WorldWideScience

Sample records for coli iii genetic

  1. Genetic Attributes of E. coli Isolates from Chlorinated Drinking Water.

    Science.gov (United States)

    Blyton, Michaela D J; Gordon, David M

    2017-01-01

    Escherichia coli, is intimately associated with both human health and water sanitation. E. coli isolates from water can either be (i) host associated commensals, indicating recent faecal contamination; (ii) diarrheal pathogens or (iii) extra-intestinal pathogens that pose a direct health risk; or (iv) free-living. In this study we genetically characterised 28 E. coli isolates obtained from treated drinking water in south eastern Australia to ascertain their likely source. We used full genome sequencing to assign the isolates to their phylogenetic group and multi-locus sequence type. The isolates were also screened in silico for several virulence genes and genes involved in acquired antibiotic resistance. The genetic characteristics of the isolates indicated that four isolates were likely human pathogens. However, these isolates were not detected in sufficient numbers to present a health risk to the public. An additional isolate was a human associated strain. Nine isolates were water associated free-living strains that were unlikely to pose a health risk. Only 14% of the isolates belonged to the host associated phylogenetic group (B2) and only a single isolate had any antibiotic resistance genes. This suggests that the primary source of the drinking water E. coli isolates may not have been recent human faecal contamination.

  2. Genetic Attributes of E. coli Isolates from Chlorinated Drinking Water.

    Directory of Open Access Journals (Sweden)

    Michaela D J Blyton

    Full Text Available Escherichia coli, is intimately associated with both human health and water sanitation. E. coli isolates from water can either be (i host associated commensals, indicating recent faecal contamination; (ii diarrheal pathogens or (iii extra-intestinal pathogens that pose a direct health risk; or (iv free-living. In this study we genetically characterised 28 E. coli isolates obtained from treated drinking water in south eastern Australia to ascertain their likely source. We used full genome sequencing to assign the isolates to their phylogenetic group and multi-locus sequence type. The isolates were also screened in silico for several virulence genes and genes involved in acquired antibiotic resistance. The genetic characteristics of the isolates indicated that four isolates were likely human pathogens. However, these isolates were not detected in sufficient numbers to present a health risk to the public. An additional isolate was a human associated strain. Nine isolates were water associated free-living strains that were unlikely to pose a health risk. Only 14% of the isolates belonged to the host associated phylogenetic group (B2 and only a single isolate had any antibiotic resistance genes. This suggests that the primary source of the drinking water E. coli isolates may not have been recent human faecal contamination.

  3. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    Science.gov (United States)

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-09-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.

  4. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III

    Science.gov (United States)

    Aspinwall, Richard; Rothwell, Dominic G.; Roldan-Arjona, Teresa; Anselmino, Catherine; Ward, Christopher J.; Cheadle, Jeremy P.; Sampson, Julian R.; Lindahl, Tomas; Harris, Peter C.; Hickson, Ian D.

    1997-01-01

    Repair of oxidative damage to DNA bases is essential to prevent mutations and cell death. Endonuclease III is the major DNA glycosylase activity in Escherichia coli that catalyzes the excision of pyrimidines damaged by ring opening or ring saturation, and it also possesses an associated lyase activity that incises the DNA backbone adjacent to apurinic/apyrimidinic sites. During analysis of the area adjacent to the human tuberous sclerosis gene (TSC2) in chromosome region 16p13.3, we identified a gene, OCTS3, that encodes a 1-kb transcript. Analysis of OCTS3 cDNA clones revealed an open reading frame encoding a predicted protein of 34.3 kDa that shares extensive sequence similarity with E. coli endonuclease III and a related enzyme from Schizosaccharomyces pombe, including a conserved active site region and an iron/sulfur domain. The product of the OCTS3 gene was therefore designated hNTH1 (human endonuclease III homolog 1). The hNTH1 protein was overexpressed in E. coli and purified to apparent homogeneity. The recombinant protein had spectral properties indicative of the presence of an iron/sulfur cluster, and exhibited DNA glycosylase activity on double-stranded polydeoxyribonucleotides containing urea and thymine glycol residues, as well as an apurinic/apyrimidinic lyase activity. Our data indicate that hNTH1 is a structural and functional homolog of E. coli endonuclease III, and that this class of enzymes, for repair of oxidatively damaged pyrimidines in DNA, is highly conserved in evolution from microorganisms to human cells. PMID:8990169

  5. Escherichia coli type III secretion system 2 (ETT2) is widely distributed in avian pathogenic Escherichia coli isolates from Eastern China.

    Science.gov (United States)

    Wang, S; Liu, X; Xu, X; Zhao, Y; Yang, D; Han, X; Tian, M; Ding, C; Peng, D; Yu, S

    2016-10-01

    Pathogens utilize type III secretion systems to deliver effector proteins, which facilitate bacterial infections. The Escherichia coli type III secretion system 2 (ETT2) which plays a crucial role in bacterial virulence, is present in the majority of E. coli strains, although ETT2 has undergone widespread mutational attrition. We investigated the distribution and characteristics of ETT2 in avian pathogenic E. coli (APEC) isolates and identified five different ETT2 isoforms, including intact ETT2, in 57·6% (141/245) of the isolates. The ETT2 locus was present in the predominant APEC serotypes O78, O2 and O1. All of the ETT2 loci in the serotype O78 isolates were degenerate, whereas an intact ETT2 locus was mostly present in O1 and O2 serotype strains, which belong to phylogenetic groups B2 and D, respectively. Interestingly, a putative second type III secretion-associated locus (eip locus) was present only in the isolates with an intact ETT2. Moreover, ETT2 was more widely distributed in APEC isolates and exhibited more isoforms compared to ETT2 in human extraintestinal pathogenic E. coli, suggesting that APEC might be a potential risk to human health. However, there was no distinct correlation between ETT2 and other virulence factors in APEC.

  6. Recombinant Escherichia coli Trx-JZTX-III represses the proliferation of mouse hepatocellular carcinoma cells through induction of cell cycle arrest.

    Science.gov (United States)

    Sun, Mei-Na; Zhao, Xue-Jiao; Zhao, Han-Dong; Zhang, Wei-Guang; Li, Feng-Lan; Chen, Ming-Zi; Li, Hui; Li, Guangchao

    2013-06-01

    The aim of the present study was to investigate the effects of recombinant Escherichia coli (E. coli) Trx-jingzhaotoxin (JZTX)-III on cell growth in the mouse hepatocellular carcinoma (HCC) cell line Hepa1-6. The JZTX-III gene sequence was synthesized and cloned into the pET-32a(+) vector to construct the recombinant fusion protein Trx-JZTX-III, which was subsequently purified. Hepa1-6 cells were treated with 0 to 1,000-µg/ml concentrations of Trx-JZTX-III; this was demonstrated to affect cell viability, as determined by the 3-(4,5-dimethylthiazol‑2-yl)-2,5-diphenyltetra-zolium bromide (MTT) assay. The expression of the proliferating cell nuclear antigen (PCNA) protein was investigated using western blot analysis. A colony formation assay was used to determine Hepa1-6 cell proliferation, and the migration ability of cells was determined using a wound‑healing assay. Additionally, flow cytometry was employed to observe changes in the cell cycle. The MTT assay and quantification of PCNA expression indicated that recombinant E. coli Trx-JZTX-III significantly repressed the proliferation of Hepa1-6 cells. Colony formation and the migration of malignant cells was inhibited following treatment with recombinant E. coli Trx-JZTX-III. Flow cytometry showed that recombinant E. coli Trx-JZTX-III induced G0/G1 cell cycle arrest. In conclusion, recombinant E. coli Trx-JZTX-III functions as a tumor suppressor drug in mouse HCC and its underlying mechanism may involve the induction of G0/G1 cell cycle arrest.

  7. Impact of dry chilling on the genetic diversity of Escherichia coli on beef carcasses and on the survival of E. coli and E. coli O157.

    Science.gov (United States)

    Visvalingam, Jeyachchandran; Liu, Yang; Yang, Xianqin

    2017-03-06

    The objective of this study was to examine the effect of dry chilling on the genetic diversity of naturally occurring Escherichia coli on beef carcasses, and to examine whether two populations of E. coli recovered from carcasses during chilling and E. coli O157 differed in their response to desiccation. Isolates of E. coli were obtained from beef carcasses during a 67h dry chilling process and were genotyped using multiple-locus variable-number tandem-repeat analysis (MLVA). Ten E. coli genotypes found only at 0h (group A) and found more than once (group B), as well as five strains of E. coli O157 (group C) were inoculated on stainless steel coupons and their survival was examined after exposure to 75 and 100% relative humidity (RH) at 0 or 35°C for 67h. A total of 450 E. coli isolates were obtained, with 254, 49, 49, 51, 23, 20, and 4 from 0, 1, 2, 4, 6, 8 and 24h of chilling, respectively. No E. coli were recovered at 67h. MLVA of the isolates revealed 173 distinct genotypes. Genetic diversity of E. coli isolates, defined as ratio of the number of isolates to the number of genotypes, remained between 2.3 and 1.3 during the 24h of chilling. All strains inoculated on stainless steel coupons and exposed to 75% RH at 35°C were completely inactivated, irrespective of their groups. Inactivation of E. coli of the three groups was not significantly (P>0.05) different by exposure to 75% RH at 0°C. The findings indicate that the genetic diversity of E. coli on beef carcasses was not affected by dry chilling. In addition, inactivation of E. coli genotypes and E. coli O157 by desiccation on stainless steel simulating dry chilling conditions did not differ significantly (P>0.05). Thus, dry chilling may be used as an effective antimicrobial intervention for beef carcasses. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Ecological and genetic determinants of plasmid distribution in Escherichia coli.

    Science.gov (United States)

    Medaney, Frances; Ellis, Richard J; Raymond, Ben

    2016-11-01

    Bacterial plasmids are important carriers of virulence and antibiotic resistance genes. Nevertheless, little is known of the determinants of plasmid distribution in bacterial populations. Here the factors affecting the diversity and distribution of the large plasmids of Escherichia coli were explored in cattle grazing on semi-natural grassland, a set of populations with low frequencies of antibiotic resistance genes. Critically, the population genetic structure of bacterial hosts was chararacterized. This revealed structured E. coli populations with high diversity between sites and individuals but low diversity within cattle hosts. Plasmid profiles, however, varied considerably within the same E. coli genotype. Both ecological and genetic factors affected plasmid distribution: plasmid profiles were affected by site, E. coli diversity, E. coli genotype and the presence of other large plasmids. Notably 3/26 E. coli serotypes accounted for half the observed plasmid-free isolates indicating that within species variation can substantially affect carriage of the major conjugative plasmids. The observed population structure suggest that most of the opportunities for within species plasmid transfer occur between different individuals of the same genotype and support recent experimental work indicating that plasmid-host coevolution, and epistatic interactions on fitness costs are likely to be important in determining occupancy. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Genetic analysis of an Escherichia coli urease locus: evidence of DNA rearrangement.

    OpenAIRE

    Collins, C M; Falkow, S

    1988-01-01

    Ureolytic Escherichia coli strains are uncommon clinical isolates. The urease phenotype in a large percentage of these isolates is unstable and lost upon storage. We examined two urease-positive uropathogenic E. coli isolates that give off urease-negative segregants and determined that the urease phenotype was chromosomally encoded. The urease phenotype was cloned from E. coli 1021 and found to be encoded on a 9.4-kilobase HindIII restriction fragment. Transposon mutagenesis indicated that at...

  10. Escherichia coli class Ib ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical cofactor in vivo†

    Science.gov (United States)

    Cotruvo, Joseph A.; Stubbe, JoAnne

    2011-01-01

    Escherichia coli class Ib ribonucleotide reductase (RNR) converts nucleoside 5′-diphosphates to deoxynucleoside 5′-diphosphates in iron-limited and oxidative stress conditions. We have recently demonstrated in vitro that this RNR is active with both diferric-tyrosyl radical (FeIII2-Y•) and dimanganese(III)-Y• (MnIII2-Y•) cofactors in the β2 subunit, NrdF [Cotruvo J.A., Jr. and Stubbe J., Biochemistry (2010) 49, 1297–1309]. Here we demonstrate, by purification of this protein from its endogenous levels in an E. coli strain deficient in its five known iron uptake pathways and grown under iron-limited conditions, that the MnIII2-Y• cofactor is assembled in vivo. This is the first definitive determination of the active cofactor of a class Ib RNR purified from its native organism without overexpression. From 88 g of cell paste, 150 μg of NrdF was isolated with ~95% purity, with 0.2 Y•/β2, 0.9 Mn/β2, and a specific activity of 720 nmol/min/mg. In these conditions, the class Ib RNR is the primary active RNR in the cell. Our results strongly suggest that E. coli NrdF is an obligate manganese protein in vivo and that the MnIII2-Y• cofactor assembly pathway we have identified in vitro involving the flavodoxin-like protein NrdI, present inside the cell at catalytic levels, is operative in vivo. PMID:21250660

  11. Genetic relatedness of commensal Escherichia coli from nursery pigs in intensive pig production in Denmark and molecular characterization of genetically different strains

    DEFF Research Database (Denmark)

    Herrero Fresno, Ana; Larsen, Inge; Olsen, John Elmerdahl

    2015-01-01

    AIMS: To determine the genetic relatedness and the presence of virulence and antibiotic resistance genes in commensal Escherichia coli from nursery pigs in Danish intensive production. METHODS AND RESULTS: The genetic diversity of 1000 E. coli strains randomly picked (N = 50 isolates) from cultured...... in depth the genetic variability of commensal E. coli from pigs in Danish intensive pig production. A tendency for higher diversity was observed with in nursery pigs that were treated with zinc oxide only, in absence of other antimicrobials. Strains with potential to disseminate virulence and antibiotic...

  12. GENETIC CONTROL OF RESTRICTION AND MODIFICATION IN ESCHERICHIA COLI1

    Science.gov (United States)

    Boyer, Herbert

    1964-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Genetic control of restriction and modification in Escherichia coli. J. Bacteriol. 88:1652–1660. 1964.—Bacterial crosses with K-12 strains of Escherichia coli as Hfr donors (Hfr Hayes, Hfr Cavalli, and Hfr P4X-6) and B/r strains of E. coli as F− recipients were found to differ from crosses between K-12 Hfr donors and K-12 F− recipients in two ways: (i) recombinants (leu, pro, lac, and gal) did not appear at discrete time intervals but did appear simultaneously 30 min after matings were initiated, and (ii) the linkage of unselected markers to selected markers was reduced. Integration of a genetic region linked to the threonine locus of K-12 into the B/r genome resulted in a hybrid which no longer gave anomalous results in conjugation experiments. A similar region of the B strain was introduced into the K-12 strain, which then behaved as a typical B F− recipient. These observations are interpreted as the manifestation of host-controlled modification and restriction on the E. coli chromosome. This was verified by experiments on the restriction and modification of the bacteriophage lambda, F-lac, F-gal, and sex-factor, F1. It was found that the genetic region that controlled the mating responses of the K-12 and B/r strains also controlled the modification and restriction properties of these two strains. The genes responsible for the restricting and modifying properties of the K-12 and B strains of E. coli were found to be allelic, linked to each other, and linked to the threonine locus. PMID:14240953

  13. The type III secretion system is involved in the invasion and intracellular survival of Escherichia coli K1 in human brain microvascular endothelial cells

    OpenAIRE

    Yao, Yufeng; Xie, Yi; Perace, Donna; Zhong, Yi; Lu, Jie; Tao, Jing; Guo, Xiaokui; Kim, Kwang Sik

    2009-01-01

    Type III secretion systems have been documented in many Gram-negative bacteria, including enterohemorrhagic Escherichia coli. We have previously shown the existence of a putative type III secretion system in meningitis-causing E. coli K1 strains, referred to as E. coli type III secretion 2 (ETT2). The sequence of ETT2 in meningitis-causing E. coli K1 strain EC10 (O7:K1) revealed that ETT2 comprises the epr, epa and eiv genes, but bears mutations, deletions and insertions. We constructed the E...

  14. A Genetic Algorithms Based Approach for Identification of Escherichia coli Fed-batch Fermentation

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2004-10-01

    Full Text Available This paper presents the use of genetic algorithms for identification of Escherichia coli fed-batch fermentation process. Genetic algorithms are a directed random search technique, based on the mechanics of natural selection and natural genetics, which can find the global optimal solution in complex multidimensional search space. The dynamic behavior of considered process has known nonlinear structure, described with a system of deterministic nonlinear differential equations according to the mass balance. The parameters of the model are estimated using genetic algorithms. Simulation examples for demonstration of the effectiveness and robustness of the proposed identification scheme are included. As a result, the model accurately predicts the process of cultivation of E. coli.

  15. The mechanisms of action of E. coli endonuclease III and T4 UV endonuclease (endonuclease V) at AP sites.

    OpenAIRE

    Kim, J; Linn, S

    1988-01-01

    Treatment of DNA containing AP sites with either T4 UV endonuclease or with E. coli endonuclease III followed by a human class II AP endonuclease releases a putative beta-elimination product. This result suggests that both the T4 endonuclease and E. coli endonuclease III class I AP endonucleases catalyze phosphodiester bond cleavage via a lyase- rather than a hydrolase mechanism. Indeed, we have not detected a class I AP endonuclease which hydrolytically catalyzes phosphodiester bond cleavage...

  16. Rapid identification of Enterobacter hormaechei and Enterobacter cloacae genetic cluster III.

    Science.gov (United States)

    Ohad, S; Block, C; Kravitz, V; Farber, A; Pilo, S; Breuer, R; Rorman, E

    2014-05-01

    Enterobacter cloacae complex bacteria are of both clinical and environmental importance. Phenotypic methods are unable to distinguish between some of the species in this complex, which often renders their identification incomplete. The goal of this study was to develop molecular assays to identify Enterobacter hormaechei and Ent. cloacae genetic cluster III which are relatively frequently encountered in clinical material. The molecular assays developed in this study are qPCR technology based and served to identify both Ent. hormaechei and Ent. cloacae genetic cluster III. qPCR results were compared to hsp60 sequence analysis. Most clinical isolates were assigned to Ent. hormaechei subsp. steigerwaltii and Ent. cloacae genetic cluster III. The latter was proportionately more frequently isolated from bloodstream infections than from other material (P < 0·05). The qPCR assays detecting Ent. hormaechei and Ent. cloacae genetic cluster III demonstrated high sensitivity and specificity. The presented qPCR assays allow accurate and rapid identification of clinical isolates of the Ent. cloacae complex. The improved identifications obtained can specifically assist analysis of Ent. hormaechei and Ent. cloacae genetic cluster III in nosocomial outbreaks and can promote rapid environmental monitoring. An association was observed between Ent. cloacae cluster III and systemic infection that deserves further attention. © 2014 The Society for Applied Microbiology.

  17. Connective tissue-activating peptide III (CTAP-III): cloning the synthetic gene and characterization of the protein expressed in E. coli

    International Nuclear Information System (INIS)

    Johnson, P.H.; Castor, C.W.; Walz, D.A.

    1986-01-01

    CTAP-III, an α-granule protein secreted by human platelets, is known to stimulate mitogenesis, extracellular matrix synthesis, and plasminogen activator synthesis in human fibroblast cultures. From its primary sequence, a synthetic gene was constructed to code for a methionine-free derivative (Leu substituted for Met-21), then cloned and expressed in E. coli using a new expression vector containing regulatory elements of the colicin E1 operon. Partially purified recombinant CTAP-III showed a line of identity with CTAP-III by immunodiffusion against rabbit antibody to platelet-derived CTAP-III. Immunodetection of the reduced protein after SDS-PAGE electrophoresis showed a molecular weight (mobility) in agreement with the natural form. Biologic activity of rCTAP-III eluted from an antiCTAP-III immunoaffinity column was measured in human synovial cell bioassay systems. rCTAP-III stimulated synovial cell synthesis of 14 C-hyaluronic acid approximately 13-fold; significant (P < 0.001) mitogenesis was also observed. These studies indicate that a sufficient quantity of bioactive peptide can be obtained for a more comprehensive study of its biologic properties

  18. A structural role for the PHP domain in E. coli DNA polymerase III.

    Science.gov (United States)

    Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H

    2013-05-14

    In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.

  19. Genetic determinants of heat resistance in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ryan eMercer

    2015-09-01

    Full Text Available Escherichia coli AW1.7 is a heat resistant food isolate and the occurrence of pathogenic strains with comparable heat resistance may pose a risk to food safety. To identify the genetic determinants of heat resistance, 29 strains of E. coli that differed in their of heat resistance were analyzed by comparative genomics. Strains were classified as highly heat resistant strains, exhibiting a D60-value of more than 6 min; moderately heat resistant strains, exhibiting a D60-value of more than 1 min; or as heat sensitive. A ~14 kb genomic island containing 16 predicted open reading frames encoding putative heat shock proteins and proteases was identified only in highly heat resistant strains. The genomic island was termed the locus of heat resistance (LHR. This putative operon is flanked by mobile elements and possesses >99% sequence identity to genomic islands contributing to heat resistance in Cronobacter sakazakii and Klebsiella pneumoniae. An additional 41 LHR sequences with >87% sequence identity were identified in 11 different species of β- and γ-proteobacteria. Cloning of the full length LHR conferred high heat resistance to the heat sensitive E. coli AW1.7ΔpHR1 and DH5α. The presence of the LHR correlates perfectly to heat resistance in several species of Enterobacteriaceae and occurs at a frequency of 2% of all E. coli genomes, including pathogenic strains. This study suggests the LHR has been laterally exchanged among the β- and γ-proteobacteria and is a reliable indicator of high heat resistance in E. coli.

  20. Genetic Control of the Secondary Modification of Deoxyribonucleic Acid in Escherichia coli1

    Science.gov (United States)

    Mamelak, Linda; Boyer, Herbert W.

    1970-01-01

    The wild-type restriction and modification alleles of Escherichia coli K-12 and B were found to have no measurable effect on the patterns of methylated bases in the deoxyribonucleic acid (DNA) of these strains. The genetic region controlling the methylation of cytosine in E. coli K-12 was mapped close to his, and the presence or absence of this gene in E. coli B or E. coli K had no effect on the restriction and modification properties of these strains. Thus, only a few of the methylated bases in the DNA of these strains are involved in host modification, and the biological role of the remainder remains obscure. PMID:4919756

  1. Genetic heterogeneity of Escherichia coli isolated from pasteurized milk in State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Karine Oltramari

    2014-04-01

    Full Text Available Food contamination caused by enteric pathogens is a major cause of diarrheal disease worldwide, resulting in high morbidity and mortality and significant economic losses. Bacteria are important agents of foodborne diseases, particularly diarrheagenic Escherichia coli. The present study assessed the genetic diversity and antimicrobial resistance of E. coli isolates from pasteurized milk processed in 21 dairies in northwestern State of Parana, Brazil. The 95 E. coli isolates were subjected to antimicrobial susceptibility testing according to the recommendations of the Clinical and Laboratory Standards Institute and assessed genotypically by Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction (ERIC-PCR. The highest rate of resistance was observed for cephalothin (55.78%. ERIC-PCR revealed high genetic diversity, clustering the 95 bacterial isolates into 90 different genotypic patterns. These results showed a heterogeneous population of E. coli in milk samples produced in the northwestern region of Paraná and the need for good manufacturing practices throughout the processing of pasteurized milk to reduce the risk of foodborne illnesses.

  2. DNA polymerase III of Escherichia coli is required for UV and ethyl methanesulfonate mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Hagensee, M.E.; Timme, T.L.; Bryan, S.K.; Moses, R.E.

    1987-06-01

    Strains of Escherichia coli possessing the pcbA1 mutation, a functional DNA polymerase I, and a temperature-sensitive mutation in DNA polymerase III can survive at the restrictive temperature (43 degrees C) for DNA polymerase III. The mutation rate of the bacterial genome of such strains after exposure to either UV light or ethyl methanesulfonate was measured by its rifampicin resistance or amino acid requirements. In addition, Weigle mutagenesis of preirradiated lambda phage was also measured. In all cases, no increase in mutagenesis was noted at the restrictive temperature for DNA polymerase III. Introduction of a cloned DNA polymerase III gene returned the mutation rate of the bacterial genome as well as the Weigle mutagenesis to normal at 43 degrees C. Using a recA-lacZ fusion, the SOS response after UV irradiation was measured and found to be normal at the restrictive and permissive temperature for DNA polymerase III, as was induction of lambda prophage. Recombination was also normal at either temperature. Our studies demonstrate that a functional DNA polymerase III is strictly required for mutagenesis at a step other than SOS induction.

  3. Virulence, resistance, and genetic relatedness of Escherichia coli and Klebsiella sp. isolated from mule foals

    Directory of Open Access Journals (Sweden)

    V.C. Carneiro

    Full Text Available ABSTRACT Respiratory diseases are common in young horses but little is known about such infections in mule foals. This study aimed to characterize Escherichia coli and Klebsiella sp. isolated from tracheal wash (TW and fecal samples (FS of mule foals, with or without cytological evidence of respiratory disease. Strains were analyzed against 13 antimicrobials, for presence of Extended spectrum beta-lactamase (ESBL, and virulence genes. Phylogrouping and Randomic (RAPD-PCR profiles were used to evaluate their genetic relatedness. E. coli strains from TW and FS showed greatest resistance to tetracycline, while Klebsiella strains were mainly resistant to ampicillin; multidrug resistance and ESBL production were also detected. The blaCTX gene prevailed among the E. coli isolates, while the blaSHV gene was more frequently found in K. pneumoniae. The fimH gene was detected in most of the isolates and multiple virulence factors were identified in three E. coli isolates. Most of the E. coli isolates belonged to the B1 phylogroup, but B2 strains displayed more virulence genes. The RAPD assay revealed genetic diversity among strains and was able to distinguish FS isolates from TW isolates. Knowledge of the bacteria associated with the respiratory tract of mule foals is important in the treatment of sick animals.

  4. Genetic analysis of diaminopimelic acid- and lysine-requiring mutants of Escherichia coli.

    Science.gov (United States)

    Bukhari, A I; Taylor, A L

    1971-03-01

    Several diaminopimelic acid (DAP)- and lysine-requiring mutants of Escherichia coli were isolated and studied by genetic, physiological, and biochemical means. The genes concerned with DAP-lysine synthesis map at several different sites on the E. coli chromosome and, therefore, do not constitute a single operon. Three separate loci affecting DAP synthesis are located in the 0 to 2.5 min region of the genetic map. The order of the loci in this region is thr-dapB-pyrA-ara-leu-pan-dapC-tonA-dapD. Two additional DAP genes map in the region between min 47 and 48, with the gene order being gua-dapA-dapE-ctr. The lys locus at min 55 determines the synthesis of the enzyme DAP decarboxylase, which catalyzes the conversion of DAP into lysine. The order of the genes in this region is serA-lysA-thyA.

  5. Genetic and biochemical analysis of peptide transport in Escherichia coli

    International Nuclear Information System (INIS)

    Andrews, J.C.

    1986-01-01

    E. coli peptide transport mutants have been isolated based on their resistance to toxic tripeptides. These genetic defects were found to map in two distinct chromosomal locations. The transport systems which require expression of the trp-linked opp genes and the oppE gene(s) for activity were shown to have different substrate preferences. Growth of E. coli in medium containing leucine results in increased entry of exogenously supplied tripeptides into the bacterial cell. This leucine-mediated elevation of peptide transport required expression of the trp-linked opp operon and was accompanied by increased sensitivity to toxic tripeptides, by an enhanced capacity to utilize nutritional peptides, and by an increase in both the velocity and apparent steady-state level of L-(U- 14 C)alanyl-L-alanyl-L-alanine accumulation for E. coli grown in leucine-containing medium relative to these parameters of peptide transport measured with bacteria grown in media lacking leucine. Direct measurement of opp operon expression by pulse-labeling experiments demonstrated that growth of E. coli in the presence of leucine resulted in increased synthesis of the oppA-encoded periplasmic binding protein. The transcriptional regulation of the trp-linked opp operon of E. coli was investigated using λ placMu51-generated lac operon fusions. Synthesis of β-galactosidase by strains harboring oppA-lac, oppB-lac, and oppD-lac fusions occurred at a basal level when the fusion-containing strains were grown in minimal medium

  6. Detection and linkage to mobile genetic elements of tetracycline resistance gene tet(M) in Escherichia coli isolates from pigs

    DEFF Research Database (Denmark)

    Jurado-Rabadan, Sonia; de la Fuente, Ricardo; Ruiz-Santa-Quiteria, Jose A.

    2014-01-01

    Background: In Escherichia coli the genes involved in the acquisition of tetracycline resistance are mainly tet(A) and tet(B). In addition, tet(M) is the most common tetracycline resistance determinant in enterococci and it is associated with conjugative transposons and plasmids. Although tet......(M) has been identified in E. coli, to our knowledge, there are no previous reports studying the linkage of the tet(M) gene in E. coli to different mobile genetic elements. The aim of this study was to determine the occurrence of tet(A), tet(B), and tet(M) genes in doxycycline-resistant E. coli isolates...... from pigs, as well as the detection of mobile genetic elements linked to tet(M) in E. coli and its possible transfer from enterococci. Results: tet(A) was the most frequently detected gene (87.9%) in doxycycline-resistant isolates. tet(M) was found in 13.1% E. coli isolates. The tet(M) gene...

  7. Genetic Structure of Natural Populations of Escherichia coli in Wild Hosts on Different Continents

    Science.gov (United States)

    Souza, Valeria; Rocha, Martha; Valera, Aldo; Eguiarte, Luis E.

    1999-01-01

    Current knowledge of genotypic and phenotypic diversity in the species Escherichia coli is based almost entirely on strains recovered from humans or zoo animals. In this study, we analyzed a collection of 202 strains obtained from 81 mammalian species representing 39 families and 14 orders in Australia and the Americas, as well as several reference strains; we also included a strain from a reptile and 10 from different families of birds collected in Mexico. The strains were characterized genotypically by multilocus enzyme electrophoresis (MLEE) and phenotypically by patterns of sugar utilization, antibiotic resistance, and plasmid profile. MLEE analysis yielded an estimated genetic diversity (H) of 0.682 for 11 loci. The observed genetic diversity in this sample is the greatest yet reported for E. coli. However, this genetic diversity is not randomly distributed; geographic effects and host taxonomic group accounted for most of the genetic differentiation. The genetic relationship among the strains showed that they are more associated by origin and host order than is expected by chance. In a dendrogram, the ancestral cluster includes primarily strains from Australia and ECOR strains from groups B and C. The most differentiated E. coli in our analysis are strains from Mexican carnivores and strains from humans, including those in the ECOR group A. The kinds and numbers of sugars utilized by the strains varied by host taxonomic group and country of origin. Strains isolated from bats were found to exploit the greatest range of sugars, while those from primates utilized the fewest. Toxins are more frequent in strains from rodents from both continents than in any other taxonomic group. Strains from Mexican wild mammals were, on average, as resistant to antibiotics as strains from humans in cities. On average, the Australian strains presented a lower antibiotic resistance than the Mexican strains. However, strains recovered from hosts in cities carried significantly more

  8. Replication of UV-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli: evidence for bypass of pyrimidine photodimers

    International Nuclear Information System (INIS)

    Livneh, Z.

    1986-01-01

    Replication of UV-irradiated circular single-stranded phage M13 DNA by Escherichia coli RNA polymerase (EC 2.7.7.6) and DNA polymerase III holoenzyme (EC 2.7.7.7) in the presence of single-stranded DNA binding protein yielded full-length as well as partially replicated products. A similar result was obtained with phage G4 DNA primed with E. coli DNA primase, and phage phi X174 DNA primed with a synthetic oligonucleotide. The fraction of full-length DNA was several orders of magnitude higher than predicted if pyrimidine photodimers were to constitute absolute blocks to DNA replication. Recent models have suggested that pyrimidine photodimers are absolute blocks to DNA replication and that SOS-induced proteins are required to allow their bypass. Our results demonstrate that, under in vitro replication conditions, E. coli DNA polymerase III holoenzyme can insert nucleotides opposite pyrimidine dimers to a significant extent, even in the absence of SOS-induced proteins

  9. Antibiotic stress-induced modulation of the endoribonucleolytic activity of RNase III and RNase G confers resistance to aminoglycoside antibiotics in Escherichia coli.

    Science.gov (United States)

    Song, Wooseok; Kim, Yong-Hak; Sim, Se-Hoon; Hwang, Soonhye; Lee, Jung-Hyun; Lee, Younghoon; Bae, Jeehyeon; Hwang, Jihwan; Lee, Kangseok

    2014-04-01

    Here, we report a resistance mechanism that is induced through the modulation of 16S ribosomal RNA (rRNA) processing on the exposure of Escherichia coli cells to aminoglycoside antibiotics. We observed decreased expression levels of RNase G associated with increased RNase III activity on rng mRNA in a subgroup of E. coli isolates that transiently acquired resistance to low levels of kanamycin or streptomycin. Analyses of 16S rRNA from the aminoglycoside-resistant E. coli cells, in addition to mutagenesis studies, demonstrated that the accumulation of 16S rRNA precursors containing 3-8 extra nucleotides at the 5' terminus, which results from incomplete processing by RNase G, is responsible for the observed aminoglycoside resistance. Chemical protection, mass spectrometry analysis and cell-free translation assays revealed that the ribosomes from rng-deleted E. coli have decreased binding capacity for, and diminished sensitivity to, streptomycin and neomycin, compared with wild-type cells. It was observed that the deletion of rng had similar effects in Salmonella enterica serovar Typhimurium strain SL1344. Our findings suggest that modulation of the endoribonucleolytic activity of RNase III and RNase G constitutes a previously uncharacterized regulatory pathway for adaptive resistance in E. coli and related gram-negative bacteria to aminoglycoside antibiotics.

  10. Markerless Escherichia coli rrn Deletion Strains for Genetic Determination of Ribosomal Binding Sites

    DEFF Research Database (Denmark)

    Quan, Selwyn; Skovgaard, Ole; McLaughlin, Robert E

    2015-01-01

    Single-copy rrn strains facilitate genetic ribosomal studies in Escherichia coli. Consecutive markerless deletion of rrn operons resulted in slower growth upon inactivation of the fourth copy, which was reversed by supplying transfer RNA genes encoded in rrn operons in trans. Removal of the sixth...

  11. Genetic diversity of Escherichia coli isolates from surface water and groundwater in a rural environment.

    Science.gov (United States)

    Gambero, Maria Laura; Blarasin, Monica; Bettera, Susana; Giuliano Albo, Jesica

    2017-10-01

    The genetic characteristics among Escherichia coli strains can be grouped by origin of isolation. Then, it is possible to use the genotypes as a tool to determine the source of water contamination. The aim of this study was to define water aptitude for human consumption in a rural basin and to assess the diversity of E. coli water populations. Thus, it was possible to identify the main sources of fecal contamination and to explore linkages with the hydrogeological environment and land uses. The bacteriological analysis showed that more than 50% of samples were unfit for human consumption. DNA fingerprinting analysis by BOX-PCR indicated low genotypic diversity of E. coli isolates taken from surface water and groundwater. The results suggested the presence of a dominant source of fecal contamination. The relationship between low genotypic diversity and land use would prove that water contamination comes from livestock. The genetic diversity of E. coli isolated from surface water was less than that identified in groundwater because of the different hydraulic features of both environments. Furthermore, each one of the two big strain groups identified in this basin is located in different sub-basins, showing that hydrological dynamics exerts selective pressure on bacteria DNA.

  12. Genetic Analysis of Diaminopimelic Acid- and Lysine-Requiring Mutants of Escherichia coli1

    Science.gov (United States)

    Bukhari, Ahmad I.; Taylor, Austin L.

    1971-01-01

    Several diaminopimelic acid (DAP)- and lysine-requiring mutants of Escherichia coli were isolated and studied by genetic, physiological, and biochemical means. The genes concerned with DAP-lysine synthesis map at several different sites on the E. coli chromosome and, therefore, do not constitute a single operon. Three separate loci affecting DAP synthesis are located in the 0 to 2.5 min region of the genetic map. The order of the loci in this region is thr-dapB-pyrA-ara-leu-pan-dapC-tonA-dapD. Two additional DAP genes map in the region between min 47 and 48, with the gene order being gua-dapA-dapE-ctr. The lys locus at min 55 determines the synthesis of the enzyme DAP decarboxylase, which catalyzes the conversion of DAP into lysine. The order of the genes in this region is serA-lysA-thyA. PMID:4926684

  13. Genetic recombination in escherichia coli and its relationship with DNA replication

    International Nuclear Information System (INIS)

    Siddiqui, O.

    1974-01-01

    Relationship of DNA replication with genetic recombination in Escherichia Coli was investigated by mating Hfr donors labelled with H 3 -thymine, C 13 and N 15 to C 13 N 15 labelled recipients. The DNA extracted from the zygotes was analysed on CsCl density gradients. The results show that all of the biparentally labelled DNA arises from the single strand insertions of the donor DNA. (M.G.B.)

  14. Genotype variation and genetic relationship among Escherichia coli from nursery pigs located in different pens in the same farm

    DEFF Research Database (Denmark)

    Herrero-Fresno, Ana; Ahmed, Shahana; Hansen, Monica Hegstad

    2017-01-01

    BACKGROUND: So far, little is known about the genetic diversity and relatedness among Escherichia coli (E. coli) populations in the gut of swine. Information on this is required to improve modeling studies on antimicrobial resistance aiming to fight its occurrence and development. This work evalu...

  15. Molecular and Phenotypic Characterization of Escherichia coli O26:H8 among Diarrheagenic E. coli O26 Strains Isolated in Brazil

    Science.gov (United States)

    Piazza, Roxane M. F.; Delannoy, Sabine; Fach, Patrick; Saridakis, Halha O.; Pedroso, Margareth Z.; Rocha, Letícia B.; Gomes, Tânia A. T.; Vieira, Mônica A. M.; Beutin, Lothar

    2013-01-01

    Escherichia coli strains of serogroup O26 comprise two distinct groups of pathogens, characterized as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among the several genes related to type III secretion system-secreted effector proteins, espK was found to be highly specific for EHEC O26:H11 and its stx-negative derivative strains isolated in European countries. E. coli O26 strains isolated in Brazil from infant diarrhea, foods, and the environment have consistently been shown to lack stx genes and are thus considered atypical EPEC. However, no further information related to their genetic background is known. Therefore, in this study, we aimed to discriminate and characterize these Brazilian O26 stx-negative strains by phenotypic, genetic, and biochemical approaches. Among 44 isolates confirmed to be O26 isolates, most displayed flagellar antigen H11 or H32. Out of the 13 nonmotile isolates, 2 tested positive for fliCH11, and 11 were fliCH8 positive. The identification of genetic markers showed that several O26:H11 and all O26:H8 strains tested positive for espK and could therefore be discriminated as EHEC derivatives. The presence of H8 among EHEC O26 and its stx-negative derivative isolates is described for the first time. The interaction of three isolates with polarized Caco-2 cells and with intestinal biopsy specimen fragments ex vivo confirmed the ability of the O26 strains analyzed to cause attaching-and-effacing (A/E) lesions. The O26:H32 strains, isolated mostly from meat, were considered nonvirulent. Knowledge of the virulence content of stx-negative O26 isolates within the same serotype helped to avoid misclassification of isolates, which certainly has important implications for public health surveillance. PMID:23974139

  16. Genetic diversity, phylogroup distribution and virulence gene profile of pks positive Escherichia coli colonizing human intestinal polyps.

    Science.gov (United States)

    Sarshar, Meysam; Scribano, Daniela; Marazzato, Massimiliano; Ambrosi, Cecilia; Aprea, Maria Rita; Aleandri, Marta; Pronio, Annamaria; Longhi, Catia; Nicoletti, Mauro; Zagaglia, Carlo; Palamara, Anna Teresa; Conte, Maria Pia

    2017-11-01

    Some Escherichia coli strains of phylogroup B2 harbor a (pks) pathogenicity island that encodes a polyketide-peptide genotoxin called colibactin. It causes DNA double-strand breaks and megalocytosis in eukaryotic cells and it may contribute to cancer development. Study of bacterial community that colonizes the adenomatous polyp lesion, defined as precancerous lesions, could be helpful to assess if such pathogenic bacteria possess a role in the polyp progression to cancer. In this cross-sectional study, a total of 1500 E. coli isolates were obtained from biopsies of patients presenting adenomatous colon polyps, the normal tissues adjacent to the polyp lesion and patients presenting normal mucosa. pks island frequency, phylogenetic grouping, fingerprint genotyping, and virulence gene features of pks positive (pks + ) E. coli isolates were performed. We found pks + E. coli strongly colonize two patients presenting polypoid lesions and none were identified in patients presenting normal mucosa. Predominant phylogroups among pks + E. coli isolates were B2, followed by D. Clustering based on fragment profiles of composite analysis, typed the pks + isolates into 5 major clusters (I-V) and 17 sub-clusters, demonstrating a high level of genetic diversity among them. The most prevalent virulence genes were fimH and fyuA (100%), followed by vat (92%), hra and papA (69%), ibeA (28%), and hlyA (25%). Our results revealed that pks + E. coli can colonize the precancerous lesions, with a high distribution in both the polyp lesions and in normal tissues adjacent to the lesion. The high differences in fingerprinting patterns obtained indicate that pks + E. coli strains were genetically diverse, possibly allowing them to more easily adapt to environmental variations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Commensal E. coli as an Important Reservoir of Resistance Encoding Genetic Elements

    Directory of Open Access Journals (Sweden)

    Azam Mahmoudi-Aznaveh

    2013-11-01

    Full Text Available Background: Diarrheagenic E. coli is the most important cause of diarrhea in children and is a public health concern in developing countries. A major public problem is acquisition and transmission of antimicrobial resistance via mobile genetic elements including plasmids, conjugative transposons, and integrons which may occur through horizontal gene transfer. Objectives: The aim of this study was to investigate the distribution of class 1 and 2 integrons among commensal and enteropathogenic E. coli isolates and assess the role of commensal E. coli population as a reservoir in the acquisition and transmission of antimicrobial resistance. Materials and Methods: Swabs were collected directly from stool samples of the children with diarrhea admitted to three hospitals in Tehran, Iran during July 2012 through October 2012. Antimicrobial susceptibility testing and PCR analysis were performed for analysis of the resistance pattern and integron content of isolates. Results: A total of 20 enteropathogenic E.coli (identified as eae+stx1-stx2- and 20 commensal E.coli were selected for analysis. The resistance pattern in commensal and pathogenic E.coli was very similar. In both groups a high rate of resistance was seen to tetracycline, streptomycin, cotrimoxazole, nalidixic acid, and minocycline. Of 20 EPEC strains, 3 strains (15 % and 1 strain (5% had positive results for int and hep genes, respectively. Among 20 commensal, 65% (13 strains and 10% (2 strains had positive results for int and hep genes, respectively. Conclusions: The higher rate of class 1 integron occurrence among commensal population proposes the commensal intestinal organisms as a potential reservoir of mobile resistance gene elements which could transfer the resistance gene cassettes to other pathogenic and/or nonpathogenic organisms in the intestinal lumen at different occasions.

  18. DnaB gene product-independence of DNA polymerase III-directed repair synthesis in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1977-01-01

    An investigation has been carried out into the role of dnaB gene product in X-ray-induced repair synthesis carried out by DNA polymerase III in toluene-treated Escherichia coli K-12. A polAl polBlOO dnaB mutant deficient in both DNA polymerase I and II activities was used, and it was shown that the level of X-ray-induced, ATP-dependent, non-conservative DNA synthesis was, unlike semi-conservative DNA synthesis, unaffected by a temperature shift from 30 0 to 42 0 C. The dnaB gene product was not therefore necessary for DNA polymerase III-directed repair synthesis, which occurred in the absence of replicative synthesis. (U.K.)

  19. The genetic diversity of commensal Escherichia coli strains isolated from nonantimicrobial treated pigs varies according to age group

    DEFF Research Database (Denmark)

    Ahmed, Shahana; Olsen, John E.; Herrero-Fresno, Ana

    2017-01-01

    This is the first report on the genetic diversity of commensal E. coli from pigs reared in an antibiotic free production system and belonging to different age groups. The study investigated the genetic diversity and relationship of 900 randomly collected commensal E. coli strains from non......-antimicrobial treated pigs assigned to five different age groups in a Danish farm. Fifty-two unique REP profiles were detected suggesting a high degree of diversity. The number of strains per pig ranged from two to 13. The highest and the lowest degree of diversity were found in the early weaners group (Shannon...... diversity index, H' of 2.22) and piglets (H' of 1.46) respectively. The REP profiles, R1, R7 and R28, were the most frequently observed in all age groups. E. coli strains representing each REP profile and additional strains associated with the dominant profiles were subjected to PFGE and were assigned to 67...

  20. Detection of Healthcare-Related Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Transmission Events Using Combined Genetic and Phenotypic Epidemiology.

    Directory of Open Access Journals (Sweden)

    Anne F Voor In 't Holt

    Full Text Available Since the year 2000 there has been a sharp increase in the prevalence of healthcare-related infections caused by extended-spectrum beta-lactamase (ESBL-producing Escherichia coli. However, the high community prevalence of ESBL-producing E. coli isolates means that many E. coli typing techniques may not be suitable for detecting E. coli transmission events. Therefore, we investigated if High-throughput MultiLocus Sequence Typing (HiMLST and/or Raman spectroscopy were suitable techniques for detecting recent E. coli transmission events.This study was conducted from January until December 2010 at Erasmus University Medical Center, Rotterdam, the Netherlands. Isolates were typed using HiMLST and Raman spectroscopy. A genetic cluster was defined as two or more patients carrying identical isolates. We used predefined definitions for epidemiological relatedness to assess healthcare-related transmission.We included 194 patients; strains of 112 patients were typed using HiMLST and strains of 194 patients were typed using Raman spectroscopy. Raman spectroscopy identified 16 clusters while HiMLST identified 10 clusters. However, no healthcare-related transmission events were detected. When combining data from both typing techniques, we identified eight clusters (n = 34 patients, as well as 78 patients with a non-cluster isolate. However, we could not detect any healthcare-related transmission in these 8 clusters.Although clusters were genetically detected using HiMLST and Raman spectroscopy, no definite epidemiological relationships could be demonstrated which makes the possibility of healthcare-related transmission events highly unlikely. Our results suggest that typing of ESBL-producing E. coli using HiMLST and/or Raman spectroscopy is not helpful in detecting E. coli healthcare-related transmission events.

  1. [Genetic diversity of extraintestinal Escherichia coli strains producers of beta-lactamases TEM, SHV and CTX-M associated with healthcare].

    Science.gov (United States)

    Varela, Yasmin; Millán, Beatriz; Araque, María

    2017-06-01

    There are few reports from Venezuela describing the genetic basis that sustains the pathogenic potential and phylogenetics of Escherichia coli extraintestinal strains isolated in health care units. To establish the genetic diversity of extraintestinal E. coli strains producers of betalactamases TEM, SHV and CTX-M associated with healthcare. We studied a collection of 12 strains of extraintestinal E. coli with diminished sensitivity to broad-spectrum cephalosporins. Antimicrobial susceptibility was determined by minimum inhibitory concentration. We determined the phylogenetic groups, virulence factors and genes encoding antimicrobial resistance using PCR, and clonal characterization by repetitive element palindromic-PCR rep-PCR. All strains showed resistance to cephalosporins and joint resistance to quinolones and aminoglycosides. The phylogenetic distribution showed that the A and B1 groups were the most frequent, followed by D and B2. We found all the virulence factors analyzed in the B2 group, and fimH gene was the most frequent among them. We found blaCTX-M in all strains,with a higher prevalence of blaCTX-M-8; two of these strains showed coproduction of blaCTX-M-9 and were genetically identified as blaCTXM-65 and blaCTX-M-147 by sequencing. The strains under study showed genetic diversity, hosting a variety of virulence genes, as well as antimicrobial resistance with no particular phylogroup prevalence. This is the first report of blaCTX-M alleles in Venezuela and in the world associated to non-genetically related strains isolated in health care units, a situation that deserves attention, as well as the rationalization of antimicrobials use.

  2. Structural characterization of CFA/III and Longus type IVb pili from enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Kolappan, Subramaniapillai; Roos, Justin; Yuen, Alex S W; Pierce, Owen M; Craig, Lisa

    2012-05-01

    The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 3(10)-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 3(10)-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.

  3. Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Minji Sim

    Full Text Available While identifying genes regulated by ribonuclease III (RNase III in Escherichia coli, we observed that steady-state levels of betT mRNA, which encodes a transporter mediating the influx of choline, are dependent on cellular concentrations of RNase III. In the present study, we also observed that steady-state levels of betT mRNA are dependent on RNase III activity upon exposure to osmotic stress, indicating the presence of cis-acting elements controlled by RNase III in betT mRNA. Primer extension analyses of betT mRNA revealed two tandem RNase III cleavage sites in its stem-loop region, which were biochemically confirmed via in vitro cleavage assays. Analyses of cleavage sites suggested the stochastic selection of cleavage sites by RNase III, and mutational analyses indicated that RNase III cleavage at either site individually is insufficient for efficient betT mRNA degradation. In addition, both the half-life and abundance of betT mRNA were significantly increased in association with decreased RNase III activity under hyper-osmotic stress conditions. Our findings demonstrate that betT mRNA stability is controlled by RNase III at the post-transcriptional level under conditions of osmotic stress.

  4. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    International Nuclear Information System (INIS)

    Gossett, J.; Lee, K.; Cunningham, R.P.; Doetsch, P.W.

    1988-01-01

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO 4 -damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants

  5. Vaginal versus Obstetric Infection Escherichia coli Isolates among Pregnant Women: Antimicrobial Resistance and Genetic Virulence Profile.

    Directory of Open Access Journals (Sweden)

    Emma Sáez-López

    Full Text Available Vaginal Escherichia coli colonization is related to obstetric infections and the consequent development of infections in newborns. Ampicillin resistance among E. coli strains is increasing, which is the main choice for treating empirically many obstetric and neonatal infections. Vaginal E. coli strains are very similar to extraintestinal pathogenic E. coli with regards to the virulence factors and the belonging to phylogroup B2. We studied the antimicrobial resistance and the genetic virulence profile of 82 E. coli isolates from 638 vaginal samples and 63 isolated from endometrial aspirate, placental and amniotic fluid samples from pregnant women with obstetric infections. The prevalence of E. coli in the vaginal samples was 13%, which was significant among women with associated risk factors during pregnancy, especially premature preterm rupture of membranes (p<0.0001. Sixty-five percent of the strains were ampicillin-resistant. The E. coli isolates causing obstetric infections showed higher resistance levels than vaginal isolates, particularly for gentamicin (p = 0.001. The most prevalent virulence factor genes were those related to the iron uptake systems revealing clear targets for interventions. More than 50% of the isolates belonged to the virulent B2 group possessing the highest number of virulence factor genes. The ampicillin-resistant isolates had high number of virulence factors primarily related to pathogenicity islands, and the remarkable gentamicin resistance in E. coli isolates from women presenting obstetric infections, the choice of the most appropriate empiric treatment and clinical management of pregnant women and neonates should be carefully made. Taking into account host-susceptibility, the heterogeneity of E. coli due to evolution over time and the geographical area, characterization of E. coli isolates colonizing the vagina and causing obstetric infections in different regions may help to develop interventions and avoid the

  6. Effects of Genetic Variation on the E. coli Host-Circuit Interface

    Directory of Open Access Journals (Sweden)

    Stefano Cardinale

    2013-07-01

    Full Text Available Predictable operation of engineered biological circuitry requires the knowledge of host factors that compete or interfere with designed function. Here, we perform a detailed analysis of the interaction between constitutive expression from a test circuit and cell-growth properties in a subset of genetic variants of the bacterium Escherichia coli. Differences in generic cellular parameters such as ribosome availability and growth rate are the main determinants (89% of strain-specific differences of circuit performance in laboratory-adapted strains but are responsible for only 35% of expression variation across 88 mutants of E. coli BW25113. In the latter strains, we identify specific cell functions, such as nitrogen metabolism, that directly modulate circuit behavior. Finally, we expose aspects of carbon metabolism that act in a strain- and sequence-specific manner. This method of dissecting interactions between host factors and heterologous circuits enables the discovery of mechanisms of interference necessary for the development of design principles for predictable cellular engineering.

  7. New Insights into the genetic diversity of Clostridium botulinum Group III through extensive genome exploration

    Directory of Open Access Journals (Sweden)

    Cédric eWoudstra

    2016-05-01

    Full Text Available Animal botulism is caused by group III Clostridium botulinum strains producing type C and D toxins, or their chimeric forms C/D and D/C. Animal botulism is considered an emerging disease in Europe, notably in poultry production. Before our study, 14 genomes from different countries were available in the public database, but none were from France. In order to investigate the genetic relationship of French strains with different geographical areas and find new potential typing targets, 17 strains of C. botulinum group III were sequenced (16 from France and one from New Caledonia. Fourteen were type C/D strains isolated from chickens, ducks, guinea fowl and turkeys and three were type D/C strains isolated from cattle. The New Caledonian strain was a type D/C strain. Whole genome sequence analysis showed the French strains to be closely related to European strains from C. botulinum group III lineages Ia and Ib. The investigation of CRISPR sequences as genetic targets for differentiating strains in group III proved to be irrelevant for type C/D due to a deficient CRISPR/Cas mechanism, but not for type D/C. Conversely, the extrachromosomal elements of type C/D strains could be used to generate a genetic ID card. The highest level of discrimination was achieved with SNP core phylogeny, which allowed differentiation up to strain level and provide the most relevant information for genetic epidemiology studies and discrimination.

  8. The Escherichia coli argW-dsdCXA genetic island is highly variable, and E. coli K1 strains commonly possess two copies of dsdCXA.

    Science.gov (United States)

    Moritz, Rebecca L; Welch, Rodney A

    2006-11-01

    The genome sequences of Escherichia coli pathotypes reveal extensive genetic variability in the argW-dsdCXA island. Interestingly, the archetype E. coli K1 neonatal meningitis strain, strain RS218, has two copies of the dsdCXA genes for d-serine utilization at the argW and leuX islands. Because the human brain contains d-serine, an epidemiological study emphasizing K1 isolates surveyed the dsdCXA copy number and function. Forty of 41 (97.5%) independent E. coli K1 isolates could utilize d-serine. Southern blot hybridization revealed physical variability within the argW-dsdC region, even among 22 E. coli O18:K1:H7 isolates. In addition, 30 of 41 K1 strains, including 21 of 22 O18:K1:H7 isolates, had two dsdCXA loci. Mutational analysis indicated that each of the dsdA genes is functional in a rifampin-resistant mutant of RS218, mutant E44. The high percentage of K1 strains that can use d-serine is in striking contrast to our previous observation that only 4 of 74 (5%) isolates in the diarrheagenic E. coli (DEC) collection have this activity. The genome sequence of diarrheagenic E. coli isolates indicates that the csrRAKB genes for sucrose utilization are often substituted for dsdC and a portion of dsdX present at the argW-dsdCXA island of extraintestinal isolates. Among DEC isolates there is a reciprocal pattern of sucrose fermentation versus d-serine utilization. The ability to use d-serine is a trait strongly selected for among E. coli K1 strains, which have the ability to infect a wide range of extraintestinal sites. Conversely, diarrheagenic E. coli pathotypes appear to have substituted sucrose for d-serine as a potential nutrient.

  9. Dietary N-Carbamylglutamate Supplementation Boosts Intestinal Mucosal Immunity in Escherichia coli Challenged Piglets.

