design and construction of an optimized expression and purification system for the full-length, human Cullin3-RINGBox 1 (Rbx1) protein complex from Escherichia coli. The dual-expression system is comprised of codon-optimized Cullin3 and Rbx1 genes co-expressed from a single pET-Duet-1 plasmid. Rapid purification of the Cullin3-Rbx1 complex is achieved in two steps via an affinity column followed by size-exclusion chromatography. Approximately 15 mg of highly pure and active Cullin3-Rbx1 protein from 1 L of E. coli culture can be achieved. Analysis of the quaternary structure of the Cullin3-Rbx1 and Cullin3-Rbx1-Keap1 complexes by size-exclusion chromatography and analytical ultracentrifugation indicates a 1:1 stoichiometry for the Cullin3-Rbx1 complex (MW = 111 kDa), and a 1:1:2 stoichiometry for the Cullin3-Rbx1-Keap1 complex (MW = 280 kDa). This latter complex has a novel quaternary structural organization for cullin E3 ligases, and it is fully active based on an in vitro Cullin3-Rbx1-Keap1-Nrf2 ubiquitination activity assay that was developed and optimized in this study.

  20. Advanced purification strategy for CueR, a cysteine containing copper(I) and DNA binding protein

    DEFF Research Database (Denmark)

    Balogh, Ria K.; Gyurcsik, Béla; Hunyadi-Gulyás, Éva

    2016-01-01

    . A detailed understanding of their function may be exploited in potential health, environmental and analytical applications. Members of the MerR protein family sense a broad range of mostly late transition and heavy metal ions through their cysteine thiolates. The air sensitivity of latter groups makes...... the expression and purification of such proteins challenging. Here we describe a method for the purification of the copper-regulatory CueR protein under optimized conditions. In order to avoid protein precipitation and/or eventual aggregation and to get rid of the co-purifying Escherichia coli elongation factor...... any affinity tag. Structure and functionality tests performed with mass spectrometry, circular dichroism spectroscopy and electrophoretic gel mobility shift assays approved the success of the purification procedure....

  1. The role of solar ultraviolet radiation in 'natural' water purification

    International Nuclear Information System (INIS)

    Calkins, J.; Buckles, J.D.; Moeller, J.R.

    1976-01-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated. (author)

  2. An improved method for purification of recombinant truncated heme oxygenase-1 by expanded bed adsorption and gel filtration.

    Science.gov (United States)

    Hu, Hong-Bo; Wang, Wei; Han, Ling; Zhou, Wen-Pu; Zhang, Xue-Hong

    2007-03-01

    Recombinant truncated human heme oxygenase-1 (hHO-1) expressed in Escherichia coli was efficiently separated and purified from feedstock by DEAE-ion exchange expanded bed adsorption. Protocol optimization of hHO-1 on DEAE adsorbent resulted in adsorption in 0 M NaCl and elution in 150 mM NaCl at a pH of 8.5. The active enzyme fractions separated from the expanded bed column were further purified by a Superdex 75 gel filtration step. The specific hHO-1 activity increased from 0.82 +/- 0.05 to 24.8 +/- 1.8 U/mg during the whole purification steps. The recovery and purification factor of truncated hHO-1 of the whole purification were 72.7 +/- 4.7 and 30.2 +/- 2.3%, respectively. This purification process can decrease the demand on the preparation of feedstock and simplify the purification process.

  3. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  4. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    Science.gov (United States)

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Purification of Escherichia coli L-asparaginase mutants by a native polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Wei, Yujun; Chen, Jianhua; Jia, Ruibo; Wang, Min; Wu, Wutong

    2008-07-01

    The antigenicity of L-asaparaginase (L-ASP) has been problematic for the treatment of leukemia for many years. In order to establish a relationship between the antigenic epitope of L-asparaginase and its antigenicity, several L-asparaginase mutants (mL-ASPs) are constructed and expressed. To effectively purify these enzyme mutants for further investigation, a native preparative polyacrylamide gel electrophoresis is developed. The simplicity and reproducibility of this approach permits the purification of different mutants from the crude enzyme extracts, with a sufficient activity to perform immunological and biological studies. Furthermore, the newly developed method is efficient and cost-effective compared with other methods, such as column chromatography and affinity chromatography. As a result, the enzyme mutants with specific activity of 300 approximately 400 U/mg are obtained by the single-step purification with a high degree of purity.

  6. PURIFICATION AND SOME PROPERTIES OF CELLULASE FROM ODONTOTERMES FORMOSANUS (ISOPTERA: TERMITIDAE)

    Institute of Scientific and Technical Information of China (English)

    Tian-ciYang; Jian-chuMo; Jia-anCheng

    2004-01-01

    The purification of the cellulase from Odontotermes forrnosanus workers was achieved by using anion-exchange column of UNOsphere Q, BioLogic DuoFlow chromatography system. The purified cellulase was identified as an endoglucanase and some of its properties were investigated. The EGase activity was 807.5-fold as high as the initial enzyme activity using CMC as substrate and 14.4-fold using salicin as substrate. The enzyme preparations were homogeneous as judged by SDS-PAGE electrophoresis, molecular weight of which was 80 kDa and confirmed by 2-DE zymogram analysis. The enzyme was isoelectric at pH 6.4, which was active on CMC substrate.

  7. Purification of 6-phosphogluconate dehydrogenase from parsley (Petroselinum hortense) leaves and investigation of some kinetic properties.

    Science.gov (United States)

    Demir, Hülya; Ciftçi, Mehmet; Küfrevioğlu, O Irfan

    2003-02-01

    In this study, 6-phosphogluconate dehydrogenase (E.C.1.1.44; 6PGD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps that are preparation of homogenate ammonium sulfate fractionation and on DEAE-Sephadex A50 ion exchange. The enzyme was obtained with a yield of 49% and had a specific activity of 18.3 U (mg proteins)(-1) (Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Principles of Biochemistry, 2nd Ed.; Worth Publishers Inc.: N.Y., 2000, 558-560). The overall purification was about 339-fold. A temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method at 340 mn. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 97.5 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a subunit molecular weight of 24.1 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found as 8.0, 8.0, and 50 degrees C, respectively. In addition, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk plots.

  8. Uranium hexafluoride purification

    International Nuclear Information System (INIS)

    Araujo, Eneas F. de

    1986-01-01

    Uranium hexafluoride might contain a large amount of impurities after manufacturing or handling. Three usual methods of purification of uranium hexafluoride were presented: selective sorption, sublimation, and distillation. Since uranium hexafluoride usually is contaminated with hydrogen fluoride, a theoretical study of the phase equilibrium properties was performed for the binary system UF 6 -HF. A large deviation from the ideal solution behaviour was observed. A purification unity based on a constant reflux batch distillation process was developed. A procedure was established in order to design the re boiler, condenser and packed columns for the UF 6 -HF mixture separation. A bench scale facility for fractional distillation of uranium hexafluoride was described. Basic operations for that facility and results extracted from several batches were discussed. (author)

  9. Rapid and simple purification of elastin-like polypeptides directly from whole cells and cell lysates by organic solvent extraction.

    Science.gov (United States)

    VerHeul, Ross; Sweet, Craig; Thompson, David H

    2018-03-26

    Elastin-like polypeptides (ELP) are a well-known class of proteins that are being increasingly utilized in a variety of biomedical applications, due to their beneficial physicochemical properties. A unifying feature of ELP is their demonstration of a sequence tunable inverse transition temperature (Tt) that enables purification using a simple, straightforward process called inverse transition cycling (ITC). Despite the utility of ITC, the process is inherently limited to ELP with an experimentally accessible Tt. Since the underlying basis for the ELP Tt is related to its high overall hydrophobicity, we anticipated that ELP would be excellent candidates for purification by organic extraction. We report the first method for rapidly purifying ELP directly from whole E. coli cells or clarified lysates using pure organic solvents and solvent mixtures, followed by aqueous back extraction. Our results show that small ELP and a large ELP-fusion protein can be isolated in high yield from whole cells or cell lysates with greater than 95% purity in less than 30 min and with very low levels of LPS and DNA contamination.

  10. Plasmid pVAX1-NH36 purification by membrane and bead perfusion chromatography.

    Science.gov (United States)

    Franco-Medrano, Diana Ivonne; Guerrero-Germán, Patricia; Montesinos-Cisneros, Rosa María; Ortega-López, Jaime; Tejeda-Mansir, Armando

    2017-03-01

    The demand for plasmid DNA (pDNA) has increased in response to the rapid advances in vaccines applications to prevent and treat infectious diseases caused by virus, bacteria or parasites, such as Leishmania species. The immunization protocols require large amounts of supercoiled plasmid DNA (sc-pDNA) challenging the development of efficient and profitable processes for capturing and purified pDNA molecules from large volumes of lysates. A typical bioprocess involves four steps: fermentation, primary recovery, intermediate recovery and final purification. Ion-exchange chromatography is one of the key operations in the purification schemes of pDNA owing the chemical structure of these macromolecules. The goal of this research was to compare the performance of the final purification step of pDNA using ion-exchange chromatography on columns packed with Mustang Q membranes or perfusive beads POROS 50 HQ. The experimental results showed that both matrixes could separate the plasmid pVAX1-NH36 (3936 bp) from impurities in clarified Escherichia coli lysates with an adequate resolution. In addition, a 24- and 21-fold global purification factor was obtained. An 88 and 63% plasmid recuperation was achieved with ion-exchange membranes and perfusion beads, respectively. A better understanding of perfusion-based matrices for the purification of pDNA was developed in this research.

  11. Expression, purification and crystallization of the Cmi immunity protein from Escherichia coli

    International Nuclear Information System (INIS)

    Römer, Christin; Patzer, Silke I.; Albrecht, Reinhard; Zeth, Kornelius; Braun, Volkmar

    2011-01-01

    The colicin M immunity protein Cmi protects E. coli cells against killing by colicin M. The Cmi protein was produced for structure determination and crystals were obtained which diffracted to high resolution. Many bacteria kill related bacteria by secretion of bacteriocins. In Escherichia coli, the colicin M protein kills E. coli after uptake into the periplasm. Self-protection from destruction is provided by the co-expressed immunity protein. The colicin M immunity protein (Cmi) was cloned, overexpressed and purified to homogeneity. The correct fold of purified Cmi was analyzed by activity tests and circular-dichroism spectroscopy. Crystallization trials yielded crystals, one of which diffracted to a resolution of 1.9 Å in the orthorhombic space group C222 1 . The crystal packing, with unit-cell parameters a = 66.02, b = 83.47, c = 38.30 Å, indicated the presence of one monomer in the asymmetric unit with a solvent content of 53%

  12. Generation of Active Bovine Terminal Deoxynucleotidyl Transferase (TdT in E.coli

    Directory of Open Access Journals (Sweden)

    Wee Liang Kuan

    2010-08-01

    Full Text Available A synthetic gene encoding bovine terminal deoxynucleotidyl transferase (TdT was generated, cloned into an expression vector and expressed in E.coli. The effects of altering culture and induction conditions on the nature of recombinant protein production were investigated. This led to the expression of active recombinant bovine TdT in E.coli. After purification and characterisation, the activity of the enzyme was assessed in a biological assay for apoptosis. The process described in this report enables the economical production of TdT for high throughput applications.

  13. Generation of Active Bovine Terminal Deoxynucleotidyl Transferase (TdT in E.coli

    Directory of Open Access Journals (Sweden)

    Wee Liang Kuan

    2010-01-01

    Full Text Available A synthetic gene encoding bovine terminal deoxynucleotidyl transferase (TdT was generated, cloned into an expression vector and expressed in E.coli. The effects of altering culture and induction conditions on the nature of recombinant protein production were investigated. This led to the expression of active recombinant bovine TdT in E.coli. After purification and characterisation, the activity of the enzyme was assessed in a biological assay for apoptosis. The process described in this report enables the economical production of TdT for high throughput applications.

  14. Crystallization and preliminary X-ray diffraction analysis of diaminopimelate epimerase from Escherichia coli

    International Nuclear Information System (INIS)

    Hor, Lilian; Dobson, Renwick C. J.; Dogovski, Con; Hutton, Craig A.; Perugini, Matthew A.

    2009-01-01

    Diaminopimelate (DAP) epimerase, an enzyme in the lysine-biosynthetic pathway, is a promising target for antibiotic development against pathogenic bacteria. Here, the cloning, expression, purification, crystallization and preliminary diffraction analysis of DAP epimerase from E. coli are reported. Diaminopimelate (DAP) epimerase (EC 5.1.1.7) catalyzes the penultimate step of lysine biosynthesis in bacteria and plants, converting l,l-diaminopimelate to meso-diaminopimelate. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DAP epimerase from Escherichia coli are presented. Crystals were obtained in space group P4 1 2 1 2 and diffracted to 2.0 Å resolution, with unit-cell parameters a = b = 89.4, c = 179.6 Å. Molecular replacement was conducted using Bacillus anthracis DAP epimerase as a search model and showed the presence of two molecules in the asymmetric unit, with an initial R free of 0.456 and R work of 0.416

  15. Soluble expression and purification of the recombinant bioactive peptide precursor BPP-1 in Escherichia coli using a cELP-SUMO dual fusion system.

    Science.gov (United States)

    Rao, Shengqi; Zang, Xiangyu; Yang, Zhenquan; Gao, Lu; Yin, Yongqi; Fang, Weiming

    2016-02-01

    A bioactive peptide precursor (BPP-1, 14.3 kDa/115AA), a newly designed polypeptide that may exert a potential antihypertensive effect in vivo, is composed of many different ACE inhibitory peptides and antioxidant peptides tandemly linked according to the restriction sites of gastrointestinal proteases. In this report, we present a novel method to obtain soluble BPP-1 in Escherichia coli using cationic elastin-like polypeptide and SUMO (cELP-SUMO) tags. The cELP-SUMO-tagged fusion protein was expressed in soluble form at 20 °C for 20 h. After purification based on the inverse transition cycling (ITC) method, the purified cELP-SUMO-CFPP fusion protein was subsequently cleaved by a SUMO protease to release the mature BPP-1. After a subsequent simple salt precipitation process, approximately 167.2 mg of recombinant BPP-1 was obtained from 1 l of bacterial culture with at least 92% purity. The molecular mass (Mr) of the recombinant BPP-1 was confirmed by MALDI-TOF MS to equal 14,347. The purified BPP-1 was subjected to simulated gastrointestinal digestion, and the resulting hydrolysates exhibited notable ACE inhibitory and antioxidant activities in vitro. This report provides the first description of the soluble production of a bioactive peptide multimer with potential ACE inhibitory and antioxidant activities in E. coli using a cELP-SUMO tag. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Marine Actinomycetes screening of Banten West Coast and their antibiotics purification

    Directory of Open Access Journals (Sweden)

    ROFIQ SUNARYANTO

    2010-10-01

    Full Text Available Sunaryanto R, Marwoto B (2010 Marine Actinomycetes screening of Banten West Coast and their antibiotics purification. Biodiversitas 11: 176-181. Isolation and purification of active compounds produced by marine Actinomycetes has been carried out. Marine sediment samples were obtained from six different places at Anyer, Banten West Coast in October 20, 2007. Isolation was carried out using two methods pretreatments, acid treatment and heat shock treatment. A total of 29 Actinomycetes isolates were obtained from the various sediment samples collected, then tested for antimicrobial test against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC25923, Pseudomonas aeruginosa ATCC27853, Bacillus subtilis ATCC 66923, Candida albicans BIOMCC00122 and Aspergillus niger BIOMCC00134. Identification of potential isolate was carried out using 16S rRNA. Purification of active compound was carried out using silica gel column chromatography and preparative HPLC. Result of this research showed that isolate A11 produced the most active compound against Gram-positive and Gram-negative bacteria. Morphology and identification test using 16S rRNA gen showed that isolate A11 is Streptomyces sp. Production of active compound from isolate A11 used yeast peptone medium. The single peak of active compound was detected by HPLC and showed retention time on 8.35 min and maximum absorbance UV visible of antibiotic was 210 nm and 274.5 nm. Active purified compound showed inhibition activity to Gram-positive and Gram-negative bacteria. Minimum inhibitory concentration (MIC to E. coli ATCC 25922 was 27 µg/mL, P. aeruginosa ATCC 27853 68.7 µg/mL, S. aureus ATCC 25923 80.2 µg/mL, and B. subtilis ATCC 66923 73.7 µg/mL.

  17. Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag.

    Science.gov (United States)

    Bataille, Laure; Dieryck, Wilfrid; Hocquellet, Agnès; Cabanne, Charlotte; Bathany, Katell; Lecommandoux, Sébastien; Garbay, Bertrand; Garanger, Elisabeth

    2015-06-01

    Elastin-like polypeptides (ELPs) are biodegradable polymers with interesting physico-chemical properties for biomedical and biotechnological applications. The recombinant expression of hydrophobic elastin-like polypeptides is often difficult because they possess low transition temperatures, and therefore form aggregates at sub-ambient temperatures. To circumvent this difficulty, we expressed in Escherichia coli three hydrophobic ELPs (VPGIG)n with variable lengths (n=20, 40, and 60) in fusion with the maltose-binding protein (MBP). Fusion proteins were soluble and yields of purified MBP-ELP ranged between 66 and 127mg/L culture. After digestion of the fusion proteins by enterokinase, the ELP moiety was purified by using inverse transition cycling. The purified fraction containing ELP40 was slightly contaminated by traces of undigested fusion protein. Purification of ELP60 was impaired because of co-purification of the MBP tag during inverse transition cycling. ELP20 was successfully purified to homogeneity, as assessed by gel electrophoresis and mass spectrometry analyses. The transition temperature of ELP20 was measured at 15.4°C in low salt buffer. In conclusion, this method can be used to produce hydrophobic ELP of low molecular mass. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Escherichia coli Phosphoenolpyruvate Dependent Phosphotransferase System. Copurification of HPr and α1-6 Glucan

    NARCIS (Netherlands)

    Dooijewaard, G.; Roossien, F.F.; Robillard, G.T.

    1979-01-01

    A rapid, high-yield procedure has been developed for the purification of HPr from the Escherichia coli phosphoenolpyruvate dependent phosphotransferase system. During this procedure, the protein copurifies with a 2500-dalton homopolysaccharide which we have identified as α1-6 glucan. The results of

  19. Generation of monoclonal antibodies for the assessment of protein purification by recombinant ribosomal coupling

    DEFF Research Database (Denmark)

    Kristensen, Janni; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk

    2005-01-01

    We recently described a conceptually novel method for the purification of recombinant proteins with a propensity to form inclusion bodies in the cytoplasm of Escherichia coli. Recombinant proteins were covalently coupled to the E. coli ribosome by fusing them to ribosomal protein 23 (rpL23...... therefore purified rpL23-GFP-His, rpL23-His and GFP from E. coli recombinants using affinity, ion exchange and hydrophobic interaction chromatography. These proteins could be purified with yields of 150, 150 and 1500 microg per gram cellular wet weight, respectively. However, rpL23-GFP-His could only...... proteolytic cleavage sites. We conclude that the generated antibodies can be used to evaluate ribosomal coupling of recombinant target proteins as well as the efficiency of their separation from the ribosome....

  20. Purification and investigation of some kinetic properties of glucose-6-phosphate dehydrogenase from parsley (Petroselinum hortense) leaves.

    Science.gov (United States)

    Coban, T Abdül Kadir; Ciftçi, Mehmet; Küfrevioğlu, O Irfan

    2002-05-01

    In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.

  1. EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology.

    Science.gov (United States)

    Moore, Simon J; Lai, Hung-En; Kelwick, Richard J R; Chee, Soo Mei; Bell, David J; Polizzi, Karen Marie; Freemont, Paul S

    2016-10-21

    Golden Gate cloning is a prominent DNA assembly tool in synthetic biology for the assembly of plasmid constructs often used in combinatorial pathway optimization, with a number of assembly kits developed specifically for yeast and plant-based expression. However, its use for synthetic biology in commonly used bacterial systems such as Escherichia coli has surprisingly been overlooked. Here, we introduce EcoFlex a simplified modular package of DNA parts for a variety of applications in E. coli, cell-free protein synthesis, protein purification and hierarchical assembly of transcription units based on the MoClo assembly standard. The kit features a library of constitutive promoters, T7 expression, RBS strength variants, synthetic terminators, protein purification tags and fluorescence proteins. We validate EcoFlex by assembling a 68-part containing (20 genes) plasmid (31 kb), characterize in vivo and in vitro library parts, and perform combinatorial pathway assembly, using pooled libraries of either fluorescent proteins or the biosynthetic genes for the antimicrobial pigment violacein as a proof-of-concept. To minimize pathway screening, we also introduce a secondary module design site to simplify MoClo pathway optimization. In summary, EcoFlex provides a standardized and multifunctional kit for a variety of applications in E. coli synthetic biology.

  2. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production

    Directory of Open Access Journals (Sweden)

    Bottomley Stephen P

    2006-03-01

    Full Text Available Abstract Background In the past few years, both automated and manual high-throughput protein expression and purification has become an accessible means to rapidly screen and produce soluble proteins for structural and functional studies. However, many of the commercial vectors encoding different solubility tags require different cloning and purification steps for each vector, considerably slowing down expression screening. We have developed a set of E. coli expression vectors with different solubility tags that allow for parallel cloning from a single PCR product and can be purified using the same protocol. Results The set of E. coli expression vectors, encode for either a hexa-histidine tag or the three most commonly used solubility tags (GST, MBP, NusA and all with an N-terminal hexa-histidine sequence. The result is two-fold: the His-tag facilitates purification by immobilised metal affinity chromatography, whilst the fusion domains act primarily as solubility aids during expression, in addition to providing an optional purification step. We have also incorporated a TEV recognition sequence following the solubility tag domain, which allows for highly specific cleavage (using TEV protease of the fusion protein to yield native protein. These vectors are also designed for ligation-independent cloning and they possess a high-level expressing T7 promoter, which is suitable for auto-induction. To validate our vector system, we have cloned four different genes and also one gene into all four vectors and used small-scale expression and purification techniques. We demonstrate that the vectors are capable of high levels of expression and that efficient screening of new proteins can be readily achieved at the laboratory level. Conclusion The result is a set of four rationally designed vectors, which can be used for streamlined cloning, expression and purification of target proteins in the laboratory and have the potential for being adaptable to a high

  3. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    Directory of Open Access Journals (Sweden)

    Kamela O. Alegre

    2015-03-01

    Full Text Available Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS. Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

  4. Escherichia coli Isolates Causing Asymptomatic Bacteriuria in Catheterized and Noncatheterized Individuals Possess Similar Virulence Properties

    DEFF Research Database (Denmark)

    Watts, Rebecca E; Hancock, Viktoria; Ong, Cheryl-lynn Y

    2010-01-01

    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli being responsible for >80% of all cases. Asymptomatic bacteriuria (ABU) occurs when bacteria colonize the urinary tract without causing clinical symptoms and can affect both catheterized...... patients (catheter-associated ABU [CA-ABU]) and noncatheterized patients. Here, we compared the virulence properties of a collection of ABU and CA-ABU nosocomial E. coli isolates in terms of antibiotic resistance, phylogenetic grouping, specific UTI-associated virulence genes, hemagglutination...

  5. MraZ from Escherichia coli: cloning, purification, crystallization and preliminary X-ray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Melanie A.; Udell, Christian M.; Pal, Gour Pada; Jia, Zongchao, E-mail: jia@post.queensu.ca [Department of Biochemistry, Queen’s University, Kingston, Ontario K7L 3N6 (Canada)

    2005-04-01

    The crystallization and preliminary X-ray diffraction analysis of MraZ, formerly known as hypothetical protein YabB, from Escherichia coli K-12 is presented. The MraZ family of proteins, also referred to as the UPF0040 family, are highly conserved in bacteria and are thought to play a role in cell-wall biosynthesis and cell division. The murein region A (mra) gene cluster encodes MraZ proteins along with a number of other proteins involved in this complex process. To date, there has been no clear functional assignment provided for MraZ proteins and the structure of a homologue from Mycoplasma pneumoniae, MPN314, failed to suggest a molecular function. The b0081 gene from Escherichia coli that encodes the MraZ protein was cloned and the protein was overexpressed, purified and crystallized. This data is presented along with evidence that the E. coli homologue exists in a different oligomeric state to the MPN314 protein.

  6. MraZ from Escherichia coli: cloning, purification, crystallization and preliminary X-ray analysis

    International Nuclear Information System (INIS)

    Adams, Melanie A.; Udell, Christian M.; Pal, Gour Pada; Jia, Zongchao

    2005-01-01

    The crystallization and preliminary X-ray diffraction analysis of MraZ, formerly known as hypothetical protein YabB, from Escherichia coli K-12 is presented. The MraZ family of proteins, also referred to as the UPF0040 family, are highly conserved in bacteria and are thought to play a role in cell-wall biosynthesis and cell division. The murein region A (mra) gene cluster encodes MraZ proteins along with a number of other proteins involved in this complex process. To date, there has been no clear functional assignment provided for MraZ proteins and the structure of a homologue from Mycoplasma pneumoniae, MPN314, failed to suggest a molecular function. The b0081 gene from Escherichia coli that encodes the MraZ protein was cloned and the protein was overexpressed, purified and crystallized. This data is presented along with evidence that the E. coli homologue exists in a different oligomeric state to the MPN314 protein

  7. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  8. Functional expression of spider neurotoxic peptide huwentoxin-I in E. coli.

    Directory of Open Access Journals (Sweden)

    Er Meng

    Full Text Available The coding sequence of huwentoxin-I, a neurotoxic peptide isolated from the venom of the Chinese spider Ornithoctonus huwena, was amplified by PCR using the cDNA library constructed from the spider venom glands. The cloned fragment was inserted into the expression vector pET-40b and transformed into the E. coli strain BL21 (DE3. The expression of a soluble fusion protein, disulfide interchange protein (DsbC-huwentoxin-I, was auto-induced in the periplasm of E. coli in the absence of IPTG. After partial purification using a Ni-NTA column, the expressed fusion protein was digested using enterokinase to release heteroexpressed huwentoxin-I and was further purified using RP-HPLC. The resulting peptide was subjected to gel electrophoresis and mass spectrometry analysis. The molecular weight of the heteroexpressed huwentoxin-I was 3750.69, which is identical to that of the natural form of the peptide isolated from spider venom. The physiological properties of the heteroexpressed huwentoxin-I were further analyzed using a whole-cell patch clamp assay. The heteroexpressed huwentoxin-I was able to block currents generated by human Na(v1.7 at an IC₅₀ of 640 nmole/L, similar to that of the natural huwentoxin-I, which is 630 nmole/L.

  9. Functional Expression of Spider Neurotoxic Peptide Huwentoxin-I in E. coli

    Science.gov (United States)

    Zhang, Hui; Liu, Yan-Bo; Peng, Kuan; Liang, Songping; Zhang, Dong-Yi

    2011-01-01

    The coding sequence of huwentoxin-I, a neurotoxic peptide isolated from the venom of the Chinese spider Ornithoctonus huwena, was amplified by PCR using the cDNA library constructed from the spider venom glands. The cloned fragment was inserted into the expression vector pET-40b and transformed into the E. coli strain BL21 (DE3). The expression of a soluble fusion protein, disulfide interchange protein (DsbC)-huwentoxin-I, was auto-induced in the periplasm of E. coli in the absence of IPTG. After partial purification using a Ni-NTA column, the expressed fusion protein was digested using enterokinase to release heteroexpressed huwentoxin-I and was further purified using RP-HPLC. The resulting peptide was subjected to gel electrophoresis and mass spectrometry analysis. The molecular weight of the heteroexpressed huwentoxin-I was 3750.69, which is identical to that of the natural form of the peptide isolated from spider venom. The physiological properties of the heteroexpressed huwentoxin-I were further analyzed using a whole-cell patch clamp assay. The heteroexpressed huwentoxin-I was able to block currents generated by human Nav1.7 at an IC50 of 640 nmole/L, similar to that of the natural huwentoxin-I, which is 630 nmole/L. PMID:21731778

  10. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Chandrasekhar Natarajan

    Full Text Available Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus, a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  11. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Science.gov (United States)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela; Weber, Roy E; Moriyama, Hideaki; Storz, Jay F

    2011-01-01

    Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species. As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications. Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  12. Large-scale functional purification of recombinant HIV-1 capsid.

    Directory of Open Access Journals (Sweden)

    Magdeleine Hung

    Full Text Available During human immunodeficiency virus type-1 (HIV-1 virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.

  13. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junfen, E-mail: junfensun@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, North People Road 2999, Shanghai 201620 (China); Wu, Lishun [Department of Chemistry and Chemical Engineering, Heze University, Daxue Road 2269, Heze, Shandong Province 274015 (China)

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  14. Targeted amino-terminal acetylation of recombinant proteins in E. coli.

    Directory of Open Access Journals (Sweden)

    Matthew Johnson

    2010-12-01

    Full Text Available One major limitation in the expression of eukaryotic proteins in bacteria is an inability to post-translationally modify the expressed protein. Amino-terminal acetylation is one such modification that can be essential for protein function. By co-expressing the fission yeast NatB complex with the target protein in E.coli, we report a simple and widely applicable method for the expression and purification of functional N-terminally acetylated eukaryotic proteins.

  15. Single-step affinity and cost-effective purification of recombinant proteins using the Sepharose-binding lectin-tag from the mushroom Laetiporus sulphureus as fusion partner.

    Science.gov (United States)

    Li, Xiao-Jing; Liu, Jin-Ling; Gao, Dong-Sheng; Wan, Wen-Yan; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-03-01

    Previous research showed that a lectin from the mushroom Laetiporus sulphureus, designed LSL, bound to Sepharose and could be eluted by lactose. In this study, by taking advantage of the strong affinity of LSL-tag for Sepharose, we developed a single-step purification method for LSL-tagged fusion proteins. We utilized unmodified Sepharose-4B as a specific adsorbent and 0.2 M lactose solution as an elution buffer. Fusion proteins of LSL-tag and porcine circovirus capsid protein, designated LSL-Cap was recovered with purity of 90 ± 4%, and yield of 87 ± 3% from crude extract of recombinant Escherichia coli. To enable the remove of LSL-tag, tobacco etch virus (TEV) protease recognition sequence was placed downstream of LSL-tag in the expression vector, and LSL-tagged TEV protease, designated LSL-TEV, was also expressed in E. coli., and was recovered with purity of 82 ± 5%, and yield of 85 ± 2% from crude extract of recombinant E. coli. After digestion of LSL-tagged recombinant proteins with LSL-TEV, the LSL tag and LSL-TEV can be easily removed by passing the digested products through the Sepharose column. It is of worthy noting that the Sepharose can be reused after washing with PBS. The LSL affinity purification method enables rapid and inexpensive purification of LSL-tagged fusion proteins and scale-up production of native proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Cadmium purification with a vibrating reactor

    International Nuclear Information System (INIS)

    Torres, N.; Esna-Ashari, M.; Biallas, H.; Kangas, K.

    1986-01-01

    While electrolytically producing zinc from sulfide concentrates, purification is the most significant step. Impurities such as Co, Sn, Ge, Ni and Sb can cause extensive redissolution of the electrodeposited zinc, thus diminishing current efficiency. Other metals, particularly cadmium, lead and copper, can negatively affect zinc properties by deposition on the cathode. It is standard practice to use atomized zinc dust as a reducing agent in the purification process, either alone or combined with additives. In conventional operations, special facilities are necessary to produce zinc dust in an amount close to 8wt% of cathode production. This paper examines a technique which makes use of zinc granules instead of dust

  17. Conjugation in Escherichia coli

    Science.gov (United States)

    Boyer, Herbert

    1966-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Conjugation in Escherichia coli. J. Bacteriol. 91:1767–1772. 1966.—The sex factor of Escherichia coli K-12 was introduced into an E. coli B/r strain by circumventing the host-controlled modification and restriction incompatibilities known to exist between these closely related strains. The sexual properties of the constructed F+ B strain and its Hfr derivatives were examined. These studies showed that the E. coli strain B/r F+ and Hfr derivatives are similar to the E. coli strain K-12 F+ and Hfr derivatives. However, the site of sex factor integration was found to be dependent on the host genome. PMID:5327905

  18. Expression and purification of toxic anti-breast cancer p28-NRC chimeric protein

    OpenAIRE

    Soleimani, Meysam; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    Background: Chimeric proteins consisting of a targeting moiety and a cytotoxic moiety are now under intense research focus for targeted therapy of cancer. Here, we report cloning, expression, and purification of such a targeted chimeric protein made up of p28 peptide as both targeting and anticancer moiety fused to NRC peptide as a cytotoxic moiety. However, since the antimicrobial activity of the NRC peptide would intervene expression of the chimeric protein in Escherichia coli, we evaluated...

  19. Expression and purification of the non-tagged LipL32 of pathogenic Leptospira

    OpenAIRE

    Hauk, P.; Carvalho, E.; Ho, P.L.

    2011-01-01

    Leptospirosis is a reemerging infectious disease and the most disseminated zoonosis worldwide. A leptospiral surface protein, LipL32, only occurs in pathogenic Leptospira, and is the most abundant protein on the bacterial surface, being described as an important factor in host immunogenic response and also in bacterial infection. We describe here an alternative and simple purification protocol for non-tagged recombinant LipL32. The recombinant LipL32(21-272) was expressed in Escherichia coli ...

  20. Expression and purification of lacticin Q by small ubiquitin-related modifier fusion in Escherichia coli.

    Science.gov (United States)

    Ma, Qingshan; Yu, Zhanqiao; Han, Bing; Wang, Qing; Zhang, Rijun

    2012-04-01

    Lacticin Q is a broad-spectrum class II bacteriocin with potential as an alternative to conventional antibiotics. The objective of this study was to produce recombinant lacticin Q using a small ubiquitin-related modifier (SUMO) fusion protein expression system. The 168-bp lacticin Q gene was cloned into the expression vector pET SUMO and transformed into Escherichia coli BL21(DE3). The soluble fusion protein was recovered with a Ni-NTA Sepharose column (95% purity); 130 mg protein was obtained per liter of fermentation culture. The SUMO tag was then proteolytically cleaved from the protein, which was re-applied to the column. Finally, about 32 mg lacticin Q (≥96% purity) was obtained. The recombinant protein exhibited antimicrobial properties similar to that of the native protein, demonstrating that lacticin Q had been successfully expressed by the SUMO fusion system.

  1. Extraction and purification of plutonium by a tertiary amine; Extraction et purification du plutonium par une amine tertiaire

    Energy Technology Data Exchange (ETDEWEB)

    Trentinian, M de; Chesne, A [Commissariat a l' Energie Atomique, Fontenay aux Roses, Section de Chimie des Actimides (France).Centre d' Etudes Nucleaires; Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Trilaurylamine diluted with a paraffinic solvent (dodecane) was studied as part of the research dealing with the separation and purification of plutonium. The physical properties (solubility of nitrates in the amine as a function of temperature) and the resistance to radiations of this substance were examined. The extraction characteristics of nitric solutions of plutonium, uranium and certain fission products are given as a function of the following factors: concentration of the various ions in solution, valency states. A method of plutonium purification based on these results is presented. (author) [French] La trilaurylamine diluee par un solvant paraffinique (dodecane) a ete etudiee dans le cadre des recherches concernant la separation et la purification du plutonium. Une etude des caracteres physiques (solubilite des nitrates dans l'amine en fonction de la temperature) s'ajoute a celle de la tenue aux radiations de ce corps. Les caracteristiques d'extraction de solutions nitriques de plutonium, uranium, et certains produits de fission, sont donnes en fonction des facteurs suivants: concentration des differents ions en solution, etats de valence. On presente une methode de purification du plutonium basee sur ces resultats. (auteur)

  2. Utilization of internal purification rejects; Sisaeisen puhdistuksen rejektikonsentraattien kelvollistaminen - KLT 02

    Energy Technology Data Exchange (ETDEWEB)

    Manner, H.; Nissen, M.

    1998-12-31

    This was a preliminary study which is part of a larger programme. The aim of the programme is to determine the properties and process ability of the concentrates which come from the internal purification of waters from the papermaking process. It is very important to know the properties and process ability of these purification concentrates in order to find the best methods of separating, reprocessing and utilizing them. The objective of this preliminary study was to ascertain the basic properties of these internal purification concentrates. It was also of interest to analyse the properties of papermaking waters and the state of internal purification today in paper mills. The state of papermaking waters and their internal purification were clarified by a literature review and by analyses of different types of waters. It was found that in mechanical pulping organic dissolved and colloidal substances were present in the water. Also there was a lot of dissolved and colloidal substances in waters from machines producing wood-containing paper grades. The salt content and chemical oxygen demand are critical values concerning the reuse of circulation waters. In mechanical pulping the convection of dissolved and colloidal substances to the paper machine can be reduced by the washing stage. Thus, the amount of dissolved and colloidal substances in the paper machine circulation waters can be reduced. In a paper machine, a disk filter removes fibers and fines from the circulation waters, but dissolved and colloidal substances are not removed. Also the properties of different kind of membrane filtration concentrates were analyzed. The total residue of membrane concentrates is low. For example, they can not be burned purely. The chemical oxygen demand of membrane concentrates is high. The most important subjects for further investigation are the improvement of fractionation and condensability. Furthermore procedures must be found to lower the chemical oxygen demand. One

  3. Utilization of internal purification rejects; Sisaeisen puhdistuksen rejektikonsentraattien kelvollistaminen - KLT 02

    Energy Technology Data Exchange (ETDEWEB)

    Manner, H; Nissen, M

    1999-12-31

    This was a preliminary study which is part of a larger programme. The aim of the programme is to determine the properties and process ability of the concentrates which come from the internal purification of waters from the papermaking process. It is very important to know the properties and process ability of these purification concentrates in order to find the best methods of separating, reprocessing and utilizing them. The objective of this preliminary study was to ascertain the basic properties of these internal purification concentrates. It was also of interest to analyse the properties of papermaking waters and the state of internal purification today in paper mills. The state of papermaking waters and their internal purification were clarified by a literature review and by analyses of different types of waters. It was found that in mechanical pulping organic dissolved and colloidal substances were present in the water. Also there was a lot of dissolved and colloidal substances in waters from machines producing wood-containing paper grades. The salt content and chemical oxygen demand are critical values concerning the reuse of circulation waters. In mechanical pulping the convection of dissolved and colloidal substances to the paper machine can be reduced by the washing stage. Thus, the amount of dissolved and colloidal substances in the paper machine circulation waters can be reduced. In a paper machine, a disk filter removes fibers and fines from the circulation waters, but dissolved and colloidal substances are not removed. Also the properties of different kind of membrane filtration concentrates were analyzed. The total residue of membrane concentrates is low. For example, they can not be burned purely. The chemical oxygen demand of membrane concentrates is high. The most important subjects for further investigation are the improvement of fractionation and condensability. Furthermore procedures must be found to lower the chemical oxygen demand. One

  4. Effectiveness of liquid radioactive waste purification by inorganic granulated sorbents

    International Nuclear Information System (INIS)

    Komarevskij, V.M.; Stepanets, O.V.; Sharygin, L.M.; Matveev, S.A.

    1995-01-01

    Study results on purification of simulative and real liquid radioactive wastes from fission products radionuclides and by inorganic corrosion-nature sorbents 'Thermoxide' are presented. Properties by sorption of cesium, strontium and cobalt are studied; results of experiments on purification of weakly-salted water solutions (waste waters, ships drainage tanks, showers and laundries) of the Beloyarsk NPP are presented. Sorbents source characteristics are determined. 4 refs., 2 figs., 3 tabs

  5. Influence of the drying method in chitosans purification step

    International Nuclear Information System (INIS)

    Fonseca, Ana C.M.; Batista, Jorge G.S.; Bettega, Antonio; Lima, Nelson B. de

    2015-01-01

    Currently, the study of extracellular biopolymers properties has received prominence for being easy extraction and purification. Chitosan has been an attractive proposition for applications in various fields such as engineering, biotechnology, medicine and pharmacology. For such applications, it is necessary purification of chitosan to obtain a product more concentrated and free of undesirable impurities. However, at this stage of the process of obtaining the biopolymer may occur morphological and physicochemical changes. This study evaluated the influence of the drying process after purification of a commercial chitosan sample and the importance of this step and its cost/benefit in applications requiring a high degree of purity. The method of drying influenced in the organoleptic properties and in the main characteristics of material. Analysis of the crystal structure by X-ray diffraction showed that the degree of crystallinity, X (%), in the purified chitosan samples was lower when compared with the unpurified sample. The degree of acetylation, DA (%), was analyzed by spectroscopy infrared with no significant changes on the three drying methods assessed, unlike the viscosimetric molecular weight, M_v, determined by capillary viscometry. (author)

  6. Expression and purification of functional human mu opioid receptor from E.coli.

    Directory of Open Access Journals (Sweden)

    Yanbin Ma

    Full Text Available N-terminally his-tagged human mu opioid receptor, a G protein-coupled receptor was produced in E.coli employing synthetic codon-usage optimized constructs. The receptor was expressed in inclusion bodies and membrane-inserted in different E.coli strains. By optimizing the expression conditions the expression level for the membrane-integrated receptor was raised to 0.3-0.5 mg per liter of culture. Milligram quantities of receptor could be enriched by affinity chromatography from IPTG induced cultures grown at 18°C. By size exclusion chromatography the protein fraction with the fraction of alpha-helical secondary structure expected for a 7-TM receptor was isolated, by CD-spectroscopy an alpha-helical content of ca. 45% was found for protein solubilised in the detergent Fos-12. Receptor in Fos-12 micelles was shown to bind endomorphin-1 with a K(D of 61 nM. A final yield of 0.17 mg functional protein per liter of culture was obtained.

  7. Purification and characterization of Desulfovibrio vulgaris (Hildenborough) hydrogenase expressed in Escherichia coli.

    NARCIS (Netherlands)

    Voordouw, G.; Hagen, W.R.; Kruse-Wolters, M.; Berkel-Arts, van A.; Veeger, C.

    1987-01-01

    Hydrogenase from Desulfovibrio vulgaris (Hildenborough) is a heterologous dimer of molecular mass 46 + 13.5 kDa. Its two structural genes have been cloned on a 4664-base-pair fragment of known sequence in the vector pUC9. Expression of hydrogenase polypeptides in Escherichia coli transformed with

  8. Triosephosphate isomerase is a common crystallization contaminant of soluble His-tagged proteins produced in Escherichia coli

    International Nuclear Information System (INIS)

    Kozlov, Guennadi; Vinaik, Roohi; Gehring, Kalle

    2013-01-01

    Crystals of E. coli triosephosphate isomerase were obtained as a contaminant and its structure was determined to 1.85 Å resolution. Attempts to crystallize several mammalian proteins overexpressed in Escherichia coli revealed a common contaminant, triosephosphate isomerase, a protein involved in glucose metabolism. Even with triosephosphate isomerase present in very small amounts, similarly shaped crystals appeared in the crystallization drops in a number of polyethylene glycol-containing conditions. All of the target proteins were His-tagged and their purification involved immobilized metal-affinity chromatography (IMAC), a step that was likely to lead to triosephosphate isomerase contamination. Analysis of the triosephosphate isomerase crystals led to the structure of E. coli triosephosphate isomerase at 1.85 Å resolution, which is a significant improvement over the previous structure

  9. Bromelain: an overview of industrial application and purification strategies.

    Science.gov (United States)

    Arshad, Zatul Iffah Mohd; Amid, Azura; Yusof, Faridah; Jaswir, Irwandi; Ahmad, Kausar; Loke, Show Pau

    2014-09-01

    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.

  10. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H.

    Science.gov (United States)

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2017-04-01

    Recombinant protein expression in the bacterium Escherichia coli still is the number one choice for large-scale protein production. Nevertheless, many complications can arise using this microorganism, such as low yields, the formation of inclusion bodies, and the requirement for difficult purification steps. Most of these problems can be solved with the use of fusion proteins. Here, the use of the metal-binding protein CusF3H+ is described as a new fusion protein for recombinant protein expression and purification in E. coli. We have previously shown that CusF produces large amounts of soluble protein, with low levels of formation of inclusion bodies, and that proteins can be purified using IMAC resins charged with Cu(II) ions. CusF3H+ is an enhanced variant of CusF, formed by the addition of three histidine residues at the N-terminus. These residues then can bind Ni(II) ions allowing improved purity after affinity chromatography. Expression and purification of Green Fluorescent Protein tagged with CusF3H+ showed that the mutation did not alter the capacity of the fusion protein to increase protein expression, and purity improved considerably after affinity chromatography with immobilized nickel ions; high yields are obtained after tag-removal since CusF3H+ is a small protein of just 10 kDa. Furthermore, the results of experiments involving expression of tagged proteins having medium to large molecular weights indicate that the presence of the CusF3H+ tag improves protein solubility, as compared to a His-tag. We therefore endorse CusF3H+ as a useful alternative fusion protein/affinity tag for production of recombinant proteins in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A dual protease approach for expression and affinity purification of recombinant proteins.

    Science.gov (United States)

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.

  12. Purification, characterization of phytase enzyme from Lactobacillus ...

    African Journals Online (AJOL)

    Purification, characterization of phytase enzyme from Lactobacillus plantarum bacteria and determination of its kinetic properties. ... Many of the cereal grains, legumes and oilseeds store phosphorus in phytate form. Phytases can be produced by plants, animals and microorganisms. However, the ones with microbial origin ...

  13. Expression and purification of recombinant hemoglobin in Escherichia coli

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela

    2011-01-01

    BACKGROUND: Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe...... a protocol for expressing Hbs with low intrinsic solubilities. Since the alpha- and beta-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression......-translational modifications. CONCLUSION/SIGNIFICANCE: Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need...

  14. (Hyper)thermophilic enzymes: production and purification.

    Science.gov (United States)

    Falcicchio, Pierpaolo; Levisson, Mark; Kengen, Servé W M; Koutsopoulos, Sotirios

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E. coli and provide a general protocol for overproduction and purification. The ability to produce enzymes that retain their stability and activity at elevated temperatures creates exciting opportunities for a wide range of biocatalytic applications.

  15. Crystallization and preliminary X-ray data collection of the Escherichia coli lipoproteins BamC, BamD and BamE

    International Nuclear Information System (INIS)

    Albrecht, Reinhard; Zeth, Kornelius

    2010-01-01

    The cloning, purification and crystallization of the E. coli lipoproteins BamC, BamD and BamE is reported. X-ray diffraction data at high resolution were obtained for each of the proteins or protein domains. In Escherichia coli, the β-barrel assembly machinery (or BAM complex) mediates the recognition, insertion and assembly of outer membrane proteins. The complex consists of the integral membrane protein BamA (an Omp85-family member) and the lipoproteins BamB, BamC, BamD and BamE. The purification and crystallization of BamC, BamD and BamE, each lacking the N-terminal membrane anchor, is described. While the smallest protein BamE yielded crystals under conventional conditions, BamD only crystallized after stabilization with urea. Full-length BamC did not crystallize, but was cleaved by subtilisin into two domains which were subsequently crystallized independently. High-resolution data were acquired from all proteins

  16. Purification of bacteriophage M13 by anion exchange chromatography.

    Science.gov (United States)

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Antimicrobial activity of γ-thionin-like soybean SE60 in E. coli and tobacco plants

    International Nuclear Information System (INIS)

    Choi, Yeonhee; Choi, Yang Do; Lee, Jong Seob

    2008-01-01

    The SE60, a low molecular weight, sulfur-rich protein in soybean, is known to be homologous to wheat γ-purothionin. To elucidate the functional role of SE60, we expressed SE60 cDNA in Escherichia coli and in tobacco plants. A single protein band was detected by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) after anti-FLAG affinity purification of the protein from transformed E. coli. While the control E. coli cells harboring pFLAG-1 showed standard growth with Isopropyl β-D-1-thiogalactopyranoside (IPTG) induction, E. coli cells expressing the SE60 fusion protein did not grow at all, suggesting that SE60 has toxic effects on E. coli growth. Genomic integration and the expression of transgene in the transgenic tobacco plants were confirmed by Southern and Northern blot analysis, respectively. The transgenic plants demonstrated enhanced resistance against the pathogen Pseudomonas syringae. Taken together, these results strongly suggest that SE60 has antimicrobial activity and play a role in the defense mechanism in soybean plants

  18. Expression and purification of the non-tagged LipL32 of pathogenic Leptospira

    Directory of Open Access Journals (Sweden)

    P. Hauk

    2011-04-01

    Full Text Available Leptospirosis is a reemerging infectious disease and the most disseminated zoonosis worldwide. A leptospiral surface protein, LipL32, only occurs in pathogenic Leptospira, and is the most abundant protein on the bacterial surface, being described as an important factor in host immunogenic response and also in bacterial infection. We describe here an alternative and simple purification protocol for non-tagged recombinant LipL32. The recombinant LipL32(21-272 was expressed in Escherichia coli without His-tag or any other tag used to facilitate recombinant protein purification. The recombinant protein was expressed in the soluble form, and the purification was based on ion exchange (anionic and cationic and hydrophobic interactions. The final purification yielded 3 mg soluble LipL32(21-272 per liter of the induced culture. Antiserum produced against the recombinant protein was effective to detect native LipL32 from cell extracts of several Leptospira serovars. The purified recombinant LipL32(21-272 produced by this protocol can be used for structural, biochemical and functional studies and avoids the risk of possible interactions and interferences of the tags commonly used as well as the time consuming and almost always inefficient methods to cleave these tags when a tag-free LipL32 is needed. Non-tagged LipL32 may represent an alternative antigen for biochemical studies, for serodiagnosis and for the development of a vaccine against leptospirosis.

  19. Expression and purification of the non-tagged LipL32 of pathogenic Leptospira.

    Science.gov (United States)

    Hauk, P; Carvalho, E; Ho, P L

    2011-04-01

    Leptospirosis is a reemerging infectious disease and the most disseminated zoonosis worldwide. A leptospiral surface protein, LipL32, only occurs in pathogenic Leptospira, and is the most abundant protein on the bacterial surface, being described as an important factor in host immunogenic response and also in bacterial infection. We describe here an alternative and simple purification protocol for non-tagged recombinant LipL32. The recombinant LipL32(21-272) was expressed in Escherichia coli without His-tag or any other tag used to facilitate recombinant protein purification. The recombinant protein was expressed in the soluble form, and the purification was based on ion exchange (anionic and cationic) and hydrophobic interactions. The final purification yielded 3 mg soluble LipL32(21-272) per liter of the induced culture. Antiserum produced against the recombinant protein was effective to detect native LipL32 from cell extracts of several Leptospira serovars. The purified recombinant LipL32(21-272) produced by this protocol can be used for structural, biochemical and functional studies and avoids the risk of possible interactions and interferences of the tags commonly used as well as the time consuming and almost always inefficient methods to cleave these tags when a tag-free LipL32 is needed. Non-tagged LipL32 may represent an alternative antigen for biochemical studies, for serodiagnosis and for the development of a vaccine against leptospirosis.

  20. Simple purification method for a recombinantly expressed native His-tag-free aminopeptidase A from Lactobacillus delbrueckii.