    Directory of Open Access Journals (Sweden)

    Fengrui Zhang

    Full Text Available N-carbamylglutamate (NCG has been shown to enhance performance in neonatal piglets. However, few studies have demonstrated the effect of NCG on the intestinal mucosal barrier. This study was conducted to determine the effects of dietary NCG supplementation on intestinal mucosal immunity in neonatal piglets after an Escherichia coli (E. coli challenge. New-born piglets (4 d old were assigned randomly to one of four treatments (n = 7, including (I sham challenge, (II sham challenge +50 mg/kg NCG, (III E. coli challenge, and (IV E. coli challenge +50 mg/kg NCG. On d 8, pigs in the E. coli challenge groups (III and IV were orally challenged with 5 mL of E. coli K88 (10(8 CFU/mL, whereas pigs in the sham challenge groups (I and II were orally dosed with an equal volume of water. On d 13, all piglets were sacrificed, and samples were collected and examined. The results show that average daily gain in the E. coli challenged piglets (III and IV was decreased (PE.coli<0.05. However, it tended to be higher in the NCG treated piglets (II and IV. Ileum secretory IgA, as well as IFN-γ, IL-2, IL-4 and IL-10 in ileal homogenates, were increased in E. coli challenged piglets (III and IV. Similarly, ileum SIgA and IL-10 levels, and CD4(+ percentage in NCG treated piglets (II and IV were higher than no-NCG treated piglets (PNCG<0.05. However, the IL-2 level was only decreased in the piglets of E. coli challenge + NCG group (IV compared with E. coli challenge group (III (P<0.05. No change in the IL-2 level of the sham challenged piglets (III was observed. In conclusion, dietary NCG supplementation has some beneficial effects on intestinal mucosal immunity in E. coli challenged piglets, which might be associated with stimulated lymphocyte proliferation and cytokine synthesis. Our findings have an important implication that NCG may be used to reduce diarrhea in neonatal piglets.

  10. Vaginal versus Obstetric Infection Escherichia coli Isolates among Pregnant Women: Antimicrobial Resistance and Genetic Virulence Profile.

    Science.gov (United States)

    Sáez-López, Emma; Guiral, Elisabet; Fernández-Orth, Dietmar; Villanueva, Sonia; Goncé, Anna; López, Marta; Teixidó, Irene; Pericot, Anna; Figueras, Francesc; Palacio, Montse; Cobo, Teresa; Bosch, Jordi; Soto, Sara M

    2016-01-01

    Vaginal Escherichia coli colonization is related to obstetric infections and the consequent development of infections in newborns. Ampicillin resistance among E. coli strains is increasing, which is the main choice for treating empirically many obstetric and neonatal infections. Vaginal E. coli strains are very similar to extraintestinal pathogenic E. coli with regards to the virulence factors and the belonging to phylogroup B2. We studied the antimicrobial resistance and the genetic virulence profile of 82 E. coli isolates from 638 vaginal samples and 63 isolated from endometrial aspirate, placental and amniotic fluid samples from pregnant women with obstetric infections. The prevalence of E. coli in the vaginal samples was 13%, which was significant among women with associated risk factors during pregnancy, especially premature preterm rupture of membranes (pinfections showed higher resistance levels than vaginal isolates, particularly for gentamicin (p = 0.001). The most prevalent virulence factor genes were those related to the iron uptake systems revealing clear targets for interventions. More than 50% of the isolates belonged to the virulent B2 group possessing the highest number of virulence factor genes. The ampicillin-resistant isolates had high number of virulence factors primarily related to pathogenicity islands, and the remarkable gentamicin resistance in E. coli isolates from women presenting obstetric infections, the choice of the most appropriate empiric treatment and clinical management of pregnant women and neonates should be carefully made. Taking into account host-susceptibility, the heterogeneity of E. coli due to evolution over time and the geographical area, characterization of E. coli isolates colonizing the vagina and causing obstetric infections in different regions may help to develop interventions and avoid the aetiological link between maternal carriage and obstetric and subsequent puerperal infections.

  11. Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2014-02-01

    Full Text Available Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI screens can provide insights into the biological role(s of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.

  12. Impact of the mitochondrial genetic background in complex III deficiency.

    Directory of Open Access Journals (Sweden)

    Mari Carmen Gil Borlado

    Full Text Available BACKGROUND: In recent years clinical evidence has emphasized the importance of the mtDNA genetic background that hosts a primary pathogenic mutation in the clinical expression of mitochondrial disorders, but little experimental confirmation has been provided. We have analyzed the pathogenic role of a novel homoplasmic mutation (m.15533 A>G in the cytochrome b (MT-CYB gene in a patient presenting with lactic acidosis, seizures, mild mental delay, and behaviour abnormalities. METHODOLOGY: Spectrophotometric analyses of the respiratory chain enzyme activities were performed in different tissues, the whole muscle mitochondrial DNA of the patient was sequenced, and the novel mutation was confirmed by PCR-RFLP. Transmitochondrial cybrids were constructed to confirm the pathogenicity of the mutation, and assembly/stability studies were carried out in fibroblasts and cybrids by means of mitochondrial translation inhibition in combination with blue native gel electrophoresis. PRINCIPAL FINDINGS: Biochemical analyses revealed a decrease in respiratory chain complex III activity in patient's skeletal muscle, and a combined enzyme defect of complexes III and IV in fibroblasts. Mutant transmitochondrial cybrids restored normal enzyme activities and steady-state protein levels, the mutation was mildly conserved along evolution, and the proband's mother and maternal aunt, both clinically unaffected, also harboured the homoplasmic mutation. These data suggested a nuclear genetic origin of the disease. However, by forcing the de novo functioning of the OXPHOS system, a severe delay in the biogenesis of the respiratory chain complexes was observed in the mutants, which demonstrated a direct functional effect of the mitochondrial genetic background. CONCLUSIONS: Our results point to possible pitfalls in the detection of pathogenic mitochondrial mutations, and highlight the role of the genetic mtDNA background in the development of mitochondrial disorders.

  13. Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources.

    Directory of Open Access Journals (Sweden)

    A Mark Ibekwe

    Full Text Available Escherichia coli are widely used as indicators of fecal contamination, and in some cases to identify host sources of fecal contamination in surface water. Prevalence, genetic diversity and antimicrobial susceptibility were determined for 600 generic E. coli isolates obtained from surface water and sediment from creeks and channels along the middle Santa Ana River (MSAR watershed of southern California, USA, after a 12 month study. Evaluation of E. coli populations along the creeks and channels showed that E. coli were more prevalent in sediment compared to surface water. E. coli populations were not significantly different (P = 0.05 between urban runoff sources and agricultural sources, however, E. coli genotypes determined by pulsed-field gel electrophoresis (PFGE were less diverse in the agricultural sources than in urban runoff sources. PFGE also showed that E. coli populations in surface water were more diverse than in the sediment, suggesting isolates in sediment may be dominated by clonal populations.Twenty four percent (144 isolates of the 600 isolates exhibited resistance to more than one antimicrobial agent. Most multiple resistances were associated with inputs from urban runoff and involved the antimicrobials rifampicin, tetracycline, and erythromycin. The occurrence of a greater number of E. coli with multiple antibiotic resistances from urban runoff sources than agricultural sources in this watershed provides useful evidence in planning strategies for water quality management and public health protection.

  14. A genomically modified Escherichia coli strain carrying an orthogonal E. coli histidyl-tRNA synthetase•tRNAHis pair.

    Science.gov (United States)

    Englert, Markus; Vargas-Rodriguez, Oscar; Reynolds, Noah M; Wang, Yane-Shih; Söll, Dieter; Umehara, Takuya

    2017-11-01

    Development of new aminoacyl-tRNA synthetase (aaRS)•tRNA pairs is central for incorporation of novel non-canonical amino acids (ncAAs) into proteins via genetic code expansion (GCE). The Escherichia coli and Caulobacter crescentus histidyl-tRNA synthetases (HisRS) evolved divergent mechanisms of tRNA His recognition that prevent their cross-reactivity. Although the E. coli HisRS•tRNA His pair is a good candidate for GCE, its use in C. crescentus is limited by the lack of established genetic selection methods and by the low transformation efficiency of C. crescentus. E. coli was genetically engineered to use a C. crescentus HisRS•tRNA His pair. Super-folder green fluorescent protein (sfGFP) and chloramphenicol acetyltransferase (CAT) were used as reporters for read-through assays. A library of 313 ncAAs coupled with the sfGFP reporter system was employed to investigate the specificity of E. coli HisRS in vivo. A genomically modified E. coli strain (named MEOV1) was created. MEVO1 requires an active C. crescentus HisRS•tRNA His pair for growth, and displays a similar doubling time as the parental E. coli strain. sfGFP- and CAT-based assays showed that the E. coli HisRS•tRNA His pair is orthogonal in MEOV1 cells. A mutation in the anticodon loop of E. coli tRNA His CUA elevated its suppression efficiency by 2-fold. The C. crescentus HisRS•tRNA His pair functionally complements an E. coli ΔhisS strain. The E. coli HisRS•tRNA His is orthogonal in MEOV1 cells. E. coli tRNA His CUA is an efficient amber suppressor in MEOV1. We developed a platform that allows protein engineering of E. coli HisRS that should facilitate GCE in E. coli. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis, Characterization and Antibacterial Studies of N-(Benzothiazol-2-yl)-4-chlorobenzenesulphonamide and Its Neodymium(III) and Thallium(III) Complexes.

    Science.gov (United States)

    Obasi, Lawrence Nnamdi; Oruma, Uchechukwu Susan; Al-Swaidan, Ibrahim Abdulrazak; Ramasami, Ponnadurai; Ezeorah, Chigozie Julius; Ochonogor, Alfred Ezinna

    2017-02-22

    N -(Benzothiazol-2-yl)-4-chlorobenzenesulphonamide (NBTCS) was synthesized by condensation reaction of 4-chlorobenzenesulphonyl chloride and 2-aminobenzothiazole in acetone under reflux. Neodymium(III) and thallium(III) complexes of the ligand were also synthesized. Both ligand and metal complexes were characterized using UV-Vis, IR, ¹H- and 13 C-NMR spectroscopies, elemental analysis and molar conductance measurement. IR studies revealed that the ligand is tridentate and coordinates to the metal ions through nitrogen and oxygen atoms of the sulphonamide group and nitrogen atom attached to benzothiazole ring. The neodymium(III) complex displays a coordination number of eight while thallium(III) complex displays a coordination number of six. The ligand and its complexes were screened in vitro for their antibacterial activities against Escherichia coli strains ( E. coli 6 and E. coli 13 ), Proteus species, Staphylococcus aureus and Pseudomonas aeruginosa using the agar well diffusion technique. The synthesized compounds were found to be more active against the microorganisms screened relative to ciprofloxacin, gentamicin and co-trimoxazole.

  16. Genetic Relatedness Among Shiga Toxin-Producing Escherichia coli Isolated Along the Animal Food Supply Chain and in Gastroenteritis Cases in Qatar Using Multilocus Sequence Typing.

    Science.gov (United States)

    Palanisamy, Srikanth; Chang, YuChen; Scaria, Joy; Penha Filho, Rafael Antonio Casarin; Peters, Kenlyn E; Doiphode, Sanjay H; Sultan, Ali; Mohammed, Hussni O

    2017-06-01

    Pathogenic Escherichia coli has been listed among the most important bacteria associated with foodborne illnesses around the world. We investigated the genetic relatedness among Shiga toxin-producing E. coli (STEC) isolated along the animal food supply chain and from humans diagnosed with gastroenteritis in Qatar. Samples were collected from different sources along the food supply chain and from patients admitted to the hospital with complaints of gastroenteritis. All samples were screened for the presence of E. coli O157:H7 and non-O157 STEC using a combination of bacterial enrichment and molecular detection techniques. A proportional sampling approach was used to select positive samples from each source for further multilocus sequence typing (MLST) analysis. Seven housekeeping genes described for STEC were amplified by polymerase chain reaction, sequenced, and analyzed by MLST. Isolates were characterized by allele composition, sequence type (ST) and assessed for epidemiologic relationship within and among different sources. Nei's genetic distance was calculated at the allele level between sample pools in each site downstream. E. coli O157:H7 occurred at a higher rate in slaughterhouse and retail samples than at the farm or in humans in our sampling. The ST171, an ST common to enterotoxigenic E. coli and atypical enteropathogenic E. coli, was the most common ST (15%) in the food supply chain. None of the genetic distances among the different sources was statistically significant. Enterohemorrhagic E. coli pathogenic strains are present along the supply chain at different levels and with varying relatedness. Clinical isolates were the most diverse, as expected, considering the polyclonal diversity in the human microbiota. The high occurrence of these food adulterants among the farm products suggests that implementation of sanitary measures at that level might reduce the risk of human exposure.

  17. Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

    Science.gov (United States)

    Vlasblom, James; Gagarinova, Alla; Phanse, Sadhna; Graham, Chris; Yousif, Fouad; Ding, Huiming; Xiong, Xuejian; Nazarians-Armavil, Anaies; Alamgir, Md; Ali, Mehrab; Pogoutse, Oxana; Pe'er, Asaf; Arnold, Roland; Michaut, Magali; Parkinson, John; Golshani, Ashkan; Whitfield, Chris; Wodak, Shoshana J.; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack F.; Emili, Andrew

    2011-01-01

    As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target. PMID:22125496

  18. Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2011-11-01

    Full Text Available As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium and prototrophic (minimal medium culture conditions. The differential patterns of genetic interactions detected among > 235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens and an important target.

  19. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    International Nuclear Information System (INIS)

    Hawkins, C.; Treffry, A.; Mackey, J.; Williams, J.M.; Andrews, S.C.; Guest, J.R.; Harrison, P.M.

    1996-01-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits 'ferroxidase' activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial 'burst', the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported

  20. In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence.

    Science.gov (United States)

    Laing, Chad R; Buchanan, Cody; Taboada, Eduardo N; Zhang, Yongxiang; Karmali, Mohamed A; Thomas, James E; Gannon, Victor Pj

    2009-06-29

    Many approaches have been used to study the evolution, population structure and genetic diversity of Escherichia coli O157:H7; however, observations made with different genotyping systems are not easily relatable to each other. Three genetic lineages of E. coli O157:H7 designated I, II and I/II have been identified using octamer-based genome scanning and microarray comparative genomic hybridization (mCGH). Each lineage contains significant phenotypic differences, with lineage I strains being the most commonly associated with human infections. Similarly, a clade of hyper-virulent O157:H7 strains implicated in the 2006 spinach and lettuce outbreaks has been defined using single-nucleotide polymorphism (SNP) typing. In this study an in silico comparison of six different genotyping approaches was performed on 19 E. coli genome sequences from 17 O157:H7 strains and single O145:NM and K12 MG1655 strains to provide an overall picture of diversity of the E. coli O157:H7 population, and to compare genotyping methods for O157:H7 strains. In silico determination of lineage, Shiga-toxin bacteriophage integration site, comparative genomic fingerprint, mCGH profile, novel region distribution profile, SNP type and multi-locus variable number tandem repeat analysis type was performed and a supernetwork based on the combination of these methods was produced. This supernetwork showed three distinct clusters of strains that were O157:H7 lineage-specific, with the SNP-based hyper-virulent clade 8 synonymous with O157:H7 lineage I/II. Lineage I/II/clade 8 strains clustered closest on the supernetwork to E. coli K12 and E. coli O55:H7, O145:NM and sorbitol-fermenting O157 strains. The results of this study highlight the similarities in relationships derived from multi-locus genome sampling methods and suggest a "common genotyping language" may be devised for population genetics and epidemiological studies. Future genotyping methods should provide data that can be stored centrally and

  1. In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence

    Directory of Open Access Journals (Sweden)

    Karmali Mohamed A

    2009-06-01

    Full Text Available Abstract Background Many approaches have been used to study the evolution, population structure and genetic diversity of Escherichia coli O157:H7; however, observations made with different genotyping systems are not easily relatable to each other. Three genetic lineages of E. coli O157:H7 designated I, II and I/II have been identified using octamer-based genome scanning and microarray comparative genomic hybridization (mCGH. Each lineage contains significant phenotypic differences, with lineage I strains being the most commonly associated with human infections. Similarly, a clade of hyper-virulent O157:H7 strains implicated in the 2006 spinach and lettuce outbreaks has been defined using single-nucleotide polymorphism (SNP typing. In this study an in silico comparison of six different genotyping approaches was performed on 19 E. coli genome sequences from 17 O157:H7 strains and single O145:NM and K12 MG1655 strains to provide an overall picture of diversity of the E. coli O157:H7 population, and to compare genotyping methods for O157:H7 strains. Results In silico determination of lineage, Shiga-toxin bacteriophage integration site, comparative genomic fingerprint, mCGH profile, novel region distribution profile, SNP type and multi-locus variable number tandem repeat analysis type was performed and a supernetwork based on the combination of these methods was produced. This supernetwork showed three distinct clusters of strains that were O157:H7 lineage-specific, with the SNP-based hyper-virulent clade 8 synonymous with O157:H7 lineage I/II. Lineage I/II/clade 8 strains clustered closest on the supernetwork to E. coli K12 and E. coli O55:H7, O145:NM and sorbitol-fermenting O157 strains. Conclusion The results of this study highlight the similarities in relationships derived from multi-locus genome sampling methods and suggest a "common genotyping language" may be devised for population genetics and epidemiological studies. Future genotyping

  2. Genetic Transfer of Salmonella typhimurium and Escherichia coli Lipopolysaccharide Antigens to Escherichia coli K-12

    Science.gov (United States)

    Jones, Randall T.; Koeltzow, Donald E.; Stocker, B. A. D.

    1972-01-01

    Escherichia coli K-12 ϰ971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv+ hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his+ (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F′ factor (FS400) carrying the rfb–his region of S. typhimurium to the same two ilv+ hybrids gave similar results. LPS extracted from two ilv+,his+, factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his+ hybrids obtained from ϰ971 itself by similar HfrK9 and F′FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli ϰ971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli ϰ971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli ϰ971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his+ recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Ω8. This suggests that, although the parental E. coli K-12 strain ϰ971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units. PMID:4559827

  3. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    Bacterial biofilms, often composed of multiple species and genetically distinct strains, develop under complex influences of cell-cell interactions. Although detailed knowledge about the mechanisms underlying formation of single-species laboratory biofilms has emerged, little is known about...... the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting...

  4. Discrimination of Enterohemorrhagic Escherichia coli (EHEC) from Non-EHEC Strains Based on Detection of Various Combinations of Type III Effector Genes

    Science.gov (United States)

    Delannoy, Sabine; Beutin, Lothar

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains comprise a subgroup of Shiga-toxin (Stx)-producing E. coli (STEC) and are characterized by a few serotypes. Among these, seven priority STEC serotypes (O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7) are most frequently implicated in severe clinical illness worldwide. Currently, standard methods using stx, eae, and O-serogroup-specific gene sequences for detecting the top 7 EHEC serotypes bear the disadvantage that these genes can be found in non-EHEC strains as well. Here, we explored the suitability of ureD, espV, espK, espN, Z2098, and espM1 genes and combinations thereof as candidates for a more targeted EHEC screening assay. For a very large panel of E. coli strains (n = 1,100), which comprised EHEC (n = 340), enteropathogenic E. coli (EPEC) (n = 392), STEC (n = 193), and apathogenic strains (n = 175), we showed that these genetic markers were more prevalent in EHEC (67.1% to 92.4%) than in EPEC (13.3% to 45.2%), STEC (0.5% to 3.6%), and apathogenic E. coli strains (0 to 2.9%). It is noteworthy that 38.5% of the EPEC strains that tested positive for at least one of these genetic markers belonged to the top 7 EHEC serotypes, suggesting that such isolates might be Stx-negative derivatives of EHEC. The associations of espK with either espV, ureD, or Z2098 were the best combinations for more specific and sensitive detection of the top 7 EHEC strains, allowing detection of 99.3% to 100% of these strains. In addition, detection of 93.7% of the EHEC strains belonging to other serotypes than the top 7 offers a possibility for identifying new emerging EHEC strains. PMID:23884997

  5. Genetic Adaptation to Growth Under Laboratory Conditions in Escherichia coli and Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Anna Knöppel

    2018-04-01

    Full Text Available Experimental evolution under controlled laboratory conditions is becoming increasingly important to address various evolutionary questions, including, for example, the dynamics and mechanisms of genetic adaptation to different growth and stress conditions. In such experiments, mutations typically appear that increase the fitness under the conditions tested (medium adaptation, but that are not necessarily of interest for the specific research question. Here, we have identified mutations that appeared during serial passage of E. coli and S. enterica in four different and commonly used laboratory media and measured the relative competitive fitness and maximum growth rate of 111 genetically re-constituted strains, carrying different single and multiple mutations. Little overlap was found between the mutations that were selected in the two species and the different media, implying that adaptation occurs via different genetic pathways. Furthermore, we show that commonly occurring adaptive mutations can generate undesired genetic variation in a population and reduce the accuracy of competition experiments. However, by introducing media adaptation mutations with large effects into the parental strain that was used for the evolution experiment, the variation (standard deviation was decreased 10-fold, and it was possible to measure fitness differences between two competitors as small as |s| < 0.001.

  6. Study of the resistance mechanisms to ultraviolet light in Escherichia Coli. III. Genetic mapping of a mutation that confers resistance to radiation

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1996-08-01

    Inside this third work with respect to the investigation of the process of adaptation of different subcultures of Escherichia coli, to the UV light, its are present the obtained results in the identification of the gene or genes implied in the resistance to UV of one of the 5 populations derived for repeated exposure to growing dose of UV light of E. coli PQ30. Those obtained data indicate that the causing mutation of the phenotype is located in a single gene, since the insert of the fragment of DNA miniTn5 in this gene, causes the lost one from the resistance and the return to the original phenotype. The gene in question is denominated radA, located in the minute 99.6 of the chromosome of E. coli and required for the efficient repair of double ruptures in the DNA. (Author)

  7. Prediction of Active Site and Distal Residues in E. coli DNA Polymerase III alpha Polymerase Activity.

    Science.gov (United States)

    Parasuram, Ramya; Coulther, Timothy A; Hollander, Judith M; Keston-Smith, Elise; Ondrechen, Mary Jo; Beuning, Penny J

    2018-02-20

    The process of DNA replication is carried out with high efficiency and accuracy by DNA polymerases. The replicative polymerase in E. coli is DNA Pol III, which is a complex of 10 different subunits that coordinates simultaneous replication on the leading and lagging strands. The 1160-residue Pol III alpha subunit is responsible for the polymerase activity and copies DNA accurately, making one error per 10 5 nucleotide incorporations. The goal of this research is to determine the residues that contribute to the activity of the polymerase subunit. Homology modeling and the computational methods of THEMATICS and POOL were used to predict functionally important amino acid residues through their computed chemical properties. Site-directed mutagenesis and biochemical assays were used to validate these predictions. Primer extension, steady-state single-nucleotide incorporation kinetics, and thermal denaturation assays were performed to understand the contribution of these residues to the function of the polymerase. This work shows that the top 15 residues predicted by POOL, a set that includes the three previously known catalytic aspartate residues, seven remote residues, plus five previously unexplored first-layer residues, are important for function. Six previously unidentified residues, R362, D405, K553, Y686, E688, and H760, are each essential to Pol III activity; three additional residues, Y340, R390, and K758, play important roles in activity.

  8. Screening of genetic parameters for soluble protein expression in Escherichia coli

    DEFF Research Database (Denmark)

    Vernet, Erik; Kotzsch, Alexander; Voldborg, Bjørn

    2011-01-01

    Soluble expression of proteins in a relevant form for functional and structural investigations still often remains a challenge. Although many biochemical factors are known to affect solubility, a thorough investigation of yield-limiting factors is normally not feasible in high-throughput efforts....... Here we present a screening strategy for expression of biomedically relevant proteins in Escherichia coli using a panel of six different genetic variations. These include engineered strains for rare codon supplementation, increased disulfide bond formation in the cytoplasm and novel vectors...... for secretion to the periplasm or culture medium. Combining these variants with expression construct truncations design, we report on parallel cloning and expression of more than 300 constructs representing 24 selected proteins; including full-length variants of human growth factors, interleukins and growth...

  9. Synthesis, Characterization and Antibacterial Studies of N-(Benzothiazol-2-yl-4-chlorobenzenesulphonamide and Its Neodymium(III and Thallium(III Complexes

    Directory of Open Access Journals (Sweden)

    Lawrence Nnamdi Obasi

    2017-02-01

    Full Text Available N-(Benzothiazol-2-yl-4-chlorobenzenesulphonamide (NBTCS was synthesized by condensation reaction of 4-chlorobenzenesulphonyl chloride and 2-aminobenzothiazole in acetone under reflux. Neodymium(III and thallium(III complexes of the ligand were also synthesized. Both ligand and metal complexes were characterized using UV-Vis, IR, 1H- and 13C-NMR spectroscopies, elemental analysis and molar conductance measurement. IR studies revealed that the ligand is tridentate and coordinates to the metal ions through nitrogen and oxygen atoms of the sulphonamide group and nitrogen atom attached to benzothiazole ring. The neodymium(III complex displays a coordination number of eight while thallium(III complex displays a coordination number of six. The ligand and its complexes were screened in vitro for their antibacterial activities against Escherichia coli strains (E. coli 6 and E. coli 13, Proteus species, Staphylococcus aureus and Pseudomonas aeruginosa using the agar well diffusion technique. The synthesized compounds were found to be more active against the microorganisms screened relative to ciprofloxacin, gentamicin and co-trimoxazole.

  10. Use of Long-Term E. Coli Cultures: To Study Generation of Genetic Diversity & Teach General Microbiology Laboratory Skills

    Science.gov (United States)

    Petrie, Angela; Finkel, Steven E.; Erbe, Jarrod

    2005-01-01

    A novel method of studying the generation of genetic diversity in an undergraduate microbiology laboratory is described. The basis of this approach is the accumulation of mutations that confer a competitive advantage, or growth advantage in stationary phase (GASP) phenotype, to E. coli grown in stationary phase for extended periods of time.

  11. Mapping the Plasticity of the E. coli Genetic Code with Orthogonal Pair Directed Sense Codon Reassignment.

    Science.gov (United States)

    Schmitt, Margaret A; Biddle, Wil; Fisk, John Domenic

    2018-04-18

    The relative quantitative importance of the factors that determine the fidelity of translation is largely unknown, which makes predicting the extent to which the degeneracy of the genetic code can be broken challenging. Our strategy of using orthogonal tRNA/aminoacyl tRNA synthetase pairs to precisely direct the incorporation of a single amino acid in response to individual sense and nonsense codons provides a suite of related data with which to examine the plasticity of the code. Each directed sense codon reassignment measurement is an in vivo competition experiment between the introduced orthogonal translation machinery and the natural machinery in E. coli. This report discusses 20 new, related genetic codes, in which a targeted E. coli wobble codon is reassigned to tyrosine utilizing the orthogonal tyrosine tRNA/aminoacyl tRNA synthetase pair from Methanocaldococcus jannaschii. One at a time, reassignment of each targeted sense codon to tyrosine is quantified in cells by measuring the fluorescence of GFP variants in which the essential tyrosine residue is encoded by a non-tyrosine codon. Significantly, every wobble codon analyzed may be partially reassigned with efficiencies ranging from 0.8% to 41%. The accumulation of the suite of data enables a qualitative dissection of the relative importance of the factors affecting the fidelity of translation. While some correlation was observed between sense codon reassignment and either competing endogenous tRNA abundance or changes in aminoacylation efficiency of the altered orthogonal system, no single factor appears to predominately drive translational fidelity. Evaluation of relative cellular fitness in each of the 20 quantitatively-characterized proteome-wide tyrosine substitution systems suggests that at a systems level, E. coli is robust to missense mutations.

  12. Bacterial Genetic Architecture of Ecological Interactions in Co-culture by GWAS-Taking Escherichia coli and Staphylococcus aureus as an Example.

    Science.gov (United States)

    He, Xiaoqing; Jin, Yi; Ye, Meixia; Chen, Nan; Zhu, Jing; Wang, Jingqi; Jiang, Libo; Wu, Rongling

    2017-01-01

    How a species responds to such a biotic environment in the community, ultimately leading to its evolution, has been a topic of intense interest to ecological evolutionary biologists. Until recently, limited knowledge was available regarding the genotypic changes that underlie phenotypic changes. Our study implemented GWAS (Genome-Wide Association Studies) to illustrate the genetic architecture of ecological interactions that take place in microbial populations. By choosing 45 such interspecific pairs of Escherichia coli and Staphylococcus aureus strains that were all genotyped throughout the entire genome, we employed Q-ROADTRIPS to analyze the association between single SNPs and microbial abundance measured at each time point for bacterial populations reared in monoculture and co-culture, respectively. We identified a large number of SNPs and indels across the genomes (35.69 G clean data of E. coli and 50.41 G of S. aureus ). We reported 66 and 111 SNPs that were associated with interaction in E. coli and S. aureus , respectively. 23 out of 66 polymorphic changes resulted in amino acid alterations.12 significant genes, such as murE, treA, argS , and relA , which were also identified in previous evolutionary studies. In S. aureus , 111 SNPs detected in coding sequences could be divided into 35 non-synonymous and 76 synonymous SNPs. Our study illustrated the potential of genome-wide association methods for studying rapidly evolving traits in bacteria. Genetic association study methods will facilitate the identification of genetic elements likely to cause phenotypes of interest and provide targets for further laboratory investigation.

  13. Construction and characterisation of a complete reverse genetics system of dengue virus type 3

    Directory of Open Access Journals (Sweden)

    Jefferson Jose da Silva Santos

    2013-12-01

    Full Text Available Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast- E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli . RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis.

  14. Profiling of Escherichia coli Chromosome database.

    Science.gov (United States)

    Yamazaki, Yukiko; Niki, Hironori; Kato, Jun-ichi

    2008-01-01

    The Profiling of Escherichia coli Chromosome (PEC) database (http://www.shigen.nig.ac.jp/ecoli/pec/) is designed to allow E. coli researchers to efficiently access information from functional genomics studies. The database contains two principal types of data: gene essentiality and a large collection of E. coli genetic research resources. The essentiality data are based on data compilation from published single-gene essentiality studies and on cell growth studies of large-deletion mutants. Using the circular and linear viewers for both whole genomes and the minimal genome, users can not only gain an overview of the genome structure but also retrieve information on contigs, gene products, mutants, deletions, and so forth. In particular, genome-wide exhaustive mutants are an essential resource for studying E. coli gene functions. Although the genomic database was constructed independently from the genetic resources database, users may seamlessly access both types of data. In addition to these data, the PEC database also provides a summary of homologous genes of other bacterial genomes and of protein structure information, with a comprehensive interface. The PEC is thus a convenient and useful platform for contemporary E. coli researchers.

  15. Genetic analysis of the SOS response of Escherichia coli

    International Nuclear Information System (INIS)

    Mount, D.W.; Wertman, K.F.; Ennis, D.G.; Peterson, K.R.; Fisher, B.L.; Lyons, G.

    1983-01-01

    In the SOS response, a large number of E. coli genes having different functions are derepressed when the cellular DNA is damaged. This derepression occurs through inactivation of a repressor, the product of the lexA gene, by a protease activity of the recA gene product. The protease is thought to be activated in response to changes in DNA metabolism which follow the damage. After the SOS functions have acted, the protease activity declines and repression is again established. Because the DNA sequence of both lexA and recA have been determined, it is possible to induce many mutations in their regulatory and structural regions in order to analyze further the control of the SOS response. We are studying the effects of mutations in both the lexA and recA regulatory regions, and mutations which affect the protease activity or the sensitivity of repressor to the protease. Finally, we are using genetic methods to analyze a newly identified requirement for recA protein, induced mutagenesis in cells lacking repressor. 16 references, 3 figures

  16. ESBL-Producing Escherichia coli

    DEFF Research Database (Denmark)

    Hertz, Frederik Boetius

    Urinary tract infection (UTI) is one the most common bacterial infections and is regularly treated in primary health care. The most common cause of UTI is extraintestinal pathogenic Escherichia coli (ExPEC) already present in the intestinal microflora, often as the dominating strain. Resistance...... in E.coli is increasing and especially isolates producing Extended-Spectrum Beta-Lactamases (ESBL) have been reported worldwide. Treatment of UTI is usually initiated by the general practitioners and a significant proportion of clinical isolates are now resistant to first line antibiotics. The global...... to investigate (i) antibiotics involved in selection of ESBL-producing E.coli, in an experimental mouse model in vivo, (ii) risk factors for UTI with ESBL-producing E.coli and (iii) to describe the phylogenetic composition of E.coli populations with different resistance patterns. We found that different...

  17. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  18. Temporal genetic variability and host sources of Escherichia coli associated with fecal pollution from domesticated animals in the shellfish culture environment of Xiangshan Bay, East China Sea

    International Nuclear Information System (INIS)

    Fu Linglin; Shuai Jiangbing; Wang Yanbo; Ma Hongjia; Li Jianrong

    2011-01-01

    This study was conducted to analyze the genetic variability of Escherichia coli from domesticated animal wastes for microbial source tracking (MST) application in fecal contaminated shellfish growing waters of Xiangshan Bay, East China Sea. (GTG) 5 primer was used to generate 1363 fingerprints from E. coli isolated from feces of known 9 domesticated animal sources around this shellfish culture area. Jackknife analysis of the complete (GTG) 5 -PCR DNA fingerprint library indicated that isolates were assigned to the correct source groups with an 84.28% average rate of correct classification. Based on one-year source tracking data, the dominant sources of E. coli were swine, chickens, ducks and cows in this water area. Moreover, annual and spatial changes of E. coli concentrations and host sources may affect the level and distribution of zoonotic pathogen species in waters. Our findings will further contribute to preventing fecal pollution in aquatic environments and quality control of shellfish. - Highlights: → The host-origin library developed by (GTG) 5 -PCR could be used to shellfish water MST. → Fecal pollution of Xiangshan Bay arose from multiple sources of agricultural wastes. → High level of E. coli concentration in shellfish water increases the health risk. → Annual changes of E. coli host sources affect distribution of zoonotic pathogens. - The temporal genetic variability and dominant host sources of E. coli in fecal contaminated shellfish growing waters of Xiangshan Bay was characterized.

  19. Genetic diversity and antibiogram profile of diarrhoeagenic Escherichia coli pathotypes isolated from human, animal, foods and associated environmental sources

    Directory of Open Access Journals (Sweden)

    Pankaj Dhaka

    2016-05-01

    Full Text Available Introduction: Infectious diarrhoea particularly due to pathogenic bacteria is a major health problem in developing countries, including India. Despite significant reports of diarrhoeagenic Escherichia coli (DEC pathotypes around the globe, studies which address genetic relatedness, antibiogram profile and their correlation with respect to their isolation from different sources are sparse. The present study determines isolation and identification of DEC pathotypes from different sources, their genetic characterisation, antibiogram profile and their correlation if any. Materials and methods: A total of 336 samples comprising diarrhoeic stool samples from infants (n=103, young animal (n=106, foods (n=68 and associated environmental sources (n=59 were collected from Bareilly region of India. All the samples were screened by using standard microbiological methods for the detection of E. coli. The identified E. coli were then confirmed as DEC pathotypes using polymerase chain reaction–based assays. Those DEC pathotypes identified as Enteroaggregative E. coli (EAEC were further confirmed using HEp-2 adherence assay. All the isolated DEC pathotypes were studied for their genetic diversity using pulsed-field gel electrophoresis (PFGE, and antimicrobial susceptibility testing was performed by using disc diffusion method as per Clinical Laboratory Standards Institute guidelines. Results and discussion: Of the four DEC pathotypes investigated, EAEC was found to be the predominant pathogen with an isolation rate of 16.5% from infants, 17.9% from young animals, 16.2% from foods and 3.4% from the associated environmental sources. These EAEC isolates, on further characterisation, revealed predominance of ‘atypical’ EAEC, with an isolation rate of 10.7% from infants, 15.1% from young animals, 16.2% from foods, and 3.4% from the associated environmental sources. On PFGE analysis, discrimination was evident within DEC pathotypes as 52 unique pulsotypes were

  20. Study of the resistance mechanisms to ultraviolet light in Escherichia Coli. III. Genetic mapping of a mutation that confers resistance to radiation; Mecanismos de resistencia a luz ultravioleta en Escherichia coli. III. Mapeo genetico de una mutacion que confiere resistencia a radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1996-08-15

    Inside this third work with respect to the investigation of the process of adaptation of different subcultures of Escherichia coli, to the UV light, its are present the obtained results in the identification of the gene or genes implied in the resistance to UV of one of the 5 populations derived for repeated exposure to growing dose of UV light of E. coli PQ30. Those obtained data indicate that the causing mutation of the phenotype is located in a single gene, since the insert of the fragment of DNA miniTn5 in this gene, causes the lost one from the resistance and the return to the original phenotype. The gene in question is denominated radA, located in the minute 99.6 of the chromosome of E. coli and required for the efficient repair of double ruptures in the DNA. (Author)

  1. Reduction of postreplication DNA repair in two Escherichia coli mutants with temperature-sensitive polymerase III activity: implications for the postreplication repair pathway

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1978-01-01

    Daughter strand gaps are secondary lesions caused by interrupted DNA synthesis in the proximity of uv-induced pyrimidine dimers. The relative roles of DNA recombination and de novo DNA synthesis in filling such gaps have not been clarified, although both are required for complete closure. In this study, the Escherichia coli E486 and E511 dnaE(Ts) mutants, in which DNA polymerase I but not DNA polymerase III is active at 43 0 C, were examined. Both mutants demonstrated reduced gap closure in comparison with the progenitor strain at the nonpermissive temperature. These results and those of previous studies support the hypothesis that both DNA polymerase I and DNA polymerase III contribute to gap closure, suggesting a cooperative effort in the repair of each gap. Benzoylated, naphthoylated diethylaminoethyl-cellulose chromatography analysis for persistence of single-strand DNA in the absence of DNA polymerase III activity suggested that de novo DNA synthesis initiates the filling of daughter strand gaps

  2. Lysogeny with Shiga Toxin 2-Encoding Bacteriophages Represses Type III Secretion in Enterohemorrhagic Escherichia coli

    Science.gov (United States)

    Xu, Xuefang; McAteer, Sean P.; Tree, Jai J.; Shaw, Darren J.; Wolfson, Eliza B. K.; Beatson, Scott A.; Roe, Andrew J.; Allison, Lesley J.; Chase-Topping, Margo E.; Mahajan, Arvind; Tozzoli, Rosangela; Woolhouse, Mark E. J.; Morabito, Stefano; Gally, David L.

    2012-01-01

    Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins. PMID:22615557

  3. Environmental and genetic factors affecting mutability to aminoglycoside antibiotics among Escherichia coli K12 strains

    Directory of Open Access Journals (Sweden)

    Monteiro A.C.M.

    2003-01-01

    Full Text Available Environmental and genetic factors affecting the in vitro spontaneous mutation frequencies to aminoglycoside resistance in Escherichia coli K12 were investigated. Spontaneous mutation frequencies to kanamycin resistance were at least 100 fold higher on modified Luria agar (L2 plates, when compared to results obtained in experiments carried out with Nutrient agar (NA plates. In contrast to rifampincin, the increased mutability to kanamycin resistance could not be attributed to a mutator phenotype expressed by DNA repair defective strains. Kanamycin mutant selection windows and mutant preventive concentrations on L2 plates were at least fourfold higher than on NA plates, further demonstrating the role of growth medium composition on the mutability to aminoglycosides. Mutability to kanamycin resistance was increased following addition of sorbitol, suggesting that osmolarity is involved on the spontaneous mutability of E. coli K12 strains to aminoglycosides. The spontaneous mutation rates to kanamycin resistance on both L2 and NA plates were strictly associated with the selective antibiotic concentrations. Moreover, mutants selected at different antibiotic concentrations expressed heterogeneous resistance levels to kanamycin and most of them expressing multiple resistance to all tested aminoglycoside antibiotics (gentamicin, neomycin, amykacin and tobramycin. These results will contribute to a better understanding of the complex nature of aminoglycoside resistance and the emergence of spontaneous resistant mutants among E. coli K12 strains.

  4. Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan.

    Science.gov (United States)

    Byappanahalli, Muruleedhara N; Whitman, Richard L; Shively, Dawn A; Ferguson, John; Ishii, Satoshi; Sadowsky, Michael J

    2007-08-01

    We previously reported that the macrophytic green alga Cladophora harbors high densities (up to 10(6) colony-forming units/g dry weight) of the fecal indicator bacteria, Escherichia coli and enterococci, in shoreline waters of Lake Michigan. However, the population structure and genetic relatedness of Cladophora-borne indicator bacteria remain poorly understood. In this study, 835 E. coli isolates were collected from Cladophora tufts (mats) growing on rocks from a breakwater located within the Indiana Dunes National Lakeshore in northwest Indiana. The horizontal fluorophore enhanced rep-PCR (HFERP) DNA fingerprinting technique was used to determine the genetic relatedness of the isolates to each other and to those in a library of E. coli DNA fingerprints. While the E. coli isolates from Cladophora showed a high degree of genetic relatedness (92% similarity), in most cases, however, the isolates were genetically distinct. The Shannon diversity index for the population was very high (5.39). Both spatial and temporal influences contributed to the genetic diversity. There was a strong association of isolate genotypes by location (79% and 80% for lake- and ditch-side samplings, respectively), and isolates collected from 2002 were distinctly different from those obtained in 2003. Cladophora-borne E. coli isolates represented a unique group, which was distinct from other E. coli isolates in the DNA fingerprint library tested. Taken together, these results indicate that E. coli strains associated with Cladophora may be a recurring source of indicator bacteria to the nearshore beach.

  5. Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Patricia Ortegon

    2015-01-01

    Full Text Available In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA. The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case.

  6. Effects of selection pressure and genetic association on the relationship between antibiotic resistance and virulence in Escherichia coli.

    Science.gov (United States)

    Zhang, Lixin; Levy, Karen; Trueba, Gabriel; Cevallos, William; Trostle, James; Foxman, Betsy; Marrs, Carl F; Eisenberg, Joseph N S

    2015-11-01

    Antibiotic selection pressure and genetic associations may lead to the cooccurrence of resistance and virulence in individual pathogens. However, there is a lack of rigorous epidemiological evidence that demonstrates the cooccurrence of resistance and virulence at the population level. Using samples from a population-based case-control study in 25 villages in rural Ecuador, we characterized resistance to 12 antibiotics among pathogenic (n = 86) and commensal (n = 761) Escherichia coli isolates, classified by the presence or absence of known diarrheagenic virulence factor genes. The prevalences of resistance to single and multiple antibiotics were significantly higher for pathogenic isolates than for commensal isolates. Using a generalized estimating equation, antibiotic resistance was independently associated with virulence factor carriage, case status, and antibiotic use (for these respective factors: odds ratio [OR] = 3.0, with a 95% confidence interval [CI] of 1.7 to 5.1; OR = 2.0, with a 95% CI of 1.3 to 3.0; and OR = 1.5, with a 95% CI of 0.9 to 2.5). Virulence factor carriage was more strongly related to antibiotic resistance than antibiotic use for all antibiotics examined, with the exception of fluoroquinolones, gentamicin, and cefotaxime. This study provides epidemiological evidence that antibiotic resistance and virulence factor carriage are linked in E. coli populations in a community setting. Further, these data suggest that while the cooccurrence of resistance and virulence in E. coli is partially due to antibiotic selection pressure, it is also genetically determined. These findings should be considered in developing strategies for treating infections and controlling for antibiotic resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Baare, Wim F.C.; Hulshoff Pol, Hilleke E.

    2003-01-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization......, Processing Speed) are also related to gray and white matter volume, and whether any of the dimensions are related to cerebellar volume. Two overlapping samples provided 135 subjects from 60 extended twin families for whom both MRI scans and WAIS III data were available. All three brain volumes are related...... to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related...

  8. Dynamics of termination during in vitro replication of ultraviolet-irradiated DNA with DNA polymerase III holoenzyme of Escherichia coli

    International Nuclear Information System (INIS)

    Shwartz, H.; Livneh, Z.

    1987-01-01

    During in vitro replication of UV-irradiated single-stranded DNA with Escherichia coli DNA polymerase III holoenzyme termination frequently occurs at pyrimidine photodimers. The termination stage is dynamic and characterized by at least three different events: repeated dissociation-reinitiation cycles of the polymerase at the blocked termini; extensive hydrolysis of ATP to ADP and inorganic phosphate; turnover of dNTPs into dNMP. The reinitiation events are nonproductive and are not followed by further elongation. The turnover of dNTPs into dNMPs is likely to result from repeated cycles of insertion of dNMP residues opposite the blocking lesions followed by their excision by the 3'----5' exonucleolytic activity of the polymerase. Although all dNTPs are turned over, there is a preference for dATP, indicating that DNA polymerase III holoenzyme has a preference for inserting a dAMP residue opposite blocking pyrimidine photodimers. We suggest that the inability of the polymerase to bypass photodimers during termination is due to the formation of defective initiation-like complexes with reduced stability at the blocked termini

  9. Genetic diversity of internalin genes in the ascB-dapE locus among Listeria monocytogenes lineages III and IV strains.

    Science.gov (United States)

    Chen, Jianshun; Cheng, Changyong; Lv, Yonghui; Fang, Weihuan

    2013-09-01

    Listeria monocytogenes is an important foodborne pathogen encompassing four phylogenetic lineages. Lineages III and IV are rare, but have been reported to show considerable biodiversity, providing important clues for the evolutionary history in Listeria. In this study, analysis of the ascB-dapE locus reveals genetic diversity in lineages III and IV, and is consistent with the classification of sublineages. Four of the six genetic patterns (two of sublineage IIIC and two of lineage IV) are specific to these two lineages. The ascB-dapE locus suggests a hot spot for genome diversification, and serves as an attractive molecular marker for better understanding of the biodiversity and population structure of lineages III and IV strains. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Genetics of type III Bartter syndrome in Spain, proposed diagnostic algorithm.

    Science.gov (United States)

    García Castaño, Alejandro; Pérez de Nanclares, Gustavo; Madariaga, Leire; Aguirre, Mireia; Madrid, Alvaro; Nadal, Inmaculada; Navarro, Mercedes; Lucas, Elena; Fijo, Julia; Espino, Mar; Espitaletta, Zilac; Castaño, Luis; Ariceta, Gema

    2013-01-01

    The p.Ala204Thr mutation (exon 7) of the CLCNKB gene is a "founder" mutation that causes most of type III Bartter syndrome cases in Spain. We performed genetic analysis of the CLCNKB gene, which encodes for the chloride channel protein ClC-Kb, in a cohort of 26 affected patients from 23 families. The diagnostic algorithm was: first, detection of the p.Ala204Thr mutation; second, detecting large deletions or duplications by Multiplex Ligation-dependent Probe Amplification and Quantitative Multiplex PCR of Short Fluorescent Fragments; and third, sequencing of the coding and flanking regions of the whole CLCNKB gene. In our genetic diagnosis, 20 families presented with the p.Ala204Thr mutation. Of those, 15 patients (15 families) were homozygous (57.7% of overall patients). Another 8 patients (5 families) were compound heterozygous for the founder mutation together with a second one. Thus, 3 patients (2 siblings) presented with the c. -19-?_2053+? del deletion (comprising the entire gene); one patient carried the p.Val170Met mutation (exon 6); and 4 patients (3 siblings) presented with the novel p.Glu442Gly mutation (exon 14). On the other hand, another two patients carried two novel mutations in compound heterozygosis: one presented the p.Ile398_Thr401del mutation (exon 12) associated with the c. -19-?_2053+? del deletion, and the other one carried the c.1756+1G>A splice-site mutation (exon 16) as well as the already described p.Ala210Val change (exon 7). One case turned out to be negative in our genetic screening. In addition, 51 relatives were found to be heterozygous carriers of the described CLCNKB mutations. In conclusion, different mutations cause type III Bartter syndrome in Spain. The high prevalence of the p.Ala204Thr in Spanish families thus justifies an initial screen for this mutation. However, should it not be detected further investigation of the CLCNKB gene is warranted in clinically diagnosed families.

  11. Genetics of type III Bartter syndrome in Spain, proposed diagnostic algorithm.

    Directory of Open Access Journals (Sweden)

    Alejandro García Castaño

    Full Text Available The p.Ala204Thr mutation (exon 7 of the CLCNKB gene is a "founder" mutation that causes most of type III Bartter syndrome cases in Spain. We performed genetic analysis of the CLCNKB gene, which encodes for the chloride channel protein ClC-Kb, in a cohort of 26 affected patients from 23 families. The diagnostic algorithm was: first, detection of the p.Ala204Thr mutation; second, detecting large deletions or duplications by Multiplex Ligation-dependent Probe Amplification and Quantitative Multiplex PCR of Short Fluorescent Fragments; and third, sequencing of the coding and flanking regions of the whole CLCNKB gene. In our genetic diagnosis, 20 families presented with the p.Ala204Thr mutation. Of those, 15 patients (15 families were homozygous (57.7% of overall patients. Another 8 patients (5 families were compound heterozygous for the founder mutation together with a second one. Thus, 3 patients (2 siblings presented with the c. -19-?_2053+? del deletion (comprising the entire gene; one patient carried the p.Val170Met mutation (exon 6; and 4 patients (3 siblings presented with the novel p.Glu442Gly mutation (exon 14. On the other hand, another two patients carried two novel mutations in compound heterozygosis: one presented the p.Ile398_Thr401del mutation (exon 12 associated with the c. -19-?_2053+? del deletion, and the other one carried the c.1756+1G>A splice-site mutation (exon 16 as well as the already described p.Ala210Val change (exon 7. One case turned out to be negative in our genetic screening. In addition, 51 relatives were found to be heterozygous carriers of the described CLCNKB mutations. In conclusion, different mutations cause type III Bartter syndrome in Spain. The high prevalence of the p.Ala204Thr in Spanish families thus justifies an initial screen for this mutation. However, should it not be detected further investigation of the CLCNKB gene is warranted in clinically diagnosed families.

  12. Environmental Escherichia coli: Ecology and public health implications - A review

    Science.gov (United States)

    Jang, Jeonghwan; Hur, Hor-Gil; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Yan, Tao; Ishii, Satoshi

    2017-01-01

    Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through feces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent fecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extra-intestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a fecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics provide the diversity and complexity of E. coli strains in various environments, affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments in regards to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed.

  13. Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Colunga, Luis Manuel; De Leon Rodriguez, Antonio [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Col. Lomas 4a secc, San Luis Potosi, SLP 78216 (Mexico); Garcia, Raul Gonzalez [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Dr. Manuel Nava 6, San Luis Potosi, SLP 78210 (Mexico)

    2010-12-15

    Biological hydrogen production is an active research area due to the importance of this gas as an energy carrier and the advantages of using biological systems to produce it. A cheap and practical on-line hydrogen determination is desired in those processes. In this study, an artificial neural network (ANN) was developed to estimate the hydrogen production in fermentative processes. A back propagation neural network (BPNN) of one hidden layer with 12 nodes was selected. The BPNN training was done using the conjugated gradient algorithm and on-line measurements of dissolved CO{sub 2}, pH and oxidation-reduction potential during the fermentations of cheese whey by Escherichia coli {delta}hycA {delta}lacI (WDHL) strain with or without pH control. The correlation coefficient between the hydrogen production determined by gas chromatography and the hydrogen production estimated by the BPNN was 0.955. Results showed that the BPNN successfully estimated the hydrogen production using only on-line parameters in genetically modified E. coli fermentations either with or without pH control. This approach could be used for other hydrogen production systems. (author)

  14. Virulence characteristics and genetic affinities of multiple drug resistant uropathogenic Escherichia coli from a semi urban locality in India.

    Directory of Open Access Journals (Sweden)

    Savita Jadhav

    genetically distinct with no evidence to espouse expansion of E. coli from India to the west or vice-versa.

  15. Molecular characterization of diarrheagenic Escherichia coli isolated from vegetables in Argentina.

    Science.gov (United States)

    González, Juliana; Cadona, Jimena S; Sanz, Marcelo; Bustamante, Ana V; Sanso, A Mariel

    2017-11-16

    The aim of this study was to investigate the prevalence of diarrheagenic E. coli strains in vegetables from the humid Pampa region, Argentina, and to determine the occurrence of serotypes and virulence genes in the isolates. A total of 373 fresh vegetable samples obtained from 41 different geographical points were examined. E. coli was detected in 38.6% of the samples. Ten isolates could be obtained from 14 samples presumptively positive for diarrheagenic E. coli: 8 were identified as atypical Enteropathogenic E. coli (aEPEC) and 2 as Verocytotoxigenic E. coli (VTEC). Lettuce and beet were the vegetables most frequently contaminated with pathogenic E. coli. The isolates belonged to serotypes O1:H7, O28:H19, O39:H40, O86:H31, O132:H8, O139:H20, O178:H7 and O178:H19, some of which reportedly have caused human illness, and one isolate resulted non typeable. Taking into account the distribution of 16 nle genes, 7 profiles were detected. On the other hand, all tested isolates harbored the gene encoding for the adhesin HcpA. Other adhesion related genes were also identified: ecpA and elfA were detected in 90%, lpfA 0113 in 60%, and ehaA in 50% of the isolates meanwhile ihaA was only observed in O178:H19 isolate. This VTEC isolate harbored, also, Cdt-V toxin and megaplasmid encoding genes such as espP, subA and epeA and exhibited a strong cytotoxic effect. These data is the first molecular E. coli report that confirms the presence of E. coli pathotypes circulating among vegetables in Argentina. Genetic characterization showed that in addition to eae or vtx genes, isolates obtained from vegetables harbored genes encoding other toxins, adhesins, and components related to the type III secretion system that could contribute to their virulence. In conclusion, this research shows that vegetables in Argentina may be the source of VTEC and EPEC infections in the community and therefore, they should be considered as vehicles for transmission of these potentially pathogenic

  16. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD+ salvage from nicotinamide

    Science.gov (United States)

    2014-01-01

    Background In an effort to reconstitute the NAD+ synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD+de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD+de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD+ metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD+ biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD+ salvage pathway from nicotinamide. Results Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation. Conclusions Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD+ salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD+ salvage pathway might be significant in some bacteria lacking NAD+de novo and NAD+ salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD+. However, this speculation needs to be experimentally tested. PMID:24506841

  17. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the mannitol-specific enzyme III/sup mtl/ of Staphylococcus aureus and Staphylococcus carnosus and homology with the enzyme II/sup mtl/ of Escherichia coli

    International Nuclear Information System (INIS)

    Reiche, B.; Frank, R.; Deutscher, J.; Meyer, N.; Hengstenberg, W.

    1988-01-01

    Enzyme III/sup mtl/ is part of the mannitol phosphotransferase system of Staphylococcus aureus and Staphylococcus carnosus and is phosphorylated by phosphoenolpyruvate in a reaction sequence requiring enzyme I (phosphoenolpyruvate-protein phosphotransferase) and the histidine-containing protein HPr. In this paper, the authors report the isolation of III/sup mtl/ from both S. aureus and S. carnosus and the characterization of the active center. After phosphorylation of III/sup mtl/ with [ 32 P]PEP, enzyme I, and HPr, the phosphorylated protein was cleaved with endoproteinase GLu(C). The amino acid sequence of the S. aureus peptide carrying the phosphoryl group was found to be Gln-Val-Val-Ser-Thr-Phe-Met-Gly-Asn-Gly-Leu-Ala-Ile-Pro-His-Gly-Thr-Asp-Asp. The corresponding peptide from S. carnosus shows an equal sequence except that the first residue is Ala instead of Gln. These peptides both contain a single histidyl residue which they assume to carry the phosphoryl group. All proteins of the PTS so far investigated indeed carry the phosphoryl group attached to a histidyl residue. According to sodium dodecyl sulfate gels, the molecular weight of the III/sup mtl/ proteins was found to be 15,000. They have also determined the N-terminal sequence of both proteins. Comparison of the III/sup mtl/ peptide sequences and the C-terminal part of the enzyme II/sup mtl/ of Escherichia coli reveals considerable sequence homology, which supports the suggestion that II/sup mtl/ of E. coli is a fusion protein of a soluble III protein with a membrane-bound enzyme II

  18. Only one ATP-binding DnaX subunit is required for initiation complex formation by the Escherichia coli DNA polymerase III holoenzyme.

    Science.gov (United States)

    Wieczorek, Anna; Downey, Christopher D; Dallmann, H Garry; McHenry, Charles S

    2010-09-17

    The DnaX complex (DnaX(3)δδ'χ psi) within the Escherichia coli DNA polymerase III holoenzyme serves to load the dimeric sliding clamp processivity factor, β(2), onto DNA. The complex contains three DnaX subunits, which occur in two forms: τ and the shorter γ, produced by translational frameshifting. Ten forms of E. coli DnaX complex containing all possible combinations of wild-type or a Walker A motif K51E variant τ or γ have been reconstituted and rigorously purified. DnaX complexes containing three DnaX K51E subunits do not bind ATP. Comparison of their ability to support formation of initiation complexes, as measured by processive replication by the DNA polymerase III holoenzyme, indicates a minimal requirement for one ATP-binding DnaX subunit. DnaX complexes containing two mutant DnaX subunits support DNA synthesis at about two-thirds the level of their wild-type counterparts. β(2) binding (determined functionally) is diminished 12-30-fold for DnaX complexes containing two K51E subunits, suggesting that multiple ATPs must be bound to place the DnaX complex into a conformation with maximal affinity for β(2). DNA synthesis activity can be restored by increased concentrations of β(2). In contrast, severe defects in ATP hydrolysis are observed upon introduction of a single K51E DnaX subunit. Thus, ATP binding, hydrolysis, and the ability to form initiation complexes are not tightly coupled. These results suggest that although ATP hydrolysis likely enhances β(2) loading, it is not absolutely required in a mechanistic sense for formation of functional initiation complexes.

  19. Environmental Escherichia coli: ecology and public health implications-a review.

    Science.gov (United States)

    Jang, J; Hur, H-G; Sadowsky, M J; Byappanahalli, M N; Yan, T; Ishii, S

    2017-09-01

    Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through faeces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent faecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extraintestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a faecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics revealed the diversity and complexity of E. coli strains in various environments, which are affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments with regard to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed. © 2017 The Society for Applied Microbiology.

  20. Genetic Diversity of the fliC Genes Encoding the Flagellar Antigen H19 of Escherichia coli and Application to the Specific Identification of Enterohemorrhagic E. coli O121:H19

    Science.gov (United States)

    Beutin, Lothar; Delannoy, Sabine

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O121:H19 belong to a specific clonal type distinct from other classical EHEC and major enteropathogenic E. coli groups and is regarded as one of the major EHEC serogroups involved in severe infections in humans. Sequencing of the fliC genes associated with the flagellar antigen H19 (fliCH19) revealed the genetic diversity of the fliCH19 gene sequences in E. coli. A cluster analysis of 12 fliCH19 sequences, 4 from O121 and 8 from non-O121 E. coli strains, revealed five different genotypes. All O121:H19 strains fell into one cluster, whereas a second cluster was formed by five non-O121:H19 strains. Cluster 1 and cluster 2 strains differ by 27 single nucleotide exchanges in their fliCH19 genes (98.5% homology). Based on allele discrimination of the fliCH19 genes, a real-time PCR test was designed for specific identification of EHEC O121:H19. The O121 fliCH19 PCR tested negative in 73 E. coli H19 strains that belonged to serogroups other than O121, including 28 different O groups, O-nontypeable H19, and O-rough:H19 strains. The O121 fliCH19 PCR reacted with all 16 tested O121:H19 strains and 1 O-rough:H19 strain which was positive for the O121 wzx gene. A cross-reaction was observed only with E. coli H32 strains which share sequence similarities in the target region of the O121 fliCH19 PCR. The combined use of O-antigen genotyping (O121 wzx) and the detection of O121 fliCH19 allele type contributes to improving the identification and molecular serotyping of EHEC O121:H19 motile and nonmotile strains and variants of these strains lacking stx genes. PMID:25862232

  1. Genetic characterization of blaNDM-harboring plasmids in carbapenem-resistant Escherichia coli from Myanmar.

    Directory of Open Access Journals (Sweden)

    Yo Sugawara

    Full Text Available The bacterial enzyme New Delhi metallo-β-lactamase hydrolyzes almost all β-lactam antibiotics, including carbapenems, which are drugs of last resort for severe bacterial infections. The spread of carbapenem-resistant Enterobacteriaceae that carry the New Delhi metallo-β-lactamase gene, blaNDM, poses a serious threat to public health. In this study, we genetically characterized eight carbapenem-resistant Escherichia coli isolates from a tertiary care hospital in Yangon, Myanmar. The eight isolates belonged to five multilocus-sequence types and harbored multiple antimicrobial-resistance genes, resulting in resistance against nearly all of the antimicrobial agents tested, except colistin and fosfomycin. Nine plasmids harboring blaNDM genes were identified from these isolates. Multiple blaNDM genes were found in the distinct Inc-replicon types of the following plasmids: an IncA/C2 plasmid harboring blaNDM-1 (n = 1, IncX3 plasmids harboring blaNDM-4 (n = 2 or blaNDM-7 (n = 1, IncFII plasmids harboring blaNDM-4 (n = 1 or blaNDM-5 (n = 3, and a multireplicon F plasmid harboring blaNDM-5 (n = 1. Comparative analysis highlighted the diversity of the blaNDM-harboring plasmids and their distinct characteristics, which depended on plasmid replicon types. The results indicate circulation of phylogenetically distinct strains of carbapenem-resistant E. coli with various plasmids harboring blaNDM genes in the hospital.

  2. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Baare, Wim F.C.; Hulshoff Pol, Hilleke E.

    2003-01-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization...... to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related...

  3. Protein and mRNA levels support the notion that a genetic regulatory circuit controls growth phases in E. coli populations

    Directory of Open Access Journals (Sweden)

    Agustino Martinez-Antonio

    2015-09-01

    Full Text Available Bacterial populations transition between growing and non-growing phases, based on nutrient availability and stresses conditions. The hallmark of a growing state is anabolism, including DNA replication and cell division. In contrast, bacteria in a growth-arrested state acquire a resistant physiology and diminished metabolism. However, there is little knowledge on how this transition occurs at the molecular level. Here, we provide new evidence that a multi-element genetic regulatory circuit might work to maintain genetic control among growth-phase transitions in Escherichia coli. This work contributes to the discovering of design principles behind the performance of biological functions, which could be of relevance on the new disciplines of biological engineering and synthetic biology.

  4. Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli.

    Science.gov (United States)

    Blum, Shlomo E; Goldstone, Robert J; Connolly, James P R; Répérant-Ferter, Maryline; Germon, Pierre; Inglis, Neil F; Krifucks, Oleg; Mathur, Shubham; Manson, Erin; Mclean, Kevin; Rainard, Pascal; Roe, Andrew J; Leitner, Gabriel; Smith, David G E

    2018-04-03

    Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental ("dairy-farm" E. coli [DFEC]) strains, we found that only the fec locus ( fecIRABCDE ) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes ( P price of dairy products on supermarket shelves and the financial hardships suffered by dairy farmers. Mastitis is also the leading reason for the use of antibiotics in dairy farms. Good farm management practices in many countries have dramatically reduced the incidence of contagious mastitis; however, the problems associated with the incidence of environmental mastitis caused by bacteria such as Escherichia coli have proven intractable. E. coli bacteria cause acute mastitis, which affects the health and welfare of cows and in extreme cases may be fatal. Here we show for the first time that the pathogenicity of E. coli causing mastitis in cows is highly dependent on the fecIRABCDE ferric citrate uptake system that allows the bacterium to capture iron from citrate. The Fec system is highly expressed during infection in the bovine udder and is ubiquitous in and necessary for the E. coli bacteria that cause mammary infections in cattle. These results have far-reaching implications, raising the possibility that mastitis may be controllable by targeting this system. Copyright © 2018 Blum et al.

  5. Genetic and molecular analyses of Escherichia coli N-acetylneuraminate lyase gene.

    OpenAIRE

    Kawakami, B; Kudo, T; Narahashi, Y; Horikoshi, K

    1986-01-01

    Two plasmids containing the N-acetylneuraminate lyase (NALase) gene (nanA) of Escherichia coli, pNL1 and pNL4, were constructed. Immunoprecipitation analysis indicated that the 35,000-dalton protein encoded in pNL4 was NALase. The synthesis of NALase in E. coli carrying these plasmids was constitutive.

  6. Genetical and functional investigation of fliC genes encoding flagellar serotype H4 in wildtype strains of Escherichia coli and in a laboratory E. coli K-12 strain expressing flagellar antigen type H48

    Directory of Open Access Journals (Sweden)

    Schaudinn Christoph

    2005-01-01

    Full Text Available Abstract Background Serotyping of O-(lipopolysaccharide and H-(flagellar antigens is a wideley used method for identification of pathogenic strains and clones of Escherichia coli. At present, 176 O- and 53 H-antigens are described for E. coli which occur in different combinations in the strains. The flagellar antigen H4 is widely present in E. coli strains of different O-serotypes and pathotypes and we have investigated the genetic relationship between H4 encoding fliC genes by PCR, nucleotide sequencing and expression studies. Results The complete nucleotide sequence of fliC genes present in E. coli reference strains U9-41 (O2:K1:H4 and P12b (O15:H17 was determined and both were found 99.3% (1043 of 1050 nucleotides identical in their coding sequence. A PCR/RFLP protocol was developed for typing of fliC-H4 strains and 88 E. coli strains reacting with H4 antiserum were investigated. Nucleotide sequencing of complete fliC genes of six E. coli strains which were selected based on serum agglutination titers, fliC-PCR genotyping and reference data revealed 96.6 to 100% identity on the amino acid level. The functional expression of flagellin encoded by fliC-H4 from strain U9-41 and from our strain P12b which is an H4 expressing variant type was investigated in the E. coli K-12 strain JM109 which encodes flagellar type H48. The fliC recombinant plasmid carrying JM109 strains reacted with both H4 and H48 specific antisera whereas JM109 reacted only with the H48 antiserum. By immunoelectron microscopy, we could show that the flagella made by the fliC-H4 recombinant plasmid carrying strain are constituted of H48 and H4 flagellins which are co-assembled into functional flagella. Conclusion The flagellar serotype H4 is encoded by closely related fliC genes present in serologically different types of E. coli strainswhich were isolated at different time periods and geographical locations. Our expression studies show for the first time, that flagellins of

  7. Genetic & virulence profiling of ESBL-positive E. coli from nosocomial & veterinary sources.

    Science.gov (United States)

    Tyrrell, J M; Wootton, M; Toleman, M A; Howe, R A; Woodward, M; Walsh, T R

    2016-04-15

    CTX-M genes are the most prevalent ESBL globally, infiltrating nosocomial, community and environmental settings. Wild and domesticated animals may act as effective vectors for the dissemination of CTX-producing Enterobacteriaceae. This study aimed to contextualise blaCTX-M-14-positive, cephalosporin-resistant Enterobacteriaceae human infections and compared resistance and pathogenicity markers with veterinary isolates. Epidemiologically related human (n=18) and veterinary (n=4) blaCTX-M-14-positive E. coli were fully characterised. All were typed by XbaI pulsed field gel electrophoresis and ST. Chromosomal/plasmidic locations of blaCTX-M-14 were deduced by S1-nuclease digestion, and association with ISEcp1 was investigated by sequencing. Conjugation experiments assessed transmissibility of plasmids carrying blaCTX-M-14. Presence of virulence determinants was screened by PCR assay and pathogenicity potential was determined by in vitro Galleria mellonella infection models. 84% of clinical E. coli originated from community patients. blaCTX-M-14 was found ubiquitously downstream of ISEcp1 upon conjugative plasmids (25-150 kb). blaCTX-M-14 was also found upon the chromosome of eight E. coli isolates. CTX-M-14-producing E. coli were found at multiple hospital sites. Clonal commonality between patient, hospitals and livestock microbial populations was found. In vivo model survival rates from clinical isolates (30%) and veterinary isolates (0%) were significantly different (pE. coli involving community patients and farm livestock. blaCTX-M-14 positive human clinical isolates carry a lower intrinsic pathogenic potential than veterinary E. coli highlighting the need for greater veterinary practices in preventing dissemination of MDR E. coli among livestock. Copyright © 2016. Published by Elsevier B.V.

  8. Rapid and reliable discrimination between Shigella species and Escherichia coli using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Paauw, Armand; Jonker, Debby; Roeselers, Guus; Heng, Jonathan M E; Mars-Groenendijk, Roos H; Trip, Hein; Molhoek, E Margo; Jansen, Hugo-Jan; van der Plas, Jan; de Jong, Ad L; Majchrzykiewicz-Koehorst, Joanna A; Speksnijder, Arjen G C L

    2015-01-01

    E. coli-Shigella species are a cryptic group of bacteria in which the Shigella species are distributed within the phylogenetic tree of E. coli. The nomenclature is historically based and the discrimination of these genera developed as a result of the epidemiological need to identify the cause of shigellosis, a severe disease caused by Shigella species. For these reasons, this incorrect classification of shigellae persists to date, and the ability to rapidly characterize E. coli and Shigella species remains highly desirable. Until recently, existing matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assays used to identify bacteria could not discriminate between E. coli and Shigella species. Here we present a rapid classification method for the E. coli-Shigella phylogroup based on MALDI-TOF MS which is supported by genetic analysis. E. coli and Shigella isolates were collected and genetically characterized by MLVA. A custom reference library for MALDI-TOF MS that represents the genetic diversity of E. coli and Shigella strains was developed. Characterization of E. coli and Shigella species is based on an approach with Biotyper software. Using this reference library it was possible to distinguish between Shigella species and E. coli. Of the 180 isolates tested, 94.4% were correctly classified as E. coli or shigellae. The results of four (2.2%) isolates could not be interpreted and six (3.3%) isolates were classified incorrectly. The custom library extends the existing MALDI-TOF MS method for species determination by enabling rapid and accurate discrimination between Shigella species and E. coli. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Genome Dynamics of Escherichia coli during Antibiotic Treatment: Transfer, Loss, and Persistence of Genetic Elements In situ of the Infant Gut.

    Science.gov (United States)

    Porse, Andreas; Gumpert, Heidi; Kubicek-Sutherland, Jessica Z; Karami, Nahid; Adlerberth, Ingegerd; Wold, Agnes E; Andersson, Dan I; Sommer, Morten O A

    2017-01-01

    Elucidating the adaptive strategies and plasticity of bacterial genomes in situ is crucial for understanding the epidemiology and evolution of pathogens threatening human health. While much is known about the evolution of Escherichia coli in controlled laboratory environments, less effort has been made to elucidate the genome dynamics of E. coli in its native settings. Here, we follow the genome dynamics of co-existing E. coli lineages in situ of the infant gut during the first year of life. One E. coli lineage causes a urinary tract infection (UTI) and experiences several alterations of its genomic content during subsequent antibiotic treatment. Interestingly, all isolates of this uropathogenic E. coli strain carried a highly stable plasmid implicated in virulence of diverse pathogenic strains from all over the world. While virulence elements are certainly beneficial during infection scenarios, their role in gut colonization and pathogen persistence is poorly understood. We performed in vivo competitive fitness experiments to assess the role of this highly disseminated virulence plasmid in gut colonization, but found no evidence for a direct benefit of plasmid carriage. Through plasmid stability assays, we demonstrate that this plasmid is maintained in a parasitic manner, by strong first-line inheritance mechanisms, acting on the single-cell level, rather than providing a direct survival advantage in the gut. Investigating the ecology of endemic accessory genetic elements, in their pathogenic hosts and native environment, is of vital importance if we want to understand the evolution and persistence of highly virulent and drug resistant bacterial isolates.

  10. Genetic variability of E. coli in southeastern reservoirs

    International Nuclear Information System (INIS)

    Kasweck, K.L.; Fliermans, C.B.

    1978-01-01

    The data indicate that there is an emergence of a lactose negative population in chambers containing a predominately lactose positive population when that population is subjected to conditions peculiar to the heated effluent from a nuclear production reactor. The effect is more than a temperature phenomenon, because E. coli colonies placed in chambers subjected to similar temperatures in other natural systems did not vary in their lactose utilization characteristics. Additionally, chambers placed in deeper cooler waters varied in their lactose characteristic but to a slower degree than the overlying epilimnion waters. Regardless of the cause of the lactose change, the result is that standard methods do not easily detect or quantitate E. coli in Par Pond waters. The assessment of water quality based on fecal coliform measurements in lakes similar to Par Pond would result in data that would indicate that the water quality of such lakes is better than it really is

  11. Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements.

    Science.gov (United States)

    Durrieu-Gaillard, Stéphanie; Dumay-Odelot, Hélène; Boldina, Galina; Tourasse, Nicolas J; Allard, Delphine; André, Fabrice; Macari, Françoise; Choquet, Armelle; Lagarde, Pauline; Drutel, Guillaume; Leste-Lasserre, Thierry; Petitet, Marion; Lesluyes, Tom; Lartigue-Faustin, Lydia; Dupuy, Jean-William; Chibon, Frédéric; Roeder, Robert G; Joubert, Dominique; Vagner, Stéphan; Teichmann, Martin

    2018-01-01

    RNA polymerase (Pol) III transcribes small untranslated RNAs that are essential for cellular homeostasis and growth. Its activity is regulated by inactivation of tumor suppressor proteins and overexpression of the oncogene c-MYC, but the concerted action of these tumor-promoting factors on Pol III transcription has not yet been assessed. In order to comprehensively analyse the regulation of Pol III transcription during tumorigenesis we employ a model system that relies on the expression of five genetic elements to achieve cellular transformation. Expression of these elements in six distinct transformation intermediate cell lines leads to the inactivation of TP53, RB1, and protein phosphatase 2A, as well as the activation of RAS and the protection of telomeres by TERT, thereby conducting to full tumoral transformation of IMR90 fibroblasts. Transformation is accompanied by moderately enhanced levels of a subset of Pol III-transcribed RNAs (7SK; MRP; H1). In addition, mRNA and/or protein levels of several Pol III subunits and transcription factors are upregulated, including increased protein levels of TFIIIB and TFIIIC subunits, of SNAPC1 and of Pol III subunits. Strikingly, the expression of POLR3G and of SNAPC1 is strongly enhanced during transformation in this cellular transformation model. Collectively, our data indicate that increased expression of several components of the Pol III transcription system accompanied by a 2-fold increase in steady state levels of a subset of Pol III RNAs is sufficient for sustaining tumor formation.

  12. The dnd operon for DNA phosphorothioation modification system in Escherichia coli is located in diverse genomic islands.

    Science.gov (United States)

    Ho, Wing Sze; Ou, Hong-Yu; Yeo, Chew Chieng; Thong, Kwai Lin

    2015-03-17

    Strains of Escherichia coli that are non-typeable by pulsed-field gel electrophoresis (PFGE) due to in-gel degradation can influence their molecular epidemiological data. The DNA degradation phenotype (Dnd(+)) is mediated by the dnd operon that encode enzymes catalyzing the phosphorothioation of DNA, rendering the modified DNA susceptible to oxidative cleavage during a PFGE run. In this study, a PCR assay was developed to detect the presence of the dnd operon in Dnd(+) E. coli strains and to improve their typeability. Investigations into the genetic environments of the dnd operon in various E. coli strains led to the discovery that the dnd operon is harboured in various diverse genomic islands. The dndBCDE genes (dnd operon) were detected in all Dnd(+) E. coli strains by PCR. The addition of thiourea improved the typeability of Dnd(+) E. coli strains to 100% using PFGE and the Dnd(+) phenotype can be observed in both clonal and genetically diverse E. coli strains. Genomic analysis of 101 dnd operons from genome sequences of Enterobacteriaceae revealed that the dnd operons of the same bacterial species were generally clustered together in the phylogenetic tree. Further analysis of dnd operons of 52 E. coli genomes together with their respective immediate genetic environments revealed a total of 7 types of genetic organizations, all of which were found to be associated with genomic islands designated dnd-encoding GIs. The dnd-encoding GIs displayed mosaic structure and the genomic context of the 7 islands (with 1 representative genome from each type of genetic organization) were also highly variable, suggesting multiple recombination events. This is also the first report where two dnd operons were found within a strain although the biological implication is unknown. Surprisingly, dnd operons were frequently found in pathogenic E. coli although their link with virulence has not been explored. Genomic islands likely play an important role in facilitating the horizontal

  13. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed.

    Science.gov (United States)

    Posthuma, Daniëlle; Baaré, Wim F C; Hulshoff Pol, Hilleke E; Kahn, René S; Boomsma, Dorret I; De Geus, Eco J C

    2003-04-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization, Processing Speed) are also related to gray and white matter volume, and whether any of the dimensions are related to cerebellar volume. Two overlapping samples provided 135 subjects from 60 extended twin families for whom both MRI scans and WAIS III data were available. All three brain volumes are related to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related to cerebellar volume. Verbal Comprehension was not related to any of the three brain volumes. It is concluded that brain volumes are genetically related to intelligence which suggests that genes that influence brain volume may also be important for intelligence. It is also noted however, that the direction of causation (i.e., do genes influence brain volume which in turn influences intelligence, or alternatively, do genes influence intelligence which in turn influences brain volume), or the presence or absence of pleiotropy has not been resolved yet.

  14. Alignment of Escherichia coli K12 DNA sequences to a genomic restriction map.

    Science.gov (United States)

    Rudd, K E; Miller, W; Ostell, J; Benson, D A

    1990-01-25

    We use the extensive published information describing the genome of Escherichia coli and new restriction map alignment software to align DNA sequence, genetic, and physical maps. Restriction map alignment software is used which considers restriction maps as strings analogous to DNA or protein sequences except that two values, enzyme name and DNA base address, are associated with each position on the string. The resulting alignments reveal a nearly linear relationship between the physical and genetic maps of the E. coli chromosome. Physical map comparisons with the 1976, 1980, and 1983 genetic maps demonstrate a better fit with the more recent maps. The results of these alignments are genomic kilobase coordinates, orientation and rank of the alignment that best fits the genetic data. A statistical measure based on extreme value distribution is applied to the alignments. Additional computer analyses allow us to estimate the accuracy of the published E. coli genomic restriction map, simulate rearrangements of the bacterial chromosome, and search for repetitive DNA. The procedures we used are general enough to be applicable to other genome mapping projects.

  15. Escherichia coli can be transformed by a liposome-mediated lipofection method.

    Science.gov (United States)

    Kawata, Yoshikazu; Yano, Shin-ichi; Kojima, Hiroyuki

    2003-05-01

    Transformation of Escherichia coli is a basic technique for genetic engineering. We used a liposome-mediated lipofection method to transform electrocompetent E. coli cells which has little natural competence of foreign DNA without electroporation treatment, and got transformants with simple and quick treatment by a plasmid or a transposon and transposase complex.

  16. Persistence of Escherichia coli O157:H7 in dairy fermentation systems.

    Science.gov (United States)

    Dineen, S S; Takeuchi, K; Soudah, J E; Boor, K J

    1998-12-01

    We examined (i) the persistence of Escherichia coli O157:H7 as a postpasteurization contaminant in fermented dairy products; (ii) the ability of E. coli O157:H7 strains with and without the general stress regulatory protein, RpoS, to compete with commercial starter cultures in fermentation systems; and (iii) the survival of E. coli O157:H7 in the yogurt production process. In commercial products inoculated with 10(3) CFU/ml, E. coli O157:H7 was recovered for up to 12 days in yogurt (pH 4.0), 28 days in sour cream (pH 4.3), and at levels > 10(2) CFU/ml at 35 days in buttermilk (pH 4.1). For the starter culture competition trials, the relative inhibition of E. coli O157:H7 in the experimental fermentation systems was, in decreasing order, thermophilic culture mixture, Lactobacillus delbrueckii subsp. bulgaricus R110 alone, Lactococcus lactis subsp. lactis D280 alone, Lactococcus lactis subsp. cremoris D62 alone, and Streptococcus thermophilus C90 alone showing the least inhibition. Recovery of the rpoS mutant was lower than recovery of its wild-type parent by 72 h or earlier in the presence of individual starter cultures. No E. coli O157:H7 were recovered after the curd formation step in yogurt manufactured with milk inoculated with 10(5) CFU/ml. Our results show that (i) postprocessing entry of E. coli O157:H7 into fermented dairy products represents a potential health hazard; (ii) commercial starter cultures differ in their ability to reduce E. coli O157:H7 CFU numbers in fermentation systems; and (iii) the RpoS protein appears to most effectively contribute to bacterial survival in the presence of conditions that are moderately lethal to the cell.

  17. Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification.

    Science.gov (United States)

    Zhang, Decai; Wang, Weijia; Dong, Qian; Huang, Yunxiu; Wen, Dongmei; Mu, Yuejing; Yuan, Yong

    2017-12-21

    An isothermal colorimetric method is described for amplified detection of the CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on (a) target DNA-triggered unlabeled molecular beacon (UMB) termini binding, and (b) exonuclease III (Exo III)-assisted target recycling, and (c) hemin/G-quadruplex (DNAzyme) based signal amplification. The specific binding of target to the G-quadruplex sequence-locked UMB triggers the digestion of Exo III. This, in turn, releases an active G-quadruplex segment and target DNA for successive hybridization and cleavage. The Exo III impellent recycling of targets produces numerous G-quadruplex sequences. These further associate with hemin to form DNAzymes and hence will catalyze H 2 O 2 -mediated oxidation of the chromogenic enzyme substrate ABTS 2- causing the formation of a green colored product. This finding enables a sensitive colorimetric determination of GMO DNA (at an analytical wavelength of 420 nm) at concentrations as low as 0.23 nM. By taking advantage of isothermal incubation, this method does not require sophisticated equipment or complicated syntheses. Analyses can be performed within 90 min. The method also discriminates single base mismatches. In our perception, it has a wide scope in that it may be applied to the detection of many other GMOs. Graphical abstract An isothermal and sensitive colorimetric method is described for amplified detection of CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on target DNA-triggered molecular beacon (UMB) termini-binding and exonuclease III assisted target recycling, and on hemin/G-quadruplex (DNAzyme) signal amplification.

  18. Escherichia coli Population Structure and Antibiotic Resistance at a Buffalo/Cattle Interface in Southern Africa.

    Science.gov (United States)

    Mercat, Mathilde; Clermont, Olivier; Massot, Méril; Ruppe, Etienne; de Garine-Wichatitsky, Michel; Miguel, Eve; Valls Fox, Hugo; Cornelis, Daniel; Andremont, Antoine; Denamur, Erick; Caron, Alexandre

    2015-12-28

    At a human/livestock/wildlife interface, Escherichia coli populations were used to assess the risk of bacterial and antibiotic resistance dissemination between hosts. We used phenotypic and genotypic characterization techniques to describe the structure and the level of antibiotic resistance of E. coli commensal populations and the resistant Enterobacteriaceae carriage of sympatric African buffalo (Syncerus caffer caffer) and cattle populations characterized by their contact patterns in the southern part of Hwange ecosystem in Zimbabwe. Our results (i) confirmed our assumption that buffalo and cattle share similar phylogroup profiles, dominated by B1 (44.5%) and E (29.0%) phylogroups, with some variability in A phylogroup presence (from 1.9 to 12%); (ii) identified a significant gradient of antibiotic resistance from isolated buffalo to buffalo in contact with cattle and cattle populations expressed as the Murray score among Enterobacteriaceae (0.146, 0.258, and 0.340, respectively) and as the presence of tetracycline-, trimethoprim-, and amoxicillin-resistant subdominant E. coli strains (0, 5.7, and 38%, respectively); (iii) evidenced the dissemination of tetracycline, trimethoprim, and amoxicillin resistance genes (tet, dfrA, and blaTEM-1) in 26 isolated subdominant E. coli strains between nearby buffalo and cattle populations, that led us (iv) to hypothesize the role of the human/animal interface in the dissemination of genetic material from human to cattle and toward wildlife. The study of antibiotic resistance dissemination in multihost systems and at anthropized/natural interface is necessary to better understand and mitigate its multiple threats. These results also contribute to attempts aiming at using E. coli as a tool for the identification of pathogen transmission pathway in multihost systems. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli

    Science.gov (United States)

    2018-01-01

    ABSTRACT Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental (“dairy-farm” E. coli [DFEC]) strains, we found that only the fec locus (fecIRABCDE) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes (P mastitis, whereas the fec+ DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity. PMID:29615502

  20. The Escherichia coli transcriptome linked to growth fitness

    Directory of Open Access Journals (Sweden)

    Bei-Wen Ying

    2016-03-01

    Full Text Available A series of Escherichia coli strains with varied genomic sequences were subjected to high-density microarray analyses to elucidate the fitness-correlated transcriptomes. Fitness, which is commonly evaluated by the growth rate during the exponential phase, is not only determined by the genome but is also linked to growth conditions, e.g., temperature. We previously reported genetic and environmental contributions to E. coli transcriptomes and evolutionary transcriptome changes in thermal adaptation. Here, we describe experimental details on how to prepare microarray samples that truly represent the growth fitness of the E. coli cells. A step-by-step record of sample preparation procedures that correspond to growing cells and transcriptome data sets that are deposited at the GEO database (GSE33212, GSE52770, GSE61739 are also provided for reference. Keywords: Transcriptome, Growth fitness, Escherichia coli, Microarray

  1. Fluoroquinolone-resistant Escherichia coli carriage in long-term care facility.

    Science.gov (United States)

    Maslow, Joel N; Lee, Betsy; Lautenbach, Ebbing

    2005-06-01

    We conducted a cross-sectional study to determine the prevalence of, and risk factors for, colonization with fluoroquinolone (FQ)-resistant Escherichia coli in residents in a long-term care facility. FQ-resistant E. coli were identified from rectal swabs for 25 (51%) of 49 participants at study entry. On multivariable analyses, prior FQ use was the only independent risk factor for FQ-resistant E. coli carriage and was consistent for FQ exposures in the previous 3, 6, 9, or 12 months. Pulsed-field gel electrophoresis of FQ-resistant E. coli identified clonal spread of 1 strain among 16 residents. Loss (6 residents) or acquisition (7 residents) of FQ-resistant E. coli was documented and was associated with de novo colonization with genetically distinct strains. Unlike the case in the hospital setting, FQ-resistant E. coli carriage in long-term care facilities is associated with clonal spread.

  2. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of CofB, the minor pilin subunit of CFA/III from human enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Kawahara, Kazuki; Oki, Hiroya; Fukakusa, Shunsuke; Maruno, Takahiro; Kobayashi, Yuji; Motooka, Daisuke; Taniguchi, Tooru; Honda, Takeshi; Iida, Tetsuya; Nakamura, Shota; Ohkubo, Tadayasu

    2015-06-01

    Colonization factor antigen III (CFA/III) is one of the virulence factors of human enterotoxigenic Escherichia coli (ETEC) that forms the long, thin, proteinaceous fibres of type IV pili through assembly of its major and minor subunits CofA and CofB, respectively. The crystal structure of CofA has recently been reported; however, the lack of structural information for CofB, the largest among the known type IV pilin subunits, hampers a comprehensive understanding of CFA/III pili. In this study, constructs of wild-type CofB with an N-terminal truncation and the corresponding SeMet derivative were cloned, expressed, purified and crystallized. The crystals belonged to the rhombohedral space group R32, with unit-cell parameters a = b = 103.97, c = 364.57 Å for the wild-type construct and a = b = 103.47, c = 362.08 Å for the SeMet-derivatized form. Although the diffraction quality of these crystals was initially very poor, dehydration of the crystals substantially improved the resolution limit from ∼ 4.0 to ∼ 2.0 Å. The initial phase was solved by the single-wavelength anomalous dispersion (SAD) method using a dehydrated SeMet CofB crystal, which resulted in an interpretable electron-density map.

  3. E.coli O157:H7

    Directory of Open Access Journals (Sweden)

    Treor Francis Fernandez

    2008-06-01

    Full Text Available The serious nature of the symptoms of haemorrhagic colitis and HUS and the apparent low infectious dose (<100 cells of E.coli O157:H7 places this food borne pathogen a most serious of known food borne pathogens. Persuasive evidence suggests that healthy cattle are a reservoir of O157 and they can enter the food chain to provide a source of exposure for humans. A possible route of transmission of O157 VTEC may involve infections initially in calves that shed their organism into faecal slurry that may be used on grazing grass. This provides potential for infection of other animals from which the organism may contaminate milk or carcasses at slaughter. Possible sources of VTEC in healthy animals other E.coli O157:H7 than cattle and a wider range of foodstuffs require further investigation. Many features of E.coli O157:H7 strains remain poorly understood. It includes: (i Role of virulent genes in the animal, (ii Mechanism of evolution of the organism, (iii The progress of individual cases of E.coli O157:H7 infection, and (iv The difference in incidence of infection in different geographical areas. [Veterinary World 2008; 1(3.000: 83-87

  4. Enabling complex genetic circuits to respond to extrinsic environmental signals.

    Science.gov (United States)

    Hoynes-O'Connor, Allison; Shopera, Tatenda; Hinman, Kristina; Creamer, John Philip; Moon, Tae Seok

    2017-07-01

    Genetic circuits have the potential to improve a broad range of metabolic engineering processes and address a variety of medical and environmental challenges. However, in order to engineer genetic circuits that can meet the needs of these real-world applications, genetic sensors that respond to relevant extrinsic and intrinsic signals must be implemented in complex genetic circuits. In this work, we construct the first AND and NAND gates that respond to temperature and pH, two signals that have relevance in a variety of real-world applications. A previously identified pH-responsive promoter and a temperature-responsive promoter were extracted from the E. coli genome, characterized, and modified to suit the needs of the genetic circuits. These promoters were combined with components of the type III secretion system in Salmonella typhimurium and used to construct a set of AND gates with up to 23-fold change. Next, an antisense RNA was integrated into the circuit architecture to invert the logic of the AND gate and generate a set of NAND gates with up to 1168-fold change. These circuits provide the first demonstration of complex pH- and temperature-responsive genetic circuits, and lay the groundwork for the use of similar circuits in real-world applications. Biotechnol. Bioeng. 2017;114: 1626-1631. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Genetic Optimization Algorithm for Metabolic Engineering Revisited

    Directory of Open Access Journals (Sweden)

    Tobias B. Alter

    2018-05-01

    Full Text Available To date, several independent methods and algorithms exist for exploiting constraint-based stoichiometric models to find metabolic engineering strategies that optimize microbial production performance. Optimization procedures based on metaheuristics facilitate a straightforward adaption and expansion of engineering objectives, as well as fitness functions, while being particularly suited for solving problems of high complexity. With the increasing interest in multi-scale models and a need for solving advanced engineering problems, we strive to advance genetic algorithms, which stand out due to their intuitive optimization principles and the proven usefulness in this field of research. A drawback of genetic algorithms is that premature convergence to sub-optimal solutions easily occurs if the optimization parameters are not adapted to the specific problem. Here, we conducted comprehensive parameter sensitivity analyses to study their impact on finding optimal strain designs. We further demonstrate the capability of genetic algorithms to simultaneously handle (i multiple, non-linear engineering objectives; (ii the identification of gene target-sets according to logical gene-protein-reaction associations; (iii minimization of the number of network perturbations; and (iv the insertion of non-native reactions, while employing genome-scale metabolic models. This framework adds a level of sophistication in terms of strain design robustness, which is exemplarily tested on succinate overproduction in Escherichia coli.

  6. Molecular analysis of formaldehyde-induced mutations in human lymphoblasts and E. coli

    International Nuclear Information System (INIS)

    Crosby, R.M.; Richardson, K.K.; Craft, T.R.; Benforado, K.B.; Liber, H.L.; Skopek, T.R.

    1988-01-01

    The molecular nature of formaldehyde (HCHO)-induced mutations was studied in both human lymphoblasts and E. coli. Thirty HPRT - human lymphoblast colonies induced by eight repetitive 150 μM HCHO treatments were characterized by Southern blot analysis. Fourteen of these mutants (47%) had visible deletions of some or all of the X-linked HPRT bands, indicating that HCHO can induce large losses of DNA in human lymphoblasts. In E. coli., DNA alterations induced by HCHO were characterized with use of the xanthine guanine phosphoribosyl transferase (gpt) gene as the genetic target. Exposure of E. coli to 4 mM HCHO for 1 hr induced large insertions (41%), large deletions (18%), and point mutations (41%). Dideoxy DNA sequencing revealed that most of the point mutations were transversions at GC base pairs. In contrast, exposure of E. coli to 40 mM HCHO for 1 hr produced 92% point mutations, 62% of which were transitions at a single AT base pair in the gene. Therefore, HCHO is capable of producing different genetic alterations in E. coli at different concentrations, suggesting fundamental differences in the mutagenic mechanisms operating at the two concentrations used. Naked pSV2gpt plasmid DNA was exposed to 3.3 or 10 mM HCHO and transformed into E. coli. Most of the resulting mutations were frameshifts, again suggesting a different mutagenic mechanism

  7. Genetic characterization of Shiga toxin-producing Escherichia coli (STEC) and atypical enteropathogenic Escherichia coli (EPEC) isolates from goat's milk and goat farm environment.

    Science.gov (United States)

    Álvarez-Suárez, María-Elena; Otero, Andrés; García-López, María-Luisa; Dahbi, Ghizlane; Blanco, Miguel; Mora, Azucena; Blanco, Jorge; Santos, Jesús A

    2016-11-07

    The aim of this study was to characterize a collection of 44 Shiga toxin-producing (STEC) and enteropathogenic Escherichia coli (EPEC) isolated from goat milk and goat farm environment. Of the 19 STEC isolates, five (26.3%) carried the stx1 gene, four (21.1%) the stx2 gene and 10 (52.6%) presented both stx genes. Six (31.6%) STEC strains were eae-positive and belonged to serotypes related to severe human disease (O157:H7 and O5:HNM). Another seven STEC strains were of serotype O146:H21 and three of serotype O166:H28, also linked to human disease. The STEC strains isolated from goat milk were of serotypes potentially pathogenic for humans. All the 25 EPEC isolates were considered atypical (aEPEC) and one aEPEC strain was of serotype O26:H11, a serotype frequently isolated in children with diarrhea. Multilocus sequence typing (MLST) was carried out with seven housekeeping genes and 23 sequence types (ST) were detected, 14 of them newly described. Twelve STs grouped STEC isolates and 11 STs grouped EPEC isolates. Genetic typing by pulsed field gel electrophoresis (PFGE) resulted in 38 patterns which grouped in 10 clusters. Well-defined groups were also observed for strains of pathogenic serotypes. In conclusion, strains of STEC and aEPEC belonging to serotypes related to severe human disease have been detected in goat milk and the goat farm environment. Ruminants are an important reservoir of STEC strains and the role of these animals as carriers of other pathogenic types of E. coli seems to be an emerging concern. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    NARCIS (Netherlands)

    Posthuma, D.; Baare, W.F.C.; Hulshoff Pol, H.E.; Kahn, R.S.; Boomsma, D.I.; de Geus, E.J.C.

    2003-01-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization,

  9. Multidrug resistance Escherichia coli in pig's farm from Argentina

    OpenAIRE

    Moredo, Fabiana; Colello, R.; Sanz, Marcelo E.; Cappuccio, Javier A.; Carriquiriborde, Martín; Etcheverría, A.; Perfumo, Carlos J.; Padola, Nora Lía; Leotta, Gerardo Aníbal

    2013-01-01

    Los objetivos del presente trabajo fueron: i) monitorear la resistencia de E. coli frente a diversos antimicrobianos frecuentemente utilizados con fines terapéuticos y profilácticos en explotaciones porcinas; ii) aislar y caracterizar fenotípica y genotípicamente E. coli toxigénicos provenientes de cerdos con diarrea pre y posdestete; iii) determinar la presencia de integrones clase 1 y 2 como posible mecanismo de diseminación de resistencia. Se procesaron 216 hisopados rectales de cerdos clí...

  10. Distribution of Escherichia coli in a coastal lagoon (Venice, Italy): Temporal patterns, genetic diversity and the role of tidal forcing.

    Science.gov (United States)

    Perini, L; Quero, G M; García, E Serrano; Luna, G M

    2015-12-15

    Despite its worldwide importance as fecal indicator in aquatic systems, little is known about the diversity of Escherichia coli in the environment and the factors driving its spatial distribution. The city of Venice (Italy), lying at the forefront of a large European lagoon, is an ideal site to study the mechanisms driving the fate of fecal bacteria, due to the huge fluxes of tourists, the city's unique architecture (causing poor efficiency of sewages treatment), and the long branching network of canals crossing the city. We summarize the results of a multi-year investigation to study the temporal dynamics of E. coli around the city, describe the population structure (by assigning isolates to their phylogenetic group) and the genotypic diversity, and explore the role of environmental factors in determining its variability. E. coli abundance in water was highly variable, ranging from being undetectable up to 10(4) Colony Forming Units (CFU) per 100 ml. Abundance did not display significant relationships with the water physico-chemical variables. The analysis of the population structure showed the presence of all known phylogroups, including extra-intestinal and potentially pathogenic ones. The genotypic diversity was very high, as likely consequence of the heterogeneous input of fecal bacteria from the city, and showed site-specific patterns. Intensive sampling during the tidal fluctuations highlighted the prominent role of tides, rather than environmental variables, as source of spatial variation, with a more evident influence in water than sediments. These results, the first providing information on the genetic properties, spatial heterogeneity and influence of tides on E. coli populations around Venice, have implications to manage the fecal pollution, and the associated waterborne disease risks, in coastal cities lying in front of lagoons and semi-enclosed basins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Development of useful genetic resources by proton-beam irradiation

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Park, Hyi Gook; Jung, Il Lae; Seo, Yong Won; Chang, Chul Seong; Kim, Jae Yoon; Ham, Jae Woong

    2005-08-01

    The aim of this study is to develop new, useful and high-valuable genetic resources through the overproduction of biodegradable plastics and the propagation of wheat using proton-beam irradiation. Useful host strain was isolated through the mutagenization of the Escherichia coli K-12 strain, followed by characterizing the genetic and physiological properties of the E. coli mutant strains. The selected E. coli mutant strain produced above 85g/L of PHB, showed above 99% of PHB intracellular content and spontaneously liberated intracellular PHB granules. Based on the results, the production cost of PHB has been estimated to approximately 2$/kg, leading effective cost-down. Investigated the propagation of wheat and its variation, a selectable criterion of wet pro of was established and genetic analysis of useful mutant was carried out

  12. A soluble RecN homologue provides means for biochemical and genetic analysis of DNA double-strand break repair in Escherichia coli.

    Science.gov (United States)

    Grove, Jane I; Wood, Stuart R; Briggs, Geoffrey S; Oldham, Neil J; Lloyd, Robert G

    2009-12-03

    RecN is a highly conserved, SMC-like protein in bacteria. It plays an important role in the repair of DNA double-strand breaks and is therefore a key factor in maintaining genome integrity. The insolubility of Escherichia coli RecN has limited efforts to unravel its function. We overcame this limitation by replacing the resident coding sequence with that of Haemophilus influenzae RecN. The heterologous construct expresses Haemophilus RecN from the SOS-inducible E. coli promoter. The hybrid gene is fully functional, promoting survival after I-SceI induced DNA breakage, gamma irradiation or exposure to mitomycin C as effectively as the native gene, indicating that the repair activity is conserved between these two species. H. influenzae RecN is quite soluble, even when expressed at high levels, and is readily purified. Its analysis by ionisation-mass spectrometry, gel filtration and glutaraldehyde crosslinking indicates that it is probably a dimer under physiological conditions, although a higher multimer cannot be excluded. The purified protein displays a weak ATPase activity that is essential for its DNA repair function in vivo. However, no DNA-binding activity was detected, which contrasts with RecN from Bacillus subtilis. RecN proteins from Aquifex aeolicus and Bacteriodes fragilis also proved soluble. Neither binds DNA, but the Aquifex RecN has weak ATPase activity. Our findings support studies indicating that RecN, and the SOS response in general, behave differently in E. coli and B. subtilis. The hybrid recN reported provides new opportunities to study the genetics and biochemistry of how RecN operates in E. coli.

  13. Genetic diversity of K-antigen gene clusters of Escherichia coli and their molecular typing using a suspension array.

    Science.gov (United States)

    Yang, Shuang; Xi, Daoyi; Jing, Fuyi; Kong, Deju; Wu, Junli; Feng, Lu; Cao, Boyang; Wang, Lei

    2018-04-01

    Capsular polysaccharides (CPSs), or K-antigens, are the major surface antigens of Escherichia coli. More than 80 serologically unique K-antigens are classified into 4 groups (Groups 1-4) of capsules. Groups 1 and 4 contain the Wzy-dependent polymerization pathway and the gene clusters are in the order galF to gnd; Groups 2 and 3 contain the ABC-transporter-dependent pathway and the gene clusters consist of 3 regions, regions 1, 2 and 3. Little is known about the variations among the gene clusters. In this study, 9 serotypes of K-antigen gene clusters (K2ab, K11, K20, K24, K38, K84, K92, K96, and K102) were sequenced and correlated with their CPS chemical structures. On the basis of sequence data, a K-antigen-specific suspension array that detects 10 distinct CPSs, including the above 9 CPSs plus K30, was developed. This is the first report to catalog the genetic features of E. coli K-antigen variations and to develop a suspension array for their molecular typing. The method has a number of advantages over traditional bacteriophage and serum agglutination methods and lays the foundation for straightforward identification and detection of additional K-antigens in the future.

  14. Crystal Structure of the Minor Pilin CofB, the Initiator of CFA/III Pilus Assembly in Enterotoxigenic Escherichia coli*

    Science.gov (United States)

    Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa

    2015-01-01

    Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. PMID:26324721

  15. Crystal Structure of the Minor Pilin CofB, the Initiator of CFA/III Pilus Assembly in Enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa

    2015-10-23

    Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Genetics in Ophthalmology III – Posterior Segment Diseases

    Directory of Open Access Journals (Sweden)

    Canan Aslı Utine

    2012-10-01

    Full Text Available Genetic diseases are congenital or acquired hereditary diseases that result from structural/functional disorders of the human genome. Today, the genetic factors that play a role in many diseases are being highlighted with the rapid progress in the field of genetics science. It becomes increasingly important that physicians from all disciplines have knowledge about the basic principles of genetics, patterns of inheritance, etc., so that they can follow the new developments. In genetic eye diseases, ophthalmologists should know the basic clinical and recently rapidly developing genetic characteristics of these diseases in order to properly approach the diagnosis and treatment and to provide genetic counseling. In this paper, posterior segment eye diseases of genetic origin are reviewed, and retinoblastoma, mitochondrial diseases, retinal dysplasia, retinitis pigmentosa, choroideremia, gyrate atrophy, Alström disease, ocular albinism, optic nerve hypoplasia, anophthalmia/microphthalmia and Leber’s congenital amaurosis are covered. (Turk J Ophthalmol 2012; 42: 386-92

  17. Roles of Type 1A Topoisomerases in Genome Maintenance in Escherichia coli

    Science.gov (United States)

    Usongo, Valentine; Drolet, Marc

    2014-01-01

    In eukaryotes, type 1A topoisomerases (topos) act with RecQ-like helicases to maintain the stability of the genome. Despite having been the first type 1A enzymes to be discovered, much less is known about the involvement of the E. coli topo I (topA) and III (topB) enzymes in genome maintenance. These enzymes are thought to have distinct cellular functions: topo I regulates supercoiling and R-loop formation, and topo III is involved in chromosome segregation. To better characterize their roles in genome maintenance, we have used genetic approaches including suppressor screens, combined with microscopy for the examination of cell morphology and nucleoid shape. We show that topA mutants can suffer from growth-inhibitory and supercoiling-dependent chromosome segregation defects. These problems are corrected by deleting recA or recQ but not by deleting recJ or recO, indicating that the RecF pathway is not involved. Rather, our data suggest that RecQ acts with a type 1A topo on RecA-generated recombination intermediates because: 1-topo III overproduction corrects the defects and 2-recQ deletion and topo IIII overproduction are epistatic to recA deletion. The segregation defects are also linked to over-replication, as they are significantly alleviated by an oriC::aph suppressor mutation which is oriC-competent in topA null but not in isogenic topA+ cells. When both topo I and topo III are missing, excess supercoiling triggers growth inhibition that correlates with the formation of extremely long filaments fully packed with unsegregated and diffuse DNA. These phenotypes are likely related to replication from R-loops as they are corrected by overproducing RNase HI or by genetic suppressors of double topA rnhA mutants affecting constitutive stable DNA replication, dnaT::aph and rne::aph, which initiates from R-loops. Thus, bacterial type 1A topos maintain the stability of the genome (i) by preventing over-replication originating from oriC (topo I alone) and R-loops and (ii

  18. Do DSM-5 Section II personality disorders and Section III personality trait domains reflect the same genetic and environmental risk factors?

    Science.gov (United States)

    Reichborn-Kjennerud, T; Krueger, R F; Ystrom, E; Torvik, F A; Rosenström, T H; Aggen, S H; South, S C; Neale, M C; Knudsen, G P; Kendler, K S; Czajkowski, N O

    2017-09-01

    DSM-5 includes two conceptualizations of personality disorders (PDs). The classification in Section II is identical to the one found in DSM-IV, and includes 10 categorical PDs. The Alternative Model (Section III) includes criteria for dimensional measures of maladaptive personality traits organized into five domains. The degree to which the two conceptualizations reflect the same etiological factors is not known. We use data from a large population-based sample of adult twins from the Norwegian Institute of Public Health Twin Panel on interview-based DSM-IV PDs and a short self-report inventory that indexes the five domains of the DSM-5 Alternative Model plus a domain explicitly targeting compulsivity. Schizotypal, Paranoid, Antisocial, Borderline, Avoidant, and Obsessive-compulsive PDs were assessed at the same time as the maladaptive personality traits and 10 years previously. Schizoid, Histrionic, Narcissistic, and Dependent PDs were only assessed at the first interview. Biometric models were used to estimate overlap in genetic and environmental risk factors. When measured concurrently, there was 100% genetic overlap between the maladaptive trait domains and Paranoid, Schizotypal, Antisocial, Borderline, and Avoidant PDs. For OCPD, 43% of the genetic variance was shared with the domains. Genetic correlations between the individual domains and PDs ranged from +0.21 to +0.91. The pathological personality trait domains, which are part of the Alternative Model for classification of PDs in DSM-5 Section III, appears to tap, at an aggregate level, the same genetic risk factors as the DSM-5 Section II classification for most of the PDs.

  19. Pathogenic Potential to Humans of Bovine Escherichia coli O26, Scotland

    Science.gov (United States)

    Rosser, Tracy; Allison, Lesley J.; Courcier, Emily; Evans, Judith; McKendrick, Iain J.; Pearce, Michael C.; Handel, Ian; Caprioli, Alfredo; Karch, Helge; Hanson, Mary F.; Pollock, Kevin G.J.; Locking, Mary E.; Woolhouse, Mark E.J.; Matthews, Louise; Low, J. Chris; Gally, David L.

    2012-01-01

    Escherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin–producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections. To investigate this discrepancy, we genotyped E. coli O26 isolates from cattle and humans in Scotland and continental Europe. The genetic background of some strains from Scotland was closely related to that of strains causing severe infections in Europe. Nonmetric multidimensional scaling found an association between hemolytic uremic syndrome (HUS) and multilocus sequence type 21 strains and confirmed the role of stx2 in severe human disease. Although the prevalences of E. coli O26 and O157 on cattle farms in Scotland are equivalent, prevalence of more virulent strains is low, reducing human infection risk. However, new data on E. coli O26–associated HUS in humans highlight the need for surveillance of non-O157 enterohemorrhagic E. coli and for understanding stx2 phage acquisition. PMID:22377426

  20. Novel sequence types of extended-spectrum and acquired AmpC beta-lactamase producing Escherichia coli and Escherichia clade V isolated from wild mammals.

    Science.gov (United States)

    Alonso, Carla Andrea; Alcalá, Leticia; Simón, Carmen; Torres, Carmen

    2017-08-01

    The closer contact with wildlife due to the growing human population and the destruction of natural habitats emphasizes the need of gaining insight into the role of animals as source of antimicrobial resistance. Here, we aim at characterizing the antimicrobial resistance genes and phylogenetic distribution of commensal Escherichia coli from 62 wild mammals. Isolates exhibiting resistance to ≥1 antibiotic were detected in 25.8% of the animals and 6.4% carried an extended-spectrum beta-lactamase (ESBL)/AmpC-producing E. coli. Genetic mechanisms involved in third-generation cephalosporin resistance were as follows: (i) hyperproduction of chromosomal AmpC (hedgehog), (ii) production of acquired CMY-2 β-lactamase (hedgehog), (iii) production of SHV-12 and CTX-M-14 ESBLs (n = 2, mink and roe-deer). ESBL genes were transferable by conjugation, and blaCMY-2 was mobilized by a 95kb IncI1 plasmid. The distribution of the phylogenetic groups in the E. coli collection studied was B1 (44.6%), B2 (24.6%), E (15.4%), A (4.6%) and F (3.1%). Five isolates (7.7%) were cryptic Escherichia clades (clade IV, 4 mice; clade V, 1 mink). ESBL/AmpC-E. coli isolates showed different sequence types (STs): ST1128/B1, ST4564/B1 (new), ST4996/B1 (new) and a non-registered ST. This study contributes to better understand the E. coli population and antimicrobial resistance flow in wildlife and reports new AmpC-E. coli STs and a first described ESBL-producing Escherichia clade V isolate. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Molecular genetic studies of bacteroides fragilis

    International Nuclear Information System (INIS)

    Southern, J.A.

    1986-03-01

    This study aimed at providing a means for probing the molecular genetic organization of B.fragilis, particularly those strains where the DNA repair mechanisms had been described. The following routes of investigation were followed: the bacteriocin of B.fragilis BF-1; the investigation of any plasmids which might be discovered, with the aim of constructing a hybrid plasmid which might replicate in both E.coli and B.fragilis; and the preparation of a genetic library which could be screened for Bacteroides genes which might function in E.coli. Should any genes be isolated by screening the library they were to be studied with regard to their expression and regulation in E.coli. The above assays make use of radioactive markers such as 14 C, 35 S, 32 P, and 3 H in the labelling of RNA, plasmids and probes

  2. Metabolic engineering of Escherichia coli for the production of riboflavin

    OpenAIRE

    Lin, Zhenquan; Xu, Zhibo; Li, Yifan; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2014-01-01

    Background Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification...

  3. A Stress-Induced Bias in the Reading of the Genetic Code in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Adi Oron-Gottesman

    2016-11-01

    Full Text Available Escherichia coli mazEF is an extensively studied stress-induced toxin-antitoxin (TA system. The toxin MazF is an endoribonuclease that cleaves RNAs at ACA sites. Thereby, under stress, the induced MazF generates a stress-induced translation machinery (STM, composed of MazF-processed mRNAs and selective ribosomes that specifically translate the processed mRNAs. Here, we further characterized the STM system, finding that MazF cleaves only ACA sites located in the open reading frames of processed mRNAs, while out-of-frame ACAs are resistant. This in-frame ACA cleavage of MazF seems to depend on MazF binding to an extracellular-death-factor (EDF-like element in ribosomal protein bS1 (bacterial S1, apparently causing MazF to be part of STM ribosomes. Furthermore, due to the in-frame MazF cleavage of ACAs under stress, a bias occurs in the reading of the genetic code causing the amino acid threonine to be encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA.

  4. Valyl-tRNA synthetase gene of Escherichia coli K12: Molecular genetic characterization and homology within a family of aminoacyl-tRNA synthetases

    International Nuclear Information System (INIS)

    Heck, J.D. III.

    1988-01-01

    This work reports the subcloning and characterization of the molecular elements necessary for the expression of the Escherichia coli valS gene encoding valyl-tRNA synthetase. The valS gene was subcloned from plasmid pLC26-22 by genetic complementation of a valS ts strain. The DNA region encoding the valS structural gene was determined by in vitro coupled transcription-translation assays. Cells transformed with a plasmid containing a full length copy of the valS gene enhanced in vivo valyl-tRNA synthetase specific activity twelve-fold. DNA sequences flanking the valS structural gene are presented. The transcription initiation sites of the valS gene were determined, in vivo and in vitro, by S1 nuclease protection studies, primer-extension analysis and both [α- 32 P]labeled and [γ- 32 P]end-labeled in vitro transcription assays. The DNA sequence of the valS gene of Escherichia coli has been determined. Significant similarity at the primary sequence level was detected between valyl-tRNA synthetase of E. coli and other known branched-chain aminoacyl-tRNA synthetases. An extended open reading frame (ORF) encoded on the DNA strand opposite the valS structural gene is described

  5. Metabolic Modeling of Common Escherichia coli Strains in Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Yue-Dong Gao

    2014-01-01

    Full Text Available The recent high-throughput sequencing has enabled the composition of Escherichia coli strains in the human microbial community to be profiled en masse. However, there are two challenges to address: (1 exploring the genetic differences between E. coli strains in human gut and (2 dynamic responses of E. coli to diverse stress conditions. As a result, we investigated the E. coli strains in human gut microbiome using deep sequencing data and reconstructed genome-wide metabolic networks for the three most common E. coli strains, including E. coli HS, UTI89, and CFT073. The metabolic models show obvious strain-specific characteristics, both in network contents and in behaviors. We predicted optimal biomass production for three models on four different carbon sources (acetate, ethanol, glucose, and succinate and found that these stress-associated genes were involved in host-microbial interactions and increased in human obesity. Besides, it shows that the growth rates are similar among the models, but the flux distributions are different, even in E. coli core reactions. The correlations between human diabetes-associated metabolic reactions in the E. coli models were also predicted. The study provides a systems perspective on E. coli strains in human gut microbiome and will be helpful in integrating diverse data sources in the following study.