    Science.gov (United States)

    Stressler, Timo; Tanzer, Coralie; Ewert, Jacob; Claaßen, Wolfgang; Fischer, Lutz

    2017-03-01

    The aminopeptidase A (PepA; EC 3.4.11.7) is an intracellular exopeptidase present in lactic acid bacteria. The PepA cleaves glutamyl/aspartyl residues from the N-terminal end of peptides and can, therefore, be applied for the production of protein hydrolysates with an increased amount of these amino acids, which results in a savory taste (umami). The first PepA from a lactobacilli strain was recombinantly expressed in Escherichia coli in a recently published study and harbored a C-terminal His 6 -tag for easier purification. Due to the fact that a His-tag might influence the properties of an enzyme, a simple purification method for the non-His-tagged PepA was required. Surprisingly, the PepA precipitated at a very low ammonium sulfate concentration of 5%. Unusual for a precipitating step, the purity of PepA was over 95% and the obtained activity yield was 110%. The high purity allows biochemical characterization and kinetic investigation. As a result, the optimum pH (6.0-6.5) and temperature (60-65 °C) were comparable to the His 6 -tag harboring PepA; the K M value was at 0.79 mM slightly lower compared to 1.21 mM, respectively. Since PepA is a homo dodecamer, it has a high molecular mass of approximately 480 kDa. Therefore, a subsequent preparative size-exclusion chromatography (SEC) step seemed promising. The PepA after SEC was purified to homogeneity. In summary, the simple two-step purification method presented can be applied to purify high amounts of PepA that will allow the performance of experiments in the future to crystalize PepA for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    OpenAIRE

    Misri Gozan; Mia Sari Setiawan; Kenny Lischer

    2017-01-01

    High purity of Bioethanol is required in biofuel mixing with gasoline (EXX). In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption m...

  2. Cloning, purification, crystallization and preliminary crystallographic analysis of LsrR from Escherichia coli

    International Nuclear Information System (INIS)

    Liu, Xiaotian; Wu, Minhao; Sun, Demeng; Zang, Jianye

    2010-01-01

    The E. coli transcription repressor LsrR has been overexpressed, purified and crystallized. Diffraction data were collected to about 3 Å resolution. In Escherichia coli, the lsr operon is composed of six genes lsrACDBFG which regulate uptake and modification of the signalling molecule AI-2. LsrR is a repressor of the lsr operon and itself, which can bind phospho-AI-2 and be released from the promoter region of the operon and thus activate gene expression. LsrR fused with an HHHHHH sequence at the C-terminus was expressed, purified and crystallized in order to determine its structure and elucidate the molecular mechanism of repression. The crystal belonged to space group I222, with unit-cell parameters a = 79.84, b = 116.65, c = 186.04 Å, and was estimated to contain two protein molecules per asymmetric unit

  3. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli

    DEFF Research Database (Denmark)

    Sørensen, Hans; Mortensen, Kim

    2005-01-01

    Pure, soluble and functional proteins are of high demand in modern biotechnology. Natural protein sources rarely meet the requirements for quantity, ease of isolation or price and hence recombinant technology is often the method of choice. Recombinant cell factories are constantly employed...... molecular tools available. In spite of all these qualities, expression of recombinant proteins with E. coli as the host often results in insoluble and/or nonfunctional proteins. Here we review new approaches to overcome these obstacles by strategies that focus on either controlled expression of target...... for the production of protein preparations bound for downstream purification and processing. Eschericia coli is a frequently used host, since it facilitates protein expression by its relative simplicity, its inexpensive and fast high density cultivation, the well known genetics and the large number of compatible...

  4. Fiscal 1999 achievement report on the venture business assisting type regional consortium - Minor business creation base type. Development of simplified extraction/purification method for highly purified large-size plasmids; 1999 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Kanbenka kojundo ogata plasmid chushutsu seiseiho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project aims to develop biotechnological industries in Okinawa Prefecture by embodying a method for obtaining large-size plasmids in a short time at low cost without a special apparatus, for which efforts were made to develop and commercialize a kit comprising an eluate from plasmid cells and a set of columns and eluate for purification. Under this project, University of the Ryukyus well experienced in the handling of plasmid DNAs and Advanced Medical Biological Science Institute jointly developed a 'simplified extraction/purification method for highly purified large-size plasmids.' The developed techniques or methods are described below. A concentration method was developed not using centrifugal operation for escherichia coli cultured in a closed mass culture device. A buffer exchange method in a closed system was developed, continuous from escherichia coli concentration to elution. A column assisted DNA purification method consuming but a short time was established. With these combined, the development is now complete of the technology and device for plasmid DNA elution from escherichia coli by an uninterrupted operation in a completely closed system. (NEDO)

  5. Fiscal 1999 achievement report on the venture business assisting type regional consortium - Minor business creation base type. Development of simplified extraction/purification method for highly purified large-size plasmids; 1999 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Kanbenka kojundo ogata plasmid chushutsu seiseiho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project aims to develop biotechnological industries in Okinawa Prefecture by embodying a method for obtaining large-size plasmids in a short time at low cost without a special apparatus, for which efforts were made to develop and commercialize a kit comprising an eluate from plasmid cells and a set of columns and eluate for purification. Under this project, University of the Ryukyus well experienced in the handling of plasmid DNAs and Advanced Medical Biological Science Institute jointly developed a 'simplified extraction/purification method for highly purified large-size plasmids.' The developed techniques or methods are described below. A concentration method was developed not using centrifugal operation for escherichia coli cultured in a closed mass culture device. A buffer exchange method in a closed system was developed, continuous from escherichia coli concentration to elution. A column assisted DNA purification method consuming but a short time was established. With these combined, the development is now complete of the technology and device for plasmid DNA elution from escherichia coli by an uninterrupted operation in a completely closed system. (NEDO)

  6. Feasibility Study on Manufacturing Lightweight Aggregates from Water Purification Sludge

    Science.gov (United States)

    Peng, Ching-Fang; Chen, How-Ji

    2018-02-01

    This study mainly discussed the feasibility of manufacturing lightweight aggregates from water purification sludge in Taiwan. They were analysed for the physical and chemical composition before the sintering test for lightweight aggregates in a laboratory. Then the physical and mechanical properties of the synthesized aggregates were assessed. The result showed that the chemical composition of sludge in the water purification plants was within the appropriate range for manufacturing lightweight aggregate as proposed in the literature. The sintering test demonstrated that the particle density of aggregates from the ten types of water purification sludge were mostly less than 1.8 g/cm3. In addition, the dry unit weight, the organic impurity, the ignition loss, and other characteristics of synthesized aggregates met the requirement of CNS standards, while its water absorption and crushing strength also fulfilled the general commercial specifications. Therefore, reclamation of water purification sludge for production of lightweight aggregate is indeed feasible.

  7. Shiga toxin-producing Escherichia coli isolated from chicken meat in Iran: serogroups, virulence factors, and antimicrobial resistance properties.

    Science.gov (United States)

    Momtaz, Hassan; Jamshidi, Alireza

    2013-05-01

    The aim of the current study was to determine the virulence factors, serogroups, and antibiotic resistance properties of Shiga toxin-producing Escherichia coli isolated from chicken meat samples. A total of 422 chicken meat samples were collected from 5 townships of Iran. Specimens were immediately transferred to the laboratory in a cooler with an ice pack. Samples were cultured, and the positive culture samples were analyzed by PCR assays. Finally, the antimicrobial susceptibility test was performed using the disk diffusion method in Mueller-Hinton agar. According to the results, out of 422 samples, 146 (34.59%) were confirmed to be E. coli positive and among E. coli-positive samples, 51 (34.93%) and 31 (21.23%) were from attaching and effacing E. coli (AEEC) and enterohemorrhagic E. coli (EHEC) subgroups, respectively. All of the EHEC-positive samples had all stx1, eaeA, and ehly virulence genes, whereas only 5 (9.80%) of AEEC subgroup had all stx1, stx2, and eaeA genes. As the data revealed, O157 was the most prevalent and O111 was the least prevalent strains in the Shiga toxin-producing E. coli (STEC) population. Among STEC strains, sulI and blaSHV had the highest and lowest incidence rate, respectively. There was a high resistance to tetracycline (76.82%), followed by chloramphenicol (73.17%) and nitrofurantoin (63.41%), but there was low resistance to cephalotine (7.31%) antibiotics in isolated strains. Results shows that the PCR technique has a high performance for detection of serogroups, virulence genes, and antibiotic resistance genes in STEC strains. This study is the first prevalence report of detection of virulence genes, serogroups, and antibiotic resistance properties of STEC strains isolated from chicken meat samples in Iran. Based on the results, chicken meat is one of the main sources of STEC strains and its virulence factors in Iran, so an accurate meat inspection would reduce disease outbreaks.

  8. Profiling and quantitative evaluation of three Nickel-Coated magnetic matrices for purification of recombinant proteins: lelpful hints for the optimized nanomagnetisable matrix preparation

    Directory of Open Access Journals (Sweden)

    Zarei Saeed

    2011-08-01

    Full Text Available Abstract Background Several materials are available in the market that work on the principle of protein magnetic fishing by their histidine (His tags. Little information is available on their performance and it is often quoted that greatly improved purification of histidine-tagged proteins from crude extracts could be achieved. While some commercial magnetic matrices could be used successfully for purification of several His-tagged proteins, there are some which have been proved to operate just for a few extent of His-tagged proteins. Here, we address quantitative evaluation of three commercially available Nickel nanomagnetic beads for purification of two His-tagged proteins expressed in Escherichia coli and present helpful hints for optimized purification of such proteins and preparation of nanomagnetisable matrices. Results Marked differences in the performance of nanomagnetic matrices, principally on the basis of their specific binding capacity, recovery profile, the amount of imidazole needed for protein elution and the extent of target protein loss and purity were obtained. Based on the aforesaid criteria, one of these materials featured the best purification results (SiMAG/N-NTA/Nickel for both proteins at the concentration of 4 mg/ml, while the other two (SiMAC-Nickel and SiMAG/CS-NTA/Nickel did not work well with respect to specific binding capacity and recovery profile. Conclusions Taken together, functionality of different types of nanomagnetic matrices vary considerably. This variability may not only be dependent upon the structure and surface chemistry of the matrix which in turn determine the affinity of interaction, but, is also influenced to a lesser extent by the physical properties of the protein itself. Although the results of the present study may not be fully applied for all nanomagnetic matrices, but provide a framework which could be used to profiling and quantitative evaluation of other magnetisable matrices and also

  9. Extraction, purification, kinetic and thermodynamic properties of urease from germinating Pisum Sativum L. seeds

    Science.gov (United States)

    2014-01-01

    Background Urease, one of the highly efficient known enzymes, catalyzes the hydrolysis of urea into ammonia and carbon dioxide. The present study aimed to extract urease from pea seeds (Pisum Sativum L). The enzyme was then purified in three consequence steps: acetone precipitation, DEAE-cellulose ion-exchange chromatography, and gel filtration chromatography (Sephacryl S-200 column). Results The purification fold was 12.85 with a yield of 40%. The molecular weight of the isolated urease was estimated by chromatography to be 269,000 Daltons. Maximum urease activity (190 U/g) was achieved at the optimum conditions of 40°C and pH of 7.5 after 5 min of incubation. The kinetic parameters, K m and V max , were estimated by Lineweaver-Burk fits and found to be 500 mM and 333.3 U/g, respectively. The thermodynamic constants of activation, ΔH, E a , and ΔS, were determined using Arrhenius plot and found to be 21.20 kJ/mol, 23.7 kJ/mol, and 1.18 kJ/mol/K, respectively. Conclusions Urease was purified from germinating Pisum Sativum L. seeds. The purification fold, yield, and molecular weight were determined. The effects of pH, concentration of enzyme, temperature, concentration of substrate, and storage period on urease activity were examined. This may provide an insight on the various aspects of the property of the enzyme. The significance of extracting urease from different sources could play a good role in understanding the metabolism of urea in plants. PMID:25065975

  10. 40 CFR 79.68 - Salmonella typhimurium reverse mutation assay.

    Science.gov (United States)

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Testing Requirements for... of E. coli: partial purification and some properties,” Journal of Biological Chemistry. 218:97-106...

  11. Escherichia coli PII protein: purification, crystallization and oligomeric structure.

    Science.gov (United States)

    Vasudevan, S G; Gedye, C; Dixon, N E; Cheah, E; Carr, P D; Suffolk, P M; Jeffrey, P D; Ollis, D L

    1994-01-17

    The Escherichia coli signal transduction protein PII, product of the glnB gene, was overproduced and purified. The predicted molecular weight of the protein based on the correct nucleotide sequence is 12,427 and is very close to the value 12,435 obtained by matrix-assisted laser desorption mass spectrometry. Hexagonal crystals of the unuridylylated form of PII with dimensions 0.2 x 0.2 x 0.3 mm were grown and analysed by X-ray diffraction. The crystals belong to space group P6(3) with a = b = 61.6 A, c = 56.3 A and Vm of 2.5 for one subunit in the asymmetric unit. A low-resolution electron density map showed electron density concentrated around a three-fold axis, suggesting the molecule to be a trimer. A sedimentation equilibrium experiment of the meniscus depletion type was used to estimate a molecular weight of 35,000 +/- 1,000 for PII in solution. This result is consistent with the native protein being a homotrimer.

  12. Purification and cellular localization of wild type and mutated dihydrolipoyltransacetylases from Azotobacter vinelandii and Escherichia coli expressed in E. coli

    NARCIS (Netherlands)

    Schulze, Egbert; Westphal, Adrie H.; Veenhuis, Marten; Kok, Arie de

    1992-01-01

    Wild type dihydrolipoyltransacetylase(E2p)-components from the pyruvate dehydrogenase complex of A. vinelandii or E. coli, and mutants of A. vinelandii E2p with stepwise deletions of the lipoyl domains or the alanine- and proline-rich region between the binding and the catalytic domain have been

  13. Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8.

    Directory of Open Access Journals (Sweden)

    Sayaka Igari

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is one of the enzymes involved in homocysteine metabolism. Despite considerable genetic and clinical attention, the reaction mechanism and regulation of this enzyme are not fully understood because of difficult production and poor stability. While recombinant enzymes from thermophilic organisms are often stable and easy to prepare, properties of thermostable MTHFRs have not yet been reported.MTHFR from Thermus thermophilus HB8, a homologue of Escherichia coli MetF, has been expressed in E. coli and purified. The purified MTHFR was chiefly obtained as a heterodimer of apo- and holo-subunits, that is, one flavin adenine dinucleotide (FAD prosthetic group bound per dimer. The crystal structure of the holo-subunit was quite similar to the β(8α(8 barrel of E. coli MTHFR, while that of the apo-subunit was a previously unobserved closed form. In addition, the intersubunit interface of the dimer in the crystals was different from any of the subunit interfaces of the tetramer of E. coli MTHFR. Free FAD could be incorporated into the apo-subunit of the purified Thermus enzyme after purification, forming a homodimer of holo-subunits. Comparison of the crystal structures of the heterodimer and the homodimer revealed different intersubunit interfaces, indicating a large conformational change upon FAD binding. Most of the biochemical properties of the heterodimer and the homodimer were the same, except that the homodimer showed ≈50% activity per FAD-bound subunit in folate-dependent reactions.The different intersubunit interfaces and rearrangement of subunits of Thermus MTHFR may be related to human enzyme properties, such as the allosteric regulation by S-adenosylmethionine and the enhanced instability of the Ala222Val mutant upon loss of FAD. Whereas E. coli MTHFR was the only structural model for human MTHFR to date, our findings suggest that Thermus MTHFR will be another useful model for this important enzyme.

  14. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris.

    Science.gov (United States)

    Sygmund, Christoph; Staudigl, Petra; Klausberger, Miriam; Pinotsis, Nikos; Djinović-Carugo, Kristina; Gorton, Lo; Haltrich, Dietmar; Ludwig, Roland

    2011-12-12

    FAD dependent glucose dehydrogenase (GDH) currently raises enormous interest in the field of glucose biosensors. Due to its superior properties such as high turnover rate, substrate specificity and oxygen independence, GDH makes its way into glucose biosensing. The recently discovered GDH from the ascomycete Glomerella cingulata is a novel candidate for such an electrochemical application, but also of interest to study the plant-pathogen interaction of a family of wide-spread, crop destroying fungi. Heterologous expression is a necessity to facilitate the production of GDH for biotechnological applications and to study its physiological role in the outbreak of anthracnose caused by Glomerella (anamorph Colletotrichum) spp. Heterologous expression of active G. cingulata GDH has been achieved in both Escherichia coli and Pichia pastoris, however, the expressed volumetric activity was about 4800-fold higher in P. pastoris. Expression in E. coli resulted mainly in the formation of inclusion bodies and only after co-expression with molecular chaperones enzymatic activity was detected. The fed-batch cultivation of a P. pastoris transformant resulted in an expression of 48,000 U L⁻¹ of GDH activity (57 mg L⁻¹). Recombinant GDH was purified by a two-step purification procedure with a yield of 71%. Comparative characterization of molecular and catalytic properties shows identical features for the GDH expressed in P. pastoris and the wild-type enzyme from its natural fungal source. The heterologous expression of active GDH was greatly favoured in the eukaryotic host. The efficient expression in P. pastoris facilitates the production of genetically engineered GDH variants for electrochemical-, physiological- and structural studies.

  15. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    International Nuclear Information System (INIS)

    White, Tommi A.; Tanner, John J.

    2005-01-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ 1 -pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2 1 2 1 2 1 , with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative

  16. Expression, purification and crystallization of an archaeal-type phosphoenolpyruvate carboxylase

    International Nuclear Information System (INIS)

    Dharmarajan, Lakshmi; Kraszewski, Jessica L.; Mukhopadhyay, Biswarup; Dunten, Pete W.

    2009-01-01

    The expression, purification, crystallization and preliminary diffraction analysis of an archaeal-type phosphoenolpyruvate carboxylase are described. Complete highly redundant X-ray data have been measured from a crystal diffracting to 3.13 Å resolution. An archaeal-type phosphoenolpyruvate carboxylase (PepcA) from Clostridium perfringens has been expressed in Escherichia coli in a soluble form with an amino-terminal His tag. The recombinant protein is enzymatically active and two crystal forms have been obtained. Complete diffraction data extending to 3.13 Å resolution have been measured from a crystal soaked in KAu(CN) 2 , using radiation at a wavelength just above the Au L III edge. The asymmetric unit contains two tetramers of PepcA

  17. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs.

    Directory of Open Access Journals (Sweden)

    Nikita Abraham

    Full Text Available Nicotinic acetylcholine receptors (nAChR are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP. AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.

  18. Green Fluorescent Protein Purification as a Didactic Tool During Practical Classes For Undergraduates Students of UFAM

    Directory of Open Access Journals (Sweden)

    J.A.Q.A Faria

    2017-07-01

    Full Text Available INTRODUCTION: The Green Fluorescent Protein (GFP, originated from the jellyfish Aequorea victoria has broadly applicability for cellular and molecular biology research. Its spectral characteristics make it practical  to be detect by UV-A (black light lamp during the purification procedure. Moreover, this approach implementation during a practical class allows the exploring of fluorescence features. OBJETIVES: the purpose of this investigation was to teach the concepts and principles of protein purification during a practical class using recombinant GFP protein. MATERIAL E METHODS: Transformed E. coli JM110 expressing GFP were resuspended in buffer solution (Tris-HCl 20 mM pH 8.0, 150 mM NaCl, 5 mM EDTA, 20% (NH42SO4 following the sonication step. The lysate was submitted to the purification through hydrophobic interaction chromatography column (HIC. After analysis of chromatogram, some collected fractions were quantified by Bradford assay and evaluated by SDS-PAGE. Besides that, the GFP presences were measured at an excitation wavelength of 488 nm on a spectrofluorimeter. RESULTS AND DISCUSSION: Before the experiments, the students were encouraged to explore the biochemistry characteristics of GFP, assessing protein data banks and published articles. These guided questions conducted to discussion of the purification strategy choosen. The GFP purification enabled the visual observation of chromatography principles necessary for the theory assimilation. During the chromatography running, we used a UV-A lamp which allowed a greatly exploration of concepts beyond this technique such as the sample injection, the GFP column retention, and the elution step. The chromatogram obtaneid were analysed and correlated to the collected fractions. Our next step was the efficiency analysis generated by the GFP measurement, total protein quantification and the analytical method SDS-PAGE. CONCLUSION: Collectively, we observed in this class the clear development

  19. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate.

    Science.gov (United States)

    Weber, Eva; Guth, Christina; Weiss, Ingrid M

    2012-01-01

    Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO(3) (-) as the first ionic interaction partner, but not necessarily for Ca(2+). The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals.

  20. Expression and purification of PprI protein from D.radiodurans R1 in escherichia coli

    International Nuclear Information System (INIS)

    Zhang Yongqin; Zhou Hui; Chen Jie; Yang Zhanshan

    2011-01-01

    In order to express and purify PprI protein from D.radiodurans R1 in E. coli, the full length of pprI gene was gained by PCR amplification using pCMV-HA-pprI as a template. The gene segment was inserted into vector pET-28a after digested by two restriction endonucleases Nco I and EcoR I. Then the recombinant vector pET-28a-His-pprI was transfected into E. coli BL21(DE3) RP. The PprI protein expression was induced by IPTG and the fusion protein was confirmed by SDS-PAGE and Western blotting. The expressive conditions of the protein such as E. coli' A 600 , concentration of IPTG, time and temperature of culture, were optimized. Finally the fusion protein was purified by Ni-NTA His Bind Resins and molecule boult. The experimental results show the fusion protein confirmed by Western blotting is 6 x His-PprI and its molecular weight is 37 kDa. The ladders of PprI protein at molecular weight 37 kDa were different due to difference of the PprI protein expression conditions if E. coli. The PprI protein exists both in supernatant and precipitation. The concentration of purified protein is about 0.15 mg/mL which was measured by BCA method. It is concluded that the recombinant plasmid pET-28a-His-pprI is constructed and the PprI fusion protein is expressed and purified. The results lay a solid foundation for studying the radio-resistance and immunity of PprI protein. (authors)

  1. PURIFICATION AND CHARACTERIZATION OF POLY-HYDROXYBUTYRATE (PHB IN CUPRIAVIDUS NECATOR

    Directory of Open Access Journals (Sweden)

    Sergio Leon De Rooy

    2010-06-01

    Full Text Available Purification and characterization of biodegradable plastic namely Polyhydroxybutyrate (PHB in Cupriavidus necator have been carried out. C. necator was grown on a Ramsay medium with fixed substrate conditions and optimized for time. Stepwise purification of PHB was carried out, by using hydrogen peroxide and chloroform. The effect of temperature, time, and hydrogen peroxide concentration on the purification were also evaluated. The extracted PHB was studied with XRD, FTIR and 1H-NMR and 13C-NMR to determine its structure and purity. Yield and crystallinity were also studied with HPLC and XRD, respectively. The results of the research showed that higher concentrations of hydrogen peroxide gave better yields, whereas higher temperatures and longer lysis times led to different results. Higher crystallinity was observed when purification temperatures were elevated, but higher hydrogen peroxide concentration and longer extraction time gave varying crystallinity. The highest yield ca 66.10 % DCW was reached by purification using H2O2 20 %, at 100 oC for 2 h. The results of   TGA analysis indicated that the purity of the PHB obtained was about 75 % and by using DSC, it was found that the PHB showed good thermal properties.   Keywords:  PHB, recovery, hydrogen peroxide, characterization

  2. Field Emission Property of Double-walled Carbon Nanotubes Related to Purification and Transmittance

    International Nuclear Information System (INIS)

    Ahn, KiTae; Jang, HyunChul; Hong, Wanshick; Park, Kyoungwan; Sok, Junghyun; Lyu, SeungChul; Lee, Hansung; Lee, Naesung; Han, Moonsup; Park, Yunsun

    2011-01-01

    Double-walled carbon nanotubes (DWCNTs) with high purity were produced by the catalytic decomposition of tetrahydrofuran (THF) using a Fe-Mo/MgO catalyst at 800°C. The as-synthesized DWCNTs typically have catalytic impurities and amorphous carbon, which were removed by a two-step purification process consisting of acid treatment and oxidation. In the acid treatment, metallic catalysts were removed in HCl at room temperature for 5 hr with magnetic stirring. Subsequently, the oxidation, using air at 380°C for 5 hr in the a vertical-type furnace, was used to remove the amorphous carbon particles. The DWCNT suspension was prepared by dispersing the purified DWCNTs in the aqueous sodium dodecyl sulfate solution with horn-type sonication. This was then air-sprayed on ITO glass to fabricate DWCNT field emitters. The field emission properties of DWCNT films related to transmittance were studied. This study provides the possibility of the application of large-area transparent CNT field emission cathodes.

  3. Characterization of substances that restore impaired cell division of UV-irradiated E. coli B

    International Nuclear Information System (INIS)

    Yoshiyama, Y.; Shimoii, H.; Tamura, G.

    1981-01-01

    Substances which restore impaired cell division in UV-irradiated E. coli B were surveyed among various bacteria. The active substance was found only in several genera of Gram-negative bacteria, i.e., Escherichia, Enterobacter, Salmonella and some species of Pseudomonas. The activity in the dialyzed cell extract of E. coli B/r was observed in the presence of β-NAD and was enhanced by Mg 2+ and Mn 2+ . The active substance was very labile, but the activity was protected by 1 mM dithiothreitol in the process of purification. The activity of a fraction recovered through DEAE-cellulose column chromatography was stimulated by the presence of membrane fraction. Upon treatment with lipid-degrading enzymes and proteases, the division-stimulating activity was lost or reduced. It appears that the inactivation by lipase and phospholipase A2 was due to the formation of lysophospholipids and that a proteinous substance participated in the recovery of impaired cell division of UV-irradiated E. coli B

  4. Virulence factors, serogroups and antimicrobial resistance properties of Escherichia coli strains in fermented dairy products.

    Science.gov (United States)

    Dehkordi, Farhad Safarpoor; Yazdani, Farshad; Mozafari, Jalal; Valizadeh, Yousef

    2014-04-07

    From a clinical perspective, it is essential to know the microbial safety of fermented dairy products. Doogh and kashk are fermented dairies. These products are used by millions of people but their microbial qualities are unknown. Shiga toxin producing Escherichia coli (STEC) is one of the most commonly detected pathogens in the cases of food poisoning and food-borne illnesses. The present investigation was carried out in order to study the molecular characterization and antimicrobial resistance properties of STEC strains isolated from fermented dairy products. Six hundred fermented dairy samples were collected and immediately transferred to the laboratory. All samples were cultured immediately and those that were E. coli-positive were analyzed for the presence of O157 , O26, O103, O111, O145, O45, O91, O113, O121 and O128 STEC serogroups, tetA, tetB, blaSHV, CITM, cmlA, cat1, aadA1, dfrA1, qnr, aac (3)-IV, sul1 and ereA antibiotic resistance genes and stx1, stx2, eaeA, ehly, cnf1, cnf2, iutA, cdtB, papA, traT, sfaS and fyuA virulence factors using PCR. Antimicrobial susceptibility testing was performed also using disk diffusion methodology with Mueller-Hinton agar. Fifty out of 600 (8.33%) dairy samples harbored E. coli. In addition, yoghurt was the most commonly contaminated dairy. O157 (26%) and O26 (12%) were the most commonly detected serogroups. A significant difference was found between the frequency of Attaching and Effacing E. coli and Enterohaemorrhagic E. coli (P Fermented dairy products can easily become contaminated by antibiotic resistant STEC strains. Our findings should raise awareness about antibiotic resistance in Iran. Clinicians should exercise caution when prescribing antibiotics, especially in veterinary treatments.

  5. Simplified Method to Produce Human Bioactive Leukemia Inhibitory Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Houman Kahroba

    2016-07-01

    Full Text Available Background Human leukemia inhibitory factor (hLIF is a poly functional cytokine with numerous regulatory effects on different cells. Main application of hLIF is maintaining pluripotency of embryonic stem cells. hLIF indicated effective work in implantation rate of fertilized eggs and multiple sclerosis (MS treatment. Low production of hLIF in eukaryotic cells and prokaryotic host’s problems for human protein production convinced us to develop a simple way to reach high amount of this widely used clinical and research factor. Objectives In this study we want to purify recombinant human leukemia inhibitory factor in single simple method. Materials and Methods This is an experimental study, gene expression: human LIF gene was codon optimized for expression in Escherichia coli and attached his-tag tail to make it extractable. After construction and transformation of vector to E. coli, isopropyl β-D-1-thiogalactopyranoside (IPTG used for induction. Single step immobilized metal affinity chromatography (IMAC used for purification confirmed by Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE and western blotting. Bioactivity of the hLIF were tested by MTT assay with TF-1 cells and CISH gene stimulation in monocyte and TF-1 by real-time PCR. Induction by 0.4 mM of IPTG in 25°C for 3 hours indicated best result for soluble expression. SPSS indicated P ˂ 0.05 that is significant for our work. Results Cloning, expression, and extraction of bio active rhLIF was successfully achieved according MTT assay and real time PCR after treatment of TF-1 and monocyte cell lines. Conclusions We developed an effective single step purification method to produce bioactive recombinant hLIF in E. coli. For the first time we used CISH gene stimulating for bioactivity test for qualifying of recombinant hLIF for application.

  6. Characterization of phosphorylated isocitrate dehydrogenase and purification of the isocitrate dehydrogenase kinase/phosphatase of Escherichia coli

    International Nuclear Information System (INIS)

    Malloy, P.J.

    1985-01-01

    NADP + -specific isocitrate dehydrogenase (IDH; EC 1.1.1.42) was shown to be phosphorylated with ( 32 P)-orthophosphate in vivo in several strains of Escherichia coli. In strain KC 13, an adenylate cyclase deficient mutant, the specific activity of IDH decreased 70% when acetate was added to stationary phase cultures grown on glucose. The enzyme was immunoprecipitated from sonic extracts and shown to contain 32 P by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. The results demonstrate that unlike many eukaryotic protein kinases, the protein kinase involved in the phosphorylation of IDH in E. coli does not require cyclic adenosine monophosphate for catalysis. Similarly, the phosphorylation of IDH was demonstrated in E. coli mutants deficient in either isocitrate lyase or malate synthase. The incorporation of 32 P in IDH was demonstrated following SDS-PAGE and autoradiography of the immunoprecipitated enzyme. These results suggest that the conditions required for the phosphorylation of IDH do not depend on the functioning of the glyoxylate shunt. Following in vivo 32 P-labeling of E. coli strain F143/KL259 in the presence of acetate, 32 P-labeled IDH was isolated from sonicated extracts of the cells. The 32 P-enzyme was carboxylmethylated and digested with trypsin. A single 32 P-labeled peptide was isolated from the tryptic digest. Amino acid analysis of the purified 32 P-labeled peptide showed that the peptide contains seven amino acids, including a single phosphorylated serine residue

  7. Single step purification of recombinant proteins using the metal ion-inducible autocleavage (MIIA) domain as linker for tag removal.

    Science.gov (United States)

    Ibe, Susan; Schirrmeister, Jana; Zehner, Susanne

    2015-08-20

    For fast and easy purification, proteins are typically fused with an affinity tag, which often needs to be removed after purification. Here, we present a method for the removal of the affinity tag from the target protein in a single step protocol. The protein VIC_001052 of the coral pathogen Vibrio coralliilyticus ATCC BAA-450 contains a metal ion-inducible autocatalytic cleavage (MIIA) domain. Its coding sequence was inserted into an expression vector for the production of recombinant fusion proteins. Following, the target proteins MalE and mCherry were produced as MIIA-Strep fusion proteins in Escherichia coli. The target proteins could be separated from the MIIA-Strep part simply by the addition of calcium or manganese(II) ions within minutes. The cleavage is not affected in the pH range from 5.0 to 9.0 or at low temperatures (6°C). Autocleavage was also observed with immobilized protein on an affinity column. The protein yield was similar to that achieved with a conventional purification protocol. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Evaluating the performance of water purification in a vegetated groundwater recharge basin maintained by short-term pulsed infiltration events.

    Science.gov (United States)

    Mindl, Birgit; Hofer, Julia; Kellermann, Claudia; Stichler, Willibald; Teichmann, Günter; Psenner, Roland; Danielopol, Dan L; Neudorfer, Wolfgang; Griebler, Christian

    2015-01-01

    Infiltration of surface water constitutes an important pillar in artificial groundwater recharge. However, insufficient transformation of organic carbon and nutrients, as well as clogging of sediments often cause major problems. The attenuation efficiency of dissolved organic carbon (DOC), nutrients and pathogens versus the risk of bioclogging for intermittent recharge were studied in an infiltration basin covered with different kinds of macrovegetation. The quality and concentration of organic carbon, major nutrients, as well as bacterial biomass, activity and diversity in the surface water, the porewater, and the sediment matrix were monitored over one recharge period. Additionally, the numbers of viral particles and Escherichia coli were assessed. Our study showed a fast establishment of high microbial activity. DOC and nutrients have sustainably been reduced within 1.2 m of sediment passage. Numbers of E. coli, which were high in the topmost centimetres of sediment porewater, dropped below the detection limit. Reed cover was found to be advantageous over bushes and trees, since it supported higher microbial activities along with a good infiltration and purification performance. Short-term infiltration periods of several days followed by a break of similar time were found suitable for providing high recharge rates, and good water purification without the risk of bioclogging.

  9. Using of Mineral Recourses for Water Purification

    International Nuclear Information System (INIS)

    Tumanova, I.V.; Nazarenko, O.B.; Anna, Yu.

    2009-01-01

    Pollution of surface waters results in necessity of underground waters using for drinking. Underground waters are characterized by the high quantity of heavy metals salts. This led to development of methods reducing the concentration of the metal salts in water. Wide spread occurrence, cheapness and high sorption properties of nature minerals allow to consider them as perspective sorbents for different impurities extraction, including dissoluble compounds of heavy metals. Reachable purification efficiency with mineral resources use for the moment satisfies sanitary indexes and standards presenting to portable water in Russia. In given material there are presented the results of research of artificial sorbent and certain minerals sorption characteristics, which are typical for West Siberia. For purification quality improvement from Fe and Mn ions there are suggested to use the method of boiling bed.

  10. INFLUENCE OF DOXORUBICIN ON ADHESIVE PROPERTIES OF E.COLI

    Directory of Open Access Journals (Sweden)

    O.G. Shapoval

    2008-09-01

    Full Text Available Influence ofantineoplastic drug doxorubicin and amikacin, the aminoglycoside family on adhesive activity of Escherichia coli was studied. Antimicrobialactivity(minimum inhibitory concentration-MIC ofboth drugs against experimental strains using serial two-fold dilution method was determined. Susceptibility of E.coli to amikacin in the presence of Sand j MIC doxorubicin was studied. After 10 passages in beef-extract broth with constant and increasing doxorubicin concentrations in the presence of Sand j MIC doxorubicin, the adhesive activity of initial and passage variants according to theirability to absorb human erythrocytes 1(0 Rh+ was determined. Itwas observed that experimental strains were susceptible to amikacin (MIC 1,5-6,2 mkg/ml butwere resistantto doxorubicin (MIC 1000 mkg/ml. Subinhibitory concentrations of this cytostatic (S and j MIC raised the sensitivity of experimental strains to amikacin and differently effected on adhesive activity of passage variants of E.coli.

  11. Nanotechnology for water treatment and purification

    CERN Document Server

    Apblett, Allen

    2014-01-01

    This book describes the latest progress in the application of nanotechnology for water treatment and purification. Leaders in the field present both the fundamental science and a comprehensive overview of the diverse range of tools and technologies that have been developed in this critical area. Expert chapters present the unique physicochemical and surface properties of nanoparticles and the advantages that these provide for engineering applications that ensure a supply of safe drinking water for our growing population. Application areas include generating fresh water from seawater, preventing contamination of the environment, and creating effective and efficient methods for remediation of polluted waters. The chapter authors are leading world-wide experts in the field with either academic or industrial experience, ensuring that this comprehensive volume presents the state-of-the-art in the integration of nanotechnology with water treatment and purification. Covers both wastewater and drinking water treatmen...

  12. Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells.

    Science.gov (United States)

    Scotter, Andrew J; Kuntz, Douglas A; Saul, Michelle; Graham, Laurie A; Davies, Peter L; Rose, David R

    2006-06-01

    We present a system for the expression and purification of recombinant sea raven type II antifreeze protein, a cysteine-rich, C-type lectin-like globular protein that has proved to be a difficult target for recombinant expression and purification. The cDNAs encoding the pro- and mature forms of the sea raven protein were cloned into a modified pMT Drosophila expression vector. These constructs produced N-terminally His(6)-tagged pro- and mature forms of the type II antifreeze protein under the control of a metallothionein promoter when transfected into Drosophila melanogaster S2 cells. Upon induction of stable cell lines the two proteins were expressed at high levels and secreted into the medium. The proteins were then purified from the cell medium in a simple and rapid protocol using immobilized metal affinity chromatography and specific protease cleavage by tobacco etch virus protease. The proteins demonstrated antifreeze activity indistinguishable from that of wild-type sea raven antifreeze protein purified from serum as illustrated by ice affinity purification, ice crystal morphology, and their ability to inhibit ice crystal growth. This expression and purification system gave yields of 95 mg/L of fully active mature sea raven type II AFP and 9.6 mg/L of the proprotein. This surpasses all previous attempts to express this protein in Escherichia coli, baculovirus-infected fall armyworm cells and Pichia pastoris and will provide sufficient protein for structural analysis.

  13. Purification of beta-acetylglucosaminase and beta-galactosidase from ram testis.

    Science.gov (United States)

    Caygill, J C; Roston, C P; Jevons, F R

    1966-02-01

    1. The presence of beta-galactosidase (EC 3.2.1.23) in an acetic acid extract of ram testis is reported. Some properties of the crude enzyme preparation were studied. 2. The purification of beta-acetylglucosaminase (EC 3.2.1.30) and of beta-galactosidase from the ram-testis extract by ammonium sulphate precipitation and chromatography on a CM-cellulose column is described. 3. The final purifications of the separated enzymes achieved were for the beta-acetylglucosaminase 35 times and for the beta-galactosidase 99 times. 4. The possibility of using DEAE-cellulose and Sephadex G-200 to purify the enzymes was investigated.

  14. Signal peptide prediction suggests Mycobacterium tuberculosis curli pilin subunit secretion via the Sec pathway may hinder MTP overexpression in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, N.; Pillay, B.; Bubb, M.; Kumar, A.; Chiliza, T.; Pillay, M.

    2017-07-01

    Introduction Mycobacterium tuberculosis curli pili (MTP) are novel, potential TB diagnostic biomarkers as they are important virulence attributes, unique to the M. tuberculosis complex (MTBC). The production of high quality recombinant transmembrane and secretory proteins that can serve as biomarkers may be challenging due to their secretion attributes. For example, the signal peptide of MTP governed by the classical secretion pathway may hinder the purification of the protein in E. coli systems. In this study, the secretion characteristics of MTP were determined and the cloning, expression and purification of MTP was attempted in E.coli. Materials and methods A fragment of MTP unique to MTBC was cloned into pet101 and pGEX-6P-1 vectors. The clones were confirmed by nucleotide sequencing and expression of the protein was attempted at IPTG concentrations ranging from 0.1mM to 1mM and at temperatures between 25 °C to 37 °C. The pGEX-6P-1/mtp clone expressed protein was purified, yielding a MTP-GST fusion protein and a free GST band that were analysed by LC/MS mass spectrometry. Inclusion body preparation attempted from the pet101/mtp clone yielded two bands at 10 kDa and below 10 kDa, both of which were analysed by LC/MS mass spectrometry. Transcription activity of both the clones was interrogated by real time PCR on the cDNA derived from the induced clones at various time points after induction with IPTG. The signal peptide and protein secretion characteristics of the MTP protein were determined by bioinformatics analysis of the amino acid sequence using publically available software. Results The truncated MTP fragments were successfully cloned in both the vectors as confirmed by nucleotide sequencing. Expression of the pGEX-6P-1/mtp clone using 0.5 mM IPTG at 27 °C demonstrated the presence of the expected fragment at approximately 35 kDa. This was confirmed by Western Blotting using anti-GST antibodies. However, purification of MTP in adequate quantities as a

  15. Signal peptide prediction suggests Mycobacterium tuberculosis curli pilin subunit secretion via the Sec pathway may hinder MTP overexpression in Escherichia coli

    International Nuclear Information System (INIS)

    Naidoo, N.; Pillay, B.; Bubb, M.; Kumar, A.; Chiliza, T.; Pillay, M.

    2017-01-01

    Introduction Mycobacterium tuberculosis curli pili (MTP) are novel, potential TB diagnostic biomarkers as they are important virulence attributes, unique to the M. tuberculosis complex (MTBC). The production of high quality recombinant transmembrane and secretory proteins that can serve as biomarkers may be challenging due to their secretion attributes. For example, the signal peptide of MTP governed by the classical secretion pathway may hinder the purification of the protein in E. coli systems. In this study, the secretion characteristics of MTP were determined and the cloning, expression and purification of MTP was attempted in E.coli. Materials and methods A fragment of MTP unique to MTBC was cloned into pet101 and pGEX-6P-1 vectors. The clones were confirmed by nucleotide sequencing and expression of the protein was attempted at IPTG concentrations ranging from 0.1mM to 1mM and at temperatures between 25 °C to 37 °C. The pGEX-6P-1/mtp clone expressed protein was purified, yielding a MTP-GST fusion protein and a free GST band that were analysed by LC/MS mass spectrometry. Inclusion body preparation attempted from the pet101/mtp clone yielded two bands at 10 kDa and below 10 kDa, both of which were analysed by LC/MS mass spectrometry. Transcription activity of both the clones was interrogated by real time PCR on the cDNA derived from the induced clones at various time points after induction with IPTG. The signal peptide and protein secretion characteristics of the MTP protein were determined by bioinformatics analysis of the amino acid sequence using publically available software. Results The truncated MTP fragments were successfully cloned in both the vectors as confirmed by nucleotide sequencing. Expression of the pGEX-6P-1/mtp clone using 0.5 mM IPTG at 27 °C demonstrated the presence of the expected fragment at approximately 35 kDa. This was confirmed by Western Blotting using anti-GST antibodies. However, purification of MTP in adequate quantities as a

  16. Antibiotic resistance properties of uropathogenic Escherichia coli ...

    African Journals Online (AJOL)

    Purpose: To investigate the antibiotic resistance pattern of uropathogenic Escherichia coli (UPEC) strains isolated from pregnant women with history of recurrent urinary tract infections (RUTIs) and healthy pregnant women. Methods: A total of 485 high vaginal swab specimens were collected from pregnant women with ...

  17. Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.

    Science.gov (United States)

    Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P

    2014-03-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Uranium hexafluoride purification; Purificacao de hexafluoreto de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Eneas F. de

    1986-07-01

    Uranium hexafluoride might contain a large amount of impurities after manufacturing or handling. Three usual methods of purification of uranium hexafluoride were presented: selective sorption, sublimation, and distillation. Since uranium hexafluoride usually is contaminated with hydrogen fluoride, a theoretical study of the phase equilibrium properties was performed for the binary system UF{sub 6}-HF. A large deviation from the ideal solution behaviour was observed. A purification unity based on a constant reflux batch distillation process was developed. A procedure was established in order to design the re boiler, condenser and packed columns for the UF{sub 6}-HF mixture separation. A bench scale facility for fractional distillation of uranium hexafluoride was described. Basic operations for that facility and results extracted from several batches were discussed. (author)

  19. Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli.

    Science.gov (United States)

    Zheng, Wenjun; Wang, Qingsong; Bi, Qun

    2016-04-01

    Pfu DNA polymerase (Pfu) is a DNA polymerase isolated from the hyperthermophilic archaeon Pyrococcus furiosus. With its excellent thermostability and high fidelity, Pfu is well known as one of the enzymes widely used in the polymerase chain reaction. In this study, the recombinant plasmid pLysS His6-tagged Pfu-pET28a was constructed. His-tagged Pfu was expressed in Escherichia coli BL21 (DE3) competent cells and then successfully purified with the ÄKTAprime plus compact one-step purification system by Ni(2+) chelating affinity chromatography after optimization of the purification conditions. The authenticity of the purified Pfu was further confirmed by peptide mass fingerprinting. A bio-assay indicated that its activity in the polymerase chain reaction was equivalent to that of commercial Pfu and its isoelectric point was found to be between 6.85 and 7.35. These results will be useful for further studies on Pfu and its wide application in the future.

  20. Effects of administration of four different doses of Escherichia coli phytase on femur properties of 16-week-old turkeys.

    Science.gov (United States)

    Tatara, Marcin R; Krupski, Witold; Kozłowski, Krzysztof; Drażbo, Aleksandra; Jankowski, Jan

    2015-03-18

    The enzyme phytase is able to initiate the release of phosphates from phytic acid, making it available for absorption within gastrointestinal tract and following utilization. The aim of the study was to determine effects of Escherichia coli phytase administration on morphological, densitometric and mechanical properties of femur in 16-week-old turkeys. One-day-old BUT Big-6 males were assigned to six weight-matched groups. Turkeys receiving diet with standard phosphorus (P) and calcium (Ca) content belonged to the positive control group (Group I). Negative control group (Group II) consisted of birds fed diet with lowered P and Ca content. Turkeys belonging to the remaining groups have received the same diet as group II but enriched with graded levels of Escherichia coli phytase: 125 (Group III), 250 (Group IV), 500 (Group V) and 1000 (Group VI) FTU/kg. At the age of 112 days of life, the final body weights were determined and the turkeys were sacrificed to obtain right femur for analyses. Geometric and densitometric properties of femur were determined using quantitative computed tomography (QCT) technique, while mechanical evaluation was performed in three-point bending test. Phytase administration increased cross-sectional area, second moment of inertia, mean relative wall thickness, cortical bone mineral density and maximum elastic strength decreasing cortical bone area of femur (P phytase administration on geometric, densitometric and mechanical properties of femur were observed in turkeys receiving 125 and 250 FTU/kg of the diet. Phytase administration at the dosages of 500 and 1000 FTU/kg of the diet improved the final body weight in turkeys. The results obtained in this study indicate a possible practical application of Escherichia coli phytase in turkey feeding to improve skeletal system properties and function.

  1. Successful recombinant production of Allochromatium vinosum cytochrome c' requires coexpression of cmm genes in heme-rich Escherichia coli JCB712

    International Nuclear Information System (INIS)

    Evers, Toon H.; Merkx, Maarten

    2005-01-01

    Cytochrome c' from the purple photosynthetic bacterium Allochromatium vinosum (CCP) displays a unique, reversible dimer-to-monomer transition upon binding of NO, CO, and CN - . This small, four helix bundle protein represents an attractive model for the study of other heme protein biosensors, provided a recombinant expression system is available. Here we report the development of an efficient expression system for CCP that makes use of a maltose binding protein fusion strategy to enhance periplasmic expression and allow easy purification by affinity chromatography. Coexpression of cytochrome c maturase genes and the use of a heme-rich Escherichia coli strain were found to be necessary to obtain reasonable yields of cytochrome c'. Characterization using circular dichroism, UV-vis spectroscopy, and size-exclusion chromatography confirms the native-like properties of the recombinant protein, including its ligand-induced monomerization

  2. Expression, purification, and refolding of active recombinant human E-selectin lectin and EGF domains in Escherichia coli.

    Science.gov (United States)

    Kawano, Susumu; Iyaguchi, Daisuke; Okada, Chiaki; Sasaki, Yusuke; Toyota, Eiko

    2013-06-01

    Attempts to obtain active E-selectin from Escherichia coli (E. coli) have not yet been successful. In this study, we succeeded in expressing the recombinant lectin and epidermal growth factor domain fragments of human E-selectin (rh-ESLE) in E. coli on a large-scale. The rh-ESLE protein was expressed as an inactive form in the inclusion bodies. The inactive form of rh-ESLE was denatured and solubilized by 6 M guanidine hydrochloride and then purified by Ni(2+) affinity chromatography under denaturing conditions. Denatured rh-ESLE was then refolded by a rapid-dilution method using a large amount of refolding buffer, which contained arginine and cysteine/cystine. The refolded rh-ESLE showed binding affinity for sLe(X) (K(d) = 321 nM, B(max) = 1.9 pmol/μg protein). This result suggests that the refolded rh-ESLE recovered its native and functional structure.

  3. Cloning, purification, crystallization and preliminary X-ray diffraction studies of Escherichia coli PapD-like protein (EcpD)

    International Nuclear Information System (INIS)

    Pandey, Nishant Kumar; Pal, Ravi Kant; Kashyap, Maruthi; Bhavesh, Neel Sarovar

    2012-01-01

    The Escherichia coli PapD-like protein (EcpD), from uropathogenic Escherichia coli (UPEC), which is a periplasmic chaperon of Yad fimbriae was cloned, overexpressed, purified and crystallized. The crystals obtained diffracted X-rays to 1.67 Å resolution and belonged to space group C222 1 . Many Gram-negative bacteria are characterized by hair-like proteinaceous appendages on their surface known as fimbriae. In uropathogenic strains of Escherichia coli, fimbriae mediate attachment by binding to receptors on the host cell, often contributing to virulence and disease. E. coli PapD-like protein (EcpD) is a periplasmic chaperone that plays an important role in the proper folding and guiding of Yad fimbrial proteins to the outer membrane usher protein in a process known as pilus biogenesis. EcpD is essential for pilus biogenesis in uropathogenic E. coli and plays an important role in virulence. In the present study, EcpD was cloned, overexpressed, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to 1.67 Å resolution and belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 100.3, b = 127.6, c = 45.9 Å. There was a single molecule in the asymmetric unit and the corresponding Matthews coefficient was calculated to be 3.02 Å 3 Da −1 , with 59% solvent content. Initial phases were determined by molecular replacement

  4. Cloning, over-expression and purification of Pseudomonas aeruginosa murC encoding uridine diphosphate N-acetylmuramate: L-alanine ligase.

    Science.gov (United States)

    El Zoeiby, A; Sanschagrin, F; Lamoureux, J; Darveau, A; Levesque, R C

    2000-02-15

    We cloned and sequenced the murC gene from Pseudomonas aeruginosa encoding a protein of 53 kDa. Multiple alignments with 20 MurC peptide sequences from different bacteria confirmed the presence of highly conserved regions having sequence identities ranging from 22-97% including conserved motifs for ATP-binding and the active site of the enzyme. Genetic complementation was done in Escherichia coli (murCts) suppressing the lethal phenotype. The murC gene was subcloned into the expression vector pET30a and overexpressed in E. coli BL21(lambdaDE3). Three PCR cloning strategies were used to obtain the three recombinant plasmids for expression of the native MurC, MurC His-tagged at N-terminal and at C-terminal, respectively. MurC His-tagged at C-terminal was chosen for large scale production and protein purification in the soluble form. The purification was done in a single chromatographic step on an affinity nickel column and obtained in mg quantities at 95% homogeneity. MurC protein was used to produce monoclonal antibodies for epitope mapping and for assay development in high throughput screenings. Detailed studies of MurC and other genes of the bacterial cell cycle will provide the reagents and strain constructs for high throughput screening and for design of novel antibacterials.

  5. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommi A.; Tanner, John J., E-mail: tannerjj@missouri.edu [Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  6. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.