  6. Transport proteins promoting Escherichia coli pathogenesis

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  7. Transport proteins promoting Escherichia coli pathogenesis.

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Surface Enhanced Raman Scattering for Quantification of p-Coumaric Acid Produced by Escherichia coli

    DEFF Research Database (Denmark)

    Morelli, Lidia; Zor, Kinga; Jendresen, Christian Bille

    2017-01-01

    The number of newly developed genetic variants of microbial cell factories for production of biochemicals has been rapidly growing in recent years, leading to an increased need for new screening techniques. We developed a method based on surface-enhanced Raman scattering (SERS) coupled with liquid......-liquid extraction (LLE) for quantification of p-coumaric acid (pHCA) in the supernatant of genetically engineered Escherichia coli (E. coli) cultures. pHCA was measured in a dynamic range from 1 μM up to 50 μM on highly uniform SERS substrates based on leaning gold-capped nanopillars, which showed an in...

  9. Escherichia coli Attenuation by Fe Electrocoagulation in Synthetic Bengal Groundwater: Effect of pH and Natural Organic Matter.

    Science.gov (United States)

    Delaire, Caroline; van Genuchten, Case M; Nelson, Kara L; Amrose, Susan E; Gadgil, Ashok J

    2015-08-18

    Technologies addressing both arsenic and microbial contamination of Bengal groundwater are needed. Fe electrocoagulation (Fe-EC), a simple process relying on the dissolution of an Fe(0) anode to produce Fe(III) precipitates, has been shown to efficiently remove arsenic from groundwater at low cost. We investigated Escherichia coli (E. coli) attenuation by Fe-EC in synthetic Bengal groundwater as a function of Fe dosage rate, total Fe dosed, pH, and presence of natural organic matter (NOM). A 2.5 mM Fe dosage simultaneously achieved over 4-log E. coli attenuation and arsenic removal from 450 to below 10 μg/L. E. coli reduction was significantly enhanced at pH 6.6 compared to pH 7.5, which we linked to the decreased rate of Fe(II) oxidation at lower pH. 3 mg/L-C of NOM (Suwanee River fulvic acid) did not significantly affect E. coli attenuation. Live-dead staining and comparisons of Fe-EC with chemical coagulation controls showed that the primary mechanism of E. coli attenuation is physical removal with Fe(III) precipitates, with inactivation likely contributing as well at lower pH. Transmission electron microscopy showed that EC precipitates adhere to and bridge individual E. coli cells, resulting in large bacteria-Fe aggregates that can be removed by gravitational settling. Our results point to the promising ability of Fe-EC to treat arsenic and bacterial contamination simultaneously at low cost.

  10. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract

    DEFF Research Database (Denmark)

    Connell, Hugh; Agace, William; Klemm, Per

    1996-01-01

    of Escherichia coli for the urinary tract by promoting bacterial persistence and enhancing the inflammatory responce to infection. In a clinical study, we observed that disease severity was greater in children infected with E. coli O1:K1:H7 isolates expressing type 1 fimbriae than in those infected with type 1...... negative isolates of the same serotype. The E. coli O1:K1:H7 isolates had the same electrophoretic type, were hemolysin-negative, expressed P fimbriae, and carried the fim DNA sequences. When tested in a mouse urinary tract infection model, the type 1-positive E. coli O1:K1:H7 isolates survived inhigher...... urinary tract infection model. E. coli CN1016 reconstituted with type 1 fimbriae had restored virulence similar to that of the wild-type parent strain. These results show that type 1 fimbriae in the genetic background of a uropathogenic strain contribute to the pathogenesis of E. coli in the urinary tract....

  11. Distribution of Diverse Escherichia coli between Cattle and Pasture.

    Science.gov (United States)

    NandaKafle, Gitanjali; Seale, Tarren; Flint, Toby; Nepal, Madhav; Venter, Stephanus N; Brözel, Volker S

    2017-09-27

    Escherichia coli is widely considered to not survive for extended periods outside the intestines of warm-blooded animals; however, recent studies demonstrated that E. coli strains maintain populations in soil and water without any known fecal contamination. The objective of this study was to investigate whether the niche partitioning of E. coli occurs between cattle and their pasture. We attempted to clarify whether E. coli from bovine feces differs phenotypically and genotypically from isolates maintaining a population in pasture soil over winter. Soil, bovine fecal, and run-off samples were collected before and after the introduction of cattle to the pasture. Isolates (363) were genotyped by uidA and mutS sequences and phylogrouping, and evaluated for curli formation (Rough, Dry, And Red, or RDAR). Three types of clusters emerged, viz. bovine-associated, clusters devoid of cattle isolates and representing isolates endemic to the pasture environment, and clusters with both. All isolates clustered with strains of E. coli sensu stricto, distinct from the cryptic species Clades I, III, IV, and V. Pasture soil endemic and bovine fecal populations had very different phylogroup distributions, indicating niche partitioning. The soil endemic population was largely comprised of phylogroup B1 and had a higher average RDAR score than other isolates. These results indicate the existence of environmental E. coli strains that are phylogenetically distinct from bovine fecal isolates, and that have the ability to maintain populations in the soil environment.

  12. Quantitation of heparosan with heparin lyase III and spectrophotometry.

    Science.gov (United States)

    Huang, Haichan; Zhao, Yingying; Lv, Shencong; Zhong, Weihong; Zhang, Fuming; Linhardt, Robert J

    2014-02-15

    Heparosan is Escherichia coli K5 capsule polysaccharide, which is the key precursor for preparing bioengineered heparin. A rapid and effective quantitative method for detecting heparosan is important in the large-scale production of heparosan. Heparin lyase III (Hep III) effectively catalyzes the heparosan depolymerization, forming unsaturated disaccharides that are measurable using a spectrophotometer at 232 nm. We report a new method for the quantitative detection of heparosan with heparin lyase III and spectrophotometry that is safer and more specific than the traditional carbazole assay. In an optimized detection system, heparosan at a minimum concentration of 0.60 g/L in fermentation broth can be detected. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Mutations in Escherichia coli that effect sensitivity to oxygen

    International Nuclear Information System (INIS)

    Jamison, C.S.; Adler, H.I.

    1987-01-01

    Fifteen oxygen-sensitive (Oxy/sup s/) mutants of Escherichia coli were isolated after exposure to UV light. The mutants did not form macroscopic colonies when plated aerobically. They did form macroscopic colonies anaerobically. Oxygen, introduced during log phase, inhibited the growth of liquid cultures. The degree of inhibition was used to separate the mutants into three classes. Class I mutants did not grow after exposure to oxygen. Class II mutants were able to grow, but at a reduced rate and to a reduced final titer, when compared with the wild-type parent. Class III mutants formed filaments in response to oxygen. Genetic experiments indicated that the mutations map to six different chromosomal regions. The results of enzymatic assays indicated that 7 of the 10 class I mutants have low levels of catalase, peroxidase, superoxide dismutase, and respiratory enzymes when compared with the wild-type parent. Mutations in five of the seven class I mutants which have the low enzyme activities mapped within the region 8 to 13.5 min. P1 transduction data indicated that mutations in three of these five mutants, Oxy/sup s/-6, Oxy/sup s/-14, and Oxy/sup s/-17, mapped to 8.4 min. The correlation of low enzyme levels and mapping data suggest that a single gene may regulate several enzymes in response to oxygen. The remaining three class I mutants had wild-type levels of catalase, peroxidase, and superoxide dismutase, but decreased respiratory activity. The class II and III mutants had enzyme activities similar to those of the wild-type parent

  14. Of woods and webs: possible alternatives to the tree of life for studying genomic fluidity in E. coli

    Directory of Open Access Journals (Sweden)

    Lapointe François-Joseph

    2011-07-01

    Full Text Available Abstract Background We introduce several forest-based and network-based methods for exploring microbial evolution, and apply them to the study of thousands of genes from 30 strains of E. coli. This case study illustrates how additional analyses could offer fast heuristic alternatives to standard tree of life (TOL approaches. Results We use gene networks to identify genes with atypical modes of evolution, and genome networks to characterize the evolution of genetic partnerships between E. coli and mobile genetic elements. We develop a novel polychromatic quartet method to capture patterns of recombination within E. coli, to update the clanistic toolkit, and to search for the impact of lateral gene transfer and of pathogenicity on gene evolution in two large forests of trees bearing E. coli. We unravel high rates of lateral gene transfer involving E. coli (about 40% of the trees under study, and show that both core genes and shell genes of E. coli are affected by non-tree-like evolutionary processes. We show that pathogenic lifestyle impacted the structure of 30% of the gene trees, and that pathogenic strains are more likely to transfer genes with one another than with non-pathogenic strains. In addition, we propose five groups of genes as candidate mobile modules of pathogenicity. We also present strong evidence for recent lateral gene transfer between E. coli and mobile genetic elements. Conclusions Depending on which evolutionary questions biologists want to address (i.e. the identification of modules, genetic partnerships, recombination, lateral gene transfer, or genes with atypical evolutionary modes, etc., forest-based and network-based methods are preferable to the reconstruction of a single tree, because they provide insights and produce hypotheses about the dynamics of genome evolution, rather than the relative branching order of species and lineages. Such a methodological pluralism - the use of woods and webs - is to be encouraged to

  15. Apoptosis-like death, an extreme SOS response in Escherichia coli.

    Science.gov (United States)

    Erental, Ariel; Kalderon, Ziva; Saada, Ann; Smith, Yoav; Engelberg-Kulka, Hanna

    2014-07-15

    In bacteria, SOS is a global response to DNA damage, mediated by the recA-lexA genes, resulting in cell cycle arrest, DNA repair, and mutagenesis. Previously, we reported that Escherichia coli responds to DNA damage via another recA-lexA-mediated pathway resulting in programmed cell death (PCD). We called it apoptosis-like death (ALD) because it is characterized by membrane depolarization and DNA fragmentation, which are hallmarks of eukaryotic mitochondrial apoptosis. Here, we show that ALD is an extreme SOS response that occurs only under conditions of severe DNA damage. Furthermore, we found that ALD is characterized by additional hallmarks of eukaryotic mitochondrial apoptosis, including (i) rRNA degradation by the endoribonuclease YbeY, (ii) upregulation of a unique set of genes that we called extensive-damage-induced (Edin) genes, (iii) a decrease in the activities of complexes I and II of the electron transport chain, and (iv) the formation of high levels of OH˙ through the Fenton reaction, eventually resulting in cell death. Our genetic and molecular studies on ALD provide additional insight for the evolution of mitochondria and the apoptotic pathway in eukaryotes. Importance: The SOS response is the first described and the most studied bacterial response to DNA damage. It is mediated by a set of two genes, recA-lexA, and it results in DNA repair and thereby in the survival of the bacterial culture. We have shown that Escherichia coli responds to DNA damage by an additional recA-lexA-mediated pathway resulting in an apoptosis-like death (ALD). Apoptosis is a mode of cell death that has previously been reported only in eukaryotes. We found that E. coli ALD is characterized by several hallmarks of eukaryotic mitochondrial apoptosis. Altogether, our results revealed that recA-lexA is a DNA damage response coordinator that permits two opposite responses: life, mediated by the SOS, and death, mediated by the ALD. The choice seems to be a function of the degree

  16. DNA repair in DNA-polymerase-deficient mutants of Escherichia coli

    International Nuclear Information System (INIS)

    Smith, D.W.; Tait, R.C.; Harris, A.L.

    1975-01-01

    Escherichia coli mutants deficient in DNA polymerase I, in DNA polymerases I and II, or in DNA polymerase III can efficiently and completely execute excision-repair and postreplication repair of the uv-damaged DNA at 30 0 C and 43 0 C when assayed by alkaline sucrose gradients. Repair by Pol I - and Pol I - , Pol II - cells is inhibited by 1-β-D-arabinofuranosylcytosine (araC) at 43 0 C but not at 30 0 C, whereas that by Pol III - cells is insensitive to araC at any temperature. Thus, either Pol I or Pol III is required for complete and efficient repair, and in their absence Pol II mediates a limited, incomplete dark repair of uv-damaged DNA

  17. ESBL-producing Escherichia coli in Swedish gulls-A case of environmental pollution from humans?

    Directory of Open Access Journals (Sweden)

    Clara Atterby

    Full Text Available ESBL-producing bacteria are present in wildlife and the environment might serve as a resistance reservoir. Wild gulls have been described as frequent carriers of ESBL-producing E. coli strains with genotypic characteristics similar to strains found in humans. Therefore, potential dissemination of antibiotic resistance genes and bacteria between the human population and wildlife need to be further investigated. Occurrence and characterization of ESBL-producing E. coli in Swedish wild gulls were assessed and compared to isolates from humans, livestock and surface water collected in the same country and similar time-period. Occurrence of ESBL-producing E. coli in Swedish gulls is about three times higher in gulls compared to Swedish community carriers (17% versus 5% and the genetic characteristics of the ESBL-producing E. coli population in Swedish wild gulls and Swedish human are similar. ESBL-plasmids IncF- and IncI1-type carrying ESBL-genes blaCTX-M-15 or blaCTX-M-14 were most common in isolates from both gulls and humans, but there was limited evidence of clonal transmission. Isolates from Swedish surface water harbored similar genetic characteristics, which highlights surface waters as potential dissemination routes between wildlife and the human population. Even in a low-prevalence country such as Sweden, the occurrence of ESBL producing E. coli in wild gulls and the human population appears to be connected and the occurrence of ESBL-producing E. coli in Swedish gulls is likely a case of environmental pollution.

  18. ESBL-producing Escherichia coli in Swedish gulls-A case of environmental pollution from humans?

    Science.gov (United States)

    Atterby, Clara; Börjesson, Stefan; Ny, Sofia; Järhult, Josef D; Byfors, Sara; Bonnedahl, Jonas

    2017-01-01

    ESBL-producing bacteria are present in wildlife and the environment might serve as a resistance reservoir. Wild gulls have been described as frequent carriers of ESBL-producing E. coli strains with genotypic characteristics similar to strains found in humans. Therefore, potential dissemination of antibiotic resistance genes and bacteria between the human population and wildlife need to be further investigated. Occurrence and characterization of ESBL-producing E. coli in Swedish wild gulls were assessed and compared to isolates from humans, livestock and surface water collected in the same country and similar time-period. Occurrence of ESBL-producing E. coli in Swedish gulls is about three times higher in gulls compared to Swedish community carriers (17% versus 5%) and the genetic characteristics of the ESBL-producing E. coli population in Swedish wild gulls and Swedish human are similar. ESBL-plasmids IncF- and IncI1-type carrying ESBL-genes blaCTX-M-15 or blaCTX-M-14 were most common in isolates from both gulls and humans, but there was limited evidence of clonal transmission. Isolates from Swedish surface water harbored similar genetic characteristics, which highlights surface waters as potential dissemination routes between wildlife and the human population. Even in a low-prevalence country such as Sweden, the occurrence of ESBL producing E. coli in wild gulls and the human population appears to be connected and the occurrence of ESBL-producing E. coli in Swedish gulls is likely a case of environmental pollution.

  19. Microbiological water quality of Igapó Lake Londrina - PR and genotypic characterization of virulence factors associated with enteropathogenic Escherichia coli (EPEC and Shiga toxin-producing E. coli (STEC

    Directory of Open Access Journals (Sweden)

    Paulo Alfonso Schuroff

    2014-12-01

    Full Text Available This work aimed at the detection and quantification of Total Coliforms and Escherichia coli in Igapó Lake, in order to evaluate the quality of these waters as proper or unfit for recreation, in addition to the genotypic characterization of virulence factors associated with EPEC and STEC by PCR. The study area was the Igapó Lake I, II, III and IV. Samples were collected monthly from March 2011 to February 2012. The technique used for the detection and quantification of Total Coliforms and E. coli was the Colilert chromogenic substrate. In the technique of PCR, the eae and bfp genes were tested to characterize the typical EPEC pathotype; stx1, stx2, eae and hlyA the STEC pathotype and the samples that presented only the eae gene were characterized as atypical EPEC. According to CONAMA Resolution 357/2005, it has been observed that only Igapó Lake III was rated inappropriate for primary contact recreation, while for secondary contact recreation, all lakes were considered appropriate. Moreover, a strong relationship between rainfall and E. coli indices in Igapó Lake can be observed, which in dry months the quantity drastically decreases, while in rainy months the opposite relationship was observed. Of the 97 strains of E. coli isolated, two had the eae gene (atypical EPEC. None of the isolates contained genes stx1, stx2, bfp and hlyA. Thus, we hope to educate the population and public agencies of the importance of microbiological monitoring of recreational waters to prevent outbreaks of waterborne infections.

  20. Engineering Escherichia coli for improved ethanol production from gluconate.

    Science.gov (United States)

    Hildebrand, Amanda; Schlacta, Theresa; Warmack, Rebeccah; Kasuga, Takao; Fan, Zhiliang

    2013-10-10

    We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Association between the porcine Escherichia coli F18 receptor genotype and phenotype and susceptibility to colonisation and postweaning diarrhoea caused by E-coli O138 : F18

    DEFF Research Database (Denmark)

    Frydendahl, K.; Jensen, Tim Kåre; Andersen, Jens Strodl

    2003-01-01

    Porcine postweaning Escherichia coli enteritis is a cause of significant morbidity and mortality in pigs worldwide, and effective prevention remains an unsolved problem. This study examined the correlation between susceptibility of pigs to experimental infection with an E. coli F18 strain...... and the porcine intestinal F18 receptor genotypes. Thirty-one pigs classified as either belonging to the susceptible or the resistant genotype were inoculated with cultures of an E. coli 0138:F18 isolated from a pig with postweaning diarrhoea. Susceptibility to colonisation and diarrhoea was assessed by clinical...... and heterozygotic susceptible pigs. Faecal shedding of the challenge strain correlated with the genetic receptor profile. Twenty pigs examined immunohistochemically revealed focal to extensive small intestinal mucosal colonisation by E. coli O138:F18 in nine of 10 susceptible and three of 10 resistant pigs. Results...

  2. Lifespan and reproduction of isoclonal individual E.coli in different environments

    DEFF Research Database (Denmark)

    Jouvet, Lionel; Steiner, Ulrich

    Lifespan and reproduction are key fitness components, both of which are influences by genetics and the environment. Tracking large numbers of genotypically known individuals throughout their lives in known environments has been challenging. Here we show for isogenic individual E. coli bacteria...... under controlled environments how demographic parameters and distributions in reproduction and survival change across environments. We achieve this by using a microfluidic device that traps thousands of individual E. coli cells and tracks their division (reproduction) over their lifespan. Our results...

  3. Genetics and developmental biology

    International Nuclear Information System (INIS)

    Barnett, W.E.

    1975-01-01

    Progress is reported on research activities in the fields of mutagenesis in Haemophilus influenzae and Escherichia coli; radioinduced chromosomal aberrations in mammalian germ cells; effects of uv radiation on xeroderma pigmentosum skin cells; mutations in Chinese hamster ovary cells; radioinduced hemoglobin variants in the mouse; analysis of mutants in yeast; Drosophila genetics; biochemical genetics of Neurospora; DNA polymerase activity in Xenopus laevis oocytes; uv-induced damage in Bacillus subtilis; and others

  4. Multilocus sequence typing of commensal and enteropathogenic Escherichia coli from domestic and wild lagomorphs in Italy

    Directory of Open Access Journals (Sweden)

    Giorgia Dotto

    2015-12-01

    Full Text Available The aim of the study was to determine the multilocus sequence types of Escherichia coli from diseased farm rabbits and apparently healthy wild lagomorphs, and the genetic relatedness among them. Fifty-five enteropathogenic E. coli from reared rabbits and 32 from wild rabbits and hares were characterised by multilocus sequence typing (MLST according to the Michigan State University EcMLST scheme. Isolates were differentiated into 37 sequence types (STs, which were grouped into 8 clonal complexes (CCs. The most common ST was ST140 (CC31, followed by ST238 and ST119 (CC17. MLST analysis revealed 22 novel STs. Phylogenetic analyses showed a heterogeneous distribution of STs into 3 clusters of genetically related strains. The genetic relationship among STs of different origin and the detection of new, as well as previously described STs as human pathogens, indicate a widespread distribution and adaptability of particular lineages to different hosts. These findings highlight the need for further research to improve the knowledge about E. coli populations colonising the gut of lagomorphs and their zoonotic potential.

  5. Phenotypic H-Antigen Typing by Mass Spectrometry Combined with Genetic Typing of H Antigens, O Antigens, and Toxins by Whole-Genome Sequencing Enhances Identification of Escherichia coli Isolates.

    Science.gov (United States)

    Cheng, Keding; Chui, Huixia; Domish, Larissa; Sloan, Angela; Hernandez, Drexler; McCorrister, Stuart; Robinson, Alyssia; Walker, Matthew; Peterson, Lorea A M; Majcher, Miles; Ratnam, Sam; Haldane, David J M; Bekal, Sadjia; Wylie, John; Chui, Linda; Tyler, Shaun; Xu, Bianli; Reimer, Aleisha; Nadon, Celine; Knox, J David; Wang, Gehua

    2016-08-01

    Mass spectrometry-based phenotypic H-antigen typing (MS-H) combined with whole-genome-sequencing-based genetic identification of H antigens, O antigens, and toxins (WGS-HOT) was used to type 60 clinical Escherichia coli isolates, 43 of which were previously identified as nonmotile, H type undetermined, or O rough by serotyping or having shown discordant MS-H and serotyping results. Whole-genome sequencing confirmed that MS-H was able to provide more accurate data regarding H antigen expression than serotyping. Further, enhanced and more confident O antigen identification resulted from gene cluster based typing in combination with conventional typing based on the gene pair comprising wzx and wzy and that comprising wzm and wzt The O antigen was identified in 94.6% of the isolates when the two genetic O typing approaches (gene pair and gene cluster) were used in conjunction, in comparison to 78.6% when the gene pair database was used alone. In addition, 98.2% of the isolates showed the existence of genes for various toxins and/or virulence factors, among which verotoxins (Shiga toxin 1 and/or Shiga toxin 2) were 100% concordant with conventional PCR based testing results. With more applications of mass spectrometry and whole-genome sequencing in clinical microbiology laboratories, this combined phenotypic and genetic typing platform (MS-H plus WGS-HOT) should be ideal for pathogenic E. coli typing. Copyright © 2016 Cheng et al.

  6. Aging patterns in different environments of isoclonal individual E.coli

    DEFF Research Database (Denmark)

    Jouvet, Lionel; Steiner, Ulrich

    Senescence patterns are influenced by genetics, the environment and often neglected stochastic events. Here, we work with isogenic populations and control the environment by using a high throughput microfluidic device, that traps thousands of individual E. coli cells and tracks them over...

  7. Aging patterns in different environments of isoclonal individual E.coli

    DEFF Research Database (Denmark)

    Jouvet, Lionel; Steiner, Ulrich

    Environmental and genetic variability shape demographic patterns, but in most studies these factors are not controlled and only indirect inferences on their demographic effect can be made. Here, we show for isogenic individual E. coli bacteria, under highly controlled environments of a microfluidic...

  8. Introduction to focus issue: quantitative approaches to genetic networks.

    Science.gov (United States)

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  9. ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli

    OpenAIRE

    ANGGREINI, RAHAYU

    2015-01-01

    2015 RAHAYU ANGGREINI coli Penelitian ini bertujuan untuk melakukan identifikasi cemaran bakteri E. coli O157:H7 pada daging sapi di kota Makassar. Sampel pada penelitian ini sebanyak 72 sampel Kata Kunci : Daging sapi, pasar tradisional, E. coli, E. coli O157:H7, kontaminasi bakteri, identifikasi E. coli O157:H7.

  10. Mathematical model of rhamnolipid production using E.coli bacteria

    Science.gov (United States)

    Adham, Muhammad Fariduddin; Apri, Mochamad; Moeis, Maelita Ramdani

    2018-03-01

    Rhamnolipid is one of biosurfactants that is widely used in many industries. Despite its wide use, production of rhamnolipid usually involves a pathogen that may endanger our health. To tackle this issue, in iGEM (International Genetically Engineered Machine) competition 2015, our team engineered Escherichia coli (E.coli) to produce rhamnolipid. The bacteria were then put into medium containing glucose and lactose. It turned out that bacteria E. coli produced lower rhamnolipid than that by pseudomonas, therefore a good strategy is required to improve their productivity. We present a mathematical model to describe the production of rhamnolipid by the engineered E coli. Using bifurcation analysis, the equilibrium points of the model and their stabilities were analyzed as the amount of lactose was varied. We show that the system produces bistability behavior for some interval values of lactose. From this analysis we found that to guarantee a high production of rhamnolipid, a high level of lactose is required. To maintain the productivity, however, it is sufficient to maintain the lactose level above a certain threshold value.

  11. Synthesis of avenanthramides using engineered Escherichia coli.

    Science.gov (United States)

    Lee, Su Jin; Sim, Geun Young; Kang, Hyunook; Yeo, Won Seok; Kim, Bong-Gyu; Ahn, Joong-Hoon

    2018-03-22

    Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate:coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns

  12. Mechanisms of the radioprotective effect of cysteamine in Escherichia coli

    International Nuclear Information System (INIS)

    Korystov, Yu.N.; Vexler, F.B.

    1988-01-01

    The values of the oxygen effect (m) and the maximal protective effect of cysteamine (DMF*) were estimated for four Escherichia coli strains: AB1157 (wild type), AB1886 (uvrA), AB2463 (recA), and p3478 (polA). A correlation made between DMF* and m as well as the kinetics of the increase of DMF with oxygen depletion showed that the protective effect of cysteamine is realized by three mechanisms: (i) anoxia achieved by oxygen reduction, with the DMF varying from 2.2 to 4.2 for different E. coli strains (this protection is the major contribution to the entire mechanism); (ii) lowering of the indirect radiation effect; i.e., for 50 mM cysteamine DMF does not exceed 1.1; and (iii) increase of the efficiency of enzymatic repair. The latter effect of cysteamine is registered only with the wild-type E. coli, the DMF being not less than 1.4

  13. A systematic analysis of TCA Escherichia coli mutants reveals suitable genetic backgrounds for enhanced hydrogen and ethanol production using glycerol as main carbon source.

    Science.gov (United States)

    Valle, Antonio; Cabrera, Gema; Muhamadali, Howbeer; Trivedi, Drupad K; Ratray, Nicholas J W; Goodacre, Royston; Cantero, Domingo; Bolivar, Jorge

    2015-09-01

    Biodiesel has emerged as an environmentally friendly alternative to fossil fuels; however, the low price of glycerol feed-stocks generated from the biodiesel industry has become a burden to this industry. A feasible alternative is the microbial biotransformation of waste glycerol to hydrogen and ethanol. Escherichia coli, a microorganism commonly used for metabolic engineering, is able to biotransform glycerol into these products. Nevertheless, the wild type strain yields can be improved by rewiring the carbon flux to the desired products by genetic engineering. Due to the importance of the central carbon metabolism in hydrogen and ethanol synthesis, E. coli single null mutant strains for enzymes of the TCA cycle and other related reactions were studied in this work. These strains were grown anaerobically in a glycerol-based medium and the concentrations of ethanol, glycerol, succinate and hydrogen were analysed by HPLC and GC. It was found that the reductive branch is the more relevant pathway for the aim of this work, with malate playing a central role. It was also found that the putative C4-transporter dcuD mutant improved the target product yields. These results will contribute to reveal novel metabolic engineering strategies for improving hydrogen and ethanol production by E. coli. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cephalosporin-resistant Escherichia coli isolated from farm-workers and pigs in northern Vietnam

    DEFF Research Database (Denmark)

    Dang, Son T T; Bortolaia, Valeria; Thi, Nhat T

    2018-01-01

    OBJECTIVE Antimicrobial-resistant bacteria may be transmitted between farm workers and livestock. This study aimed to determine and compare the prevalence and the genetic determinants of cefotaxime-resistant and ESBL-producing Escherichia coli in faecal isolates from workers and pigs at 100 farms...... in northern Vietnam. METHODS Farmers were interviewed about antimicrobial usage in livestock. Escherichia coli isolated on MacConkey agar containing 2 mg/L of cefotaxime (CTX) were tested for susceptibility to different cephalosporins by disk diffusion and screened for occurrence of ESBL-encoding genes by PCR......% in pigs. In 76% of farms, CTX-resistant E. coli were shared by pigs and farm workers. ESBL-producing E. coli were detected from pigs and workers at 66 and 69 farms, respectively. The ESBL phenotype was mainly mediated by CTX-M and to a lesser extent by TEM. Occurrence of blaCTX-M was similar in E. coli...

  15. Resonance energy transfer study on the proximity relationship between the GTP binding site and the rifampicin binding site of Escherichia coli RNA polymerase

    International Nuclear Information System (INIS)

    Kumar, K.P.; Chatterji, D.

    1990-01-01

    Terbium(III) upon complexation with guanosine 5'-triphosphate showed remarkable enhancement of fluorescence emission at 488 and 545 nm when excited at 295 nm. Analysis of the binding data yielded a value for the mean K d between Tb(III) and GTP of 0.2 μM, with three binding sites for TB(III) on GTP. 31 P and 1 H NMR measurements revealed that Tb(III) mainly binds the phosphate moiety of GTP. Fluorescence titration of the emission signals of the TbGTP complex with varying concentrations of Escherichia coli RNA polymerase resulted in a K d values of 4 μM between the TbGTP and the enzyme. It was observed that TbGTP can be incorporated in the place of GTP during E. coli RNA polymerase catalyzed abortive synthesis of dinucleotide tetraphosphate at T7A2 promoter. Both the substrate TbGTP and the inhibitor of the initiation of transcription rifampicin bind to the β-subunit of E. coli RNA polymerase. This allows the measurement of the fluorescence excited-state energy transfer from the donor TbGTP-RNA polymerase to the acceptor rifampicin. Both emission bands of Tb(III) overlap with the rifampicin absorption, and the distances at 50% efficiency of energy transfer were calculated to be 28 and 24 angstrom for the 488- and 545-nm emission bands, respectively. The distance between the substrate binding site and the rifampicin binding site on the β-subunit of E. coli RNA polymerase was measured to be around 30 angstrom. This suggest that the nature of inhibition of transcription by rifampicin is essentially noncompetitive with the substrate

  16. The Enzymology of Protein Translocation across the Escherichia coli Plasma Membrane

    NARCIS (Netherlands)

    Wickner, William; Driessen, Arnold J.M.; Hartl, Franz-Ulrich

    1991-01-01

    Converging physiological, genetic, and biochemical studies have established the salient features of preprotein translocation across the plasma membrane of Escherichia coli. Translocation is catalyzed by two proteins, a soluble chaperone and a membrane-bound translocase. SecB, the major chaperone for

  17. Overexpression and surface localization of the Chlamydia trachomatis major outer membrane protein in Escherichia coli

    DEFF Research Database (Denmark)

    Koehler, JF; Birkelund, Svend; Stephens, RS

    1992-01-01

    The Chlamydia trachomatis major outer membrane protein (MOMP) is the quantitatively predominant surface protein which has important functional, structural and antigenic properties. We have cloned and overexpressed the MOMP in Escherichia coli. The MOMP is surface exposed in C. trachomatis....... The induction of MOMP expression had a rapidly lethal effect on the L2rMOMP E. coli clone. Although no genetic system exists for Chlamydia, development of a stable, inducible E. coli clone which overexpresses the chlamydial MOMP permits a study of the biological properties of the MOMP, including...

  18. Physiological responses of Escherichia coli to far-ultraviolet radiation

    International Nuclear Information System (INIS)

    Swenson, P.A.

    1976-01-01

    The following topics are reviewed: photochemical damage to DNA; measurement of cell survival; DNA repair processes and genetics of radiation sensitivity; degradation of DNA and RNA; biochemical and physiological consequences; reactivation of bacteriophage in Escherichia coli cells; filament formation; influence of growth phase on survival after uv irradiation; and post-uv-irradiation treatment

  19. Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B.

    Science.gov (United States)

    Ulvatne, Hilde; Haukland, Hanne Husom; Samuelsen, Ørjan; Krämer, Manuela; Vorland, Lars H

    2002-10-01

    Lactoferricin B is a cationic antimicrobial peptide derived from the N-terminal part of bovine lactoferrin. The effect of bacterial proteases on the antibacterial activity of lactoferricin B towards Escherichia coli and Staphylococcus aureus was investigated using various protease inhibitors and protease-deficient E. coli mutants. Sodium-EDTA, a metalloprotease inhibitor, was the most efficient inhibitors in both species, but combinations of sodium-EDTA with other types of protease inhibitor gave a synergic effect. The results indicate that several groups of proteases are involved in resistance to lactoferricin B in both E. coli and S. aureus. We also report that genetic inactivation of the heat shock-induced serine protease DegP increased the susceptibility to lactoferricin B in E. coli, suggesting that this protease, at least, is involved in reduced susceptibility to lactoferricin B.

  20. Genetics Home Reference: mitochondrial complex III deficiency

    Science.gov (United States)

    ... the energy from food into a form that cells can use. Complex III is one of several complexes that ... in mtDNA. Because egg cells, but not sperm cells, contribute mitochondria to the ... from their mother. These disorders can appear in every generation of ...

  1. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  2. Induction of genetic recombination in the lambda bacteriophage by ultraviolet irradiation of the Escherichia Coli cells. III. Role of the ruvA and recN genes

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1987-05-01

    The objective of this work is to determine the paper of the genes ruvA and recN in the stimulation of the recombination of Lambda for UV irradiation of Escherichia Coli, taking into account that both genes are inducible, they belong to the group of genes that participate in the SOS response and that a deficiency in its expression reduces the capacity to repair and recombiner the DNA. (Author)

  3. Structure of the CFA/III major pilin subunit CofA from human enterotoxigenic Escherichia coli determined at 0.90 Å resolution by sulfur-SAD phasing.

    Science.gov (United States)

    Fukakusa, Shunsuke; Kawahara, Kazuki; Nakamura, Shota; Iwashita, Takaki; Baba, Seiki; Nishimura, Mitsuhiro; Kobayashi, Yuji; Honda, Takeshi; Iida, Tetsuya; Taniguchi, Tooru; Ohkubo, Tadayasu

    2012-10-01

    CofA, a major pilin subunit of colonization factor antigen III (CFA/III), forms pili that mediate small-intestinal colonization by enterotoxigenic Escherichia coli (ETEC). In this study, the crystal structure of an N-terminally truncated version of CofA was determined by single-wavelength anomalous diffraction (SAD) phasing using five sulfurs in the protein. Given the counterbalance between anomalous signal strength and the undesired X-ray absorption of the solvent, diffraction data were collected at 1.5 Å resolution using synchrotron radiation. These data were sufficient to elucidate the sulfur substructure at 1.38 Å resolution. The low solvent content (29%) of the crystal necessitated that density modification be performed with an additional 0.9 Å resolution data set to reduce the phase error caused by the small sulfur anomalous signal. The CofA structure showed the αβ-fold typical of type IVb pilins and showed high structural homology to that of TcpA for toxin-coregulated pili of Vibrio cholerae, including spatial distribution of key residues critical for pilin self-assembly. A pilus-filament model of CofA was built by computational docking and molecular-dynamics simulation using the previously reported filament model of TcpA as a structural template. This model revealed that the CofA filament surface was highly negatively charged and that a 23-residue-long loop between the α1 and α2 helices filled the gap between the pilin subunits. These characteristics could provide a unique binding epitope for the CFA/III pili of ETEC compared with other type IVb pili.

  4. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany

    DEFF Research Database (Denmark)

    Rasko, David A; Webster, Dale R; Sahl, Jason W

    2011-01-01

    A large outbreak of diarrhea and the hemolytic-uremic syndrome caused by an unusual serotype of Shiga-toxin-producing Escherichia coli (O104:H4) began in Germany in May 2011. As of July 22, a large number of cases of diarrhea caused by Shiga-toxin-producing E. coli have been reported--3167 without...... the hemolytic-uremic syndrome (16 deaths) and 908 with the hemolytic-uremic syndrome (34 deaths)--indicating that this strain is notably more virulent than most of the Shiga-toxin-producing E. coli strains. Preliminary genetic characterization of the outbreak strain suggested that, unlike most of these strains......, it should be classified within the enteroaggregative pathotype of E. coli....

  5. Mechanism of replication of ultraviolet-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli. Implications for SOS mutagenesis

    International Nuclear Information System (INIS)

    Livneh, Z.

    1986-01-01

    Replication of UV-irradiated oligodeoxynucleotide-primed single-stranded phi X174 DNA with Escherichia coli DNA polymerase III holoenzyme in the presence of single-stranded DNA-binding protein was investigated. The extent of initiation of replication on the primed single-stranded DNA was not altered by the presence of UV-induced lesions in the DNA. The elongation step exhibited similar kinetics when either unirradiated or UV-irradiated templates were used. Inhibition of the 3'----5' proofreading exonucleolytic activity of the polymerase by dGMP or by a mutD mutation did not increase bypass of pyrimidine photodimers, and neither did purified RecA protein influence the extent of photodimer bypass as judged by the fraction of full length DNA synthesized. Single-stranded DNA-binding protein stimulated bypass since in its absence the fraction of full length DNA decreased 5-fold. Termination of replication at putative pyrimidine dimers involved dissociation of the polymerase from the DNA, which could then reinitiate replication at other available primer templates. Based on these observations a model for SOS-induced UV mutagenesis is proposed

  6. Bioaugmentation on decolorization of C.I. Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR)

    International Nuclear Information System (INIS)

    Jin Ruofei; Yang Hua; Zhang Aili; Wang Jing; Liu Guangfei

    2009-01-01

    The study showed that Escherichia coli JM109 (pGEX-AZR), the genetically engineered microorganism (GEM) with higher ability to decolorize azo dyes, bioaugmented successfully the dye wastewater bio-treatment systems to enhance C.I. Direct Blue 71 (DB 71) decolorization. The control and bioaugmented reactors failed at a around pH 5.0. However, the bioaugmented one succeeded at around pH 9.0, the influent DB 71 concentration was 150 mg/L, DB 71 concentration was decreased to 27.4 mg/L in 12 h. The 1-3% NaCl concentration of bioaugmented reactors had no definite influence on decolorization, DB 71 concentration was decreased to 12.6 mg/L in 12 h. GEM was added into anaerobic sequencing batch reactors (AnSBRs) to enhance DB 71 decolorization. Continuous operations of the control and bioaugmented AnSBRs showed that E. coli JM109 (pGEX-AZR) could bioaugment decolorization. The concentrations of activated sludge and GEM were still more than 2.80 g/L and 1.5 x 10 6 cells/mL, respectively, in the bioaugmented AnSBR. All the microbial communities changed indistinctively with time. The microbial community structures of the control AnSBR were similar to those of the bioaugmented one

  7. Bioaugmentation on decolorization of C.I. Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR)

    Energy Technology Data Exchange (ETDEWEB)

    Jin Ruofei; Yang Hua; Zhang Aili; Wang Jing [School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023 (China); Liu Guangfei [School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023 (China)], E-mail: guangfeiliu@yahoo.com.cn

    2009-04-30

    The study showed that Escherichia coli JM109 (pGEX-AZR), the genetically engineered microorganism (GEM) with higher ability to decolorize azo dyes, bioaugmented successfully the dye wastewater bio-treatment systems to enhance C.I. Direct Blue 71 (DB 71) decolorization. The control and bioaugmented reactors failed at a around pH 5.0. However, the bioaugmented one succeeded at around pH 9.0, the influent DB 71 concentration was 150 mg/L, DB 71 concentration was decreased to 27.4 mg/L in 12 h. The 1-3% NaCl concentration of bioaugmented reactors had no definite influence on decolorization, DB 71 concentration was decreased to 12.6 mg/L in 12 h. GEM was added into anaerobic sequencing batch reactors (AnSBRs) to enhance DB 71 decolorization. Continuous operations of the control and bioaugmented AnSBRs showed that E. coli JM109 (pGEX-AZR) could bioaugment decolorization. The concentrations of activated sludge and GEM were still more than 2.80 g/L and 1.5 x 10{sup 6} cells/mL, respectively, in the bioaugmented AnSBR. All the microbial communities changed indistinctively with time. The microbial community structures of the control AnSBR were similar to those of the bioaugmented one.

  8. A Multi-Country Cross-Sectional Study of Vaginal Carriage of Group B Streptococci (GBS and Escherichia coli in Resource-Poor Settings: Prevalences and Risk Factors.

    Directory of Open Access Journals (Sweden)

    Piet Cools

    Full Text Available One million neonates die each year in low- and middle-income countries because of neonatal sepsis; group B Streptococcus (GBS and Escherichia coli are the leading causes. In sub-Saharan Africa, epidemiological data on vaginal GBS and E. coli carriage, a prerequisite for GBS and E. coli neonatal sepsis, respectively, are scarce but necessary to design and implement prevention strategies. Therefore, we assessed vaginal GBS and E. coli carriage rates and risk factors and the GBS serotype distribution in three sub-Saharan countries.A total of 430 women from Kenya, Rwanda and South Africa were studied cross-sectionally. Vaginal carriage of GBS and E. coli, and GBS serotype were assessed using molecular techniques. Risk factors for carriage were identified using multivariable logistic regression analysis.Vaginal carriage rates in reference groups from Kenya and South Africa were 20.2% (95% CI, 13.7-28.7% and 23.1% (95% CI, 16.2-31.9%, respectively for GBS; and 25.0% (95% CI, 17.8-33.9% and 27.1% (95% CI, 19.6-36.2%, respectively for E. coli. GBS serotypes Ia (36.8%, V (26.3% and III (14.0% were most prevalent. Factors independently associated with GBS and E. coli carriage were Candida albicans, an intermediate vaginal microbiome, bacterial vaginosis, recent vaginal intercourse, vaginal washing, cervical ectopy and working as a sex worker. GBS and E. coli carriage were positively associated.Reduced vaginal GBS carriage rates might be accomplished by advocating behavioral changes such as abstinence from sexual intercourse and by avoidance of vaginal washing during late pregnancy. It might be advisable to explore the inclusion of vaginal carriage of C. albicans, GBS, E. coli and of the presence of cervical ectopy in a risk- and/or screening-based administration of antibiotic prophylaxis. Current phase II GBS vaccines (a trivalent vaccine targeting serotypes Ia, Ib, and III, and a conjugate vaccine targeting serotype III would not protect the majority of

  9. Genetic Structure and Antimicrobial Resistance of Escherichia coli and Cryptic Clades in Birds with Diverse Human Associations.

    Science.gov (United States)

    Blyton, Michaela D J; Pi, Hongfei; Vangchhia, Belinda; Abraham, Sam; Trott, Darren J; Johnson, James R; Gordon, David M

    2015-08-01

    The manner and extent to which birds associate with humans may influence the genetic attributes and antimicrobial resistance of their commensal Escherichia communities through strain transmission and altered selection pressures. In this study, we determined whether the distribution of the different Escherichia coli phylogenetic groups and cryptic clades, the occurrence of 49 virulence associated genes, and/or the prevalence of resistance to 12 antimicrobials differed between four groups of birds from Australia with contrasting types of human association. We found that birds sampled in suburban and wilderness areas had similar Escherichia communities. The Escherichia communities of backyard domestic poultry were phylogenetically distinct from the Escherichia communities sourced from all other birds, with a large proportion (46%) of poultry strains belonging to phylogenetic group A and a significant minority (17%) belonging to the cryptic clades. Wild birds sampled from veterinary and wildlife rehabilitation centers (in-care birds) carried Escherichia isolates that possessed particular virulence-associated genes more often than Escherichia isolates from birds sampled in suburban and wilderness areas. The Escherichia isolates from both the backyard poultry and in-care birds were more likely to be multidrug resistant than the Escherichia isolates from wild birds. We also detected a multidrug-resistant E. coli strain circulating in a wildlife rehabilitation center, reinforcing the importance of adequate hygiene practices when handling and caring for wildlife. We suggest that the relatively high frequency of antimicrobial resistance in the in-care birds and backyard poultry is due primarily to the use of antimicrobials in these animals, and we recommend that the treatment protocols used for these birds be reviewed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Tir Is Essential for the Recruitment of Tks5 to Enteropathogenic Escherichia coli Pedestals

    DEFF Research Database (Denmark)

    Jensen, Helene Halkjær; Pedersen, Hans Nymand; Stenkjær, Eva

    2015-01-01

    Abstract Enteropathogenic Escherichia coli (EPEC) is a bacterial pathogen that infects the epithelial lining of the small intestine and causes diarrhea. Upon attachment to the intestinal epithe- lium, EPEC uses a Type III Secretion System to inject its own high affinity receptor Translo- cated in...

  11. The absence of the luxS gene increases swimming motility and flagella synthesis in Escherichia coli K12

    International Nuclear Information System (INIS)

    Ling, Hua; Kang, Aram; Tan, Mui Hua; Qi, Xiaobao; Chang, Matthew Wook

    2010-01-01

    Research highlights: → This paper provides the first evidence that luxS deletion enhances swimming motility and flagella synthesis in Escherichia coli K12 based on motility, transcriptome, and scanning electron microscopy analyses. → A conceptual genetic regulatory network underlying the increased flagella synthesis was constructed based on the transcriptome and network component analyses, and previously known regulatory relations. → The genetic regulatory network suggests that the increased flagella synthesis and motility might be contributed to by increased flhDC transcription level and/or decreased c-di-GMP concentration in luxS-deficient E. coli. -- Abstract: Despite the significant role of S-ribosylhomocysteinase (LuxS) in the activated methyl cycle pathway and quorum sensing, the connectivity between luxS and other cellular functions remains incomplete. Herein, we show that luxS deletion significantly increases swimming motility and flagella synthesis in Escherichia coli K12 using motility, transcriptome, and scanning electron microscopy assays. Further, based on the transcriptome and network component analyses, and known regulatory relations, we propose a conceptual genetic regulatory network underlying the increased flagella synthesis in response to luxS deletion.

  12. The absence of the luxS gene increases swimming motility and flagella synthesis in Escherichia coli K12

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Hua; Kang, Aram; Tan, Mui Hua; Qi, Xiaobao [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Chang, Matthew Wook, E-mail: Matthewchang@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore)

    2010-10-29

    Research highlights: {yields} This paper provides the first evidence that luxS deletion enhances swimming motility and flagella synthesis in Escherichia coli K12 based on motility, transcriptome, and scanning electron microscopy analyses. {yields} A conceptual genetic regulatory network underlying the increased flagella synthesis was constructed based on the transcriptome and network component analyses, and previously known regulatory relations. {yields} The genetic regulatory network suggests that the increased flagella synthesis and motility might be contributed to by increased flhDC transcription level and/or decreased c-di-GMP concentration in luxS-deficient E. coli. -- Abstract: Despite the significant role of S-ribosylhomocysteinase (LuxS) in the activated methyl cycle pathway and quorum sensing, the connectivity between luxS and other cellular functions remains incomplete. Herein, we show that luxS deletion significantly increases swimming motility and flagella synthesis in Escherichia coli K12 using motility, transcriptome, and scanning electron microscopy assays. Further, based on the transcriptome and network component analyses, and known regulatory relations, we propose a conceptual genetic regulatory network underlying the increased flagella synthesis in response to luxS deletion.

  13. Characterization of a Large Antibiotic Resistance Plasmid Found in Enteropathogenic Escherichia coli Strain B171 and Its Relatedness to Plasmids of Diverse E. coli and Shigella Strains.

    Science.gov (United States)

    Hazen, Tracy H; Michalski, Jane; Nagaraj, Sushma; Okeke, Iruka N; Rasko, David A

    2017-09-01

    Enteropathogenic Escherichia coli (EPEC) is a leading cause of severe infantile diarrhea in developing countries. Previous research has focused on the diversity of the EPEC virulence plasmid, whereas less is known regarding the genetic content and distribution of antibiotic resistance plasmids carried by EPEC. A previous study demonstrated that in addition to the virulence plasmid, reference EPEC strain B171 harbors a second, larger plasmid that confers antibiotic resistance. To further understand the genetic diversity and dissemination of antibiotic resistance plasmids among EPEC strains, we describe the complete sequence of an antibiotic resistance plasmid from EPEC strain B171. The resistance plasmid, pB171_90, has a completed sequence length of 90,229 bp, a GC content of 54.55%, and carries protein-encoding genes involved in conjugative transfer, resistance to tetracycline ( tetA ), sulfonamides ( sulI ), and mercury, as well as several virulence-associated genes, including the transcriptional regulator hha and the putative calcium sequestration inhibitor ( csi ). In silico detection of the pB171_90 genes among 4,798 publicly available E. coli genome assemblies indicates that the unique genes of pB171_90 ( csi and traI ) are primarily restricted to genomes identified as EPEC or enterotoxigenic E. coli However, conserved regions of the pB171_90 plasmid containing genes involved in replication, stability, and antibiotic resistance were identified among diverse E. coli pathotypes. Interestingly, pB171_90 also exhibited significant similarity with a sequenced plasmid from Shigella dysenteriae type I. Our findings demonstrate the mosaic nature of EPEC antibiotic resistance plasmids and highlight the need for additional sequence-based characterization of antibiotic resistance plasmids harbored by pathogenic E. coli . Copyright © 2017 American Society for Microbiology.

  14. Improvements In Ethanologenic Escherichia Coli and Klebsiella Oxytoca

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David Nunn

    2010-09-30

    The current Verenium cellulosic ethanol process is based on the dilute-acid pretreatment of a biomass feedstock, followed by a two-stage fermentation of the pentose sugar-containing hydrolysate by a genetically modified ethanologenic Escherichia coli strain and a separate simultaneous saccharification-fermentation (SSF) of the cellulosic fraction by a genetically modified ethanologenic Klebsiella oxytoca strain and a fungal enzyme cocktail. In order to reduce unit operations and produce a fermentation beer with higher ethanol concentrations to reduce distillation costs, we have proposed to develop a simultaneous saccharification co-fermentation (SScF) process, where the fermentation of the pentose-containing hydrolysate and cellulosic fraction occurs within the same fermentation vessel. In order to accomplish this goal, improvements in the ethanologens must be made to address a number of issues that arise, including improved hydrolysate tolerance, co-fermentation of the pentose and hexose sugars and increased ethanol tolerance. Using a variety of approaches, including transcriptomics, strain adaptation, metagenomics and directed evolution, this work describes the efforts of a team of scientists from Verenium, University of Florida, Massachusetts Institute of Technology and Genomatica to improve the E. coli and K. oxytoca ethanologens to meet these requirements.

  15. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem.

    Science.gov (United States)

    Russo, Thomas A; Johnson, James R

    2003-04-01

    Escherichia coli is probably the best-known bacterial species and one of the most frequently isolated organisms from clinical specimens. Despite this, underappreciation and misunderstandings exist among medical professionals and the lay public alike regarding E. coli as an extraintestinal pathogen. Underappreciated features include (i) the wide variety of extraintestinal infections E. coli can cause, (ii) the high incidence and associated morbidity, mortality, and costs of these diverse clinical syndromes, (iii) the pathogenic potential of different groups of E. coli strains for causing intestinal versus extraintestinal disease, and (iv) increasing antimicrobial resistance. In this era in which health news often sensationalizes uncommon infection syndromes or pathogens, the strains of E. coli that cause extraintestinal infection are an increasingly important endemic problem and underappreciated "killers". Billions of health care dollars, millions of work days, and hundreds of thousands of lives are lost each year to extraintestinal infections due to E. coli. New treatments and prevention measures will be needed for improved outcomes and a diminished disease burden.

  16. Phylogenetic analysis of Escherichia coli isolates from healthy and diarrhoeic calves in Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    M. Barzan

    2017-03-01

    Full Text Available Escherichia coli is a normal inhabitant of the gastrointestinal tract of vertebrates. Certain Escherichia coli strains have been associated with neonatal diarrhoea in ruminants. These strains can be assigned to one of the four main phylogenetic groups, A, B1, B2 and D. Several studies have shown the rela-tionship between phylogeny and pathogenicity of E. coli, a great deal can be obtained by determining the phylogroup of unknown E. coli strains. In this study, we aimed to evaluate the influence of diar-rhoea on the genetic composition of E. coli populations isolated from calves. A total of 80 Es-cherichia coli isolates were obtained from healthy and diarrhoeic calves. Phylogenetic grouping was done based on the Clermont triplex PCR method using primers targeted at three genetic markers, chuA, yjaA and TspE4.C2. According to our results, phylogenetic group A strains was the most prevalent in both healthy (37.5% and diarrhoeic calves (55%. Group B1 contained 27.5% of isolates in healthy calves, followed by group B2 (17.5%, and group D (7.5%. Also, four isolates from healthy calves were not included in the major phylogenetic groups or subgroups. A total of 14% and 4% of isolates from diarrhoeic calves beloned to phylogroups B2 and D respectively. Although no isolate from diarrhoeic calves was found to belong to group B1, there was no significant difference between healthy and diarrhoeic calves for other phylogroups. There was not a dramatic shift in E. coli phylogroup/subgroup due to occurrence of diarrhoea in calves, except for phylogroup B1 which was higher in healthy calves. This can be due to the difference in secretions of digestive system in diarrhoeic calves which can prevent the conditions for instability of Escherichia coli isolates of phy-logroup B1. The majority of isolates from both healthy and diarrhoeic calves belonged to non-pathogenic phylogentic group A and B1.

  17. Molecular characterization and genetic diversity of ESBL-producing Escherichia coli colonizing the migratory Franklin's gulls (Leucophaeus pipixcan) in Antofagasta, North of Chile.

    Science.gov (United States)

    Báez, John; Hernández-García, Marta; Guamparito, Constanza; Díaz, Sofía; Olave, Abdon; Guerrero, Katherine; Cantón, Rafael; Baquero, Fernando; Gahona, Joselyne; Valenzuela, Nicomedes; Del Campo, Rosa; Silva, Juan

    2015-02-01

    The role of wild animals, particularly migratory birds, in the dissemination of antibiotic-resistant bacteria between geographically distant ecosystems is usually underestimated. The aim of this work was to characterize the Escherichia coli population from Franklin's gull feces, focusing on the extended-spectrum β-lactamase (ESBL)-producing strains. In the summer of 2011, 124 fecal swabs from seagulls (1 of each) migrating from the United States and Canada to the coast of Antofagasta, north of Chile, were collected. Samples were seeded on MacConkey agar supplemented with 2 μg/ml of cefotaxime and a single colony from each plate was tested for ESBL production by the double-disk ESBL synergy test. Antibiotic susceptibility was determined by the disk diffusion method and blaESBL genes were amplified and sequenced. The genetic diversity of isolates was explored by pulsed-field gel electrophoresis (PFGE)-XbaI and multilocus sequence typing. A total of 91 E. coli isolates with high rates of antibiotic resistance were identified. Carbapenemase production was not detected, whereas 67 of the 91 (54%) isolates exhibited an ESBL phenotype due to the presence of CTX-M-15 (61.3%), CTX-M-2 (19.3%), CTX-M-22 (16.1%), and CTX-M-3 (1.6%) coding genes. High genetic diversity was observed, with 30 PFGE patterns and 23 sequence types (STs), including ST131 (18%), ST44 (15%), ST617 (9%), and ST10 (9%). Results presented here are complementary to those previously reported by Hernández et al. in the same gull species, but located in the Central Region of Chile. Differences observed between gulls from both areas lead us to hypothesize that gulls from the northern location retain, as gut carriers, those resistant bacteria acquired in the United States and/or Canada.

  18. NASA FACTS: E. coli AntiMicrobial Satellite (EcAMSat)

    Science.gov (United States)

    Spremo, Stevan; Cappuccio, Gelsomina; Tomko, David

    2013-01-01

    The E. coli AntiMicrobial Satellite(EcAMSat) mission will investigate space microgravity affects on the antibiotic resistance of E. coli, a bacterial pathogen responsible for urinary tract infection in humans and animals. EcAMSat is being developed through a partnership between NASAs Ames Research Center and the Stanford University School of Medicine. Dr. A.C. Matin is the Stanford University Principal Investigator. EcAMSat will investigate spaceflight effects on bacterial antibiotic resistance and its genetic basis. Bacterial antibiotic resistance may pose a danger to astronauts in microgravity, where the immune response is weakened. Scientists believe that the results of this experiment could help design effective countermeasures to protect astronauts health during long duration human space missions.

  19. Assessing glycolytic flux alterations resulting from genetic perturbations in E. coli using a biosensor

    DEFF Research Database (Denmark)

    Lehning, Christina Eva; Siedler, Solvej; Ellabaan, Mostafa M Hashim

    2017-01-01

    validated the glycolytic flux dependency of the biosensor in a range of different carbon sources in six different E. coli strains and during mevalonate production. Furthermore, we studied the flux-altering effects of genome-wide single gene knock-outs in E. coli in a multiplex FlowSeq experiment. From...... a library consisting of 2126 knock-out mutants, we identified 3 mutants with high-flux and 95 mutants with low-flux phenotypes that did not have severe growth defects. This approach can improve our understanding of glycolytic flux regulation improving metabolic models and engineering efforts....

  20. Biotechnology, Genetic Engineering and Society. Monograph Series: III.

    Science.gov (United States)

    Kieffer, George H.

    New techniques have expanded the field of biotechnology and awarded scientists an unprecedented degree of control over the genetic constitutions of living things. The knowledge of DNA science is the basis for this burgeoning industry which may be a major force in human existence. Just as it is possible to move genetic material from one organism to…

  1. Utilization of evolutionary model, bioinformatics and heuristics for development of a multiplex Escherichia coli O157:H7 PCR assay

    Science.gov (United States)

    Introduction: Escherichia coli O157:H7 is a devastating foodborne pathogen causing many foodborne outbreaks worldwide with significant morbidity and mortality. The plasticity of the E. coli O157:H7 genome, inconsistent expression of surface antigens, and sharing of genetic elements with other non-...

  2. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    OpenAIRE

    Wu, Shuyu; Dalsgaard, Anders; Hammerum, Anette M; Porsbo, Lone J; Jensen, Lars B

    2010-01-01

    Abstract Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multip...

  3. Cr(III), Fe(III) and Co(III) complexes of tetradentate (ONNO) Schiff base ligands: Synthesis, characterization, properties and biological activity

    Science.gov (United States)

    Keskioğlu, Eren; Gündüzalp, Ayla Balaban; Çete, Servet; Hamurcu, Fatma; Erk, Birgül

    2008-08-01

    A series of metal complexes were synthesized from equimolar amounts of Schiff bases: 1,4-bis[3-(2-hydroxy-1-naphthaldimine)propyl]piperazine (bappnaf) and 1,8-bis[3-(2-hydroxy-1-naphthaldimine)- p-menthane (damnaf) with metal chlorides. All of synthesized compounds were characterized by elemental analyses, spectral (UV-vis, IR, 1H- 13C NMR, LC-MS) and thermal (TGA-DTA) methods, magnetic and conductance measurements. Schiff base complexes supposed in tetragonal geometry have the general formula [M(bappnaf or damnaf)]Cl· nH 2O, where M = Cr(III), Co(III) and n = 2, 3. But also Fe(III) complexes have octahedral geometry by the coordination of two water molecules and the formula is [Fe(bappnaf or damnaf)(H 2O) 2]Cl. The changes in the selected vibration bands in FT-IR indicate that Schiff bases behave as (ONNO) tetradentate ligands and coordinate to metal ions from two phenolic oxygen atoms and two azomethine nitrogen atoms. Conductance measurements suggest 1:1 electrolytic nature of the metal complexes. The synthesized compounds except bappnaf ligand have the antimicrobial activity against the bacteria: Escherichia coli (ATCC 11230), Yersinia enterocolitica (ATCC 1501), Bacillus magaterium (RSKK 5117), Bacillus subtilis (RSKK 244), Bacillus cereus (RSKK 863) and the fungi: Candida albicans (ATCC 10239). These results have been considerably interest in piperazine derivatives due to their significant applications in antimicrobial studies.

  4. Endemic and Epidemic Lineages of Escherichia coli that Cause Urinary Tract Infections

    Science.gov (United States)

    Tabor, Helen; Tellis, Patricia; Vincent, Caroline; Tellier, Pierre-Paul

    2008-01-01

    Women with urinary tract infections (UTIs) in California, USA (1999–2001), were infected with closely related or indistinguishable strains of Escherichia coli (clonal groups), which suggests point source dissemination. We compared strains of UTI-causing E. coli in California with strains causing such infections in Montréal, Québec, Canada. Urine specimens from women with community-acquired UTIs in Montréal (2006) were cultured for E. coli. Isolates that caused 256 consecutive episodes of UTI were characterized by antimicrobial drug susceptibility profile, enterobacterial repetitive intergenic consensus 2 PCR, serotyping, XbaI and NotI pulsed-field gel electrophoresis, multilocus sequence typing, and phylogenetic typing. We confirmed the presence of drug-resistant, genetically related, and temporally clustered E. coli clonal groups that caused community-acquired UTIs in unrelated women in 2 locations and 2 different times. Two clonal groups were identified in both locations. Epidemic transmission followed by endemic transmission of UTI-causing clonal groups may explain these clusters of UTI cases. PMID:18826822

  5. Effect of the oyster contaminated in Salmonella typhimurium and Escherichia coli; Efecto del ostion contaminado en Salmonella typhimurium y Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Brena V, M

    1992-08-15

    In this work the effect of the oyster contaminated in the species of bacteria better studied by its genetic composition these are the Salmonella typhimurium and the Escherichia coli and that its have been starting point for later radiobiological studies in superior organisms. Of this its have arisen two general lines. The research about the genotoxic effect of substances or mixtures in bacteria with the collaboration of the groups of Drosophila and X-ray Fluorescence analysis and on the other hand the study of the low doses of radiation also in bacteria. It is also treated the topic about the genetic effect of aromatic hydrocarbons in different biological systems. (Author)

  6. Lactoferrin and lactoferrin chimera inhibit damage caused by enteropathogenic Escherichia coli in HEp-2 cells

    NARCIS (Netherlands)

    Flores-Villaseñor, H.; Canizalez-Román, A.; de la Garza, M.; Nazmi, K.; Bolscher, J.G.M.; Leon-Sicairos, N.

    2012-01-01

    Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea in developing countries. It produces a characteristic intestinal histopathological lesion on enterocytes known as ‘attaching and effacing’ (A/E), and these two steps are mediated by a type-III secretory system. In the

  7. High carriage of adherent invasive E. coli in wildlife and healthy individuals.

    Science.gov (United States)

    Rahmouni, Oumaïra; Vignal, Cécile; Titécat, Marie; Foligné, Benoît; Pariente, Benjamin; Dubuquoy, Laurent; Desreumaux, Pierre; Neut, Christel

    2018-01-01

    Adherent invasive Escherichia coli (AIEC) are suspected to be involved in the pathogenesis of inflammatory bowel diseases. Since AIEC was first described in 1999, despite important progress on its genomic and immune characterizations, some crucial questions remain unanswered, such as whether there exists a natural reservoir, or whether there is asymptomatic carriage. The ECOR collection, including E. coli strains isolated mainly from the gut of healthy humans and animals, constitutes an ideal tool to investigate AIEC prevalence in healthy condition. A total of 61 E. coli strains were examined for characteristics of AIEC. The adhesion, invasion and intramacrophage replication capabilities (AIEC phenotype) of 61 intestinal E. coli strains were determined. The absence of virulence-associated diarrheagenic E. coli pathotypes (EPEC, ETEC, EIEC, EHEC, DAEC, EAEC), and uropathogenic E. coli was checked. Out of 61 intestinal strains, 13 (21%) exhibit the AIEC phenotype, 7 are from human origin and 6 are from animal origin. Prevalence of AIEC strains is about 24 and 19% in healthy humans and animals respectively. These strains are highly genetically diverse as they are distributed among the main described phylogroups. Among E. coli strains from the ECOR collection, we also detected strains able to detach I-407 cells. Our study described for the first time AIEC strains isolated from the feces of healthy humans and animals.

  8. Biosynthesis of antimycins with a reconstituted 3-formamidosalicylate pharmacophore in Escherichia coli.

    Science.gov (United States)

    Liu, Joyce; Zhu, Xuejun; Seipke, Ryan F; Zhang, Wenjun

    2015-05-15

    Antimycins are a family of natural products generated from a hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line. Although they possess an array of useful biological activities, their structural complexity makes chemical synthesis challenging, and their biosynthesis has thus far been dependent on slow-growing source organisms. Here, we reconstituted the biosynthesis of antimycins in Escherichia coli, a versatile host that is robust and easy to manipulate genetically. Along with Streptomyces genetic studies, the heterologous expression of different combinations of ant genes enabled us to systematically confirm the functions of the modification enzymes, AntHIJKL and AntO, in the biosynthesis of the 3-formamidosalicylate pharmacophore of antimycins. Our E. coli-based antimycin production system can not only be used to engineer the increased production of these bioactive compounds, but it also paves the way for the facile generation of novel and diverse antimycin analogues through combinatorial biosynthesis.

  9. The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues | Center for Cancer Research

    Science.gov (United States)

    Despite extensive genetic, biochemical and structural studies on Escherichia coli RNA polymerase (RNAP), little is known about its location and distribution in response to environmental changes. To visualize the RNAP by fluorescence microscopy in E. coli under different physiological conditions, we constructed a functional rpoC-gfp gene fusion on the chromosome.

  10. Evolutionary Dynamics of Small RNAs in 27 Escherichia coli and Shigella Genomes

    Science.gov (United States)

    Skippington, Elizabeth; Ragan, Mark A.

    2012-01-01

    Small RNAs (sRNAs) are widespread in bacteria and play critical roles in regulating physiological processes. They are best characterized in Escherichia coli K-12 MG1655, where 83 sRNAs constitute nearly 2% of the gene complement. Most sRNAs act by base pairing with a target mRNA, modulating its translation and/or stability; many of these RNAs share only limited complementarity to their mRNA target, and require the chaperone Hfq to facilitate base pairing. Little is known about the evolutionary dynamics of bacterial sRNAs. Here, we apply phylogenetic and network analyses to investigate the evolutionary processes and principles that govern sRNA gene distribution in 27 E. coli and Shigella genomes. We identify core (encoded in all 27 genomes) and variable sRNAs; more than two-thirds of the E. coli K-12 MG1655 sRNAs are core, whereas the others show patterns of presence and absence that are principally due to genetic loss, not duplication or lateral genetic transfer. We present evidence that variable sRNAs are less tightly integrated into cellular genetic regulatory networks than are the core sRNAs, and that Hfq facilitates posttranscriptional cross talk between the E. coli–Shigella core and variable genomes. Finally, we present evidence that more than 80% of genes targeted by Hfq-associated core sRNAs have been transferred within the E. coli–Shigella clade, and that most of these genes have been transferred intact. These results suggest that Hfq and sRNAs help integrate laterally acquired genes into established regulatory networks. PMID:22223756

  11. Ethanol mediated As(III) adsorption onto Zn-loaded pinecone biochar: Experimental investigation, modeling, and optimization using hybrid artificial neural network-genetic algorithm approach.

    Science.gov (United States)

    Zafar, Mohd; Van Vinh, N; Behera, Shishir Kumar; Park, Hung-Suck

    2017-04-01

    Organic matters (OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol (EtOH)-mediated As(III) adsorption onto Zn-loaded pinecone (PC) biochar through batch experiments conducted under Box-Behnken design. The effect of EtOH on As(III) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtOH and pH on As(III) adsorption, whereas neural network revealed the stronger influence of EtOH (64.5%) followed by pH (20.75%) and As(III) concentration (14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that EtOH enhances As(III) adsorption over a pH range of 2 to 7, possibly due to facilitation of ligand-metal(Zn) binding complexation mechanism. Eventually, hybrid response surface model-genetic algorithm (RSM-GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(III) (10.47μg/g) is facilitated at 30.22mg C/L of EtOH with initial As(III) concentration of 196.77μg/L at pH5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(III) species in the presence of OM. Copyright © 2016. Published by Elsevier B.V.

  12. Identification of genes important for growth of asymptomatic bacteriuria Escherichia coli in urine.

    Science.gov (United States)

    Vejborg, Rebecca M; de Evgrafov, Mari R; Phan, Minh Duy; Totsika, Makrina; Schembri, Mark A; Hancock, Viktoria

    2012-09-01

    Escherichia coli is the most important etiological agent of urinary tract infections (UTIs). Unlike uropathogenic E. coli, which causes symptomatic infections, asymptomatic bacteriuria (ABU) E. coli strains typically lack essential virulence factors and colonize the bladder in the absence of symptoms. While ABU E. coli can persist in the bladder for long periods of time, little is known about the genetic determinants required for its growth and fitness in urine. To identify such genes, we have employed a transposon mutagenesis approach using the prototypic ABU E. coli strain 83972 and the clinical ABU E. coli strain VR89. Six genes involved in the biosynthesis of various amino acids and nucleobases were identified (carB, argE, argC, purA, metE, and ilvC), and site-specific mutants were subsequently constructed in E. coli 83972 and E. coli VR89 for each of these genes. In all cases, these mutants exhibited reduced growth rates and final cell densities in human urine. The growth defects could be complemented in trans as well as by supplementation with the appropriate amino acid or nucleobase. When assessed in vivo in a mouse model, E. coli 83972carAB and 83972argC showed a significantly reduced competitive advantage in the bladder and/or kidney during coinoculation experiments with the parent strain, whereas 83972metE and 83972ilvC did not. Taken together, our data have identified several biosynthesis pathways as new important fitness factors associated with the growth of ABU E. coli in human urine.

  13. Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI

    Directory of Open Access Journals (Sweden)

    Anthony D. Kappell

    2015-04-01

    Full Text Available Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance, tet(M (tetracycline resistance, and β-lactamases (blaOXA, blaSHV, and blaPSE. E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for 5 different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and blaOXA than isolates from urban waterway. These results indicate that Milwaukee’s urban waterways may select for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance.

  14. Pathology and Molecular Characterization of Escherichia Coli Associated With the Avian Salpingitis-Peritonitis Disease Syndrome

    DEFF Research Database (Denmark)

    Olsen, Rikke Heidemann; Bisgaard, Magne; Christensen, Jens Peter

    2016-01-01

    Outbreaks of salpingitis and peritonitis cause major economic losses due to high mortality, reduced egg-production, and culling. The aim of the present study was to characterize, in detail, lesions associated with increased mortality in layers due to avianpathogenic Escherichia coli (APEC......) and to investigate the population structure of the E. coli involved, which is important for selection of optimal treatment and prophylactic strategies. Among 322 layers received from eight farms with increased mortality due to E. coli, three lesion types were observed; sepsis-like lesions, chronic salpingitis...... and peritonitis, and chronic salpingitis and peritonitis associated with sepsis-like lesions. One hundred isolates of E. coli obtained in pure culture from the different lesion types were selected for genetic characterization. Six out of 10 submissions (two farms with two submissions) were considered clonal...

  15. Tunable recombinant protein expression with E. coli in a mixed-feed environment.

    Science.gov (United States)

    Sagmeister, Patrick; Schimek, Clemens; Meitz, Andrea; Herwig, Christoph; Spadiut, Oliver

    2014-04-01

    Controlling the recombinant protein production rate in Escherichia coli is of utmost importance to ensure product quality and quantity. Up to now, only the genetic construct, introduced into E. coli, and the specific growth rate of the culture were used to influence and stir the productivity. However, bioprocess technological means to control or even tune the productivity of E. coli are scarce. Here, we present a novel method for the process-technological control over the recombinant protein expression rate in E. coli. A mixed-feed fed-batch bioprocess based on the araBAD promoter expression system using both D-glucose and L-arabinose as assimilable C-sources was designed. Using the model product green fluorescent protein, we show that the specific product formation rate can be efficiently tuned even on the cellular level only via the uptake rate of L-arabinose. This novel approach introduces an additional degree of freedom for the design of recombinant bioprocesses with E. coli. We anticipate that the presented method will result in significant quality and robustness improvement as well as cost and process time reduction for recombinant bacterial bioprocesses in the future.

  16. Growth and survival of Escherichia coli and enterococci populations in the macro-alga Cladophora (Chlorophyta).

    Science.gov (United States)

    Byappanahalli, Muruleedhara N; Shively, Dawn A; Nevers, Meredith B; Sadowsky, Michael J; Whitman, Richard L

    2003-11-01

    The macro-alga Cladophora glomerata is found in streams and lakes worldwide. High concentrations of Escherichia coli and enterococci have been reported in Cladophora along the Lake Michigan shore. The objective of this study was to determine if Cladophora supported growth of these indicator bacteria. Algal leachate readily supported in vitro multiplication of E. coli and enterococci, suggesting that leachates contain necessary growth-promoting substances. Growth was directly related to the concentration of algal leachate. E. coli survived for over 6 months in dried Cladophora stored at 4 degrees C; residual E. coli grew after mat rehydration, reaching a carrying capacity of 8 log CFU g(-1) in 48 h. Results of this study also show that the E. coli strains associated with Cladophora are highly related; in most instances they are genetically different from each other, suggesting that the relationship between E. coli and Cladophora may be casual. These findings indicate that Cladophora provides a suitable environment for indicator bacteria to persist for extended periods and to grow under natural conditions.

  17. Antimicrobial susceptibility and genetic characterization of Escherichia coli recovered from frozen game meat.

    Science.gov (United States)

    Mateus-Vargas, Rafael H; Atanassova, Viktoria; Reich, Felix; Klein, Günter

    2017-05-01

    The increasing number of antimicrobial resistant Enterobacteriaceae both in veterinary and human medicine, the dissemination of these bacteria in several environments and their possible repercussions on human health is causing concern. Game meat is usually seen as free of antimicrobial resistant bacteria. The objective of this study was to evaluate the current antimicrobial susceptibility status in generic Escherichia coli isolated from packed frozen game meat from a game handling establishment in Germany. A total of 229 E. coli isolates were obtained from cuts of red deer, roe deer and wild boar. The susceptibility to 12 antimicrobial agents was evaluated by a broth microdilution method according to ISO 20776-1:2006. Minimal Inhibitory Concentration (MIC) values were compared to breakpoints and cut-off values published by the EUCAST. Isolates showing MICs above the reference values were further studied for associated resistance determinants and phylogrouping by PCR. Overall, 16 E. coli isolates (7.0%) showed resistance (microbiological or clinical) to at least one antimicrobial agent tested. Clinical resistance was recorded to ampicillin (5/229) and chloramphenicol (4/229), whereas the MIC of 9 isolates exceeded the epidemiological cut-off value for doxycycline. One of the ampicillin-resistant isolates showed resistance to the β-lactam antibiotic derivatives tested, cephalosporines and aztreonam. Three of 9 non-wild-type isolates for doxycycline were positive for tet (B) genes. The ß-lactam-resistant isolate was found to harbour bla CTX-M-1 gene. These data show a low prevalence of resistant E. coli in packed game meat compared to studies on conventional meat. Although isolates obtained in this study may also be originating from the processing environment and not necessarily from animals, based on our results, it is important to monitor the development of antimicrobial resistance in game animals and products in order to identify future threats for the

  18. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli.

    Science.gov (United States)

    Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo

    2017-09-01

    The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Retrotransposons. An RNA polymerase III subunit determines sites of retrotransposon integration.

    Science.gov (United States)

    Bridier-Nahmias, Antoine; Tchalikian-Cosson, Aurélie; Baller, Joshua A; Menouni, Rachid; Fayol, Hélène; Flores, Amando; Saïb, Ali; Werner, Michel; Voytas, Daniel F; Lesage, Pascale

    2015-05-01

    Mobile genetic elements are ubiquitous. Their integration site influences genome stability and gene expression. The Ty1 retrotransposon of the yeast Saccharomyces cerevisiae integrates upstream of RNA polymerase III (Pol III)-transcribed genes, yet the primary determinant of target specificity has remained elusive. Here we describe an interaction between Ty1 integrase and the AC40 subunit of Pol III and demonstrate that AC40 is the predominant determinant targeting Ty1 integration upstream of Pol III-transcribed genes. Lack of an integrase-AC40 interaction dramatically alters target site choice, leading to a redistribution of Ty1 insertions in the genome, mainly to chromosome ends. The mechanism of target specificity allows Ty1 to proliferate and yet minimizes genetic damage to its host. Copyright © 2015, American Association for the Advancement of Science.

  20. Structure and genetics of the O-specific polysaccharide of Escherichia coli O27.

    Science.gov (United States)

    Perepelov, Andrei V; Chen, Tingting; Senchenkova, Sofya N; Filatov, Andrei V; Song, Jingjie; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2018-02-01

    The O-specific polysaccharide (O-antigen) is a part of the lipopolysaccharide on the cell surface of Gram-negative bacteria. The O-polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O27 and studied by sugar analysis and Smith degradation along with 1 H and 13 C NMR spectroscopy. The following structure of the branched hexasaccharide repeating unit was established, which is unique among known structures of bacterial polysaccharides:where GlcA is non-stoichiometrically O-acetylated at position 3 (∼22%) or 4 (∼37%). Functions of genes in the O-antigen gene cluster of E. coli O27 were tentatively assigned by comparison with sequences in the available databases and found to be consistent with the O-polysaccharide structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Detection of Integrase Gene in E. coli Isolated from Pigs at Different Stages of Production System

    Directory of Open Access Journals (Sweden)

    Eulalia de la Torre

    2014-01-01

    Full Text Available Integrons are one of the genetic elements involved in the acquisition of antibiotic resistance. The aim of the present research is to investigate the presence of integrons in commensal Escherichia coli (E. coli strains, isolated from pigs at different stages of production system and from the environment in an Argentinian farm. Five sows postpartum and five randomly chosen piglets from each litter were sampled by rectal swabs. They were sampled again at day 21 and at day 70. Environmental samples from the farm were also obtained. E. coli containing any integron class or combination of both integrons was detected by polymerase chain reaction in 100% of sows and in piglets at different stages of production: farrowing pen stage 68.1%;, weaning 60%, and growing/finishing 85.8%, showing an increase along the production system. From environmental samples 78.4% of E. coli containing any integron class was detected. We conclude that animals and farm environment can act as reservoirs for potential spread of resistant bacteria by means of mobile genetic elements as integrons, which has a major impact on production of food animals and that can reach man through the food chain, constituting a problem for public health.

  2. Multiplex Genome Editing in Escherichia coli

    DEFF Research Database (Denmark)

    Ingemann Jensen, Sheila; Nielsen, Alex Toftgaard

    2018-01-01

    Lambda Red recombineering is an easy and efficient method for generating genetic modifications in Escherichia coli. For gene deletions, lambda Red recombineering is combined with the use of selectable markers, which are removed through the action of, e.g., flippase (Flp) recombinase. This PCR......-based engineering method has also been applied to a number of other bacteria. In this chapter, we describe a recently developed one plasmid-based method as well as the use of a strain with genomically integrated recombineering genes, which significantly speeds up the engineering of strains with multiple genomic...

  3. The population structure of Escherichia coli isolated from subtropical and temperate soils

    Science.gov (United States)

    Byappanahalli, Muruleedhara N.; Yan, Tao; Hamilton, Matthew J.; Ishii, Satoshi; Fujioka, Roger S.; Whitman, Richard L.; Sadowsky, Michael J.

    2012-01-01

    While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous

  4. Escherichia coli pathotypes

    Science.gov (United States)

    Escherichia coli strains are important commensals of the intestinal tract of humans and animals; however, pathogenic strains, including diarrhea-inducing E. coli and extraintestinal pathogenic E. coli. Intestinal E. coli pathotypes may cause a dehydrating watery diarrhea, or more severe diseases su...

  5. The Impact of Media, Phylogenetic Classification, and E. coli Pathotypes on Biofilm Formation in Extraintestinal and Commensal E. coli From Humans and Animals.

    Science.gov (United States)

    Nielsen, Daniel W; Klimavicz, James S; Cavender, Tia; Wannemuehler, Yvonne; Barbieri, Nicolle L; Nolan, Lisa K; Logue, Catherine M

    2018-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) include avian pathogenic E. coli (APEC), neonatal meningitis E. coli (NMEC), and uropathogenic E. coli (UPEC) and are responsible for significant animal and human morbidity and mortality. This study sought to investigate if biofilm formation by ExPEC likely contributes to these losses since biofilms are associated with recurrent urinary tract infections, antibiotic resistance, and bacterial exchange of genetic material. Therefore, the goal of this study was to examine differences in biofilm formation among a collection of ExPEC and to ascertain if there is a relationship between their ability to produce biofilms and their assignment to phylogenetic groups in three media types - M63, diluted TSB, and BHI. Our results suggest that ExPEC produce relatively different levels of biofilm formation in the media tested as APEC (70.4%, p = 0.0064) and NMEC (84.4%, p = 0.0093) isolates were poor biofilm formers in minimal medium M63 while UPEC isolates produced significantly higher ODs under nutrient-limited conditions with 25% of strains producing strong biofilms in diluted TSB ( p = 0.0204). Additionally, E. coli phylogenetic assignment using Clermont's original and revised typing scheme demonstrated significant differences among the phylogenetic groups in the different media. When the original phylogenetic group isolates previously typed as group D were phylogenetically typed under the revised scheme and examined, they showed substantial variation in their ability to form biofilms, which may explain the significant values of revised phylogenetic groups E and F in M63 ( p = 0.0291, p = 0.0024). Our data indicates that biofilm formation is correlated with phylogenetic classification and subpathotype or commensal grouping of E. coli strains.

  6. Programmable type III-A CRISPR-Cas DNA targeting modules.

    Directory of Open Access Journals (Sweden)

    H Travis Ichikawa

    Full Text Available The CRISPR-Cas systems provide invader defense in a wide variety of prokaryotes, as well as technologies for many powerful applications. The Type III-A or Csm CRISPR-Cas system is one of the most widely distributed across prokaryotic phyla, and cleaves targeted DNA and RNA molecules. In this work, we have constructed modules of Csm systems from 3 bacterial species and heterologously expressed the functional modules in E. coli. The modules include a Cas6 protein and a CRISPR locus for crRNA production, and Csm effector complex proteins. The expressed modules from L. lactis, S. epidermidis and S. thermophilus specifically eliminate invading plasmids recognized by the crRNAs of the systems. Characteristically, activation of plasmid targeting activity depends on transcription of the plasmid sequence recognized by the crRNA. Activity was not observed when transcription of the crRNA target sequence was blocked, or when the opposite strand or a non-target sequence was transcribed. Moreover, the Csm module can be programmed to recognize plasmids with novel target sequences by addition of appropriate crRNA coding sequences to the module. These systems provide a platform for investigation of Type III-A CRISPR-Cas systems in E. coli, and for introduction of programmable transcription-activated DNA targeting into novel organisms.

  7. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    Science.gov (United States)

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Relationship among Shigella spp. and enteroinvasive Escherichia coli (EIEC) and their differentiation.

    Science.gov (United States)

    Ud-Din, Abu; Wahid, Syeda

    2014-01-01

    Shigellosis produces inflammatory reactions and ulceration on the intestinal epithelium followed by bloody or mucoid diarrhea. It is caused by enteroinvasive E. coli (EIEC) as well as any species of the genus Shigella, namely, S. dysenteriae, S. flexneri, S. boydii, and S. sonnei. This current species designation of Shigella does not specify genetic similarity. Shigella spp. could be easily differentiated from E. coli, but difficulties observed for the EIEC-Shigella differentiation as both show similar biochemical traits and can cause dysentery using the same mode of invasion. Sequencing of multiple housekeeping genes indicates that Shigella has derived on several different occasions via acquisition of the transferable forms of ancestral virulence plasmids within commensal E. coli and form a Shigella-EIEC pathovar. EIEC showed lower expression of virulence genes compared to Shigella, hence EIEC produce less severe disease than Shigella spp. Conventional microbiological techniques often lead to confusing results concerning the discrimination between EIEC and Shigella spp. The lactose permease gene (lacY) is present in all E. coli strains but absent in Shigella spp., whereas β-glucuronidase gene (uidA) is present in both E. coli and Shigella spp. Thus uidA gene and lacY gene based duplex real-time PCR assay could be used for easy identification and differentiation of Shigella spp. from E. coli and in particular EIEC.

  9. Factors determinating the shape of survival curves of Escherichia coli cells irradiated by ionizing radiation with different LET. Peculiarities of genom organization and the shape of survival curves

    International Nuclear Information System (INIS)

    Krasavin, E.A.

    1984-01-01

    The basic biological mechanisms realized on molecular, cellular and population levels and stipulating the shape of dependence of the cell suriival (S) on the dose (D) are considered. One of possible causes of nonlinear S(D) dependence are the peculiarities of DNA degradation in E. coli cells. The mechanisms of genetic control of different types of degradation are discussed. Some regularities of the genetic recombination and replication of DNA in E. coli are considered. The conclusion is made that one of the basic stipulating for the shoulder on the survival curves in E. coli are the peculiarities of the chromosome replication

  10. Prevalence of tetracycline resistance and genotypic analysis of populations of Escherichia coli from animals, carcasses and cuts processed at a pig slaughterhouse

    DEFF Research Database (Denmark)

    Shuyu, Wu; Dalsgaard, Anders; Vieira, Antonio R

    2009-01-01

    A Danish pig slaughterhouse was visited in this study to investigate the impact of carcass processing on prevalence of tetracycline-resistant Escherichia coli, and to identify the origins of carcass contaminations with E. coli by assessing genetic diversity of E. coli populations on carcasses....... A total of 105 carcasses were sampled at five sequential stages: after stunning, after scalding, after splitting, after cooling and after cutting. Total and tetracycline-resistant E. coli were counted for each sample and tetracycline resistance prevalence per sample was calculated by the fraction...... of tetracycline-resistant E. coli out of total E. coli. From 15 repeatedly sampled carcasses, 422 E. coli isolates from faeces, stunned carcasses, split carcasses and chilled carcasses were examined by pulse-field gel electrophoresis (PFGE) and tested for antimicrobial susceptibility. The results showed that E...

  11. Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/blaCMY-2 resistance plasmids

    DEFF Research Database (Denmark)

    Berg, E. S.; Wester, A. L.; Ahrenfeldt, Johanne

    2017-01-01

    In 2012 and 2014 the Norwegian monitoring programme for antimicrobial resistance in the veterinary and food production sectors (NORM-VET) showed that 124 of a total of 406 samples (31%) of Norwegian retail chicken meat was contaminated with extended-spectrum cephalosporin-resistant Escherichia coli....... The aim of this study was to compare selected cephalosporin-resistant E. coli from humans and poultry to determine their genetic relatedness based on whole genome sequencing (WGS). E. coli representing three prevalent cephalosporin-resistant multi-locus sequence types (STs) isolated from poultry (n=17...

  12. ENTRAPMENT OF FLUORESCENT E. COLI CELLS IN ALGINATE GEL

    Directory of Open Access Journals (Sweden)

    T. VINTILA

    2009-05-01

    Full Text Available By this experiment we will demonstrate the possibility to obtain genetically modified microbial strains that can be used as markers in different studies. The trait transferred in this study is the fluorescence in UV light expressed by a gene isolated from jellyfish. This gene was insered into a plasmid carrying ampiciline resistance and in the operon for arabinose fermentation. The plasmid was called pGLO. E coli HB101 K-12, ampicillin resistant colonies has been obtained. The colonies on the LB/amp/ara plate fluoresce green under UV light and the transformed colonies can grow on ampicillin. Transformation efficiency = 362 transformed colonies/ μg DNA. The cells where immobilized by entrapment in alginate gel to study the phenomenon involved in cells immobilization. After immobilization in alginate gel, 5x104 cells of E. coli pGLO / capsule and 1,4 x 105 cells of E. coli HB101/capsule has been found. Fluorescent microscopy revealed the presence of pGLO carrying cells into the capsules. After cultivation of alginate capsules containing E. coli in LB broth, and fluorescent microscopy of the capsule sections, several observations of the phenomenon involved in continuous fermentation using biocatalysts in has been made. These cells grow and migrate to the cortical part of the matrix where they are immobilized.

  13. Genetically Engineered Escherichia coli Nissle 1917 Synbiotics Reduce Metabolic Effects Induced by Chronic Consumption of Dietary Fructose.

    Directory of Open Access Journals (Sweden)

    Chaudhari Archana Somabhai

    Full Text Available To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN on metabolic effects induced by chronic consumption of dietary fructose.EcN was genetically modified with fructose dehydrogenase (fdh gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150-200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq, EcN (pqq-glf-mtlK, EcN (pqq-fdh was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ production.EcN (pqq-glf-mtlK, EcN (pqq-fdh transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK and EcN (pqq-fdh showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA demonstrated the prebiotic effects of mannitol and gluconic acid.Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome.

  14. Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli

    OpenAIRE

    Fakruddin, Md.; Mohammad Mazumdar, Reaz; Bin Mannan, Khanjada Shahnewaj; Chowdhury, Abhijit; Hossain, Md. Nur

    2013-01-01

    E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the s...

  15. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation.

    Directory of Open Access Journals (Sweden)

    Yangkai Duan

    Full Text Available Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs and fatty acid ethyl esters (FAEEs, and is currently produced through the transesterification reaction of methanol (or ethanol and triacylglycerols (TAGs. TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L(-1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate.

  16. The Impact of Media, Phylogenetic Classification, and E. coli Pathotypes on Biofilm Formation in Extraintestinal and Commensal E. coli From Humans and Animals

    Directory of Open Access Journals (Sweden)

    Daniel W. Nielsen

    2018-05-01

    Full Text Available Extraintestinal pathogenic Escherichia coli (ExPEC include avian pathogenic E. coli (APEC, neonatal meningitis E. coli (NMEC, and uropathogenic E. coli (UPEC and are responsible for significant animal and human morbidity and mortality. This study sought to investigate if biofilm formation by ExPEC likely contributes to these losses since biofilms are associated with recurrent urinary tract infections, antibiotic resistance, and bacterial exchange of genetic material. Therefore, the goal of this study was to examine differences in biofilm formation among a collection of ExPEC and to ascertain if there is a relationship between their ability to produce biofilms and their assignment to phylogenetic groups in three media types – M63, diluted TSB, and BHI. Our results suggest that ExPEC produce relatively different levels of biofilm formation in the media tested as APEC (70.4%, p = 0.0064 and NMEC (84.4%, p = 0.0093 isolates were poor biofilm formers in minimal medium M63 while UPEC isolates produced significantly higher ODs under nutrient-limited conditions with 25% of strains producing strong biofilms in diluted TSB (p = 0.0204. Additionally, E. coli phylogenetic assignment using Clermont’s original and revised typing scheme demonstrated significant differences among the phylogenetic groups in the different media. When the original phylogenetic group isolates previously typed as group D were phylogenetically typed under the revised scheme and examined, they showed substantial variation in their ability to form biofilms, which may explain the significant values of revised phylogenetic groups E and F in M63 (p = 0.0291, p = 0.0024. Our data indicates that biofilm formation is correlated with phylogenetic classification and subpathotype or commensal grouping of E. coli strains.

  17. The logic, experimental steps, and potential of heterologous natural product biosynthesis featuring the complex antibiotic erythromycin A produced through E. coli.

    Science.gov (United States)

    Jiang, Ming; Zhang, Haoran; Pfeifer, Blaine A

    2013-01-13

    The heterologous production of complex natural products is an approach designed to address current limitations and future possibilities. It is particularly useful for those compounds which possess therapeutic value but cannot be sufficiently produced or would benefit from an improved form of production. The experimental procedures involved can be subdivided into three components: 1) genetic transfer; 2) heterologous reconstitution; and 3) product analysis. Each experimental component is under continual optimization to meet the challenges and anticipate the opportunities associated with this emerging approach. Heterologous biosynthesis begins with the identification of a genetic sequence responsible for a valuable natural product. Transferring this sequence to a heterologous host is complicated by the biosynthetic pathway complexity responsible for product formation. The antibiotic erythromycin A is a good example. Twenty genes (totaling >50 kb) are required for eventual biosynthesis. In addition, three of these genes encode megasynthases, multi-domain enzymes each ~300 kDa in size. This genetic material must be designed and transferred to E. coli for reconstituted biosynthesis. The use of PCR isolation, operon construction, multi-cystronic plasmids, and electro-transformation will be described in transferring the erythromycin A genetic cluster to E. coli. Once transferred, the E. coli cell must support eventual biosynthesis. This process is also challenging given the substantial differences between E. coli and most original hosts responsible for complex natural product formation. The cell must provide necessary substrates to support biosynthesis and coordinately express the transferred genetic cluster to produce active enzymes. In the case of erythromycin A, the E. coli cell had to be engineered to provide the two precursors (propionyl-CoA and (2S)-methylmalonyl-CoA) required for biosynthesis. In addition, gene sequence modifications, plasmid copy number

  18. E coli enteritis

    Science.gov (United States)

    ... coli; Food poisoning - E. coli; E. coli diarrhea; Hamburger disease ... coleslaw or potato salad) that have been out of the refrigerator too ... reheated Fish or oysters Raw fruits or vegetables that have ...

  19. Longitudinal characterization of Escherichia coli in healthy captive nonhuman primates

    Directory of Open Access Journals (Sweden)

    Jonathan B Clayton

    2014-11-01

    Full Text Available The gastrointestinal (GI tracts of nonhuman primates are well known to harbor Escherichia coli, a known commensal of humans and animals. While E. coli is a normal inhabitant of the mammalian gut, it also exists in a number of pathogenic forms or pathotypes, including those with predisposition for the GI tract, as well the urogenital tract. Diarrhea in captive nonhuman primates (NHPs has long been a problem in both zoo settings and research colonies, including the Como Zoo. It is an animal welfare concern, as well as a public health concern. E. coli has not been extensively studied in correlation with diarrhea in captive primates; therefore, a study was performed during the summer of 2009 in collaboration with a zoo in Saint Paul, MN, which was experiencing an increased incidence and severity of diarrhea among their NHP collection. Fresh fecal samples were collected weekly from each member of the primate collection, between June and August of 2009, and E. coli were isolated. A total of 33 individuals were included in the study, representing eight species. E. coli isolates were examined for their genetic relatedness, phylogenetic relationships, plasmid replicon types, virulence gene profiles, and antimicrobial susceptibility profiles. A number of isolates were identified containing virulence genes commonly found in several different E. coli pathotypes, and there was evidence of clonal transmission of isolates between animals and over time. Overall, the manifestation of chronic diarrhea in the Como Zoo primate collection is a complex problem whose solution will require regular screening for microbial agents and consideration of environmental causes. This study provides some insight towards the sharing of enteric bacteria between such animals.

  20. Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Szalewska-Pałasz Agnieszka

    2011-03-01

    Full Text Available Abstract Background Until now, the direct link between central carbon metabolism and DNA replication has been demonstrated only in Bacillus. subtilis. Therefore, we asked if this is a specific phenomenon, characteristic for this bacterium and perhaps for its close relatives, or a more general biological rule. Results We found that temperature-sensitivity of mutants in particular genes coding for replication proteins could be suppressed by deletions of certain genes coding for enzymes of the central carbon metabolism. Namely, the effects of dnaA46(ts mutation could be suppressed by dysfunction of pta or ackA, effects of dnaB(ts by dysfunction of pgi or pta, effects of dnaE486(ts by dysfunction of tktB, effects of dnaG(ts by dysfunction of gpmA, pta or ackA, and effects of dnaN159(ts by dysfunction of pta or ackA. The observed suppression effects were not caused by a decrease in bacterial growth rate. Conclusions The genetic correlation exists between central carbon metabolism and DNA replication in the model Gram-negative bacterium, E. coli. This link exists at the steps of initiation and elongation of DNA replication, indicating the important global correlation between metabolic status of the cell and the events leading to cell reproduction.

  1. Influence of very short patch mismatch repair on SOS inducing lesions after aminoglycoside treatment in Escherichia coli.

    Science.gov (United States)

    Baharoglu, Zeynep; Mazel, Didier

    2014-01-01

    Low concentrations of aminoglycosides induce the SOS response in Vibrio cholerae but not in Escherichia coli. In order to determine whether a specific factor present in E. coli prevents this induction, we developed a genetic screen where only SOS inducing mutants are viable. We identified the vsr gene coding for the Vsr protein of the very short patch mismatch repair (VSPR) pathway. The effect of mismatch repair (MMR) mutants was also studied. We propose that lesions formed upon aminoglycoside treatment are preferentially repaired by VSPR without SOS induction in E. coli and by MMR when VSPR is impaired. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Recent advances in genetic modification systems for Actinobacteria.

    Science.gov (United States)

    Deng, Yu; Zhang, Xi; Zhang, Xiaojuan

    2017-03-01

    Actinobacteria are extremely important to human health, agriculture, and forests. Because of the vast differences of the characteristics of Actinobacteria, a lot of genetic tools have been developed for efficiently manipulating the genetics. Although there are a lot of successful examples of engineering Actinobacteria, they are still more difficult to be genetically manipulated than other model microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Bacillus subtilis etc. due to the diverse genomics and biochemical machinery. Here, we review the methods to introduce heterologous DNA into Actinobacteria and the available genetic modification tools. The trends and problems existing in engineering Actinobacteria are also covered.

  3. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.

    Science.gov (United States)

    Corzett, Christopher H; Goodman, Myron F; Finkel, Steven E

    2013-06-01

    Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.

  4. High mutation rates limit evolutionary adaptation in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Kathleen Sprouffske

    2018-04-01

    Full Text Available Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli's genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild.

  5. Escherichia coli con resistencia a múltiples antimicrobianos en granjas de producción porcina de la República Argentina

    OpenAIRE

    Moredo, Fabiana Alicia; Colello, Rocío; Sanz, Marcelo Eduardo; Cappuccio, Javier Alejandro; Carriquiriborde, Martin; Etcheverría, Analía Inés; Perfumo, Carlos Juan; Padola, Nora Lía; Leotta, Gerardo Anibal

    2016-01-01

    Los objetivos del presente trabajo fueron: i) monitorear la resistencia de E. coli frente a diversos antimicrobianos frecuentemente utilizados con fines terapéuticos y profilácticos en explotaciones porcinas; ii) aislar y caracterizar fenotípica y genotípicamente E. coli toxigénicos provenientes de cerdos con diarrea pre y posdestete; iii) determinar la presencia de integrones clase 1 y 2 como posible mecanismo de diseminación de resistencia. Se procesaron 216 hisopados rectales de cerdos clí...

  6. Compilation and analysis of Escherichia coli promoter DNA sequences.

    OpenAIRE

    Hawley, D K; McClure, W R

    1983-01-01

    The DNA sequence of 168 promoter regions (-50 to +10) for Escherichia coli RNA polymerase were compiled. The complete listing was divided into two groups depending upon whether or not the promoter had been defined by genetic (promoter mutations) or biochemical (5' end determination) criteria. A consensus promoter sequence based on homologies among 112 well-defined promoters was determined that was in substantial agreement with previous compilations. In addition, we have tabulated 98 promoter ...

  7. A Genetic Analysis of Crystal Growth

    DEFF Research Database (Denmark)

    Brown, Stanley; Sarikaya, Mehmet; Johnson, E.

    2000-01-01

    The regulation of crystal morphology by proteins is often observed in biology. It is a central feature in the formation of hard tissues such as bones, teeth and mollusc shells. We have developed a genetic system in the bacterium Escherichia coli to study the protein-mediated control of crystal...

  8. DNA Replication in Engineered Escherichia coli Genomes with Extra Replication Origins.

    Science.gov (United States)

    Milbredt, Sarah; Farmani, Neda; Sobetzko, Patrick; Waldminghaus, Torsten

    2016-10-21

    The standard outline of bacterial genomes is a single circular chromosome with a single replication origin. From the bioengineering perspective, it appears attractive to extend this basic setup. Bacteria with split chromosomes or multiple replication origins have been successfully constructed in the last few years. The characteristics of these engineered strains will largely depend on the respective DNA replication patterns. However, the DNA replication has not been investigated systematically in engineered bacteria with multiple origins or split replicons. Here we fill this gap by studying a set of strains consisting of (i) E. coli strains with an extra copy of the native replication origin (oriC), (ii) E. coli strains with an extra copy of the replication origin from the secondary chromosome of Vibrio cholerae (oriII), and (iii) a strain in which the E. coli chromosome is split into two linear replicons. A combination of flow cytometry, microarray-based comparative genomic hybridization (CGH), and modeling revealed silencing of extra oriC copies and differential timing of ectopic oriII copies compared to the native oriC. The results were used to derive construction rules for future multiorigin and multireplicon projects.

  9. Changing plasmid types responsible for extended spectrum cephalosporin resistance in Escherichia coli O157:H7 in the United States, 1996–2009

    OpenAIRE

    Folster, J. P.; Pecic, G.; Stroika, S.; Rickert, R.; Whichard, J.

    2014-01-01

    Escherichia coli O157 is a major cause of foodborne illness. Plasmids are genetic elements that mobilize antimicrobial resistance determinants including blaCMY β-lactamases that confer resistance to extended-spectrum cephalosporins (ESC). ESCs are important for treating a variety of infections. IncA/C plasmids are found among diverse sources, including cattle, the principal source of E. coli O157 infections in humans. IncI1 plasmids are common among E. coli and Salmonella from poultry and oth...

  10. Crystallization and preliminary crystallographic analysis of an acridone-producing novel multifunctional type III polyketide synthase from Huperzia serrata

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Hiroyuki [Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511 (Japan); Kondo, Shin; Kato, Ryohei [Innovation Center Yokohama, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, Kanagawa 227-8502 (Japan); Wanibuchi, Kiyofumi; Noguchi, Hiroshi [School of Pharmaceutical Sciences, University of Shizuoka and the COE21 Program, Shizuoka 422-8526 (Japan); Sugio, Shigetoshi [Innovation Center Yokohama, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, Kanagawa 227-8502 (Japan); Abe, Ikuro [School of Pharmaceutical Sciences, University of Shizuoka and the COE21 Program, Shizuoka 422-8526 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kohno, Toshiyuki [Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511 (Japan)

    2007-07-01

    An acridone-producing novel type III polyketide synthase from H. serrata has been overexpressed in E. coli, purified and crystallized. Diffraction data have been collected to 2.0 Å. Polyketide synthase 1 (PKS1) from Huperzia serrata is a plant-specific type III polyketide synthase that shows an unusually versatile catalytic potential, producing various aromatic tetraketides, including chalcones, benzophenones, phlorogulucinols and acridones. Recombinant H. serrata PKS1 expressed in Escherichia coli was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 73.3, b = 85.0, c = 137.7 Å, α = β = γ = 90.0°. Diffraction data were collected to 2.0 Å resolution using synchrotron radiation at BL24XU of SPring-8.

  11. Multidrug resistant commensal Escherichia coli in animals and its impact for public health

    Directory of Open Access Journals (Sweden)

    Ama eSzmolka

    2013-09-01

    Full Text Available After the era of plentiful antibiotics we are alarmed by the increasing number of antibiotic resistant strains. The genetic flexibility and adaptability of E. coli to constantly changing environments allows to acquire a great number of antimicrobial resistance mechanisms. Commensal strains of E. coli as versatile residents of the lower intestine are also repeatedly challenged by antimicrobial pressures during the lifetime of their host. As a consequence, commensal strains acquire the respective resistance genes, and/or develop resistant mutants in order to survive and maintain microbial homeostasis in the lower intestinal tract. Thus, commensal E. coli strains are regarded as indicators of antimicrobial load on their hosts. This chapter provides a short historic background of the appearance and presumed origin and transfer of antimicrobial resistance genes in commensal intestinal E. coli of animals with comparative information on their pathogenic counterparts. The dynamics, development and ways of evolution of resistance in the E. coli populations differ according to hosts, resistance mechanisms and antimicrobial classes used. The most frequent tools of E. coli against a variety of antimicrobials are the efflux pumps and mobile resistance mechanisms carried by plasmids and/or other transferable elements. The emergence of hybrid plasmids (both resistance and virulence among E. coli is of further concern. Co-existence and co-transfer of these bad genes in this huge and most versatile in vivo compartment may represent an increased public health risk in the future. Significance of multidrug resistant (MDR commensal E. coli seem to be highest in the food animal industry, acting as reservoir for intra- and interspecific exchange and a source for spread of MDR determinants through contaminated food to humans. Thus, public health potential of MDR commensal E. coli of food animals can be a concern and needs monitoring and more molecular analysis in the

  12. Molecular typing of Escherichia coli strains associated with threatened sea ducks and near-shore marine habitats of south-west Alaska

    Science.gov (United States)

    Hollmén, Tuula E.; DebRoy, Chitrita; Flint, Paul L.; Safine, David E.; Schamber, Jason L.; Riddle, Ann E.; Trust, Kimberly A.

    2011-01-01

    In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n = 122) and harlequin ducks (Histrionicus histrionicus; n = 21) at an industrialized site and Steller's eiders (n = 48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds.

  13. Molecular typing of Escherichia coli strains associated with threatened sea ducks and near-shore marine habitats of south-west Alaska.

    Science.gov (United States)

    Hollmén, Tuula E; Debroy, Chitrita; Flint, Paul L; Safine, David E; Schamber, Jason L; Riddle, Ann E; Trust, Kimberly A

    2011-04-01

    In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n = 122) and harlequin ducks (Histrionicus histrionicus; n = 21) at an industrialized site and Steller's eiders (n = 48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Prevalence and diversity of Escherichia coli isolated from a barley trial supplemented with bulky organic soil amendments: green compost and bovine slurry.

    Science.gov (United States)

    Holden, N J; Wright, F; Mackenzie, K; Marshall, J; Mitchell, S; Mahajan, A; Wheatley, R; Daniell, T J

    2014-03-01

    A barley field trial supplemented with bulky organic soil amendments, municipal compost or bovine slurry was sampled for Escherichia coli to test the hypothesis that E. coli isolated from the soil or from barley plants were derived from bovine slurry. A qualitative analysis showed that a total of 12% of the bulk soil cores and 16% of harvested grain samples yielded E. coli. The strongest association for positive detection of E. coli from soil was with time of year and for slurry-treated plots, with irrigation. However, E. coli were detected in plots from all treatment types and not exclusively associated with bovine slurry. Phylogroup, plasmid profiling and population genetics analysis (multilocus sequence typing) revealed extensive genetic diversity. Identical sequence types for slurry and soil isolates were detected, indicative of direct transfer into the soil, although not frequently. Host interaction assays with selected isolates showed a variation in the ability to colonize barley roots, but not in interactions with bovine cells. The work has implications in appropriate use of E. coli as a faecal indicator as isolates were widespread and diverse, reinforcing the view that some are a natural part of the microflora in agricultural systems. Faecal deposition is considered to be the main process that introduces Escherichia coli into soil, giving rise to their use as a faecal indication species and the potential for cycling pathogens in agricultural systems. We found that bovine slurry was not the main source of E. coli in a barley trial and a high degree of diversity was present in the collection. The findings support the hypothesis that the population structure of E. coli in secondary habitats is shaped by the environment and highlight the drawbacks of its use as a faecal indicator species. © 2013 The Society for Applied Microbiology.

  15. [Expression of the genes for lysine biosynthesis of Bacillus subtilis in Escherichia coli cells].

    Science.gov (United States)

    Shevchenko, T N; Okunev, O V; Aleksieva, Z M; Maliuta, S S

    1984-01-01

    Hybrid plasmids pLRS33 and pLRB4 containing Bac. subtilis genes coding lysin biosynthesis were subjected to genetical analysis. It is shown that after pLRS33- and pLRB4- transformation of E. coli strains, auxotrophic relative to lysin and diaminopimelic acid, there occurs complementation of dapA, dapB, dapC, dapD, dapE, lysA mutations by plasmid pLRS33 and of dapC, dapB, lysA mutations by plasmid pLRB4. The plasmids are studied for their influence on the level of lysin and its precurror synthesis in E. coli strains.

  16. ESCRT-III mediated cell division in Sulfolobus acidocaldarius –A reconstitution perspective

    Directory of Open Access Journals (Sweden)

    Tobias eHärtel

    2014-06-01

    Full Text Available In the framework of Synthetic Biology, it has become an intriguing question what would be the minimal representation of cell division machinery. Thus, it seems appropriate to compare how cell division is realized in different microorganisms. In particular, the cell division system of Crenarchaeota lacks certain proteins found in most bacteria and Euryarchaeota, such as FtsZ, MreB or the Min system. The Sulfolobaceae family encodes functional homologs of the eukaryotic proteins Vps4 and ESCRT-III. ESCRT-III is essential for several eukaryotic pathways, e.g. budding of intralumenal vesicles (ILVs, or cytokinesis, whereas Vps4 dissociates the ESCRT-III complex from the membrane. CdvA (Cell Division A is required for the recruitment of crenarchaeal ESCRT-III proteins to the membrane at mid-cell. The proteins polymerize and form a smaller structure during constriction. Thus, ESCRT-III mediated cell division in S. acidocaldarius shows functional analogies to the Z ring observed in prokaryotes like E. coli, which has recently begun to be reconstituted in vitro. In this short perspective, we discuss the possibility of building such an in vitro cell division system on basis of archaeal ESCRT-III.

  17. Genome Dynamics of Escherichia coli during Antibiotic Treatment: Transfer, Loss, and Persistence of Genetic Elements In situ of the Infant Gut

    DEFF Research Database (Denmark)

    Porse, Andreas; Gumpert, Heidi; Kubicek-Sutherland, Jessica Z.

    2017-01-01

    made to elucidate the genome dynamics of E. coli in its native settings. Here, we follow the genome dynamics of co-existing E. coli lineages in situ of the infant gut during the first year of life. One E. coli lineage causes a urinary tract infection (UTI) and experiences several alterations of its...

  18. Antibiotic Resistance Characterization of Environmental E. coli Isolated from River Mula-Mutha, Pune District, India.

    Science.gov (United States)

    Dhawde, Rutuja; Macaden, Ragini; Saranath, Dhananjaya; Nilgiriwala, Kayzad; Ghadge, Appasaheb; Birdi, Tannaz

    2018-06-12

    In the current study, ceftazidime- and ciprofloxacin-resistant—or dual drug-resistant (DDR)— E. coli were isolated from river Mula-Mutha, which flows through rural Pune district and Pune city. The DDR E. coli were further examined for antibiotic resistance to six additional antibiotics. The study also included detection of genes responsible for ceftazidime and ciprofloxacin resistance and vectors for horizontal gene transfer. Twenty-eight percent of the identified DDR E. coli were resistant to more than six antibiotics, with 12% being resistant to all eight antibiotics tested. Quinolone resistance was determined through the detection of qnrA , qnrB , qnrS and oqxA genes, whereas cephalosporin resistance was confirmed through detection of TEM, CTX-M-15, CTX-M-27 and SHV genes. Out of 219 DDR E. coli , 8.2% were qnrS positive and 0.4% were qnrB positive. Percentage of isolates positive for the TEM, CTX-M-15 and CTX-M-27 genes were 32%, 46% and 0.9%, respectively. None of the DDR E. coli tested carried the qnrA , SHV and oqxA genes. Percentage of DDR E. coli carrying Class 1 and 2 integrons (mobile genetic elements) were 47% and 8%, respectively. The results showed that antibiotic resistance genes (ARGs) and integrons were present in the E. coli isolated from the river at points adjoining and downstream of Pune city.

  19. Symptoms of Autism Spectrum Disorder (ASD) in Individuals with Mucopolysaccharide Disease Type III (Sanfilippo Syndrome): A Systematic Review.