    Science.gov (United States)

    Dror-Ehre, A; Mamane, H; Belenkova, T; Markovich, G; Adin, A

    2009-11-15

    Silver nanoparticles exhibit antibacterial properties via bacterial inactivation and growth inhibition. The mechanism is not yet completely understood. This work was aimed at elucidating the effect of silver nanoparticles on inactivation of Escherichia coli, by studying particle-particle interactions in aqueous suspensions. Stable, molecularly capped, positively or negatively charged silver nanoparticles were mixed at 1 to 60microgmL(-1) with suspended E. coli cells to examine their effect on inactivation of the bacteria. Gold nanoparticles with the same surfactant were used as a control, being of similar size but made up of a presumably inert metal. Log reduction of 5log(10) and complete inactivation were obtained with the silver nanoparticles while the gold nanoparticles did not show any inactivation ability. The effect of molecularly capped nanoparticles on E. coli survival was dependent on particle number. Log reduction of E. coli was associated with the ratio between the number of nanoparticles and the initial bacterial cell count. Electrostatic attraction or repulsion mechanisms in silver nanoparticle-E. coli cell interactions did not contribute to the inactivation process.

  7. Comparison of five procedures for the purification of insoluble elastin.

    NARCIS (Netherlands)

    Daamen, W.F.; Hafmans, T.G.M.; Veerkamp, J.H.; Kuppevelt, A.H.M.S.M. van

    2001-01-01

    Elastin is an insoluble, highly cross-linked protein, providing elasticity to organs like lung. aorta, and ligaments. Despite its remarkable mechanical properties. elastin has found little use as a biomaterial. Purification of intact elastin from elastic fibres presents a major challenge, among

  8. Genomic Comparative Study of Bovine Mastitis Escherichia coli.

    Science.gov (United States)

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes.

  9. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Sygmund Christoph

    2011-12-01

    Full Text Available Abstract Background FAD dependent glucose dehydrogenase (GDH currently raises enormous interest in the field of glucose biosensors. Due to its superior properties such as high turnover rate, substrate specificity and oxygen independence, GDH makes its way into glucose biosensing. The recently discovered GDH from the ascomycete Glomerella cingulata is a novel candidate for such an electrochemical application, but also of interest to study the plant-pathogen interaction of a family of wide-spread, crop destroying fungi. Heterologous expression is a necessity to facilitate the production of GDH for biotechnological applications and to study its physiological role in the outbreak of anthracnose caused by Glomerella (anamorph Colletotrichum spp. Results Heterologous expression of active G. cingulata GDH has been achieved in both Escherichia coli and Pichia pastoris, however, the expressed volumetric activity was about 4800-fold higher in P. pastoris. Expression in E. coli resulted mainly in the formation of inclusion bodies and only after co-expression with molecular chaperones enzymatic activity was detected. The fed-batch cultivation of a P. pastoris transformant resulted in an expression of 48,000 U L-1 of GDH activity (57 mg L-1. Recombinant GDH was purified by a two-step purification procedure with a yield of 71%. Comparative characterization of molecular and catalytic properties shows identical features for the GDH expressed in P. pastoris and the wild-type enzyme from its natural fungal source. Conclusions The heterologous expression of active GDH was greatly favoured in the eukaryotic host. The efficient expression in P. pastoris facilitates the production of genetically engineered GDH variants for electrochemical-, physiological- and structural studies.

  10. Recombinant cholera toxin B subunit in Escherichia coli: high-level secretion, purification, and characterization

    NARCIS (Netherlands)

    Slos, P.; Speck, D.; Accart, N.; Kolbe, H.V.; Schubnel, D.; Bouchon, B.; Bischoff, Rainer; Kieny, M.P.

    1994-01-01

    The gene coding for cholera toxin subunit B (CT-B) was fused to a modified ompA signal sequence and subsequently cloned into a high expression vector based on the regulatory signals of the arabinose operon of Salmonella typhimurium. Upon induction of gene expression in Escherichia coli, a product of

  11. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate.

    Directory of Open Access Journals (Sweden)

    Eva Weber

    Full Text Available Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO(3 (- as the first ionic interaction partner, but not necessarily for Ca(2+. The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals.

  12. In vivo biotinylation of recombinant beta-glucosidase enables simultaneous purification and immobilization on streptavidin coated magnetic particles

    DEFF Research Database (Denmark)

    Alftrén, Johan; Ottow, Kim Ekelund; Hobley, Timothy John

    2013-01-01

    Beta-glucosidase from Bacillus licheniformis was in vivo biotinylated in Escherichia coli and subsequently immobilized directly from cell lysate on streptavidin coated magnetic particles. In vivo biotinylation was mediated by fusing the Biotin Acceptor Peptide to the C-terminal of beta......-glucosidase and co-expressing the BirA biotin ligase. The approach enabled simultaneous purification and immobilization of the enzyme from crude cell lysate on magnetic particles because of the high affinity and strong interaction between biotin and streptavidin. After immobilization of the biotinylated beta...

  13. Optimization of the purification methods for recovery of recombinant growth hormone from Paralichthys olivaceus

    Science.gov (United States)

    Zang, Xiaonan; Zhang, Xuecheng; Mu, Xiaosheng; Liu, Bin

    2013-03-01

    This study aimed to optimize the purification of recombinant growth hormone from Paralichthys olivaceus. Recombinant flounder growth hormone (r-fGH) was expressed by Escherichia coli in form of inclusion body or as soluble protein under different inducing conditions. The inclusion body was renatured using two recovery methods, i.e., dilution and dialysis. Thereafter, the refolded protein was purified by Glutathione Sepharase 4B affinity chromatography and r-fGH was obtained by cleavage of thrombin. For soluble products, r-fGH was directly purified from the lysates by Glutathione Sepharase 4B affinity chromatography. ELISA-receptor assay demonstrated that despite its low receptor binding activity, the r-fGH purified from refolded inclusion body had a higher yield (2.605 mg L-1) than that from soluble protein (1.964 mg L-1). Of the tested recovery methods, addition of renaturing buffer (pH 8.5) into denatured inclusion body yielded the best recovery rate (17.9%). This work provided an optimized purification method for high recovery of r-fGH, thus contributing to the application of r-fGH to aquaculture.

  14. Effect of Different Purification Techniques on the Characteristics of Heteropolysaccharide-Protein Biopolymer from Durian (Durio zibethinus Seed

    Directory of Open Access Journals (Sweden)

    Hamed Mirhosseini

    2012-09-01

    Full Text Available Natural biopolymers from plant sources contain many impurities (e.g., fat, protein, fiber, natural pigment and endogenous enzymes, therefore, an efficient purification process is recommended to minimize these impurities and consequently improve the functional properties of the biopolymer. The main objective of the present study was to investigate the effect of different purification techniques on the yield, protein content, solubility, water- and oil-holding capacity of a heteropolysaccharide-protein biopolymer obtained from durian seed. Four different purification methods using different chemicals and solvents (i.e., A (isopropanol and ethanol, B (isopropanol and acetone, C (saturated barium hydroxide, and D (Fehling solution] to liberate the purified biopolymer from its crude form were compared. In most cases, the purification process significantly (p < 0.05 improved the physicochemical properties of heteropolysaccharide-protein biopolymer from durian fruit seed. The present work showed that the precipitation using isopropanol and acetone (Method B resulted in the highest purification yield among all the tested purification techniques. The precipitation using saturated barium hydroxide (Method C led to induce the highest solubility and relatively high capacity of water absorption. The current study reveals that the precipitation using Fehling solution (Method D most efficiently eliminates the protein fraction, thus providing more pure biopolymer suitable for biological applications.

  15. Effect of charcoal on water purification

    OpenAIRE

    Suzuki, Hirotaka; Kawahigashi, Tatsuo

    2014-01-01

    [Abstract] A natural basin system purifies water through self-purification, but the water pollution load of a river might exceed its self-purification capacity. Charcoal, which is used for other uses aside from heating, such as air purification, was evaluated experimentally for water quality purification. The experiment described herein is based on simple water quality measurements. Some experimentally obtained results are discussed.

  16. Purification of β-acetylglucosaminase and β-galactosidase from ram testis

    Science.gov (United States)

    Caygill, J. C.; Roston, Christine P. J.; Jevons, F. R.

    1966-01-01

    1. The presence of β-galactosidase (EC 3.2.1.23) in an acetic acid extract of ram testis is reported. Some properties of the crude enzyme preparation were studied. 2. The purification of β-acetylglucosaminase (EC 3.2.1.30) and of β-galactosidase from the ram-testis extract by ammonium sulphate precipitation and chromatography on a CM-cellulose column is described. 3. The final purifications of the separated enzymes achieved were for the β-acetylglucosaminase 35 times and for the β-galactosidase 99 times. 4. The possibility of using DEAE-cellulose and Sephadex G-200 to purify the enzymes was investigated. PMID:5949569

  17. High-level expression, purification, crystallization and preliminary X-ray crystallographic studies of the receptor-binding domain of botulinum neurotoxin serotype D

    International Nuclear Information System (INIS)

    Zhang, Yanfeng; Gao, Xiaoli; Qin, Ling; Buchko, Garry W.; Robinson, Howard; Varnum, Susan M.

    2010-01-01

    The receptor-binding domain of botulinum neurotoxin serotype D was expressed in E. coli using a codon-optimized cDNA. The highly purified protein crystallized in space group P2 1 2 1 2 1 , with unit-cell parameters a = 60.8, b = 89.7, c = 93.9 Å, and the crystals diffracted to 1.65 Å resolution. Botulinum neurotoxins (BoNTs) are highly toxic proteins for humans and animals that are responsible for the deadly neuroparalytic disease botulism. Here, details of the expression and purification of the receptor-binding domain (HCR) of BoNT/D in Escherichia coli are presented. Using a codon-optimized cDNA, BoNT/D-HCR was expressed at a high level (150–200 mg per litre of culture) in the soluble fraction. Following a three-step purification protocol, very pure (>98%) BoNT/D-HCR was obtained. The recombinant BoNT/D-HCR was crystallized and the crystals diffracted to 1.65 Å resolution. The crystals belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 60.8, b = 89.7, c = 93.9 Å. Preliminary crystallographic data analysis revealed the presence of one molecule in the asymmetric unit

  18. Modular microfluidics for point-of-care protein purifications.

    Science.gov (United States)

    Millet, L J; Lucheon, J D; Standaert, R F; Retterer, S T; Doktycz, M J

    2015-04-21

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.

  19. Mycobacterium tuberculosis HspX/EsxS Fusion Protein: Gene Cloning, Protein Expression, and Purification in Escherichia coli.

    Science.gov (United States)

    Khademi, Farzad; Yousefi-Avarvand, Arshid; Derakhshan, Mohammad; Meshkat, Zahra; Tafaghodi, Mohsen; Ghazvini, Kiarash; Aryan, Ehsan; Sankian, Mojtaba

    2017-10-01

    The purpose of this study was to clone, express, and purify a novel multidomain fusion protein of Micobacterium tuberculosis (Mtb) in a prokaryotic system. An hspX/esxS gene construct was synthesized and ligated into a pGH plasmid, E. coli TOP10 cells were transformed, and the vector was purified. The vector containing the construct and pET-21b (+) plasmid were digested with the same enzymes and the construct was ligated into pET-21b (+). The accuracy of cloning was confirmed by colony PCR and sequencing. E. coli BL21 cells were transformed with the pET-21b (+)/hspX/esxS expression vector and protein expression was evaluated. Finally, the expressed fusion protein was purified on a Ni-IDA column and verified by SDS-PAGE and western blotting. The hspX/esxS gene construct was inserted into pET-21b (+) and recombinant protein expression was induced with IPTG in E. coli BL21 cells. Various concentrations of IPTG were tested to determine the optimum concentration for expression induction. The recombinant protein was expressed in insoluble inclusion bodies. Three molar guanidine HCl was used to solubilize the insoluble protein. An HspX/EsxS Mtb fusion protein was expressed in E. coli and the recombinant protein was purified. After immunological analysis, the HspX/EsxS fusion protein might be an anti-tuberculosis vaccine candidate in future clinical trial studies.

  20. Colonization, resistance to bile, and virulence properties of Escherichia coli strains: Unusual characteristics associated with biliary tract diseases.

    Science.gov (United States)

    Razaghi, Maryam; Tajeddin, Elahe; Ganji, Leila; Alebouyeh, Masoud; Alizadeh, Amir Houshang Mohammad; Sadeghi, Amir; Zali, Mohammad Reza

    2017-10-01

    Escherichia coli is the species that is most frequently isolated from bile of patients with biliary tract diseases. This study was aimed to investigate any association between resistance and virulence properties of these isolates with occurrence of the diseases. A total of 102 bile samples were obtained from patients subjected to endoscopic retrograde cholangiopancreatography for different biliary diseases. Clinical data were collected and culture of the bile samples was done on selective media. Resistance of characterized Escherichia coli isolates to deoxycholate sodium (0-7%) and nineteen antibiotics was determined and PCR using 16 pairs of primers targeting stx1, stx2, exhA, eae, bfp, agg, pcvd432, lt, st, ipaH, pic, pet, ast, set, sen, and cdtB genes was done. Our results showed a statistically significant association between E. coli colonization and existence of common bile duct and gallbladder stones (p value 0.028). Out of the 22 E. coli strains (22/102) multidrug resistance phenotype was present in 95.45%. None of the strains belonged to common E. coli pathotypes. However, bfp + EhxA-hly, bfp + astA, bfp + EhxA-hly + pic, and EhxA-hly + pic + astA, bfp, and astA genotypes were detected in these strains. bfp (7/22, 31.8%) and astA (5/22, 22.7%) were among most frequent virulence factors in these strains. Results of this study showed significant association between colonization of E. coli and choledocholithiasis. Unusual existence of virulence gene combinations in these strains and their resistance to DOC and multiple classes of antibiotics could be considered as possible causes of their persistence in this harsh microenvironment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Purification of antibody against Ara h 2 by a homemade immunoaffinity chromatography column.

    Science.gov (United States)

    Wu, Zhihua; Li, Kun; Zhan, Shaode; Tong, Ping; Li, Xin; Yang, Anshu; Chen, Hongbing

    2017-09-14

    Antibodies are used extensively in numerous applications both in vivo and in vitro. To purify anti-Ara h 2 polyclonal antibody, a homemade immunoaffinity chromatography (IAC) column method was established. The properties of homemade column were compared with those of the mAb affinity protein G (MPG) agarose high flow, a commercially available column successfully used in capturing polyclonal antibodies. During antibody purification from rabbits' antiserum against Ara h 2, the column capacity, recovery, and purification factor were characterized for IAC and MPG. The homemade IAC could separate the corresponding antibody with higher specificity and lower cost but with lower recovery and column capacity than those of MPG. Thus, the homemade IAC is a specific, inexpensive, and suitable method that can be used for various laboratory purifications.

  2. The bubble method of water purification

    Science.gov (United States)

    Smirnov, B. M.; Babaeva, N. Yu.; Naidis, G. V.; Panov, V. A.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2018-02-01

    The processes of water purification from admixture molecules are analyzed. The purification rate is limited due to a low diffusion coefficient of the admixture molecules in water. At non-small concentrations of the admixture molecules, the water purication can proceed through association of molecules in condensed nanoparticles which fall on the bottom of the water volume. The rate of association may be increased in an external electric field, but in reality this cannot change significantly the rate of the purification process. The bubble method of water purification is considered, where air bubbles formed at the bottom of the water volume, transfer admixture molecules to the interface. This method allows one to clean small water volumes fast. This mechanism of water purification is realized experimentally and exhibits the promises of the bubble purification method.

  3. Statistical and Judgmental Criteria for Scale Purification

    DEFF Research Database (Denmark)

    Wieland, Andreas; Durach, Christian F.; Kembro, Joakim

    2017-01-01

    of scale purification, to critically analyze the current state of scale purification in supply chain management (SCM) research and to provide suggestions for advancing the scale-purification process. Design/methodology/approach A framework for making scale-purification decisions is developed and used...

  4. Rapid, large-scale purification and characterization of Ada protein (O sup 6 methylguanine-DNA methyltransferase) of E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Tano, K.; Bunick, G.J.; Uberbacher, E.C.; Mitra, S. (Oak Ridge National Laboratory, TN (USA)); Behnke, W.D. (Univ. of Cincinnati College of Medicine, OH (USA))

    1988-07-25

    The E. coli Ada protein (O{sup 6}-methylguanine-DNA methyltransferase) has been purified using a high-level expression vector with a yield of about 3 mg per liter of E. coli culture. The 39-kDa protein has an extinction coefficient (E{sup 280nm}{sub 1%}) of 5.3. Its isoelectric point of 7.1 is lower than that predicted from the amino acid content. The homogeneous Ada protein is fully active as a methyl acceptor from O{sup 6}-methylguanine in DNA. Its reaction with O{sup 6}-methylguanine in a synthetic DNA has a second-order rate constant of 1.1 {times} 10{sup 9} M{sup {minus}1} min{sup {minus}1} at 0{degree}C. Both the native form and the protein methylated at Cys-69 are monomeric. The CD spectrum suggests a low {alpha}-helical content and the radius of gyration of 23 {angstrom} indicates a compact, globular shape. The middle region of the protein is sensitive to a variety of proteases, including an endogenous activity in E. coli, suggesting that the protein is composed of N-terminal and C-terminal domains connected by a hinge region. E. coli B has a higher level of this protease than does K12.

  5. Uji Aktivitas Antibakteri Jamur Endofit Akar Bakau Avicennia Marina Terhadap Bakteri Staphylococcus Aureus Dan Escherichia Coli

    OpenAIRE

    Liwang, Firdy

    2014-01-01

    : In this his study we used endophytic fungi isolated from the roots of mangrove Avicennia marina growing on tidal zone around Tasik Ria Minahasa, North Sulawesi. The fungi were isolated and then tested the antibacterial effect against Staphylococcus aureus and Escherichia coli. Potato Dextrose agar was used in order to isolate the target fungi. The fungi began to grow on the second day after inoculation. Differentiation and purification processes to isolate the fungus obtained by observing f...

  6. FTIR nanobiosensors for Escherichia coli detection

    Directory of Open Access Journals (Sweden)

    Stefania Mura

    2012-07-01

    Full Text Available Infections due to enterohaemorrhagic E. coli (Escherichia coli have a low incidence but can have severe and sometimes fatal health consequences, and thus represent some of the most serious diseases due to the contamination of water and food. New, fast and simple devices that monitor these pathogens are necessary to improve the safety of our food supply chain. In this work we report on mesoporous titania thin-film substrates as sensors to detect E. coli O157:H7. Titania films treated with APTES ((3-aminopropyltriethoxysilane and GA (glutaraldehyde were functionalized with specific antibodies and the absorption properties monitored. The film-based biosensors showed a detection limit for E. coli of 1 × 102 CFU/mL, constituting a simple and selective method for the effective screening of water samples.

  7. Optimization of the recombinant production and purification of a self-assembling peptide in Escherichia coli

    NARCIS (Netherlands)

    Rad-Malekshahi, Mazda; Flement, Matthias; Hennink, Wim E.; Mastrobattista, Enrico

    2014-01-01

    Background: Amphiphilic peptides are important building blocks to generate nanostructured biomaterials for drug delivery and tissue engineering applications. We have shown that the self-assembling peptide SA2 (Ac-AAVVLLLWEE) can be recombinantly produced in E. coli when fused to the small

  8. Purification, crystallization and preliminary X-ray analysis of isocitrate dehydrogenase kinase/phosphatase from Escherichia coli

    International Nuclear Information System (INIS)

    Zheng, Jimin; Lee, Daniel C.; Jia, Zongchao

    2009-01-01

    Isocitrate dehydrogenase kinase/phosphatase has been crystallized in three different crystal forms. Data were collected from each crystal form for structure determination. The Escherichia coli aceK gene encodes isocitrate dehydrogenase kinase/phosphatase (EC 2.7.11.5), a bifunctional protein that phosphorylates and dephosphorylates isocitrate dehydrogenase (IDH), resulting in its inactivation and activation, respectively. This reversible (de)phosphorylation directs isocitrate, an intermediate of the citric acid cycle, to either go through the full cycle or to enter the glyoxylate bypass. In the present study, the AceK protein from E. coli has been purified and crystallized. Three crystal forms were obtained from very similar crystallization conditions. The crystals belong to space groups P4 1 2 1 2, P3 2 21 and P2 1 2 1 2 1 and diffracted X-rays to resolutions of 2.9, 3.0 and 2.7 Å, respectively

  9. Functional Properties of Mouse Chitotriosidase Expressed in the Periplasmic Space of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Masahiro Kimura

    Full Text Available Chitotriosidase (Chit1 is an enzyme associated with various diseases, including Gaucher disease, chronic obstructive pulmonary disease, Alzheimer disease and cystic fibrosis. In this study, we first expressed mouse mature Chit1 fused with V5 and (His6 tags at the C-terminus (Chit1-V5-His in the cytoplasm of Escherichia coli and found that most of the expressed protein was insoluble. In contrast, Chit1 tagged with Protein A at the N-terminus and V5-His at the C-terminus, was expressed in the periplasmic space of E. coli as a soluble protein and successfully purified. We evaluated the chitinolytic properties of the recombinant enzyme using 4-nitrophenyl N,N'-diacetyl-β-D-chitobioside [4NP-chitobioside, 4NP-(GlcNAc2] and found that its activity was comparable to CHO cells-expressed Chit1-V5-His. Optimal conditions for the E. coli-produced Chit1 were pH ~5.0 at 50°C. Chit1 was stable after 1 h incubation at pH 5.0~11.0 on ice and its chitinolytic activity was lost at pH 2.0, although the affinity to chitin remained unchanged. Chit1 efficiently cleaved crystalline and colloidal chitin substrates as well as oligomers of N-acetyl-D-glucosamine (GlcNAc releasing primarily (GlcNAc2 fragments at pH 5.0. On the other hand, (GlcNAc3 was relatively resistant to digestion by Chit1. The degradation of 4NP-(GlcNAc2 and (GlcNAc3 was less evident at pH 7.0~8.0, while (GlcNAc2 production from colloidal chitin and (GlcNAc6 at these pH conditions remained strong at the neutral conditions. Our results indicate that Chit1 degrades chitin substrates under physiological conditions and suggest its important pathophysiological roles in vivo.

  10. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  11. Effect of self purification on the structural optical and electrical properties of copper doped oxidized Zn films

    International Nuclear Information System (INIS)

    Koshy, Obey; Abdul Khadar, M.

    2015-01-01

    The effect of self purification mechanism is studied on oxidized Cu–Zn thin films. Oxidized Cu–Zn thin films were prepared by thermal evaporation on glass substrates. XRD studies indicate that the oxidized Cu–Zn thin films are of hexagonal wurtzite structure. AFM images shows that with increase in copper wt. percent the nanoparticle morphology of oxidized Zn film turned to one dimensional nanorod morphology. XPS spectra of the oxidized Cu–Zn thin films shows the oxidized state of zinc and copper. The PL spectra of oxidized Zn film showed a strong and narrow near band edge emission at 380 nm whereas in the case of oxidized Cu–Zn thin films the emission showed peak near 410 nm corresponding to peak related to copper. With increase in copper content, the intensity of the defect emission decreased due to the self purification mechanism in nanomaterials. In addition the resistivity of doped films increased due to the self purification mechanism in nanomaterials. - Highlights: • Copper doping in ZnO resulted in the increase in blue emission due to defect levels formed. • The intensity of the luminescence peak of the doped film sample decreased and resistivity increased due to the self purification mechanism in nanomaterials.

  12. The complex between SOS3 and SOS2 regulatory domain from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Barrena, María José; Moreno-Pérez, Sandra; Angulo, Iván; Martínez-Ripoll, Martín; Albert, Armando, E-mail: xalbert@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas, Serrano 119, E-28006 Madrid (Spain)

    2007-07-01

    Recombinant SOS3 and SOS2 regulatory domain from A. thaliana have been coexpressed in E. coli, purified and crystallized by the hanging-drop vapour-diffusion method. An X-ray data set has been collected at 2.0 Å resolution. The salt-tolerance genes SOS3 (salt overly sensitive 3) and SOS2 (salt overly sensitive 2) regulatory domain of Arabidopsis thaliana were cloned into a polycistronic plasmid and the protein complex was expressed in Escherichia coli, allowing purification to homogeneity in three chromatographic steps. Crystals were grown using vapour-diffusion techniques. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 44.14, b = 57.39, c = 141.90 Å.

  13. Pathogenic Escherichia coli and food handlers in luxury hotels in Nairobi, Kenya.

    Science.gov (United States)

    Onyango, Abel O; Kenya, Eucharia U; Mbithi, John J N; Ng'ayo, Musa O

    2009-11-01

    The epidemiology and virulence properties of pathogenic Escherichia coli among food handlers in tourist destination hotels in Kenya are largely uncharacterized. This cross-sectional study among consenting 885 food handlers working in nine luxurious tourist hotels in Nairobi, Kenya determined the epidemiology, virulence properties, antibiotics susceptibility profiles and conjugation abilities of pathogenic Escherichia coli. Pathogenic Escherichia coli was detected among 39 (4.4%) subjects, including 1.8% enteroaggregative Escherichia coli (EAEC) harboring aggR genes, 1.2% enterotoxigenic Escherichia coli (ETEC) expressing both LT and STp toxins, 1.1% enteropathogenic Escherichia coli (EPEC) and 0.2% Shiga-like Escherichia coli (EHEC) both harboring eaeA and stx2 genes respectively. All the pathotypes had increased surface hydrophobicity. Using multivariate analyses, food handlers with loose stools were more likely to be infected with pathogenic Escherichia coli. Majority 53.8% of the pathotypes were resistant to tetracycline with 40.2% being multi-drug resistant. About 85.7% pathotypes trans-conjugated with Escherichia coli K12 F(-) NA(r) LA. The carriage of multi-drug resistant, toxin expressing pathogenic Escherichia coli by this population is of public health concern because exposure to low doses can result in infection. Screening food handlers and implementing public awareness programs is recommended as an intervention to control transmission of enteric pathogens.

  14. Comparing Russian and Finnish standards of water purification

    OpenAIRE

    Maria, Pupkova

    2012-01-01

    The subject of this thesis is water purification. The first aim of this thesis is to consider different ways of water purification. The second aim is to compare Finnish and Russian standards of water purification. The third one is to show water purification methods on the pattern of Mikkeli water purification plan. Water purification methods of water intended for human consumption will be described.Combined tables will be done according to the quality requirement of drinking water of both,...

  15. Purification, crystallization and preliminary X-ray structure analysis of the laccase from Ganoderma lucidum

    International Nuclear Information System (INIS)

    Lyashenko, Andrey V.; Belova, Oksana; Gabdulkhakov, Azat G.; Lashkov, Alexander A.; Lisov, Alexandr V.; Leontievsky, Alexey A.; Mikhailov, Al’bert M.

    2011-01-01

    The purification, crystallization and preliminary X-ray structure analysis of the laccase from G. lucidum are reported. The ligninolytic enzymes of the basidiomycetes play a key role in the global carbon cycle. A characteristic property of these enzymes is their broad substrate specificity, which has led to their use in various biotechnologies, thus stimulating research into the three-dimensional structures of ligninolytic enzymes. This paper presents the purification, crystallization and preliminary X-ray analysis of the laccase from the ligninolytic basidiomycete Ganoderma lucidum

  16. [Expression, purification and immunogenicity of human papillomavirus type 11 virus-like particles from Escherichia coli].

    Science.gov (United States)

    Yan, Chunyan; Li, Shaowei; Wang, Jin; Wei, Minxi; Huang, Bo; Zhuang, Yudi; Li, Zhongyi; Pan, Huirong; Zhang, Jun; Xia, Ningshao

    2009-11-01

    To produce human papillomavirus type 11 virus-like particles (HPV11 VLPs) from Escherichia coli and to investigate its immunogenicity and type cross neutralization nature. We expressed the major capsid protein of HPV11 (HPV11-L1) in Escherichia coli ER2566 in non fusion fashion and purified by amino sulfate precipitation, ion-exchange chromatography and hydrophobic interaction chromatography, sequentially. Then we removed the reductant DTT to have the purified HPV11-L1 self-assemble into VLPs in vitro. We investigated the morphology of these VLPs with dynamic light scattering and transmission electron microscopy. We assayed the immunogenicity of the resultant HPV11 VLPs by vaccinations on mice and evaluated by HPV6/11/16/18 pseudovirion neutralization cell models. We expressed HPV11 L1 in Escherichia coli with two forms, soluble and inclusion body. The soluble HPV11 L1 with over 95% purity can self assemble to VLPs in high efficiency. Morphologically, these VLPs were globular, homogeneous and with a diameter of - 50 nm, which is quite similar with native HPV11 virions. The half effective dosage (ED50) of HPV11 VLPs is 0.031 microg, and the maximum titer of neutralizing antibody elicited is averaged to 10(6). The cross neutralization activity (against HPV6/16/18) of the anti-HPV11 serum was found to have exact correlation to the inter-type homology in amino acid alignment. We can provide HPV11 VLPs with highly immunogenicity from prokaryote expression system, which may pave a new way for research and development of prophylactic vaccine for HPV11.

  17. Crystallization and preliminary diffraction analysis of Wzi, a member of the capsule export and assembly pathway in Escherichia coli

    International Nuclear Information System (INIS)

    Bushell, Simon R.; Lou, Hubing; Wallat, Gregor D.; Beis, Konstantinos; Whitfield, Chris; Naismith, James H.

    2010-01-01

    Wzi is a membrane protein from E. coli thought to be involved in the attachment of capsular polysaccharides to the bacterial surface. This reports describes recombinant Wzi’s purification, crystallization and the results of initial diffraction studies. External polysaccharide capsules provide a physical barrier that is employed by many species of bacteria for the purposes of host evasion and persistence. Wzi is a 53 kDa outer membrane β-barrel protein that is thought to play a role in the attachment of group 1 capsular polysaccharides to the cell surface. The purification and crystallization of an Escherichia coli homologue of Wzi is reported and diffraction data from native and selenomethionine-incorporated protein crystals are presented. Crystals of C-terminally His 6 -tagged Wzi diffracted to 2.8 Å resolution. Data processing showed that the crystals belonged to the orthorhombic space group C222, with unit-cell parameters a = 128.8, b = 152.8, c = 94.4 Å, α = β = γ = 90°. A His-tagged selenomethionine-containing variant of Wzi has also been crystallized in the same space group and diffraction data have been recorded to 3.8 Å resolution. Data processing shows that the variant crystal has similar unit-cell parameters to the native crystal

  18. In vivo phosphorylation of a peptide tag for protein purification.

    Science.gov (United States)

    Goux, Marine; Fateh, Amina; Defontaine, Alain; Cinier, Mathieu; Tellier, Charles

    2016-05-01

    To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag. The level of the co-expressed CKIIα was controlled by the arabinose promoter and optimal phosphorylation was obtained with 2 % (w/v) arabinose as inductor. The effectiveness of the phosphorylation system was demonstrated by electrophoretic mobility shift assay (NUT-PAGE) and staining with a specific phosphoprotein-staining gel. The resulting phosphorylated tag was also used to purify the phosphoprotein by immobilized metal affinity chromatography, which relies on the specific interaction of phosphate moieties with Fe(III). The use of a single tag for both the purification and protein array anchoring provides a simple and straightforward system for protein analysis.

  19. Rapid purification of recombinant histones.

    Science.gov (United States)

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  20. Purification of a lectin from Eugenia uniflora L. seeds and its potential antibacterial activity.

    Science.gov (United States)

    Oliveira, M D L; Andrade, C A S; Santos-Magalhães, N S; Coelho, L C B B; Teixeira, J A; Carneiro-da-Cunha, M G; Correia, M T S

    2008-03-01

    The aim of this work was to analyse the antimicrobial properties of a purified lectin from Eugenia uniflora L. seeds. The E. uniflora lectin (EuniSL) was isolated from the seed extract and purified by ion-exchange chromatography in DEAE-Sephadex with a purification factor of 11.68. The purified lectin showed a single band on denaturing electrophoresis, with a molecular mass of 67 kDa. EuniSL agglutinated rabbit and human erythrocytes with a higher specificity for rabbit erythrocytes. The haemagglutination was not inhibited by the tested carbohydrates but glycoproteins exerted a strong inhibitory action. The lectin proved to be thermo resistant with the highest stability at pH 6.5 and divalent ions did not affect its activity. EuniSL demonstrated a remarkable nonselective antibacterial activity. EuniSL strongly inhibited the growth of Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella sp. with a minimum inhibitory concentration (MIC) of 1.5 microg ml(-1), and moderately inhibited the growth of Bacillus subtilis, Streptococcus sp. and Escherichia coli with a MIC of 16.5 microg ml(-1). EuniSL was found to be effective against bacteria. The strong antibacterial activity of the studied lectin indicates a high potential for clinical microbiology and therapeutic applications.

  1. ANTIMICROBIAL PROPERTIES OF HYDROXYAPATITE COATINGS CONTAINING OF CHITOSAN AND SILVER ON TITANIUM SUBSTRATES IN RELATION TO MICROORGANISMS E.COLI ATCC 25922

    Directory of Open Access Journals (Sweden)

    Sukhodub LB

    2013-03-01

    Full Text Available In this work it was studied the antibacterial properties of coatings based on HA, with Chitosan and silver ions additions, produced by substrates termodeposition method from aqueous solutions with varying concentrations of Chitosan (0.025 and 0.1 g/l and silver (1 mg/l as the antimicrobial components as well as three-part cover, consisting of a film of Chitosan, HA and silver. Study on antibacterial properties of composite coatings on the pathogen E.coli ATCC 25922 was held by Spectrophotometric measurement and analysis of optical density of suspensions, containing samples. 3 series of measurements data were averaged. The results showed that the concentration of antimicrobial components have indicated a bacteriostatic effect of coatings on the culture of E. coli AS ATCC 25922 in physiological solution at a temperature of 37 °C. The most effective was the three-part cover consisting of a film of chitosan, HA and silver.

  2. Application of an E. coli signal sequence as a versatile inclusion body tag.

    Science.gov (United States)

    Jong, Wouter S P; Vikström, David; Houben, Diane; van den Berg van Saparoea, H Bart; de Gier, Jan-Willem; Luirink, Joen

    2017-03-21

    Heterologous protein production in Escherichia coli often suffers from bottlenecks such as proteolytic degradation, complex purification procedures and toxicity towards the expression host. Production of proteins in an insoluble form in inclusion bodies (IBs) can alleviate these problems. Unfortunately, the propensity of heterologous proteins to form IBs is variable and difficult to predict. Hence, fusing the target protein to an aggregation prone polypeptide or IB-tag is a useful strategy to produce difficult-to-express proteins in an insoluble form. When screening for signal sequences that mediate optimal targeting of heterologous proteins to the periplasmic space of E. coli, we observed that fusion to the 39 amino acid signal sequence of E. coli TorA (ssTorA) did not promote targeting but rather directed high-level expression of the human proteins hEGF, Pla2 and IL-3 in IBs. Further analysis revealed that ssTorA even mediated IB formation of the highly soluble endogenous E. coli proteins TrxA and MBP. The ssTorA also induced aggregation when fused to the C-terminus of target proteins and appeared functional as IB-tag in E. coli K-12 as well as B strains. An additive effect on IB-formation was observed upon fusion of multiple ssTorA sequences in tandem, provoking almost complete aggregation of TrxA and MBP. The ssTorA-moiety was successfully used to produce the intrinsically unstable hEGF and the toxic fusion partner SymE, demonstrating its applicability as an IB-tag for difficult-to-express and toxic proteins. We present proof-of-concept for the use of ssTorA as a small, versatile tag for robust E. coli-based expression of heterologous proteins in IBs.

  3. Tandem Affinity Purification Approach Coupled to Mass Spectrometry to Identify Post-translational Modifications of Histones Associated with Chromatin-Binding Proteins.

    Science.gov (United States)

    Beyer, Sophie; Robin, Philippe; Ait-Si-Ali, Slimane

    2017-01-01

    Protein purification by tandem affinity purification (TAP)-tag coupled to mass spectrometry analysis is usually used to reveal protein complex composition. Here we describe a TAP-tag purification of chromatin-bound proteins along with associated nucleosomes, which allow exhaustive identification of protein partners. Moreover, this method allows exhaustive identification of the post-translational modifications (PTMs) of the associated histones. Thus, in addition to partner characterization, this approach reveals the associated epigenetic landscape that can shed light on the function and properties of the studied chromatin-bound protein.

  4. Investigation of E. coli bacteria inactivation by photocatalytic activity of TiO2 coated expanded polystyrene foam

    Science.gov (United States)

    Varnagiris, S.; Sakalauskaite, S.; Tuckute, S.; Lelis, M.; Daugelavicius, R.; Milcius, D.

    2017-03-01

    Photocatalytic properties of anatase and other TiO2 polymorphs are widely researched and applied in practical application. In current study TiO2 films on the plasma pre-treated expanded polystyrene (EPS) foam were deposited using magnetron sputtering technique. Main properties of the films were characterised using combination of XRD, XPS and SEM techniques. Photocatalytic properties of the observed crystalline anatase phase were tested by investigating bleaching of the methylene blue (MB) aqueous solution and by testing Escherichia coli (E. coli) viability after incubation under UV-B irradiation. E. coli viability experiments indicated that there are two mechanisms of E. coli bacteria inactivation. UV irradiation alone causes rapid damage to the outer membrane of E. coli bacteria. The second mechanism of E. coli inactivation is invoked only with synergistic combination of TiO2 and UV. Acting as photocatalyst TiO2 generates active radicals who initiate the chain peroxidation of organic molecules and within 45 min reduce E. coli bacteria viability by nearly 90%.

  5. Purification of cress seed (Lepidium sativum) gum: Physicochemical characterization and functional properties

    DEFF Research Database (Denmark)

    Razmkhah, Somayeh; Mohammadifar, Mohammad Amin; Razavi, Seyed Mohammad Ali

    2016-01-01

    The aim of the present study was to investigate the effects of different purification methods (ethanol, isopropanol and ethanol-isopropanol) on the physicochemical and functional characteristics of cress seed gum. Sugar composition and molecular weight of the samples varied significantly. All the...

  6. A comprehensive review on biodiesel purification and upgrading

    Directory of Open Access Journals (Sweden)

    Hamed Bateni

    2017-09-01

    Full Text Available Serious environmental concerns regarding the use of fossil-based fuels have raised awareness regarding the necessity of alternative clean fuels and energy carriers. Biodiesel is considered a clean, biodegradable, and non-toxic diesel substitute produced via the transesterification of triglycerides with an alcohol in the presence of a proper catalyst. After initial separation of the by-product (glycerol, the crude biodiesel needs to be purified to meet the standard specifications prior to marketing. The presence of impurities in the biodiesel not only significantly affects its engine performance but also complicates its handling and storage. Therefore, biodiesel purification is an essential step prior to marketing. Biodiesel purification methods can be classified based on the nature of the process into equilibrium-based, affinity-based, membrane-based, reaction-based, and solid-liquid separation processes. The main adverse properties of biodiesel – namely moisture absorption, corrosiveness, and high viscosity – primarily arise from the presence of oxygen. To address these issues, several upgrading techniques have been proposed, among which catalytic (hydrodeoxygenation using conventional hydrotreating catalysts, supported metallic materials, and most recently transition metals in various forms appear promising. Nevertheless, catalyst deactivation (via coking and/or inadequacy of product yields necessitate further research. This paper provides a comprehensive overview on the techniques and methods used for biodiesel purification and upgrading.

  7. Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria

    NARCIS (Netherlands)

    Castonguay, MH; van der Schaaf, S; Koester, W; Krooneman, J; Harmsen, H; Landini, P; van der Meer, W.

    Laboratory strains of Escherichia coli do not show significant ability to attach to solid surfaces and to form biofilms. We compared the adhesion properties of the E. coli PHL565 laboratory strain to eight environmental E. coli isolates: only four isolates displayed adhesion properties to glass

  8. Recombinant allergen Lol p II: expression, purification and characterization.

    Science.gov (United States)

    Tamborini, E; Brandazza, A; De Lalla, C; Musco, G; Siccardi, A G; Arosio, P; Sidoli, A

    1995-05-01

    Pollen from perennial rye grass (Lolium perenne) is a major cause of type I allergies worldwide. It contains complex mixtures of proteins, among which Lol p II is a major allergen. Previously, we have reported the cloning and sequencing of Lol p II and its expression in fusion with the heavy chain of human ferritin as carrier polypeptide (Sidoli et al., 1993, J. biol. Chem. 268, 21819-21825). Here, we describe the expression, purification and characterization of a recombinant Lol p II overproduced as a non-fusion protein in the periplasm of E. coli. The recombinant allergen was expressed in high yields and was easily purified in milligram amounts. It competed with the natural Lol p II for binding to specific IgE, and it induced allergic responses in skin prick tests, indicating to be immunologically analogous to the natural protein. Biochemical analyses indicate that recombinant Lol p II is a highly stable and soluble monomeric molecule which behaves like a small globular protein.

  9. Cloning, expression, purification and characterization of tryptophan hydroxylase variants

    DEFF Research Database (Denmark)

    Boesen, Jane

    in the anion exchange, indicating that the protein still exists in different oligomer forms. This was also observed in the gel filtration. Variants of both hTPH1 and hTPH2 containing the regulatory domain or parts of it were constructed and tested for expression in Escherichia coli as well as solubility....... It was observed that changes in the amino acid sequence of the regulatory domain by point mutations or truncations in the N-terminal had a huge impact on the solubility of the protein and caused the protein to be insoluble. The regulatory domain of human TPH1 (rhTPH1), and two fusion proteins of rhTPH1 fused...... to the green fluorescent protein (GFP) in the C-terminal and the glutathione S-transferase (GST) in the N-terminal, respectively, were expressed in a soluble form. The purification trials of the variants containing the regulatory domain showed that a high salt concentration was necessary to stabilize...

  10. Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli

    DEFF Research Database (Denmark)

    Bommarius, B.; Jenssen, Håvard; Elliott, M.

    2010-01-01

    Cationic antimicrobial host defense peptides (HDPs) combat infection by directly killing a wide variety of microbes, and/or modulating host immunity. HDPs have great therapeutic potential against antibioticresistant bacteria, viruses and even parasites, but there are substantial roadblocks......, we describe (i) a method, using fusions to SUMO, for producing high yields of intact recombinant HDPs in bacteria without significant toxicity and (ii) a simplified 2-step purification method appropriate for industrial use. We have used this method to produce seven HDPs to date (IDR1, MX226, LL37......, CRAMP, HHC-10, E5 and E6). Using this technology, pilot-scale fermentation (10 L) was performed to produce large quantities of biologically active cationic peptides. Together, these data indicate that this new method represents a cost-effective means to enable commercial enterprises to produce HDPs...

  11. Detection of Escherichia Coli Bacteria in Wastewater by using Graphene as a Sensing Material

    Science.gov (United States)

    Wibowo, K. M.; Sahdan, M. Z.; Ramli, N. I.; Muslihati, A.; Rosni, N.; Tsen, V. H.; Saim, H.; Ahmad, S. A.; Sari, Y.; Mansor, Z.

    2018-04-01

    Graphene is a family of carbon bonded in hexagonal honeycomb crystalline structure that has many superior properties. It was very suitable to be applied on sensor application due to the superior properties on electrical, physical, and optical. Furthermore, graphene also provide a large detection area since it has 2D structure. In this research, we develop graphene as a nanosensor for detection of Escherichia coli (E. coli) bacteria. The sample E. coli bacteria were cultured from domestic wastewater by using plate culture method and then isolated to get pure single colony. The serial dilution was performed to create different concentration of bacteria. Field emission scanning electron microscope and biochemical test were performed to ensure the sample genuinely target E. coli that defined by the physical size and optical properties. Raman spectroscopy measurements were also performed on the grapheme films, and it was found that the ratio of G peak and D peak intensity changing do to the presence of E. coli. The electrical properties of graphene shows the increasing number of the bacteria 4 to 273 cfu result in decreasing the resistance from 4.371 to 3.903 ohm gradually.

  12. Online Oxide Contamination Measurement and Purification Demonstration

    Science.gov (United States)

    Bradley, D. E.; Godfroy, T. J.; Webster, K. L.; Garber, A. E.; Polzin, K. A.; Childers, D. J.

    2011-01-01

    Liquid metal sodium-potassium (NaK) has advantageous thermodynamic properties indicating its use as a fission reactor coolant for a surface (lunar, martian) power system. A major area of concern for fission reactor cooling systems is system corrosion due to oxygen contaminants at the high operating temperatures experienced. A small-scale, approximately 4-L capacity, simulated fission reactor cooling system employing NaK as a coolant was fabricated and tested with the goal of demonstrating a noninvasive oxygen detection and purification system. In order to generate prototypical conditions in the simulated cooling system, several system components were designed, fabricated, and tested. These major components were a fully-sealed, magnetically-coupled mechanical NaK pump, a graphite element heated reservoir, a plugging indicator system, and a cold trap. All system components were successfully demonstrated at a maximum system flow rate of approximately 150 cc/s at temperatures up to 550 C. Coolant purification was accomplished using a cold trap before and after plugging operations which showed a relative reduction in oxygen content.

  13. Lysine purification with cation exchange resin

    International Nuclear Information System (INIS)

    Khayati, GH.; Mottaghi Talab, M.; Hamooni Hagheeghat, M.; Fatemi, M.

    2003-01-01

    L-lysine is an essential amino acid for the growth most of animal species and the number one limiting amino acid for poultry. After production and biomass removal by filtration and centrifugation, the essential next step is the lysine purification and recovery. There are different methods for lysine purification. The ion exchange process is one of the most commonly used purification methods. Lysine recovery was done from broth by ion exchange resin in three different ways: repeated passing, resin soaking and the usual method. Impurities were isolated from the column by repeated wash with distilled water. Recovery and purification was done with NH 4 OH and different alcohol volumes respectively. The results showed that repeated passing is the best method for lysine absorption (maximum range 86.21 %). Washing with alkali solution revealed that most of lysine is obtained in the first step of washing. The highest degree of lysine purification was achieved with the use of 4 volumes of alcohol

  14. Purification, crystallization and structure determination of native GroEL from Escherichia coli lacking bound potassium ions

    International Nuclear Information System (INIS)

    Kiser, Philip D.; Lodowski, David T.; Palczewski, Krzysztof

    2007-01-01

    A 3.02 Å crystal structure of native GroEL from E. coli is presented. GroEL is a member of the ATP-dependent chaperonin family that promotes the proper folding of many cytosolic bacterial proteins. The structures of GroEL in a variety of different states have been determined using X-ray crystallography and cryo-electron microscopy. In this study, a 3.02 Å crystal structure of the native GroEL complex from Escherichia coli is presented. The complex was purified and crystallized in the absence of potassium ions, which allowed evaluation of the structural changes that may occur in response to cognate potassium-ion binding by comparison to the previously determined wild-type GroEL structure (PDB code http://www.rcsb.org/pdb/explore.do?structureId), in which potassium ions were observed in all 14 subunits. In general, the structure is similar to the previously determined wild-type GroEL crystal structure with some differences in regard to temperature-factor distribution

  15. Isolating E.Coli Bacteriophage from Raw Sewage and Determining its Selectivity to the Host Cell

    Directory of Open Access Journals (Sweden)

    SM Imeni

    2016-05-01

    Full Text Available Introduction: Bacteriophages are viruses that infect and destroy prokaryote cells, specifically the bacteria. They act too selective, so as each bacteriophage affects only on specific type of bacteria. Due to their specific features, bacteriophages can be used as an appropriate substitute for antibiotics in infectious diseases treatment. Therefore, this study aimed to isolate E. coli-specific bacteriophage from raw sewage. Methods: Eight samples of raw sewage, each containing approximately 50 ml of raw sewage with 10 minute gap, were prepared from Zargandeh wastewater treatment plant, Tehran, Iran. The sewages were mixed with Brain-heart infusion medium (BHI as a liquid culture medium in order to let the microorganisms grow. Incubation, purification and determination of bacteria were followed repeatedly to isolate the bacteriophage. Then it was tested on E.coli (ATCC 25922, Enterococcus faecalis (ATCC 19433, Staphylococcus aureus (ATCC 2392, and Yersinia enterocolitica (ATCC 9610 in order to determine the bacteriophage selectivity. Results: The E.coli bacteriophages were successfully isolated from all the eight samples, that were completely able to lyse and destroy E.coli bacterial cells, though no effect was observed on other types of bacteria. Conclusion: The study findings revealed that bacteriophages act selectively. Considering the raise of antibiotic resistance in the world, bacteriophages can serve as a good substitute for antibiotics in treating infectious diseases.

  16. Purification and properties of a ribosomal casein kinase from rabbit reticulocytes

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    A casein kinase was isolated and purifed from rabbit reticulocytes. About 90% of the enzyme activity co-sedimented with the ribosomal fraction, whereas about 10% of the enzyme activity was found in the ribosome-free supernatant. Both casein kinases (the ribosome-bound enzyme as well as the free...... suggested that the casein kinase is a dimer composed of subunits of identical molecular weight. The enzyme utilizes GTP as well as ATP as a phosphoryl donor. It preferentially phosphorylates acidic proteins, in particular the model substrates casein and phosvitin. Casein kinase is cyclic AMP...

  17. “Inclonals”: IgGs and IgG-enzyme fusion proteins produced in an E. coli expression-refolding system

    OpenAIRE

    Hakim, Rahely; Benhar, Itai

    2009-01-01

    Full-length antibodies and antibodies that ferry a cargo to target cells are desired biopharmaceuticals. We describe the production of full-length IgGs and IgG-toxin fusion proteins in E. coli. In the presented examples of anti CD30 and anti EGF-receptor antibodies, the antibody heavy and light chains or toxin fusions thereof were expressed in separate bacterial cultures, where they accumulated as insoluble inclusion bodies. Following refolding and purification, high yields (up to 50 mg/L of ...

  18. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives

    Directory of Open Access Journals (Sweden)

    José Luis Parada

    2007-05-01

    Full Text Available Biopreservation systems in foods are of increasing interest for industry and consumers. Bacteriocinogenic lactic acid bacteria and/or their isolated bacteriocins are considered safe additives (GRAS, useful to control the frequent development of pathogens and spoiling microorganisms in foods and feed. The spreading of bacterial antibiotic resistance and the demand for products with fewer chemicals create the necessity of exploring new alternatives, in order to reduce the abusive use of therapeutic antibiotics. In this context, bacteriocins are indicated to prevent the growth of undesirable bacteria in a food-grade and more natural way, which is convenient for health and accepted by the community. According to their properties, structure, molecular weight (MW, and antimicrobial spectrum, bacteriocins are classified in three different groups: lantibiotics and non-lantibiotics of low MW, and those of higher MW. Several strategies for isolation and purification of bacteriocins from complex cultivation broths to final products were described. Biotechnological procedures including salting-out, solvent extraction, ultrafiltration, adsorption-desortion, ion-exchange, and size exclusion chromatography are among the most usual methods. Peptide structure-function studies of bacteriocins and bacterial genetic advances will help to understand the molecular basis of their specificity and mode of action. Nisin is a good example of commercial success, and a good perspective is open to continue the study and development of new bacteriocins and their biotechnological applications. These substances in appropriate concentrations may be used in veterinary medicine and as animal growth promoter instead usual antibiotics, as well as an additional hurdle factor for increasing the shelf life of minimal processed foods.

  19. Partial Purification and Characterization of Extracellular Protease ...

    African Journals Online (AJOL)

    Nigerian Journal of Basic and Applied Sciences ... Purification of the enzyme by gel filtration chromatography on Sephadex G75 following ammonium sulphate precipitation gave 2.26 fold increase in purification with specific activity of 46.13 units/mg protein while purification on Sephadex CM50 resulted in reduced ...

  20. Application of genomic densitometry for calculating the relative population of Escherichia Coli in the intestine of broiler chicks

    Directory of Open Access Journals (Sweden)

    A.R Seidavi

    2009-05-01

    Full Text Available In this study, the densitometry technique for calculating of the relative population of Escherichia coli in various segments of the intestine of broiler chicks was evaluated. Following preparation of the intestinal contents, the process of extraction and purification of DNA from the contents of duodenum, jejunum, ileum and cecum was undertaken. A specific polymerase chain reaction (PCR using two pairs of primers was employed to detect Escherichia coli and total bacteria present in the gastrointestinal tract of the chicks. Specific bands of E.coli were obtained using densitometry and Gel Proc Analyzer software based on linear regression with extrapolation. E.coli populations at different ages were also determined in various segments of the gastrointestinal tract of the chicks. The Results of this experiment indicated that 0.000004%, 0.07%, 0.64% and 2.51% of total bacteria present in the duodenum, jejunum, ileum and cecum respectively consisted of E.coli. Also, E.coli constitutes 1.76, 0.01 and 0.80% of the total intestinal bacteria of chicks at 4, 14 and 30 days of age respectively. Furthermore, it was shown that at 4 days of age, 0.30, 2.05 and 3.97% of the total bacteria present in the jejunum, ileum and cecum respectively were from E.coli species and this bacteria was absent in the duodenum. At 14 days of age these figures were 0.000009%, 0.00011% and 0.08% respectively while at 30 days of age 0.00011%, 0.009% and 2.40% of all bacteria in the duodenum, ileum and cecum were E.coli species and this bacteria was absent in the jejunum. In conclusion, the densitometry method based on PCR results can be regarded as a useful tool for densitometry the relative population E.coli in the gastrointestinal tract of poultry.

  1. Application of preparative disk gel electrophoresis for antigen purification from inclusion bodies.

    Science.gov (United States)

    Okegawa, Yuki; Koshino, Masanori; Okushima, Teruya; Motohashi, Ken

    2016-02-01

    Specific antibodies are a reliable tool to examine protein expression patterns and to determine the protein localizations within cells. Generally, recombinant proteins are used as antigens for specific antibody production. However, recombinant proteins from mammals and plants are often overexpressed as insoluble inclusion bodies in Escherichia coli. Solubilization of these inclusion bodies is desirable because soluble antigens are more suitable for injection into animals to be immunized. Furthermore, highly purified proteins are also required for specific antibody production. Plastidic acetyl-CoA carboxylase (ACCase: EC 6.4.1.2) from Arabidopsis thaliana, which catalyzes the formation of malonyl-CoA from acetyl-CoA in chloroplasts, formed inclusion bodies when the recombinant protein was overexpressed in E. coli. To obtain the purified protein to use as an antigen, we applied preparative disk gel electrophoresis for protein purification from inclusion bodies. This method is suitable for antigen preparation from inclusion bodies because the purified protein is recovered as a soluble fraction in electrode running buffer containing 0.1% sodium dodecyl sulfate that can be directly injected into immune animals, and it can be used for large-scale antigen preparation (several tens of milligrams). Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Characterization and optimization of ArtinM lectin expression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Pranchevicius Maria-Cristina S

    2012-08-01

    Full Text Available Abstract Background ArtinM is a d-mannose-specific lectin from Artocarpus integrifolia seeds that induces neutrophil migration and activation, degranulation of mast cells, acceleration of wound healing, induction of interleukin-12 production by macrophages and dendritic cells, and protective T helper 1 immune response against Leishmania major, Leishmania amazonensis and Paracoccidioides brasiliensis infections. Considering the important biological properties of ArtinM and its therapeutic applicability, this study was designed to produce high-level expression of active recombinant ArtinM (rArtinM in Escherichia coli system. Results The ArtinM coding region was inserted in pET29a(+ vector and expressed in E. coli BL21(DE3-Codon Plus-RP. The conditions for overexpression of soluble ArtinM were optimized testing different parameters: temperatures (20, 25, 30 or 37°C and shaking speeds (130, 200 or 220 rpm during induction, concentrations of the induction agent IPTG (0.01-4 mM and periods of induction (1-19 h. BL21-CodonPlus(DE3-RP cells induced under the optimized conditions (incubation at 20°C, at a shaking speed of 130 rpm, induction with 0.4 mM IPTG for 19 h resulted in the accumulation of large amounts of soluble rArtinM. The culture provided 22.4 mg/L of rArtinM, which activity was determined by its one-step purification through affinity chromatography on immobilized d-mannose and glycoarray analysis. Gel filtration showed that rArtinM is monomeric, contrasting with the tetrameric form of the plant native protein (jArtinM. The analysis of intact rArtinM by mass spectrometry revealed a 16,099.5 Da molecular mass, and the peptide mass fingerprint and esi-cid-ms/ms of amino acid sequences of peptides from a tryptic digest covered 41% of the total ArtinM amino acid sequence. In addition, circular dichroism and fluorescence spectroscopy of rArtinM indicated that its global fold comprises β-sheet structure. Conclusions Overall, the

  3. Impact of O-glycosylation on the molecular and cellular adhesion properties of the Escherichia coli autotransporter protein Ag43.

    Science.gov (United States)

    Reidl, Sebastian; Lehmann, Annika; Schiller, Roswitha; Salam Khan, A; Dobrindt, Ulrich

    2009-08-01

    Antigen 43 (Ag43) represents an entire family of closely related autotransporter proteins in Escherichia coli and has been described to confer aggregation and fluffing of cells, to promote biofilm formation, uptake and survival in macrophages as well as long-term persistence of uropathogenic E. coli in the murine urinary tract. Furthermore, it has been reported that glycosylation of the Ag43 passenger domain (alpha(43)) stabilizes its conformation and increases adhesion to Hep-2 cells. We characterized the role of Ag43 as an adhesin and the impact of O-glycosylation on the function of Ag43. To analyze whether structural variations in the alpha(43) domain correlate with different functional properties, we cloned 5 different agn43 alleles from different E. coli subtypes and tested them for autoaggregation, biofilm formation, adhesion to different eukaryotic cell lines as well as to purified components of the extracellular matrix. These experiments were performed with nonglycosylated and O-glycosylated Ag43 variants. We show for the first time that Ag43 mediates bacterial adhesion in a cell line-specific manner and that structural variations of the alpha(43) domain correlate with increased adhesive properties to proteins of the extracellular matrix such as collagen and laminin. Whereas O-glycosylation of many alpha(43) domains led to impaired autoaggregation and a significantly reduced adhesion to eukaryotic cell lines, their interaction with collagen was significantly increased. These data demonstrate that O-glycosylation is not a prerequisite for Ag43 function and that the different traits mediated by Ag43, i.e., biofilm formation, autoaggregation, adhesion to eukaryotic cells and extracellular matrix proteins, rely on distinct mechanisms.

  4. Purification, crystallization and preliminary crystallographic analysis of a thermostable endonuclease IV from Thermotoga maritima

    International Nuclear Information System (INIS)

    Hughes, Ronny C.; Tomanicek, Stephen J.; Ng, Joseph D.; Coates, Leighton

    2009-01-01

    The overexpression, purification and crystallization of endonuclease IV from T. maritima are reported. The crystals belonged to the hexagonal space group P6 1 and diffracted to 2.36 Å resolution. The DNA-repair enzyme endonuclease IV from the thermophilic bacterium Thermotoga maritima MSB8 (reference sequence NC-000853) has been expressed in Escherichia coli and crystallized for X-ray analysis. T. maritima endonuclease IV is a 287-amino-acid protein with 32% sequence identity to E. coli endonuclease IV. The protein was purified to homogeneity and was crystallized using the sitting-drop vapor-diffusion method. The protein crystallized in space group P6 1 , with one biological molecule in the asymmetric unit, corresponding to a Matthews coefficient of 2.39 Å 3 Da −1 and 47% solvent content. The unit-cell parameters of the crystals were a = b = 123.2, c = 35.6 Å. Microseeding and further optimization yielded crystals with an X-ray diffraction limit of 2.36 Å. A single 70° data set was collected and processed, resulting in an overall R merge and a completeness of 9.5% and 99.3%, respectively

  5. Cloning and properties of the Salmonella typhimurium tricarboxylate transport operon in Escherichia coli

    International Nuclear Information System (INIS)

    Widenhorn, K.A.; Boos, W.; Somers, J.M.; Kay, W.W.

    1988-01-01

    The tricarboxylate transport operon (tctI) was cloned in Escherichia coli as a 12-kilobase (kb) fragment from an EcoRI library of the Salmonella typhimurium chromosome in λgtWES. It was further subcloned as a 12-kb fragment into pACYC184 and as an 8-kb fragment into pBR322. By insertional mutagenesis mediated by λTn5, restriction mapping, and phenotypic testing, the tctI operon was localized to a 4.5-kb region. The tctC gene which encodes a periplasmic binding protein (C-protein) was located near the center of the insert. E. coli/tctI clones on either multicopy or single-copy vectors grew on the same tricarboxylates as S. typhimurium, although unusually long growth lags were observed. E. coli/tctI clones exhibited similar [ 14 C] fluorocitrate transport kinetics to those of S. typhimurium, whereas E. coli alone was virtually impermeable to [ 14 C] fluorocitrate. The periplasmic C proteins (C1 and C2 isoelectric forms) were produced in prodigious quantities from the cloned strains. Motile E. coli/tctI clones were not chemotactic toward citrate, whereas tctI deletion mutants of S. typhimurium were. Taken together, these observations indicate that tctI is not an operon involved in chemotaxis

  6. ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli

    OpenAIRE

    ANGGREINI, RAHAYU

    2015-01-01

    2015 RAHAYU ANGGREINI coli Penelitian ini bertujuan untuk melakukan identifikasi cemaran bakteri E. coli O157:H7 pada daging sapi di kota Makassar. Sampel pada penelitian ini sebanyak 72 sampel Kata Kunci : Daging sapi, pasar tradisional, E. coli, E. coli O157:H7, kontaminasi bakteri, identifikasi E. coli O157:H7.

  7. Expression, Purification and Characterization of Recombinant Canine FGF21 in Escherichia coli.

    Science.gov (United States)

    Zheng, Zhong; Yang, Chengjun; Yin, Ruofeng; Jiang, Jinxi; He, Haiting; Wang, Xinxin; Kan, Mujie; Xiao, Yechen

    2016-01-01

    The canine metabolic diseases, such as obesity and diabetes, have become a worldwide problem. Fibroblast growth factor 21 (FGF21) is a potent regulator which has many biological functions relative to metabolism regulation. It suggests that FGF21 plays important roles in regulating canine metabolic diseases. To acquire the recombinant canine FGF21 (rcFGF21) in Escherichia coli, the recombinant bacteria were induced by 0.5 mM IPTG for 16 hours at 16 °C, and the rcFGF21 protein was purified by Ni-NTA. 8 mg rcFGF21 was acquired from one liter bacteria. The rcFGF21 protein has specific immunoblot reactivity against anti-FGF21 and anti-His antibody. The in vivo experimental result showed that rcFGF21 can significantly reduce plasma glucose of STZ-induced diabetic mice.

  8. Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin I

    International Nuclear Information System (INIS)

    Rehm, H.; Lazdunski, M.

    1988-01-01

    The binding protein for the K + -channel toxin dendrotoxin I was purified from a detergent extract of rat brain membranes. The purification procedure utilized chromatography on DEAE-Trisacryl, affinity chromatography on a dendrotoxin-I-Aca 22 column, and wheat germ agglutinin-Affigel 10 with a final 3,800- to 4,600-fold enrichment and a recovery of 8-16%. The high affinity (K d , 40-100 pM) and specificity of the binding site are retained throughout the purification procedure. Analysis of the purified material on silver-stained NaDodSO 4 /polyacrylamide gel revealed three bands of M r 76,000-80,000, 38,000 and 35,000. Interestingly, the binding site for 125 I-labeled mast cell degranulating peptide, another putative K + -channel ligand from bee venom, which induces long-term potentiation in hippocampus, seems to reside on the same protein complex, as both binding sites copurify through the entire purification protocol

  9. A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins.

    Science.gov (United States)

    Soriano, Brian D; Tam, Lei-Ting T; Lu, Hsieng S; Valladares, Violeta G

    2012-01-01

    Recombinant proteins expressed in Escherichia coli are often produced as unfolded, inactive forms accumulated in inclusion bodies. Redox-coupled thiols are typically employed in the refolding process in order to catalyze the formation of correct disulfide bonds at maximal folding efficiency. These thiols and the recombinant proteins can form mixed disulfide bonds to generate thiol-protein adducts. In this work, we apply a fluorescent-based assay for the quantification of cysteine and cysteamine adducts as observed in E. coli-derived proteins. The thiols are released by reduction of the adducted protein, collected and labeled with a fluorescent reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The derivatized thiols are separated by reversed-phase HPLC and can be accurately quantified after method optimization. The estimated thiol content represents total amount of adducted forms present in the analyzed samples. The limit of quantification (LOQ) was established; specifically, the lowest amount of quantifiable cysteine adduction is 30 picograms and the lowest amount of quantifiable cysteamine adduction is 60 picograms. The assay is useful for quantification of adducts in final purified products as well as in-process samples from various purification steps. The assay indicates that the purification process accomplishes a decrease in cysteine adduction from 0.19 nmol adduct/nmol protein to 0.03 nmol adduct/nmol protein as well as a decrease in cysteamine adduction from 0.24 nmol adduct/nmol protein to 0.14 nmol adduct/nmol protein. Copyright © 2011. Published by Elsevier B.V.

  10. AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli.

    Science.gov (United States)

    González-Leiza, Silvia M; de Pedro, Miguel A; Ayala, Juan A

    2011-12-01

    In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display DD-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional DD-endopeptidase and DD-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (k(cat)/K(m)) of 1,200 M(-1) s(-1) and 670 M(-1) s(-1), respectively, and removed the terminal D-alanine from muropeptides with a C-terminal D-Ala-D-Ala dipeptide. Both DD-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10(-3) nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the DD-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling.

  11. Investigating the Phytochemicals and Antimicrobial Properties of Three Sedge (Cyperaceae Species

    Directory of Open Access Journals (Sweden)

    Tiwalade Adeyemi ADENIYI

    2014-09-01

    Full Text Available In order to evaluate the medicinal value of notorious sedge weeds, three species:Cyperus esculentus, Cyperus rotundus and Mariscus alternifolius were investigated for their phytochemical constituents and antimicrobial properties. Preliminary qualitative phytochemical constituents and in vitro antimicrobial activities were evaluated against four fungi species: Aspergillus niger, Aspergillus fumigatus, Penicillium chrysogenum and Candida albicans, and three bacteria species: Escherichia coli,Salmonella typhi and Staphylococcus aureus. Two solvents, water and ethanol, were used to produce the extracts and were screened for their antimicrobial activity. Antimicrobial activity evaluation of the extracts against pathogens was carried out at 100 mg/ml concentration by Disc Diffusion method for fungi, Disc Diffusion and Agar Well Diffusion methods for bacteria. Observed activities were related to standard antibiotics, antifungal and antibacterial, which served as controls. Phytochemically, the plant extracts showed the presence of carbohydrates, flavonoids, ketose sugars, steroids, reducing sugars and tannins. The ethanolic extract of C. rotundus exhibited the highest activity against A. niger, E. coli and S. aureus. No extract was active against C. albicans. From these findings, it was concluded that C. rotundus is a potential source of bioactive compounds for new drugs upon isolation and purification for treating infections caused by these pathogens.

  12. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  13. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  14. Preliminary X-ray diffraction analysis of YqjH from Escherichia coli: a putative cytoplasmic ferri-siderophore reductase.

    Science.gov (United States)

    Bamford, Vicki A; Armour, Maria; Mitchell, Sue A; Cartron, Michaël; Andrews, Simon C; Watson, Kimberly A

    2008-09-01

    YqjH is a cytoplasmic FAD-containing protein from Escherichia coli; based on homology to ViuB of Vibrio cholerae, it potentially acts as a ferri-siderophore reductase. This work describes its overexpression, purification, crystallization and structure solution at 3.0 A resolution. YqjH shares high sequence similarity with a number of known siderophore-interacting proteins and its structure was solved by molecular replacement using the siderophore-interacting protein from Shewanella putrefaciens as the search model. The YqjH structure resembles those of other members of the NAD(P)H:flavin oxidoreductase superfamily.

  15. Radioactive background with thymine dimer estimation in uv irradiated Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Masek, F [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1976-01-01

    Ultraviolet radiation induces photoproducts in the cell DNA, mainly pyrimidine dimers responsible for the essential part of lethal and mutagenic damage. Radioactive tracers were used in determining the amount of photoproducts. Radioisotope labelling of microbial cells involves the problem of background which influences analytical results. Undesirably high radioactive background on the chromatograms of the hydrolysates of the acid-insoluble fraction of UV irradiated Escherichia coli cells complicates the determination of the amount of UV photoproducts. The background may be suppressed by chromatographic purification of radioactive precursors. Also a more thorough separation orocedure of DNA macromolecules contributes to reducing the background. From this point of view it seems advantageous to use two-dimensional paper chromatography rather than one-dimensional.

  16. Entanglement purification of multi-mode quantum states

    International Nuclear Information System (INIS)

    Clausen, J; Knoell, L; Welsch, D-G

    2003-01-01

    An iterative random procedure is considered allowing entanglement purification of a class of multi-mode quantum states. In certain cases, complete purification may be achieved using only a single signal state preparation. A physical implementation based on beam splitter arrays and non-linear elements is suggested. The influence of loss is analysed in the example of purification of entangled N-mode coherent states

  17. Large-scale purification and in vitro characterization of the assembly of MreB from Leptospira interrogans.

    Science.gov (United States)

    Barkó, Szilvia; Szatmári, Dávid; Bódis, Emőke; Türmer, Katalin; Ujfalusi, Zoltán; Popp, David; Robinson, Robert C; Nyitrai, Miklós

    2016-09-01

    Weil's syndrome is caused by Leptospira interrogans infections, a Gram negative bacterium with a distinct thin corkscrew cell shape. The molecular basis for this unusual morphology is unknown. In many bacteria, cell wall synthesis is orchestrated by the actin homolog, MreB. Here we have identified the MreB within the L. interrogans genome and expressed the His-tagged protein product of the synthesized gene (Li-MreB) in Escherichia coli. Li-MreB did not purify under standard nucleotide-free conditions used for MreBs from other species, requiring the continual presence of ATP to remain soluble. Covalent modification of Li-MreB free thiols with Alexa488 produced a fluorescent version of Li-MreB. We developed native and denaturing/refolding purification schemes for Li-MreB. The purified product was shown to assemble and disassemble in MgCl2 and KCl dependent manners, as monitored by light scattering and sedimentation studies. The fluorescence spectrum of labeled Li-MreB-Alexa488 showed cation-induced changes in line with an activation process followed by a polymerization phase. The resulting filaments appeared as bundles and sheets under the fluorescence microscope. Finally, since the Li-MreB polymerization was cation dependent, we developed a simple method to measure monovalent cation concentrations within a test case prokaryote, E. coli. We have identified and initially characterized the cation-dependent polymerization properties of a novel MreB from a non-rod shaped bacterium and developed a method to measure cation concentrations within prokaryotes. This initial characterization of Li-MreB will enable future structural determination of the MreB filament from this corkscrew-shaped bacterium. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Purification and characterization of a mucin specific mycelial lectin from Aspergillus gorakhpurensis: application for mitogenic and antimicrobial activity.

    Directory of Open Access Journals (Sweden)

    Ram Sarup Singh

    Full Text Available Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis.Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay.Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5-9.5, while optimum temperature for lectin activity was 20-30 °C. Lectin was stable within a pH range of 7.0-10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae.This is the first report on the mitogenic and antimicrobial potential of Aspergillus gorakhpurensis

  19. Purification and characterization of a mucin specific mycelial lectin from Aspergillus gorakhpurensis: application for mitogenic and antimicrobial activity.

    Science.gov (United States)

    Singh, Ram Sarup; Kaur, Hemant Preet; Singh, Jatinder

    2014-01-01

    Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis. Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay. Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5-9.5, while optimum temperature for lectin activity was 20-30 °C. Lectin was stable within a pH range of 7.0-10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae. This is the first report on the mitogenic and antimicrobial potential of Aspergillus gorakhpurensis lectin. The

  20. The various sodium purification techniques

    International Nuclear Information System (INIS)

    Courouau, J.L.; Masse, F.; Rodriguez, G.; Latge, C.; Redon, B.

    1997-01-01

    In the framework of sodium waste treatment, the sodium purification phase plays an essential role in the chain of operations leading to the transformation of the active sodium, considered as waste, into a stable sodium salt. The objectives of the purification operations are: To keep a low impurity level, particularly a low concentration in oxygen and hydrogen, in order to allow its transfer to a processing plant, and in order to avoid risks of plugging and/or corrosion in sodium facilities; To reduce the sodium activity in order to limit the dose rate close to the facilities, and in order to reduce the activity of the liquid and gaseous effluents. After a recall of the different kind of impurities that can be present in sodium, and of the different purification methods that could be associated with, the following points are highlighted: (i) Oxygen and hydrogen purification needs, and presentation of some selection criteria for a purification unit adapted to a sodium processing plant, as well as 2 cold trap concepts that are in accordance with these criteria: PSICHOS and PIRAMIDE. (ii) Tritium reduction in a bulk of liquid sodium by swamping, isotopic exchange, or permeation throughout a membrane. (iii) Caesium trapping on carbonaceous matrix. The main matrices used at present are R.V.C. (Reticulated Vitreous Carbon) and Actitex/Pica products. Tests in the laboratory and on an experimental device have demonstrated the performances of these materials, which are able to reduce sodium activity in Cs 134 and Cs 137 to very low values. The sodium purification processes as regards to the hydrogen, oxygen and caesium, that are aimed at facilitating the subsequent treatment of sodium, are therefore mastered operations. Regarding the operations associated with the reduction of the tritium activity, the methods are in the process of being qualified, or to be qualified. (author)

  1. Bicistronic expression plasmid for the rapid production of recombinant fused proteins in Escherichia coli.

    Science.gov (United States)

    Yero, Daniel; Pajón, Rolando; Niebla, Olivia; Sardiñas, Gretel; Vivar, Isbel; Perera, Yasser; García, Darien; Delgado, Maité; Cobas, Karem

    2006-04-01

    In the post-genomic era, every aspect of the production of proteins must be accelerated. In this way, several vectors are currently exploited for rapid production of recombinant proteins in Escherichia coli. N-terminal fusions to the first 47 amino acids of the LpdA (dihydrolipoamide dehydrogenase A) protein of Neisseria meningitidis have been shown to increase the expression of recombinant proteins. Consequently, we have constructed a modified N-terminal LpdA fusion vector, introducing the blue/white colony selection by exploiting a bicistronic gene organization. In the new vector, the sequence encoding the first 47 amino acids of meningococcal LpdA and the alpha-peptide sequence of beta-galactosidase were connected via a ribosome-binding site, and two MCSs (multiple cloning sites) were located surrounding the latter, allowing efficient cloning by colour selection of recombinants. The vector was also improved with the addition of a C-terminal polyhistidine tag, and an EKS (enterokinase recognition sequence) immediately after the LpdA fusion sequence. The new plasmid was employed in the expression and purification of six different bacterial polypeptides. One of these recombinant proteins, P6 protein from Haemophilus influenzae, was used as a model and its N-terminal fusion sequence was totally removed from the recombinant version after incubation with the enterokinase protease, while the polyhistidine tail successfully allowed the purification of the unfused protein from the protease reaction. Two completely new neisserial vaccine candidates, NMB0088 and NMB1126 proteins, were cloned, expressed and purified using this system. To our knowledge, this constitutes the first report of the cloning and expression of these proteins in E. coli.

  2. Entanglement of purification: from spin chains to holography

    Science.gov (United States)

    Nguyen, Phuc; Devakul, Trithep; Halbasch, Matthew G.; Zaletel, Michael P.; Swingle, Brian

    2018-01-01

    Purification is a powerful technique in quantum physics whereby a mixed quantum state is extended to a pure state on a larger system. This process is not unique, and in systems composed of many degrees of freedom, one natural purification is the one with minimal entanglement. Here we study the entropy of the minimally entangled purification, called the entanglement of purification, in three model systems: an Ising spin chain, conformal field theories holographically dual to Einstein gravity, and random stabilizer tensor networks. We conjecture values for the entanglement of purification in all these models, and we support our conjectures with a variety of numerical and analytical results. We find that such minimally entangled purifications have a number of applications, from enhancing entanglement-based tensor network methods for describing mixed states to elucidating novel aspects of the emergence of geometry from entanglement in the AdS/CFT correspondence.

  3. Design and control of an alternative distillation sequence for bioethanol purification

    DEFF Research Database (Denmark)

    Errico, Massimiliano; Ramírez-Márquez, César; Torres Ortega, Carlo Edgar

    2015-01-01

    BACKGROUND: Bioethanol is a green fuel considered to be a sustainable alternative to petro-derived gasoline. The transport sector contributes significantly to carbon dioxide emission and consequently has a negative impact on the air quality and is responsible for the increase of the greenhouse...... separation is presented. The steady state performance and the dynamic beavior are analyzed compared with the classical configuration reported in the literature. RESULTS: Ethanol-water azeotropic separation represents a challenge for bioethanol purification. Usually a three column sequence is used to obtain...... fuel grade bioethanol by extractive distillation. In order to reduce bioethanol purification cost a two column separation sequence is proposed. This configuration shows a 10% saving in capital costs together with higher ethanol recovery and better control properties compared with the classical three...

  4. Bioinspired Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Alfredo Gonzalez-Perez

    2016-06-01

    Full Text Available Water scarcity issues associated with inadequate access to clean water and sanitation is a ubiquitous problem occurring globally. Addressing future challenges will require a combination of new technological development in water purification and environmental remediation technology with suitable conservation policies. In this scenario, new bioinspired materials will play a pivotal role in the development of more efficient and environmentally friendly solutions. The role of amphiphilic self-assembly on the fabrication of new biomimetic membranes for membrane separation like reverse osmosis is emphasized. Mesoporous support materials for semiconductor growth in the photocatalytic degradation of pollutants and new carriers for immobilization of bacteria in bioreactors are used in the removal and processing of different kind of water pollutants like heavy metals. Obstacles to improve and optimize the fabrication as well as a better understanding of their performance in small-scale and pilot purification systems need to be addressed. However, it is expected that these new biomimetic materials will find their way into the current water purification technologies to improve their purification/removal performance in a cost-effective and environmentally friendly way.

  5. Partial purification of the ATP-driven calcium pump of Streptococcus sanguis

    International Nuclear Information System (INIS)

    Lynn, A.R.; Rosen, B.P.

    1986-01-01

    ATP-dependent transport of calcium has been observed in several species of streptococci as uptake of 45 Ca 2+ into everted membrane vesicles. Membranes from Streptococcus sanguis and Streptococcus faecalis were solubilized with octyl-β-D-glucoside or Triton X-100, and the extracts reconstituted into proteoliposomes containing Escherichia coli or soybean phospholipid. Calcium transport in reconstituted proteoliposomes was insensitive to the ionophores nigericin and valinomycin and was unaffected by the F 0 F 1 inhibitor N,N'-dicyclohexylcarbodiimide. Uptake was inhibited by ortho-vanadate with a K/sub i/ in the micromolar range. These results demonstrate that the reconstituted transport activities are not the result of ATP-driven proton pumping via the F 0 F 1 coupled to a calcium/proton antiporter and suggest that existence of a calcium translocating ATPase. Partial purification of the transport activity from Streptococcus sanguis has been achieved using density gradient centrifugation and FPLC

  6. In vitro enzymatic studies on the nature and repair of x-ray induced lesions in DNA

    International Nuclear Information System (INIS)

    Wallace, S.S.

    1979-01-01

    Areas studied include: purification and properties of enzyme probes for x-ray induced DNA lesions using E. Coli x-ray endonuclease and S. cerevisiae endonuclease E; use of enzymes probes; and use of physical, chemical and enzymatic probes to quantify x-ray-induced lesions in viruses and cells

  7. Nanocellulose-Based Materials for Water Purification.

    Science.gov (United States)

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P

    2017-03-05

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present-in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  8. Venturi purification device and its application in purification of gaseous waste of nuclear facilities

    International Nuclear Information System (INIS)

    Kong Jinsong; Yu Ren; Yang Huanlei

    2013-01-01

    The working principle of Venturi purification device and its purification of aerosol have been described. Then, taking the gaseous iodine as an example, the absorption process of insoluble gas pollutants is discussed, the calculation methods of the gas-liquid contact area, mass transfer rate and efficiency of mass transfer are educed, and the factors that affect the efficiency of mass transfer are analyzed. (authors)

  9. Structural and functional features of self-assembling protein nanoparticles produced in endotoxin-free Escherichia coli.

    Science.gov (United States)

    Rueda, Fabián; Céspedes, María Virtudes; Sánchez-Chardi, Alejandro; Seras-Franzoso, Joaquin; Pesarrodona, Mireia; Ferrer-Miralles, Neus; Vázquez, Esther; Rinas, Ursula; Unzueta, Ugutz; Mamat, Uwe; Mangues, Ramón; García-Fruitós, Elena; Villaverde, Antonio

    2016-04-08

    Production of recombinant drugs in process-friendly endotoxin-free bacterial factories targets to a lessened complexity of the purification process combined with minimized biological hazards during product application. The development of nanostructured recombinant materials in innovative nanomedical activities expands such a need beyond plain functional polypeptides to complex protein assemblies. While Escherichia coli has been recently modified for the production of endotoxin-free proteins, no data has been so far recorded regarding how the system performs in the fabrication of smart nanostructured materials. We have here explored the nanoarchitecture and in vitro and in vivo functionalities of CXCR4-targeted, self-assembling protein nanoparticles intended for intracellular delivery of drugs and imaging agents in colorectal cancer. Interestingly, endotoxin-free materials exhibit a distinguishable architecture and altered size and target cell penetrability than counterparts produced in conventional E. coli strains. These variant nanoparticles show an eventual proper biodistribution and highly specific and exclusive accumulation in tumor upon administration in colorectal cancer mice models, indicating a convenient display and function of the tumor homing peptides and high particle stability under physiological conditions. The observations made here support the emerging endotoxin-free E. coli system as a robust protein material producer but are also indicative of a particular conformational status and organization of either building blocks or oligomers. This appears to be promoted by multifactorial stress-inducing conditions upon engineering of the E. coli cell envelope, which impacts on the protein quality control of the cell factory.

  10. Properties of in situ Escherichia coli -D-glucuronidase (GUS ...

    African Journals Online (AJOL)

    A study of the activity of Escherichia coli -D-glucuronidase (GUS) in polluted stagnant and running water samples was performed with an objective of assessing the viability of a direct marker enzyme assay as a suitable alternative to membrane filtration for the indication of faecal pollution in water intended for drinking ...

  11. Photocatalytic materials and technologies for air purification.

    Science.gov (United States)

    Ren, Hangjuan; Koshy, Pramod; Chen, Wen-Fan; Qi, Shaohua; Sorrell, Charles Christopher

    2017-03-05

    Since there is increasing concern for the impact of air quality on human health, the present work surveys the materials and technologies for air purification using photocatalytic materials. The coverage includes (1) current photocatalytic materials for the decomposition of chemical contaminants and disinfection of pathogens present in air and (2) photocatalytic air purification systems that are used currently and under development. The present work focuses on five main themes. First, the mechanisms of photodegradation and photodisinfection are explained. Second, system designs for photocatalytic air purification are surveyed. Third, the photocatalytic materials used for air purification and their characteristics are considered, including both conventional and more recently developed photocatalysts. Fourth, the methods used to fabricate these materials are discussed. Fifth, the most significant coverage is devoted to materials design strategies aimed at improving the performance of photocatalysts for air purification. The review concludes with a brief consideration of promising future directions for materials research in photocatalysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Protein samples for NMR: expression and analysis without purification, and stabilization by covalent cyclization

    International Nuclear Information System (INIS)

    Otting, G.; Ozawa, K.; Prosselkov, P.; Williams, N.K.; Dixon, N.E.; Liepinsh, E.

    2002-01-01

    Full text: A modified cell-free in vitro expression system was established for the expression of milligram quantities of protein per mL reaction medium. Expression levels of the E coli cytoplasmic peptidyl-prolyl cis-trans isomerase, PpiB, in 0 6 mL reaction medium were sufficient for the direct recording of clean 15N-HSQC spectra without chromatographic purification or sample concentration steps, using a 600 MHz NMR spectrometer with cryoprobe. Besides providing a route to high-throughput sample preparation, in vitro expression systems are known to be highly economic in their utilization of selectively labelled ammo acids. Using dual-selective labelling with 15N- and 13C-labelled amino acids, the 15N-HSQC cross peaks of strategically selected ammo acids can readily be identified and monitored for their response to the presence of ligand molecules, again without sample purification. 2) The N-terminal domain of E coli DnaB is a protein of ca 110 residues with a structured core composed of 6 helices. Additional segments of 10 residues each at the N- and C-termini are highly mobile. Both ends are close in space and can be linked together in a covalent peptide bond using intern technology. The core structures of linear (lin-DnaB-N) and cyclized (cz-DnaB-N) protein are conserved, as evidenced by superimposable NOESY spectra and chemical shifts. The linker segment in cz-DnaB-N is mobile as shown by 1H-15N NOEs. Yet, the cyclic protein melts about 10 degrees higher than the linear version. A stabilization free energy of ca 2 kcal/mol is in agreement with predictions based on the reduced entropy in the unfolded state. Amide proton exchange rates are much slower in the cyclic protein and reveal cooperative exchange through total, global unfolding at a rate of once every 100 minutes in the linear protein

  13. Purification and subunit structure of a putative K sup + -channel protein identified by its binding properties for dendrotoxin I

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, H.; Lazdunski, M. (Centre National de la Recherche Scientifique, Nice (France))

    1988-07-01

    The binding protein for the K{sup +}-channel toxin dendrotoxin I was purified from a detergent extract of rat brain membranes. The purification procedure utilized chromatography on DEAE-Trisacryl, affinity chromatography on a dendrotoxin-I-Aca 22 column, and wheat germ agglutinin-Affigel 10 with a final 3,800- to 4,600-fold enrichment and a recovery of 8-16%. The high affinity (K{sub d}, 40-100 pM) and specificity of the binding site are retained throughout the purification procedure. Analysis of the purified material on silver-stained NaDodSO{sub 4}/polyacrylamide gel revealed three bands of M{sub r} 76,000-80,000, 38,000 and 35,000. Interestingly, the binding site for {sup 125}I-labeled mast cell degranulating peptide, another putative K{sup +}-channel ligand from bee venom, which induces long-term potentiation in hippocampus, seems to reside on the same protein complex, as both binding sites copurify through the entire purification protocol.

  14. Overexpression and surface localization of the Chlamydia trachomatis major outer membrane protein in Escherichia coli

    DEFF Research Database (Denmark)

    Koehler, JF; Birkelund, Svend; Stephens, RS

    1992-01-01

    The Chlamydia trachomatis major outer membrane protein (MOMP) is the quantitatively predominant surface protein which has important functional, structural and antigenic properties. We have cloned and overexpressed the MOMP in Escherichia coli. The MOMP is surface exposed in C. trachomatis....... The induction of MOMP expression had a rapidly lethal effect on the L2rMOMP E. coli clone. Although no genetic system exists for Chlamydia, development of a stable, inducible E. coli clone which overexpresses the chlamydial MOMP permits a study of the biological properties of the MOMP, including...

  15. Preliminary structural investigations of the Eut-L shell protein of the ethanolamine ammonia-lyase metabolosome of Escherichia coli

    International Nuclear Information System (INIS)

    Nikolakakis, Kiel; Ohtaki, Akashi; Newton, Keith; Chworos, Arkadiusz; Sagermann, Martin

    2009-01-01

    Preliminary X-ray analysis of crystals of the bacterial microcompartment shell protein Eut-L from Escherichia coli is reported. The ethanolamine ammonia-lyase microcompartment is composed of five different shell proteins that have been proposed to assemble into symmetrically shaped polyhedral particles of varying sizes. Here, preliminary X-ray analysis of crystals of the bacterial microcompartment shell protein Eut-L from Escherichia coli is reported. Cloning, overexpression and purification resulted in highly pure protein that crystallized readily under many different conditions. In all cases the protein forms thin hexagonal plate-shaped crystals belonging to space group P3 that are of unusually high stability against different solvent conditions. The crystals diffracted to a resolution of 2.0 Å using synchrotron radiation but proved to be radiation-sensitive. Preparations of heavy-atom-derivatized crystals for use in determining the three-dimensional structure are under way

  16. Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system.

    Science.gov (United States)

    Hoehl, Melanie M; Weißert, Michael; Dannenberg, Arne; Nesch, Thomas; Paust, Nils; von Stetten, Felix; Zengerle, Roland; Slocum, Alexander H; Steigert, Juergen

    2014-06-01

    This paper introduces a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA purification platform (LabTube). We demonstrate LabTube-based fully automated DNA purification of as low as 100 cell-equivalents of verotoxin-producing Escherichia coli (VTEC) in water, milk and apple juice in a laboratory centrifuge, followed by integrated and automated LAMP amplification with a reduction of hands-on time from 45 to 1 min. The heating system consists of two parallel SMD thick film resistors and a NTC as heating and temperature sensing elements. They are driven by a 3 V battery and controlled by a microcontroller. The LAMP reagents are stored in the elution chamber and the amplification starts immediately after the eluate is purged into the chamber. The LabTube, including a microcontroller-based heating system, demonstrates contamination-free and automated sample-to-answer nucleic acid testing within a laboratory centrifuge. The heating system can be easily parallelized within one LabTube and it is deployable for a variety of heating and electrical applications.

  17. Water purification in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Giammarchi, M. [Infn Milano (Italy); Balata, M.; Ioannucci, L.; Nisi, S. [Laboratori Nazionali del Gran Sasso (Italy); Goretti, A.; Ianni, A. [Princeton University (United States); Miramonti, L. [Dip. di Fisica dell' Università di Milano e Infn (Italy)

    2013-08-08

    Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.

  18. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    Science.gov (United States)

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  19. Affinity chromatography: A versatile technique for antibody purification.

    Science.gov (United States)

    Arora, Sushrut; Saxena, Vikas; Ayyar, B Vijayalakshmi

    2017-03-01

    Antibodies continue to be extremely utilized entities in myriad applications including basic research, imaging, targeted delivery, chromatography, diagnostics, and therapeutics. At production stage, antibodies are generally present in complex matrices and most of their intended applications necessitate purification. Antibody purification has always been a major bottleneck in downstream processing of antibodies, due to the need of high quality products and associated high costs. Over the years, extensive research has focused on finding better purification methodologies to overcome this holdup. Among a plethora of different techniques, affinity chromatography is one of the most selective, rapid and easy method for antibody purification. This review aims to provide a detailed overview on affinity chromatography and the components involved in purification. An array of support matrices along with various classes of affinity ligands detailing their underlying working principles, together with the advantages and limitations of each system in purifying different types of antibodies, accompanying recent developments and important practical methodological considerations to optimize purification procedure are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Radiation-adsorption purification of effluents containing pesticides

    International Nuclear Information System (INIS)

    Brusentseva, S.A.; Shubin, V.N.; Nikonorova, G.K.; Zorin, D.M.; Sosnovskaya, A.A.; Petryaev, E.P.; Vlasova, V.I.; Edimicheva, I.P.; Subbotina, N.N.; Belorusskij Gosudarstvennyj Univ., Minsk)

    1986-01-01

    The radiation-adsorption purification is one of the new direction in the radiation purification of natural wastes and effluents containing pesticides. This method combines the conventional adsorption purification with radiation treatment of the sorbent, and the result the protection time of the sorbent increases due to the radiation regeneration of carbon. In present work the method was used for purification of effluents from pesticides, such as 4,4'Dichlorodiphenyltrichloroethane /DDT/, 1,2,3,4,5,6-hexachlorocyclohexane /HCCH/, dimethyl 2,2-dichlorovinylphosphate /DDVF/ and petroleum products (a mixture of kerosene and xylene in ratio 7:1). Such effluents are formed at factories producing an insecticide aerosol 'Prime-71'. Three investigations were carried out on model with a solution similar composition to industrial effluents. (author)

  1. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jinlan; Li, Xiaolu [State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing 100005, People' s Republic of China (China); Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People' s Republic of China (China); Feng, Yue; Zhang, Bo [Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People' s Republic of China (China); Miao, Shiying [State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing 100005, People' s Republic of China (China); Wang, Linfang, E-mail: lfwangz@yahoo.com [State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing 100005, People' s Republic of China (China); Wang, Na, E-mail: nawang@tsinghua.edu.cn [Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People' s Republic of China (China)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We truncated the signal peptide of OppA{sub TTE0054} to make it express in Escherichia coli as a soluble protein. Black-Right-Pointing-Pointer Crystals of OppA{sub TTE0054} were grown by sitting-drop vapor diffusion method. Black-Right-Pointing-Pointer The crystal of OppA{sub TTE0054} diffracted to 2.25 A. -- Abstract: Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS-PAGE after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 A. The crystal belonged to space group C222{sub 1}, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 A, and {alpha} = {beta} = {gamma} = 90 Degree-Sign .

  2. Escherichia coli O26 IN RAW BUFFALO MILK: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    A. Rella

    2013-02-01

    Full Text Available Escherichia coli O26 is considered to be one of the most important food-borne pathogen. In this study, 120 buffalo milk samples collected in Lazio and in Apulia regions were tested for the presence of E. coli O26. One buffalo milk sample (0,8% tested positive for E. coli O26; the isolate was positive at the verocytotoxicity test and it showed resistance properties to different antimicrobial classes. These preliminary results highlight the need to monitor the foods of animal origin used for production and eaten by a wide range of persons, respect VTEC organism.

  3. Nanocellulose-Based Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Hugo Voisin

    2017-03-01

    Full Text Available Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  4. Escherichia coli as a production host for novel enzymes from basidiomycota.

    Science.gov (United States)

    Zelena, Katerina; Eisele, Nadine; Berger, Ralf G

    2014-12-01

    Many enzymes from basidiomycota have been identified and more recently characterized on the molecular level. This report summarizes the potential biotechnological applications of these enzymes and evaluates recent advances in their heterologous expression in Escherichia coli. Being one of the most widely used hosts for the production of recombinant proteins, there are, however, recurrent problems of recovering substantial yields of correctly folded and active enzymes. Various strategies for the efficient production of recombinant proteins from basidiomycetous fungi are reviewed including the current knowledge on vectors and expression strains, as well as methods for enhancing the solubility of target expression products and their purification. Research efforts towards the refolding of recombinant oxidoreductases and hydrolases are presented to illustrate successful production strategies. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Doing that thing that scientists do: A discovery-driven module on protein purification and characterization for the undergraduate biochemistry laboratory classroom.

    Science.gov (United States)

    Garrett, Teresa A; Osmundson, Joseph; Isaacson, Marisa; Herrera, Jennifer

    2015-01-01

    In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module, students develop research skills through work on an original research project and gain confidence in their ability to design and execute an experiment while faculty can enhance their scholarly pursuits through the acquisition of original data in the classroom laboratory. Students are prepared for a 6-8 week discovery-driven project on the purification of the Escherichia coli cytidylate kinase (CMP kinase) through in class problems and other laboratory exercises on bioinformatics and protein structure analysis. After a minimal amount of guidance on how to perform the CMP kinase in vitro enzyme assay, SDS-PAGE, and the basics of protein purification, students, working in groups of three to four, develop a protein purification protocol based on the scientific literature and investigate some aspect of CMP kinase that interests them. Through this process, students learn how to implement a new but perhaps previously worked out procedure to answer their research question. In addition, they learn the importance of keeping a clear and thorough laboratory notebook and how to interpret their data and use that data to inform the next set of experiments. Following this module, students had increased confidence in their ability to do basic biochemistry techniques and reported that the "self-directed" nature of this lab increased their engagement in the project. © 2015 The International Union of Biochemistry and Molecular Biology.

  6. Expression, purification, crystallization and preliminary diffraction studies of the mammalian DAG kinase homologue YegS from Escherichia coli

    International Nuclear Information System (INIS)

    Bakali H, M. Amin; Nordlund, Pär; Hallberg, B. Martin

    2006-01-01

    The overexpression, crystallization and preliminary diffraction analysis of E. coli YegS are reported. yegS is a gene encoding a 32 kDa cytosolic protein with unknown function but with strong sequence homology to a family of structurally uncharacterized eukaryotic non-protein kinases: diacylglycerol kinases, sphingosine kinases and ceramide kinases. Here, the overexpression, crystallization and preliminary diffraction analysis of Escherichia coli YegS are reported. The crystals belong to space group P2 1 , with unit-cell parameters a = 42.4, b = 166.1, c = 48.5 Å, β = 96.97°. The presence of a dimer in the asymmetric unit was estimated to give a Matthews coefficient (V M ) of 2.5 Å 3 Da −1 and a solvent content of 50.8%(v/v). Single-wavelength diffraction data were collected to a resolution of 1.9 Å using synchrotron radiation

  7. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...

  8. Sodium purification in Rapsodie; La purification du sodium a Rapsodie

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, B [Commissariat a l' Energie Atomique, Dir. des Piles Atomiques, Cadarache (France). Centre d' Etudes Nucleaires

    1968-07-01

    This report is one of a series of publications presenting the main results of tests carried out during the start-up of the first french fast neutron reactor: Rapsodie. The article presents the sodium purification techniques used in the reactor cooling circuits both from the constructional point of view and with respect to results obtained during the first years working. (author) [French] Ce rapport fait partie d'une serie de publications presentant l'essentiel des resultats des essais effectues a l'occasion du demarrage du premier reacteur francais a neutrons rapides: RAPSODIE. Cet article expose les techniques de la purification du sodium utilise dans les circuits de refroidissement du reacteur tant au point de vue de leur realisation technologique, que des resultats obtenus pendant la premiere annee de fonctionnement. (auteur)

  9. Purification non-aqueous solution of quantum dots CdSe- CdS-ZnS from excess organic substance-stabilizer by use PE- HD membrane

    Science.gov (United States)

    Kosolapova, K.; Al-Alwani, A.; Gorbachev, I.; Glukhovskoy, E.

    2015-11-01

    Recently, a new simple method for the purification of CdSe-CdS-ZnS quantum dots by using membrane filtration, the filtration process, successfully separated the oleic acid from quantum dots through membranes purification after synthesis; purification of quantum dots is a very significant part of post synthetical treatment that determines the properties of the material. We explore the possibilities of the Langmuir-Blodgett technique to make such layers, using quantum dots as a model system. The Langmuir monolayer of quantum dots were then investigated the surface pressure-area isotherm. From isotherm, we found the surface pressure monolayer changed with time.

  10. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2016-12-01

    Full Text Available Traditional Chinese Medicine (TCM has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  11. Purification of functionalized DNA origami nanostructures.

    Science.gov (United States)

    Shaw, Alan; Benson, Erik; Högberg, Björn

    2015-05-26

    The high programmability of DNA origami has provided tools for precise manipulation of matter at the nanoscale. This manipulation of matter opens up the possibility to arrange functional elements for a diverse range of applications that utilize the nanometer precision provided by these structures. However, the realization of functionalized DNA origami still suffers from imperfect production methods, in particular in the purification step, where excess material is separated from the desired functionalized DNA origami. In this article we demonstrate and optimize two purification methods that have not previously been applied to DNA origami. In addition, we provide a systematic study comparing the purification efficacy of these and five other commonly used purification methods. Three types of functionalized DNA origami were used as model systems in this study. DNA origami was patterned with either small molecules, antibodies, or larger proteins. With the results of our work we aim to provide a guideline in quality fabrication of various types of functionalized DNA origami and to provide a route for scalable production of these promising tools.

  12. Biodiesel separation and purification: A review

    International Nuclear Information System (INIS)

    Atadashi, I.M.; Aroua, M.K.; Aziz, A. Abdul

    2011-01-01

    Biodiesel as a biodegradable, sustainable and clean energy has worldwide attracted renewed and growing interest in topical years, chiefly due to development in biodiesel fuel and ecological pressures which include climatic changes. In the production of biodiesel from biomass, separation and purification of biodiesel is a critical technology. Conventional technologies used for biodiesel separation such as gravitational settling, decantation, filtration and biodiesel purification such as water washing, acid washing, and washing with ether and absorbents have proven to be inefficient, time and energy consumptive, and less cost effective. The involvement of membrane reactor and separative membrane shows great promise for the separation and purification of biodiesel. Membrane technology needs to be explored and exploited to overcome the difficulties usually encountered in the separation and purification of biodiesel. In this paper both conventional and most recent membrane technologies used in refining biodiesel have been critically reviewed. The effects of catalysts, free fatty acids, water content and oil to methanol ratios on the purity and quality of biodiesel are also examined. (author)

  13. Evaluation of Antimicrobial Activity of Lactoferrin against P.Aeruginosa and E.Coli Growth

    Directory of Open Access Journals (Sweden)

    R Sharbafi

    2016-07-01

    Full Text Available BACKGROUND AND OBJECTIVE: Lactoferrin(LF is an iron-binding glycoprotein that involves a diverse range of biological activities. Lactoferrin is a major component of milk and is present in exocrine secretions such  as tears, salvia, bile, and neutrophil granules. Lactoferrin has more potent antimicrobial activities against a wide range of gram negative and positive bacteria as well as antivirus activities. The purpose of this study is to evaluate the effect of this protein on P.aeruginosa growth in patients with burns that show drug resistance. METHODS: In this study, antibacterial activity of Lactoferrin has been scrutinized after isolation and purification of bovine colostrum against pseudomonas aeroginosa. Bacteria samples were isolated from scald patients (Shahid Zare Hospital; then microbial activity was confirmed with biochemical tests like oxidase, catalase and growth on TSI medium. Four concentrations 400,500,600 and 700 µg/ml of lactoferrin were assayed. Pseudomonas colonies counted and compared with negative control (without lactoferrin as well as E.coli (DH5α as positive control was considered. FINDINGS: Our results showed that 400µg/ml concentration of lactoferrin has the least inhibitory effect with 35% and 29% growth inhibitory and 700µg/ml concentration of lactoferrin has the highest inhibitory effect with 86% and 66% on Pseudomonas and E.coli, respectively. CONCLUSION: Our result showed that all of lactoferrin concentrations have inhibitory activity which in 700µg/ml has the highest inhibition against Pseudomonas aeroginosa and also E.coli.