    Science.gov (United States)

    Wolfenden, C; Wittkowski, A; Hare, D J

    2017-11-01

    The prevalence of autism spectrum disorder (ASD) in many genetic disorders is well documented but not as yet in Mucopolysaccharidosis type III (MPS III). MPS III is a recessively inherited metabolic disorder and evidence suggests that symptoms of ASD present in MPS III. This systematic review examined the extant literature on the symptoms of ASD in MPS III and quality assessed a total of 16 studies. Results indicated that difficulties within speech, language and communication consistent with ASD were present in MPS III, whilst repetitive and restricted behaviours and interests were less widely reported. The presence of ASD-like symptoms can result in late diagnosis or misdiagnosis of MPS III and prevent opportunities for genetic counselling and the provision of treatments.

  20. Induction of genetic recombination in the lambda bacteriophage by ultraviolet irradiation of the Escherichia Coli cells. III. Role of the ruvA and recN genes; Induccion de recombinacion genetica en el bacteriofago lambda por irradiacion ultravioleta de las celulas de Escherichia Coli. III. Papel de los genes ruvA and recN

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1987-05-15

    The objective of this work is to determine the paper of the genes ruvA and recN in the stimulation of the recombination of Lambda for UV irradiation of Escherichia Coli, taking into account that both genes are inducible, they belong to the group of genes that participate in the SOS response and that a deficiency in its expression reduces the capacity to repair and recombiner the DNA. (Author)

  1. Cloning and expression of the Legionella micdadei "common antigen" in Escherichia coli

    DEFF Research Database (Denmark)

    Bangsborg, Jette Marie; Collins, M T; Høiby, N

    1989-01-01

    To study individual Legionella antigens, a Legionella micdadei genomic library in Escherichia coli SC181 was established. Partially Sau3A digested L. micdadei DNA fragments (15-25 kilobase pairs (kb] were cloned into the tetracycline resistance gene of the cosmid vector pHC79. Four thousand...... ampicillin resistant recombinants were obtained; seven hundred were screened for expression of Legionella antigens in Western blot analysis with a polyspecific E. coli-absorbed anti-L. micdadei rabbit antibody. One of the positive clones expressed a 60 kilodalton (K) antigen, which reacted strongly...... will provide important information with respect to genetic vs. antigenic relatedness among Legionellae and other Gram-negative species, as well as to CA structure and possible function....

  2. E. Coli Infections

    Science.gov (United States)

    E. coli is the name of a type of bacteria that lives in your intestines. Most types of E. coli are harmless. However, some types can make you ... type causes travelers' diarrhea. The worst type of E. coli causes bloody diarrhea, and can sometimes cause kidney ...

  3. Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli.

    Science.gov (United States)

    Fakruddin, Md; Mohammad Mazumdar, Reaz; Bin Mannan, Khanjada Shahnewaj; Chowdhury, Abhijit; Hossain, Md Nur

    2013-01-01

    E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the success of cloning, expression, and mass production of enzymes by recombinant E. coli. In this paper, these critical factors and approaches to overcome these obstacles are summarized focusing controlled expression of target protein/enzyme in an unmodified form at industrial level.

  4. Investigation of Clostridium botulinum group III's mobilome content.

    Science.gov (United States)

    Woudstra, Cédric; Le Maréchal, Caroline; Souillard, Rozenn; Anniballi, Fabrizio; Auricchio, Bruna; Bano, Luca; Bayon-Auboyer, Marie-Hélène; Koene, Miriam; Mermoud, Isabelle; Brito, Roseane B; Lobato, Francisco C F; Silva, Rodrigo O S; Dorner, Martin B; Fach, Patrick

    2018-02-01

    Clostridium botulinum group III is mainly responsible for botulism in animals. It could lead to high animal mortality rates and, therefore, represents a major environmental and economic concern. Strains of this group harbor the botulinum toxin locus on an unstable bacteriophage. Since the release of the first complete C. botulinum group III genome sequence (strain BKT015925), strains have been found to contain others mobile elements encoding for toxin components. In this study, seven assays targeting toxin genes present on the genetic mobile elements of C. botulinum group III were developed with the objective to better characterize C. botulinum group III strains. The investigation of 110 C. botulinum group III strains and 519 naturally contaminated samples collected during botulism outbreaks in Europe showed alpha-toxin and C2-I/C2-II markers to be systematically associated with type C/D bont-positive samples, which may indicate an important role of these elements in the pathogenicity mechanisms. On the contrary, bont type D/C strains and the related positive samples appeared to contain almost none of the markers tested. Interestingly, 31 bont-negative samples collected on farms after a botulism outbreak revealed to be positive for some of the genetic mobile elements tested. This suggests loss of the bont phage, either in farm environment after the outbreak or during laboratory handling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Respiration shutoff in Escherichia coli after far-uv irradiation

    International Nuclear Information System (INIS)

    Swenson, P.A.; Norton, I.L.

    1984-01-01

    Damage to DNA of Escherichia coli by uv, ionizing radiation and chemicals causes a number of responses that require the recA + and lexA + gene products. The responses include error prone repair (as indicated by mutagenesis), filamentation and induction of prophage lambda. Another important rec/lex response, shutoff of respiration, which occurs 60 min after exposure to uv, is studied. Objective is to understand the genetic and biochemical bases of the shutoff process and its control

  6. Towards a Molecular Definition of Enterohemorrhagic Escherichia coli (EHEC): Detection of Genes Located on O Island 57 as Markers To Distinguish EHEC from Closely Related Enteropathogenic E. coli Strains

    Science.gov (United States)

    Delannoy, Sabine; Beutin, Lothar

    2013-01-01

    Among strains of Shiga-toxin (Stx) producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are associated with severe clinical illness in humans. These strains are also called enterohemorrhagic E. coli (EHEC), and the development of methods for their reliable detection from food has been challenging thus far. PCR detection of major EHEC virulence genes stx1, stx2, eae, and O-serogroup-specific genes is useful but does not identify EHEC strains specifically. Searching for the presence of additional genes issued from E. coli O157:H7 genomic islands OI-122 and OI-71 increases the specificity but does not clearly discriminate EHEC from enteropathogenic E. coli (EPEC) strains. Here, we identified two putative genes, called Z2098 and Z2099, from the genomic island OI-57 that were closely associated with EHEC and their stx-negative derivative strains (87% for Z2098 and 91% for Z2099). Z2098 and Z2099 were rarely found in EPEC (10% for Z2098 and 12% for Z2099), STEC (2 and 15%), and apathogenic E. coli (1% each) strains. Our findings indicate that Z2098 and Z2099 are useful genetic markers for a more targeted diagnosis of typical EHEC and new emerging EHEC strains. PMID:23325824

  7. Major histocompatibility complex (MHC) class III genetics in two Amerindian tribes from southern Brazil: the Kaingang and the Guarani.

    Science.gov (United States)

    Weg-Remers, S; Brenden, M; Schwarz, E; Witzel, K; Schneider, P M; Guerra, L K; Rehfeldt, I R; Lima, M T; Hartmann, D; Petzl-Erler, M L; de Messias, I J; Mauff, G

    1997-10-01

    Population genetic studies of the major histocompatibility complex (MHC) class III region, comprising C2, BF and C4 phenotypes, and molecular genetic data are rarely available for populations other than Caucasoids. We have investigated three Amerindian populations from Southern Brazil: 131 Kaingang from Ivaí (KIV), 111 Kaingang (KRC) and 100 Guarani (GRC) from Rio das Cobras. Extended MHC haplotypes were derived after standard C2, BF, C4 phenotyping and restriction fragment length polymorphism (RFLP) analysis with TaqI, together with HLA data published previously by segregation analysis. C2 and BF frequencies corresponded to other Amerindian populations. C4B*Q0 frequency was high in the GRC (0.429) but low in the Kaingang. Unusual C4 alleles were found, viz. C4A*58, A*55 and C4B*22 (presumably non-Amerindian) and aberrant C4A*3 of Amerindian origin occurring with a frequency of 0.223 in the GRC. C4A*3 bands of homo- and heterozygous individuals carrying this variant were Rodgers 1 positive and Chido 1,3 positive, showed a C4A specific lysis type and a C4A like alpha-chain. Polymerase chain reaction studies and sequencing showed that this is based on a C4A*3 duplication with a regular C4A*3 and a partially converted C4A*0304 carrying the C4B specific epitopes Ch 6 and Ch 1,3. Associations of class III haplotypes with particular RFLP patterns were similar to those reported for Caucasoids. The previously described association between combined C4A and CYP21P deletions and the 6.4 kb TaqI fragment was not seen in these Amerindians. This fragment occurred within a regular two locus gene structure in the Kaingang, representing a "short" gene at C4 locus I. C4 and CYP21 duplications were frequently observed. The distribution of extended MHC haplotypes provides evidence for a close relationship between the KIV and KRC and a larger genetic distance between the two Kaingang groups and the GRC.

  8. Prevalence of virulence determinants and antimicrobial resistance among commensal Escherichia coli derived from dairy and beef cattle.

    Science.gov (United States)

    Bok, Ewa; Mazurek, Justyna; Stosik, Michał; Wojciech, Magdalena; Baldy-Chudzik, Katarzyna

    2015-01-19

    Cattle is a reservoir of potentially pathogenic E. coli, bacteria that can represent a significant threat to public health, hence it is crucial to monitor the prevalence of the genetic determinants of virulence and antimicrobial resistance among the E. coli population. The aim of this study was the analysis of the phylogenetic structure, distribution of virulence factors (VFs) and prevalence of antimicrobial resistance among E. coli isolated from two groups of healthy cattle: 50 cows housed in the conventional barn (147 isolates) and 42 cows living on the ecological pasture (118 isolates). The phylogenetic analysis, identification of VFs and antimicrobial resistance genes were based on either multiplex or simplex PCR. The antimicrobial susceptibilities of E. coli were examined using the broth microdilution method. Two statistical approaches were used to analyse the results obtained for two groups of cattle. The relations between the dependent (VFs profiles, antibiotics) and the independent variables were described using the two models. The mixed logit model was used to characterise the prevalence of the analysed factors in the sets of isolates. The univariate logistic regression model was used to characterise the prevalence of these factors in particular animals. Given each model, the odds ratio (OR) and the 95% confidence interval for the population were estimated. The phylogroup B1 was predominant among isolates from beef cattle, while the phylogroups A, B1 and D occurred with equal frequency among isolates from dairy cattle. The frequency of VFs-positive isolates was significantly higher among isolates from beef cattle. E. coli from dairy cattle revealed significantly higher resistance to antibiotics. Some of the tested resistance genes were present among isolates from dairy cattle. Our study showed that the habitat and diet may affect the genetic diversity of commensal E. coli in the cattle. The results suggest that the ecological pasture habitat is related to

  9. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we...... examine definitions of the relevant concepts in order to illustrate this point. The concepts are i) prenatal, ii) genetic screening, iii) screening, scanning and testing, iv) maternal and foetal tests, v) test techniques and vi) genetic conditions. So far, prenatal screening has little connection...... with precisely defined genetics. There are benefits but also disadvantages in overstating current links between them in the term genetic screening. Policy making and professional and public understandings about screening could be clarified if the distinct meanings of prenatal screening and genetic screening were...

  10. Escherichia coli isolates from calf diarrhea in Korea and their virulent genetic characteristics.

    Science.gov (United States)

    Hur, Jin; Jeon, Byung Woo; Kim, Yeong Ju; Oh, In Gyeong; Lee, John Hwa

    2013-05-02

    Escherichia coli strains were isolated from the feces of 130 diarrheic calves at different farms locations in Korea. The presence of the virulence genes, such as fanC, f41, f17a, eaeA, clpG, afa-8D, sta, stx1 and stx2, in each E. coli isolate was examined. Among the 314 isolates, 157 carried one or more of the virulence genes tested in this study. The most prevalent virulence gene was clpG (45.9%), although f17A (36.9%) and afa-8D (21.7%) were also frequently observed. The sta, stx1 and eaeA genes were detected in between approximately 13 and 17% of the isolates, and the fanC and fim41a genes were detected to a lesser extent. Collectively, our data indicated that diarrhea in calves in these locations can be ascribed to various virulence factors, and the pathogenesis may be more related to virulence genes such as, clpG, f17A, and afa-8D.

  11. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    International Nuclear Information System (INIS)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de

    2008-01-01

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl 2 ) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl 2 in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl 2 was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  12. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Dept. de Biofisica e Biometria. Lab. de Radio e Fotobiologia]. E-mail: jcmattos@uerj.br

    2008-12-15

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl{sub 2}) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl{sub 2} in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl{sub 2} was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  13. E. Coli

    Science.gov (United States)

    ... for the bacteria's medical name Escherichia coli . The strange thing about these bacteria — and lots of other ... In some cases, E. coli poisoning can cause life-threatening kidney problems. What Can Kids Do? Adults ...

  14. Study of the effects of high-energy proton beams on escherichia coli

    Science.gov (United States)

    Park, Jeong Chan; Jung, Myung-Hwan

    2015-10-01

    Antibiotic-resistant bacterial infection is one of the most serious risks to public health care today. However, discouragingly, the development of new antibiotics has progressed little over the last decade. There is an urgent need for alternative approaches to treat antibiotic-resistant bacteria. Novel methods, which include photothermal therapy based on gold nano-materials and ionizing radiation such as X-rays and gamma rays, have been reported. Studies of the effects of high-energy proton radiation on bacteria have mainly focused on Bacillus species and its spores. The effect of proton beams on Escherichia coli (E. coli) has been limitedly reported. Escherichia coli is an important biological tool to obtain metabolic and genetic information and is a common model microorganism for studying toxicity and antimicrobial activity. In addition, E. coli is a common bacterium in the intestinal tract of mammals. In this research, the morphological and the physiological changes of E. coli after proton irradiation were investigated. Diluted solutions of cells were used for proton beam radiation. LB agar plates were used to count the number of colonies formed. The growth profile of the cells was monitored by using the optical density at 600 nm. The morphology of the irradiated cells was observed with an optical microscope. A microarray analysis was performed to examine the gene expression changes between irradiated samples and control samples without irradiation. E coli cells have observed to be elongated after proton irradiation with doses ranging from 13 to 93 Gy. Twenty-two were up-regulated more than twofold in proton-irradiated samples (93 Gy) compared with unexposed one.

  15. Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs ▿

    OpenAIRE

    Rosengren, Leigh B.; Waldner, Cheryl L.; Reid-Smith, Richard J.

    2009-01-01

    Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotyp...

  16. The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone.

    Science.gov (United States)

    Phan, Minh-Duy; Peters, Kate M; Sarkar, Sohinee; Lukowski, Samuel W; Allsopp, Luke P; Gomes Moriel, Danilo; Achard, Maud E S; Totsika, Makrina; Marshall, Vikki M; Upton, Mathew; Beatson, Scott A; Schembri, Mark A

    2013-01-01

    Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum) of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73%) of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS) biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82%) of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and cause disease.

  17. The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone.

    Directory of Open Access Journals (Sweden)

    Minh-Duy Phan

    Full Text Available Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73% of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82% of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and

  18. Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III.

    Science.gov (United States)

    Juric-Sekhar, Gordana; Kapur, Raj P; Glass, Ian A; Murray, Mitzi L; Parnell, Shawn E; Hevner, Robert F

    2011-04-01

    Microcephalic osteodysplastic primordial dwarfism (MOPD) is a rare microlissencephaly syndrome, with at least two distinct phenotypic and genetic types. MOPD type II is caused by pericentrin mutations, while types I and III appear to represent a distinct entity (MOPD I/III) with variably penetrant phenotypes and unknown genetic basis. The neuropathology of MOPD I/III is little understood, especially in comparison to other forms of lissencephaly. Here, we report postmortem brain findings in an 11-month-old female infant with MOPD I/III. The cerebral cortex was diffusely pachygyric, with a right parietal porencephalic lesion. Histologically, the cortex was abnormally thick and disorganized. Distinct malformations were observed in different cerebral lobes, as characterized using layer-specific neuronal markers. Frontal cortex was severely disorganized and coated with extensive leptomeningeal glioneuronal heterotopia. Temporal cortex had a relatively normal 6-layered pattern, despite cortical thickening. Occipital cortex was variably affected. The corpus callosum was extremely hypoplastic. Brainstem and cerebellar malformations were also present, as well as old necrotic foci. Findings in this case suggest that the cortical malformation in MOPD I/III is distinct from other forms of pachygyria-lissencephaly.

  19. Effect of the oyster contaminated in Salmonella typhimurium and Escherichia coli

    International Nuclear Information System (INIS)

    Brena V, M.

    1992-08-01

    In this work the effect of the oyster contaminated in the species of bacteria better studied by its genetic composition these are the Salmonella typhimurium and the Escherichia coli and that its have been starting point for later radiobiological studies in superior organisms. Of this its have arisen two general lines. The research about the genotoxic effect of substances or mixtures in bacteria with the collaboration of the groups of Drosophila and X-ray Fluorescence analysis and on the other hand the study of the low doses of radiation also in bacteria. It is also treated the topic about the genetic effect of aromatic hydrocarbons in different biological systems. (Author)

  20. Flagellar region 3b supports strong expression of integrated DNA and the highest chromosomal integration efficiency of the Escherichia coli flagellar regions.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2015-07-01

    The Gram-negative bacterium Escherichia coli is routinely used as the chassis for a variety of biotechnology and synthetic biology applications. Identification and analysis of reliable chromosomal integration and expression target loci is crucial for E. coli engineering. Chromosomal loci differ significantly in their ability to support integration and expression of the integrated genetic circuits. In this study, we investigate E. coli K12 MG1655 flagellar regions 2 and 3b. Integration of the genetic circuit into seven and nine highly conserved genes of the flagellar regions 2 (motA, motB, flhD, flhE, cheW, cheY and cheZ) and 3b (fliE, F, G, J, K, L, M, P, R), respectively, showed significant variation in their ability to support chromosomal integration and expression of the integrated genetic circuit. While not reducing the growth of the engineered strains, the integrations into all 16 target sites led to the loss of motility. In addition to high expression, the flagellar region 3b supports the highest efficiency of integration of all E. coli K12 MG1655 flagellar regions and is therefore potentially the most suitable for the integration of synthetic genetic circuits. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. The detection of K88, K99 fimbrial antigen and enterotoxin genes of Escherichia coli isolated from piglets and calves with diarrhoea in Indonesia

    Directory of Open Access Journals (Sweden)

    Supar

    1996-03-01

    Full Text Available Enterotoxigenic Escherichia coli (ETEC strains cause diarrhoeal disease in piglets and calves in Indonesia. These strains possess two virulence factors namely attachment and enterotoxin antigens . These factors could be detected phenotypically and genetically. Haemolytic Escherichia coli (E coli isolates possessing K88 fimbrial antigen associated with 0-group 108 and 149. They were positive for K88 gene and demonstrated their ability to produce heat labile enterotoxin (LT and genetically were all positive for LT gene . Seventeen isolates ofE coli K88 which associated with 0-group 149 were positive forSTb gene, other O-serotypes were negative . Ten isolates of Ecoli K88 which associated with 0-group 108 possessed K88, K99, LT and STa genes, but negative for STb gene . However, phenotypically the K99 antigen and STa toxin were not expressed under laboratory conditions, the reason was not well understood . E. coli K99 strains isolated from calves wit h diarrhoea were all associated with 0-group 9 and produced STa toxin when tested by suckling mousse bioassay. The E. coli K99 calf isolates were all hybridized with K99 and STa gene only . It is likely that K99 gene is associated with STa gene . The DNA hybridization technique is more convenience to be used for confirmation diagnosis of colibacillosis, however, not all veterinary laboratories could perform these tests .

  2. Biotechnological conversion of glycerol from biofuels to 1,3-propanediol using Escherichia coli.

    Science.gov (United States)

    Przystałowska, Hanna; Lipiński, Daniel; Słomski, Ryszard

    2015-01-01

    In the face of shortage of fossil fuel supplies and climate warming triggered by excessive carbon dioxide emission, alternative resources for chemical industry have gained considerable attention. Renewable resources and their derivatives are of particular interest. Glycerol, which constitutes one of the by-products during biodiesel production, is such a substrate. Thus, generated excess glycerol may become an environmental problem, since it cannot be disposed of in the environment. The most promising products obtained from glycerol are polyols, including 1,3-propanediol, an important substrate in the production of synthetic materials, e.g. polyurethanes, unsaturated polyesters, and epoxy resins. Glycerol can be used as a carbon and energy source for microbial growth in industrial microbiology to produce 1,3-propanediol. This paper is a review of metabolic pathways of native producers and E. coli with the acquired ability to produce the diol via genetic manipulations. Culture conditions during 1,3-PDO production and genetic modifications of E. coli used in order to increase efficiency of glycerol bioconversion are also described in this paper.

  3. [The detection of occurrence rate of genes coding capability to form pili binding in auto-strains of Escherichia coli].

    Science.gov (United States)

    Ivanova, E I; Popkova, S M; Dzhioev, Iu P; Rakova, E B; Dolgikh, V V; Savel'kaeva, M V; Nemchenko, U M; Bukharova, E V; Serdiuk, L V

    2015-01-01

    E. coli is a commensal of intestine of the vertebrata. The exchange of genetic material of different types of bacteria between themselves and with other representatives of family of Enterobacteriaceae in intestinal ecosystem results in development of types of normal colibacillus with genetic characteristics of pathogenicity that can serve as a theoretical substantiation to attribute such strains to pathobionts. The entero-pathogenic colibacillus continues be an important cause of diarrhea in children in developing countries. The gene responsible for formation of pili binding is a necessary condition for virulence of entero-pathogenic colibacillus. The polymerase chain reaction was applied to examine 316 strains of different types of E. coli (normal, with weak enzyme activity and hemolytic activity) isolated from healthy children and children with functional disorders of gastro-intestinal tract for presence of genes coding capability to form pill binding. The presence of this gene in different biochemical types of E. coli permits to establish the fact of formation of reservoir of pathogenicity in indigent microbiota of intestinal biocenosis.

  4. [Construction and prokaryotic expression of recombinant gene EGFRvIII HBcAg and immunogenicity analysis of the fusion protein].

    Science.gov (United States)

    Duan, Xiao-yi; Wang, Jian-sheng; Guo, You-min; Han, Jun-li; Wang, Quan-ying; Yang, Guang-xiao

    2007-01-01

    To construct recombinant prokaryotic expression plasmid pET28a(+)/c-PEP-3-c and evaluate the immunogenicity of the fusion protein. cDNA fragment encoding PEP-3 was obtained from pGEM-T Easy/PEP-3 and inserted into recombinant plasmid pGEMEX/HBcAg. Then it was subcloned in prokaryotic expression vector and transformed into E.coli BL21(DE3). The fusion protein was expressed by inducing IPTG and purified by Ni(2+)-NTA affinity chromatography. BALB/c mice were immunized with fusion protein and the antibody titre was determined by indirect ELISA. The recombinant gene was confirmed to be correct by restriction enzyme digestion and DNA sequencing. After prokaryotic expression, fusion protein existed in sediment and accounted for 56% of all bacterial lysate. The purified product accounted for 92% of all protein and its concentration was 8 g/L. The antibody titre in blood serum reached 1:16 000 after the fourth immunization and reached 1:2.56x10(5) after the sixth immunization. The titre of anti-PEP-3 antibody reached 1:1.28x10(5) and the titre of anti-HBcAg antibody was less than 1:4x10(3). Fusion gene PEP-3-HBcAg is highly expressed in E.coli BL21. The expressed fusion protein can induce neutralizing antibody with high titer and specificity, which lays a foundation for the study of genetically engineering vaccine for malignant tumors with the high expression of EGFRvIII.

  5. Antibiotic Susceptibilities and Genetic Characteristics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Stools of Pediatric Diarrhea Patients in Surabaya, Indonesia.

    Science.gov (United States)

    Bagus Wasito, Eddy; Shigemura, Katsumi; Osawa, Kayo; Fardah, Alpha; Kanaida, Akiho; Raharjo, Dadik; Kuntaman, K; Hadi, Usman; Harijono, Sugeng; Marto Sudarmo, Subijanto; Nakamura, Tatsuya; Shibayama, Keigo; Fujisawa, Masato; Shirakawa, Toshiro

    2017-07-24

    The purpose of this study was to investigate extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates from pediatric (aged 0 to 3 years) diarrhea patients in Surabaya, Indonesia, where this kind of survey is rare; our study included assessment of their antibiotic susceptibilities, as well as ESBL typing, multilocus sequence typing (MLST), and diarrheagenic E. coli (DEC)-typing. ESBL-producing E. coli were detected in 18.8% of all the samples. Many ESBL-producing E. coli had significantly lower susceptibility to gentamicin (p < 0.0001) and the quinolones nalidixic acid (p=0.004) and ciprofloxacin (p < 0.0001) than non-producers. In ESBL-producing E. coli, 84.0% of strains expressed CTX-M-15 alone or in combination with other ESBL types. MLST revealed that 24.0% of ESBL-producers had sequence type 617, all of which expressed the CTX-M-15 gene; we also detected expression of 3 DEC-related genes: 2 enteroaggregative E. coli genes and 1 enteropathogenic E. coli gene. In conclusion, CTX-M-15-type ESBL-producing E. coli ST617 appear to have spread to Indonesia.

  6. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli

    DEFF Research Database (Denmark)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production econo...

  7. Construction and characterisation of a genetically engineered Escherichia coli strain for the epoxide hydrolase-catalysed kinetic resolution of epoxides

    NARCIS (Netherlands)

    Visser, H.; Oliveira Vil Filho, de M.; Liese, A.; Weijers, C.A.G.M.; Verdoes, J.C.

    2003-01-01

    The Rhodotorula glutinis epoxide hydrolase, Eph1, was produced in the heterologous host Escherichia coli BL21(DE3) in order to develop a highly effective epoxide hydrolysis system. A 138-fold increase in Eph1 activity was found in cell extracts of the recombinant E. coli when compared to cell

  8. Risk of Transmission of Antimicrobial Resistant Escherichia coli from Commercial Broiler and Free-Range Retail Chicken in India.

    Science.gov (United States)

    Hussain, Arif; Shaik, Sabiha; Ranjan, Amit; Nandanwar, Nishant; Tiwari, Sumeet K; Majid, Mohammad; Baddam, Ramani; Qureshi, Insaf A; Semmler, Torsten; Wieler, Lothar H; Islam, Mohammad A; Chakravortty, Dipshikha; Ahmed, Niyaz

    2017-01-01

    Multidrug-resistant Escherichia coli infections are a growing public health concern. This study analyzed the possibility of contamination of commercial poultry meat (broiler and free-range) with pathogenic and or multi-resistant E. coli in retail chain poultry meat markets in India. We analyzed 168 E. coli isolates from broiler and free-range retail poultry (meat/ceca) sampled over a wide geographical area, for their antimicrobial sensitivity, phylogenetic groupings, virulence determinants, extended-spectrum-β-lactamase (ESBL) genotypes, fingerprinting by Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR and genetic relatedness to human pathogenic E. coli using whole genome sequencing (WGS). The prevalence rates of ESBL producing E. coli among broiler chicken were: meat 46%; ceca 40%. Whereas, those for free range chicken were: meat 15%; ceca 30%. E. coli from broiler and free-range chicken exhibited varied prevalence rates for multi-drug resistance (meat 68%; ceca 64% and meat 8%; ceca 26%, respectively) and extraintestinal pathogenic E. coli (ExPEC) contamination (5 and 0%, respectively). WGS analysis confirmed two globally emergent human pathogenic lineages of E. coli , namely the ST131 ( H 30-Rx subclone) and ST117 among our poultry E. coli isolates. These results suggest that commercial poultry meat is not only an indirect public health risk by being a possible carrier of non-pathogenic multi-drug resistant (MDR)- E. coli , but could as well be the carrier of human E. coli pathotypes. Further, the free-range chicken appears to carry low risk of contamination with antimicrobial resistant and extraintestinal pathogenic E. coli (ExPEC). Overall, these observations reinforce the understanding that poultry meat in the retail chain could possibly be contaminated by MDR and/or pathogenic E. coli.

  9. Social network community structure and the contact-mediated sharing of commensal E. coli among captive rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Balasubramaniam, Krishna; Beisner, Brianne; Guan, Jiahui; Vandeleest, Jessica; Fushing, Hsieh; Atwill, Edward; McCowan, Brenda

    2018-01-01

    In group-living animals, heterogeneity in individuals' social connections may mediate the sharing of microbial infectious agents. In this regard, the genetic relatedness of individuals' commensal gut bacterium Escherichia coli may be ideal to assess the potential for pathogen transmission through animal social networks. Here we use microbial phylogenetics and population genetics approaches, as well as host social network reconstruction, to assess evidence for the contact-mediated sharing of E. coli among three groups of captively housed rhesus macaques ( Macaca mulatta ), at multiple organizational scales. For each group, behavioral data on grooming, huddling, and aggressive interactions collected for a six-week period were used to reconstruct social network communities via the Data Cloud Geometry (DCG) clustering algorithm. Further, an E. coli isolate was biochemically confirmed and genotypically fingerprinted from fecal swabs collected from each macaque. Population genetics approaches revealed that Group Membership, in comparison to intrinsic attributes like age, sex, and/or matriline membership of individuals, accounted for the highest proportion of variance in E. coli genotypic similarity. Social network approaches revealed that such sharing was evident at the community-level rather than the dyadic level. Specifically, although we found no links between dyadic E. coli similarity and social contact frequencies, similarity was significantly greater among macaques within the same social network communities compared to those across different communities. Moreover, tests for one of our study-groups confirmed that E. coli isolated from macaque rectal swabs were more genotypically similar to each other than they were to isolates from environmentally deposited feces. In summary, our results suggest that among frequently interacting, spatially constrained macaques with complex social relationships, microbial sharing via fecal-oral, social contact-mediated routes may

  10. [SOS response of DNA repair and genetic cell instability under hypoxic conditions].

    Science.gov (United States)

    Vasil'eva, S V; Strel'tsova, D A

    2011-01-01

    The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions.

  11. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli

    DEFF Research Database (Denmark)

    Sørensen, Hans; Mortensen, Kim

    2005-01-01

    Pure, soluble and functional proteins are of high demand in modern biotechnology. Natural protein sources rarely meet the requirements for quantity, ease of isolation or price and hence recombinant technology is often the method of choice. Recombinant cell factories are constantly employed...... molecular tools available. In spite of all these qualities, expression of recombinant proteins with E. coli as the host often results in insoluble and/or nonfunctional proteins. Here we review new approaches to overcome these obstacles by strategies that focus on either controlled expression of target...... for the production of protein preparations bound for downstream purification and processing. Eschericia coli is a frequently used host, since it facilitates protein expression by its relative simplicity, its inexpensive and fast high density cultivation, the well known genetics and the large number of compatible...

  12. Biosynthesis of Cr(III) nanoparticles from electroplating wastewater using chromium-resistant Bacillus subtilis and its cytotoxicity and antibacterial activity.

    Science.gov (United States)

    Kanakalakshmi, A; Janaki, V; Shanthi, K; Kamala-Kannan, S

    2017-11-01

    The aim of this study was to synthesize and characterize Cr(III) nanoparticles using wastewater from electroplating industries and chromium-resistant Bacillus subtilis. Formation of Cr(III) nanoparticles was confirmed by UV-visible (UV-Vis) spectroscopy at 300 nm. The size of the nanoparticles varied from 4 to 50 nm and energy dispersive spectroscopy profile shows strong Cr peak approximately at 4.45 and 5.2 keV. The nanoparticles inhibited the growth of pathogenic bacteria Staphylococcus aureus and Escherichia coli. The cytotoxic effect of the synthesized Cr(III) nanoparticle was studied using HEK 293 cells, and the cell viability was found to decrease with increasing concentration of Cr(III) nanoparticles.

  13. Crystallization and preliminary crystallographic analysis of an octaketide-producing plant type III polyketide synthase

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Hiroyuki [Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511 (Japan); Kondo, Shin; Kato, Ryohei [Innovation Center Yokohama, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, Kanagawa 227-8502 (Japan); Wanibuchi, Kiyofumi; Noguchi, Hiroshi [School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526 (Japan); Sugio, Shigetoshi, E-mail: sugio.shigetoshi@mw.m-kagaku.co.jp [Innovation Center Yokohama, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, Kanagawa 227-8502 (Japan); Abe, Ikuro, E-mail: sugio.shigetoshi@mw.m-kagaku.co.jp [School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kohno, Toshiyuki, E-mail: sugio.shigetoshi@mw.m-kagaku.co.jp [Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511 (Japan)

    2007-11-01

    Octaketide synthase from A. arborescens has been overexpressed in E. coli, purified and crystallized. Diffraction data have been collected to 2.6 Å. Octaketide synthase (OKS) from Aloe arborescens is a plant-specific type III polyketide synthase that produces SEK4 and SEK4b from eight molecules of malonyl-CoA. Recombinant OKS expressed in Escherichia coli was crystallized by the hanging-drop vapour-diffusion method. The crystals belonged to space group I422, with unit-cell parameters a = b = 110.2, c = 281.4 Å, α = β = γ = 90.0°. Diffraction data were collected to 2.6 Å resolution using synchrotron radiation at BL24XU of SPring-8.

  14. Presence and Characterization of Extraintestinal Pathogenic Escherichia coli Virulence Genes in F165-Positive E. coli Strains Isolated from Diseased Calves and Pigs

    OpenAIRE

    Dezfulian, Hojabr; Batisson, Isabelle; Fairbrother, John M.; Lau, Peter C. K.; Nassar, Atef; Szatmari, George; Harel, Josée

    2003-01-01

    The virulence genotype profile and presence of a pathogenicity island(s) (PAI) were studied in 18 strains of F165-positive Escherichia coli originally isolated from diseased calves or piglets. On the basis of their adhesion phenotypes and genotypes, these extraintestinal pathogenic strains were classified into three groups. The F165 fimbrial complex consists of at least two serologically and genetically distinct fimbriae: F1651 and F1652. F1651 is encoded by the foo operon (pap-like), and F16...

  15. Escherichia coli DNA polymerase I can disrupt G-quadruplex structures during DNA replication.

    Science.gov (United States)

    Teng, Fang-Yuan; Hou, Xi-Miao; Fan, San-Hong; Rety, Stephane; Dou, Shuo-Xing; Xi, Xu-Guang

    2017-12-01

    Non-canonical four-stranded G-quadruplex (G4) DNA structures can form in G-rich sequences that are widely distributed throughout the genome. The presence of G4 structures can impair DNA replication by hindering the progress of replicative polymerases (Pols), and failure to resolve these structures can lead to genetic instability. In the present study, we combined different approaches to address the question of whether and how Escherichia coli Pol I resolves G4 obstacles during DNA replication and/or repair. We found that E. coli Pol I-catalyzed DNA synthesis could be arrested by G4 structures at low protein concentrations and the degree of inhibition was strongly dependent on the stability of the G4 structures. Interestingly, at high protein concentrations, E. coli Pol I was able to overcome some kinds of G4 obstacles without the involvement of other molecules and could achieve complete replication of G4 DNA. Mechanistic studies suggested that multiple Pol I proteins might be implicated in G4 unfolding, and the disruption of G4 structures requires energy derived from dNTP hydrolysis. The present work not only reveals an unrealized function of E. coli Pol I, but also presents a possible mechanism by which G4 structures can be resolved during DNA replication and/or repair in E. coli. © 2017 Federation of European Biochemical Societies.

  16. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Directory of Open Access Journals (Sweden)

    Fernando Navarro-Garcia

    2013-01-01

    Full Text Available The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.

  17. Genetic Manipulation of Outer Membrane Permeability: Generating Porous Heterogeneous Catalyst Analogs in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Patel, TN; Park, AHA; Bantat, S

    2014-12-01

    The limited permeability of the E. coli outer membrane can significantly hinder whole-cell biocatalyst performance. In this study, the SARS coronavirus small envelope protein (SCVE) was expressed in E. coli cells previously engineered for periplasmic expression of carbonic anhydrase (CA) activity. This maneuver increased small molecule uptake by the cells, resulting in increased apparent CA activity of the biocatalysts. The enhancements in activity were quantified using methods developed for traditional heterogeneous catalysis. The expression of the SCVE protein was found to significantly reduce the Thiele moduli (phi), as well as increase the effectiveness factors (eta), effective diffusivities (D-e), and permeabilities (P) of the biocatalysts. These catalytic improvements translated into superior performance of the biocatalysts for the precipitation of calcium carbonate from solution which is an attractive strategy for long-term sequestration of captured carbon dioxide. Overall, these results demonstrate that synthetic biology approaches can be used to enhance heterogeneous catalysts incorporated into microbial whole-cell scaffolds.

  18. IS3 profiling identifies the enterohaemorrhagic Escherichia coli O-island 62 in a distinct enteroaggregative E. coli lineage

    Directory of Open Access Journals (Sweden)

    Okeke Iruka N

    2011-03-01

    Full Text Available Abstract Background Enteroaggregative Escherichia coli (EAEC are important diarrhoeal pathogens that are defined by a HEp-2 adherence assay performed in specialist laboratories. Multilocus sequence typing (MLST has revealed that aggregative adherence is convergent, providing an explanation for why not all EAEC hybridize with the plasmid-derived probe for this category, designated CVD432. Some EAEC lineages are globally disseminated or more closely associated with disease. Results To identify genetic loci conserved within significant EAEC lineages, but absent from non-EAEC, IS3-based PCR profiles were generated for 22 well-characterised EAEC strains. Six bands that were conserved among, or missing from, specific EAEC lineages were cloned and sequenced. One band corresponded to the aggR gene, a plasmid-encoded regulator that has been used as a diagnostic target but predominantly detects EAEC bearing the plasmid already marked by CVD432. The sequence from a second band was homologous to an open-reading frame within the cryptic enterohaemorrhagic E. coli (EHEC O157 genomic island, designated O-island 62. Screening of an additional 46 EAEC strains revealed that the EHEC O-island 62 was only present in those EAEC strains belonging to the ECOR phylogenetic group D, largely comprised of sequence type (ST complexes 31, 38 and 394. Conclusions The EAEC 042 gene orf1600, which lies within the EAEC equivalent of O-island 62 island, can be used as a marker for EAEC strains belonging to the ECOR phylogenetic group D. The discovery of EHEC O-island 62 in EAEC validates the genetic profiling approach for identifying conserved loci among phylogenetically related strains.

  19. Repair replication in permeabilized Escherichia coli

    International Nuclear Information System (INIS)

    Masker, W.E.; Simon, T.J.; Hanawalt, P.C.

    1975-01-01

    We have examined the modes of DNA synthesis in Escherichia coli strains made permeable to nucleoside triphosphates by treatment with toluene. In this quasi in vitro system, polymerase-I-deficient mutants exhibit a nonconservative mode of synthesis with properties expected for the resynthesis step of excision-repair. This uv-stimulated DNA synthesis can be performed by either DNA polymerase II or III and it also requires the uvrA gene product. It requires the four deoxynucleoside triphosphates; but, in contrast to the semiconservative mode, the ATP requirement can be partially satisfied by other nucleoside triphosphates. The ATP-dependent recBC nuclease is not involved. The observed uv-stimulated mode of DNA synthesis may be part of an alternate excision-repair mechanism which supplements or complements DNA-polymerase-I-dependent repair in vivo

  20. Genetic architecture of intrinsic antibiotic susceptibility.

    Directory of Open Access Journals (Sweden)

    Hany S Girgis

    2009-05-01

    Full Text Available Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug's chemical structure and a bacterium's cellular network affect the types of mutations acquired.To better characterize the genetic determinants of antibiotic susceptibility, we exposed a transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then determined the quantitative contribution of each gene to E. coli's intrinsic antibiotic susceptibility. We found both loci whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher tolerance.Our results illustrate that a wide-range of mutations can modulate the activity of many cellular resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance. Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential accumulation of chromosomal mutations of small individual effect.

  1. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli.

    Science.gov (United States)

    Guerra, Ángela Patricia; Calvo, Eliana Patricia; Wasserman, Moisés; Chaparro-Olaya, Jacqueline

    2016-02-23

    The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum. However, the proteins of P. falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies.  To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8).  The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice.  The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli, compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies.  The use of genetically modified strains of E. coli was essential to achieve high expression levels of the four evaluated P. falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P. falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.

  2. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.

    Directory of Open Access Journals (Sweden)

    Fabio Lapenta

    Full Text Available DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.

  3. The nature of the exchange coupling between high-spin Fe(III) heme o3 and CuBII in Escherichia coli quinol oxidase, cytochrome bo3: MCD and EPR studies.

    Science.gov (United States)

    Cheesman, Myles R; Oganesyan, Vasily S; Watmough, Nicholas J; Butler, Clive S; Thomson, Andrew J

    2004-04-07

    Fully oxidized cytochrome bo3 from Escherichia coli has been studied in its oxidized and several ligand-bound forms using electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopies. In each form, the spin-coupled high-spin Fe(III) heme o3 and CuB(II) ion at the active site give rise to similar fast-relaxing broad features in the dual-mode X-band EPR spectra. Simulations of dual-mode spectra are presented which show that this EPR can arise only from a dinuclear site in which the metal ions are weakly coupled by an anisotropic exchange interaction of J 1 cm-1. A variable-temperature and magnetic field (VTVF) MCD study is also presented for the cytochrome bo3 fluoride and azide derivatives. New methods are used to extract the contribution to the MCD of the spin-coupled active site in the presence of strong transitions from low-spin Fe(III) heme b. Analysis of the MCD data, independent of the EPR study, also shows that the spin-coupling within the active site is weak with J approximately 1 cm-1. These conclusions overturn a long-held view that such EPR signals in bovine cytochrome c oxidase arise from an S' = 2 ground state resulting from strong exchange coupling (J > 10(2) cm-1) within the active site.

  4. Prevalence of beta-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark

    DEFF Research Database (Denmark)

    Olesen, Inger; Hasman, Henrik; Aarestrup, Frank Møller

    2004-01-01

    The genetic background for beta-lactamase-mediated resistance to beta-lactam antibiotics was examined by PCR and sequencing in 160 ampicillin-resistant isolates (109 Escherichia coli and 51 Salmonella) obtained from healthy and diseased food animals in Denmark. Sequencing revealed three different...... leading to increased production of the AmpC beta-lactamase were demonstrated in 11 cefoxitin-resistant or intermediate E. coli isolates. Nine of these isolates did not contain any bla(TEM) genes, whereas the remaining two did. No genes encoding SHV or extended-spectrum beta-lactamases were detected. Two...

  5. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Science.gov (United States)

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  6. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Garry Laverty

    2014-07-01

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl, pellicle Formation (Pel and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  7. E. Coli and Pregnancy

    Science.gov (United States)

    ... chat Live Help Fact Sheets Share Escherichia coli (E. coli) Friday, 01 September 2017 In every pregnancy, a ... risk. This sheet talks about whether exposure to E. coli may increase the risk for birth defects over ...

  8. Virulence genes in a probiotic E. coli product with a recorded long history of safe use

    Science.gov (United States)

    Zschüttig, Anke; Beimfohr, Claudia; Geske, Thomas; Auerbach, Christian; Cook, Helen; Zimmermann, Kurt; Gunzer, Florian

    2015-01-01

    The probiotic product Symbioflor2 (DSM 17252) is a bacterial concentrate of six different Escherichia coli genotypes, whose complete genome sequences are compared here, between each other as well as to other E. coli genomes. The genome sequences of Symbioflor2 E. coli components contained a number of virulence-associated genes. Their presence seems to be in conflict with a recorded history of safe use, and with the observed low frequency of adverse effects over a period of more than 6 years. The genome sequences were used to identify unique sequences for each component, for which strain-specific hybridization probes were designed. A colonization study was conducted whereby five volunteers were exposed to an exceptionally high single dose. The results showed that the probiotic E. coli could be detected for 3 months or longer in their stools, and this was in particular the case for those components containing higher numbers of virulence-associated genes. Adverse effects from this long-term colonization were absent. Thus, the presence of the identified virulence genes does not result in a pathogenic phenotype in the genetic background of these probiotic E. coli. PMID:25883796

  9. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    Directory of Open Access Journals (Sweden)

    José Carlos Pelielo de Mattos

    2008-12-01

    Full Text Available Reactive oxygen species (ROS can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl2 is a ROS generator, leading to lethality in Escherichia coli (E. coli, with the base excision repair (BER mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl2 in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl2 was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms.Espécies reativas de oxigênio (ERO podem induzir lesões em diferentes alvos celulares, incluindo o DNA. O cloreto estanoso (SnCl2 é um gerador de ERO que induz letalidade em E. coli, sendo o reparo por excisão de bases (BER um mecanismo importante neste processo. Técnicas como o ensaio cometa (em eucariotos e a eletroforese de DNA plasmidial em gel de agarose têm sido utilizadas para detectar genotoxicidade. No presente estudo, uma adaptação do método de eletroforese em gel alcalino de agarose foi usada para verificar a indução de quebras, pelo SnCl2, no DNA de E. coli, bem como a participação de enzimas do BER na restauração das lesões. Os resultados mostraram que o SnCl2 induziu quebras no DNA de todas as cepas testadas. Além disso, endonuclease IV e exonuclease III estão envolvidas na reparação dos danos. Em resumo, os dados obtidos indicam que a metodologia de eletroforese em gel alcalino de agarose pode ser empregada tanto para o estudo de quebras no DNA, quanto para avaliação dos

  10. Two Tales of Prokaryotic Genomic Diversity: Escherichia coli and Halophiles

    Directory of Open Access Journals (Sweden)

    Lejla Pašić

    2014-01-01

    Full Text Available Prokaryotes are generally characterized by vast genomic diversity that has been shaped by mutations, horizontal gene transfer, bacteriocins and phage predation. Enormous genetic diversity has developed as a result of stresses imposed in harsh environments and the ability of microorganisms to adapt. Two examples of prokaryotic diversity are presented: on intraspecies level, exemplified by Escherichia coli, and the diversity of the hypersaline environment, with the discussion of food-related health issues and biotechnological potential.

  11. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli.

    Science.gov (United States)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili; Christensen, Jens P; Olsen, John E; Nolan, Lisa; Olsen, Rikke H

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production economy and welfare worldwide. An almost defining characteristic of avian pathogenic E. coli is the carriage of plasmids, which may encode virulence factors and antibiotic resistance determinates. For the same reason, plasmids of avian pathogenic E. coli have been intensively studied. However, genes encoded by the chromosome may also be important for disease manifestation and antimicrobial resistance. For the E. coli strain APEC_O2 the plasmids have been sequenced and analyzed in several studies, and E. coli APEC_O2 may therefore serve as a reference strain in future studies. Here we describe the chromosomal features of E. coli APEC_O2. E. coli APEC_O2 is a sequence type ST135, has a chromosome of 4,908,820 bp (plasmid removed), comprising 4672 protein-coding genes, 110 RNA genes, and 156 pseudogenes, with an average G + C content of 50.69%. We identified 82 insertion sequences as well as 4672 protein coding sequences, 12 predicated genomic islands, three prophage-related sequences, and two clustered regularly interspaced short palindromic repeats regions on the chromosome, suggesting the possible occurrence of horizontal gene transfer in this strain. The wildtype strain of E. coli APEC_O2 is resistant towards multiple antimicrobials, however, no (complete) antibiotic resistance genes were present on the chromosome, but a number of genes associated with extra-intestinal disease were identified. Together, the information provided here on E. coli APEC_O2 will assist in future studies of avian pathogenic E. coli strains, in particular regarding strain of E. coli APEC_O2, and aid in the general understanding of the pathogenesis of avian pathogenic E. coli .

  12. Generation of a restriction minus enteropathogenic Escherichia coli E2348/69 strain that is efficiently transformed with large, low copy plasmids

    Directory of Open Access Journals (Sweden)

    Ward Jordan D

    2008-08-01

    Full Text Available Abstract Background Many microbes possess restriction-modification systems that protect them from parasitic DNA molecules. Unfortunately, the presence of a restriction-modification system in a given microbe also hampers genetic analysis. Although plasmids can be successfully conjugated into the enteropathogenic Escherichia coli strain E2348/69 and optimized protocols for competent cell preparation have been developed, we found that a large, low copy (~15 bioluminescent reporter plasmid, pJW15, that we modified for use in EPEC, was exceedingly difficult to transform into E2348/69. We reasoned that a restriction-modification system could be responsible for the low transformation efficiency of E2348/69 and sought to identify and inactivate the responsible gene(s, with the goal of creating an easily transformable strain of EPEC that could complement existing protocols for genetic manipulation of this important pathogen. Results Using bioinformatics, we identified genes in the unfinished enteropathogenic Escherichia coli (EPEC strain E2348/69 genome whose predicted products bear homology to the HsdM methyltransferases, HsdS specificity subunits, and HsdR restriction endonucleases of type I restriction-modification systems. We constructed a strain carrying a deletion of the conserved enzymatic domain of the EPEC HsdR homologue, NH4, and showed that its transformation efficiency was up to four orders of magnitude higher than that of the parent strain. Further, the modification capacity of NH4 remained intact, since plasmids that were normally recalcitrant to transformation into E2348/69 could be transformed upon passage through NH4. NH4 was unaffected in virulence factor production, since bundle forming pilus (BFP subunits and type III secreted (T3S proteins were present at equivalent levels to those seen in E2348/69. Further, NH4 was indistinguishable from E2348/69 in tissue culture infection model assays of localized adherence and T3S. Conclusion We

  13. Risk of Transmission of Antimicrobial Resistant Escherichia coli from Commercial Broiler and Free-Range Retail Chicken in India

    Directory of Open Access Journals (Sweden)

    Arif Hussain

    2017-11-01

    Full Text Available Multidrug-resistant Escherichia coli infections are a growing public health concern. This study analyzed the possibility of contamination of commercial poultry meat (broiler and free-range with pathogenic and or multi-resistant E. coli in retail chain poultry meat markets in India. We analyzed 168 E. coli isolates from broiler and free-range retail poultry (meat/ceca sampled over a wide geographical area, for their antimicrobial sensitivity, phylogenetic groupings, virulence determinants, extended-spectrum-β-lactamase (ESBL genotypes, fingerprinting by Enterobacterial Repetitive Intergenic Consensus (ERIC PCR and genetic relatedness to human pathogenic E. coli using whole genome sequencing (WGS. The prevalence rates of ESBL producing E. coli among broiler chicken were: meat 46%; ceca 40%. Whereas, those for free range chicken were: meat 15%; ceca 30%. E. coli from broiler and free-range chicken exhibited varied prevalence rates for multi-drug resistance (meat 68%; ceca 64% and meat 8%; ceca 26%, respectively and extraintestinal pathogenic E. coli (ExPEC contamination (5 and 0%, respectively. WGS analysis confirmed two globally emergent human pathogenic lineages of E. coli, namely the ST131 (H30-Rx subclone and ST117 among our poultry E. coli isolates. These results suggest that commercial poultry meat is not only an indirect public health risk by being a possible carrier of non-pathogenic multi-drug resistant (MDR-E. coli, but could as well be the carrier of human E. coli pathotypes. Further, the free-range chicken appears to carry low risk of contamination with antimicrobial resistant and extraintestinal pathogenic E. coli (ExPEC. Overall, these observations reinforce the understanding that poultry meat in the retail chain could possibly be contaminated by MDR and/or pathogenic E. coli.

  14. Human Meningitis-Associated Escherichia coli

    Science.gov (United States)

    KIM, KWANG SIK

    2016-01-01

    E. coli is the most common Gram-negative bacillary organism causing meningitis and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using in vitro and in vivo models of the blood-brain barrier have shown that E. coli meningitis follows a high-degree of bacteremia and invasion of the blood-brain barrier. E. coli invasion of the blood-brain barrier, the essentials step in the development of E. coli meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to E. coli invasion of the blood-brain barrier is shown to be efficient in preventing E. coli penetration into the brain. The basis for requiring a high-degree of bacteremia for E. coli penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high-degree of bacteremia and E. coli invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis. PMID:27223820

  15. Diarrheagenic Escherichia coli Markers and Phenotypes among Fecal E. coli Isolates Collected from Nicaraguan Infants ▿

    OpenAIRE

    Reyes, Daniel; Vilchez, Samuel; Paniagua, Margarita; Colque-Navarro, Patricia; Weintraub, Andrej; Möllby, Roland; Kühn, Inger

    2010-01-01

    We analyzed the prevalence of diarrheagenic Escherichia coli (DEC) markers and common phenotypes in 2,164 E. coli isolates from 282 DEC-positive samples. Enteropathogenic E. coli (EPEC) and enteroaggregative E. coli (EAEC) were very diverse and were not correlated with diarrhea. Enterotoxigenic E. coli (ETEC) estA and enterohemorrhagic E. coli (EHEC) belonged to a few phenotypes and were significantly correlated with diarrhea.

  16. Analysis and design of a genetic circuit for dynamic metabolic engineering.

    Science.gov (United States)

    Anesiadis, Nikolaos; Kobayashi, Hideki; Cluett, William R; Mahadevan, Radhakrishnan

    2013-08-16

    Recent advances in synthetic biology have equipped us with new tools for bioprocess optimization at the genetic level. Previously, we have presented an integrated in silico design for the dynamic control of gene expression based on a density-sensing unit and a genetic toggle switch. In the present paper, analysis of a serine-producing Escherichia coli mutant shows that an instantaneous ON-OFF switch leads to a maximum theoretical productivity improvement of 29.6% compared to the mutant. To further the design, global sensitivity analysis is applied here to a mathematical model of serine production in E. coli coupled with a genetic circuit. The model of the quorum sensing and the toggle switch involves 13 parameters of which 3 are identified as having a significant effect on serine concentration. Simulations conducted in this reduced parameter space further identified the optimal ranges for these 3 key parameters to achieve productivity values close to the maximum theoretical values. This analysis can now be used to guide the experimental implementation of a dynamic metabolic engineering strategy and reduce the time required to design the genetic circuit components.

  17. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe

    Science.gov (United States)

    Xue, Yong; Wilkes, Jon G.; Moskal, Ted J.; Williams, Anna J.; Cooper, Willie M.; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A.

    2016-01-01

    Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts. PMID:26913737

  18. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe.

    Directory of Open Access Journals (Sweden)

    Yong Xue

    Full Text Available Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts.

  19. Effect of bile on growth, peritoneal absorption, and blood clearance of Escherichia coli in E coli peritonitis

    International Nuclear Information System (INIS)

    Andersson, R.; Schalen, C.; Tranberg, K.G.