  14. Influence of the drying method in chitosans purification step; Influencia do metodo de secagem na etapa de purificacao de quitosanas

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Ana C.M.; Batista, Jorge G.S.; Bettega, Antonio; Lima, Nelson B. de, E-mail: acmfonseca.acf@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Currently, the study of extracellular biopolymers properties has received prominence for being easy extraction and purification. Chitosan has been an attractive proposition for applications in various fields such as engineering, biotechnology, medicine and pharmacology. For such applications, it is necessary purification of chitosan to obtain a product more concentrated and free of undesirable impurities. However, at this stage of the process of obtaining the biopolymer may occur morphological and physicochemical changes. This study evaluated the influence of the drying process after purification of a commercial chitosan sample and the importance of this step and its cost/benefit in applications requiring a high degree of purity. The method of drying influenced in the organoleptic properties and in the main characteristics of material. Analysis of the crystal structure by X-ray diffraction showed that the degree of crystallinity, X (%), in the purified chitosan samples was lower when compared with the unpurified sample. The degree of acetylation, DA (%), was analyzed by spectroscopy infrared with no significant changes on the three drying methods assessed, unlike the viscosimetric molecular weight, M{sub v}, determined by capillary viscometry. (author)

  15. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives

    Science.gov (United States)

    Barras, Alexandre; Martin, Fernando Ariel; Bande, Omprakash; Baumann, Jean-Sébastien; Ghigo, Jean-Marc; Boukherroub, Rabah; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2013-02-01

    Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a ``click'' chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with

  16. Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes One-step purification of Pfu DNA polymerase.

    Science.gov (United States)

    Melissis, S; Labrou, N E; Clonis, Y D

    2006-07-28

    The commercial availability of DNA polymerases has revolutionized molecular biotechnology and certain sectors of the bio-industry. Therefore, the development of affinity adsorbents for purification of DNA polymerases is of academic interest and practical importance. In the present study we describe the design, synthesis and evaluation of a combinatorial library of novel affinity ligands for the purification of DNA polymerases (Pols). Pyrococcus furiosus DNA polymerase (Pfu Pol) was employed as a proof-of-principle example. Affinity ligand design was based on mimicking the natural interactions between deoxynucleoside-triphosphates (dNTPs) and the B-motif, a conserved structural moiety found in Pol-I and Pol-II family of enzymes. Solid-phase 'structure-guided' combinatorial chemistry was used to construct a library of 26 variants of the B-motif-binding 'lead' ligand X-Trz-Y (X is a purine derivative and Y is an aliphatic/aromatic sulphonate or phosphonate derivative) using 1,3,5-triazine (Trz) as the scaffold for assembly. The 'lead' ligand showed complementarity against a Lys and a Tyr residue of the polymerase B-motif. The ligand library was screened for its ability to bind and purify Pfu Pol from Escherichia coli extract. One immobilized ligand (oABSAd), bearing 9-aminoethyladenine (AEAd) and sulfanilic acid (oABS) linked on the triazine scaffold, displayed the highest purifying ability and binding capacity (0,55 mg Pfu Pol/g wet gel). Adsorption equilibrium studies with this affinity ligand and Pfu Pol determined a dissociation constant (K(D)) of 83 nM for the respective complex. The oABSAd affinity adsorbent was exploited in the development of a facile Pfu Pol purification protocol, affording homogeneous enzyme (>99% purity) in a single chromatography step. Quality control tests showed that Pfu Pol purified on the B-motif-complementing ligand is free of nucleic acids and contaminating nuclease activities, therefore, suitable for experimental use.

  17. Purification of crude biodiesel using dry washing and membrane technologies

    OpenAIRE

    Atadashi, I.M.

    2015-01-01

    Purification of crude biodiesel is mandatory for the fuel to meet the strict international standard specifications for biodiesel. Therefore, this paper carefully analyzed recently published literatures which deal with the purification of biodiesel. As such, dry washing technologies and the most recent membrane biodiesel purification process have been thoroughly examined. Although purification of biodiesel using dry washing process involving magnesol and ion exchange resins provides high-quali...

  18. CONSTRUCTION, EXPRESSION AND PURIFICATION OF RECOMBINANT PRE-MATURE PEPTIDE OF PLANTARICIN F FROM Lactobacillus plantarum S34 IN Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kusdianawati Kusdianawati

    2015-09-01

    Full Text Available Plantaricin is one of bacteriocins that have the potential to be used as food preservative. Plantaricin is safe for human consumption because it can be easily degraded by proteolytic enzymes. The objective of this study was to express and purify recombinant pre-mature peptide of plantaricin F from Lactobacillus plantarum S34 in Escherichia coli. Plantaricin gene-specific primer was used to obtain pln F structural gene amplicon from L. plantarum S34. This amplicon was cloned in pET32a vector and expressed in E. coli BL21 (DE3 pLysS. Pre-mature plantaricin F peptide was expressed as Histagged-fusion protein and separated by Co2+-chelating affinity chromatography. L. plantarum S34-derived pre-mature plantaricin F peptide fused with thioredoxin-(His6tag had successfully been expressed in E. coli BL21 (DE3 pLysS using pET32a as an expression vector. The fused recombinant pln F as pre-mature state expressed had a molecular mass of +24 kDa, meanwhile the fused recombinant that contained only the leader peptide of pln F appeared as +20 kDa based on SDS-PAGE separations. The optimal production of fused recombinant pln F as soluble fraction was obtained when culture condition was added with 0.5 mM of IPTG and incubated at 22°C for 5 hours (OD~1. Furthermore, the expression of fused recombinant pln F as its pre-mature peptide pointed out that the pln F’s leader peptide could be proteolytically cleaved by a system in heterologous cells. Overall, heterologous pln F production as pre-mature peptide fused with thioredoxin-(His6tag had been well established. From this research, we expect plantaricin F can be expressed and purified in E. coli.

  19. Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli.

    Science.gov (United States)

    Sequeira, Ana Filipa; Turchetto, Jeremy; Saez, Natalie J; Peysson, Fanny; Ramond, Laurie; Duhoo, Yoan; Blémont, Marilyne; Fernandes, Vânia O; Gama, Luís T; Ferreira, Luís M A; Guerreiro, Catarina I P I; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are large, complex libraries of bioactive, disulphide-rich peptides. These peptides, and their novel biological activities, are of increasing pharmacological and therapeutic importance. However, recombinant expression of venom peptides in Escherichia coli remains difficult due to the significant number of cysteine residues requiring effective post-translational processing. There is also an urgent need to develop high-throughput recombinant protocols applicable to the production of reticulated peptides to enable efficient screening of their drug potential. Here, a comprehensive study was developed to investigate how synthetic gene design, choice of fusion tag, compartment of expression, tag removal conditions and protease recognition site affect levels of solubility of oxidized venom peptides produced in E. coli. The data revealed that expression of venom peptides imposes significant pressure on cysteine codon selection. DsbC was the best fusion tag for venom peptide expression, in particular when the fusion was directed to the bacterial periplasm. While the redox activity of DsbC was not essential to maximize expression of recombinant fusion proteins, redox activity did lead to higher levels of correctly folded target peptides. With the exception of proline, the canonical TEV protease recognition site tolerated all other residues at its C-terminus, confirming that no non-native residues, which might affect activity, need to be incorporated at the N-terminus of recombinant peptides for tag removal. This study reveals that E. coli is a convenient heterologous host for the expression of soluble and functional venom peptides. Using the optimal construct design, a large and diverse range of animal venom peptides were produced in the µM scale. These results open up new possibilities for the high-throughput production of recombinant disulphide-rich peptides in E. coli.

  20. Purification and biochemical characterization of Mur ligases from Staphylococcus aureus.

    Science.gov (United States)

    Patin, Delphine; Boniface, Audrey; Kovač, Andreja; Hervé, Mireille; Dementin, Sébastien; Barreteau, Hélène; Mengin-Lecreulx, Dominique; Blanot, Didier

    2010-12-01

    The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His(6)-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted L-Ala, L-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for L-Ala. S. aureus MurE was very specific for L-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and L-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (L-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and L-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  1. Escherichia coli pathotypes

    Science.gov (United States)

    Escherichia coli strains are important commensals of the intestinal tract of humans and animals; however, pathogenic strains, including diarrhea-inducing E. coli and extraintestinal pathogenic E. coli. Intestinal E. coli pathotypes may cause a dehydrating watery diarrhea, or more severe diseases su...

  2. A facile TiO{sub 2}/PVDF composite membrane synthesis and their application in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: wei.zhang@unisa.edu.au; Zhang, Yiming; Fan, Rong; Lewis, Rosmala [University of South Australia, Centre for Water Management and Reuse (Australia)

    2016-01-15

    In this work, we have demonstrated a facile wet chemical method to synthesise TiO{sub 2}/PVDF composite membranes as alternative water purification method to traditional polymer-based membrane. For the first time, hydrothermally grown TiO{sub 2} nanofibers under alkali conditions were successfully inserted into PVDF membranes matrix. The structure, permeability and anti-fouling performance of as-prepared PVDF/TiO{sub 2} composite membranes were studied systematically. The TiO{sub 2}/PVDF composite membranes prepared in this work promise great potential uses in water purification applications as microfiltration membranes due to its excellent physical/chemical resistance, anti-fouling and mechanical properties.

  3. Physicochemical Factors: Impact on Spermagglutination Induced by Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kiranjeet Kaur

    2014-02-01

    Full Text Available Motility is a sensitive parameter of sperm function which is predictive of its fertilization potential in vitro. The decrease in sperm motility may be associated with sperm agglutination and immobilization due to mere presence of bacteria or excretion of bacterial toxic products. Supplementation with various agents like sucrose, mannitol, calcium, and EDTA is well known to improve the sperm motility in vitro. The present study was designed to check any protective role exerted by the addition of different agents on spermatozoal motility against E. coli induced sperm agglutination. 52 semen specimens were screened for the presence of sperm-agglutinating strain of E. coli. Further, influence of various factors, namely, sugars, salts, and chelating agents was studied. Also, the impact of exposure to high temperature and alcohol on sperm-agglutinating efficiency of E. coli was observed. None of the factors could inhibit the sperm agglutination induced by E. coli, except high temperature suggesting the involvement of protein moiety. In addition, it was observed that agglutinating efficiency of E. coli was limited to spermatozoa and RBCs. It may be concluded that sperm-agglutinating property of E. coli is quite stable as various physicochemical factors tested did not show any negative effect on the same except high temperature.

  4. Expression, purification, crystallization and preliminary X-ray diffraction analysis of carbonyl reductase from Candida parapsilosis ATCC 7330

    International Nuclear Information System (INIS)

    Aggarwal, Nidhi; Mandal, P. K.; Gautham, Namasivayam; Chadha, Anju

    2013-01-01

    The expression, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies on C. parapsilosis carbonyl reductase are reported. The NAD(P)H-dependent carbonyl reductase from Candida parapsilosis ATCC 7330 catalyses the asymmetric reduction of ethyl 4-phenyl-2-oxobutanoate to ethyl (R)-4-phenyl-2-hydroxybutanoate, a precursor of angiotensin-converting enzyme inhibitors such as Cilazapril and Benazepril. The carbonyl reductase was expressed in Escherichia coli and purified by GST-affinity and size-exclusion chromatography. Crystals were obtained by the hanging-drop vapour-diffusion method and diffracted to 1.86 Å resolution. The asymmetric unit contained two molecules of carbonyl reductase, with a solvent content of 48%. The structure was solved by molecular replacement using cinnamyl alcohol dehydrogenase from Saccharomyces cerevisiae as a search model

  5. The Extraction and Partial Purification of Bacterial DNA as a Practical Exercise for GCE Advanced Level Students.

    Science.gov (United States)

    Falconer, A. C.; Hayes, L. J.

    1986-01-01

    Describes a relatively simple method of extraction and purification of bacterial DNA. This technique permits advanced secondary-level science students to obtain adequate amounts of DNA from very small pellets of bacteria and to observe some of its polymer properties. (ML)

  6. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery.

    Science.gov (United States)

    Turchetto, Jeremy; Sequeira, Ana Filipa; Ramond, Laurie; Peysson, Fanny; Brás, Joana L A; Saez, Natalie J; Duhoo, Yoan; Blémont, Marilyne; Guerreiro, Catarina I P D; Quinton, Loic; De Pauw, Edwin; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large

  7. Production and Purification of the Native Saccharomyces cerevisiae Hsp12 in Escherichia coli.

    Science.gov (United States)

    Léger, Antoine; Hocquellet, Agnès; Dieryck, Wilfrid; Moine, Virginie; Marchal, Axel; Marullo, Philippe; Josseaume, Annabelle; Cabanne, Charlotte

    2017-09-20

    Hsp12 is a small heat shock protein produced in many organisms, including the yeast Saccharomyces cerevisiae. It has been described as an indicator of yeast stress rate and has also been linked to the sweetness sensation of wine. To obtain a sufficient amount of protein, we produced and purified Hsp12 without tag in Escherichia coli. A simple fast two-step process was developed using a microplate approach and a design of experiments. A capture step on an anion-exchange salt-tolerant resin was followed by size exclusion chromatography for polishing, leading to a purity of 97%. Thereafter, specific anti-Hsp12 antibodies were obtained by rabbit immunization. An ELISA was developed to quantify Hsp12 in various strains of Saccharomyces cerevisiae. The antibodies showed high specificity and allowed the quantitation of Hsp12 in the yeast. The quantities of Hsp12 measured in the strains differed in direct proportion to the level of expression found in previous studies.

  8. RELIGION AND PURIFICATION OF SOUL

    Directory of Open Access Journals (Sweden)

    Azam Khodashenas Pelko

    2010-11-01

    Full Text Available The Jainism emphasizes three major teachings about the purification of the soul (jiva, Ahimsa, Aparigrapha and anekantwad. Jainism, The focus of this religion has been purification of the soul by means of right conduct, right faith and right knowledge. The ultimate goal of Hinduism is Moksha or liberation (total freedom. In Hinduism, purification of the soul is a goal that one must work to attain. The Buddhism is the science of pursuing the aim of making the human mind perfect, and of purifying the human soul. The knowledge of purifying of the soul and softening of the hearts is as essential for human. They having the correct motivations means purifying our souls from hypocrisy, caprice, and heedlessness. The primary goal of Taoism may be described as the mystical intuition of the Tao, which is the way, the undivided unity, and the ultimate Reality. According to the Christianity access to truth cannot be conceived without purity of the soul

  9. Solvent-extraction purification of neptunium

    International Nuclear Information System (INIS)

    Kyser, E.A.; Hudlow, S.L.

    2008-01-01

    The Savannah River Site (SRS) has recovered 237 Np from reactor fuel that is currently being processed into NpO 2 for future production of 238 Pu. Several purification flowsheets have been utilized. An oxidizing solvent-extraction (SX) flowsheet was used to remove Fe, sulfate ion, and Th while simultaneously 237 Np, 238 Pu, u, and nonradioactive Ce(IV) was extracted into the tributyl phosphate (TBP) based organic solvent. A reducing SX flowsheet (second pass) removed the Ce and Pu and recovered both Np and U. The oxidizing flowsheet was necessary for solutions that contained excessive amounts of sulfate ion. Anion exchange was used to perform final purification of Np from Pu, U, and various non-actinide impurities. The Np(IV) in the purified solution was then oxalate-precipitated and calcined to an oxide for shipment to other facilities for storage and future target fabrication. Performance details of the SX purification and process difficulties are discussed. (authors)

  10. Single-step affinity purification for fungal proteomics.

    Science.gov (United States)

    Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A

    2010-05-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  11. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    Directory of Open Access Journals (Sweden)

    Misri Gozan

    2017-04-01

    Full Text Available High purity of Bioethanol is required in biofuel mixing with gasoline (EXX. In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption method. Data from previous lab experiments and some literatures were used. The results showed that distillation-adsorption method is more economical compared to vapor permeation technology. Payback period of the simulation is 3.9 years and 4.3 years to distillation adsorption and vapor permeation respectively with each IRR value is 20.23% and 17.89%. Initial investment value of vapor permeation is 9.6% higher than distillation method. Significant difference observed in operating costs, since more units involved in vapor permeation require more labors to operate.

  12. Helicase properties of the Escherichia coli UvrAb protein complex

    International Nuclear Information System (INIS)

    Oh, E.Y.; Grossman, L.

    1987-01-01

    The Escherichia coli UvrA protein has an associated ATPase activity with a turnover number affected by the presence of UvrB protein as well as by DNA. Specifically, the structure of DNA significantly influences the turnover rate of the UvrAB ATPase activity. Double-stranded DNA maximally activates the turnover rate 10-fold whereas single-stranded DNA maximally activates the turnover rate 20-fold, suggesting that the mode of interaction of UvrAB protein with different DNAs is distinctive. We have previously shown that the UvrAB protein complex, driven by the binding energy of ATP, can locally unwind supercoiled DNA. The nature of the DNA unwinding activity and single-stranded DNA activation of ATPase activity suggest potential helicase activity. In the presence of a number of helicase substrates, the UvrAB complex, indeed, manifests a strand-displacement activity-unwinding short duplexes and D-loop DNA, thereby generating component DNA structures. The energy for the activity is derived from ATP or dATP hydrolysis. Unlike the E. coli DnaB, the UvrAB helicase is sensitive to UV-induced photoproducts

  13. Ash study for biogas purification

    International Nuclear Information System (INIS)

    Juarez V, R. I.

    2016-01-01

    This work evaluates the ashes generated from the wood and coal combustion process of the thermoelectric plant in Petacalco, Guerrero (Mexico) in order to determine its viability as a filter in the biogas purification process. The ash is constituted by particles of morphology and different chemical properties, so it required a characterization of the same by different analytical techniques: as was scanning electron microscopy and X-ray diffraction, in order to observe the microstructure and determine the elemental chemical composition of the particles. Prior to the analysis, a set of sieves was selected to classify as a function of particle size. Four different types of ashes were evaluated: one generated by the wood combustion (wood ash) and three more of the Petacalco thermoelectric generated by the coal combustion (wet fly ash, dry fly ash and dry bottom ash). (Author)

  14. DNA repair by the Ada protein of E. coli

    International Nuclear Information System (INIS)

    Karran, P.; Hall, J.

    1988-01-01

    This paper discusses the Ada protein of E. coli which exemplifies the highly specialized nature of the enzymes which have evolved to repair DNA. According to the authors, this protein exhibits not only novel mechanistic features but also provides an apparently unique example of a strategy for controlling gene expression in E. coli. They report that knowledge of the properties and mode of action of the Ada protein has afforded insight into how human cells are affected by alkylating agents, including those used in chemotherapy

  15. Augmenting static and dynamic mechanical strength of carbon nanotube/epoxy soft nanocomposites via modulation of purification and functionalization routes.

    Science.gov (United States)

    Billing, Beant Kaur; Dhar, Purbarun; Singh, Narinder; Agnihotri, Prabhat K

    2018-01-03

    A detailed experimental investigation was carried out to establish the relationship between CNT purification and functionalization routes and the average response of CNT/epoxy nanocomposites under static and dynamic loading. It was shown that the relative improvement in the mechanical properties of the epoxy matrix due to the addition of CNTs depends on the choice of purification and functionalization steps. A better dispersion of CNTs was recorded for the functionalized CNTs as compared to the oxidized and CVD grown CNTs. Moreover, tensile, 3-point bending and nanoDMA testing performed on nanocomposites processed with CVD-grown, oxidized and functionalized CNTs revealed that COOH functionalization after the oxidation of CNTs at 350 °C is the optimized processing route to harness the excellent properties of CNTs in CNT/epoxy nanocomposites.

  16. Purification of rhamnolipid using colloidal magnetic nanoparticles ...

    African Journals Online (AJOL)

    Phospholipid-coated colloidal magnetic nanoparticles with mean magnetite core size of 9 nm are shown to be effective ion exchange media for the recovery and purification of Rhaminolipid from culture mixtures. These particles have high adsorption capacity for purification (an order of magnitude larger than the best ...

  17. Genetic Control of the Secondary Modification of Deoxyribonucleic Acid in Escherichia coli1

    Science.gov (United States)

    Mamelak, Linda; Boyer, Herbert W.

    1970-01-01

    The wild-type restriction and modification alleles of Escherichia coli K-12 and B were found to have no measurable effect on the patterns of methylated bases in the deoxyribonucleic acid (DNA) of these strains. The genetic region controlling the methylation of cytosine in E. coli K-12 was mapped close to his, and the presence or absence of this gene in E. coli B or E. coli K had no effect on the restriction and modification properties of these strains. Thus, only a few of the methylated bases in the DNA of these strains are involved in host modification, and the biological role of the remainder remains obscure. PMID:4919756

  18. Effect of water purification process in radioactive content: analysis on small scale purification plants

    International Nuclear Information System (INIS)

    Lopez del Rio, H.; Quiroga S, J. C.; Davila R, J. I.; Mireles G, F.

    2009-10-01

    Water from small scale purification plants is a low cost alternative for consumers in comparison to the bottled commercial presentations. Because of its low cost per liter, the consumption of this product has increased in recent years, stimulating in turn the installation of purification systems for these small businesses. The purpose of this study was to estimate the efficiency of small scale purification systems located in the cities of Zacatecas and Guadalupe, Zacatecas, to reduce the radioactive content of water. It was measured the total alpha and beta activity in water samples of entry and exit to process, through the liquid scintillation technique. In general it was observed that the process is more efficient in removing alpha that beta activity. The fraction of total alpha activity removed varied between 27 and 100%, while between 0 and 77% of the total beta activity was removed by the analyzed plants. In all cases, the total radioactivity level was lower than the maximum permissible value settled by the official mexican standard for drinking water. (Author)

  19. Synthesis of avenanthramides using engineered Escherichia coli.

    Science.gov (United States)

    Lee, Su Jin; Sim, Geun Young; Kang, Hyunook; Yeo, Won Seok; Kim, Bong-Gyu; Ahn, Joong-Hoon

    2018-03-22

    Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate:coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns

  20. Synthesis and characterization of Ag nanoparticles decorated mesoporous sintered activated carbon with antibacterial and adsorptive properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxia; Xiao, Kaijun, E-mail: fekjxiao@scut.edu.cn; He, Tinglin; Zhu, Liang, E-mail: zhuliang@scut.edu.cn

    2015-10-25

    In this study, the sliver nanoparticles (AgNPs) immobilized on the sintered activated carbon (Ag/SAC) were synthesized by the ultrasonic-assisted impregnation method and were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption. SEM showed that the AgNPs were well embedded in the SAC and immersion time had an important influence on final morphologies of AgNPs. Longer immersing duration caused significant aggregation of the AgNPs. The XRD data revealed that the successful synthesis of AgNPs on the SAC and immobilizing AgNPs on sintered active carbon did not change the crystalline degree of SAC. Texture characteristics were determined by analysis of the N{sub 2}/77 K isotherms. The minimum inhibitory concentration (MIC) of Ag/SAC against Escherichia coli (DH5α) and Staphyloccocus aureus (ATCC 29213) was evaluated by a broth dilution method. MICs such as 5 mg/L (against E. coli) and 10 mg/L (against S. aureus) suggest that Ag/SAC have predominant antibacterial activity compared to active carbon. - Highlights: • Sintered active carbon (SAC) was coated with Ag via a facile approach. • The Ag/SAC exhibit good adsorption properties and excellent antibacterial effects. • The Ag/SAC was durable and stable in the application of water purification.

  1. Expression of tung tree diacylglycerol acyltransferase 1 in E. coli

    Directory of Open Access Journals (Sweden)

    Klasson K Thomas

    2011-07-01

    Full Text Available Abstract Background Diacylglycerol acyltransferases (DGATs catalyze the final and rate-limiting step of triacylglycerol (TAG biosynthesis in eukaryotic organisms. Database search has identified at least 59 DGAT1 sequences from 48 organisms, but the expression of any DGAT1 as a full-length protein in E. coli had not been reported because DGAT1s are integral membrane proteins and difficult to express and purify. The objective of this study was to establish a procedure for expressing full-length DGAT1 in E. coli. Results An expression plasmid containing the open reading frame for tung tree (Vernicia fordii DGAT1 fused to maltose binding protein and poly-histidine affinity tags was constructed and expressed in E. coli BL21(DE3. Immunoblotting showed that the recombinant DGAT1 (rDGAT1 was expressed, but mostly targeted to the membranes and insoluble fractions. Extensive degradation also occurred. Nonetheless, the fusion protein was partially purified from the soluble fraction by Ni-NTA and amylose resin affinity chromatography. Multiple proteins co-purified with DGAT1 fusion protein. These fractions appeared yellow in color and contained fatty acids. The rDGAT1 was solubilized from the insoluble fraction by seven detergents and urea, with SDS and Triton X-100 being the most effective detergents. The solubilized rDGAT1 was partially purified by Ni-NTA affinity chromatography. PreScission protease digestion confirmed the identity of rDGAT1 and showed extensive precipitation following Ni-NTA affinity purification. Conclusions This study reports the first procedure for expressing full-length DGAT1 from any species using a bacterial expression system. The results suggest that recombinant DGAT1 is degraded extensively from the carboxyl terminus and associated with other proteins, lipids, and membranes.

  2. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Yi Ma

    2016-01-01

    Full Text Available Human epidermal growth factor (hEGF is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H10. The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development.

  3. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli.

    Science.gov (United States)

    Ma, Yi; Yu, Jieying; Lin, Jinglian; Wu, Shaomin; Li, Shan; Wang, Jufang

    2016-01-01

    Human epidermal growth factor (hEGF) is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe) at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO) and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H 10 . The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development.

  4. PARTIAL PURIFICATION AND CHARACTERIZATION OF ALKALOPHILIC PROTEASE FROM PSEUDOMONAS AERUGINOSA

    Directory of Open Access Journals (Sweden)

    R. Satheeskumar

    2013-10-01

    Full Text Available Partial purification and characterization of alkalophilic protease production from Pseudomonas aeruginosa was isolated from the gut of marine and coastal waters shrimp Penaeus monodon. The protease production was assayed in submerged fermentation to produce maximum protease activity (423 ± 0.09 U/ml. The enzyme was precipitated with ammonium sulphate and partially purified by ion exchange chromatography through DEAE Sephadex A-50 column. In 10th fraction showed maximum protease activity (734 ± 0.18 U/ml with increase in purification fold. The molecular weight of protease from Pseudomonas aeruginosa was recorded as 60 kDa. The stability of protease was tested at various pH and temperature; it showed maximum protease activity at pH-9 and temperature 50ºC. Among the various surfactants tested for enzyme stability, maximum activity was retained in poly ethylene glycol. The compatibility of protease enzyme with various commercial detergents; the enzyme retained maximum protease activity in tide. The results are indicated that all these properties make the bacterial proteases are most suitable for wide industrial applications.

  5. Antimicrobial Activities of TiO2 Nanoparticle Against Escherichia coli and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    F Barzegary

    2010-04-01

    Full Text Available Introduction: Organic antibacterial materials have been used as insecticides and bactericides for many years. Unfortunately, high temperatures in manufacturing process reduce their antibacterial properties. However, inorganic materials of antibacterial agents have excellent bacterial resistance and thermal stability. Over the past few decades, inorganic nanoparticles whose structures exhibit significantly novel and improved physical, chemical and biological properties and functionality due to their nano-scale size have elicited much interest. methods:The aim of this study was to investigate the antibacterial properties of one kind of nano-specimen (TiO2 nanoparticle against Escherichia coli and Streptococcus aureus. Our study was research perusal. In the first study, the optical density of E. coli and S. aureus cultures were observed in the presence of 0.01%, 0.75% and 1.5% of TiO2. In the second study, 6.3 log CFU/ml of E. coli and S. areus were separately exposed to 1.5% TiO2 at 37 ºC in water. In third study, we studied thew growth of E.coli in solid medium with and without nanoparticles. Results: The presence of 0.01% TiO2 nanoparticles didn’t have a statistically significant effect, but in the presence of 0.75% and 1.5% nanoparticles, the bacterial colonies decreased significantly. In the control group, bacterial cells survival was nearly 13 days, while complete cell death of E. coli was seen when 1.5% TiO2 was applied for 24 hours. The same experiment for S. aureu, showed that complete cell death occured when the bacterial culture was exposed to 1.5% TiO2 for 16 hours.. It was shown that presence of 1.5% TiO2 in the solid medium suppressed the growth of E. coli 5.6 times more (p < 0.001. Discussion: Our findings showed antibacterial effects of TiO2 nanoparticles against both bacteria, but S. areus bacteria were more sensitive to nanoparticles as compared to E. coli bacteria

  6. Purification of crude biodiesel using dry washing and membrane technologies

    Directory of Open Access Journals (Sweden)

    I.M. Atadashi

    2015-12-01

    Full Text Available Purification of crude biodiesel is mandatory for the fuel to meet the strict international standard specifications for biodiesel. Therefore, this paper carefully analyzed recently published literatures which deal with the purification of biodiesel. As such, dry washing technologies and the most recent membrane biodiesel purification process have been thoroughly examined. Although purification of biodiesel using dry washing process involving magnesol and ion exchange resins provides high-quality biodiesel fuel, considerable amount of spent absorbents is recorded, besides the skeletal knowledge on its operating process. Further, recent findings have shown that biodiesel purification using membrane technique could offer high-quality biodiesel fuel with less wastewater discharges. Thus, both researchers and industries are expected to benefit from the development of membrane technique in purifying crude biodiesel. As well biodiesel purification via membranes has been shown to be environmentally friendly. For these reasons, it is important to explore and exploit membrane technology to purify crude biodiesel.

  7. Nanospines incorporation into the structure of the hydrophobic cryogels via novel cryogelation method: an alternative sorbent for plasmid DNA purification.

    Science.gov (United States)

    Üzek, Recep; Uzun, Lokman; Şenel, Serap; Denizli, Adil

    2013-02-01

    In this study, it was aimed to prepare hydrophobic cryogels for plasmid DNA (pDNA) purification from Escherichia coli lysate. The hydrophobicity was achieved by incorporating a hydrophobic ligand, N-methacryloyl-(L)-phenylalanine (MAPA), into the cryogel backbone. In addition to the conventional cryogelation process, freeze-drying step was included to create nanospines. Three different cryogels {poly(2-hydoxyethyl methacrylate-N-methacryloyl-L-phenylalanine)-freeze dried, [P(HEMA-MAPA)-FD]; poly(2-hydoxyethyl methacrylate-N-methacryloyl-L-phenylalanine, [P(HEMA-MAPA)] and poly(2-hydoxyethyl methacrylate)-freeze dried, [P(HEMA)-FD]} were prepared, characterized, and used for DNA (salmon sperm DNA) adsorption studies from aqueous solution. The specific surface areas of cryogels were determined to be 21.4 m(2)/g for P(HEMA)-FD, 17.65 m(2)/g for P(HEMA-MAPA) and 36.0 m(2)/g for P(HEMA-MAPA)-FD. The parameters affecting adsorption such as temperature, initial DNA concentration, salt type and concentration were examined in continuous mode. The maximum adsorption capacities were observed as 45.31 mg DNA/g, 27.08 mg DNA/g and 1.81 mg DNA/g for P(HEMA-MAPA)-FD, P(HEMA-MAPA) and P(HEMA)-FD, respectively. Desorption process was performed using acetate buffer (pH 5.50) without salt. First, pDNA was isolated from E. coli lysate and the purity of pDNA was then determined by agarose gel electrophoresis. Finally, the chromatographic performance of P(HEMA-MAPA)-FD cryogel for pDNA purification was tested in FPLC. The resolution (R(s)) was 2.84, and the specific selectivity for pDNA was 237.5-folds greater than all impurities. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Combination of membrane technologies for purification of L (+) - lactic acid from juice of banana (Musa AAA, variety Cavendish cultivar Gram naine) obtained from an agroindustrial waste

    International Nuclear Information System (INIS)

    Murillo Viera, Esteban

    2013-01-01

    The process that has allowed recovery and purification of the L (+)-acid present in the juice fermented waste produced from banana was developed, treated enzymatically, using tangential nanofiltration. The effect of the enzymatic treatment was evaluated on physical chemical parameters of fermented banana juice. The process parameters of centrifugal clarification and microfiltration were characterized on banana juice as activities prior operations to recovery and purification of lactic acid. The temperature and the transmembrane pressure on the permeate flow and the performance of recovery and purification of lactic acid were evaluated by the ultrafiltration and nanofiltration processes. The properties physico-chemical the banana juice fermented and of the liquid filtrate obtained at the stage recovery and purification of lactic acid were compared by ultrafiltration [es

  9. Novel immobilization process of a thermophilic catalase: efficient purification by heat treatment and subsequent immobilization at high temperature.

    Science.gov (United States)

    Xu, Juan; Luo, Hui; López, Claudia; Xiao, Jing; Chang, Yanhong

    2015-10-01

    The main goal of the present work is to investigate a novel process of purification and immobilization of a thermophilic catalase at high temperatures. The catalase, originated from Bacillus sp., was overexpressed in a recombinant Escherichia coli BL21(DE3)/pET28-CATHis and efficiently purified by heat treatment, achieving a threefold purification. The purified catalase was then immobilized onto an epoxy support at different temperatures (25, 40, and 55 °C). The immobilizate obtained at higher temperatures reached its maximum activity in a shorter time than that obtained at lower temperatures. Furthermore, immobilization at higher temperatures required a lower ionic strength than immobilization at lower temperatures. The characteristics of immobilized enzymes prepared at different temperatures were investigated. The high-temperature immobilizate (55 °C) showed the highest thermal stability, followed by the 40 °C immobilizate. And the high-temperature immobilizate (55 °C) had slightly higher operational stability than the 25 °C immobilizate. All of the immobilized catalase preparations showed higher stability than the free enzyme at alkaline pH 10.0, while the alkali resistance of the 25 °C immobilizate was slightly better than that of the 40 and 55 °C immobilizates.

  10. Materials for Molybdenum 99 purification

    International Nuclear Information System (INIS)

    Wilkinson, M. Victoria; Mondino, Angel V.; Manzini, Alberto C.

    2003-01-01

    The National Atomic Energy Commission (CNEA) produces fission Mo 99, an isotope of wide use in nuclear medicine. In order to simplify the current Mo 99 production process, to shorten its duration and reduce impurities in the final product, alternative methods for purification steps were looked for. In this work a variety of new materials for the purification columns were designed, all of them with carbon. These materials were studied and a material which contribute with the best results for molybdenum retention, was selected. The preparation procedure and the working conditions were determined. (author)

  11. Optimization of serine protease purification from mango (Mangifera indica cv. Chokanan) peel in polyethylene glycol/dextran aqueous two phase system.

    Science.gov (United States)

    Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md Zaidul Islam; Yazid, Abdul Manap Mohd

    2012-01-01

    Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000-12,000 g·mol(-1)), tie line length (-3.42-35.27%), NaCl (-2.5-11.5%) and pH (4.5-10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol(-1) of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing.

  12. Bismuth Oxysulfide and Its Polymer Nanocomposites for Efficient Purification

    Directory of Open Access Journals (Sweden)

    Yidong Luo

    2018-03-01

    Full Text Available The danger of toxic organic pollutants in both aquatic and air environments calls for high-efficiency purification material. Herein, layered bismuth copper oxychalcogenides, BiCuSO, nanosheets of high photocatalytic activity were introduced to the PVDF (Polyvinylidene Fluoride. The fibrous membranes provide an easy, efficient, and recyclable way to purify organic pollutant. The physical and photophysical properties of the BiCuSO and its polymer composite were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, ultraviolet-visible diffuse reflection spectroscopy (DRS, X-ray photoelectron spectroscopy (XPS, electron spin resonance (EPR. Photocatalysis of Congo Red reveals that the BiCuSO/PVDF shows a superior photocatalytic activity of a 55% degradation rate in 70 min at visible light. The high photocatalytic activity is attributed to the exposed active {101} facets and the triple vacant associates V B i ‴ V O • • V B i ‴ . By engineering the intrinsic defects on the surface of bismuth oxysulfide, high solar-driven photocatalytic activity can be approached. The successful fabrication of the bismuth oxysulfide and its polymer nanocomposites provides an easy and general approach for high-performance purification materials for various applications.

  13. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Inhibition of Escherichia coli respiratory enzymes by short visible femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Lu, Chieh-Han; Hsu, Yung-Yuan; Lin, Kung-Hsuan; Tsen, Kong-Thon; Kuan, Yung-Shu

    2014-01-01

    A visible femtosecond laser is shown to be capable of selectively inactivating a wide spectrum of microorganisms in a wavelength and pulse width dependent manner. However, the mechanism of how a visible femtosecond laser affects the viability of different microorganisms is still elusive. In this paper, the cellular surface properties, membrane integrity and metabolic rate of Escherichia coli (E. coli) irradiated by a visible femtosecond laser (λ = 415 nm, pulse width = 100 fs) with different exposure times were investigated. Our results showed that femtosecond laser treatment for 60 min led to cytoplasmic leakage, protein aggregation and alternation of the physical properties of the E. coli cell membrane. In comparison, a 10 min exposure of bacteria to femtosecond laser irradiation induced an immediate reduction of 75% in the glucose-dependent respiratory rate, while the cytoplasmic leakage was not detected. Results from enzymatic assays showed that oxidases and dehydrogenases involved in the E. coli respiratory chain exhibited divergent susceptibility after laser irradiation. This early commencement of respiratory inhibition after a short irradiation is presumed to have a dominant effect on the early stage of bacteria inactivation. (paper)

  15. Two novel solvent system compositions for protected synthetic peptide purification by centrifugal partition chromatography.

    Science.gov (United States)

    Amarouche, Nassima; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, F; Borie, Nicolas; Renault, Jean-Hugues

    2014-04-11

    Protected synthetic peptide intermediates are often hydrophobic and not soluble in most common solvents. They are thus difficult to purify by preparative reversed-phase high-performance liquid chromatography (RP-HPLC), usually used for industrial production. It is then challenging to develop alternative chromatographic purification processes. Support-free liquid-liquid chromatographic techniques, including both hydrostatic (centrifugal partition chromatography or CPC) and hydrodynamic (counter-current chromatography or CCC) devices, are mainly involved in phytochemical studies but have also been applied to synthetic peptide purification. In this framework, two new biphasic solvent system compositions covering a wide range of polarity were developed to overcome solubility problems mentioned above. The new systems composed of heptane/tetrahydrofuran/acetonitrile/dimethylsulfoxide/water and heptane/methyl-tetrahydrofuran/N-methylpyrrolidone/water were efficiently used for the CPC purification of a 39-mer protected exenatide (Byetta®) and a 8-mer protected peptide intermediate of bivalirudin (Angiox®) synthesis. Phase compositions of the different biphasic solvent systems were determined by (1)H nuclear magnetic resonance. Physico-chemical properties including viscosity, density and interfacial tension of these biphasic systems are also described. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Fluorescence Spectral Properties of All4261 Binding with Phycocyanobilin in E.Coli

    Science.gov (United States)

    Ma, Q.; Zheng, X. J.; Zhou, Z.; Zhou, N.; Zhao, K. H.; Zhou, M.

    2014-07-01

    Cyanobacteriochromes (CBCRs) are chromophorylated proteins that acting as sensory photoreceptors in cyanobacteria. Based on the bioinformatics of All4261 in Nostoc sp. PCC7120, All4261 is a CBCR apoprotein composed of GAF domains in the N-terminal region. Via polymerase chain reaction with specific primers, All4261 was amplified with genome DNA of Nostoc sp. PCC7120 as template and then subcloned into the expression vector pET30(a+). To survey the fluorescence spectral properties, All4261 was coexpressed with the plasmid that catalyzes phycocyanobilin (PCB) biosynthesis, pACYC-ho1-pcyA, in E.coli BL21. Fluorescence emission spectra and excitation spectra showed that chromophorylated cells containing All4261-PCB had a fluorescence emission peak at 645 nm and a fluorescence excitation peak at 550 nm, but no reversible photoconversion. In order to identify the binding site of PCB in All4261, we obtained three variants All4261(C296L), All4261(C328A), and All4261(C339L), via sitedirected mutagenesis. The binding site was identified as C339 based on the lack of PCB binding of All4261(C339L).

  17. Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System.

    Science.gov (United States)

    Marshall, Ryan; Maxwell, Colin S; Collins, Scott P; Jacobsen, Thomas; Luo, Michelle L; Begemann, Matthew B; Gray, Benjamin N; January, Emma; Singer, Anna; He, Yonghua; Beisel, Chase L; Noireaux, Vincent

    2018-01-04

    CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Radiation purification of the chemical industry effluents and possibilities of realization of this method

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Kovalevskaya, A.M.; Shlyk, V.G.; Savushkin, I.A.; Kazazyan, V.T.

    1977-01-01

    Radiation-chemical methods for synthetic fibre industry effluents purification from cyanides, sulphides and monomers, as well as for disinfection of circulation water and improvement in sedimental and filtering properties of waste active slurry in petrochemical industry are described. Chemical plant effluents are purified by 70-90% from cyanides at the dose rate of 0,3 - 0,5 Mrad, by 60 - 70% from sulphides and monomers at the dose of 0,2 Mrad. Circulation water of petroleum processing plant is disinfected at the dose of 0,08 Mrad; the rates of filtration and sedimentation of waste active slurry increase two and three fold, correspondingly, at the dose of 0,6 Mrad. The power of radiation sources required for the industrial realization of radiation purification of liquid wastes has been calculated

  19. Cloning, Codon Optimization, and Expression of Yersinia intermedia Phytase Gene in E. coli.

    Science.gov (United States)

    Mirzaei, Maryam; Saffar, Behnaz; Shareghi, Behzad

    2016-06-01

    Phytate is an anti-nutritional factor in plants, which catches the most phosphorus contents and some vital minerals. Therefore, Phytase is added mainly as an additive to the monogastric animals' foods to hydrolyze phytate and increase absorption of phosphorus. Y. intermedia phytase is a new phytase with special characteristics such as high specific activity, pH stability, and thermostability. Our aim was to clone, express, and characterizea codon optimized Y. intermedia phytase gene in E. coli . The Y. intermedia phytase gene was optimized according to the codon usage in E. coli . The sequence was synthesized and sub-cloned in pET-22b (+) vector and transformed into E. coli Bl21 (DE3). The protein was expressed in the presence of IPTG at a final concentration of 1 mM at 30°C. The purification of recombinant protein was performed by Ni 2+ affinity chromatography. Phytase activity and stability were determined in various pH and temperatures. The codon optimized Y. intermedia phytase gene was sub-cloned successfully.The expression was confirmed by SDS-PAGE and Western blot analysis. The recombinant enzyme (approximately 45 kDa) was purified. Specific activity of enzyme was 3849 (U.mg -1 ) with optimal pH 5 and optimal temperature of 55°C. Thermostability (80°C for 15 min) and pH stability (3-6) of the enzyme were 56 and more than 80%, respectively. The results of the expression and enzyme characterization revealed that the optimized Y. intermedia phytase gene has a good potential to be produced commercially andto be applied in animals' foodsindustry.

  20. Purification of a-galactosidase from seeds of Sesbania marginata

    Directory of Open Access Journals (Sweden)

    Falco A.L.P.

    2000-01-01

    Full Text Available Alpha-galactosidase taken from a raw extract of Sesbania marginata legume seeds was purified by partitioning in aqueous two-phase systems (ATPS. Initially, galactomannan/dextran 2,000,000 systems were used for the purification, and the partition coefficients of alpha -galactosidase varied from 1.5 to 4.0. However, mass transport in these systems was poor due to the high viscosity of the employed polymers. Therefore, partitioning in polyethyleneglycol (PEG/ sodium phosphate systems and the effect of sodium chloride upon the enzyme purification and the yield of alpha -galactosidase were also investigated. The purification achieved in a single-step was 5.7 with a recovery of 144% of alpha -galactosidase, possibly due to the removal of materials which inhibited alpha -galactosidase activity before the purification. The removal of the main protein contaminants and the highest yields were achieved in PEG 4,000/ sodium phosphate + 6% NaCl system at pH 5.0. Further purification by preparative on-exchange chromatography was also developed.

  1. Necessity of purification during bacterial DNA extraction with environmental soils

    Directory of Open Access Journals (Sweden)

    Hyun Jeong Lim

    2017-08-01

    Full Text Available Complexity and heterogeneity of soil samples have often implied the inclusion of purification steps in conventional DNA extraction for polymerase chain reaction (PCR assays. Unfortunately the purification steps are also time and labor intensive. Therefore the necessity of DNA purification was re-visited and investigated for a variety of environmental soil samples that contained various amounts of PCR inhibitors. Bead beating and centrifugation was used as the baseline (without purification method for DNA extraction. Its performance was compared with that of conventional DNA extraction kit (with purification. The necessity criteria for DNA purification were established with environmental soil samples. Using lysis conditions at 3000 rpm for 3 minutes with 0.1 mm glass beads, centrifugation time of 10 minutes and 1:10 dilution ratio, the baseline method outperformed conventional DNA extraction on cell seeded sand samples. Further investigation with PCR inhibitors (i.e., humic acids, clay, and magnesium [Mg] showed that sand samples containing less than 10 μg/g humic acids and 70% clay may not require purifications. Interestingly, the inhibition pattern of Mg ion was different from other inhibitors due to the complexation interaction of Mg ion with DNA fragments. It was concluded that DNA extraction method without purification is suitable for soil samples that have less than 10 μg/g of humic acids, less than 70% clay content and less than 0.01% Mg ion content.

  2. Evaluation of strategies to control Fab light chain dimer during mammalian expression and purification: A universal one-step process for purification of correctly assembled Fab.

    Science.gov (United States)

    Spooner, Jennifer; Keen, Jenny; Nayyar, Kalpana; Birkett, Neil; Bond, Nicholas; Bannister, David; Tigue, Natalie; Higazi, Daniel; Kemp, Benjamin; Vaughan, Tristan; Kippen, Alistair; Buchanan, Andrew

    2015-07-01

    Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab. © 2015 Wiley Periodicals, Inc.

  3. E coli enteritis

    Science.gov (United States)

    ... coli; Food poisoning - E. coli; E. coli diarrhea; Hamburger disease ... coleslaw or potato salad) that have been out of the refrigerator too ... reheated Fish or oysters Raw fruits or vegetables that have ...

  4. Technological assumptions for biogas purification.

    Science.gov (United States)

    Makareviciene, Violeta; Sendzikiene, Egle

    2015-01-01

    Biogas can be used in the engines of transport vehicles and blended into natural gas networks, but it also requires the removal of carbon dioxide, hydrogen sulphide, and moisture. Biogas purification process flow diagrams have been developed for a process enabling the use of a dolomite suspension, as well as for solutions obtained by the filtration of the suspension, to obtain biogas free of hydrogen sulphide and with a carbon dioxide content that does not exceed 2%. The cost of biogas purification was evaluated on the basis of data on biogas production capacity and biogas production cost obtained from local water treatment facilities. It has been found that, with the use of dolomite suspension, the cost of biogas purification is approximately six times lower than that in the case of using a chemical sorbent such as monoethanolamine. The results showed travelling costs using biogas purified by dolomite suspension are nearly 1.5 time lower than travelling costs using gasoline and slightly lower than travelling costs using mineral diesel fuel.

  5. Expression and structural and functional properties of human ferritin L-chain from Escherichia coli

    International Nuclear Information System (INIS)

    Levi, S.; Salfeld, J.; Franceschinelli, F.; Cozzi, A.; Dorner, M.H.; Arosio, P.

    1989-01-01

    The human ferritin L-chain cDNA was cloned into a vector for overproduction in Escherichia coli, under the regulation of a λ promoter. The plasmid obtained contains the full L-chain coding region modified at the first two codons. It is able to direct the synthesis of the L-chain which can constitute up to 15% of the total soluble protein of bacterial extract. The L-chains assemble to form a ferritin homopolymer with electrophoretic mobility, molecular weight, thermal stability, spectroscopic, and immunological properties analogous to natural ferritin from human liver (95% L-chain). This recombinant L-ferritin is able to incorporate and retain iron in solution at physiological pH values. At variance with the H-ferritin, the L form does not uptake iron at acidic pH values and does not show detectable ferroxidase activity. It is concluded that ferritin L-chain lacks the ferroxidase site present in the H-chain and that the two chains may have specialized functions in intracellular iron metabolism

  6. Escherichia coli class Ib ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical cofactor in vivo†

    Science.gov (United States)

    Cotruvo, Joseph A.; Stubbe, JoAnne

    2011-01-01

    Escherichia coli class Ib ribonucleotide reductase (RNR) converts nucleoside 5′-diphosphates to deoxynucleoside 5′-diphosphates in iron-limited and oxidative stress conditions. We have recently demonstrated in vitro that this RNR is active with both diferric-tyrosyl radical (FeIII2-Y•) and dimanganese(III)-Y• (MnIII2-Y•) cofactors in the β2 subunit, NrdF [Cotruvo J.A., Jr. and Stubbe J., Biochemistry (2010) 49, 1297–1309]. Here we demonstrate, by purification of this protein from its endogenous levels in an E. coli strain deficient in its five known iron uptake pathways and grown under iron-limited conditions, that the MnIII2-Y• cofactor is assembled in vivo. This is the first definitive determination of the active cofactor of a class Ib RNR purified from its native organism without overexpression. From 88 g of cell paste, 150 μg of NrdF was isolated with ~95% purity, with 0.2 Y•/β2, 0.9 Mn/β2, and a specific activity of 720 nmol/min/mg. In these conditions, the class Ib RNR is the primary active RNR in the cell. Our results strongly suggest that E. coli NrdF is an obligate manganese protein in vivo and that the MnIII2-Y• cofactor assembly pathway we have identified in vitro involving the flavodoxin-like protein NrdI, present inside the cell at catalytic levels, is operative in vivo. PMID:21250660

  7. Comparison of the ligand binding properties of two homologous rat apocellular retinol-binding proteins expressed in Escherichia coli.

    Science.gov (United States)

    Levin, M S; Locke, B; Yang, N C; Li, E; Gordon, J I

    1988-11-25

    Cellular retinol-binding protein (CRBP) and cellular retinol-binding protein II (CRBP II) are 132-residue cytosolic proteins which have 56% amino acid sequence identity and bind all-trans-retinol as their endogenous ligand. They belong to a family of cytoplasmic proteins which have evolved to bind distinct hydrophobic ligands. Their patterns of tissue-specific and developmental regulation are distinct. We have compared the ligand binding properties of rat apo-CRBP and apo-CRBP II that have been expressed in Escherichia coli. Several observations indicate that the E. coli-derived apoproteins are structurally similar to the native rat proteins: they co-migrate on isoelectric focusing gels; and when complexed with all-trans-retinol, their absorption and excitation/emission spectra are nearly identical to those of the authentic rat holoproteins. Comparative lifetime and acrylamide quenching studies suggest that there are differences in the conformations of apo-CRBP and apo-CRBP II. The interaction of E. coli-derived apo-CRBP and apo-CRBP II with a variety of retinoids was analyzed using spectroscopic techniques. Both apoproteins formed high affinity complexes with all-trans-retinol (K'd approximately 10 nM). In direct binding assays, all-trans-retinal bound to both apoproteins (K'd approximately 50 nM for CRBP; K'd approximately 90 nM for CRBP II). However, all-trans-retinal could displace all-trans-retinol bound to CRBP II but not to CRBP. These observations suggests that there is a specific yet distinct interaction between these two proteins and all-trans-retinal. Apo-CRBP and apo-CRBP II did not demonstrate significant binding to either retinoic acid or methyl retinoate, an uncharged derivative of all-trans-retinoic acid. This indicates that the carboxymethyl group of methyl retinoate cannot be sterically accommodated in their binding pockets and that failure to bind retinoic acid probably is not simply due to the negative charge of its C-15 carboxylate group

  8. Optimization of laboratory scale production and purification of ...

    African Journals Online (AJOL)

    Microcystin content is however highly variable and optimised culture conditions are essential to produce viable yields of microcystin for purification. We describe the optimization of culture conditions and evaluation of various purification methods to enhance the yield of microcystin from laboratory scale culture.