    1991-01-01

    The effect of intraperitoneal bile on growth, peritoneal absorption, and clearance of Escherichia coli was determined in E coli peritonitis in the rat. In E coli peritonitis, intraperitoneal bacterial counts gradually decreased, whereas they increased (after 2 hours) with subsequent development of bacteremia in E coli plus bile peritonitis. After an intraperitoneal injection of labeled bacteria, blood radioactivity was only initially lower in E coli plus bile peritonitis compared with E coli peritonitis. Clearance from blood was lower in E coli plus bile peritonitis than in E coli peritonitis. Organ localization was similar in E coli peritonitis and E coli plus bile peritonitis with decreased splenic, increased pulmonary, and unchanged hepatic uptakes compared with controls. Impaired peritoneal absorption of bacteria, together with impaired local host defense, is likely to enhance the noxious effect of bile in E coli peritonitis

  20. Comparative Genomics of Escherichia coli Isolated from Skin and Soft Tissue and Other Extraintestinal Infections.

    Science.gov (United States)

    Ranjan, Amit; Shaik, Sabiha; Nandanwar, Nishant; Hussain, Arif; Tiwari, Sumeet K; Semmler, Torsten; Jadhav, Savita; Wieler, Lothar H; Alam, Munirul; Colwell, Rita R; Ahmed, Niyaz

    2017-08-15

    Escherichia coli , an intestinal Gram-negative bacterium, has been shown to be associated with a variety of diseases in addition to intestinal infections, such as urinary tract infections (UTIs), meningitis in neonates, septicemia, skin and soft tissue infections (SSTIs), and colisepticemia. Thus, for nonintestinal infections, it is categorized as extraintestinal pathogenic E. coli (ExPEC). It is also an opportunistic pathogen, causing cross infections, notably as an agent of zoonotic diseases. However, comparative genomic data providing functional and genetic coordinates for ExPEC strains associated with these different types of infections have not proven conclusive. In the study reported here, ExPEC E. coli isolated from SSTIs was characterized, including virulence and drug resistance profiles, and compared with isolates from patients suffering either pyelonephritis or septicemia. Results revealed that the majority of the isolates belonged to two pathogenic phylogroups, B2 and D. Approximately 67% of the isolates were multidrug resistant (MDR), with 85% producing extended-spectrum beta-lactamase (ESBL) and 6% producing metallo-beta-lactamase (MBL). The bla CTX-M-15 genotype was observed in at least 70% of the E. coli isolates in each category, conferring resistance to an extended range of beta-lactam antibiotics. Whole-genome sequencing and comparative genomics of the ExPEC isolates revealed that two of the four isolates from SSTIs, NA633 and NA643, belong to pandemic sequence type ST131, whereas functional characteristics of three of the ExPEC pathotypes revealed that they had equal capabilities to form biofilm and were resistant to human serum. Overall, the isolates from a variety of ExPEC infections demonstrated similar resistomes and virulomes and did not display any disease-specific functional or genetic coordinates. IMPORTANCE Infections caused by extraintestinal pathogenic E. coli (ExPEC) are of global concern as they result in significant costs to

  1. Conjugation in Escherichia coli

    Science.gov (United States)

    Boyer, Herbert

    1966-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Conjugation in Escherichia coli. J. Bacteriol. 91:1767–1772. 1966.—The sex factor of Escherichia coli K-12 was introduced into an E. coli B/r strain by circumventing the host-controlled modification and restriction incompatibilities known to exist between these closely related strains. The sexual properties of the constructed F+ B strain and its Hfr derivatives were examined. These studies showed that the E. coli strain B/r F+ and Hfr derivatives are similar to the E. coli strain K-12 F+ and Hfr derivatives. However, the site of sex factor integration was found to be dependent on the host genome. PMID:5327905

  2. Diversity of Survival Patterns among Escherichia coli O157:H7 Genotypes Subjected to Food-Related Stress Conditions.

    Science.gov (United States)

    Elhadidy, Mohamed; Álvarez-Ordóñez, Avelino

    2016-01-01

    The purpose of this study was to evaluate the resistance patterns to food-related stresses of Shiga toxin producing Escherichia coli O157:H7 strains belonging to specific genotypes. A total of 33 E. coli O157:H7 strains were exposed to seven different stress conditions acting as potential selective pressures affecting the transmission of E. coli O157:H7 to humans through the food chain. These stress conditions included cold, oxidative, osmotic, acid, heat, freeze-thaw, and starvation stresses. The genotypes used for comparison included lineage-specific polymorphism, Shiga-toxin-encoding bacteriophage insertion sites, clade type, tir (A255T) polymorphism, Shiga toxin 2 subtype, and antiterminator Q gene allele. Bacterial resistance to different stressors was calculated by determining D-values (times required for inactivation of 90% of the bacterial population), which were then subjected to univariate and multivariate analyses. In addition, a relative stress resistance value, integrating resistance values to all tested stressors, was calculated for each bacterial strain and allowed for a ranking-type classification of E. coli O157:H7 strains according to their environmental robustness. Lineage I/II strains were found to be significantly more resistant to acid, cold, and starvation stress than lineage II strains. Similarly, tir (255T) and clade 8 encoding strains were significantly more resistant to acid, heat, cold, and starvation stress than tir (255A) and non-clade 8 strains. Principal component analysis, which allows grouping of strains with similar stress survival characteristics, separated strains of lineage I and I/II from strains of lineage II, which in general showed reduced survival abilities. Results obtained suggest that lineage I/II, tir (255T), and clade 8 strains, which have been previously reported to be more frequently associated with human disease cases, have greater multiple stress resistance than strains of other genotypes. The results from this

  3. A novel, simple, high-throughput method for isolation of genome-wide transposon insertion mutants of Escherichia coli K-12.

    Science.gov (United States)

    Miki, Takeyoshi; Yamamoto, Yoshihiro; Matsuda, Hideo

    2008-01-01

    We developed a novel, simple, high-throughput method for isolation of genome-wide transposon insertion mutants of Escherichia coli K-12. The basic idea of the method is to randomly disrupt the genes on the DNA fragments cloned on the Kohara library by inserting a mini-transposon first, and then transfer the disrupted genes from the lambda vector to the E. coli chromosome by homologous recombination. Using this method, we constructed a set of 8402 Km(r) cis-diploid mutants harboring a mini-Tn10 insertion mutation and the corresponding wild-type gene on a chromosome, as well as a set of 6954 haploid mutants derived from the cis-diploid mutants. The major advantage of the strategy used is that the indispensable genes or sites for growth can be identified. Preliminary results suggest that 415 open reading frames are indispensable for growth in E. coli cells. A total of 6404 haploid mutants were deposited to Genetic Strains Research Center, National Institute of Genetics, Japan (Chapter 26) and are available for public distribution upon request (http://shigen.lab.nig.ac.jp/ecoli/strain/nbrp/resource.jsp).

  4. [Resistence of Escherichia coli, the most frequent cause of urinary tract infection in children, to antibiotics].

    Science.gov (United States)

    Stojanović, Vesna; Milosević, Biljana

    2010-01-01

    Urinary tract infections (UTI) take the second place in the incidence of bacterial infection in children. Escherichia coli is a cause of infection in 85-90%. A periodic evaluation of the resistance to antimicrobial drugs has to be performed in each geographic region, since investigations confirmed that the resistance of bacteria causing UTI has been in progress. A retrospective investigation has been performed, comprising the two time periods in the range of 10 years in order to identify the prevalence and resistance of the bacteria causing UTI in the patients treated at the Department of Nephrology of Institute for Child and Youth Health Care of Vojvodina. During the first investigated period from January 1996 up to December 1997, there were 163 urin analyses performed vs 134 urine analyses in the second period, starting from January 2006 to December 2007. In both periods, Escherichia coli, was the most frequent cause of UTI (82.1% in 1996/97 vs 86.50% in 2006/07). During this ten-year period, the resistance of Escherichia coli increased both to ampicillin (from 53% to 69% (p > 0.05) and to trimethoprim/sulfamethoxazole (34% vs 55%; p resistance to ceftazidim, gentamycin and nalidixic acid, but significant increase to ampicillin, trimethoprim/sulfamethoxazole and cephalexin. For the initial therapy of UTI in the Province of Vojvodina we recommend: perorally--ephalosporins I, II and III generation, and in case when the child is not capable to get therapy perorally, or in the case of highly febrile infant--ephalosporins III generation parenterally.

  5. Building a complete image of genome regulation in the model organism Escherichia coli.

    Science.gov (United States)

    Ishihama, Akira

    2018-01-15

    The model organism, Escherichia coli, contains a total of more than 4,500 genes, but the total number of RNA polymerase (RNAP) core enzyme or the transcriptase is only about 2,000 molecules per genome. The regulatory targets of RNAP are, however, modulated by changing its promoter selectivity through two-steps of protein-protein interplay with 7 species of the sigma factor in the first step, and then 300 species of the transcription factor (TF) in the second step. Scientists working in the field of prokaryotic transcription in Japan have made considerable contributions to the elucidation of genetic frameworks and regulatory modes of the genome transcription in E. coli K-12. This review summarizes the findings by this group, first focusing on three sigma factors, the stationary-phase sigma RpoS, the heat-shock sigma RpoH, and the flagellar-chemotaxis sigma RpoF, as examples. It also presents an overview of the current state of the systematic research being carried out to identify the regulatory functions of all TFs from a single and the same bacterium E. coli K-12, using the genomic SELEX and PS-TF screening systems. All these studies have been undertaken with the aim of understanding the genome regulation in E. coli K-12 as a whole.

  6. [Molecular and clinical characterization of Colombian patients suffering from type III glycogen storage disease].

    Science.gov (United States)

    Mantilla, Carolina; Toro, Mónica; Sepúlveda, María Elsy; Insuasty, Margarita; Di Filippo, Diana; López, Juan Álvaro; Baquero, Carolina; Navas, María Cristina; Arias, Andrés Augusto

    2018-05-01

    Type III glycogen storage disease (GSD III) is an autosomal recessive disorder in which a mutation in the AGL gene causes deficiency of the glycogen debranching enzyme. The disease is characterized by fasting hypoglycemia, hepatomegaly and progressive myopathy. Molecular analyses of AGL have indicated heterogeneity depending on ethnic groups. The full spectrum of AGL mutations in Colombia remains unclear. To describe the clinical and molecular characteristics of ten Colombian patients diagnosed with GSD III. We recruited ten Colombian children with a clinical and biochemical diagnosis of GSD III to undergo genetic testing. The full coding exons and the relevant exon-intron boundaries of the AGL underwent Sanger sequencing to identify mutation. All patients had the classic phenotype of the GSD III. Genetic analysis revealed a mutation p.Arg910X in two patients. One patient had the mutation p.Glu1072AspfsX36, and one case showed a compound heterozygosity with p.Arg910X and p.Glu1072AspfsX36 mutations. We also detected the deletion of AGL gene 3, 4, 5, and 6 exons in three patients. The in silico studies predicted that these defects are pathogenic. No mutations were detected in the amplified regions in three patients. We found mutations and deletions that explain the clinical phenotype of GSD III patients. This is the first report with a description of the clinical phenotype and the spectrum of AGL mutations in Colombian patients. This is important to provide appropriate prognosis and genetic counseling to the patient and their relatives.

  7. Genetic engineering in biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Bedate, C.A.; Morales, J.C.; Lopez, E.H.

    1981-09-01

    The objective of this book is to encourage the use of genetic engineering for economic development. The report covers: (1) Precedents of genetic engineering; (2) a brief description of the technology, including the transfer of DNA in bacteria (vectors, E. coli and B. subtilis hosts, stages, and technical problems), practical examples of techniques used and their products (interferon; growth hormone; insulin; treatment of blood cells, Talasemia, and Lesch-Nyhan syndrome; and more nutritious soya), transfer to higher organisms, and cellular fusion; (3) biological risks and precautions; (4) possible applications (production of hydrogen, hydrocarbons, alcohol, chemicals, enzymes, peptides, viral antigens, monoclonal antibodies, genes, proteins, and insecticides; metal extraction; nitrogen fixation; biodegradation; and new varieties of plants and animals; and (5) international activities.

  8. Molecular genetics of human immune responsiveness to Lolium perenne (rye) allergen, Lol p III.

    Science.gov (United States)

    Ansari, A A; Freidhoff, L R; Marsh, D G

    1989-01-01

    Lol p II and III are each about 11-kD protein allergens from the pollen of Lolium perenne (rye grass). We have found that human immune responses (IgE and IgG antibodies) to both proteins are significantly associated with HLA-DR3. In addition, the two proteins are cross-reactive with the antibodies in many human sera (about 84% human sera showed the cross-reactivity). We have determined greater than 90% of the amino acid sequences of the two proteins and found that they are at least 54% homologous. Berzofsky found that 75% of the 23 known T cell sites in various proteins had an amphipathic structure. Our analysis by the same method showed that both Lol p II and III have a major region of amphipathicity (at residues 61-67, Lol p III numbering) which might contain sites for binding to an Ia molecule and a T cell receptor. This region is identical between Lol p II and III, except for an Arg-Lys substitution, and could account, in part, for the DR3 association with responsiveness to both molecules. An interesting difference between the two proteins is that immune response to Lol p III is associated with DR5 (in addition to DR3), whereas no DR5 association is found in the case of Lol p II. One possibility is that Lol p III has an additional site which binds to the DR5 Ia molecule. Lol p III indeed has a second highly amphiphathic peptide, 24-30 (Lol p III 24 R P G D T L A 30), which is different and not amphipathic in Lol p II.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England

    Directory of Open Access Journals (Sweden)

    Williams Nicola J

    2010-04-01

    Full Text Available Abstract Background Escherichia coli isolates of equine faecal origin were investigated for antibiotic resistance, resistance genes and their ability to perform horizontal transfer. Methods In total, 264 faecal samples were collected from 138 horses in hospital and community livery premises in northwest England, yielding 296 resistant E. coli isolates. Isolates were tested for susceptibility to antimicrobial drugs by disc diffusion and agar dilution methods in order to determine minimum inhibitory concentrations (MIC. PCR amplification was used to detect genes conferring resistance to: ampicillin (TEM and SHV beta-lactamase, chloramphenicol (catI, catII, catIII and cml, tetracycline (tetA, tetB, tetC, tetD, tet E and tetG, and trimethoprim (dfrA1, dfrA9, dfrA12, dfrA13, dfr7, and dfr17. Results The proportion of antibiotic resistant isolates, and multidrug resistant isolates (MDR was significantly higher in hospital samples compared to livery samples (MDR: 48% of hospital isolates; 12% of livery isolates, p dfr, TEM beta-lactamase, tet and cat, conferring resistance to trimethoprim, ampicillin, tetracycline and chloramphenicol, respectively. Within each antimicrobial resistance group, these genes occurred at frequencies of 93% (260/279, 91%, 86.8% and 73.5%, respectively; with 115/296 (38.8% found to be MDR isolates. Conjugation experiments were performed on selected isolates and MDR phenotypes were readily transferred. Conclusions Our findings demonstrate that E. coli of equine faecal origin are commonly resistant to antibiotics used in human and veterinary medicine. Furthermore, our results suggest that most antibiotic resistance observed in equine E. coli is encoded by well-known and well-characterized resistant genes common to E. coli from man and domestic animals. These data support the ongoing concern about antimicrobial resistance, MDR, antimicrobial use in veterinary medicine and the zoonotic risk that horses could potentially pose to

  10. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. TRUPTI ASOLKAR. Articles written in Journal of Genetics. Volume 97 Issue 1 March 2018 pp 55-66 RESEARCH ARTICLE. Identification of virulence factors and type III effectors of phylotype I, Indian Ralstonia solanacearum strains Rs-09-161 and Rs-10-244 · TRUPTI ASOLKAR ...

  11. Nitrato-complexes of Y(III), La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl) benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, A; Singh, M P; Singh, V K

    1982-05-01

    The nitrato-complexes, (Y(PyBzH)/sub 2/(NO/sub 3/)/sub 2/)NO/sub 3/.H/sub 2/O and Nd, Sm, Gd, Tb, Dy, Ho ; n=1-3, m=0-0.5 ; PyBzh=2-(2 -pyridyl)benzimidazole) are formed on interaction of the ligand with metal nitrates in ethanol. The electrical conductance values (116-129 ohm/sup -1/cm/sup 2/mol/sup -1/) suggest 1:1 electrolyte-nature of the complexes. Magnetic moment values of Ce(2.53 B.M.), Pr(3.62 B.M.), Nd(3.52 B.M.), Sm(1.70 B.M.), Gd(8.06 B.M.), Tb(9.44 B.M.), Dy(10.56 B.M.) and Ho(10.51 B.M.) in the complexes confirm the positive state of the metals. Infrared evidences are obtained for the existance of both coordinated (C/sub 2/v) and uncoordinated (D/sub 3/h) nitrate groups. Electronic absorption spectra of Pr(III)-, Nd(III)-, Sm(III)-, Tb(III)-, Dy(III)- and Ho(III)-complexes have been analysed in the light of LSJ terms.

  12. Nitrato-complexes of Y(III), La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl) benzimidazole

    International Nuclear Information System (INIS)

    Mishra, A.; Singh, M.P.; Singh, V.K.

    1982-01-01

    The nitrato-complexes, [Y(PyBzH) 2 (NO 3 ) 2 ]NO 3 .H 2 O and Nd, Sm, Gd, Tb, Dy, Ho ; n=1-3, m=0-0.5 ; PyBzh=2-(2 -pyridyl)benzimidazole] are formed on interaction of the ligand with metal nitrates in ethanol. The electrical conductance values (116-129 ohm -1 cm 2 mol -1 ) suggest 1:1 electrolyte-nature of the complexes. Magnetic moment values of Ce(2.53 B.M.), Pr(3.62 B.M.), Nd(3.52 B.M.), Sm(1.70 B.M.), Gd(8.06 B.M.), Tb(9.44 B.M.), Dy(10.56 B.M.) and Ho(10.51 B.M.) in the complexes confirm the terpositive state of the metals. Infrared evidences are obtained for the existance of both coordinated (C 2 v) and uncoordinated (D 3 h) nitrate groups. Electronic absorption spectra of Pr(III)-, Nd(III)-, Sm(III)-, Tb(III)-, Dy(III)- and Ho(III)-complexes have been analysed in the light of LSJ terms. (author)

  13. Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene.

    Directory of Open Access Journals (Sweden)

    Pep Charusanti

    2010-11-01

    Full Text Available Bacterial survival requires adaptation to different environmental perturbations such as exposure to antibiotics, changes in temperature or oxygen levels, DNA damage, and alternative nutrient sources. During adaptation, bacteria often develop beneficial mutations that confer increased fitness in the new environment. Adaptation to the loss of a major non-essential gene product that cripples growth, however, has not been studied at the whole-genome level. We investigated the ability of Escherichia coli K-12 MG1655 to overcome the loss of phosphoglucose isomerase (pgi by adaptively evolving ten replicates of E. coli lacking pgi for 50 days in glucose M9 minimal medium and by characterizing endpoint clones through whole-genome re-sequencing and phenotype profiling. We found that 1 the growth rates for all ten endpoint clones increased approximately 3-fold over the 50-day period; 2 two to five mutations arose during adaptation, most frequently in the NADH/NADPH transhydrogenases udhA and pntAB and in the stress-associated sigma factor rpoS; and 3 despite similar growth rates, at least three distinct endpoint phenotypes developed as defined by different rates of acetate and formate secretion. These results demonstrate that E. coli can adapt to the loss of a major metabolic gene product with only a handful of mutations and that adaptation can result in multiple, alternative phenotypes.

  14. Antibacterial Effect of Curcuma longa (Turmeric) Against Staphylococcus aureus and Escherichia coli.

    Science.gov (United States)

    Afrose, R; Saha, S K; Banu, L A; Ahmed, A U; Shahidullah, A S; Gani, A; Sultana, S; Kabir, M R; Ali, M Y

    2015-07-01

    This observational study was conducted during the period from July 2010 to June 2011 in the Department of Pharmacology in the collaboration of Department of Microbiology, Mymensingh Medical College, Mymensingh to determine the profile of antibacterial effect of Crude Turmeric paste aqueous turmeric extract, and standard antibiotic Amikacin against Staphylococcus aureus and Escherichia coli. Three separate experiments were done e.g. (Expt- I) Inhibitory effect of Crude Turmeric paste incorporated into nutrient agar (NA) media, (Expt- II) Minimum inhibitory concentration of (a) Aqueous Turmeric extract and (b) Amikacin by broth dilution technique and (Expt-III) their subculture study in nutrient agar (NA) media for confirmation of respective results of previous experiments. Inhibitory effects were observed against the growth of Staph Aureus and Esch coli at 10% and 30% respectively of Crude Turmeric paste incorporated into NA media. The broth dilution technique was followed to determine the MIC of Aqueous Turmeric extract and Amikacin. The MIC of Aqueous Turmeric extract was 800 μg/ml against Staph aureus and that against Esch coli was 2000 μg/ml and the MIC of Amikacin was 10 μg/ml for both the bacteria. The MIC of Amikacin was the lowest in comparison to MIC of Aqueous Turmeric extract for complete inhibition of growth of Staph aureus and Esch coli. The subculture study showed similar results with that of previous experiments in terms of inhibitory effects of Crude Turmeric paste and MIC of Aqueous Turmeric extract and Amikacin against all of the organisms studied.

  15. Genotyping of virulent Escherichia coli obtained from poultry and poultry farm workers using enterobacterial repetitive intergenic consensus-polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    M. Soma Sekhar

    2017-11-01

    Full Text Available Aim: The aim of this study was to characterize virulent Escherichia coli isolated from different poultry species and poultry farm workers using enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR genotyping. Materials and Methods: Fecal swabs from different poultry species (n=150 and poultry farm workers (n=15 were analyzed for E. coli and screened for virulence genes (stx1, stx2, eaeA, and hlyA by multiplex PCR. Virulent E. coli was serotyped based on their "O" antigen and then genotyped using ERIC-PCR. Results: A total of 134 E. coli isolates (122/150 from poultry and 12/15 from farm workers were recovered. Virulence genes were detected in a total of 12 isolates. Serological typing of the 12 virulent E. coli revealed nine different serotypes (O2, O49, O60, O63, O83, O101, O120, UT, and Rough. ERIC-PCR genotyping allowed discrimination of 12 virulent E. coli isolates into 11 ERIC-PCR genotypes. The numerical index of discrimination was 0.999. Conclusion: Our findings provide information about the wide genetic diversity and discrimination of virulent E. coli in apparently healthy poultry and poultry farm workers of Andhra Pradesh (India based on their genotype.

  16. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms

    International Nuclear Information System (INIS)

    Paul, J.H.; David, A.W.

    1989-01-01

    The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [ 3 H]thymidine or [ 3 H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degree C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physicochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms

  17. Uropathogenic Escherichia coli pathogenicity islands and other ExPEC virulence genes may contribute to the genome variability of enteroinvasive E. coli.

    Science.gov (United States)

    da Silva, Laís Cristina; de Mello Santos, Ana Carolina; Silva, Rosa Maria

    2017-03-16

    Enteroinvasive Escherichia coli (EIEC) may be the causative agent of part of those million cases of diarrhea illness reported worldwide every year and attributable to Shigella. That is because both enteropathogens have many common characteristics that difficult their identification either by traditional microbiological methods or by molecular tools used in the clinical laboratory settings. While Shigella has been extensively studied, EIEC remains barely characterized at the molecular level. Recent EIEC important outbreaks, apparently generating more life-threatening cases, have prompted us to screen EIEC for virulence traits usually related to extraintestinal pathogenic E. coli (ExPEC). That could explain the appearance of EIEC strains presenting higher virulence potential. EIEC strains were distributed mainly in three phylogroups in a serogroup-dependent manner. Serogroups O124, O136, O144, and O152 were exclusively classified in phylogroup A; O143 in group E; and O28ac and O29 in group B1. Only two serogroups showed diverse phylogenetic origin as follows: O164 was assigned to groups A, B1, C, and B2 (one strain each), and O167 in groups E (five strains), and A (one strain) (Table 1). Eleven of 20 virulence genes (VGs) searched were detected, and the majority of the 19 different VGs combinations found were serogroup-specific. Uropathogenic E. coli (UPEC) PAI genetic markers were detected in all EIEC strains. PAIs I J96 and II CFT073 were the most frequent (92.1 and 80.4%, respectively). PAI IV 536 was restricted to some serogroups from phylogroups A, B1 and E. PAI I CFT073 was uniquely detected in phylogroups B2 and E. A total of 45 (88%) strains presented multiple PAI markers (two to four). PAIs I J96 and II CFT073 were found together in 80% of strains. EIEC is a DEC pathovar that presents VGs and pathogenicity island genetic markers typically associated with ExPEC, especially UPEC. These features are distributed in a phylogenetic and serogroup-dependent manner

  18. cAMP-CRP acts as a key regulator for the viable but non-culturable state in Escherichia coli.

    Science.gov (United States)

    Nosho, Kazuki; Fukushima, Hiroko; Asai, Takehiro; Nishio, Masahiro; Takamaru, Reiko; Kobayashi-Kirschvink, Koseki Joseph; Ogawa, Tetsuhiro; Hidaka, Makoto; Masaki, Haruhiko

    2018-03-01

    A variety of bacteria, including Escherichia coli, are known to enter the viable but non-culturable (VBNC) state under various stress conditions. During this state, cells lose colony-forming activities on conventional agar plates while retaining signs of viability. Diverse environmental stresses including starvation induce the VBNC state. However, little is known about the genetic mechanism inducing this state. Here, we aimed to reveal the genetic determinants of the VBNC state of E. coli. We hypothesized that the VBNC state is a process wherein specific gene products important for colony formation are depleted during the extended period of stress conditions. If so, higher expression of these genes would maintain colony-forming activities, thereby restraining cells from entering the VBNC state. From an E. coli plasmid-encoded ORF library, we identified genes that were responsible for maintaining high colony-forming activities after exposure to starvation condition. Among these, cpdA encoding cAMP phosphodiesterase exhibited higher performance in the maintenance of colony-forming activities. As cpdA overexpression decreases intracellular cAMP, cAMP or its complex with cAMP-receptor protein (CRP) may negatively regulate colony-forming activities under stress conditions. We confirmed this using deletion mutants lacking adenylate cyclase or CRP. These mutants fully maintained colony-forming activities even after a long period of starvation, while wild-type cells lost most of this activity. Thus, we concluded that the lack of cAMP-CRP effectively retains high colony-forming activities, indicating that cAMP-CRP acts as a positive regulator necessary for the induction of the VBNC state in E. coli.

  19. Construction of intergeneric conjugal transfer for molecular genetic ...

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... The attB integration site in the S. mobaraensis genome was detected as a single attB ... present study, to promote the molecular genetic study of. S. mobaraensis .... further increase in the number of E. coli donor cells. (≥1.25 × 108) (Choi et .... rational mutagenesis and random mutagenesis. Appl. Microbiol.

  20. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli.

    Science.gov (United States)

    de Oliveira, Rafael R; Nicholson, Wayne L

    2016-01-01

    To reduce dependence on petroleum, an alternative route to production of the chemical feedstock 2,3-butanediol (2,3-BD) from renewable lignocellulosic sources is desirable. In this communication, the genes encoding the pathway from pyruvate to 2,3-BD (alsS, alsD, and bdhA encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase, respectively) from Bacillus subtilis were engineered into a single tricistronic operon under control of the isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible Pspac promoter in a shuttle plasmid capable of replication and expression in either B. subtilis or Escherichia coli. We describe the construction and performance of a shuttle plasmid carrying the IPTG-inducible synthetic operon alsSDbdhA coding for 2,3-BD pathway capable of (i) expression in two important representative model microorganisms, the gram-positive B. subtilis and the gram-negative E. coli; (ii) increasing 2,3-BD production in B. subtilis; and (iii) successfully introducing the B. subtilis 2,3-BD pathway into E. coli. The synthetic alsSDbdhA operon constructed using B. subtilis native genes not only increased the 2,3-BD production in its native host but also efficiently expressed the pathway in the heterologous organism E. coli. Construction of an efficient shuttle plasmid will allow investigation of 2,3-BD production performance in related organisms with industrial potential for production of bio-based chemicals.

  1. Identification, cloning, and expression of the Escherichia coli pyrazinamidase and nicotinamidase gene, pncA.

    Science.gov (United States)

    Frothingham, R; Meeker-O'Connell, W A; Talbot, E A; George, J W; Kreuzer, K N

    1996-06-01

    Pyrazinamide (PZA) is one of the three most important drugs for treatment of Mycobacterium tuberculosis infections. The antibacterial activity of PZA requires a bacterial enzyme, pyrazinamidase (PZAase), which hydrolyzes PZA to form pyrazinoic acid and ammonia. Most PZA-resistant clinical M. tuberculosis isolates lack PZAase activity. With the goal of eventually identifying and characterizing the M.tuberculosis PZAase gene, we began with the more tractable organism, Escherichia coli, which also has PZAase activity. We screened a transposon-generated E. coli insertion mutant library, using a qualitative PZAase assay. Two PZAase-negative mutants out of 4,000 colonies screened were identified. In each mutant, the transposon interrupted the same 639-bp open reading frame (ORF), ORF1. The expression of ORF1 on a multicopy plasmid complemented a PZAase-negative mutant, leading to PZAase activity levels approximately 10-fold greater than those of the wild type. PZA has a structure similar to that of nicotinamide, a pyridine nucleotide cycle intermediate, so we tested our strains for nicotinamidase activity (EC 3.5.1.19) (genetic locus pncA). The construct with multiple plasmid copies of ORF1 had an approximately 10-fold increase in levels of nicotinamidase activity. This overexpressing strain could utilize nicotinamide as a sole nitrogen source, through wild-type E. coli cannot. We conclude that a single E. coli enzyme accounts for both PZAase and nicotinamidase activities and that ORF1 is the E.coli PZAase and nicotinamidase gene, pncA.

  2. Annual Surveillance Summary: Escherichia coli (E. coli) Infections in the Military Health System (MHS), 2015

    Science.gov (United States)

    2017-03-01

    Annual Surveillance Summary: Escherichia coli ( E . coli ) Infections in the Military Health System (MHS...or position of the Department of the Navy, Department of Defense, nor the U.S. Government. i i E . coli in the MHS: Annual Summary 2015 Prepared...March 2017 EpiData Center Department NMCPHC-EDC-TR-187-2017 ii ii E . coli in the MHS: Annual Summary 2015 Prepared March 2017 EpiData

  3. Protective effects of indigenous Escherichia coli against a pathogenic E. coli challenge strain in pigs.

    Science.gov (United States)

    Vahjen, W; Cuisiniere, T; Zentek, J

    2017-10-13

    To investigate the inhibitory effect of indigenous enterobacteria on pathogenic Escherichia coli, a challenge trial with postweaning pigs was conducted. A pathogenic E. coli strain was administered to all animals and their health was closely monitored thereafter. Faecal samples were taken from three healthy and three diarrhoeic animals. Samples were cultivated on MacConkey agar and isolates were subcultured. A soft agar overlay assay was used to determine the inhibitory activity of the isolates. A total of 1,173 enterobacterial isolates were screened for their ability to inhibit the E. coli challenge strain. Colony forming units of enterobacteria on MacConkey agar were not different between healthy and diarrhoeic animals in the original samples. Furthermore, numbers of isolates per animal were also not significantly different between healthy (482 isolates) and diarrhoeic animals (691 isolates). A total of 43 isolates (3.7%) with inhibitory activity against the pathogenic E. coli challenge strain were detected. All inhibitory isolates were identified as E. coli via MALDI-TOF. The isolates belonged to the phylotypes A, C and E. Many isolates (67.4%) were commensal E. coli without relevant porcine pathogenic factors, but toxin- and fimbrial genes (stx2e, fae, estIb, elt1a, fas, fan) were detected in 14 inhibitory isolates. Healthy animals showed significantly (P=0.003) more inhibitory isolates (36 of 482 isolates; 7.5%) than diseased animals (7 of 691 isolates; 1.0%). There were no significant correlations regarding phylotype or pathogenic factors between healthy and diseased animals. This study has shown that a small proportion of indigenous E. coli is able to inhibit in vitro growth of a pathogenic E. coli strain in pigs. Furthermore, healthy animals possess significantly more inhibitory E. coli strains than diarrhoeic animals. The inhibition of pathogenic E. coli by specific indigenous E. coli strains may be an underlying principle for the containment of pathogenic

  4. Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers - is it feasible?

    Science.gov (United States)

    Fecal pollution is measured in surface waters using culture-based measurements of enterococci and Escherichia coli bacteria. Source apportionment of these two fecal indicator bacteria is an urgent need for prioritizing remediation efforts and quantifying health risks associated...

  5. Enterohemorrhagic Escherichia coli (EHEC

    Directory of Open Access Journals (Sweden)

    Abdullah Kilic

    2011-08-01

    Full Text Available Escherichia coli is a bacterium that is commonly found in the gut of humans and warm-blooded animals. Most strains of E. coli are harmless for human. E. coli O157:H7 is the most common member of a group of pathogenic E. coli strains known variously as enterohaemorrhagic, verocytotoxin-producing, or Shiga-toxin-producing organisms. EHEC bacterium is the major cause of haemorrhagic colitis and haemolytic uraemic syndrome. The reservoir of this pathogen appears to be mainly cattle and other ruminants such as camels. It is transmitted to humans primarily through consumption of contaminated foods. [TAF Prev Med Bull 2011; 10(4.000: 387-388

  6. The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA

    International Nuclear Information System (INIS)

    Roos, C; Santos, J N; Guimarães, O R; Geller, M; Fonseca, A S; Paoli, F

    2013-01-01

    Exposure of nonphotosynthesizing microorganisms to light could increase cell division in cultures, a phenomenon denominated as biostimulation. However, data concerning the importance of the genetic characteristics of cells on this effect are as yet scarce. The aim of this work was to evaluate the effects of a low-intensity red laser on the growth, filamentation and plasmids in Escherichia coli cells proficient and deficient in DNA repair. E. coli cultures were exposed to a laser (658 nm, 10 mW, 1 and 8 J cm −2 ) to study bacterial growth and filamentation. Also, bacterial cultures hosting pBSK plasmids were exposed to the laser to study DNA topological forms from the electrophoretic profile in agarose gels. Data indicate the low-intensity red laser: (i) had no effect on the growth of E. coli wild type and exonuclease III deficient cells; (ii) induced bacterial filamentation, (iii) led to no alteration in the electrophoretic profile of plasmids from exonuclease III deficient cells, but plasmids from wild type cells were altered. A low-intensity red laser at the low fluences used in phototherapy has no effect on growth, but induces filamentation and alters the topological forms of plasmid DNA in E. coli cultures depending on the DNA repair mechanisms. (paper)

  7. Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328

    Energy Technology Data Exchange (ETDEWEB)

    Kirimura, Kohtaro, E-mail: kkohtaro@waseda.jp; Watanabe, Shotaro; Kobayashi, Keiichi

    2016-05-13

    Type III polyketide synthases (PKSs) catalyze the formation of pyrone- and resorcinol-types aromatic polyketides. The genomic analysis of the filamentous fungus Aspergillus niger NRRL 328 revealed that this strain has a putative gene (chr-8-2: 2978617–2979847) encoding a type III PKS, although its functions are unknown. In this study, for functional analysis of this putative type III PKS designated as An-CsyA, cloning and heterologous expression of the An-CsyA gene (An-csyA) in Escherichia coli were performed. Recombinant His-tagged An-CsyA was successfully expressed in E. coli BL21 (DE3), purified by Ni{sup 2+}-affinity chromatography, and used for in vitro assay. Tests on the substrate specificity of the His-tagged An-CsyA with myriad acyl-CoAs as starter substrates and malonyl-CoA as extender substrate showed that His-tagged An-CsyA accepted fatty acyl-CoAs (C2-C14) and produced triketide pyrones (C2-C14), tetraketide pyrones (C2-C10), and pentaketide resorcinols (C10-C14). Furthermore, acetoacetyl-CoA, malonyl-CoA, isobutyryl-CoA, and benzoyl-CoA were also accepted as starter substrates, and both of triketide pyrones and tetraketide pyrones were produced. It is noteworthy that the His-tagged An-CsyA produced polyketides from malonyl-CoA as starter and extender substrates and produced tetraketide pyrones from short-chain fatty acyl-CoAs as starter substrates. Therefore, this is the first report showing the functional properties of An-CsyA different from those of other fungal type III PKSs. -- Highlights: •Type III PKS from Aspergillus niger NRRL 328, An-CsyA, was cloned and characterized. •An-CsyA produced triketide pyrones, tetraketide pyrones and pentaketide resorcinols. •Functional properties of An-CsyA differs from those of other fungal type III PKSs.

  8. Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328

    International Nuclear Information System (INIS)

    Kirimura, Kohtaro; Watanabe, Shotaro; Kobayashi, Keiichi

    2016-01-01

    Type III polyketide synthases (PKSs) catalyze the formation of pyrone- and resorcinol-types aromatic polyketides. The genomic analysis of the filamentous fungus Aspergillus niger NRRL 328 revealed that this strain has a putative gene (chr-8-2: 2978617–2979847) encoding a type III PKS, although its functions are unknown. In this study, for functional analysis of this putative type III PKS designated as An-CsyA, cloning and heterologous expression of the An-CsyA gene (An-csyA) in Escherichia coli were performed. Recombinant His-tagged An-CsyA was successfully expressed in E. coli BL21 (DE3), purified by Ni"2"+-affinity chromatography, and used for in vitro assay. Tests on the substrate specificity of the His-tagged An-CsyA with myriad acyl-CoAs as starter substrates and malonyl-CoA as extender substrate showed that His-tagged An-CsyA accepted fatty acyl-CoAs (C2-C14) and produced triketide pyrones (C2-C14), tetraketide pyrones (C2-C10), and pentaketide resorcinols (C10-C14). Furthermore, acetoacetyl-CoA, malonyl-CoA, isobutyryl-CoA, and benzoyl-CoA were also accepted as starter substrates, and both of triketide pyrones and tetraketide pyrones were produced. It is noteworthy that the His-tagged An-CsyA produced polyketides from malonyl-CoA as starter and extender substrates and produced tetraketide pyrones from short-chain fatty acyl-CoAs as starter substrates. Therefore, this is the first report showing the functional properties of An-CsyA different from those of other fungal type III PKSs. -- Highlights: •Type III PKS from Aspergillus niger NRRL 328, An-CsyA, was cloned and characterized. •An-CsyA produced triketide pyrones, tetraketide pyrones and pentaketide resorcinols. •Functional properties of An-CsyA differs from those of other fungal type III PKSs.

  9. Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring

    DEFF Research Database (Denmark)

    Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.

    2017-01-01

    and growth condition, to probe the limits of E. coli growth rate and gain insights into fast growth phenotypes. Previous studies have described up to 1.6-fold increases in growth rate following ALE, and have identified key causal genetic mutations and changes in transcriptional patterns. Here, we report...

  10. Isolation and genetic analysis of amber uvrA and uvrB mutants

    International Nuclear Information System (INIS)

    Morimyo, M.; Shimazu, Y.; Ishii, N.

    1976-01-01

    Genetic properties of amber uvrA and uvrB mutants of Escherichia coli K-12 are described. The isolation of three amber uvrA and two amber uvrB mutants indicates that the products of these genes are proteins

  11. Direct detection of RNA in vitro and in situ by target-primed RCA: The impact of E. coli RNase III on the detection efficiency of RNA sequences distanced far from the 3'-end.

    Science.gov (United States)

    Merkiene, Egle; Gaidamaviciute, Edita; Riauba, Laurynas; Janulaitis, Arvydas; Lagunavicius, Arunas

    2010-08-01

    We improved the target RNA-primed RCA technique for direct detection and analysis of RNA in vitro and in situ. Previously we showed that the 3' --> 5' single-stranded RNA exonucleolytic activity of Phi29 DNA polymerase converts the target RNA into a primer and uses it for RCA initiation. However, in some cases, the single-stranded RNA exoribonucleolytic activity of the polymerase is hindered by strong double-stranded structures at the 3'-end of target RNAs. We demonstrate that in such hampered cases, the double-stranded RNA-specific Escherichia coli RNase III efficiently assists Phi29 DNA polymerase in converting the target RNA into a primer. These observations extend the target RNA-primed RCA possibilities to test RNA sequences distanced far from the 3'-end and customize this technique for the inner RNA sequence analysis.

  12. Prevalence of diarrheogenic Escherichia coli and rotavirus among children from Botucatu, São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Rodrigues J.

    2002-01-01

    Full Text Available In a one-year prospective study carried out to define the role of rotavirus and Escherichia coli in local childhood diarrhea, we determined the prevalence of both agents in 54 diarrheic children attending a health center in Botucatu. Diarrheogenic E. coli (DEC strains were characterized by O:H serotyping, a search for virulence genetic markers, and assays of adherence to HEp-2 cells. Except for enteroaggregative E. coli (EAEC, no other DEC category was detected in the children's stools. Both EAEC and rotavirus were isolated from 22 of the 54 (41.0% diarrheic children as single agents or in combination with other enteropathogens. However, when considering the presence of a single agent, EAEC was dominant and isolated from 20.4% of the patients, whereas rotavirus was detected in 14.8%. These results indicate that rotavirus and EAEC play a significant role as agents of childhood diarrhea in the local population.

  13. Whole genome sequencing and analysis of Campylobacter coli YH502 from retail chicken reveals a plasmid-borne type VI secretion system

    Directory of Open Access Journals (Sweden)

    Sandeep Ghatak

    2017-03-01

    Full Text Available Campylobacter is a major cause of foodborne illnesses worldwide. Campylobacter infections, commonly caused by ingestion of undercooked poultry and meat products, can lead to gastroenteritis and chronic reactive arthritis in humans. Whole genome sequencing (WGS is a powerful technology that provides comprehensive genetic information about bacteria and is increasingly being applied to study foodborne pathogens: e.g., evolution, epidemiology/outbreak investigation, and detection. Herein we report the complete genome sequence of Campylobacter coli strain YH502 isolated from retail chicken in the United States. WGS, de novo assembly, and annotation of the genome revealed a chromosome of 1,718,974 bp and a mega-plasmid (pCOS502 of 125,964 bp. GC content of the genome was 31.2% with 1931 coding sequences and 53 non-coding RNAs. Multiple virulence factors including a plasmid-borne type VI secretion system and antimicrobial resistance genes (beta-lactams, fluoroquinolones, and aminoglycoside were found. The presence of T6SS in a mobile genetic element (plasmid suggests plausible horizontal transfer of these virulence genes to other organisms. The C. coli YH502 genome also harbors CRISPR sequences and associated proteins. Phylogenetic analysis based on average nucleotide identity and single nucleotide polymorphisms identified closely related C. coli genomes available in the NCBI database. Taken together, the analyzed genomic data of this potentially virulent strain of C. coli will facilitate further understanding of this important foodborne pathogen most likely leading to better control strategies. The chromosome and plasmid sequences of C. coli YH502 have been deposited in GenBank under the accession numbers CP018900.1 and CP018901.1, respectively.

  14. Toxin production and antibiotic resistances in Escherichia coli isolated from bathing areas along the coastline of the Oslo fjord.

    Science.gov (United States)

    Charnock, Colin; Nordlie, Anne-Lise; Hjeltnes, Bjarne

    2014-09-01

    The presence of enterovirulent and/or antibiotic resistant strains of Escherichia coli in recreational bathing waters would represent a clear health issue. In total, 144 E. coli isolated from 26 beaches along the inner Oslo fjord were examined for virulence determinants and resistance to clinically important antibiotics. No isolates possessed the genetic determinants associated with enterotoxigenic strains and none showed the prototypic sorbitol negative, O157:H7 phenotype. A small number (∼1 %) produced alpha-hemolysin. Occurrences and patterns of antibiotic resistances were similar to those of E. coli isolated previously from environmental samples. In total, 6 % of the strains showed one or more clinically relevant resistances and 1.4 % were multi-drug resistant. Microarray analyses suggested that the resistance determinants were generally associated with mobile genetic elements. Resistant strains were not clonally related, and were, furthermore not concentrated at one or a few beach sites. This suggests that these strains are entering the waters at a low rate but in a widespread manner. The study demonstrates that resistant E. coli are present in coastal bathing waters where they can come into contact with bathers, and that the resistance determinants are potentially transferable. Some of the resistances registered in the study are to important antibiotics used in human medicine such as fluoroquinolones. The spread of antibiotic resistant genes, from the clinical setting to the environment, has clear implications with respect to the current management of bacterial infections and the long term value of antimicrobial therapy. The present study is the first of its kind in Norway.

  15. Genetic Ablation of Type III Adenylyl Cyclase Exerts Region-Specific Effects on Cilia Architecture in the Mouse Nose.

    Directory of Open Access Journals (Sweden)

    Rosemary C Challis

    Full Text Available We recently reported that olfactory sensory neurons in the dorsal zone of the mouse olfactory epithelium exhibit drastic location-dependent differences in cilia length. Furthermore, genetic ablation of type III adenylyl cyclase (ACIII, a key olfactory signaling protein and ubiquitous marker for primary cilia, disrupts the cilia length pattern and results in considerably shorter cilia, independent of odor-induced activity. Given the significant impact of ACIII on cilia length in the dorsal zone, we sought to further investigate the relationship between cilia length and ACIII level in various regions throughout the mouse olfactory epithelium. We employed whole-mount immunohistochemical staining to examine olfactory cilia morphology in phosphodiesterase (PDE 1C-/-;PDE4A-/- (simplified as PDEs-/- hereafter and ACIII-/- mice in which ACIII levels are reduced and ablated, respectively. As expected, PDEs-/- animals exhibit dramatically shorter cilia in the dorsal zone (i.e., where the cilia pattern is found, similar to our previous observation in ACIII-/- mice. Remarkably, in a region not included in our previous study, ACIII-/- animals (but not PDEs-/- mice have dramatically elongated, comet-shaped cilia, as opposed to characteristic star-shaped olfactory cilia. Here, we reveal that genetic ablation of ACIII has drastic, location-dependent effects on cilia architecture in the mouse nose. These results add a new dimension to our current understanding of olfactory cilia structure and regional organization of the olfactory epithelium. Together, these findings have significant implications for both cilia and sensory biology.

  16. Detection of coliform bacteria, determination of phylogenetic typing and antibiotic resistance profile of Escherichia coli in qanats and springs of East-Azerbaijan province

    Directory of Open Access Journals (Sweden)

    N. Shabani Lokarani

    2017-05-01

    Full Text Available Escherichia coli as a fecal contamination and is considered as an index in water. The aim of this study was to determine the phenotypic and genotypic characteristics of E. coli and antibiotic resistance of the isolates collected from qanats and springs in East-Azerbaijan province. For this purpose, 118 samples were selected from above mentioned area and examined by MPN method. The positive coliform samples were identified by phenotypic and genotypic methods. Afterwards, to determine the genetic diversity of E. coli isolates, phylogenetic typing we conducted by means of multiplex PCR. To determine the antibiotic resistance profile, antibiotic discs of Nalidixic Acid, Co-trimoxazol, Amoxicillin, Gentamaicin Ciprofloxacin, Chloramphenicol, Imipenem, Cefotaxime and Ceftazidime antibiogram were used. Based on results, 48% of the samples were evaluated as positive for coliform including 40% for E. coli and 19% for Klebsiella. Amongst 23 isolates confirmed as E. coli by PCR. Phylogenetic typing revealed  that 44% of E. coli strains belonged to type D and B2 and 56% belonged to A and B1 phylotypes. Antimicrobial susceptibility pattern showed that 92% of E. coli isolates were resistant to Amoxicillin. All E. coli isolates were sensitive to Imipenem. It was concluded that presence of pathogenic E. coli with high rate of antibacterial resistance in waters source could be considered as a human health hazard.

  17. E. coli Fis protein insulates the cbpA gene from uncontrolled transcription.

    Science.gov (United States)

    Chintakayala, Kiran; Singh, Shivani S; Rossiter, Amanda E; Shahapure, Rajesh; Dame, Remus T; Grainger, David C

    2013-01-01

    The Escherichia coli curved DNA binding protein A (CbpA) is a poorly characterised nucleoid associated factor and co-chaperone. It is expressed at high levels as cells enter stationary phase. Using genetics, biochemistry, and genomics, we have examined regulation of, and DNA binding by, CbpA. We show that Fis, the dominant growth-phase nucleoid protein, prevents CbpA expression in growing cells. Regulation by Fis involves an unusual "insulation" mechanism. Thus, Fis protects cbpA from the effects of a distal promoter, located in an adjacent gene. In stationary phase, when Fis levels are low, CbpA binds the E. coli chromosome with a preference for the intrinsically curved Ter macrodomain. Disruption of the cbpA gene prompts dramatic changes in DNA topology. Thus, our work identifies a novel role for Fis and incorporates CbpA into the growing network of factors that mediate bacterial chromosome structure.

  18. Protection against Shiga-Toxigenic Escherichia coli by Non-Genetically Modified Organism Receptor Mimic Bacterial Ghosts.

    Science.gov (United States)

    Paton, Adrienne W; Chen, Austen Y; Wang, Hui; McAllister, Lauren J; Höggerl, Florian; Mayr, Ulrike Beate; Shewell, Lucy K; Jennings, Michael P; Morona, Renato; Lubitz, Werner; Paton, James C

    2015-09-01

    Shiga-toxigenic Escherichia coli (STEC) causes severe gastrointestinal infections in humans that may lead to life-threatening systemic sequelae, such as the hemolytic uremic syndrome (HUS). Rapid diagnosis of STEC infection early in the course of disease opens a window of opportunity for therapeutic intervention, for example, by administration of agents that neutralize Shiga toxin (Stx) in the gut lumen. We previously developed a recombinant bacterium that expresses a mimic of the Stx receptor globotriaosyl ceramide (Gb3) on its surface through modification of the lipopolysaccharide (A. W. Paton, R. Morona, and J. C. Paton, Nat Med 6:265-270, 2000, http://dx.doi.org/10.1038/73111). This construct was highly efficacious in vivo, protecting mice from otherwise fatal STEC disease, but the fact that it is a genetically modified organism (GMO) has been a barrier to clinical development. In the present study, we have overcome this issue by development of Gb3 receptor mimic bacterial ghosts (BGs) that are not classified as GMOs. Gb3-BGs neutralized Stx1 and Stx2 in vitro with high efficiency, whereas alternative Gb3-expressing non-GMO subbacterial particles (minicells and outer membrane blebs) were ineffective. Gb3-BGs were highly efficacious in a murine model of STEC disease. All mice (10/10) treated with Gb3-BGs survived challenge with a highly virulent O113:H21 STEC strain and showed no pathological signs of renal injury. In contrast, 6/10 mice treated with control BGs succumbed to STEC challenge, and survivors exhibited significant weight loss, neutrophilia, and histopathological evidence of renal damage. Thus, Gb3-BGs offer a non-GMO approach to treatment of STEC infection in humans, particularly in an outbreak setting. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Sequence and Genetic Characterization of etrA, an fnr Analog that Regulates Anaerobic Respiration in Shewanella putrefaciens MR-1

    Science.gov (United States)

    Saffarini, Daad A.; Nelson, Kenneth H.

    1993-01-01

    An electron transport regulatory gene, etrA, has been isolated and characterized from the obligate respiratory bacterium Shewanella putrefaciens MR-l. The deduced amino acid sequence of etrA (EtrA) shows a high degree of identity to both the Fnr of Escherichia coli (73.6%) and the analogous protein (ANR) of Pseudomonas aeruginosa (50.8%). The four active cysteine residues of Fnr are conserved in EtrA, and the amino acid sequence of the DNA-binding domains of the two proteins are identical. Further, S.putrefaciens etrA is able to complement an fnr mutant of E.coli. In contrast to fnr, there is no recognizable Fnr box upstream of the etrA sequence. Gene replacement etr.A mutants of MR-1 were deficient in growth on nitrite, thiosulfate, sulfite, trimethylamine-N-oxide, dimethyl sulfoxide, Fe(III), and fumarate, suggesting that EtrA is involved in the regulation of the corresponding reductase genes. However, the mutants were all positive for reduction of and growth on nitrate and Mn(IV), indicating that EtrA is not involved in the regulation of these two systems. Southern blots of S.putrefaciens DNA with use of etrA as a probe revealed the expected etrA bands and a second set of hybridization signals whose genetic and functional properties remain to be determined.

  20. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    Science.gov (United States)

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  1. Genetic and genomic analysis of RNases in model cyanobacteria.

    Science.gov (United States)

    Cameron, Jeffrey C; Gordon, Gina C; Pfleger, Brian F

    2015-10-01

    Cyanobacteria are diverse photosynthetic microbes with the ability to convert CO2 into useful products. However, metabolic engineering of cyanobacteria remains challenging because of the limited resources for modifying the expression of endogenous and exogenous biochemical pathways. Fine-tuned control of protein production will be critical to optimize the biological conversion of CO2 into desirable molecules. Messenger RNAs (mRNAs) are labile intermediates that play critical roles in determining the translation rate and steady-state protein concentrations in the cell. The majority of studies on mRNA turnover have focused on the model heterotrophic bacteria Escherichia coli and Bacillus subtilis. These studies have elucidated many RNA modifying and processing enzymes and have highlighted the differences between these Gram-negative and Gram-positive bacteria, respectively. In contrast, much less is known about mRNA turnover in cyanobacteria. We generated a compendium of the major ribonucleases (RNases) and provide an in-depth analysis of RNase III-like enzymes in commonly studied and diverse cyanobacteria. Furthermore, using targeted gene deletion, we genetically dissected the RNases in Synechococcus sp. PCC 7002, one of the fastest growing and industrially attractive cyanobacterial strains. We found that all three cyanobacterial homologs of RNase III and a member of the RNase II/R family are not essential under standard laboratory conditions, while homologs of RNase E/G, RNase J1/J2, PNPase, and a different member of the RNase II/R family appear to be essential for growth. This work will enhance our understanding of native control of gene expression and will facilitate the development of an RNA-based toolkit for metabolic engineering in cyanobacteria.

  2. Can E. coli fly?

    DEFF Research Database (Denmark)

    Lindeberg, Yrja Lisa; Egedal, Karen; Hossain, Zenat Zebin

    2018-01-01

    , and the numbers of flies landing on the exposed rice were counted. Following exposure, the surface of the rice was microbiologically and molecularly analysed for the presence of E. coli and genes of diarrheagenic E. coli and Shigella strains. RESULTS: Rice was at greater risk (p ... with E. coli if flies landed on the rice than if no flies landed on the rice (odds ratio 5·4 (p ...-landings, the average CFU per fly-landing was > 0·6 x 103 CFU. Genes of diarrheagenic E. coli and Shigella species were detected in 39 of 60 (65%) of exposed rice samples. Two fly species were identified; the common housefly (Musca domestica) and the oriental latrine fly (Chrysomya megacephala). CONCLUSION: Flies may...

  3. Efficacy of collagen silver-coated polyester and rifampin-soaked vascular grafts to resist infection from MRSA and Escherichia coli in a dog model.

    Science.gov (United States)

    Schneider, Fabrice; O'Connor, Stephen; Becquemin, Jean Pierre

    2008-11-01

    The primary objective of this study was to compare the efficacy of a collagen silver-coated polyester graft, InterGard, with a gelatin-sealed graft, Gelsoft, both soaked in rifampin, for resistance to direct bacterial contamination in an animal model. The second objective was to confirm the lack of inflammation from silver acetate. Vascular grafts, 6 mm in diameter, were implanted in the infrarenal aorta of 28 dogs. Intravenous cefamandole (20 mg/kg) was injected intraoperatively in all dogs. The dogs were divided into three groups. Group I included 12 dogs. Six dogs received silver grafts and six dogs received gelatin-sealed grafts, all soaked with rifampin. Grafts implanted in group I were directly infected with methicillin-resistant Staphylococcus aureus (MRSA). Group II included also six silver grafts and six gelatin-sealed grafts, all soaked with rifampin. Dogs of group II were directly infected with Escherichia coli. Group III comprised four dogs, which received gelatin unsealed grafts, directly infected with MRSA, the control group. All dogs were followed by regular clinical examination, including blood cultures. Grafts in groups I and III and in group II were harvested at 30 days and 10 days, respectively. Bacterial analyses were performed on the explanted grafts. Histology was performed on both the tissue samples and the anastomotic sites of the harvested grafts. In group I, no grafts were infected with MRSA, irrespective of graft type. In group II, no silver grafts were infected with E. coli, whereas one (16.6%) of six gelatin-sealed grafts was infected (p = 0.317). In group III, three (75%) of the four grafts were infected with MRSA. The infection rate in the silver grafts and the gelatin-sealed grafts soaked in rifampin in group I compared with the unsealed gelatin grafts in group III was statistically significantly different (p anastomoses in three (25%) gelsoft grafts of 12 in groups I and II. There were no clinical or biological signs of inflammation

  4. Genetic effects of low-level irradiation

    International Nuclear Information System (INIS)

    Selby, P.B.

    1980-01-01

    Recent estimates of the genetic effects of radiation by two widely recognized committees (BEIR III and UNSCEAR 1977) are based to a large extent on data collected in mice using either the specific-locus method or the approach of empirically determining the nature and extent of radiation-induced genetic damage to the skeleton. Both committees made use of doubling-dose and direct methods of estimating genetic hazard. Their estimates can be applied to assessments of risk resulting from medical irradiation in terms both of risk to the population at large and to the individual

  5. Novel polymer anchored Cr(III) Schiff base complexes: Synthesis, characterization and antimicrobial properties

    Science.gov (United States)

    Selvi, Canan; Nartop, Dilek

    2012-09-01

    New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and 1H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH).

  6. Symptoms of Autism Spectrum Disorder (ASD) in individuals with Mucopolysaccharide Disease Type III (Sanfilippo Syndrome): a systematic review

    OpenAIRE

    Wolfenden, C.; Wittkowski, A.; Hare, Dougal

    2017-01-01

    The prevalence of autism spectrum disorder (ASD) in many genetic disorders is well documented but not as yet in Mucopolysaccharidosis type III (MPS III). MPS III is a recessively inherited metabolic disorder and evidence suggests that symptoms of ASD present in MPS III. This systematic review examined the extant literature on the symptoms of ASD in MPS III and quality assessed a total of 16 studies. Results indicated that difficulties within speech, language and communication consistent with ...