  9. GENETIC CONTROL OF RESTRICTION AND MODIFICATION IN ESCHERICHIA COLI1

    Science.gov (United States)

    Boyer, Herbert

    1964-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Genetic control of restriction and modification in Escherichia coli. J. Bacteriol. 88:1652–1660. 1964.—Bacterial crosses with K-12 strains of Escherichia coli as Hfr donors (Hfr Hayes, Hfr Cavalli, and Hfr P4X-6) and B/r strains of E. coli as F− recipients were found to differ from crosses between K-12 Hfr donors and K-12 F− recipients in two ways: (i) recombinants (leu, pro, lac, and gal) did not appear at discrete time intervals but did appear simultaneously 30 min after matings were initiated, and (ii) the linkage of unselected markers to selected markers was reduced. Integration of a genetic region linked to the threonine locus of K-12 into the B/r genome resulted in a hybrid which no longer gave anomalous results in conjugation experiments. A similar region of the B strain was introduced into the K-12 strain, which then behaved as a typical B F− recipient. These observations are interpreted as the manifestation of host-controlled modification and restriction on the E. coli chromosome. This was verified by experiments on the restriction and modification of the bacteriophage lambda, F-lac, F-gal, and sex-factor, F1. It was found that the genetic region that controlled the mating responses of the K-12 and B/r strains also controlled the modification and restriction properties of these two strains. The genes responsible for the restricting and modifying properties of the K-12 and B strains of E. coli were found to be allelic, linked to each other, and linked to the threonine locus. PMID:14240953

  10. Hydrogen purification by periodic adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Barg, Christian; Secchi, Argimiro R.; Trierweiler, Jorge O. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica]. E-mail: cbarg@enq.ufrgs.br; arge@enq.ufrgs.br; jorge@enq.ufrgs.br

    2000-07-01

    The periodic adsorption processes have been widely used for industrial applications, mainly because it spends less energy than the usual gas separation processes, like the cryogenic distillation. The largest commercial application of periodic adsorption processes is the pressure swing adsorption (PSA) applied to hydrogen purification. Although its wide use in the chemical and petrochemical industry, there are no reports in the open literature about complete modeling studies of a complex commercial unit, with multiple adsorbents and multiple beds and several feed components. This study has as objective the modeling, optimization and dynamical analysis of an industrial PSA unit for hydrogen purification. (author)

  11. Extraction and purification of yellow cake

    International Nuclear Information System (INIS)

    Yousif, E.H.

    2006-01-01

    This dissertation has reviewed current studies on production and purification of yellow cake from uranium ores by both acid and alkaline leaching processes. It comprises three chapters, the first one deal with uranium minerals, uranium deposits, geology of uranium and uranium isotopes. The second chapter covers mining and milling methods, uranium leaching chemistry, precipitation, and purification of uranium concentrate by solvent extraction and possible impurities that commonly interfered with yellow cake. The last chapter presented ongoing literature review.(Author)

  12. Fast identification of folded human protein domains expressed in E. coli suitable for structural analysis

    Directory of Open Access Journals (Sweden)

    Schlegel Brigitte

    2004-03-01

    Full Text Available Abstract Background High-throughput protein structure analysis of individual protein domains requires analysis of large numbers of expression clones to identify suitable constructs for structure determination. For this purpose, methods need to be implemented for fast and reliable screening of the expressed proteins as early as possible in the overall process from cloning to structure determination. Results 88 different E. coli expression constructs for 17 human protein domains were analysed using high-throughput cloning, purification and folding analysis to obtain candidates suitable for structural analysis. After 96 deep-well microplate expression and automated protein purification, protein domains were directly analysed using 1D 1H-NMR spectroscopy. In addition, analytical hydrophobic interaction chromatography (HIC was used to detect natively folded protein. With these two analytical methods, six constructs (representing two domains were quickly identified as being well folded and suitable for structural analysis. Conclusion The described approach facilitates high-throughput structural analysis. Clones expressing natively folded proteins suitable for NMR structure determination were quickly identified upon small scale expression screening using 1D 1H-NMR and/or analytical HIC. This procedure is especially effective as a fast and inexpensive screen for the 'low hanging fruits' in structural genomics.

  13. Microbiological and technical aspects of anaerobic waste water purification

    International Nuclear Information System (INIS)

    Aivasidis, A.

    1994-01-01

    Anaerobic waste water purification is likely to be another example of how innovations can result from the joint use of biological and technical concepts. No matter how far the optimization of oxygen input with aerobic waste water purification advances it will still be the less a real competitor for anaerobic techniques the more polluted the waste water is. The principle of carrier fixation to avoid their washing out, too, has often been observed in nature with sessile microorganisms. With highly polluted water, anaerobic purification does not only work at no expenditure of energy but it can also make excess energy available for use in other processes. Another important argument for anaerobic methods of waste water purification is probably the clearly reduced production of excess sludge. (orig.) [de

  14. Toxicity mechanism of carbon nanotubes on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Young, Yu-Fu [Department of Materials Science and Engineering, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Lee, Hui-Ju [Department of Life Science, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Shen, Yi-Shan; Tseng, Shih-Hao; Lee, Chi-Young [Department of Materials Science and Engineering, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Tai, Nyan-Hwa, E-mail: nhtai@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Chang, Hwan-You, E-mail: hychang@mx.nthu.edu.tw [Department of Life Science, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer F-MWCNTs possess higher antibiotic performance than that of the F-SWCNTs. Black-Right-Pointing-Pointer E. coli cells were pierced when incubated with F-MWCNTs and trapped when incubated with F-SWCNTs. Black-Right-Pointing-Pointer The rigidity and moment of CNTs play important role on the antibiotic effect. - Abstract: The influences of carbon nanomaterials on bacteria were investigated using three types of dispersed and functionalized carbon nanomaterials (F-CNMs), viz. functionalized carbon nanopowder (F-CNP), functionalized single-walled carbon nanotubes (F-SWCNTs), and functionalized multi-walled carbon nanotubes (F-MWCNTs). F-CNMs with different aspect ratios were used to study the influence of material configuration on the viability of Escherichia coli (E. coli). Although these materials were functionalized to improve their dispersibility, the original morphologies and chemical properties of the materials were maintained. Traditional bacteria quantitative plating analysis was conducted, and the results of which revealed that the F-CNP and the F-SWCNTs showed a less significant effect on the viability of E. coli, while the F-MWCNTs obviously inhibited cell viability. A Fourier transform infrared spectroscopy and a scanning electron microscopy were used to verify the functionalization of the F-CNMs and to examine the interaction of F-CNMs with E. coli, respectively; in addition, we adopted chemiluminescence assays to measure the concentration of adenosine triphosphate (ATP) released from the damaged cells. The results showed that the ATP of the F-MWCNTs sample is two-fold higher than that of the control, indicating direct piercing of E. coli by F-MWCNTs leads to bacteria death. Furthermore, F-SWCNTs were concluded to have less influence on the viability of E. coli because ultra-long F-SWCNTs used in this study performed less rigidity to pierce the cells.

  15. Toxicity mechanism of carbon nanotubes on Escherichia coli

    International Nuclear Information System (INIS)

    Young, Yu-Fu; Lee, Hui-Ju; Shen, Yi-Shan; Tseng, Shih-Hao; Lee, Chi-Young; Tai, Nyan-Hwa; Chang, Hwan-You

    2012-01-01

    Highlights: ► F-MWCNTs possess higher antibiotic performance than that of the F-SWCNTs. ► E. coli cells were pierced when incubated with F-MWCNTs and trapped when incubated with F-SWCNTs. ► The rigidity and moment of CNTs play important role on the antibiotic effect. - Abstract: The influences of carbon nanomaterials on bacteria were investigated using three types of dispersed and functionalized carbon nanomaterials (F-CNMs), viz. functionalized carbon nanopowder (F-CNP), functionalized single-walled carbon nanotubes (F-SWCNTs), and functionalized multi-walled carbon nanotubes (F-MWCNTs). F-CNMs with different aspect ratios were used to study the influence of material configuration on the viability of Escherichia coli (E. coli). Although these materials were functionalized to improve their dispersibility, the original morphologies and chemical properties of the materials were maintained. Traditional bacteria quantitative plating analysis was conducted, and the results of which revealed that the F-CNP and the F-SWCNTs showed a less significant effect on the viability of E. coli, while the F-MWCNTs obviously inhibited cell viability. A Fourier transform infrared spectroscopy and a scanning electron microscopy were used to verify the functionalization of the F-CNMs and to examine the interaction of F-CNMs with E. coli, respectively; in addition, we adopted chemiluminescence assays to measure the concentration of adenosine triphosphate (ATP) released from the damaged cells. The results showed that the ATP of the F-MWCNTs sample is two-fold higher than that of the control, indicating direct piercing of E. coli by F-MWCNTs leads to bacteria death. Furthermore, F-SWCNTs were concluded to have less influence on the viability of E. coli because ultra-long F-SWCNTs used in this study performed less rigidity to pierce the cells.

  16. Multipartite electronic entanglement purification with charge detection

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Yubo [Department of Physics, Tsinghua University, Beijing 100084 (China); Deng, Fu-Guo [Department of Physics, Beijing Normal University, Beijing 100875 (China); Long Guilu, E-mail: gllong@tsinghua.edu.c [Department of Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory for Atomic and Molecular NanoSciences, Tsinghua University, Beijing 100084 (China); Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 (China)

    2011-01-17

    We present a multipartite entanglement purification scheme in a Greenberger-Horne-Zeilinger state for electrons based on their spins and their charges. This scheme works for purification with two steps, i.e., bit-flip error correction and phase-flip error correction. By repeating these two steps, the parties in quantum communication can get some high-fidelity multipartite entangled electronic systems.

  17. Purification of Biotransformation Products of Cis-Isoflavan-4-ol by Biphenyl Dioxygenase of Pseudomonas pseudoalcaligenes KF707 Strain Expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Tri Ratna Sulistiyani

    2013-04-01

    Full Text Available Isoflavone has multiple beneficial effects on human health, especially through its antioxidant and anticancer activities. The biotransformation of isoflavone using byphenyl dioxygenase could be performed to extend the diversity of flavonoids and to improve their biological and physiological properties. Biotransformation of two enantiomers (3R, 4R-cis-isoflavan-4-ol and (3S, 4S-cis-isoflavan-4-ol by E. coli JM109 (pJHF108 carrying a biphenyl dioxygenase gene from P. pseudoalcaligenesKF707 produced two products, designated as CM1 andCM2. The products had a retention time of 11.9 and 14.6 min, respectively, and the same absorption peaks at 204, 220, and 275 nm. CM1 and CM2 had [M-H2O+H]+ at m/z 225. Based on the molecular mass and hydrolysis products, we proposed that epoxidation occurred on cis-isoflavan-4-ol. Chloroform extraction instead of ethyl acetate extraction was performed to improve the stability of cismetabolites, CM1 and CM2.

  18. Active site studies of Escherichia coli 2-keto-4-hydroxyglutarate aldolase

    International Nuclear Information System (INIS)

    Vlahos, C.J.

    1987-01-01

    The data presented delineate the complete amino acid sequence of E. coli KHG aldolase and also identify Lys-133, Glu-45, and Arg-49 as aminoacyl residues required for catalytic activity. Incubation of E. coli KHG aldolase with [ 14 C]pyruvate in the presence of NaCNBH 3 results in the incorporation of one mol of 14 C per mol of enzyme subunit. Digestion of this enzyme-adduct with trypsin, followed by purification of the peptides, allowed for the isolation of a unique radioactive peptide. Its amino acid sequence showed that the pyruvate-binding (i.e., Schiff-base forming) lysine residue is located at position 133 in the intact enzyme. E. coli KHG aldolase activity is lost when the enzyme is reacted with bromopyruvate; saturation kinetics are observed. The substrates, pyruvate and KHG, protect the enzyme from inactivation. Both facts suggest that the reagent is active-site specific. Incubation of the aldolase with [3- 14 C]bromopyruvate is associated with a concomitant loss of enzymatic activity and esterification of Glu-45; if the enzyme is denatured in the presence of excess bromopyruvate, Cys-159 and Cys-180 are also alkylated. Blocking the active-site lysine residue with pyruvate prevents Glu-45 from being esterified but does not eliminate alkylation of these two cysteine residues. Woodward's Reagent K was also found to inactivate the aldolase under conditions that are usually specific for carboxyl group modification. This aldolase is also inactivated by 1,2-cyclohexanedione. Loss of enzymatic activity occurs concomitantly with modification of one arginine residue per enzyme subunit. Treatment of the aldolase with the arginine-specific reagent, 4-(oxyacetyl)phenoxyacetic acid, followed by digestion with trypsin allowed for the isolation of a unique peptide and the identification of Arg-49 as the specific residue involved

  19. Expression, crystallization and preliminary X-ray crystallographic studies of the outer membrane protein OmpW from Escherichia coli

    International Nuclear Information System (INIS)

    Albrecht, Reinhard; Zeth, Kornelius; Söding, Johannes; Lupas, Andrei; Linke, Dirk

    2006-01-01

    The outer membrane protein OmpW from E. coli was overexpressed in inclusion bodies and refolded with the help of detergent. The protein has been crystallized and the crystals diffract to 3.5 Å resolution. OmpW is an eight-stranded 21 kDa molecular-weight β-barrel protein from the outer membrane of Gram-negative bacteria. It is a major antigen in bacterial infections and has implications in antibiotic resistance and in the oxidative degradation of organic compounds. OmpW from Escherichia coli was cloned and the protein was expressed in inclusion bodies. A method for refolding and purification was developed which yields properly folded protein according to circular-dichroism measurements. The protein has been crystallized and crystals were obtained that diffracted to a resolution limit of 3.5 Å. The crystals belong to space group P422, with unit-cell parameters a = 122.5, c = 105.7 Å. A homology model of OmpW is presented based on known structures of eight-stranded β-barrels, intended for use in molecular-replacement trials

  20. Purification and characterization of protease Re, a cytoplasmic endoprotease in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Lee, Y.S.; Chung, C.H.; Goldberg, A.L.

    1988-02-01

    Protease Re, a new cytoplasmic endoprotease in Escherichia coli, was purified to homogeneity by conventional procedures, using (/sup 3/H) casein as the substrate. The enzyme consists of a single polypeptide of 82,000 molecular weight. It is maximally active between pH 7 and 8.5 and is independent of ATP. It has a pI of 6.8 and a K/sub m/ of 10.8 ..mu..M for casein. Since diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride inhibited this enzyme, it appears to be a serine protease. Protease Re was sensitive to inhibition by L-1-tosylamido-2-phenylethylchloromethylketone but not to that by 1-chloro-3-tosylamido-7-aminoheptanone, thiol-blocking reagents, chelating agents, or various peptide aldehydes. Re also degraded (/sup 125/I) globin, (/sup 125/I) glucagon, and /sup 125/I-labeled denatured bovine serum albumin to acid-soluble products (generally oligopeptides of > 1500 daltons), but it showed no activity against serum albumin, growth hormone, insulin, or a variety of fluorometric peptide substrates. It also hydrolyzed oxidatively inactivated glutamine synthetase (generated by ascorbate, oxygen, and iron) four- to fivefold more rapidly than the native protein. Protease Re appears to be identical to the proteolytic enzyme isolated by Roseman and Levine by its ability to degrade selectively oxidatively damaged glutamine synthetase in vivo. Its role in intracellular protein breakdown is uncertain.

  1. Purification and characterization of a novel subtype a3 botulinum neurotoxin.

    Science.gov (United States)

    Tepp, William H; Lin, Guangyun; Johnson, Eric A

    2012-05-01

    Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are of considerable importance due to their being the cause of human and animal botulism, their potential as bioterrorism agents, and their utility as important pharmaceuticals. Type A is prominent due to its high toxicity and long duration of action. Five subtypes of type A BoNT are currently recognized; BoNT/A1, -/A2, and -/A5 have been purified, and their properties have been studied. BoNT/A3 is intriguing because it is not effectively neutralized by polyclonal anti-BoNT/A1 antibodies, and thus, it may potentially replace BoNT/A1 for patients who have become refractive to treatment with BoNT/A1 due to antibody formation or other modes of resistance. Purification of BoNT/A3 has been challenging because of its low levels of production in culture and the need for innovative purification procedures. In this study, modified Mueller-Miller medium was used in place of traditional toxin production medium (TPM) to culture C. botulinum A3 (CDC strain) and boost toxin production. BoNT/A3 titers were at least 10-fold higher than those produced in TPM. A purification method was developed to obtain greater than 95% pure BoNT/A3. The specific toxicity of BoNT/A3 as determined by mouse bioassay was 5.8 × 10(7) 50% lethal doses (LD(50))/mg. Neutralization of BoNT/A3 toxicity by a polyclonal anti-BoNT/A1 antibody was approximately 10-fold less than the neutralization of BoNT/A1 toxicity. In addition, differences in symptoms were observed between mice that were injected with BoNT/A3 and those that were injected with BoNT/A1. These results indicate that BoNT/A3 has novel biochemical and pharmacological properties compared to those of other subtype A toxins.

  2. Antibacterial, Prooxidative and Genotoxic Activities of Gallic Acid and its Copper and Iron Complexes against Escherichia coli

    Directory of Open Access Journals (Sweden)

    JONATHAN M. BARCELO

    2014-12-01

    Full Text Available In this study, gallic acid and its complexes with aluminum and iron were investigated for their antibacterial, pro-oxidative, and genotoxic properties at alkaline pH. At 4.0μmol/mL, gallic acid displayed bacteriostatic property while aluminum-gallic acid and iron-gallic acid complexes showed bactericidal property against Escherichia coli ATCC 25922. A higher antibacterial activity was observed in the turbidimetric assay compared to the well-diffusion assay. The metal complexes of gallic acid also generated a higher concentration of malondialdehyde and hydrogen peroxide compared to gallic acid alone at > 0.50µmol/mL. Using the SOS response of the DNA repair-deficient Escherichia coli PQ37, the metal complexes of gallic acid resulted to a significantly higher SOS Induction Factors (ρ<0.01 at ≥0.25μmol/mL. In addition, gallic acid and its metal complexes decrease the cell surface hydrophobicity of E. coli ATCC 25922 in a dose-dependent manner. The present study suggests that the antibacterial property of gallic acid and its metal complexes against Escherichia coli was caused by its pro-oxidative and genotoxic properties. Since metals are involved in the synthesis of the metal complexes of gallic acid, further tests should be conducted to determine their stability and effects to human health.

  3. Recyclable Escherichia coli-Specific-Killing AuNP-Polymer (ESKAP) Nanocomposites.

    Science.gov (United States)

    Yuan, Yuqi; Liu, Feng; Xue, Lulu; Wang, Hongwei; Pan, Jingjing; Cui, Yuecheng; Chen, Hong; Yuan, Lin

    2016-05-11

    Escherichia coli plays a crucial role in various inflammatory diseases and infections that pose significant threats to both human health and the global environment. Specifically inhibiting the growth of pathogenic E. coli is of great and urgent concern. By modifying gold nanoparticles (AuNPs) with both poly[2-(methacrylamido)glucopyranose] (pMAG) and poly[2-(methacryloyloxy)ethyl trimethylammonium iodide] (pMETAI), a novel recyclable E. coli-specific-killing AuNP-polymer (ESKAP) nanocomposite is proposed in this study, which based on both the high affinity of glycopolymers toward E. coli pili and the merits of antibacterial quaternized polymers attached to gold nanoparticles. The properties of nanocomposites with different ratios of pMAG to pMETAI grafted onto AuNPs are studied. With a pMAG:pMETAI feed ratio of 1:3, the nanocomposite appeared to specifically adhere to E. coli and highly inhibit the bacterial cells. After addition of mannose, which possesses higher affinity for the lectin on bacterial pili and has a competitive advantage over pMAG for adhesion to pili, the nanocomposite was able to escape from dead E. coli cells, becoming available for repeat use. The recycled nanocomposite retained good antibacterial activity for at least three cycles. Thus, this novel ESKAP nanocomposite is a promising, highly effective, and readily recyclable antibacterial agent that specifically kills E. coli. This nanocomposite has potential applications in biological sensing, biomedical diagnostics, biomedical imaging, drug delivery, and therapeutics.

  4. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  5. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology.

    Science.gov (United States)

    Shafiee, Fatemeh; Rabbani, Mohammad; Jahanian-Najafabadi, Ali

    2017-01-01

    The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli ( E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3), followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM). Finally, the best culture medium was selected. Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml). Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  6. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Fatemeh Shafiee

    2017-01-01

    Full Text Available Background: The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Materials and Methods: Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli (E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3, followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM. Finally, the best culture medium was selected. Results: Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml. Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. Conclusion: In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  7. Investigation of the Surface Properties of an Oxide of Interest in the Field of a Conductive Oxide System: Influence of Precursor and Purification

    Directory of Open Access Journals (Sweden)

    Gomes Gilmar de Almeida

    1999-01-01

    Full Text Available The surface properties of commercial TiO2 and samples synthesized by the thermal decomposition procedure using several precursor salts were investigated by a microelectrophoresis technique. The iep was determined as a function of the ionic strength which was controlled with KNO3 or KCl. The experimental results showed: 1 The commercial sample and the ones synthesized from the chloride salt dissolved in HCl 1:1 (v/v show low iep?s due to chloride inclusion; 2 The purification methods explored (oxide suspension at pH~12 and dialysis are inefficient; 3 TiO2 samples synthesized from an organic precursor salt under totally chloride-free conditions furnished an iep of 5.9 in excellent agreement with literature data; 4 Chloride specific adsorption on TiO2 is weak.

  8. Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth.

    Science.gov (United States)

    Yang, Chengli; Xing, Jianmin; Guan, Yueping; Liu, Huizhou

    2006-09-01

    An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods.

  9. New Combined Electron-Beam Methods of Wastewater Purification

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Makarov, I.E.; Ponomarev, A.V.; Kartasheva, L.I.; Podzorova, E.A.; Chulkov, V.N.; Han, B.; Kim, D.K.

    1999-01-01

    The paper is a brief review of the results obtained with the participation of the authors from the study on combined electron-beam methods for purification of some wastewaters. The data on purification of wastewaters containing dyes or hydrogen peroxide and municipal wastewater in the aerosol flow are considered

  10. E. Coli Infections

    Science.gov (United States)

    E. coli is the name of a type of bacteria that lives in your intestines. Most types of E. coli are harmless. However, some types can make you ... type causes travelers' diarrhea. The worst type of E. coli causes bloody diarrhea, and can sometimes cause kidney ...

  11. Improved Method for the Incorporation of Heme Cofactors into Recombinant Proteins Using Escherichia coli Nissle 1917.

    Science.gov (United States)

    Fiege, Kerstin; Querebillo, Christine Joy; Hildebrandt, Peter; Frankenberg-Dinkel, Nicole

    2018-05-15

    Recombinant production of heme proteins in Escherichia coli is often limited by the availability of heme in the host. Therefore, several methods, including the reconstitution of heme proteins after production but prior to purification or the HPEX system, conferring the ability to take up external heme have been developed and used in the past. Here we describe the use of the apathogenic E. coli strain Nissle 1917 (EcN) as a suitable host for the recombinant production of heme proteins. EcN has an advantage over commonly used lab strains in that it is able to take up heme from the environment through the heme receptor ChuA. Expression of several heme proteins from different prokaryotic sources led to high yield and quantitative incorporation of the cofactor when heme was supplied in the growth medium. Comparative UV-vis and resonance Raman measurements revealed that the method employed has significant influence on heme coordination with the EcN system representing the most native situation. Therefore, the use of EcN as a host for recombinant heme protein production represents an inexpensive and straightforward method to facilitate further investigations of structure and function.

  12. Studies on Brucella interferon: Chromatographic behaviour and purification

    International Nuclear Information System (INIS)

    Bousquet-Ucla, C.; Wietzerbin, J.; Falcoff, E.

    1980-01-01

    Interferon was induced by infecting mice with Brucella suis. Serum containing interferon activity was analyzed by chromatography on Concanavalin A-Sepharose and Phenyl-Sepharose CL-4B columns. Antiviral activity was completely retained by the lectin column indicating that all the interferon molecules are glycosylated. The chromatographic behaviour of Brucella interferon on Phenyl-Sepharose CL-4B show that, like other interferons, Brucella interferon displays hydrophobic properties. However, the hydrophobicity of the interferon molecule was masked in the crude preparation and was only detectable when purified Brucella interferon was used for chromatography. The antigenic properties of Brucella interferon provided the means for developing an affinity chromatographic method resulting in about 60.000 fold purification. As in the case of viral interferon, treatment of L cells with Brucella interferon induced specific enhanced in vitro phosphorylation of a 67.000 molecular weight protein after incubation of cell extracts with doublestranded RNA and [γ- 32 p]ATP. (auth.)

  13. Purification and characterization of recombinant protein kinase CK2 from Zea mays expressed in Escherichia coli

    DEFF Research Database (Denmark)

    Riera, Marta; Pages, Montserrat; Issinger, Olaf Georg

    2003-01-01

    Recombinant protein kinase subunits rmCK2alpha-1 and rmCK2beta-1 from Zea mays were expressed separately in Escherichia coli and assembled to a fully active tetrameric holoenzyme complex in vitro. The obtained maize holoenzyme was purified to homogeneity, biochemically characterized, and compared...... to CK2 from human. Kinetic measurements of the recombinant maize holoenzyme (rmCK2) revealed k(cat) values for ATP and GTP of 4 and 2s(-1), respectively; whereas the recombinant maize catalytic subunit showed almost equal values for ATP and GTP, i.e., ca. 0.8s(-1). A comparison of the k(cat)/K(m) ratio...

  14. Automated multi-dimensional purification of tagged proteins.

    Science.gov (United States)

    Sigrell, Jill A; Eklund, Pär; Galin, Markus; Hedkvist, Lotta; Liljedahl, Pia; Johansson, Christine Markeland; Pless, Thomas; Torstenson, Karin

    2003-01-01

    The capacity for high throughput purification (HTP) is essential in fields such as structural genomics where large numbers of protein samples are routinely characterized in, for example, studies of structural determination, functionality and drug development. Proteins required for such analysis must be pure and homogenous and available in relatively large amounts. AKTA 3D system is a powerful automated protein purification system, which minimizes preparation, run-time and repetitive manual tasks. It has the capacity to purify up to 6 different His6- or GST-tagged proteins per day and can produce 1-50 mg protein per run at >90% purity. The success of automated protein purification increases with careful experimental planning. Protocol, columns and buffers need to be chosen with the final application area for the purified protein in mind.

  15. A simple procedure for the purification of active fractions in aqueous extracts of plants with allelopathic properties

    Directory of Open Access Journals (Sweden)

    Fabian Borghetti

    2013-03-01

    Full Text Available Most studies conducted to test the allelopathic activity of plant parts have made use of water as solvent. However, the presence of polar, water-soluble substances, such as proteins and carbohydrates, tends to hamper the purification of active compounds. In this study, we present a simple purification procedure that separates the active fraction of the extract from the undesirable substances, thus facilitating the search for active molecules through standard chromatographic methods. Aqueous leaf extracts of three Cerrado species (Caryocar brasiliense, Qualea parviflora and Eugenia dysenterica were prepared at 5% concentration (w/v and stored at 4ºC (crude extracts. After 24 h, these solutions were filtered and freeze-dried. The powder obtained was dissolved in methanol, filtered again, evaporated and dissolved in water for bioassays (purified extracts. For the bioassays, seedlings of Sesamum indicum were grown for five days in aqueous solutions prepared from crude and purified extracts at concentrations ranging from 0.1% to 1.0% (w/v. Seedling growth in distilled water was set as a control. In comparison with the control, we found that test solutions prepared from both crude and purified extracts significantly inhibited sesame seedling growth. However, solutions prepared from purified extracts were two to ten times more inhibitory to seedling growth than were those prepared from crude extracts. The inhibition of root growth ranged from 35% to 77%, depending on the plant species, at a concentration as low as 0.1%. Roots were more affected than were shoots. The effects of purified extracts on seedling morphology were similar to those observed when crude extracts were employed, indicating that the procedure of purification of crude extracts did not interfere with the mode of action of the active substances

  16. Antibacterial activities of wasabi against Escherichia coli O157:H7 and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Zhongjing Lu

    2016-09-01

    Full Text Available Escherichia coli O157:H7 and Staphylococcus aureus are two of the major pathogens frequently involved in foodborne outbreaks. Control of these pathogens in foods is essential to food safety. It is of great interest in the use of natural antimicrobial compounds present in edible plants to control foodborne pathogens as consumers prefer more natural green foods. Allyl isothiocyanate (AITC is an antimicrobial compound naturally present in wasabi (Japanese horseradish and several other edible plants. Although the antibacterial effects of pure AITC and wasabi extract (essential oil against several bacteria have been reported, the antibacterial property of natural wasabi has not been well studied. This study investigated the antibacterial activities of wasabi as well as AITC against E. coli O157:H7 and S. aureus. Chemical analysis showed that AITC is the major isothiocyanate in wasabi. The AITC concentration in the wasabi powder used in this study was 5.91±0.59 mg/g. The minimum inhibitory concentration (MIC of wasabi against E. coli O157:H7 or S. aureus was 1% (or 10 mg/ml. Wasabi at 4% displayed higher bactericidal activity against S. aureus than against E. coli O157:H7. The MIC of AITC against either pathogen was between 10 and 100 µg/ml. AITC at 500 µg/ml was bactericidal against both pathogens while AITC at 1000 µg/ml eliminated E. coli O157:H7 much faster than S. aureus. The results from this study showed that wasabi has strong antibacterial property and has high potential to effectively control E. coli O157:H7 and S. aureus in foods. The antibacterial property along with its natural green color, unique flavor, and advantage to safeguard foods at the point of ingestion makes wasabi a promising natural edible antibacterial plant. The results from this study may be of significant interest to the food industry as they develop new and safe foods. These results may also stimulate more research to evaluate the antibacterial effect of wasabi

  17. Antibacterial Activities of Wasabi against Escherichia coli O157:H7 and Staphylococcus aureus.

    Science.gov (United States)

    Lu, Zhongjing; Dockery, Christopher R; Crosby, Michael; Chavarria, Katherine; Patterson, Brett; Giedd, Matthew

    2016-01-01

    Escherichia coli O157:H7 and Staphylococcus aureus are two of the major pathogens frequently involved in foodborne outbreaks. Control of these pathogens in foods is essential to food safety. It is of great interest in the use of natural antimicrobial compounds present in edible plants to control foodborne pathogens as consumers prefer more natural "green" foods. Allyl isothiocyanate (AITC) is an antimicrobial compound naturally present in wasabi (Japanese horseradish) and several other edible plants. Although the antibacterial effects of pure AITC and wasabi extract (essential oil) against several bacteria have been reported, the antibacterial property of natural wasabi has not been well studied. This study investigated the antibacterial activities of wasabi as well as AITC against E . coli O157:H7 and S . aureus . Chemical analysis showed that AITC is the major isothiocyanate in wasabi. The AITC concentration in the wasabi powder used in this study was 5.91 ± 0.59 mg/g. The minimum inhibitory concentration (MIC) of wasabi against E. coli O157:H7 or S. aureus was 1% (or 10 mg/ml). Wasabi at 4% displayed higher bactericidal activity against S. aureus than against E. coli O157:H7. The MIC of AITC against either pathogen was between 10 and 100 μg/ml. AITC at 500 μg/ml was bactericidal against both pathogens while AITC at 1000 μg/ml eliminated E. coli O157:H7 much faster than S. aureus . The results from this study showed that wasabi has strong antibacterial property and has high potential to effectively control E. coli O157:H7 and S. aureus in foods. The antibacterial property along with its natural green color, unique flavor, and advantage to safeguard foods at the point of ingestion makes wasabi a promising natural edible antibacterial plant. The results from this study may be of significant interest to the food industry as they develop new and safe foods. These results may also stimulate more research to evaluate the antibacterial effect of wasabi against other

  18. Immuno-Stimulatory Activity of Escherichia coli Mutants Producing Kdo2-Monophosphoryl-Lipid A or Kdo2-Pentaacyl-Monophosphoryl-Lipid A.

    Directory of Open Access Journals (Sweden)

    Biwen Wang

    Full Text Available Lipid A is the active center of lipopolysaccharide which also known as endotoxin. Monophosphoryl-lipid A (MPLA has less toxicity but retains potent immunoadjuvant activity; therefore, it can be developed as adjuvant for improving the strength and duration of the immune response to antigens. However, MPLA cannot be chemically synthesized and can only be obtained by hydrolyzing lipopolysaccharide (LPS purified from Gram-negative bacteria. Purifying LPS is difficult and time-consuming and can damage the structure of MPLA. In this study, Escherichia coli mutant strains HWB01 and HWB02 were constructed by deleting several genes and integrating Francisella novicida gene lpxE into the chromosome of E. coli wild type strain W3110. Compared with W3110, HWB01 and HWB02 synthesized very short LPS, Kdo2-monophosphoryl-lipid A (Kdo2-MPLA and Kdo2-pentaacyl-monophosphoryl-lipid A (Kdo2-pentaacyl-MPLA, respectively. Structural changes of LPS in the outer membranes of HWB01 and HWB02 increased their membrane permeability, surface hydrophobicity, auto-aggregation ability and sensitivity to some antibiotics, but the abilities of these strains to activate the TLR4/MD-2 receptor of HKE-Blue hTLR4 cells were deceased. Importantly, purified Kdo2-MPLA and Kdo2-pentaacyl-MPLA differed from wild type LPS in their ability to stimulate the mammalian cell lines THP-1 and RAW264.7. The purification of Kdo2-MPLA and Kdo2-pentaacyl-MPLA from HWB01 and HWB02, respectively, is much easier than the purification of LPS from W3110, and these lipid A derivatives could be important tools for developing future vaccine adjuvants.

  19. E. Coli

    Science.gov (United States)

    ... for the bacteria's medical name Escherichia coli . The strange thing about these bacteria — and lots of other ... In some cases, E. coli poisoning can cause life-threatening kidney problems. What Can Kids Do? Adults ...

  20. Cytidine deaminases from B. subtilis and E. coli: compensating effects of changing zinc coordination and quaternary structure.

    Science.gov (United States)

    Carlow, D C; Carter, C W; Mejlhede, N; Neuhard, J; Wolfenden, R

    1999-09-21

    Cytidine deaminase from E. coli is a dimer of identical subunits (M(r) = 31 540), each containing a single zinc atom. Cytidine deaminase from B. subtilis is a tetramer of identical subunits (M(r) = 14 800). After purification from an overexpressing strain, the enzyme from B. subtilis is found to contain a single atom of zinc per enzyme subunit by flame atomic absorption spectroscopy. Fluorescence titration indicates that each of the four subunits contains a binding site for the transition state analogue inhibitor 5-fluoro-3,4-dihydrouridine. A region of amino acid sequence homology, containing residues that are involved in zinc coordination in the enzyme from E. coli, strongly suggests that in the enzyme from B. subtilis, zinc is coordinated by the thiolate side chains of three cysteine residues (Cys-53, Cys-86, and Cys-89) [Song, B. H., and Neuhard, J. (1989) Mol. Gen. Genet. 216, 462-468]. This pattern of zinc coordination appears to be novel for a hydrolytic enzyme, and might be expected to reduce the reactivity of the active site substantially compared with that of the enzyme from E. coli (His-102, Cys-129, and Cys-132). Instead, the B. subtilis and E. coli enzymes are found to be similar in their activities, and also in their relative binding affinities for a series of structurally related inhibitors with binding affinities that span a range of 6 orders of magnitude. In addition, the apparent pK(a) value of the active site is shifted upward by less than 1 unit. Sequence alignments, together with model building, suggest one possible mechanism of compensation.

  1. A Scintillator Purification System for the Borexino Solar Neutrino Detector

    OpenAIRE

    Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; Harding, E.; Ianni, Aldo; Ianni, Andrea; Kidner, S.; Leung, M.

    2007-01-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector was performed with a system that combined distillation, water extraction, gas stripping and filtration. The purification of the scintillator achieved unprecedented low backgrounds for the large scale liquid scintillation detector. This paper describes the principles of operation, design, construction and commissioning of the purification system, and reviews the require...

  2. Improving the large scale purification of the HIV microbicide, griffithsin.

    Science.gov (United States)

    Fuqua, Joshua L; Wanga, Valentine; Palmer, Kenneth E

    2015-02-22

    Griffithsin is a broad spectrum antiviral lectin that inhibits viral entry and maturation processes through binding clusters of oligomannose glycans on viral envelope glycoproteins. An efficient, scaleable manufacturing process for griffithsin active pharmaceutical ingredient (API) is essential for particularly cost-sensitive products such as griffithsin -based topical microbicides for HIV-1 prevention in resource poor settings. Our previously published purification method used ceramic filtration followed by two chromatography steps, resulting in a protein recovery of 30%. Our objective was to develop a scalable purification method for griffithsin expressed in Nicotiana benthamiana plants that would increase yield, reduce production costs, and simplify manufacturing techniques. Considering the future need to transfer griffithsin manufacturing technology to resource poor areas, we chose to focus modifying the purification process, paying particular attention to introducing simple, low-cost, and scalable procedures such as use of temperature, pH, ion concentration, and filtration to enhance product recovery. We achieved >99% pure griffithsin API by generating the initial green juice extract in pH 4 buffer, heating the extract to 55°C, incubating overnight with a bentonite MgCl2 mixture, and final purification with Capto™ multimodal chromatography. Griffithsin extracted with this protocol maintains activity comparable to griffithsin purified by the previously published method and we are able to recover a substantially higher yield: 88 ± 5% of griffithsin from the initial extract. The method was scaled to produce gram quantities of griffithsin with high yields, low endotoxin levels, and low purification costs maintained. The methodology developed to purify griffithsin introduces and develops multiple tools for purification of recombinant proteins from plants at an industrial scale. These tools allow for robust cost-effective production and purification of

  3. The Protein Maker: an automated system for high-throughput parallel purification

    International Nuclear Information System (INIS)

    Smith, Eric R.; Begley, Darren W.; Anderson, Vanessa; Raymond, Amy C.; Haffner, Taryn E.; Robinson, John I.; Edwards, Thomas E.; Duncan, Natalie; Gerdts, Cory J.; Mixon, Mark B.; Nollert, Peter; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    The Protein Maker instrument addresses a critical bottleneck in structural genomics by allowing automated purification and buffer testing of multiple protein targets in parallel with a single instrument. Here, the use of this instrument to (i) purify multiple influenza-virus proteins in parallel for crystallization trials and (ii) identify optimal lysis-buffer conditions prior to large-scale protein purification is described. The Protein Maker is an automated purification system developed by Emerald BioSystems for high-throughput parallel purification of proteins and antibodies. This instrument allows multiple load, wash and elution buffers to be used in parallel along independent lines for up to 24 individual samples. To demonstrate its utility, its use in the purification of five recombinant PB2 C-terminal domains from various subtypes of the influenza A virus is described. Three of these constructs crystallized and one diffracted X-rays to sufficient resolution for structure determination and deposition in the Protein Data Bank. Methods for screening lysis buffers for a cytochrome P450 from a pathogenic fungus prior to upscaling expression and purification are also described. The Protein Maker has become a valuable asset within the Seattle Structural Genomics Center for Infectious Disease (SSGCID) and hence is a potentially valuable tool for a variety of high-throughput protein-purification applications

  4. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination.

    Science.gov (United States)

    Różańska, Anna; Chmielarczyk, Agnieszka; Romaniszyn, Dorota; Sroka-Oleksiak, Agnieszka; Bulanda, Małgorzata; Walkowicz, Monika; Osuch, Piotr; Knych, Tadeusz

    2017-07-20

    Background: Hospital equipment made from copper alloys can play an important role in complementing traditional methods of disinfection. Aims of the study: The aim of this study was to assess the dynamics of the antimicrobial properties of selected copper alloys in different simulations of environmental conditions (with organic contamination vs. without organic contamination), and to test alternatives to the currently used testing methods. Materials and Methods: A modification of Japanese standard JIS Z 2801 as well as Staphylococcus aureus (SA) and Escherichia coli (EC) suspended in NaCl vs. tryptic soy broth (TSB) were used in tests performed on seven commonly used copper alloys, copper, and stainless steel. Results: A much faster reduction of the bacterial suspension was observed for the inoculum prepared in NaCl than in TSB. A faster reduction for EC than for SA was observed in the inoculum prepared in NaCl. The opposite results were found for the inoculum based on TSB. A significant correlation between the copper concentration in the copper alloys and the time and degree of bacterial suspension reduction was only observed in the case of EC. Conclusions: This study confirmed the antimicrobial properties of copper alloys, and additionally showed that Staphylococcus aureus was more resistant than Escherichia coli in the variant of the experiment without organic contamination. However, even for SA, a total reduction of the bacterial inoculum's density took no longer than 2 h. Under conditions simulating organic contamination, all of the tested alloys were shown to have bactericidal or bacteriostatic properties, which was contrary to the results from stainless steel.

  5. Robotic high-throughput purification of affinity-tagged recombinant proteins.

    Science.gov (United States)

    Wiesler, Simone C; Weinzierl, Robert O J

    2015-01-01

    Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories.

  6. Biological response to purification and acid functionalization of carbon nanotubes

    Science.gov (United States)

    Figarol, Agathe; Pourchez, Jérémie; Boudard, Delphine; Forest, Valérie; Tulliani, Jean-Marc; Lecompte, Jean-Pierre; Cottier, Michèle; Bernache-Assollant, Didier; Grosseau, Philippe

    2014-07-01

    Acid functionalization has been considered as an easy way to enhance the dispersion and biodegradation of carbon nanotubes (CNT). However, inconsistencies between toxicity studies of acid functionalized CNT remain unexplained. This could be due to a joint effect of the main physicochemical modifications resulting from an acid functionalization: addition of surface acid groups and purification from catalytic metallic impurities. In this study, the impact on CNT biotoxicity of these two physiochemical features was assessed separately. The in vitro biological response of RAW 264.7 macrophages was evaluated after exposure to 15-240 µg mL-1 of two types of multi-walled CNT. For each type of CNT (small: 20 nm diameter, and big: 90 nm diameter), three different surface chemical properties were studied (total of six CNT samples): pristine, acid functionalized and desorbed. Desorbed CNT were purified by the acid functionalization but presented a very low amount of surface acid groups due to a thermal treatment under vacuum. A Janus effect of acid functionalization with two opposite impacts is highlighted. The CNT purification decreased the overall toxicity, while the surface acid groups intensified it when present at a specific threshold. These acid groups especially amplified the pro-inflammatory response. The threshold mechanism which seemed to regulate the impact of acid groups should be further studied to determine its value and potential link to the other physicochemical state of the CNT. The results suggest that, for a safer-design approach, the benefit-risk balance of an acid functionalization has to be considered, depending on the CNT primary state of purification. Further research should be conducted in this direction.

  7. The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth.

    Science.gov (United States)

    Son, Young-Jin; Phue, Je-Nie; Trinh, Loc B; Lee, Sang Jun; Shiloach, Joseph

    2011-06-30

    deletion caused transcription inhibition of the bet operon in E. coli K-12 (JM109) but did not affect this operon transcription in E. coli B (BL21). This property, together with the insensitivity to high glucose concentrations, makes this the E. coli B (BL21) strain more resistant to environmental changes.

  8. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7.

    Science.gov (United States)

    Burt, S A; Reinders, R D

    2003-01-01

    To quantify the antibacterial properties of five essential oils (EO) on a non-toxigenic strain of Escherichia coli O157:H7 in the presence and absence of a stabilizer and an emulsifier and at three different temperatures. Five EOs known to exhibit antibacterial properties were screened by disc diffusion assay and the most active were selected for further study in microdilution colorimetric assays. Oregano (Origanum vulgare) and thyme (Thymus vulgaris; light and red varieties) EO had the strongest bacteriostatic and bactericidal properties, followed by bay (Pimenta racemosa) and clove bud (Eugenia caryophyllata synonym: Syzygium aromaticum) EO. Oregano oil was colicidal at 625 microl l(-1) at 10, 20 and 37 degrees C. The addition of 0.05% (w/v) agar as stabilizer reinforced the antibacterial properties, particularly at 10 degrees C, whereas 0.25% (w/v) lecithin reduced antibacterial activity. Scanning electron micrographs showed extensive morphological changes to treated cells. Oregano and thyme EO possess significant in vitro colicidal and colistatic properties, which are exhibited in a broad temperature range and substantially improved by the addition of agar as stabilizer. Bay and clove bud EO are less active. Lecithin diminished antibacterial properties. The bactericidal concentration of oregano EO irreversibly damaged E. coli O157:H7 cells within 1 min. Oregano and light thyme EO, particularly when enhanced by agar stabilizer, may be effective in reducing the number or preventing the growth of E. coli O157:H7 in foods.

  9. Simplified riboprobe purification using translucent straws as gel tubes.

    Science.gov (United States)

    Kol, S; Ben-Shlomo, I; Adashi, E Y; Rohan, R M

    1996-01-01

    Gel purification of radioactive riboprobes enhances the quality of the ribonuclease protection assay. A simple and effective method for riboprobe purification is described. The method uses acrylamide gels in plastic tubes to achieve electrophoretic separation of the RNA polymerase products.

  10. Inorganic membranes for hydrogen production and purification: a critical review and perspective.

    Science.gov (United States)

    Lu, G Q; Diniz da Costa, J C; Duke, M; Giessler, S; Socolow, R; Williams, R H; Kreutz, T

    2007-10-15

    Hydrogen as a high-quality and clean energy carrier has attracted renewed and ever-increasing attention around the world in recent years, mainly due to developments in fuel cells and environmental pressures including climate change issues. In thermochemical processes for hydrogen production from fossil fuels, separation and purification is a critical technology. Where water-gas shift reaction is involved for converting the carbon monoxide to hydrogen, membrane reactors show great promises for shifting the equilibrium. Membranes are also important to the subsequent purification of hydrogen. For hydrogen production and purification, there are generally two classes of membranes both being inorganic: dense phase metal and metal alloys, and porous ceramic membranes. Porous ceramic membranes are normally prepared by sol-gel or hydrothermal methods, and have high stability and durability in high temperature, harsh impurity and hydrothermal environments. In particular, microporous membranes show promises in water gas shift reaction at higher temperatures. In this article, we review the recent advances in both dense phase metal and porous ceramic membranes, and compare their separation properties and performance in membrane reactor systems. The preparation, characterization and permeation of the various membranes will be presented and discussed. We also aim to examine the critical issues in these membranes with respect to the technical and economical advantages and disadvantages. Discussions will also be made on the relevance and importance of membrane technology to the new generation of zero-emission power technologies.

  11. Characterization and enzymatic properties of protein kinase ACR4 from Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Yu; Liu, Xuehe; Xu, Ziyan; Yang, Hui; Li, Jixi

    2017-07-22

    Serine/threonine-protein kinase-like protein ARABIDOPSIS CRINKLY4 (ACR4), a transmembrane protein of Arabidopsis thaliana, plays important roles in cell division and differentiation. Although accumulating studies shed light on the function of ACR4, the structure and catalytic mechanism of ACR4 remain to be elucidated. Here, we report the purification and enzymatic properties of the intracellular kinase domain (residues 464-799) of ACR4 (ACR4 IKD ). Through Ni-affinity chromatography and gel filter chromatography methods, we successfully obtain high-purity ACR4 IKD protein from Escherichia coli. Dynamic light scattering and gel-filtration methods reveal that ACR4 IKD distributes with high homogeneity and exists as a monomer in solution. In addition, the ACR4 IKD protein has typical kinase activity with myelin basic protein (MBP) as the substrate. Our study may lay the foundation for structure determination of ACR4 IKD and further functional research, for example, screening significant substrates of ACR4 in Arabidopsis thaliana. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-04-01

    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  13. Chemical Composition of Herbal Macerates and Corresponding Commercial Essential Oils and Their Effect on Bacteria Escherichia coli

    Directory of Open Access Journals (Sweden)

    Marietta Białoń

    2017-11-01

    Full Text Available This study addresses the chemical composition of some commercial essential oils (clove, juniper, oregano, and marjoram oils, as well as appropriate herbal extracts obtained in the process of cold maceration and their biological activity against selected Escherichia coli strains: E. coli ATTC 25922, E. coli ATTC 10536, and E. coli 127 isolated from poultry waste. On the basis of the gas chromatography-mass spectrometry (GCMS analysis, it was found that the commercial essential oils revealed considerable differences in terms of the composition and diversity of terpenes, terpenoids and sesquiterpenes as compared with the extracts obtained from plant material. The commercial clove, oregano, and marjoram oils showed antibacterial properties against all the tested strains of E. coli. However, these strains were not sensitive to essential oils obtained from the plant material in the process of maceration. The tested strains of E. coli show a high sensitivity, mainly against monoterpenes (α-pinene, β-pinene, α,β,γ-terpinene, limonene and some terpenoids (thymol, carvacrol. The commercial juniper oil contained mainly monoterpenes and monoterpenoids, while the extracts contained lower amounts of monoterpenes and high amounts of sesquiterpenes—the anti-microbiotic properties of the juniper herbal extract seem to be caused by the synergistic activity of mono- and sesquiterpenes.

  14. Biochemical Properties and Mechanism of Action of Enterocin LD3 Purified from Enterococcus hirae LD3.

    Science.gov (United States)

    Gupta, Aabha; Tiwari, Santosh Kumar; Netrebov, Victoria; Chikindas, Michael L

    2016-09-01

    Enterocin LD3 was purified using activity-guided multistep chromatography techniques such as cation-exchange and gel-filtration chromatography. The preparation's purity was tested using reverse-phase ultra-performance liquid chromatography. The specific activity was tested to be 187.5 AU µg(-1) with 13-fold purification. Purified enterocin LD3 was heat stable up to 121 °C (at 15 psi pressure) and pH 2-6. The activity was lost in the presence of papain, reduced by proteinase K, pepsin and trypsin, but was unaffected by amylase and lipase, suggesting proteinaceous nature of the compound and no role of carbohydrate and lipid moieties in the activity. MALDI-TOF/MS analysis of purified enterocin LD3 resolved m/z 4114.6, and N-terminal amino acid sequence was found to be H2NQGGQANQ-COOH suggesting a new bacteriocin. Dissipation of membrane potential, loss of internal ATP and bactericidal effect were recorded when indicator strain Micrococcus luteus was treated with enterocin LD3. It inhibited Gram-positive and Gram-negative bacteria including human pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, E. coli (urogenic, a clinical isolate) and Vibrio sp. These properties of purified enterocin LD3 suggest its applications as a food biopreservative and as an alternative to clinical antibiotics.

  15. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli

    DEFF Research Database (Denmark)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production econo...

  16. Purification and Characterization of Lipase from Aspergillus flavus ...

    African Journals Online (AJOL)

    USER

    Abstract. Lipase from Aspergillus flavus was purified in a single step purification using MnFeO4 magnetic nano particles to achieve a 20.53- fold purification with specific activity of. 11.29 U/mg and a 59% recovery yield. SDS-PAGE of lipase showed a single pure band with corresponding molecular weight of 35 kDa.

  17. Purification and Characterization of Lipase from Aspergillus flavus ...

    African Journals Online (AJOL)

    Lipase from Aspergillus flavus was purified in a single step purification using MnFeO4 magnetic nano particles to achieve a 20.53- fold purification with specific activity of 11.29 U/mg and a 59% recovery yield. SDS-PAGE of lipase showed a single pure band with corresponding molecular weight of 35 kDa. The optimal ...

  18. Virus purification by CsCl density gradient using general centrifugation.

    Science.gov (United States)

    Nasukawa, Tadahiro; Uchiyama, Jumpei; Taharaguchi, Satoshi; Ota, Sumire; Ujihara, Takako; Matsuzaki, Shigenobu; Murakami, Hironobu; Mizukami, Keijirou; Sakaguchi, Masahiro

    2017-11-01

    Virus purification by cesium chloride (CsCl) density gradient, which generally requires an expensive ultracentrifuge, is an essential technique in virology. Here, we optimized virus purification by CsCl density gradient using general centrifugation (40,000 × g, 2 h, 4 °C), which showed almost the same purification ability as conventional CsCl density gradient ultracentrifugation (100,000 × g, 1 h, 4 °C) using phages S13' and φEF24C. Moreover, adenovirus strain JM1/1 was also successfully purified by this method. We suggest that general centrifugation can become a less costly alternative to ultracentrifugation for virus purification by CsCl densiy gradient and will thus encourage research in virology.

  19. Efficient expression and purification of a protease from the common cold virus, human rhinovirus type 14

    Science.gov (United States)

    Leong, L. E.-C.; Walker, P. A.; Porter, A. G.

    1992-08-01

    The protease (3C pro) from human rhinovirus serotype-14 (HRV-14) has been cloned and efficiently expressed in E. coli. A straightforward single-step purification of the recombinant 3C pro has been achieved by fusing the protein to the car☐y-terminus of the glutathione-S-transferase from Schistosoma japonicum. Modifications made to the 5' end of the PCR fragment coding for the 3C pro have allowed the specific cleavage of the fusion protein using thrombin to yield mature 3C pro with the correct amino-terminal amino acid. This protease has been shown to be active when assayed using synthetic peptides corresponding to the natural cleavage recognition sequences within the polyprotein. Other substrates are being developed for this protease for possible use in the screening of inhibitors of 3C pro. Sufficient protease 3C pro has been purified for initial attempts at crystallization.

  20. Laboratory of minerals purification

    International Nuclear Information System (INIS)

    2002-01-01

    The laboratory of minerals purification was organized in 1962 where with application of modern physical and chemical methods were investigated the mechanism of flotation reagents interaction with minerals' surface, was elaborated technologies on rising complexity of using of republic's minerals

  1. flu, a metastable gene controlling surface properties of Escherichia coli.

    OpenAIRE

    Diderichsen, B

    1980-01-01

    flu, a gene of Escherichia coli K-12, was discovered and mapped between his and shiA. It is shown that flu is a metastable gene that changes frequently between the flu+ and flu states. flu+ variants give stable homogeneous suspensions, are piliated, and form glossy colonies. flu variants aggregate, fluff and sediment from suspensions, are nonpiliated, and form frizzy colonies. flu+ and flu variants can be isolated from most strains. Implications of these observations are discussed, and it is ...

  2. Waste water biological purification plants of dairy products industry and energy management

    Science.gov (United States)

    Stepanov, Sergey; Solkina, Olga; Stepanov, Alexander; Zhukova, Maria

    2017-10-01

    The paper presents results of engineering and economical comparison of waste water biological purification plants of dairy products industry. Three methods of purification are compared: traditional biological purification with the use of secondary clarifiers and afterpurification through granular-bed filters, biomembrane technology and physical-and-chemical treatment together with biomembrane technology for new construction conditions. The improvement of the biological purification technology using nitro-denitrification and membrane un-mixing of sludge mixture is a promising trend in this area. In these calculations, an energy management which is widely applied abroad was used. The descriptions of the three methods are illustrated with structural schemes. Costs of equipment and production areas are taken from manufacturers’ data. The research is aimed at an engineering and economical comparison of new constructions of waste water purification of dairy products industry. The experiment demonstrates advantages of biomembrane technology in waste water purification. This technology offers prospects of 122 million rubles cost saving during 25 years of operation when compared with of the technology of preparatory reagent flotation and of 13.7 million rubles cost saving compared to the option of traditional biological purification.

  3. Increased Frequency of ColV Plasmids and Mannose-Resistant Hemagglutinating Activity in an Escherichia coli K1 Population

    OpenAIRE

    1984-01-01

    The expression of traits linked to pathogenicity was studied in a population of Escherichia coli K1 strains. It was found that E. coli K1 strains isolated from extraintestinal infection harbor the ColV plasmid and express mannose-resistant hemagglutinating activity type VI with a high frequency. The presence of these properties may play a role in the ability of some E. coli K1 serogroups to invade.

  4. Purification of human platelet-derived growth factor

    International Nuclear Information System (INIS)

    Raines, E.W.; Ross, R.

    1985-01-01

    The paper describes a method for purification of human platelet-derived growth factor (PDGF) from outdated platelet-rich plasma (PRP) using commonly available laboratory reagents and yielding a mitogen purified 800,000-fold over the starting material. [ 3 H]thymidine incorporation into DNA of cultured cells responsive to PDGF represents the most readily available method to follow its purification and define the biological activity of a purified preparation. Other assays to quantitate PDGF include radioreceptor assay and radioimmunoassay

  5. E. Coli and Pregnancy

    Science.gov (United States)

    ... chat Live Help Fact Sheets Share Escherichia coli (E. coli) Friday, 01 September 2017 In every pregnancy, a ... risk. This sheet talks about whether exposure to E. coli may increase the risk for birth defects over ...

  6. Intensification of oily waste waters purification by means of liquid atomization

    Science.gov (United States)

    Eskin, A. A.; Tkach, N. S.; Kim, M. I.; Zakharov, G. A.

    2017-10-01

    In this research, a possibility of using liquid atomization for improving the efficiency of purification of wastewater by different methods has been studied. By the introduced method and an experimental setup for wastewater purification, saturation rate increases with its purification by means of dissolved air flotation. Liquid atomization under excess pressure allows to gain a large interfacial area between the saturated liquid and air, which may increase the rate of purified liquid saturation almost twice, compared to the existing methods of saturation. Current disadvantages of liquid atomization used for intensification of wastewater purification include high energy cost and secondary emulsion of polluting agents. It is also known that by means of liquid atomization a process of ozonizing can be intensified. Large contact surface between the purified liquid and ozone-air mixture increases the oxidizing efficiency, which allows to diminish ozone discharge. Liquid atomization may be used for purification of wastewaters by ultraviolet radiation. Small drops of liquid will be proportionally treated by ultraviolet, which makes it possible to do purification even of turbid wastewaters. High-speed liquid motion will prevent the pollution of quartz tubes of ultraviolet lamps.

  7. Recent Advances in Nanoporous Membranes for Water Purification

    Directory of Open Access Journals (Sweden)

    Zhuqing Wang

    2018-01-01

    Full Text Available Nanoporous materials exhibit wide applications in the fields of electrocatalysis, nanodevice fabrication, energy, and environmental science, as well as analytical science. In this review, we present a summary of recent studies on nanoporous membranes for water purification application. The types and fabrication strategies of various nanoporous membranes are first introduced, and then the fabricated nanoporous membranes for removing various water pollutants, such as salt, metallic ions, anions, nanoparticles, organic chemicals, and biological substrates, are demonstrated and discussed. This work will be valuable for readers to understand the design and fabrication of various nanoporous membranes, and their potential purification mechanisms towards different water pollutants. In addition, it will be helpful for developing new nanoporous materials for quick, economic, and high-performance water purification.

  8. Single-Step Affinity Purification for Fungal Proteomics ▿ †

    OpenAIRE

    Liu, Hui-Lin; Osmani, Aysha H.; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B.; De Souza, Colin P.; Osmani, Stephen A.

    2010-01-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  9. PENICILLIN-BINDING PROTEIN 2X OF STREPTOCOCCUS-PNEUMONIAE - EXPRESSION IN ESCHERICHIA-COLI AND PURIFICATION OF A SOLUBLE ENZYMATICALLY ACTIVE DERIVATIVE

    NARCIS (Netherlands)

    LAIBLE, G; KECK, W; LURZ, R; MOTTL, H; FRERE, JM; JAMIN, M; HAKENBECK, R

    1992-01-01

    A 2.5-kb DNA fragment including the structural gene coding for the penicillin-binding protein 2x (PBP 2x) of Streptococcus pneumoniae has been cloned into the vector pJDC9 and expressed in Escherichia coli. Mapping of RNA polymerase binding sites by electron microscopy indicated that the pbpX

  10. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli.

    Science.gov (United States)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili; Christensen, Jens P; Olsen, John E; Nolan, Lisa; Olsen, Rikke H

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production economy and welfare worldwide. An almost defining characteristic of avian pathogenic E. coli is the carriage of plasmids, which may encode virulence factors and antibiotic resistance determinates. For the same reason, plasmids of avian pathogenic E. coli have been intensively studied. However, genes encoded by the chromosome may also be important for disease manifestation and antimicrobial resistance. For the E. coli strain APEC_O2 the plasmids have been sequenced and analyzed in several studies, and E. coli APEC_O2 may therefore serve as a reference strain in future studies. Here we describe the chromosomal features of E. coli APEC_O2. E. coli APEC_O2 is a sequence type ST135, has a chromosome of 4,908,820 bp (plasmid removed), comprising 4672 protein-coding genes, 110 RNA genes, and 156 pseudogenes, with an average G + C content of 50.69%. We identified 82 insertion sequences as well as 4672 protein coding sequences, 12 predicated genomic islands, three prophage-related sequences, and two clustered regularly interspaced short palindromic repeats regions on the chromosome, suggesting the possible occurrence of horizontal gene transfer in this strain. The wildtype strain of E. coli APEC_O2 is resistant towards multiple antimicrobials, however, no (complete) antibiotic resistance genes were present on the chromosome, but a number of genes associated with extra-intestinal disease were identified. Together, the information provided here on E. coli APEC_O2 will assist in future studies of avian pathogenic E. coli strains, in particular regarding strain of E. coli APEC_O2, and aid in the general understanding of the pathogenesis of avian pathogenic E. coli .

  11. Purification of radiolabeled RNA using sephadex G-15 or G-50 chromatography

    International Nuclear Information System (INIS)

    Yoo, Beong Gyu; Lee, Jong Seok

    1998-01-01

    We attempted to purify radiolabeled RNA using Sephadex G-15 and G-50 chromatography instead of commercial RNA purification kit. In the Sephadex G-15 chromatography the major portion of RNA was eluted in the fractions ranging from 3rd to 5th whereas broad elution profile of RNA was obtained from the Sephadex G-50 chromatography. The elution profile and purity of RNA obtained from Sephadex G-15 chromatography was very similar to that by commercial RNA purification kit. Furthermore, operating time required for purification of RNA by Sephadex G-15 was rather smaller than that by commercial kit. Overall results suggest that the purification of radiolabeled RNA using Sephadex G-15 is more money and time saving than using commercial RNA purification kit

  12. Fluorescent IgG fusion proteins made in E. coli

    Science.gov (United States)

    Luria, Yael; Raichlin, Dina; Benhar, Itai

    2012-01-01

    Antibodies are among the most powerful tools in biological and biomedical research and are presently the fastest growing category of new bio-pharmaceutics. The most common format of antibody applied for therapeutic, diagnostic and analytical purposes is the IgG format. For medical applications, recombinant IgGs are made in cultured mammalian cells in a process that is too expensive to be considered for producing antibodies for diagnostic and analytical purposes. Therefore, for such purposes, mouse monoclonal antibodies or polyclonal sera from immunized animals are used. While looking for an easier and more rapid way to prepare full-length IgGs for therapeutic purposes, we recently developed and reported an expression and purification protocol for full-length IgGs, and IgG-based fusion proteins in E. coli, called “Inclonals.” By applying the Inclonals technology, we could generate full-length IgGs that are genetically fused to toxins. The aim of the study described herein was to evaluate the possibility of applying the “Inclonals” technology for preparing IgG-fluorophore fusion proteins. We found that IgG fused to the green fluorescent proteins enhanced GFP (EGFP) while maintaining functionality in binding, lost most of its fluorescence during the refolding process. In contrast, we found that green fluorescent Superfolder GFP (SFGFP)-fused IgG and red fluorescent mCherry-fused IgG were functional in antigen binding and maintained fluorescence intensity. In addition, we found that we can link several SFGFPs in tandem to each IgG, with fluorescence intensity increasing accordingly. Fluorescent IgGs made in E. coli may become attractive alternatives to monoclonal or polyclonal fluorescent antibodies derived from animals. PMID:22531449

  13. Purification and characterization of three laccase isozymes from the ...

    African Journals Online (AJOL)

    2012-04-17

    Apr 17, 2012 ... improve wine quality by removing fermentation inhibitors so as to increase yield of ethanol (Baldrian, 2006). They have also been used .... Summary of purification of laccase isozymes from Trametes sp. HS-03a. Purification .... and kinetics of a thermostable laccase from Pycnoporus sanguineus. (SCC 108).

  14. Comparative study of peroxidase purification from apple and orange ...

    African Journals Online (AJOL)

    This paper reports the isolation and purification of peroxidase from low cost material; moreover, no significant work has been done on the isolation and purification of peroxidase from such cost effective sources (apple and orange seeds). Peroxidases had attracted considerable interest in recent years because of their ...

  15. Development of Purification Protocol Specific for Bacteriocin 105B

    Science.gov (United States)

    2017-02-09

    Bacillus anthracis. As the current application of broad-spectrum antimicrobials promotes the development of multi- drug resistant microorganisms...SPECTRUM TARGETED ANTIMICROBIALS ASSAYS PURIFICATION BACILLUS ANTHRACIS DRUG- RESISTANT MICROORGANISMS...through the purification procedure. The wide-spread use of broad-spectrum antimicrobial agents has led to the development of drug resistant

  16. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination

    Directory of Open Access Journals (Sweden)

    Anna Różańska

    2017-07-01

    Full Text Available Background: Hospital equipment made from copper alloys can play an important role in complementing traditional methods of disinfection. Aims of the study: The aim of this study was to assess the dynamics of the antimicrobial properties of selected copper alloys in different simulations of environmental conditions (with organic contamination vs. without organic contamination, and to test alternatives to the currently used testing methods. Materials and Methods: A modification of Japanese standard JIS Z 2801 as well as Staphylococcus aureus (SA and Escherichia coli (EC suspended in NaCl vs. tryptic soy broth (TSB were used in tests performed on seven commonly used copper alloys, copper, and stainless steel. Results: A much faster reduction of the bacterial suspension was observed for the inoculum prepared in NaCl than in TSB. A faster reduction for EC than for SA was observed in the inoculum prepared in NaCl. The opposite results were found for the inoculum based on TSB. A significant correlation between the copper concentration in the copper alloys and the time and degree of bacterial suspension reduction was only observed in the case of EC. Conclusions: This study confirmed the antimicrobial properties of copper alloys, and additionally showed that Staphylococcus aureus was more resistant than Escherichia coli in the variant of the experiment without organic contamination. However, even for SA, a total reduction of the bacterial inoculum’s density took no longer than 2 h. Under conditions simulating organic contamination, all of the tested alloys were shown to have bactericidal or bacteriostatic properties, which was contrary to the results from stainless steel.

  17. Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli.

    Directory of Open Access Journals (Sweden)

    Julie K Klint

    Full Text Available Disulfide-rich peptides are the dominant component of most animal venoms. These peptides have received much attention as leads for the development of novel therapeutic agents and bioinsecticides because they target a wide range of neuronal receptors and ion channels with a high degree of potency and selectivity. In addition, their rigid disulfide framework makes them particularly well suited for addressing the crucial issue of in vivo stability. Structural and functional characterization of these peptides necessitates the development of a robust, reliable expression system that maintains their native disulfide framework. The bacterium Escherichia coli has long been used for economical production of recombinant proteins. However, the expression of functional disulfide-rich proteins in the reducing environment of the E. coli cytoplasm presents a significant challenge. Thus, we present here an optimised protocol for the expression of disulfide-rich venom peptides in the periplasm of E. coli, which is where the endogenous machinery for production of disulfide-bonds is located. The parameters that have been investigated include choice of media, induction conditions, lysis methods, methods of fusion protein and peptide purification, and sample preparation for NMR studies. After each section a recommendation is made for conditions to use. We demonstrate the use of this method for the production of venom peptides ranging in size from 2 to 8 kDa and containing 2-6 disulfide bonds.

  18. Human Meningitis-Associated Escherichia coli

    Science.gov (United States)

    KIM, KWANG SIK

    2016-01-01

    E. coli is the most common Gram-negative bacillary organism causing meningitis and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using in vitro and in vivo models of the blood-brain barrier have shown that E. coli meningitis follows a high-degree of bacteremia and invasion of the blood-brain barrier. E. coli invasion of the blood-brain barrier, the essentials step in the development of E. coli meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to E. coli invasion of the blood-brain barrier is shown to be efficient in preventing E. coli penetration into the brain. The basis for requiring a high-degree of bacteremia for E. coli penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high-degree of bacteremia and E. coli invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis. PMID:27223820

  19. Diarrheagenic Escherichia coli Markers and Phenotypes among Fecal E. coli Isolates Collected from Nicaraguan Infants ▿

    OpenAIRE

    Reyes, Daniel; Vilchez, Samuel; Paniagua, Margarita; Colque-Navarro, Patricia; Weintraub, Andrej; Möllby, Roland; Kühn, Inger

    2010-01-01

    We analyzed the prevalence of diarrheagenic Escherichia coli (DEC) markers and common phenotypes in 2,164 E. coli isolates from 282 DEC-positive samples. Enteropathogenic E. coli (EPEC) and enteroaggregative E. coli (EAEC) were very diverse and were not correlated with diarrhea. Enterotoxigenic E. coli (ETEC) estA and enterohemorrhagic E. coli (EHEC) belonged to a few phenotypes and were significantly correlated with diarrhea.

  20. Cell surface acid-base properties of Escherichia coli and Bacillus brevis and variation as a function of growth phase, nitrogen source and C:N ratio.

    Science.gov (United States)

    Hong, Yongsuk; Brown, Derick G

    2006-07-01

    Potentiometric titration has been conducted to systematically examine the acid-base properties of the cell surfaces of Escherichia coli K-12 and Bacillus brevis as a function of growth phase, nitrogen source (ammonium or nitrate), and carbon to nitrogen (C:N) ratio of the growth substrate. The two bacterial species revealed four distinct proton binding sites, with pK(a) values in the range of 3.08-4.05 (pK(1)), 4.62-5.57 (pK(2)), 6.47-7.30 (pK(3)), and 9.68-10.89 (pK(4)) corresponding to phosphoric/carboxylic, carboxylic, phosphoric, and hydroxyl/amine groups, respectively. Two general observations in the data are that for B. brevis the first site concentration (N(1)), corresponding to phosphoric/carboxylic groups (pK(1)), varied as a function of nitrogen source, while for E. coli the fourth site concentration (N(4)), corresponding to hydroxyl/amine groups (pK(4)), varied as a function of C:N ratio. Correspondingly, it was found that N(1) was the highest of the four site concentrations for B. brevis and N(4) was the highest for E. coli. The concentrations of the remaining sites showed little variation. Finally, comparison between the titration data and a number of cell surface compositional studies in the literature indicates one distinct difference between the two bacteria is that pK(4) of the Gram-negative E. coli can be attributed to hydroxyl groups while that of the Gram-positive B. brevis can be attributed to amine groups.

  1. Ionic behavior of treated water at a water purification plant

    OpenAIRE

    Yanagida, Kazumi; Kawahigashi, Tatsuo

    2012-01-01

    [Abstract] Water at each processing stage in a water purification plant was extracted and analyzed to investigate changes of water quality. Investigations of water at each processing stage at the water purification plant are discussed herein.

  2. Engineering and Validation of a Vector for Concomitant Expression of Rare Transfer RNA (tRNA and HIV-1 nef Genes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Mualif

    Full Text Available Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef, HIV-1 p24 (ca, and HIV-1 vif in NiCo21(DE3 E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.

  3. Effect of bile on growth, peritoneal absorption, and blood clearance of Escherichia coli in E coli peritonitis

    International Nuclear Information System (INIS)

    Andersson, R.; Schalen, C.; Tranberg, K.G.

    1991-01-01

    The effect of intraperitoneal bile on growth, peritoneal absorption, and clearance of Escherichia coli was determined in E coli peritonitis in the rat. In E coli peritonitis, intraperitoneal bacterial counts gradually decreased, whereas they increased (after 2 hours) with subsequent development of bacteremia in E coli plus bile peritonitis. After an intraperitoneal injection of labeled bacteria, blood radioactivity was only initially lower in E coli plus bile peritonitis compared with E coli peritonitis. Clearance from blood was lower in E coli plus bile peritonitis than in E coli peritonitis. Organ localization was similar in E coli peritonitis and E coli plus bile peritonitis with decreased splenic, increased pulmonary, and unchanged hepatic uptakes compared with controls. Impaired peritoneal absorption of bacteria, together with impaired local host defense, is likely to enhance the noxious effect of bile in E coli peritonitis

  4. Purification and fluorescent labeling of the human serotonin transporter

    DEFF Research Database (Denmark)

    Rasmussen, Søren G F; Gether, Ulrik

    2005-01-01

    To establish a purification procedure for the human serotonin transporter (hSERT) we expressed in Sf9 insect cells an epitope-tagged version of the transporter containing a FLAG epitope at the N-terminus and a polyhistidine tail at the C-terminus (FLAG-hSERT-12H). For purification, the transporter...

  5. Dense Medium Plasma Water Purification Reactor (DMP WaPR), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Dense Medium Plasma Water Purification Reactor offers significant improvements over existing water purification technologies used in Advanced Life Support...

  6. State-of-the-art technocology in blood purification at present

    Directory of Open Access Journals (Sweden)

    Zhi-hong LIU

    2011-02-01

    Full Text Available Objective To review the recent advancement in clinical practices and studies on blood purification techniques,and to provide a guide for further studies on its application in military medicine.Methods Literature published in recent five years limited to blood purification field either in English or Chinese were retrieved by searching PubMed and CHKD.Analysis and summary were performed based on the literature.Results The advancements in blood purification in recent five years could be categorized into four fields,i.e.hemodialysis(HD,peritoneal dialysis(PD,continuous renal replacement therapy(CRRT,and adsorption therapy.The development in HD was aimed at promoting the ability of removal of toxic elements producing uremia and online monitor techniques,and PD was aimed at improvement of patients’ general condition and intervention to reduce the risk factors affecting long-term outcomes,and preparation of new PD solutions to improve the efficacy of PD.In regard to CRRT,the current progress had been focused on initiation time,dose and proposal of new hypothesis for high-volume hemofiltration(HVHF application.Adsorption therapy was another choice of blood purification.Domestic military medicine progress in blood purification in our armed forces was focused on techniques that could be used in treatment of casualties in war,including the basic and clinical study of extracorporeal circuit intervention(ECI for treatment of critically ill patients,problems arising from anticoagulation in ECI for patients with trauma,chemical agents poisoning,and adsorption technique.Conclusions Recently,the main advancement of blood purification technique is combined application of series techniques such as dialysis,hemofiltration,adsorption,and plasma exchange in treatment of critically ill patients.Studies on blood purification in domestic military medicine should be updated continuously to follow closely to the latest achievement in world,and translate these latest

  7. Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties.

    Science.gov (United States)

    Haushalter, Robert W; Kim, Woncheol; Chavkin, Ted A; The, Lionadi; Garber, Megan E; Nhan, Melissa; Adams, Paul D; Petzold, Christopher J; Katz, Leonard; Keasling, Jay D

    2014-11-01

    Microbial fermentation is emerging as an increasingly important resource for the production of fatty acids to serve as precursors for renewable diesel as well as detergents, lubricants and other industrial chemicals, as an alternative to traditional sources of reduced carbon such as petroleum. A major disadvantage of fuels derived from biological sources is their undesirable physical properties such as high cloud and pour points, and high viscosity. Here we report the development of an Escherichia coli strain that efficiently produces anteiso-branched fatty acids, which can be converted into downstream products with lower cloud and pour points than the mixtures of compounds produced via the native metabolism of the cell. This work addresses a serious limitation that must be overcome in order to produce renewable biodiesel and oleochemicals that perform as well as their petroleum-based counterparts. Published by Elsevier Inc.

  8. Purification of cerium, neodymium and gadolinium for low background experiments

    Directory of Open Access Journals (Sweden)

    Boiko R.S.

    2014-01-01

    Full Text Available Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search, 136Ce (2β+ candidate with one of the highest Q2β. The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  9. Stimulation of Escherichia coli DNA photoreactivating enzyme activity by adenosine 5'-triphosphate

    International Nuclear Information System (INIS)

    Koka, P.

    1984-01-01

    A purification procedure consisting of Biorex-70, single-stranded DNA-agarose, and ultraviolet (UV) light irradiated DNA-cellulose chromatography has been adopted for the Escherichia coli photoreactivating enzyme, to obtain enzyme preparations that are free of extraneous nucleic acid or nucleotides. The purification yields high specific activities (75 000 pmol h -1 mg -1 ) with a 50% recovery. Enzyme preparations have also been obtained from UV-irradiated DNA-cellulose by exposure to visible light. These enzyme preparations contain oligoribonucleotides, up to 26 nucleotides in length in relation to DNA size markers, but these are not essential for enzymatic activity. When the enzyme is preincubated with exogenous ATP a 10-fold stimulation in the enzyme activity has been observed. It has been determined by polyacrylamide gel electrophoresis and high-voltage diethylaminoethyl paper electrophoresis that the light-released enzyme samples from a preincubated and washed mixture of the enzyme, [γ- 32 P]ATP, and UV-irradiated DNA-cellulose contained exogenous [γ- 32 P], which eluted with the enzyme-containing fractions when subjected to Bio-Gel P-30 chromatography. GTP caused a slight enhancement of the enzyme activity while ADP strongly inhibited photoreactivation, at the same concentration and conditions. Higher (X5) concentrations of ADP and adenosine 5'-(β, γ-methylenetriphosphate) totally inhibited the enzyme activity. Dialysis of a photoreactivating enzyme preparation against a buffer solution containing 1 mM ATP caused a 9-fold stimulation of the enzyme activity. In addition, there is an apparent hydrolysis of ATP during photoreactivation as measured by the release of 32 P from [γ- 32 P]ATP

  10. Utilization of biodiesel by-product as substrate for high-production of β-farnesene via relatively balanced mevalonate pathway in Escherichia coli.

    Science.gov (United States)

    You, Shengping; Yin, Qingdian; Zhang, Jianye; Zhang, Chengyu; Qi, Wei; Gao, Lan; Tao, Zhiping; Su, Rongxin; He, Zhimin

    2017-11-01

    Farnesene has been identified as suitable jet fuel substitutes and metabolic engineering for microbial production of farnesene is an alternative and attractive route. In this study, due to accumulation of toxic intermediate isopentenyl pyrophosphate (IPP), an engineered Escherichia coli strain harboring heterologous mevalonate pathway produced only 4.11mg/L β-farnesene. Through higher-level expression of isopentenyl diphosphate isomerase and farnesyl diphosphate synthase to minimize the accumulated IPP, another engineered strain with relatively balanced mevalonate pathway was constructed and had the highest production of β-farnesene to date (8.74g/L) by Escherichia coli in a lab bioreactor. Furthermore, this is the first report on utilization of biodiesel by-product (simple purification) as substrate for high-production of β-farnesene by the engineered strain optimized and β-farnesene concentration reached 2.83g/L in a lab bioreactor. Therefore, the engineered strain optimized could be used as a platform host for high-production of other terpenoids using biodiesel by-product as substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Expression, purification, crystallization and preliminary X-ray diffraction studies of the human keratin 4-binding domain of serine-rich repeat protein 1 from Streptococcus agalactiae

    International Nuclear Information System (INIS)

    Sundaresan, Ramya; Samen, Ulrike; Ponnuraj, Karthe

    2011-01-01

    Expression, purification and crystallization of Srr-1-K4BD, a human keratin 4-binding domain of serine-rich repeat protein 1 from S. agalactiae, was carried out. Native crystals of Srr-1-K4BD diffracted to 3.8 Å resolution using synchrotron radiation. Serine-rich repeat protein 1 (Srr-1) is a surface protein from Streptococcus agalactiae. A 17 kDa region of this protein has been identified to bind to human keratin 4 (K4) and is termed the Srr-1 K4-binding domain (Srr-1-K4BD). Recombinant Srr-1-K4BD was overexpressed in Escherichia coli BL21 (DE3) cells. Native and selenomethionine-substituted proteins were prepared using Luria–Bertani (LB) and M9 minimal media, respectively. A two-step purification protocol was carried out to obtain a final homogenous sample of Srr-1-K4BD. Crystals of native Srr-1-K4BD were obtained using PEG 3350 as a precipitant. The crystals diffracted to 3.8 Å resolution using synchrotron radiation and belonged to space group P2 1 , with unit-cell parameters a = 47.56, b = 59.48, c = 94.71 Å, β = 93.95°

  12. Expression, purification, crystallization and preliminary X-ray analysis of maleylacetate reductase from Burkholderia sp. strain SJ98

    International Nuclear Information System (INIS)

    Chauhan, Archana; Islam, Zeyaul; Jain, Rakesh Kumar; Karthikeyan, Subramanian

    2009-01-01

    Purification and preliminary X-ray crystallographic analysis of maleylacetate reductase encoded by the pnpD gene is reported. Maleylacetate reductase (EC 1.3.1.32) is an important enzyme that is involved in the degradation pathway of aromatic compounds and catalyzes the reduction of maleylacetate to 3-oxoadipate. The gene pnpD encoding maleylacetate reductase in Burkholderia sp. strain SJ98 was cloned, expressed in Escherichia coli and purified by affinity chromatography. The enzyme was crystallized in both native and SeMet-derivative forms by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant at 293 K. The crystals belonged to space group P2 1 2 1 2, with unit-cell parameters a = 72.91, b = 85.94, c = 53.07 Å. X-ray diffraction data for the native and SeMet-derivative crystal were collected to 2.7 and 2.9 Å resolution, respectively

  13. Properties of hydrogenase from Megasphaera elsdenii

    NARCIS (Netherlands)

    Dijk, van C.

    1980-01-01

    This thesis is concerned with the purification and properties of hydrogenase from the obligate anaerobic rumen bacterium Megasphaera elsdenii. In chapter 1 the motives underlying this thesis, the physiological role of hydrogenase in some heterotrophs, including

  14. Specialists' meeting on fast reactor cover gas purification

    International Nuclear Information System (INIS)

    1987-01-01

    The tentative agenda was adopted by the participants without comment and was followed throughout the meeting. The following topics were discussed at the subsequent sessions of the meeting on 'Fast Reactor Cover Gas Purification': National Position Papers; Impurities: Sources and Measurement; Cover Gas Purification Techniques; Sodium Aerosol Trapping; Radiological Considerations. Based on the papers presented and the discussions following, session summaries and conclusions were prepared and are included in this report

  15. Specialists' meeting on fast reactor cover gas purification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-07-01

    The tentative agenda was adopted by the participants without comment and was followed throughout the meeting. The following topics were discussed at the subsequent sessions of the meeting on 'Fast Reactor Cover Gas Purification': National Position Papers; Impurities: Sources and Measurement; Cover Gas Purification Techniques; Sodium Aerosol Trapping; Radiological Considerations. Based on the papers presented and the discussions following, session summaries and conclusions were prepared and are included in this report.

  16. A new helium gas recovery and purification system

    International Nuclear Information System (INIS)

    Yamamotot, T.; Suzuki, H.; Ishii, J.; Hamana, I.; Hayashi, S.; Mizutani, S.; Sanjo, S.

    1974-01-01

    A helium gas recovery and purification system, based on the principle of gas permeation through a membrane, is described. The system can be used for the purification of helium gas containing air as a contaminant. The apparatus, operating at ambient temperature does not need constant attention, the recovery ratio of helium gas is satisfactory and running costs are low. Gases other than helium can be processed with the apparatus. (U.K.)

  17. Recovery and purification of ethylene

    Science.gov (United States)

    Reyneke, Rian [Katy, TX; Foral, Michael J [Aurora, IL; Lee, Guang-Chung [Houston, TX; Eng, Wayne W. Y. [League City, TX; Sinclair, Iain [Warrington, GB; Lodgson, Jeffery S [Naperville, IL

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  18. Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yijie [Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research - A*STAR, 3 Research Link, 117602 (Singapore); School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Jiang, Xiaoyu; Zhang, Jing [AGplus Technologies Pte Ltd, 10 Jalan Besar #10-06 Sim Lim Tower, 208787 (Singapore); Lin, Ming [Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research - A*STAR, 3 Research Link, 117602 (Singapore); Tang, Xiaosheng [AGplus Technologies Pte Ltd, 10 Jalan Besar #10-06 Sim Lim Tower, 208787 (Singapore); Zhang, Jie, E-mail: zhangj@imre.a-star.edu.sg [Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research - A*STAR, 3 Research Link, 117602 (Singapore); Liu, Hongjun, E-mail: hjliu@henu.edu.cn [Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004 (China); AGplus Technologies Pte Ltd, 10 Jalan Besar #10-06 Sim Lim Tower, 208787 (Singapore)

    2017-02-28

    Highlights: • Nanosilver diatomite has been developed with a facile, easy and effective in–situ reduction method. • The nanosilver diatomite demonstrated great antibacterial properties to gram positive and gram–negative bacterial. • A small amount of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. • Low cost nano–composite antimicrobial material for water purification industry. - Abstract: Nanotechnology for water disinfection application gains increasing attention. Diatomite is one kind of safe natural material, which has been widely used as absorbent, filtration agents, mineral fillers, especially in water treatment industry. Nanosilver/diatomite nanocomposites were developed in this publication with a facile, effective in-situ reduction method. The as-prepared nanosilver/diatomite nanocomposites demonstrated amazing antibacterial properties to gram-positive and gram-negative bacteria. The corresponding property has been characterized by UV–vis absorbance, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS). Moreover, the detailed bacteria killing experiments further displayed that 0.5 g of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. And the silver leaching test demonstrated that the concentrations of silver in the filtered water under varies pH environment were below the limit for silver level of WHO standard. Considering the low price of natural diatomite, it is believed that the nanosilver/diatomite nanocomposites have potential application in water purification industry due to its excellent antimicrobial property.

  19. Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application

    International Nuclear Information System (INIS)

    Xia, Yijie; Jiang, Xiaoyu; Zhang, Jing; Lin, Ming; Tang, Xiaosheng; Zhang, Jie; Liu, Hongjun

    2017-01-01

    Highlights: • Nanosilver diatomite has been developed with a facile, easy and effective in–situ reduction method. • The nanosilver diatomite demonstrated great antibacterial properties to gram positive and gram–negative bacterial. • A small amount of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. • Low cost nano–composite antimicrobial material for water purification industry. - Abstract: Nanotechnology for water disinfection application gains increasing attention. Diatomite is one kind of safe natural material, which has been widely used as absorbent, filtration agents, mineral fillers, especially in water treatment industry. Nanosilver/diatomite nanocomposites were developed in this publication with a facile, effective in-situ reduction method. The as-prepared nanosilver/diatomite nanocomposites demonstrated amazing antibacterial properties to gram-positive and gram-negative bacteria. The corresponding property has been characterized by UV–vis absorbance, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS). Moreover, the detailed bacteria killing experiments further displayed that 0.5 g of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. And the silver leaching test demonstrated that the concentrations of silver in the filtered water under varies pH environment were below the limit for silver level of WHO standard. Considering the low price of natural diatomite, it is believed that the nanosilver/diatomite nanocomposites have potential application in water purification industry due to its excellent antimicrobial property.

  20. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of bacterioferritin A from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Gupta, Vibha; Gupta, Rakesh K.; Khare, Garima; Salunke, Dinakar M.; Tyagi, Anil K.

    2008-01-01

    The cloning, purification and crystallization of a bacterioferritin from M. tuberculosis together with preliminary X-ray characterization of its crystals are reported. Bacterioferritins (Bfrs) comprise a subfamily of the ferritin superfamily of proteins that play an important role in bacterial iron storage and homeostasis. Bacterioferritins differ from ferritins in that they have additional noncovalently bound haem groups. To assess the physiological role of this subfamily of ferritins, a greater understanding of the structural details of bacterioferritins from various sources is required. The gene encoding bacterioferritin A (BfrA) from Mycobacterium tuberculosis was cloned and expressed in Escherichia coli. The recombinant protein product was purified by affinity chromatography on a Strep-Tactin column and crystallized with sodium chloride as a precipitant at pH 8.0 using the vapour-diffusion technique. The crystals diffracted to 2.1 Å resolution and belonged to space group P4 2 , with unit-cell parameters a = 123.0, b = 123.0, c = 174.6 Å

  1. Expression and purification of antimicrobial peptide adenoregulin with C-amidated terminus in Escherichia coli.

    Science.gov (United States)

    Cao, Wei; Zhou, Yuxun; Ma, Yushu; Luo, Qingping; Wei, Dongzhi

    2005-04-01

    Adenoregulin is a 33 amino acid antimicrobial peptide isolated from the skin of the arboreal frog Phyllomedusa bicolor. Natural adenoregulin is synthesized with an amidated valine residue at C-terminus and shows lethal effects against filamentous fungi, as well as a broad spectrum of pathogenic microorganisms. A synthetic gene for adenoregulin (ADR) with an additional amino acid glutamine at C-terminus was cloned into pET32a vector to allow expression of ADR as a Trx fusion protein in Escherichia coli BL21(DE3). The resulting expression level of the fusion protein could reach up to 20% of the total cell proteins. The fusion protein could be purified effectively by Ni2+-chelating chromatography. Released from the fusion protein by enterokinase cleavage and purified to homogeneity, the recombinant ADR displayed antimicrobial activity similar to that of the synthetic ADR reported earlier. Comparing the antimicrobial activities of the recombinant adenoregulin with C-amidated terminus to that without an amidated C-terminus, we found that the amide of glutamine at C-terminus of ADR improved its potency on certain microorganisms such as Tritirachium album and Saccharomyces cerevisiae.

  2. Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens.

    Science.gov (United States)

    Tanhaiean, Abass; Azghandi, Marjan; Razmyar, Jamshid; Mohammadi, Elyas; Sekhavati, Mohammad Hadi

    2018-06-08

    Over the last decades, poultry industry faced to the rapid emergence of multidrug-resistant bacteria as a global concern. Antimicrobial peptide (AMPs) known as potential antibiotic alternative and were considered as a new antimicrobial agent. Current methods of production and purification of AMPs have several limitations such as: costly, time-consuming and killing the producing host cells in recombinant form. In the present study, a chimeric peptide derived from camel lactoferrin was produced in Escherichia coli periplasmic space using a pET-based expression system and its antibacterial activity was determined on some avian pathogens in vitro. A carboxy-terminal polyhistidine tag was used for purification by Ni 2+ affinity chromatography with an average yield of 0.42 g/L. The His-tagged chimeric peptide showed different range of antimicrobial activity against clinically isolated avian pathogens with low chicken blood hemolysis activity and high serum stability. Overall, the results of this investigation showed the recombinant chimeric peptide was successfully expressed in pET-based expression system and could be considered as a proper alternative for some currently used antibiotics in poultry industry and drugs veterinary medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. New concept of gas purification by electron attachment

    International Nuclear Information System (INIS)

    Tamon, Hajime; Mizota, Hirotoshi; Sano, Noriaki; Schulze, S.; Okazaki, Morio

    1995-01-01

    Recently, the public has become interested in the following types of gas purification: (1) removal of indoor air pollutants; (2) complete removal of dioxin from incineration plants; (3) complete removal of radioactive iodine compounds; (4) simultaneous removal of NOx and SOx in exhaust gases from cogeneration plants; (5) removal and decomposition of halocarbons; (6) ultrahigh purification of gas sued for semiconductor industries. A new concept of gas purification by electron attachment is proposed. Low-energy electrons generated in a corona-discharge reactor are captured by electronegative impurities, producing negative ions. The ions drift to the anode in the electric field and are removed at the anode of the reactor. Two types of reactors were used to remove the negative ions: a deposition-type reactor, which deposits negative ions at the anode surface; a sweep-out-type reactor, which sweeps out enriched electronegative impurities through the porous anode. Removals of dilute sulfur compounds, oxygen and iodine from nitrogen were conducted to verify the concept of gas purification. Simulation models were used to estimate removal efficiencies of these compounds, by taking into account electron attachment, and experimental constants of the models were determined. The removal efficiency correlated by the models agreed well with the experimental one

  4. The Blood Compatibilities of Blood Purification Membranes and Other Materials Developed in Japan

    Directory of Open Access Journals (Sweden)

    Takaya Abe

    2011-01-01

    Full Text Available The biocompatibilities in blood purification therapy are defined as “a concept to stipulate safety of blood purification therapy by an index based on interaction in the body arising from blood purification therapy itself.” The biocompatibilities are associated with not only materials to be used but also many factors such as sterilization method and eluted substance. It is often evaluated based on impacts on cellular pathways and on humoral pathways. Since the biocompatibilities of blood purification therapy in particular hemodialysis are not just a prognostic factor for dialysis patients but a contributory factor for long-term complications, it should be considered with adequate attention. It is important that blood purification therapy should be performed by consistently evaluating not only risks associated with these biocompatibilities but also the other advantages obtained from treatments. In this paper, the biocompatibilities of membrane and adsorption material based on Japanese original which are used for blood purification therapy are described.

  5. Multiple loci affecting photoreactivation in Escherichia coli

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Hausrath, S.G.

    1979-01-01

    Sutherland et al. mapped a phr gene in Escherichia coli at 17 min and found that induction of an E. coli stain lysogenic for a lambda phage carrying this gene increased photoreactivating enzyme levels 2,000-fold. Recently, Smith and Youngs and Sancar and Rupert located a phr gene at 15.9 min. We have therefore investigated the properties of photoreactivating enzyme and cellular photoreactivation in cells containing deletions of the gene at 17 min. Cells with this deletion photoreactivated ultraviolet-induced killing at a rate 20% of normal; they also contained approximately 20% of the normal photoreactivating enzyme level. The residual enzyme in these cells was characterized to determine whether the reduced cellular photoreactivation rate and photoreactivating enzyme levels resulted from reduced numbers of normal enzymes or from an altered enzyme. Photoreactivating enzymes from strains carrying a deletion of the region at 17 min has an apparent K/sub m/ about two- to threefold higher than normal enzyme and showed markedly increased heat lability. The gene at 17 min thus contains information determining the function of the E. coli photoreactivating enzyme rather than the quantity of the enzyme. It is proposed that the gene at 17 min be termed phrA and that located at 15.9 min be termed phrB

  6. Effects of Saponins against Clinical E. coli Strains and Eukaryotic Cell Line

    Science.gov (United States)

    Arabski, Michał; Węgierek-Ciuk, Aneta; Czerwonka, Grzegorz; Lankoff, Anna; Kaca, Wiesław

    2012-01-01

    Saponins are detergent-like substances showing antibacterial as well as anticancer potential. In this study, the effects of saponins from Quillaja saponaria were analyzed against prokaryotic and eukaryotic cells. Multidrug-resistant clinical E. coli strains were isolated from human urine. As eukaryotic cells, the CHO-K1 cell lines were applied. Antibacterial effect of ampicillin, streptomycin, and ciprofloxacin in the presence of saponins was measured by cultivation methods. Properties of saponins against CHO-K1 cells were measured by the MTT test, hemolysis assay and flow cytometry. Saponin from Quillaja saponaria has a cytotoxic effect at concentrations higher than 25 μg/mL and in the range of 12–50 μg/mL significantly increases the level of early apoptotic cells. Saponin at dose of 12 μg/mL enhances the six E. coli strains growth. We postulate that saponins increase the influx of nutrients from the medium into E. coli cells. Saponins do not have synergetic effects on antibacterial action of tested antibiotics. In contrary, in the presence of saponins and antibiotics, more CFU/mL E. coli cells were observed. This effect was similar to saponins action alone towards E. coli cells. In conclusion, saponins was cytotoxic against CHO-K1 cells, whereas against E. coli cells this effect was not observed. PMID:22500084

  7. Effects of Saponins against Clinical E. coli Strains and Eukaryotic Cell Line

    Directory of Open Access Journals (Sweden)

    Michał Arabski

    2012-01-01

    Full Text Available Saponins are detergent-like substances showing antibacterial as well as anticancer potential. In this study, the effects of saponins from Quillaja saponaria were analyzed against prokaryotic and eukaryotic cells. Multidrug-resistant clinical E. coli strains were isolated from human urine. As eukaryotic cells, the CHO-K1 cell lines were applied. Antibacterial effect of ampicillin, streptomycin, and ciprofloxacin in the presence of saponins was measured by cultivation methods. Properties of saponins against CHO-K1 cells were measured by the MTT test, hemolysis assay and flow cytometry. Saponin from Quillaja saponaria has a cytotoxic effect at concentrations higher than 25 μg/mL and in the range of 12–50 μg/mL significantly increases the level of early apoptotic cells. Saponin at dose of 12 μg/mL enhances the six E. coli strains growth. We postulate that saponins increase the influx of nutrients from the medium into E. coli cells. Saponins do not have synergetic effects on antibacterial action of tested antibiotics. In contrary, in the presence of saponins and antibiotics, more CFU/mL E. coli cells were observed. This effect was similar to saponins action alone towards E. coli cells. In conclusion, saponins was cytotoxic against CHO-K1 cells, whereas against E. coli cells this effect was not observed.

  8. Re-purification of labelled ferritin antigen with HPLC

    International Nuclear Information System (INIS)

    Zhang Haoyi; Jin Lichun

    2002-01-01

    Objective: To improve the quality of long-term stored labelled ferritin antigen with HPLC. Methods: The antigen was analyzed and purified with HPLC and again analyzed with RIA afterwards. Results: Ferritin antigen underwent significant polymerization after long-term (aggregation) storage. After re-purification with HPLC, its immuno-activity and labelled specific radioactivity were both significantly improved. Conclusion: Quality of stored ferritin RIA kit could be greatly improved after re-purification with HPLC

  9. The entanglement purification for entangled multi-particle states

    CERN Document Server

    Ye, Liu; Guo Guang Can

    2002-01-01

    We present two purification schemes for nonmaximally entangled states. We first show that two parties, Alice and Bob, start with shared less-entangled three-particle states to probabilistically produce a three-particle Greenberger-Horne-Zeilinger state by Bell state measurements and positive operator valued measure (POVM) or a unitary transformation. Then, by a straightforward generalization of the schemes, the purification of a multi-particle entangled state can be realized. 25 Refs. --- 35 --- AN

  10. Overview of the recombinant proteins purification by affinity tags and ...

    African Journals Online (AJOL)

    From protein within isolation process which the same matter increases labor costs further and prevents application of these tags in industrial scale. Therefore proper replacement is emphasized for enzymatic removal of purification tags. Keywords: protein purification; recombinant proteins; self-cleavable tags; Intein tags; ...

  11. Expression, purification, crystallization and X-ray analysis of 3-quinuclidinone reductase from Agrobacterium tumefaciens

    International Nuclear Information System (INIS)

    Hou, Feng; Miyakawa, Takuya; Takeshita, Daijiro; Kataoka, Michihiko; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2012-01-01

    The purification and crystallization of 3-quinuclidinone reductase from A. tumefaciens allowed the collection of a diffraction data set to 1.72 Å resolution. (R)-3-Quinuclidinol is a useful chiral building block for the synthesis of various pharmaceuticals and can be produced from 3-quinuclidinone by asymmetric reduction. A novel 3-quinuclidinone reductase from Agrobacterium tumefaciens (AtQR) catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol with NADH as a cofactor. Recombinant AtQR was overexpressed in Escherichia coli, purified and crystallized with NADH using the sitting-drop vapour-diffusion method at 293 K. Crystals were obtained using a reservoir solution containing PEG 3350 as a precipitant. X-ray diffraction data were collected to 1.72 Å resolution on beamline BL-5A at the Photon Factory. The crystal belonged to space group P2 1 , with unit-cell parameters a = 62.0, b = 126.4, c = 62.0 Å, β = 110.5°, and was suggested to contain four molecules in the asymmetric unit (V M = 2.08 Å 3 Da −1 )

  12. Contribution to the study of the process of purification of plutonium by extraction with trilaurylamine

    International Nuclear Information System (INIS)

    Saey, Jean-Claude

    1966-01-01

    This work addresses the process of plutonium purification which uses trilaurylamine nitrate. In order to use this nitrate in its solid state and at ordinary temperature, a secondary solvent must be added which must have some properties: low volume mass and viscosity, high boiling and ignition temperatures, rather low miscibility with water, high stability in front of joint actions of nitric acid and radiations, and no reaction with the alkylammonium nitrate and the complex. Thus, the author addresses phenomena of immiscibility and identifies some important molecular characteristics which could lead to the selection of another secondary solvent than dodecane. The decalin seem interesting and its behaviour is studied. A mixing of dodecane and decalin is used as extraction mixing. The obtained results are discussed. Finally, the author notices that using this mixing in the plutonium purification process results in a large increase of metal concentrations and a decrease of risks of crystallisation, without any major drawback, in a continuously operating micro-industrial installation

  13. Preparative separation and purification of rosmarinic acid from perilla seed meal via combined column chromatography.

    Science.gov (United States)

    Tang, Weizhuo; Sun, Baoshan; Zhao, Yuqing

    2014-02-01

    In this study, the preparative separation and purification of rosmarinic acid (RA) from perilla seed meal (PSM), which is a by-product of edible oil production, was achieved using combined column chromatography over macroporous and polyamide resins. To optimize the RA enrichment process, the performance and separation characteristics of nine selected macroporous resins with different chemical and physical properties were investigated. SP825 resin was the most effective: the content of RA increased from 0.27% in the original extract to 16.58% in the 50% ethanol fraction (a 61.4-fold increase). During further purification treatment on polyamide resin, 90.23% pure RA could be obtained in the 70% ethanol fraction. RA with a higher purity (>95%) could also be easily obtained using one crystallization operation. The proposed method is simple, easily operated, cost-effective, and environmentally friendly and is suitable for both large-scale RA production and waste management. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. One-step deterministic multipartite entanglement purification with linear optics

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Yu-Bo [Department of Physics, Tsinghua University, Beijing 100084 (China); Long, Gui Lu, E-mail: gllong@tsinghua.edu.cn [Department of Physics, Tsinghua University, Beijing 100084 (China); Center for Atomic and Molecular NanoSciences, Tsinghua University, Beijing 100084 (China); Key Laboratory for Quantum Information and Measurements, Beijing 100084 (China); Deng, Fu-Guo [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China)

    2012-01-09

    We present a one-step deterministic multipartite entanglement purification scheme for an N-photon system in a Greenberger–Horne–Zeilinger state with linear optical elements. The parties in quantum communication can in principle obtain a maximally entangled state from each N-photon system with a success probability of 100%. That is, it does not consume the less-entangled photon systems largely, which is far different from other multipartite entanglement purification schemes. This feature maybe make this scheme more feasible in practical applications. -- Highlights: ► We proposed a deterministic entanglement purification scheme for GHZ states. ► The scheme uses only linear optical elements and has a success probability of 100%. ► The scheme gives a purified GHZ state in just one-step.

  15. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2008-06-01

    Full Text Available Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP, glycoprotein 1 (GP1, and glycoprotein 2 (GP2. Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP fusions in the Rosetta strains of Escherichia coli (E. coli using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC. Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA. Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.

  16. On the use of magnetic separation for purification of aqueous radioactive solutions from oils

    International Nuclear Information System (INIS)

    Shchebetkovskij, V.N.; Vyatkin, V.E.; Gurevich, D.M.; Bochkov, A.A.

    1984-01-01

    Using model systems, simulating oiled condensate that is formed during evaporation of water radioactive wastes, a possibility is shown to use the method of magnetic separation for waste purification from oil. Introduction of a dispersed ferromagnetic powder in the system to stabilize oil drops and to impart ''quasiferromagnetic'' properties to them, is a necessary condition for the efficient oil separation. Using as an example 137 Cs absorption, the adsorbability of ferromagnetic powders relative to radionuclides in the system investigated is assessed

  17. Purification and characterization of amine oxidase from soybean seedlings.

    Science.gov (United States)

    Vianello, F; Di Paolo, M L; Stevanato, R; Gasparini, R; Rigo, A

    1993-11-15

    A simple and rapid procedure for purification of soybean seedling amine oxidase is reported. The crude enzyme, obtained by ammonium sulfate fractionation was purified by ion-exchange chromatography on a cellulose phosphate column and batch affinity chromatography on 6-aminohexyl-Sepharose. Cyclohexylamine, a competitive inhibitor, was utilized to elute the enzyme. A homogeneous enzyme was obtained with a yield higher than 25%, the content of minor components being lauryl sulfate-polyacrylamide gel electrophoresis. The enzyme is a dimer and contains two Cu2+ ion per molecule. Its EPR spectrum is typical of Cu2+ in a tetragonal symmetry. The enzyme oxidizes cadaverine at high rate, the specific activity being 4.3 mukat/mg. Molecular, spectroscopic, and kinetic properties of this enzyme are reported.

  18. PURIFICATION AND ENRICHMENT OF BIOGAS IN ASH-WATER MIXTURE

    Directory of Open Access Journals (Sweden)

    Andrzej Brudniak

    2014-10-01

    Full Text Available Biogas, produced in an aerobic digestion process, is a mixture of gases, and that is why its inexpensive and effective valorisation is essential. Research on this process is necessary in order to use biogas as a renewable energy source. The aim of this thesis is to present methods of biogas purification and enrichment in the fly ash - water mixture, that is generated on the base of fly ash produced during burning coal in power industry. Experience presented that the fly ash absorbs CO2 and H2S, even in conventional conditions. The absorption efficiency depends not only on the chemical composition of the ash but also on its physical properties. There was also a strong neutralization of alkaline waste combustion.

  19. Optimizing HIV-1 protease production in Escherichia coli as fusion protein

    Directory of Open Access Journals (Sweden)

    Piubelli Luciano

    2011-06-01

    Full Text Available Abstract Background Human immunodeficiency virus (HIV is the etiological agent in AIDS and related diseases. The aspartyl protease encoded by the 5' portion of the pol gene is responsible for proteolytic processing of the gag-pol polyprotein precursor to yield the mature capsid protein and the reverse transcriptase and integrase enzymes. The HIV protease (HIV-1Pr is considered an attractive target for designing inhibitors which could be used to tackle AIDS and therefore it is still the object of a number of investigations. Results A recombinant human immunodeficiency virus type 1 protease (HIV-1Pr was overexpressed in Escherichia coli cells as a fusion protein with bacterial periplasmic protein dithiol oxidase (DsbA or glutathione S-transferase (GST, also containing a six-histidine tag sequence. Protein expression was optimized by designing a suitable HIV-1Pr cDNA (for E. coli expression and to avoid autoproteolysis and by screening six different E. coli strains and five growth media. The best expression yields were achieved in E. coli BL21-Codon Plus(DE3-RIL host and in TB or M9 medium to which 1% (w/v glucose was added to minimize basal expression. Among the different parameters assayed, the presence of a buffer system (based on phosphate salts and a growth temperature of 37°C after adding IPTG played the main role in enhancing protease expression (up to 10 mg of chimeric DsbA:HIV-1Pr/L fermentation broth. GST:HIVPr was in part (50% produced as soluble protein while the overexpressed DsbA:HIV-1Pr chimeric protein largely accumulated in inclusion bodies as unprocessed fusion protein. A simple refolding procedure was developed on HiTrap Chelating column that yielded a refolded DsbA:HIV-1Pr with a > 80% recovery. Finally, enterokinase digestion of resolubilized DsbA:HIV-1Pr gave more than 2 mg of HIV-1Pr per liter of fermentation broth with a purity ≤ 80%, while PreScission protease cleavage of soluble GST:HIVPr yielded ~ 0.15 mg of pure HIV-1

  20. Rotary adsorbers for waste air purification and solvent recovery

    International Nuclear Information System (INIS)

    Konrad, G.; Eigenberger, G.

    1994-01-01

    Rotary Adsorbers for Waste Air Purification and Solvent Recovery. Thanks to their compact construction and low pressure drops, adsorbers with rotating adsorbent beds are highly suitable both for retrofitting of waste air purification units and generally for the removal of absorbable components from gas streams. When used in conjunction with straightforward hot gas desorption they permit almost complete purification of gas flows with concomitant concentration of the separated components in the desorbate by a factor of 10 to 20. They can also be used in conjunction with recovery of the separated components by partial condensation of the desorbate. Owing to the fixed coupling of adsorption and desorption times, which is determined by the geometry of the unit, the behaviour of the system is distinctly different from that of conventional multiple bed systems in cyclic operation. A detailed model description and computer simulation of operating behaviour are particularly useful for their analysis. It is shown that the behaviour of commercially available rotor concepts can be much better understood in this way and new concepts for exhaust air purification with integrated solvent recovery can be developed which are characterised by significantly reduced energy requirements for desorption and condensation. (orig.) [de

  1. Preliminary X-ray diffraction analysis of YcdB from Escherichia coli: a novel haem-containing and Tat-secreted periplasmic protein with a potential role in iron transport

    International Nuclear Information System (INIS)

    Cartron, Michaël L.; Mitchell, Sue A.; Woodhall, Mark R.; Andrews, Simon C.; Watson, Kimberly A.

    2006-01-01

    The crystallization and structure determination of the apo form of a novel haem-containing Tat substrate, YcdB from E. coli, has been solved to 2.0 Å resolution. The preliminary structure shows similarity to other haem-dependent peroxidases, despite low sequence homology. YcdB is a periplasmic haem-containing protein from Escherichia coli that has a potential role in iron transport. It is currently the only reported haem-containing Tat-secreted substrate. Here, the overexpression, purification, crystallization and structure determination at 2.0 Å resolution are reported for the apo form of the protein. The apo-YcdB structure resembles those of members of the haem-dependent peroxidase family and thus confirms that YcdB is also a member of this family. Haem-soaking experiments with preformed apo-YcdB crystals have been optimized to successfully generate haem-containing YcdB crystals that diffract to 2.9 Å. Completion of model building and structure refinement are under way

  2. Generation, concentration and purification for ionic entangled states

    International Nuclear Information System (INIS)

    Yang Ming; Cao Zhuoliang

    2007-01-01

    In cavity QED, the atoms would be sent through the sequential arrays of cavities for the generation of multi-cavity entanglement, or several atoms would be sent into the same cavity mode one bye one for the generation of multi-atom entanglement. The complexity of these processes will impose limitations on the experimental feasibility of it. So, following our previous publication [International Journal Of Quantum Information 2, 231 (2004)] we will propose an alternative scheme for the preparation of multi-cavity W state via cavity QED, which uses the geometrical method to do what other authors have proposed previously using sequential arrays of cavities. Due to the impossibility that one quantum system can be isolated from the environment absolutely, the entanglement of the entangled objects will decrease exponentially with the propagating distance of the objects, and the practically available quantum entangled states are all non-maximally entangled states or the more general case--mixed states. Following our previous publications [Phys. Rev. A 72, 042307 (2005), ibid. 71, 012308 (2005)], we will propose an entanglement generation, concentration and purification scheme for atomic or ionic system, which is mainly based on Cavity QED and linear optical elements. This purification process avoids the controlled-NOT (C-NOT) operations needed in the original purification protocol, which simplifies the whole purification process

  3. Purification and characterization of selenocysteine beta-lyase from Citrobacter freundii

    International Nuclear Information System (INIS)

    Chocat, P.; Esaki, N.; Tanizawa, K.; Nakamura, K.; Tanaka, H.; Soda, K.

    1985-01-01

    The purification and characterization of bacterial selenocysteine beta-lyase, an enzyme which specifically catalyzes the cleavage of L-selenocysteine to L-alanine and Se0, are presented. The enzyme, purified to near homogeneity from Citrobacter freundii, is monomeric with a molecular weight of ca. 64,000 and contains 1 mol of pyridoxal 5'-phosphate as a cofactor per mol of enzyme. L-Selenocysteine is the sole substrate. L-Cysteine is a competitive inhibitor of the enzyme. The enzyme also catalyzes the alpha, beta elimination of beta-chloro-L-alanine to form NH 3 , pyruvate, and Cl- and is irreversibly inactivated during the reaction. The physicochemical properties, e.g., amino acid composition and subunit structure, of the bacterial enzyme are fairly different from those of the pig liver enzyme. However, the catalytic properties of both enzymes, e.g., substrate specificity and inactivation by the substrate or a mechanism-based inactivator, beta-chloro-L-alanine, are very similar

  4. Cell-Free Expression, Purification, and Characterization of the Functional β2-Adrenergic Receptor for Multianalyte Detection of β-Agonists.

    Science.gov (United States)

    Wang, Jian; Liu, Yuan; Zhang, Junhua; Han, Zhengzheng; Wang, Wei; Liu, Yang; Wei, Dong; Huang, Wei

    2017-11-01

    Large-scale expression of β 2 -adrenergic receptor (β 2 -AR) in functional form is necessary for establishment of receptor assays for detecting illegally abused β-adrenergic agonists (β-agonists). Cell-based heterologous expression systems have manycritical difficulties in synthesizing this membrane protein, such as low protein yields and aberrant folding. To overcome these challenges, the main objective of the present work was to synthesize large amounts of functional β 2 -AR in a cell-free system based on Escherichia coli extracts. A codon-optimized porcine β 2 -AR gene (codon adaptation index: 0.96) suitable for high expression in E. coli was synthesized and transcribed to the cell-free system, which contributed to increase the expression up to 1.1 mg/ml. After purification using Ni-affinity chromatography, the bioactivity of the purified receptor was measured by novel enzyme-linked receptor assays. It was determined that the relative affinities of the purified β 2 -AR for β-agonists in descending order were as follows: clenbuterol > salbutamol > ractopamine. Moreover, their IC 50 values were 45.99, 60.38, and 78.02 µg/liter, respectively. Although activity of the cell-free system was slightly lower than activity of systems based on insect and mammalian cells, this system should allow production of β 2 -AR in bulk amounts sufficient for the development of multianalyte screening methods for detecting β-agonist residues.

  5. Annual Surveillance Summary: Escherichia coli (E. coli) Infections in the Military Health System (MHS), 2015

    Science.gov (United States)

    2017-03-01

    Annual Surveillance Summary: Escherichia coli ( E . coli ) Infections in the Military Health System (MHS...or position of the Department of the Navy, Department of Defense, nor the U.S. Government. i i E . coli in the MHS: Annual Summary 2015 Prepared...March 2017 EpiData Center Department NMCPHC-EDC-TR-187-2017 ii ii E . coli in the MHS: Annual Summary 2015 Prepared March 2017 EpiData

  6. Nanocomposite copolymer thin-film sensor for detection of escherichia coli

    Science.gov (United States)

    Mathur, Prafull; Misra, S. C. K.; Yadav, Maneesha; Bawa, S. S.; Gupta, A. K.

    2006-01-01

    The majority of human diseases associated with microbial contaminated water are infectious in nature and the associated pathogen includes bacteria, fungi, viruses and protozoa. Water contaminated with bacteria can cause a number of food-borne and water-borne diseases. The waterborne transmission is highly effective means of spreading infectious agents to a large portion of population; this includes water and milk too. Waterborne infections are recognized as resulting either from ingestion of contaminated water or ice, food items, which have, came into contact with microbial contaminated water (occurring through bathing and recreational activities) etc. The detection of E. coli in food and water is normally carried out by culturing methods, which normally take 3-6 days, These methods are complicated and time-consuming in spite of their correctness, and cannot easily meet inspection demands on E. coli. Hence, an establishment of rapid detection methods for E. coli is strongly required. We have developed highly sensitive and cost effective solid sate sensors prepared from vacuum evaporated thin films of nanocomposite copolymer detection of presence of E. coli vapors in the air within 20 seconds. These sensors operate at room temperature. The preparation, optical, electrical, and structural characterization and behavioral acceptance test on the microorganism sensing properties of these sensors are reported here.

  7. Early days of tRNA research: Discovery, function, purification and ...

    Indian Academy of Sciences (India)

    Madhu

    2006-10-04

    Oct 4, 2006 ... function in protein synthesis and methods for its purification ... intermediate carrier of the amino acid in protein synthesis. (table 1). .... 14C-leucine were incubated with GTP, PEP, and pyruvate kinase as indicated (adapted from: Hoagland et al 1958). .... Purification of N. crassa mitochondrial initiator tRNA.

  8. Protective effects of indigenous Escherichia coli against a pathogenic E. coli challenge strain in pigs.

    Science.gov (United States)

    Vahjen, W; Cuisiniere, T; Zentek, J

    2017-10-13

    To investigate the inhibitory effect of indigenous enterobacteria on pathogenic Escherichia coli, a challenge trial with postweaning pigs was conducted. A pathogenic E. coli strain was administered to all animals and their health was closely monitored thereafter. Faecal samples were taken from three healthy and three diarrhoeic animals. Samples were cultivated on MacConkey agar and isolates were subcultured. A soft agar overlay assay was used to determine the inhibitory activity of the isolates. A total of 1,173 enterobacterial isolates were screened for their ability to inhibit the E. coli challenge strain. Colony forming units of enterobacteria on MacConkey agar were not different between healthy and diarrhoeic animals in the original samples. Furthermore, numbers of isolates per animal were also not significantly different between healthy (482 isolates) and diarrhoeic animals (691 isolates). A total of 43 isolates (3.7%) with inhibitory activity against the pathogenic E. coli challenge strain were detected. All inhibitory isolates were identified as E. coli via MALDI-TOF. The isolates belonged to the phylotypes A, C and E. Many isolates (67.4%) were commensal E. coli without relevant porcine pathogenic factors, but toxin- and fimbrial genes (stx2e, fae, estIb, elt1a, fas, fan) were detected in 14 inhibitory isolates. Healthy animals showed significantly (P=0.003) more inhibitory isolates (36 of 482 isolates; 7.5%) than diseased animals (7 of 691 isolates; 1.0%). There were no significant correlations regarding phylotype or pathogenic factors between healthy and diseased animals. This study has shown that a small proportion of indigenous E. coli is able to inhibit in vitro growth of a pathogenic E. coli strain in pigs. Furthermore, healthy animals possess significantly more inhibitory E. coli strains than diarrhoeic animals. The inhibition of pathogenic E. coli by specific indigenous E. coli strains may be an underlying principle for the containment of pathogenic

  9. Health physics system scheme for the uranium purification plant

    International Nuclear Information System (INIS)

    Meyer, M.; Oliveira, E.C.; Sordi, G.A.A.; Abrao, A.

    1976-01-01

    After describing the two uranium purification processes used in the Chemical Engineerring Division of the Instituto de Energia Atomica, it is examined the possible hazards and methods to control or eliminate them. Since these purification process present several stages, in each one of them it is evaluated the hazards and tried to give adequate solutions to protect both, personnel and installations, from the potential radiation hazards

  10. Putative new heat-stable cytotoxic and enterotoxic factors in culture supernatant of Escherichia coli isolated from drinking water

    Directory of Open Access Journals (Sweden)

    DA Ribeiro

    2011-01-01

    Full Text Available Enteric infections caused by the ingestion of contaminated water, especially by Escherichia coli, are important to define the virulence properties of these bacteria. Due to frequent infantile diarrhea in the city of Ouro Preto, Minas Gerais state, Brazil, the phenotypic and genotypic diarrheagenic properties of E. coli isolated from drinking water were studied. The culture supernatants of 39 (40% among a total of 97 E. coli isolates from drinking water were positive by suckling mouse assay and induced cytotoxic effects on Vero cells. The enterotoxic and cytotoxic activities were present in the fraction with less than 10 kDa and were not lost when heated up to 60°C and 100°C for 30 minutes. PCR assays showed that among these 39 Vero cytotoxigenic E. coli, four (10.2% were positive for ST II (estB and two (5% positive for αHly (hlyA. Gene amplification of SLT (stx 1, stx 2, ST I (estA, LT (eltI, eltII, EAST1 (astA, EHly (enhly and plasmid-encoded enterotoxin (pet were not observed. This heat-stable cytotoxic enterotoxin of E. coli is probably a new putative diarrheagenic virulence factor, as a toxin presenting these characteristics has not yet been described.

  11. Partial purification and some physicochemical properties of ...

    African Journals Online (AJOL)

    It thus produces α-amylase which is thermostable, a property which could be exploited for industrial purposes where hydrolysis of starch and other complex carbohydrates are required. Keywords: Cassava, α-amylase, starch hydrolysis, Aspergillus species, industrial application. African Journal of Biotechnology, Vol 13(52) ...

  12. Enterohemorrhagic Escherichia coli (EHEC

    Directory of Open Access Journals (Sweden)

    Abdullah Kilic

    2011-08-01

    Full Text Available Escherichia coli is a bacterium that is commonly found in the gut of humans and warm-blooded animals. Most strains of E. coli are harmless for human. E. coli O157:H7 is the most common member of a group of pathogenic E. coli strains known variously as enterohaemorrhagic, verocytotoxin-producing, or Shiga-toxin-producing organisms. EHEC bacterium is the major cause of haemorrhagic colitis and haemolytic uraemic syndrome. The reservoir of this pathogen appears to be mainly cattle and other ruminants such as camels. It is transmitted to humans primarily through consumption of contaminated foods. [TAF Prev Med Bull 2011; 10(4.000: 387-388

  13. Study of physical and biological factors involved in the disruption of E. coli by hydrodynamic cavitation.

    Science.gov (United States)

    Balasundaram, B; Harrison, S T L

    2006-01-01

    Hydrodynamic cavitation results in flow restriction in a flow system causing rapid pressure fluctuations and significant fluid forces. These can be harnessed to mediate microbial cell damage. Hydrodynamic cavitation was studied for the partial disruption of E. coli and selective release of specific proteins relative to the total soluble protein. The effects of the cavitation number, the number of passes, and the specific growth rate of E. coli on the release of periplasmic and cytoplasmic proteins were studied. At the optimum cavitation number of 0.17 for this experimental configuration, 48% of the total soluble protein, 88% of acid phosphatase, and 67% of beta-galactosidase were released by hydrodynamic cavitation in comparison with the maximum release attained using multiple passes through the French Press. The higher release of the acid phosphatase over the total soluble protein suggested preferred release of periplasmic compounds. This was supported by SDS-PAGE analysis. The absence of micronization of cell material resulting in the potential for ease of solid-liquid separation downstream of the cell disruption operation was confirmed by TEM microscopy. E. coli cells cultivated at a higher specific growth rate (0.36 h(-1)) were more easily disrupted than slower grown cells (0.11 h(-1)). The specific activity of the enzyme of interest released by hydrodynamic cavitation, defined as the units of enzyme in solution per milligram of total soluble protein, was greater than that obtained on release by the French Press, high-pressure homogenization, osmotic shock, and EDTA treatment. The selectivity offered indicates the potential of enzyme release by hydrodynamic cavitation to ease the purification in the subsequent downstream processing.

  14. Purificação de três diferentes beta-galactosidades microbianas por partição em sistemas de duas fases aquosas Purification of three different microbial beta-galactosidases by partitioning in aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    Maria Estela SILVA

    1997-12-01

    Full Text Available Este trabalho tratou da investigação do efeito do peso molecular de polietilenoglicol (PEG sobre a partição de enzimas beta-galactosidases de diferentes origens microbianas: Escherichia coli, Klueveromyces lactis e Aspergillus orizae em sistemas de duas fases aquosas (SDFA.Foi observado que os melhores sistemas para purificação da enzima de E. coli foram os formados por PEG 4000, 6000 e 8000/fosfato, fornecendo os mais elevados fatores de purificação da enzima. As enzimas de Klueveromyces lactis e Aspergillus orizae não foram eficientemente purificadas nestes sistemas sendo insensíveis à alterações do peso molecular do PEG. Portanto, um outro sistema de duas fases aquosas foi desenvolvido contendo um ligante específico, p-aminofenil 1-tio-beta-D-galactopiranosídeo (APGP, acoplado ao PEG para purificar a enzima de Klueveromyces lactis. Uma etapa simples de partição no SDFA formado por 6% APGP-PEG4000 + 12% dextrana T505.000 foi capaz de recuperar 83% da enzima na fase superior do sistema e de aumentar 1,6 vezes o fator de purificação.This work investigated the effect of the molecular weight of polyethyleneglycol (PEG upon the partition coefficient of beta-galactosidases from three different microorganisms: Escherichia coli, Klueveromyces lactis and Aspergillus orizae. It was found that PEG 6,000 and PEG 8,000/phosphate were the best systems for achieving the highest purification factors of E. coli beta-galactosidase. However, the other two yeast beta-galactosidases were not efficiently separated from their contaminants in any of the PEG/salt systems. In order to improve the separation of Klueveromyces lactis beta-galactosidase from the main protein contaminants, the biospecific ligand p-aminophenyl 1-thio-beta-D-galactopyranoside (APGP was attached to activated PEG 4000. The affinity PEG having APGP bound to its backbone was synthesized in two steps. The partitioning of Klueveromyces lactis beta-galactosidase in aqueous two

  15. Efficient Production of an Engineered Apoptin from Chicken Anemia Virus in a Recombinant E. coli for Tumor Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Lee Meng-Shiou

    2012-06-01

    Full Text Available Abstract Background Apoptin, a nonstructural protein encoded by the VP3 gene of chicken anemia virus (CAV, has been shown to not only induce apoptosis when introduced into the precursors of chicken thymocytes, but has been found to specifically kill human cancer cells, tumor cell and transformed cells without affecting the proliferation of normal cells. This tumor-specific apoptotic characteristic of the protein potentially may allow the development of a protein drug that has applications in tumor therapy. However, several major problems, which include poor expression and poor protein solubility, have hampered the production of apoptin in bacteria. Results Significantly increased expression of recombinant full-length apoptin that originated from chicken anemia virus was demonstrated using an E. coli expression system. The CAV VP3 gene was fused with a synthetic sequence containing a trans-acting activator of transcription (TAT protein transduction domain (PTD. The resulting construct was cloned into various different expression vectors and these were then expressed in various E. coli strains. The expression of the TAT-Apoptin in E. coli was significantly increased when TAT-Apoptin was fused with GST-tag rather than a His-tag. When the various rare amino acid codons of apoptin were optimized, the expression level of the GST-TAT-Apoptinopt in E. coli BL21(DE3 was significantly further increased. The highest protein expression level obtained was 8.33 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 4 h at 25 °C. Moreover, approximately 90% of the expressed GST-TAT-Apoptinopt under these conditions was soluble. After purification by GST affinity chromatography, the purified recombinant TAT-Apoptinopt protein was used to evaluate the recombinant protein’s apoptotic activity on tumor cells. The results demonstrated that the E. coli-expressed GST-TAT-apoptinopt showed apoptotic activity and was able to induce human

  16. Economic Methods of Ginger Protease'sextraction and Purification

    Science.gov (United States)

    Qiao, Yuanyuan; Tong, Junfeng; Wei, Siqing; Du, Xinyong; Tang, Xiaozhen

    This article reports the ginger protease extraction and purification methods from fresh ginger rhizome. As to ginger protease extraction, we adapt the steps of organic solvent dissolving, ammonium sulfate depositing and freeze-drying, and this method can attain crude enzyme powder 0.6% weight of fresh ginger rhizome. The purification part in this study includes two steps: cellulose ion exchange (DEAE-52) and SP-Sephadex 50 chromatography, which can purify crude ginger protease through ion and molecular weight differences respectively.

  17. Development of a rapid high-efficiency scalable process for acetylated Sus scrofa cationic trypsin production from Escherichia coli inclusion bodies.

    Science.gov (United States)

    Zhao, Mingzhi; Wu, Feilin; Xu, Ping

    2015-12-01

    Trypsin is one of the most important enzymatic tools in proteomics and biopharmaceutical studies. Here, we describe the complete recombinant expression and purification from a trypsinogen expression vector construct. The Sus scrofa cationic trypsin gene with a propeptide sequence was optimized according to Escherichia coli codon-usage bias and chemically synthesized. The gene was inserted into pET-11c plasmid to yield an expression vector. Using high-density E. coli fed-batch fermentation, trypsinogen was expressed in inclusion bodies at 1.47 g/L. The inclusion body was refolded with a high yield of 36%. The purified trypsinogen was then activated to produce trypsin. To address stability problems, the trypsin thus produced was acetylated. The final product was generated upon gel filtration. The final yield of acetylated trypsin was 182 mg/L from a 5-L fermenter. Our acetylated trypsin product demonstrated higher BAEE activity (30,100 BAEE unit/mg) than a commercial product (9500 BAEE unit/mg, Promega). It also demonstrated resistance to autolysis. This is the first report of production of acetylated recombinant trypsin that is stable and suitable for scale-up. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Impact of dry chilling on the genetic diversity of Escherichia coli on beef carcasses and on the survival of E. coli and E. coli O157.

    Science.gov (United States)

    Visvalingam, Jeyachchandran; Liu, Yang; Yang, Xianqin

    2017-03-06

    The objective of this study was to examine the effect of dry chilling on the genetic diversity of naturally occurring Escherichia coli on beef carcasses, and to examine whether two populations of E. coli recovered from carcasses during chilling and E. coli O157 differed in their response to desiccation. Isolates of E. coli were obtained from beef carcasses during a 67h dry chilling process and were genotyped using multiple-locus variable-number tandem-repeat analysis (MLVA). Ten E. coli genotypes found only at 0h (group A) and found more than once (group B), as well as five strains of E. coli O157 (group C) were inoculated on stainless steel coupons and their survival was examined after exposure to 75 and 100% relative humidity (RH) at 0 or 35°C for 67h. A total of 450 E. coli isolates were obtained, with 254, 49, 49, 51, 23, 20, and 4 from 0, 1, 2, 4, 6, 8 and 24h of chilling, respectively. No E. coli were recovered at 67h. MLVA of the isolates revealed 173 distinct genotypes. Genetic diversity of E. coli isolates, defined as ratio of the number of isolates to the number of genotypes, remained between 2.3 and 1.3 during the 24h of chilling. All strains inoculated on stainless steel coupons and exposed to 75% RH at 35°C were completely inactivated, irrespective of their groups. Inactivation of E. coli of the three groups was not significantly (P>0.05) different by exposure to 75% RH at 0°C. The findings indicate that the genetic diversity of E. coli on beef carcasses was not affected by dry chilling. In addition, inactivation of E. coli genotypes and E. coli O157 by desiccation on stainless steel simulating dry chilling conditions did not differ significantly (P>0.05). Thus, dry chilling may be used as an effective antimicrobial intervention for beef carcasses. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  19. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    Directory of Open Access Journals (Sweden)

    You Bang-Jau

    2011-07-01

    Full Text Available Abstract Background Chicken anemia virus (CAV, the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay. Conclusions Purified recombinant VP1 protein with the gene's codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.

  20. Galectin-1 as a fusion partner for the production of soluble and folded human {beta}-1,4-galactosyltransferase-T7 in E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Pasek, Marta [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States); Boeggeman, Elizabeth; Ramakrishnan, Boopathy [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States); Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States); Qasba, Pradman K., E-mail: qasba@helix.nih.gov [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States)

    2010-04-09

    The expression of recombinant proteins in Escherichia coli often leads to inactive aggregated proteins known as the inclusion bodies. To date, the best available tool has been the use of fusion tags, including the carbohydrate-binding protein; e.g., the maltose-binding protein (MBP) that enhances the solubility of recombinant proteins. However, none of these fusion tags work universally with every partner protein. We hypothesized that galectins, which are also carbohydrate-binding proteins, may help as fusion partners in folding the mammalian proteins in E. coli. Here we show for the first time that a small soluble lectin, human galectin-1, one member of a large galectin family, can function as a fusion partner to produce soluble folded recombinant human glycosyltransferase, {beta}-1,4-galactosyltransferase-7 ({beta}4Gal-T7), in E. coli. The enzyme {beta}4Gal-T7 transfers galactose to xylose during the synthesis of the tetrasaccharide linker sequence attached to a Ser residue of proteoglycans. Without a fusion partner, {beta}4Gal-T7 is expressed in E. coli as inclusion bodies. We have designed a new vector construct, pLgals1, from pET-23a that includes the sequence for human galectin-1, followed by the Tev protease cleavage site, a 6x His-coding sequence, and a multi-cloning site where a cloned gene is inserted. After lactose affinity column purification of galectin-1-{beta}4Gal-T7 fusion protein, the unique protease cleavage site allows the protein {beta}4Gal-T7 to be cleaved from galectin-1 that binds and elutes from UDP-agarose column. The eluted protein is enzymatically active, and shows CD spectra comparable to the folded {beta}4Gal-T1. The engineered galectin-1 vector could prove to be a valuable tool for expressing other proteins in E. coli.

  1. Purification of thyrotropin from human hypophysis: preliminary preparation

    International Nuclear Information System (INIS)

    Borghi, V.C.; Lin, L.H.; Bartolini, P.

    1988-07-01

    The adequacy of stored crude preparations for isolation of human tyrotropin (TSH) was evaluated according to Ross et al from a side fraction obtained during the purification of growth hormone from frozen pituitaries (SOMATORMON). Six crude TSH preparations were stored at - 20 0 C during several years for further purification. One of these preparations was purified by sucessive chromatographies on Sephadex G-100, hydroxylapatite and SP-Sephadex C50. The TSH content present in the chromatographic fractions and in the pools was assayed by specific radioimmunoassay developed at our laboratory. The protein determination of the fractions and pools was performed by absorbance at 280 nm and by the method of Lowry at al, respectively. The TSH activity increased eight times during the purification and the TSH purified had a radioimmunological potency around half that de scribed by Roos at al. The results suggest the fitness of long time stored preparations in the attainment of pure TSH. (author) [pt

  2. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    Science.gov (United States)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  3. Characterization of the diatomite binding domain in the ribosomal protein L2 from E. coli and functions as an affinity tag.

    Science.gov (United States)

    Li, Junhua; Zhang, Yang; Yang, Yanjun

    2013-03-01

    The ribosomal protein L2, a constituent protein of the 50S large ribosomal subunit, can be used as Si-tag using silica particles for the immobilization and purification of recombinant proteins (Ikeda et al. (Protein Expr Purif 71:91-95, 2010); Taniguchi et al. (Biotechnol Bioeng 96:1023-1029, 2007)). We applied a diatomite powder, a sedimentary rock mainly composed with diatoms silica, as an affinity solid phase and small ubiquitin-like modifier (SUMO) technology to release a target protein from the solid phase. The L2 (203-273) was the sufficient region for the adsorption of ribosomal protein L2 on diatomite. We comparatively analyzed the different adsorption properties of the two deleted proteins of L2 (L2 (1-60, 203-273) and L2 (203-273)) on diatomite. The time required to reach adsorption equilibrium of L2 (203-273) fusion protein on diatomite was shorter than that of L2 (1-60, 203-273) fusion protein. The maximum adsorption capacity of L2 (203-273) fusion protein was larger than that of L2 (1-60, 203-273) fusion protein. In order to study whether the L2 (203-273) can function as an affinity purification tag, SUMO was introduced as one specific protease cleavage site between the target protein and the purification tags. The L2 (203-273) and SUMO fusion protein purification method was tested using enhanced green fluorescent protein as a model protein; the result shows that the purification performance of this affinity purification method was good. The strong adsorption characteristic of L2 (203-273) on diatomite also provides a potential protein fusion tag for the immobilization of enzyme.

  4. A simple purification and activity assay of the coagulant protein from Moringa oleifera seed.

    Science.gov (United States)

    Ghebremichael, Kebreab A; Gunaratna, K R; Henriksson, Hongbin; Brumer, Harry; Dalhammar, Gunnel

    2005-06-01

    Use of extracts from Moringa oleifera (MO) is of great interest for low-cost water treatment. This paper discusses water and salt extraction of a coagulant protein from the seed, purification using ion exchange, its chemical characteristics, coagulation and antimicrobial properties. The coagulant from both extracts is a cationic protein with pI greater than 9.6 and molecular mass less than 6.5 kDa. Mass spectrometric analysis of the purified water extract indicated that it contained at least four homologous proteins, based on MS/MS peptide sequence data. The protein is thermoresistant and remained active after 5h heat treatment at 95 degrees C. The coagulant protein showed both flocculating and antibacterial effects of 1.1--4 log reduction. With samples of high turbidity, the MO extract showed similar coagulation activity as alum. Cecropin A and MO extract were found to have similar flocculation effects for clay and microorganisms. Simple methods for both the purification and assay of MO coagulating proteins are presented, which are necessary for large-scale water treatment applications.

  5. Purification and properties of extracellular polysaccharide (EPS) antigens produced by different mould species.

    Science.gov (United States)

    Notermans, S; Wieten, G; Engel, H W; Rombouts, F M; Hoogerhout, P; van Boom, J H

    1987-02-01

    Extracellular polysaccharide (EPS) antigens produced by different mould species were purified and partially characterized. Purification included (NH4)2SO4 treatment, Sepharose CL-4B column chromatography and Con A-sepharose chromatography. The EPS of Penicillium digitatum, Mucor racemosus and Cladosporium cladosporioides showed high antigenic capacities. Immunologically the EPS were partially genus-specific, but cross-reactivity was observed. The EPS antigens produced by species of Penicillium, Aspergillus repens and Geotrichum candidum lost their immunological activity upon heating (100 degrees C) at pH 1.8, while the EPS antigen of M. racemosus, Rhizopus oligosporus and C. cladosporioides were stable under the same conditions. The dominant monosaccharides present in the EPS antigen were mannose, galactose and glucose. The EPS obtained from cultures of M. racemosus and R. oligosporus also contained rhamnose. In the EPS produced by Penicillium spp. and A. repens the galactose residues were determined to be immunodominant.

  6. Improving the technology of purification of gas emissions petrochemical industries

    OpenAIRE

    USMANOVA R.R.; ZAIKOV G.E.

    2014-01-01

    The technology of cleaning of gas emissions flares in the production of synthetic rubber. Developed dynamic scrubber for scrubbing gas emissions. Complex studies served as the basis for the design of an air purification system of industrial premises. Purification of gas emissions before combustion in flares has significantly reduced air pollution by toxic substances.

  7. Advanced purification of petroleum refinery wastewater by catalytic vacuum distillation.

    Science.gov (United States)

    Yan, Long; Ma, Hongzhu; Wang, Bo; Mao, Wei; Chen, Yashao

    2010-06-15

    In our work, a new process, catalytic vacuum distillation (CVD) was utilized for purification of petroleum refinery wastewater that was characteristic of high chemical oxygen demand (COD) and salinity. Moreover, various common promoters, like FeCl(3), kaolin, H(2)SO(4) and NaOH were investigated to improve the purification efficiency of CVD. Here, the purification efficiency was estimated by COD testing, electrolytic conductivity, UV-vis spectrum, gas chromatography-mass spectrometry (GC-MS) and pH value. The results showed that NaOH promoted CVD displayed higher efficiency in purification of refinery wastewater than other systems, where the pellucid effluents with low salinity and high COD removal efficiency (99%) were obtained after treatment, and the corresponding pH values of effluents varied from 7 to 9. Furthermore, environment estimation was also tested and the results showed that the effluent had no influence on plant growth. Thus, based on satisfied removal efficiency of COD and salinity achieved simultaneously, NaOH promoted CVD process is an effective approach to purify petroleum refinery wastewater. Copyright 2010 Elsevier B.V. All rights reserved.

  8. [Pilot-scale purification of lipopeptide from marine-derived Bacillus marinus].

    Science.gov (United States)

    Gu, Kangbo; Guan, Cheng; Xu, Jiahui; Li, Shulan; Luo, Yuanchan; Shen, Guomin; Zhang, Daojing; Li, Yuanguang

    2016-11-25

    This research was aimed at establishing the pilot-scale purification technology of lipopeptide from marine-derived Bacillus marinus. We studied lipopeptide surfactivity interferences on scale-up unit technologies including acid precipitation, methanol extraction, solvent precipitation, salting out, extraction, silica gel column chromatography and HZ806 macroporous absorption resin column chromatography. Then, the unit technologies were combined in a certain order, to remove the impurities gradually, and to gain purified lipopeptide finally, with high recovery rate throughout the whole process. The novel pilot-scale purification technology could effectively isolate and purify lipopeptide with 87.51% to 100% purity in hectograms from 1 ton of Bacillus marinus B-9987 fermentation broth with more than 81.73% recovery rate. The first practical hectogram production of highly purified lipopeptide derived from Bacillus marinus was achieved. With this new purification method, using complex media became possible in fermentation process to reduce the fermentation cost and scale-up the purification for lipopeptide production. For practicability and economy, foaming problem resulting from massive water evaporation was avoided in this technology.

  9. Experimental Study on Purification of Low Grade Diatomite

    Science.gov (United States)

    Xiao, Liguang; Pang, Bo

    2017-04-01

    This paper presented an innovation for purification of low grade diatomite(DE) by grinding, ultrasonic pretreatment, acid leaching of closed stirring and calcination. The optimum process parameters of DE purification were obtained, the characterizations of original and purified DE were determined by SEM and BET. The results showed that the specific surface area of DE increased from 12.65m2/g to 23.23m2/g, which increased by 45.54%. SEM analysis revealed that the pore structure of purified DE was dredged highly.

  10. Purification, crystallization and preliminary X-ray analysis of the outer membrane complex HasA–HasR from Serratia marcescens

    International Nuclear Information System (INIS)

    Huché, Frédéric; Delepelaire, Philippe; Wandersman, Cécile; Welte, Wolfram

    2005-01-01

    The expression, purification, and crystallization in space group P2 1 2 1 2 1 of the complex HasA-HasR from S. marcescens are reported. Diffraction data have been collected and processed to 6.8 Å. Serratia marcescens is able to acquire iron using its haem-acquisition system (‘has’), which contains an outer membrane receptor HasR and a soluble haemophore HasA. After secretion, HasA binds free haem in the extracellular medium or extracts it from haemoproteins and delivers it to the receptor. Here, the crystallization of a HasA–HasR complex is reported. HasA and HasR have been overexpressed in Escherichia coli and the complex formed and crystallized. Small platelets and bunches of needles of dimensions 0.01 × 0.1 × 1 mm were obtained. A native data set has been collected to 6.8 Å

  11. The purification, crystallization and preliminary structural characterization of human MAWDBP, a member of the phenazine biosynthesis-like protein family

    International Nuclear Information System (INIS)

    Herde, Petra; Blankenfeldt, Wulf

    2006-01-01

    The purification, crystallization and preliminary structural characterization of human MAWD-binding protein (MAWDBP) are described. MAWDBP is the only representative of the phenazine biosynthesis-like protein family in the human genome. Its expression is elevated in several disease processes, including insulin resistance, folate deficiency and hypotension, and it may also be involved in carcinogenesis. The exact molecular function of MAWDBP is unknown. Native and seleno-l-methionine-labelled MAWDBP were expressed in Escherichia coli and crystallized at room temperature from precipitants containing 10 mM KF, 14%(w/v) PEG 3350 and 0.1 M sodium citrate pH 5.4. Crystals belong to space group H32, with unit-cell parameters a = b = 187, c = 241 Å, indicative of three to five monomers per asymmetric unit. Crystals were cryoprotected with 15%(v/v) glycerol and data have been collected to 2.7 Å resolution

  12. The purification, crystallization and preliminary structural characterization of human MAWDBP, a member of the phenazine biosynthesis-like protein family

    Energy Technology Data Exchange (ETDEWEB)

    Herde, Petra; Blankenfeldt, Wulf, E-mail: wulf.blankenfeldt@mpi-dortmund.mpg.de [Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)

    2006-06-01

    The purification, crystallization and preliminary structural characterization of human MAWD-binding protein (MAWDBP) are described. MAWDBP is the only representative of the phenazine biosynthesis-like protein family in the human genome. Its expression is elevated in several disease processes, including insulin resistance, folate deficiency and hypotension, and it may also be involved in carcinogenesis. The exact molecular function of MAWDBP is unknown. Native and seleno-l-methionine-labelled MAWDBP were expressed in Escherichia coli and crystallized at room temperature from precipitants containing 10 mM KF, 14%(w/v) PEG 3350 and 0.1 M sodium citrate pH 5.4. Crystals belong to space group H32, with unit-cell parameters a = b = 187, c = 241 Å, indicative of three to five monomers per asymmetric unit. Crystals were cryoprotected with 15%(v/v) glycerol and data have been collected to 2.7 Å resolution.

  13. Purification, crystallization and preliminary X-ray analysis of the outer membrane complex HasA–HasR from Serratia marcescens

    Energy Technology Data Exchange (ETDEWEB)

    Huché, Frédéric, E-mail: huche@pasteur.fr [Fachbereich Biologie, Universität Konstanz, 78457 Konstanz (Germany); Unité des Membranes Bactériennes, CNRS URA 2172, Département de Microbiologie Fondamentale et Médicale, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris CEDEX 15 (France); Delepelaire, Philippe; Wandersman, Cécile [Unité des Membranes Bactériennes, CNRS URA 2172, Département de Microbiologie Fondamentale et Médicale, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris CEDEX 15 (France); Welte, Wolfram [Fachbereich Biologie, Universität Konstanz, 78457 Konstanz (Germany)

    2006-01-01

    The expression, purification, and crystallization in space group P2{sub 1}2{sub 1}2{sub 1} of the complex HasA-HasR from S. marcescens are reported. Diffraction data have been collected and processed to 6.8 Å. Serratia marcescens is able to acquire iron using its haem-acquisition system (‘has’), which contains an outer membrane receptor HasR and a soluble haemophore HasA. After secretion, HasA binds free haem in the extracellular medium or extracts it from haemoproteins and delivers it to the receptor. Here, the crystallization of a HasA–HasR complex is reported. HasA and HasR have been overexpressed in Escherichia coli and the complex formed and crystallized. Small platelets and bunches of needles of dimensions 0.01 × 0.1 × 1 mm were obtained. A native data set has been collected to 6.8 Å.

  14. Small scale extraction and purification of human prolactin for the preparation of radioimmunoassay reagents

    International Nuclear Information System (INIS)

    Dias, L.E.M.F.

    1989-01-01

    Purification of human prolactin from pituitaries was carried out in our laboratory to obtain a pure reagent for use in RIA. The extraction and purification procedure was adapted from the method of Mc. Lean et al., and it involves the following steps: 1. Extraction of frozen pituitaries in buffers 0.14M phosphate/citrate pH 4.0 and 0.05M ammonium acetate pH 10.0. 2. Purification by hydrophobic interaction chromatography on Phenyl-Sepharose CL-4B in the presence of acetonitrile. 3. Purification by anion exchange chromatography on DEAE-Sepharose Cl-68. The purification method is considered effective for obtaining a hPrl of the purity needed for radioassay purposes, having the advantage of rapidity and relative simplicity. (author) [pt

  15. Purification and crystallization of mono-ubiquitylated ubiquitin receptor Rpn10

    International Nuclear Information System (INIS)

    Keren-Kaplan, Tal; Prag, Gali

    2012-01-01

    A novel reconstitution system for the modification and purification of ubiquitylated proteins yielded the first diffracting crystals of a ubiquitylated substrate, namely Rpn10. Protein ubiquitylation controls nearly all cellular pathways in eukaryotes. A repertoire of proteins named ubiquitin (Ub) receptors harbouring ubiquitin-binding domains (UBDs) recognize ubiquitylated proteins. These Ub receptors decode the Ub signal by tethering a UBD or UBDs to a functional domain or domains, thus linking the ubiquitylated target to a specific function. The rapid dynamics of ubiquitylation/deubiquitylation has impeded the characterization of ubiquitylated proteins. To bypass this obstacle, a recently developed synthetic system that reconstructs the entire eukaryotic ubiquitylation cascade in Escherichia coli was used to purify the mono-ubiquitylated form of the regulatory proteasomal non-ATPase subunit (Ub-Rpn10) from Saccharomyces cerevisiae. Here, the first crystallization and data collection of Ub-Rpn10 is reported. Purified Ub-Rpn10 was crystallized in 12%(w/v) PEG 20 000, 0.1 M MES pH 6.5 and yielded thin rhombus-shaped crystals. X-ray analysis revealed that these crystals belonged to the monoclinic system C2, with unit-cell parameters a = 107.3, b = 49.7, c = 81.3 Å, α = γ = 90.0, β = 130.5°. A full synchrotron data set has been collected, merged and scaled with a diffraction limit of 3.14 Å

  16. Expression, Purification, and Characterisation of Dehydroquinate Synthase from Pyrococcus furiosus

    Directory of Open Access Journals (Sweden)

    Leonardo Negron

    2011-01-01

    Full Text Available Dehydroquinate synthase (DHQS catalyses the second step of the shikimate pathway to aromatic compounds. DHQS from the archaeal hyperthermophile Pyrococcus furiosus was insoluble when expressed in Escherichia coli but was partially solubilised when KCl was included in the cell lysis buffer. A purification procedure was developed, involving lysis by sonication at 30∘C followed by a heat treatment at 70∘C and anion exchange chromatography. Purified recombinant P. furiosus DHQS is a dimer with a subunit Mr of 37,397 (determined by electrospray ionisation mass spectrometry and is active over broad pH and temperature ranges. The kinetic parameters are KM (3-deoxy-D-arabino-heptulosonate 7-phosphate 3.7 μM and kcat 3.0 sec-1 at 60∘C and pH 6.8. EDTA inactivates the enzyme, and enzyme activity is restored by several divalent metal ions including (in order of decreasing effectiveness Cd2+, Co2+, Zn2+, and Mn2+. High activity of a DHQS in the presence of Cd2+ has not been reported for enzymes from other sources, and may be related to the bioavailability of Cd2+ for P. furiosus. This study is the first biochemical characterisation of a DHQS from a thermophilic source. Furthermore, the characterisation of this hyperthermophilic enzyme was carried out at elevated temperatures using an enzyme-coupled assay.

  17. Rotating Reverse-Osmosis for Water Purification

    Science.gov (United States)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  18. Multi-copy entanglement purification with practical spontaneous parametric down conversion sources

    International Nuclear Information System (INIS)

    Zhang Shuai-Shuai; Shu Qi; Sheng Yu-Bo; Zhou Lan

    2017-01-01

    Entanglement purification is to distill the high quality entanglement from the low quality entanglement with local operations and classical communications. It is one of the key technologies in long-distance quantum communication. We discuss an entanglement purification protocol (EPP) with spontaneous parametric down conversion (SPDC) sources, in contrast to previous EPP with multi-copy mixed states, which requires ideal entanglement sources. We show that the SPDC source is not an obstacle for purification, but can benefit the fidelity of the purified mixed state. This EPP works for linear optics and is feasible in current experiment technology. (paper)

  19. Purification, crystallization and preliminary X-ray diffraction analysis of the Escherichia coli common pilus chaperone EcpB

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, James A.; Diallo, Mamou; Matthews, Steve J., E-mail: s.j.matthews@imperial.ac.uk [Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)

    2015-05-20

    In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher pathway that plays a major role in both early biofilm formation and host-cell adhesion. Initial attempts at crystallizing the chaperone EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. This is the first time that this refolding strategy has been used to purify CU chaperones. Pili are key cell-surface components that allow the attachment of bacteria to both biological and abiotic solid surfaces, whilst also mediating interactions between themselves. In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher (CU) pathway that plays a major role in both early biofilm formation and host-cell adhesion. The chaperone EcpB is involved in the biogenesis of the filament, which is composed of EcpA and EcpD. Initial attempts at crystallizing EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.4 Å resolution. These crystals belonged to the trigonal space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 62.65, c = 121.14 Å and one monomer in the asymmetric unit. Molecular replacement was unsuccessful, but selenomethionine-substituted protein and heavy-atom derivatives are being prepared for phasing. The three-dimensional structure of EcpB will provide invaluable information on the subtle mechanistic differences in biogenesis between the alternative and classical CU pathways. Furthermore, this is the first time that this refolding strategy has been used to purify CU chaperones, and it

  20. Purification, crystallization and preliminary X-ray diffraction analysis of the Escherichia coli common pilus chaperone EcpB

    International Nuclear Information System (INIS)

    Garnett, James A.; Diallo, Mamou; Matthews, Steve J.

    2015-01-01

    In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher pathway that plays a major role in both early biofilm formation and host-cell adhesion. Initial attempts at crystallizing the chaperone EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. This is the first time that this refolding strategy has been used to purify CU chaperones. Pili are key cell-surface components that allow the attachment of bacteria to both biological and abiotic solid surfaces, whilst also mediating interactions between themselves. In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher (CU) pathway that plays a major role in both early biofilm formation and host-cell adhesion. The chaperone EcpB is involved in the biogenesis of the filament, which is composed of EcpA and EcpD. Initial attempts at crystallizing EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.4 Å resolution. These crystals belonged to the trigonal space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 62.65, c = 121.14 Å and one monomer in the asymmetric unit. Molecular replacement was unsuccessful, but selenomethionine-substituted protein and heavy-atom derivatives are being prepared for phasing. The three-dimensional structure of EcpB will provide invaluable information on the subtle mechanistic differences in biogenesis between the alternative and classical CU pathways. Furthermore, this is the first time that this refolding strategy has been used to purify CU chaperones, and it could be