  7. Variety identification and genetic relationships of mungbean and ...

    African Journals Online (AJOL)

    ONOS

    2010-07-05

    Jul 5, 2010 ... yielding potential of the varieties from lack of genetic variability, absence of .... study the genetic relationships among these genotypes and (iii) to generate ...... from Chile based on RAPD and morphological data. Crop Sci. 37: 605-613. .... 20 January 2000, pp 6-12 (in Thai, with English abstract). Prevost A ...

  8. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, L.L.; Campos, V.M.A.; Magalhaes, L.A.G. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm{sup 2}) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. (author)

  9. Mapping Stress-Induced Changes in Autoinducer AI-2 Production in Chemostat-Cultivated Escherichia coli K-12

    Science.gov (United States)

    DeLisa, Matthew P.; Valdes, James J.; Bentley, William E.

    2001-01-01

    Numerous gram-negative bacteria employ a cell-to-cell signaling mechanism, termed quorum sensing, for controlling gene expression in response to population density. Recently, this phenomenon has been discovered in Escherichia coli, and while pathogenic E. coli utilize quorum sensing to regulate pathogenesis (i.e., expression of virulence genes), the role of quorum sensing in nonpathogenic E. coli is less clear, and in particular, there is no information regarding the role of quorum sensing during the overexpression of recombinant proteins. The production of autoinducer AI-2, a signaling molecule employed by E. coli for intercellular communication, was studied in E. coli W3110 chemostat cultures using a Vibrio harveyi AI-2 reporter assay (M. G. Surrette and B. L. Bassler, Proc. Natl. Acad. Sci. USA 95:7046–7050, 1998). Chemostat cultures enabled a study of AI-2 regulation through steady-state and transient responses to a variety of environmental stimuli. Results demonstrated that AI-2 levels increased with the steady-state culture growth rate. In addition, AI-2 increased following pulsed addition of glucose, Fe(III), NaCl, and dithiothreitol and decreased following aerobiosis, amino acid starvation, and isopropyl-β-d-thiogalactopyranoside-induced expression of human interleukin-2 (hIL-2). In general, the AI-2 responses to several perturbations were indicative of a shift in metabolic activity or state of the cells induced by the individual stress. Because of our interest in the expression of heterologous proteins in E. coli, the transcription of four quorum-regulated genes and 20 stress genes was mapped during the transient response to induced expression of hIL-2. Significant regulatory overlap was revealed among several stress and starvation genes and known quorum-sensing genes. PMID:11292813

  10. Determining the relative contribution and hierarchy of qseBC and hha in the regulation of flagellar motility of Escherichia coli O157:H7

    Science.gov (United States)

    In a recent study we demonstrated that in comparison to the wild-type enterohemorrhagic Escherichia coli (EHEC) O157:H7, a motility-compromised hha deletion mutant with an up-regulated type III secretion system and increased secretion of adherence proteins showed reduced fecal shedding in cattle. In...

  11. Specific regions of genome plasticity and genetic diversity of the commensal Escherichia coli A0 34/86

    Czech Academy of Sciences Publication Activity Database

    Hejnová, Jana; Pages, Delphine; Rusniok, Ch.; Glaser, P.; Šebo, Peter; Buchrieser, C.

    2006-01-01

    Roč. 296, - (2006), s. 541-546 ISSN 1438-4221 Institutional research plan: CEZ:AV0Z50200510 Keywords : escherichia coli * commensal * genome comparison Subject RIV: EE - Microbiology, Virology Impact factor: 2.760, year: 2006

  12. 99mTechnetium labelled Escherichia coli

    International Nuclear Information System (INIS)

    Diniz, S.O.F.; Cardoso, V.N.; Resende, B.M.; Nunan, E.A.; Simal, C.J.R.

    1999-01-01

    Samples of a culture of unlabeled Escherichia coli were incubated with different concentrations of stannous chloride for various time periods. 99m Tc (26.0 MBq) was added to each preparation and the results showed a labelling yield of 98% for E. coli. Since the bacterial viability of 99m Tc-E. coli and E. coli did not show any statistical differences, these results demonstrate that labelling of E. coli with 99m Tc does not modify the bacterial viability, and the radiolabelled bacteria may be a good model to study bacterial translocation

  13. Whole genome sequencing of ESBL-producing Escherichia coli isolated from patients, farm waste and canals in Thailand.

    Science.gov (United States)

    Runcharoen, Chakkaphan; Raven, Kathy E; Reuter, Sandra; Kallonen, Teemu; Paksanont, Suporn; Thammachote, Jeeranan; Anun, Suthatip; Blane, Beth; Parkhill, Julian; Peacock, Sharon J; Chantratita, Narisara

    2017-09-06

    Tackling multidrug-resistant Escherichia coli requires evidence from One Health studies that capture numerous potential reservoirs in circumscribed geographic areas. We conducted a survey of extended β-lactamase (ESBL)-producing E. coli isolated from patients, canals and livestock wastewater in eastern Thailand between 2014 and 2015, and analyzed isolates using whole genome sequencing. The bacterial collection of 149 isolates consisted of 84 isolates from a single hospital and 65 from the hospital sewer, canals and farm wastewater within a 20 km radius. E. coli ST131 predominated the clinical collection (28.6%), but was uncommon in the environment. Genome-based comparison of E. coli from infected patients and their immediate environment indicated low genetic similarity overall between the two, although three clinical-environmental isolate pairs differed by ≤ 5 single nucleotide polymorphisms. Thai E. coli isolates were dispersed throughout a phylogenetic tree containing a global E. coli collection. All Thai ESBL-positive E. coli isolates were multidrug resistant, including high rates of resistance to tobramycin (77.2%), gentamicin (77.2%), ciprofloxacin (67.8%) and trimethoprim (68.5%). ESBL was encoded by six different CTX-M elements and SHV-12. Three isolates from clinical samples (n = 2) or a hospital sewer (n = 1) were resistant to the carbapenem drugs (encoded by NDM-1, NDM-5 or GES-5), and three isolates (clinical (n = 1) and canal water (n = 2)) were resistant to colistin (encoded by mcr-1); no isolates were resistant to both carbapenems and colistin. Tackling ESBL-producing E. coli in this setting will be challenging based on widespread distribution, but the low prevalence of resistance to carbapenems and colistin suggests that efforts are now required to prevent these from becoming ubiquitous.

  14. Mechanism of SOS-induced targeted and untargeted mutagenesis in E. coli

    International Nuclear Information System (INIS)

    Maenhaut-Michel, G.

    1985-01-01

    This paper retraces the evolution of hypotheses concerning mechanisms of SOS induced mutagenesis. Moreover, it reports some recent data which support a new model for the mechanism of targeted and untargeted mutagenesis in E. coli. In summary, the SOS mutator effect, which is responsible for untargeted mutagenesis and perhaps for the misincorporation step in targeted mutagenesis, is believed to involve a fidelity function associated with DNA polymerase III and does not require the umuC gene product. umuC and umuD gene products are probably required specifically for elongation of DNA synthesis past blocking lesions, i.e. to allow mutagenic replication of damaged DNA

  15. The oxygen effect in E. coli cells

    International Nuclear Information System (INIS)

    Myasnik, M.N.; Skvortsov, V.G.; Sokolov, V.A.

    1982-01-01

    In experiments on E. coli strains deficient in some stages of DNA repair from radiation damages, it was demonstrated that the value of the oxygen effect, under optimal conditions for manifestation thereof, decreases in the following order: E. coli WP2 (the wild type) → E. coli WP2 exr - and E. coli B → E. coli WP2 uvr A6 → E. coli WP2 rec Al and E. coli WP2 hcr - exr - . It was detected that 0.14 M NaCl solution sensitizes the anoxic cells of some E. coli strains to the effect of γ-radiation. It was established that mutation of the uvr A-gene increases sharply the sensitivity of cells to iradiation under the anoxic conditions in the presence of NaCl, the reverse'' oxygen effect being observed

  16. Hemolytic porcine intestinal Escherichia coli without virulence-associated genes typical of intestinal pathogenic E. coli.

    Science.gov (United States)

    Schierack, Peter; Weinreich, Joerg; Ewers, Christa; Tachu, Babila; Nicholson, Bryon; Barth, Stefanie

    2011-12-01

    Testing 1,666 fecal or intestinal samples from healthy and diarrheic pigs, we obtained hemolytic Escherichia coli isolates from 593 samples. Focusing on hemolytic E. coli isolates without virulence-associated genes (VAGs) typical for enteropathogens, we found that such isolates carried a broad variety of VAGs typical for extraintestinal pathogenic E. coli.

  17. escherichia coli serotypes confirmed in experimental mammary ...

    African Journals Online (AJOL)

    DJFLEX

    VARIATIONS IN VIRULENCE OF THREE (3) ESCHERICHIA COLI. SEROTYPES CONFIRMED IN ... ows are susceptible to E. coli infection because. E. coli exist in the .... Coli infections in mice: A laboratory animal model for research in.

  18. Zoonotic Potential and Antibiotic Resistance of Escherichia coli in Neonatal Calves in Uruguay.

    Science.gov (United States)

    Umpiérrez, Ana; Bado, Inés; Oliver, Martín; Acquistapace, Sofía; Etcheverría, Analía; Padola, Nora Lía; Vignoli, Rafael; Zunino, Pablo

    2017-09-27

    Escherichia coli is one of the main etiological agents of neonatal calf diarrhea (NCD). The objective of this study was to assess the presence of virulence genes, genetic diversity, and antibiotic resistance mechanisms in E. coli associated with NCD in Uruguay. PCR was used to assess the presence of intimin, Shiga-like toxin, and stable and labile enterotoxin genes. Resistance to fluoroquinolones and oxyimino-cephalosporins was estimated on Müller-Hinton agar plates. Further antibiotic disc-diffusion tests were performed to assess bacterial multi-resistance. The presence of PMQR, ESBL, MCR-1, and integron genes was evaluated. Isolates were typed using ERIC-PCR, and 20 were selected for MLST, adhesion to Hep-2 cells, in vitro biofilm formation, and eukaryotic cytotoxicity. The prevalence of ETEC genes was lower than 3% in each case (estA and elt). Six isolates were EPEC (eae+) and 2 were EHEC/STEC (eae+/stx1+). The results of a diversity analysis showed high genetic heterogenicity among isolates. Additionally, different sequence types, including ST10, ST21, and ST69, were assigned to selected isolates. Thirty-six percent (96/264) of the isolates were fluoroquinolone-resistant, with 61/96 (63.5%) being multidrug-resistant. Additionally, 6 were oxyimino-cephalosporin-resistant. The qnrB, qnrS1, and bla CTX-M-14 genes were detected, whereas no isolates carried the mcr-1 gene. Isolates had the ability to adhere to Hep-2 cells and form biofilms. Only 1 isolate expressed toxins in vitro. E. coli from NCD cases in Uruguay are very diverse, potentially virulent, and may interact with eukaryotic cells. Zoonotic potential, together with resistance traits and the presence of horizontal transfer mechanisms, may play a significant role in infections caused by these microorganisms.

  19. Crystallization and preliminary crystallographic analysis of a novel plant type III polyketide synthase that produces pentaketide chromone

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Hiroyuki [Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511 (Japan); Kondo, Shin [ZOEGENE Corporation, 1000 Kamoshida, Aoba, Yokohama, Kanagawa 227-8502 (Japan); Abe, Tsuyoshi; Noguchi, Hiroshi [School of Pharmaceutical Sciences and the COE21 Program, University of Shizuoka, Shizuoka 422-8526 (Japan); Sugio, Shigetoshi, E-mail: ssugio@rc.m-kagaku.co.jp [ZOEGENE Corporation, 1000 Kamoshida, Aoba, Yokohama, Kanagawa 227-8502 (Japan); Abe, Ikuro, E-mail: ssugio@rc.m-kagaku.co.jp [School of Pharmaceutical Sciences and the COE21 Program, University of Shizuoka, Shizuoka 422-8526 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kohno, Toshiyuki, E-mail: ssugio@rc.m-kagaku.co.jp [Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511 (Japan)

    2006-09-01

    Pentaketide chromone synthase from A. arborescens has been overexpressed in E. coli, purified and crystallized. Diffraction data have been collected to 1.6 Å. Pentaketide chromone synthase (PCS) from Aloe arborescens is a novel plant-specific type III polyketide synthase that catalyzes the formation of 5,7-dihydroxy-2-methylchromone from five molecules of malonyl-CoA. Recombinant PCS expressed in Escherichia coli was crystallized by the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}, with unit-cell parameters a = 73.2, b = 88.4, c = 70.0 Å, α = γ = 90.0, β = 95.6°. Diffraction data were collected to 1.6 Å resolution using synchrotron radiation at BL24XU of SPring-8.

  20. Prevalence and behavior of multidrug-resistant shiga toxin-producing Escherichia coli, enteropathogenic E. coli and enterotoxigenic E. coli on coriander.

    Science.gov (United States)

    Gómez-Aldapa, Carlos A; Segovia-Cruz, Jesús A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Salas-Rangel, Laura P; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-10-01

    The prevalence and behavior of multidrug-resistant diarrheagenic Escherichia coli pathotypes on coriander was determined. One hundred coriander samples were collected from markets. Generic E. coli were determined using the most probable number procedure. Diarrheagenic E. coli pathotypes (DEPs) were identified using two multiplex polymerase chain reaction procedures. Susceptibility to sixteen antibiotics was tested for the isolated DEPs strains by standard test. The behavior of multidrug-resistant DEPs isolated from coriander was determined on coriander leaves and chopped coriander at 25°± 2 °C and 3°± 2 °C. Generic E. coli and DEPs were identified, respectively, in 43 and 7% of samples. Nine DEPs strains were isolated from positive coriander samples. The identified DEPs included Shiga toxin-producing E. coli (STEC, 4%) enterotoxigenic E. coli (ETEC, 2%) and enteropathogenic E. coli (EPEC, 1%). All isolated DEPs strains exhibited multi-resistance to antibiotics. On inoculated coriander leaves stored at 25°± 2 °C or 3°± 2 °C, no growth was observed for multidrug-resistant DEPs strains. However, multidrug-resistant DEPs strains grew in chopped coriander: after 24 h at 25° ± 2 °C, DEPs strains had grown to approximately 3 log CFU/g. However, at 3°± 2 °C the bacterial growth was inhibited. To the best of our knowledge, this is the first report of the presence and behavior of multidrug-resistant STEC, ETEC and EPEC on coriander and chopped coriander. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Escherichia coli and urinary tract infections: the role of poultry-meat.

    Science.gov (United States)

    Manges, A R

    2016-02-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) is the most common cause of community-acquired and hospital-acquired extraintestinal infections. The hypothesis that human ExPEC may have a food animal reservoir has been a topic of investigation by multiple groups around the world. Experimental studies showing the shared pathogenic potential of human ExPEC and avian pathogenic E. coli suggest that these extraintestinal E. coli may be derived from the same bacterial lineages or share common evolutionary roots. The consistent observation of specific human ExPEC lineages in poultry or poultry products, and rarely in other meat commodities, supports the hypothesis that there may be a poultry reservoir for human ExPEC. The time lag between human ExPEC acquisition (in the intestine) and infection is the fundamental challenge facing studies attempting to attribute ExPEC transmission to poultry or other environmental sources. Even whole genome sequencing efforts to address attribution will struggle with defining meaningful genetic relationships outside of a discrete food-borne outbreak setting. However, if even a fraction of all human ExPEC infections, especially antimicrobial-resistant ExPEC infections, is attributable to the introduction of multidrug-resistant ExPEC lineages through contaminated food product(s), the relevance to public health, food animal production and food safety will be significant. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Mutational analysis of the RecJ exonuclease of Escherichia coli: identification of phosphoesterase motifs.

    Science.gov (United States)

    Sutera, V A; Han, E S; Rajman, L A; Lovett, S T

    1999-10-01

    The recJ gene, identified in Escherichia coli, encodes a Mg(+2)-dependent 5'-to-3' exonuclease with high specificity for single-strand DNA. Genetic and biochemical experiments implicate RecJ exonuclease in homologous recombination, base excision, and methyl-directed mismatch repair. Genes encoding proteins with strong similarities to RecJ have been found in every eubacterial genome sequenced to date, with the exception of Mycoplasma and Mycobacterium tuberculosis. Multiple genes encoding proteins similar to RecJ are found in some eubacteria, including Bacillus and Helicobacter, and in the archaea. Among this divergent set of sequences, seven conserved motifs emerge. We demonstrate here that amino acids within six of these motifs are essential for both the biochemical and genetic functions of E. coli RecJ. These motifs may define interactions with Mg(2+) ions or substrate DNA. A large family of proteins more distantly related to RecJ is present in archaea, eubacteria, and eukaryotes, including a hypothetical protein in the MgPa adhesin operon of Mycoplasma, a domain of putative polyA polymerases in Synechocystis and Aquifex, PRUNE of Drosophila, and an exopolyphosphatase (PPX1) of Saccharomyces cereviseae. Because these six RecJ motifs are shared between exonucleases and exopolyphosphatases, they may constitute an ancient phosphoesterase domain now found in all kingdoms of life.

  3. Occurrence and characterization of shiga toxin-producing Escherichia coli in raw meat, raw milk, and street vended juices in Bangladesh

    NARCIS (Netherlands)

    Islam, M.A.; Mondol, A.S.; Azmi, I.J.; Boer, de E.; Beumer, R.R.; Zwietering, M.H.; Heuvelink, A.E.; Talukder, K.A.

    2010-01-01

    The major objective of this study was to investigate the prevalence of Shiga toxin (Stx)–producing Escherichia coli (STEC) in different types of food samples and to compare their genetic relatedness with STEC strains previously isolated from animal sources in Bangladesh. We investigated a total of

  4. Identification of Escherichia coli and Shigella Species from Whole-Genome Sequences.

    Science.gov (United States)

    Chattaway, Marie A; Schaefer, Ulf; Tewolde, Rediat; Dallman, Timothy J; Jenkins, Claire

    2017-02-01

    Escherichia coli and Shigella species are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species of Shigella are therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982 Escherichia coli and Shigella sp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasive E. coli isolates that were misidentified as Shigella flexneri or S. boydii by the kmer ID, and 8 were S. flexneri isolates misidentified by TB&S as S. boydii due to nonfunctional S. flexneri O antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising both S. boydii and S. dysenteriae strains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data. Shigella can be differentiated from E. coli and accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species of Shigella, and identified emerging pathoadapted lineages. © Crown copyright 2017.

  5. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jacob Daniela

    2005-06-01

    Full Text Available Abstract Background The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. Results We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. Conclusion According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms.

  6. Genetic diversity of methicillin resistant Staphylococcus aureus strains isolated from burn patients in Iran: ST239-SCCmec III/t037 emerges as the major clone.

    Science.gov (United States)

    Goudarzi, Mehdi; Bahramian, Mahnaz; Satarzadeh Tabrizi, Mahboobeh; Udo, Edet E; Figueiredo, Agnes Marie Sá; Fazeli, Maryam; Goudarzi, Hossein

    2017-04-01

    Methicillin-resistant Staphylococcus aureus (MRSA) as a major cause of infection in health care, hospital and community settings is a global health concern. The purpose of this study was to determine the antibiotic susceptibility pattern and distribution of circulating molecular types of MRSA in a burn hospital in Tehran, the capital of Iran. During a 10-month study period, 106 Staphylococcus aureus isolates were assessed. Isolates were subjected to susceptibility testing using the disk diffusion method and Polymerase Chain Reaction (PCR) for detection of mecA, fem and nuc genes. The presence of PVL and tst encoding genes were determined by PCR method. All the MRSA isolates were genotyped by multilocus sequence typing (MLST), spa typing, SCCmec typing and agr typing. The presence of mecA gene was confirmed in all the Staphylococcus aureus isolates. Antimicrobial susceptibility testing revealed a high resistance rate (90.6%) to ampicillin, tetracycline, and erythromycin. The rates of resistance to remaining antibiotics tested varied between 18.9% and 84.9%. The high- level of resistance to mupirocin was confirmed in 19.8% of MRSA strains isolated from burn patients. Multi-drug resistance was observed in 90.6% of isolates. Sixteen of the 106 MRSA isolates (15.1%) harbored PVL-encoding genes. The majority of our MRSA strains carried SCCmec III (71.7%). ST239-SCCmec III/t037 (34%) was the most common genotype followed by ST239-SCCmec III/t030 (24.5%), ST15-SCCmec IV/t084 (15.1%), ST22-SCCmec IV/t790 (13.2%), and ST239-SCCmec III/t631 (13.2%). Mupirocin resistant MRSA isolates belonged to ST15-SCCmec IV/t084 (40%), ST22-SCCmec IV/t790 (23.3%), ST239-SCCmec III/t631 (20%), and ST239-SCCmec III/t030 (16.7%) clones. The results showed that genetically diverse strains of MRSA are circulating in our burn hospitals with relatively high prevalence of ST239-SCCmec III/t037 clone. The findings support the need for regular surveillance of MRSA to determine the distribution of

  7. Pathotyping and antibiotic resistance of porcine enterovirulent Escherichia coli strains from Switzerland (2014-2015).

    Science.gov (United States)

    Brand, P; Gobeli, S; Perreten, V

    2017-07-01

    A total of 131 porcine E. coli were isolated in 2014 and 2015 from the gut of 115 pigs raised in Switzerland and suffering from diarrhea. The isolates were tested for antibiotic resistance, serotypes, virulence factors and genetic diversity. Serotypes were assigned by agglutination tests and virulence genes were identified by polymerase chain reaction (PCR). Antibiotic resistance profile was determined by the measurement of the MIC of 14 antibiotics and by the detection of the corresponding genes using microarray and PCR approaches. Genetic diversity was determined by repetitive palindromic PCR (rep- PCR) revealing a heterogenous population. Half of the E. coli isolates possessing virulence factors could not be assigned to any of the 19 serotypes tested, but contained toxins and adhesins similarly to the sero-typable E. coli isolates. The most prevalent E. coli serotypes found were K88ac (18%), O139:K82 (6%), O141:K85ac (5%), O108:K`V189` (5%), O119:K`V113` (3%) and O157:K`V17` (2%). The combination of toxins EAST-1, STb and LT-I and adhesin F4 characterizing ETEC was the most frequent. The shigatoxin Stx2e (STEC) and intimin Eae (EPEC) were also detected, but less frequently. Seventy percent of the isolates were resistant to at least one antibiotic and 29% were resistant to more than 3 antibiotics. Isolates exhibited resistance to tetracycline (50%) associated to resistance genes tet(A), tet(B) and tet(C), sulfamethoxazole (49%) [sul1, sul2 and sul3], trimethoprim (34%) [dfr], nalidixic acid (29%), ampicillin (26%) [blaTEM-1], gentamicin (17%) [aac(3) -IIc, aac(3) -IVa and aac(3) -VIa], chloramphenicol (17%) [catAI and catAIII], and ciprofloxacin (8%) [mutations in GyrA (S83L) and ParC (S80I)]. All isolates were susceptible to 3rd generation cephalosporins, carbapenems, colistin and tigecycline. Pathogenic E. coli isolates from pigs in Switzerland could frequently not be assigned to a known serotype even if they contained diarrhea-causing virulence factors. They

  8. Identification and Prevalence of Escherichia coli and Escherichia coli O157: H7 in Foods

    Directory of Open Access Journals (Sweden)

    Ancuta Mihaela Rotar

    2013-11-01

    Full Text Available The objective of this study is to investigate the incidence of Escherichia coli in animal and non-animal foods, and mainly the incidence of the serotype O157: H7 producing verotoxin. The presence of common Escherichia coli and Escherichia coli O157: H7 in various foods (of animal and non animal origin was performed in Transylvania area. We analyzed a total of one hundred forty-one samples of minced meat, one hundred twenty-six samples of meat , twenty six samples of meat products, five samples of alcoholic beverages, three samples of seafood, one hundred samples of cheese from pasteurized milk, seventeen samples of butter, four samples of vegetables and one sample of milk powder, using the standard cultural method and Vidas Eco method for E. coli O157: H7 strains. E. coli was identified in 50 samples of minced meat, 55 samples of meat prepared, 4 samples of meat products, 2 samples of alcoholic beverages, 25 samples of cheese from pasteurized milk, 6 samples of butter and 1 sample of vegetables. In this study were not been identified any foods contaminated with the E. coli O157: H7 serotype. The results of this reasearch have demostrated that E. coli wich represents a hygienic indicator of recent food contamination, can be destroyed with heat treatment and hygienic handling of foods. Our country over the years has been among the few countries where the incidence of the E. coli O157: H7 serotype has been minimal.

  9. Effects of Selected Egyptian Honeys on the Cellular Ultrastructure and the Gene Expression Profile of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Reham Wasfi

    Full Text Available The purpose of this study was to: (i evaluate the antibacterial activities of three Egyptian honeys collected from different floral sources (namely, citrus, clover, and marjoram against Escherichia coli; (ii investigate the effects of these honeys on bacterial ultrastructure; and (iii assess the anti-virulence potential of these honeys, by examining their impacts on the expression of eight selected genes (involved in biofilm formation, quorum sensing, and stress survival in the test organism. The minimum inhibitory concentration (MIC of the honey samples against E. coli ATCC 8739 were assessed by the broth microdilution assay in the presence and absence of catalase enzyme. Impacts of the honeys on the cellular ultrastructure and the expression profiles of the selected genes of E. coli were examined using transmission electron microscopy (TEM and quantitative real-time polymerase chain reaction (qPCR analysis, respectively. The susceptibility tests showed promising antibacterial activities of all the tested honeys against E. coli. This was supported by the TEM observations, which revealed "ghost" cells lacking DNA, in addition to cells with increased vacuoles, and/or with irregular shrunken cytoplasm. Among the tested honeys, marjoram exhibited the highest total antibacterial activity and the highest levels of peroxide-dependent activity. The qPCR analysis showed that all honey-treated cells share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest. Our results indicate that some varieties of the Egyptian honey have the potential to be effective inhibitor and virulence modulator of E. coli via multiple molecular targets.

  10. Restricted fragmentation of poliovirus type 1, 2, and 3 RNAs by ribonuclease III

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, A. (State Univ. of New York, Stony Brook); Lee, Y.F.; Babich, A.; Jacobson, A.; Dunn, J.J.; Wimmer, E.

    1979-01-01

    Cleavage of the genome RNAs of poliovirus type 1, 2, and 3 with the ribonuclease III of Escherichia coli has been investigated with the following results: (1) at or above physiological salt concentration, the RNAs are completely resistant to the action of the enzyme, an observation suggesting that the RNAs lack primary cleavage sites; (2) lowering the salt concentration to 0.1 M or below allows RNase III to cleave the RNAs at secondary sites. Both large and small fragments can be obtained in a reproducible manner depending on salt conditions chosen for cleavage. Fingerprints of three large fragments of poliovirus type 2 RNA show that they originate from unique segments and represent most if not all sequences of the genome. Based upon binding to poly(U) filters of poly(A)-linked fragments, a physical map of the large fragments of poliovirus type 2 RNA was constructed. The data suggest that RNase III cleavage of single-stranded RNA provides a useful method to fragment the RNA for further studies.

  11. Oral challenge with E.coli K88 as a tool to assess growth and health performance in feeding trials of-weaned pigs

    Directory of Open Access Journals (Sweden)

    P. Bonilauri

    2011-03-01

    Full Text Available The valuation of dietary solutions for weaning pigs is problematic. In field situations, an accurate control of replications is difficult and disturbing factors are hardly removed; in experimental farm, hygienic conditions are in general superior to practical farms. In the study of alternatives to in-feed antibiotics the challenge with K88 E.coli has been often proposed. The predisposition to this colibacillosis is, at least partially, genetically controlled and depends on the presence of intestinal receptors for the F4 fimbrial antigens of K88 E.coli...

  12. Parallel Genetic and Phenotypic Evolution of DNA Superhelicity in Experimental Populations of Escherichia coli

    DEFF Research Database (Denmark)

    Crozat, Estelle; Winkworth, Cynthia; Gaffé, Joël

    2010-01-01

    , indicate that changes in DNA superhelicity have been important in the evolution of these populations. Surprisingly, however, most of the evolved alleles we tested had either no detectable or slightly deleterious effects on fitness, despite these signatures of positive selection.......DNA supercoiling is the master function that interconnects chromosome structure and global gene transcription. This function has recently been shown to be under strong selection in Escherichia coli. During the evolution of 12 initially identical populations propagated in a defined environment...

  13. The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Ulett, G.C.; Schembri, M.A.

    2006-01-01

    Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infections (UTI), very little is known about the mechanisms by which these strains colonize the human urinary tract....... The prototype ABU E. coli strain 83972 was originally isolated from a girl who had carried it asymptomatically for 3 years. Deliberate colonization of UTI-susceptible individuals with E. coli 83972 has been used successfully as an alternative approach for the treatment of patients who are refractory...... to conventional therapy. Colonization with strain 83972 appears to prevent infection with UPEC strains in such patients despite the fact that this strain is unable to express the primary adhesins involved in UTI, viz. P and type 1 fimbriae. Here we investigated the growth characteristics of E. coli 83972 in human...

  14. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms.

    Science.gov (United States)

    Prada Medina, Cesar Augusto; Aristizabal Tessmer, Elke Tatjana; Quintero Ruiz, Nathalia; Serment-Guerrero, Jorge; Fuentes, Jorge Luis

    2016-06-01

    Purpose In this paper, the contribution of different genes involved in DNA repair for both survival and SOS induction in Escherichia coli mutants exposed to ultraviolet B radiation (UVB, [wavelength range 280-315 nm]) was evaluated. Materials and methods E. coli strains defective in uvrA, oxyR, recO, recN, recJ, exoX, recB, recD or xonA genes were used to determine cell survival. All strains also had the genetic sulA::lacZ fusion, which allowed for the quantification of SOS induction through the SOS Chromotest. Results Five gene products were particularly important for survival, as follows: UvrA > RecB > RecO > RecJ > XonA. Strains defective in uvrA and recJ genes showed elevated SOS induction compared with the wild type, which remained stable for up to 240 min after UVB-irradiation. In addition, E. coli strains carrying the recO or recN mutation showed no SOS induction. Conclusions The nucleotide excision and DNA recombination pathways were equally used to repair UVB-induced DNA damage in E. coli cells. The sulA gene was not turned off in strains defective in UvrA and RecJ. RecO protein was essential for processing DNA damage prior to SOS induction. In this study, the roles of DNA repair proteins and their contributions to the mechanisms that induce SOS genes in E. coli are proposed.

  15. Clonal study of avian Escherichia coli strains by fliC conserved-DNA-sequence regions analysis Estudo clonal de Escherichia coli aviário por análise de seqüências de DNA conservadas do gene fliC

    Directory of Open Access Journals (Sweden)

    Tatiana Amabile de Campos

    2008-10-01

    Full Text Available The clonal relationship among avian Escherichia coli strains and their genetic proximity with human pathogenic E. coli, Salmonela enterica, Yersinia enterocolitica and Proteus mirabilis, was determined by the DNA sequencing of the conserved 5' and 3'regions fliC gene (flagellin encoded gene. Among 30 commensal avian E. coli strains and 49 pathogenic avian E. coli strains (APEC, 24 commensal and 39 APEC strains harbored fliC gene with fragments size varying from 670bp to 1,900bp. The comparative analysis of these regions allowed the construction of a dendrogram of similarity possessing two main clusters: one compounded mainly by APEC strains and by H-antigens from human E. coli, and another one compounded by commensal avian E. coli strains, S. enterica, and by other H-antigens from human E. coli. Overall, this work demonstrated that fliC conserved regions may be associated with pathogenic clones of APEC strains, and also shows a great similarity among APEC and H-antigens of E. coli strains isolated from humans. These data, can add evidence that APEC strains can exhibit a zoonotic risk.A relação clonal entre linhagens de Escherichia coli de origem aviária e sua proximidade genética com E. coli patogênica para humanos, Salmonella enterica, Yersinia enterocolitica e Proteus mirabilis foi determinada através da utilização das seqüências conservadas 5' e 3' do gene fliC (responsável pela codificação da flagelina. Entre as 30 linhagens comensais de E. coli aviária e as 49 linhagens patogênicas de E. coli para aves (APEC, 24 linhagens comensais e 39 APEC apresentaram o gene fliC, que foi encontrado em tamanhos que variam de 670pb a 1900pb. Um dendrograma representando similaridade genética foi obtido a partir do seqüenciamento das regiões 5' e 3' conservadas do gene fliC das linhagens de E. coli de origem aviária, das seqüências dos antígenos H de E. coli de origem humana, de S. enterica, Y. enterocolitica e de P. mirabilis. A an

  16. Mutational Analysis of the RecJ Exonuclease of Escherichia coli: Identification of Phosphoesterase Motifs

    OpenAIRE

    Sutera, Vincent A.; Han, Eugene S.; Rajman, Luis A.; Lovett, Susan T.

    1999-01-01

    The recJ gene, identified in Escherichia coli, encodes a Mg+2-dependent 5′-to-3′ exonuclease with high specificity for single-strand DNA. Genetic and biochemical experiments implicate RecJ exonuclease in homologous recombination, base excision, and methyl-directed mismatch repair. Genes encoding proteins with strong similarities to RecJ have been found in every eubacterial genome sequenced to date, with the exception of Mycoplasma and Mycobacterium tuberculosis. Multiple genes encoding protei...

  17. Ultraviolet radiation-induced mutability of isogenic uvrA and uvrB strains of Escherichia coli K-12 W3110

    International Nuclear Information System (INIS)

    Barfknecht, T.R.; Smith, K.C.

    1977-01-01

    E. coli K-12 W3110 uvrB5 strain has been shown to have a higher UV induced reversion frequency than its wild-type parent when plotted on the basis of mutation frequency versus survival. However for the E. coli B/r WP2s uvrA strain this higher mutability has been observed only at survival levels of 80-100%. A study was undertaken to determine if these differences in UV mutability were due primarily to the uvrA and uvrB mutations, or to other genetic background differences. Isogenic strains of E. coli K-12 W3110 carrying uvrA6, uvrB5, uvrA6 and uvrB5, and the uvrA allele from E.coli B/r WP2s were used. Results indicate that the enrichment of minimal medium with a small amount of nutrient broth is sufficient to inhibit minimal medium recovery (MMR) and to enhance leu + reversion of the leu B missense mutation in these uvr - strains. This suggests that there may be a relationship between MMR and error-free postreplication repair. Further research is in progress to clarify the relationship between MMR and broth enhancement of UV-induced mutagenesis in uvr - strains of E. Coli K-12 W3110. (author)

  18. Ultraviolet radiation-induced mutability of isogenic uvrA and uvrB strains of Escherichia coli K-12 W3110

    Energy Technology Data Exchange (ETDEWEB)

    Barfknecht, T R; Smith, K C [Stanford Univ., Calif. (USA). Dept. of Radiology

    1977-12-01

    Escherichia coli K-12 W3110 uvrB5 strain has been shown to have a higher uv-induced reversion frequency than its wild-type parent when plotted on the basis of mutation frequency versus survival. However for the E. coli B/r WP2s uvrA strain this higher mutability has been observed only at survival levels of 80 to 100%. A study was undertaken to determine if ly to the uvrA and uvrB mutations, or to other genetic background differences. Isogenic strains of E. coli K-12 W3110 carrying uvrA6, uvrB5, uvrA6, and uvrB5, and the uvrA allele from E.coli B/r WP2s were used. Results indicate that the enrichment of minimal medium with a small amount of nutrient broth is sufficient to inhibit minimal medium recovery (MMR) and to enhance leu/sup +/ reversion of the leu B missense mutation in these uvr/sup -/ strains. This suggests that there may be a relationship between MMR and error-free postreplication repair. Further research is in progress to clarify the relationship between MMR and broth enhancement of uv-induced mutagenesis in uvr/sup -/ strains of E. Coli K-12 W3110.

  19. A High-Level Petri Net Framework for Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Banks Richard

    2007-12-01

    Full Text Available To understand the function of genetic regulatory networks in the development of cellular systems, we must not only realise the individual network entities, but also the manner by which they interact. Multi-valued networks are a promising qualitative approach for modelling such genetic regulatory networks, however, at present they have limited formal analysis techniques and tools. We present a flexible formal framework for modelling and analysing multi-valued genetic regulatory networks using high-level Petri nets and logic minimization techniques. We demonstrate our approach with a detailed case study in which part of the genetic regulatory network responsible for the carbon starvation stress response in Escherichia coli is modelled and analysed. We then compare and contrast this multivalued model to a corresponding Boolean model and consider their formal relationship.

  20. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract.

    Science.gov (United States)

    Kupz, Andreas; Fischer, André; Nies, Dietrich H; Grass, Gregor; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M

    2013-09-01

    Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.

  1. Heavy metal susceptibility of Escherichia coli isolated from urine samples from Sweden, Germany, and Spain

    OpenAIRE

    Suetterlin, S; Tellez-Castillo, CJ; Anselem, L; Yin, H; Bray, JE; Maiden, MCJ

    2018-01-01

    Antimicrobial resistance is a major health care problem, with the intensive use of heavy metals and biocides recently being identified as potential contributing factors to the aggravation of this situation. This study investigated heavy metal susceptibility and genetic resistance determinants in Escherichia coli isolated from clinical urine samples from Sweden, Germany and Spain. A total of 186 isolates were tested for minimal inhibition concentration to sodium arsenite, silver nitrate and co...

  2. In vitro colonization of the muscle extracellular matrix components by Escherichia coli O157:H7: the influence of growth medium, temperature and pH on initial adhesion and induction of biofilm formation by collagens I and III.

    Directory of Open Access Journals (Sweden)

    Caroline Chagnot

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 are responsible for repeated food-poisoning cases often caused by contaminated burgers. EHEC infection is predominantly a pediatric illness, which can lead to life-threatening diseases. Ruminants are the main natural reservoir for EHEC and food contamination almost always originates from faecal contamination. In beef meat products, primary bacterial contamination occurs at the dehiding stage of slaughtering. The extracellular matrix (ECM is the most exposed part of the skeletal muscles in beef carcasses. Investigating the adhesion to the main muscle fibrous ECM proteins, insoluble fibronectin, collagen I, III and IV, laminin-α2 and elastin, results demonstrated that the preceding growth conditions had a great influence on subsequent bacterial attachment. In the tested experimental conditions, maximal adhesion to fibril-forming collagens I or III occurred at 25°C and pH 7. Once initially adhered, exposure to lower temperatures, as applied to meat during cutting and storage, or acidification, as in the course of post-mortem physiological modifications of muscle, had no effect on detachment, except at pHu. In addition, dense biofilm formation occurred on immobilized collagen I or III and was induced in growth medium supplemented with collagen I in solution. From this first comprehensive investigation of EHEC adhesion to ECM proteins with respect to muscle biology and meat processing, new research directions for the development of innovative practices to minimize the risk of meat contamination are further discussed.

  3. [A family history of renal lithiasis in children diagnosed of urinary tract infection by Escherichia coli].

    Science.gov (United States)

    García Nieto, Víctor; Sotoca Fernández, Jorge; O'Hagan, Monica; Arango Sancho, Pedro; Luis Yanes, Maria Isabel

    2018-04-01

    Urinary tract infections (UTI) caused by Escherichia coli (E. coli) are common in patients with idiopathic hypercalciuria. As both UTI and hypercalciuria (prelithiasis) have a genetic basis, we wanted to know whether the family history of urolithiasis is more common in children with UTIs caused by E. coli. Secondarily, we wondered if the renal scars are more common in children with prelithiasis. Ambispective study with collected data from 104 patients (40 male, 64 female) followed after having been diagnosed of UTI by E. coli at least once. These patients were asked about the existence of urolithiasis in relatives. The calcium and citrate urinary elimination was qunatified in 80 children. In the total sample, family history was positive for urolithiasis in a significantly higher frequency in those children (n=71; 68.3%) than in the control population in our area (29.7%; previously published data). Prelithiasis frequency in children with UTI was 47.5% (38/80). An association was observed between the diagnosis of prelithiasis both with family history of urolithiasis (P=.030) and the diagnosis of vesicoureteral reflux (P=.034). Children who developed renal scarring had an increased risk of prelithiasis (OR 5.3; P=.033). The frequency of family history of urolithiasis in children with UTI caused by E. coli is very high. Based on our results we hypothesize that the predisposition to lithiasis can involve a constitutively altered defense to E. coli and, therefore, a greater possibility for renal scars. Copyright © 2017 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Clustered, regularly interspaced short palindromic repeat (CRISPR) diversity and virulence factor distribution in avian Escherichia coli.

    Science.gov (United States)

    Fu, Qiang; Su, Zhixin; Cheng, Yuqiang; Wang, Zhaofei; Li, Shiyu; Wang, Heng'an; Sun, Jianhe; Yan, Yaxian

    In order to investigate the diverse characteristics of clustered, regularly interspaced short palindromic repeat (CRISPR) arrays and the distribution of virulence factor genes in avian Escherichia coli, 80 E. coli isolates obtained from chickens with avian pathogenic E. coli (APEC) or avian fecal commensal E. coli (AFEC) were identified. Using the multiplex polymerase chain reaction (PCR), five genes were subjected to phylogenetic typing and examined for CRISPR arrays to study genetic relatedness among the strains. The strains were further analyzed for CRISPR loci and virulence factor genes to determine a possible association between their CRISPR elements and their potential virulence. The strains were divided into five phylogenetic groups: A, B1, B2, D and E. It was confirmed that two types of CRISPR arrays, CRISPR1 and CRISPR2, which contain up to 246 distinct spacers, were amplified in most of the strains. Further classification of the isolates was achieved by sorting them into nine CRISPR clusters based on their spacer profiles, which indicates a candidate typing method for E. coli. Several significant differences in invasion-associated gene distribution were found between the APEC isolates and the AFEC isolates. Our results identified the distribution of 11 virulence genes and CRISPR diversity in 80 strains. It was demonstrated that, with the exception of iucD and aslA, there was no sharp demarcation in the gene distribution between the pathogenic (APEC) and commensal (AFEC) strains, while the total number of indicated CRISPR spacers may have a positive correlation with the potential pathogenicity of the E. coli isolates. Copyright © 2016. Published by Elsevier Masson SAS.

  5. Modification of radiation effects on E. coli B/r and a radiosensitive mutant Bsub(s-1) by membrane-binding drugs

    International Nuclear Information System (INIS)

    Yonei, S.

    1979-01-01

    In this study, the effects of chlorpromazine, procaine and quinidine on the X-radiation effects on Escherichia coli B/r and its radiosensitive mutant Bsub(s-1) (which is genetically unable to repair radiation damage to DNA) were examined. At chlorpromazine concentrations > = 25 mM, there was loss of colony-forming ability in both strains. Chlorpromazine (0.1 mM) markedly sensitized E. coli B/r under hypoxic conditions of irradiation but not under oxic conditions. There was no significant radiosensitization by chlorpromazine (0.1-1.0mM) in E. coli Bsub(s-1) under either oxic or hypoxic conditions. Similar results were obtained when procaine and quinidine were used as 'membrane-binding radiosensitizers'. Thus these results suggested that radiosensitization by such drugs in E. coli B/r was the result of inhibition of post-irradiation DNA repair in cells. It was concluded that the inhibition of DNA repair could be a secondary consequence of cell membrane alterations or damage caused by the membrane-binding of these drugs. (UK)

  6. A high-throughput approach to identify compounds that impair envelope integrity in Escherichia coli

    DEFF Research Database (Denmark)

    Baker, Kristin Renee; Jana, Bimal; Franzyk, Henrik

    2016-01-01

    - to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, antibiotics by checkerboard assays in two genetically distinct E. coli strains, including the high-risk multidrug-resistant, CTX-M-15-producing...... the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria....

  7. Genetic toxicology of metal compounds. II. Enhancement of ultraviolet light-induced mutagenesis in Escherichia coli WP2

    International Nuclear Information System (INIS)

    Rossman, T.G.; Molina, M.

    1986-01-01

    Salts of metals which are carcinogenic, noncarcinogenic, or of unknown carcinogenicity were assayed for their abilities to modulate ultraviolet (UV)-induced mutagenesis in Escherichia coli WP2. In addition to the previously reported comutagenic effect of arsenite, salts of three other compounds were found to enhance UV mutagenesis. CuCl 2 , MnCl 2 (and a small effect by KMnO 4 ), and NaMoO 4 acted as comutagens in E coli WP2, which has wild-type DNA repair capability, but were much less comutagenic in the repair deficient strain WP2/sub s/ (uvrA). The survival of irradiated or unirradiated cells was not affected by these compounds. No effects on UV mutagenesis were seen for 16 other metal compounds. We suggest that the comutagenic effects might occur either via metal-induced decreases in the fidelity of repair replication or via metal-induced depurination

  8. Comparative genomics of transport proteins in probiotic and pathogenic Escherichia coli and Salmonella enterica strains.

    Science.gov (United States)

    Do, Jimmy; Zafar, Hassan; Saier, Milton H

    2017-06-01

    Escherichia coli is a genetically diverse species that can be pathogenic, probiotic, commensal, or a harmless laboratory strain. Pathogenic strains of E. coli cause urinary tract infections, diarrhea, hemorrhagic colitis, and pyelonephritis, while the two known probiotic E. coli strains combat inflammatory bowel disease and play a role in immunomodulation. Salmonella enterica, a close relative of E. coli, includes two important pathogenic serovars, Typhi and Typhimurium, causing typhoid fever and enterocolitis in humans, respectively, with the latter strain also causing a lethal typhoid fever-like disease in mice. In this study, we identify the transport systems and their substrates within seven E. coli strains: two probiotic strains, two extracellular pathogens, two intracellular pathogens, and K-12, as well as the two intracellular pathogenic S. enterica strains noted above. Transport systems characteristic of each probiotic or pathogenic species were thus identified, and the tabulated results obtained with all of these strains were compared. We found that the probiotic and pathogenic strains generally contain more iron-siderophore and sugar transporters than E. coli K-12. Pathogens have increased numbers of pore-forming toxins, protein secretion systems, decarboxylation-driven Na + exporters, electron flow-driven monovalent cation exporters, and putative transporters of unknown function compared to the probiotic strains. Both pathogens and probiotic strains encode metabolite transporters that reflect their intracellular versus extracellular environments. The results indicate that the probiotic strains live extracellularly. It seems that relatively few virulence factors can convert a beneficial or commensal microorganism into a pathogen. Taken together, the results reveal the distinguishing features of these strains and provide a starting point for future engineering of beneficial enteric bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Pathological And Immunological Study On Infection With Escherichia Coli In ale BALB/c mice

    Science.gov (United States)

    Ali, Intisar H.; Jabir, Majid S.; Al-Shmgani, Hanady S. A.; Sulaiman, Ghassan M.; Sadoon, Ali H.

    2018-05-01

    Escherichia coli bacteria is considered as one of the common responsible for the frequency and severity of infections that it hospitalized patients. E. coli simultaneously carries a harmful side in which only a slight genetic recombination can bring about a highly pathogenic strain that most frequently causes the scourge of bacterial infections worldwide including sepsis, neonatal meningitis, pneumonia, bacteremia and traveler’s diarrhea. This study was carried out to assess Escherichia coli infection induced pathologically and immunologically. Following Escherichia coli isolation, identification and counting, the lethal dose (LD-50) was determined before infection. Twenty-two mice were used in this study for 21 days infection, the animals were sacrificed at 3, 6, 9, 12, 15, 18 and 21 days, and tissues of different tissue were collected, examined for bacterial infection. Bacteria and mice immunization and ELISA were used to detect immunoglobulin G level in serum as well. For histological study, different infected organs were used. The results indicated that the LH50 was 1×109 cell; and all organs were infected after 3 days followed by decreased in infection level shown in brain at day 12, lung, kidney and intestine at day 15 and in liver, spleen and heart at day 21. Moreover, ELISA results revealed that concentration 1:200 of serum in positive and negative state and optimum concentration of Ag 1:40 dilution and compact dilution is 1:1000. In addition, diversity of histopathological alteration occurs in tissue on time-depended manner. This study concluded that the ability of activated E.coli to stimulate the intestinal secretory immune system of germ might result from a retardation of immunological maturity.

  10. Mechanisms of uv mutagenesis in yeast and E. coli

    International Nuclear Information System (INIS)

    Lawrence, C.; Christensen, R.; Christensen, J.R.; O'Brien, T.

    1983-01-01

    Experiments investigating ultraviolet light mutagenesis in either bakers' yeast, Saccharomyces cerevisiae, or E. coli have led to the following conclusions. First, cyclobutane pyrimidine dimers cause most mutations in both organisms; pyrimidine adducts, such as PyC, can account at best for only a small proportion. 86 percent of forward mutations induced at the E. coli lacI locus can be abolished by photoreactivation under conditions which do not alter the level of recA induction. About 75 percent of the forward mutations induced at the CAN1 locus of yeast could be removed by photoreactivation, a value that lies within the range observed previously for the reversion of CYC1 alleles (60 percent - 97 percent). Second, about 10 percent of the lacI forward mutations are untargeted, a smaller fraction than found previously for cycl-91 reversion in yeast. It is not yet clear whether the two species are really different in this respect, of whether the cycl-91 reversion site is a typical of the yeast genome at large. Third, analysis of reversion frequencies of 20 mutant alleles suggests that about 10 to 25 percent of all replication errors produced by mutagenic mechanisms in uv-irradiated yeast involve additions or deletions of base-pairs, indicating that error-prone repair does not just produce substitutions. Last, the REV1 locus in yeast is concerned with the induction of frameshift mutations at some, but not all, genetic sites, just as found previously for substitution mutations. The function of the REV3 gene is more widely, though not universally, required while the function of the RAD6 gene, like that of the recA locus in E. coli, appears to be necessary for all kinds of uv mutagenesis. E coli genes comparable to REV1 and REV3 have not yet been described; conversely, there does not yet appear to be a yeast equivalent of umuC

  11. Mechanisms of uv mutagenesis in yeast and E. coli

    International Nuclear Information System (INIS)

    Lawrence, C.; Christensen, R.; Christensen, J.R.; O'Brien, T.

    1983-01-01

    Experiments investigating ultraviolet light mutagenesis in either bakers' yeast, Saccharomyces cerevisiae, or E. coli have led to the following conclusions. First, cyclobutane pyrimidine dimers cause most mutations in both organisms; pyrimidine adducts, such as PyC, can account at best for only a small proportion. Eighty-six percent of forward mutations induced at the E. coli lacI locus can be abolished by photoreactivation under conditions which do not alter the level of recA induction. About 75 percent of the forward mutations induced at the CAN1 locus of yeast could be removed by photoreactivation, a value that lies within the range observed previously for the reversion of CYC1 alleles (60 percent - 97 percent). Second, about 10 percent of the lacI forward mutations are untargeted, a smaller fraction than found previously for cycl1-91 reversion in yeast. It is not yet clear whether the two species are really different in this respect, or whether the cyc1-91 reversion site is atypical of the yeast genome at large. Third, analysis of reversion frequencies of 20 mutant alleles suggests that about 10 - 25 percent of all replication errors produced by mutagenic mechanisms in UV-irradiated yeast involve additions or deletions of base-pairs, indicating that error-prone repair does not just produce substitutions. Last, the REV1 locus in yeast is concerned with the induction of frameshift mutations at some, but not all, genetic sites, just as found previously for substitution mutations. The function of the REV3 gene is more widely, though not universally, required while the function of the RAD6 gene, like that of the recA locus in E. coli, appears to be necessary for all kinds of UV mutagenesis. E. coli genes comparable to REV1 and REV3 have not yet been described, conversely, there does not yet appear to be a yeast equivalent of umuC. 13 references, 4 tables

  12. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.

    Science.gov (United States)

    Dror-Ehre, A; Mamane, H; Belenkova, T; Markovich, G; Adin, A

    2009-11-15

    Silver nanoparticles exhibit antibacterial properties via bacterial inactivation and growth inhibition. The mechanism is not yet completely understood. This work was aimed at elucidating the effect of silver nanoparticles on inactivation of Escherichia coli, by studying particle-particle interactions in aqueous suspensions. Stable, molecularly capped, positively or negatively charged silver nanoparticles were mixed at 1 to 60microgmL(-1) with suspended E. coli cells to examine their effect on inactivation of the bacteria. Gold nanoparticles with the same surfactant were used as a control, being of similar size but made up of a presumably inert metal. Log reduction of 5log(10) and complete inactivation were obtained with the silver nanoparticles while the gold nanoparticles did not show any inactivation ability. The effect of molecularly capped nanoparticles on E. coli survival was dependent on particle number. Log reduction of E. coli was associated with the ratio between the number of nanoparticles and the initial bacterial cell count. Electrostatic attraction or repulsion mechanisms in silver nanoparticle-E. coli cell interactions did not contribute to the inactivation process.

  13. Isothiocyanato complexes of Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl)benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, A; Singh, V K

    1982-01-01

    Six-coordinated complexes of the type (Ln(PyBzH)/sub 2/NCS.H/sub 2/O) (NCS)/sub 2/.nH/sub 2/O/mC/sub 2/H/sub 5/OH (Ln = Gd(III), Tb(III), Dy(III) and Ho(III), n=1-2; m=1) have been prepared from Ln(NCS)/sub 6//sup 3 -/. The room temperature magnetic moment values confirm the terpositive state of the lanthanide ions. Infrared spectra suggest the N-coordination of thiocyanate group. Electronic spectral studies of Tb(III), Dy(III) and Ho(III) complexes have been made in terms of LSJ term energies. 13 refs.

  14. Genetic aspects of pathological gambling: a complex disorder with shared genetic vulnerabilities.

    Science.gov (United States)

    Lobo, Daniela S S; Kennedy, James L

    2009-09-01

    To summarize and discuss findings from genetic studies conducted on pathological gambling (PG). Searches were conducted on PubMed and PsychInfo databases using the keywords: 'gambling and genes', 'gambling and family' and 'gambling and genetics', yielding 18 original research articles investigating the genetics of PG. Twin studies using the Vietnam Era Twin Registry have found that: (i) the heritability of PG is estimated to be 50-60%; (ii) PG and subclinical PG are a continuum of the same disorder; (iii) PG shares genetic vulnerability factors with antisocial behaviours, alcohol dependence and major depressive disorder; (iv) genetic factors underlie the association between exposure to traumatic life-events and PG. Molecular genetic investigations on PG are at an early stage and published studies have reported associations with genes involved in the brain's reward and impulse control systems. Despite the paucity of studies in this area, published studies have provided considerable evidence of the influence of genetic factors on PG and its complex interaction with other psychiatric disorders and environmental factors. The next step would be to investigate the association and interaction of these variables in larger molecular genetic studies with subphenotypes that underlie PG. Results from family and genetic investigations corroborate further the importance of understanding the biological underpinnings of PG in the development of more specific treatment and prevention strategies.

  15. The Molecular Epidemiology and Genetic Environment of Carbapenemases Detected in Africa.

    Science.gov (United States)

    Sekyere, John Osei; Govinden, Usha; Essack, Sabiha

    2016-01-01

    Research articles describing carbapenemases and their genetic environments in Gram-negative bacteria were reviewed to determine the molecular epidemiology of carbapenemases in Africa. The emergence of resistance to the carbapenems, the last resort antibiotic for difficult to treat bacterial infections, affords clinicians few therapeutic options, with a resulting increase in morbidities, mortalities, and healthcare costs. However, the molecular epidemiology of carbapenemases throughout Africa is less described. Research articles and conference proceedings describing the genetic environment and molecular epidemiology of carbapenemases in Africa were retrieved from Google Scholar, Scifinder, Pubmed, Web of Science, and Science Direct databases. Predominant carbapenemase genes so far described in Africa include the blaOXA-48 type, blaIMP, blaVIM, and blaNDM in Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, Citrobacter spp., and Escherichia coli carried on various plasmid types and sizes, transposons, and integrons. Class D and class B carbapenemases, mainly prevalent in A. baumannii, K. pneumoniae, E. cloacae, Citrobacter spp., and E. coli were the commonest carbapenemases. Carbapenemases are mainly reported in North and South Africa as under-resourced laboratories, lack of awareness and funding preclude the detection and reporting of carbapenemase-mediated resistance. Consequently, the true molecular epidemiology of carbapenemases and their genetic environment in Africa is still unknown.

  16. Continuous treatment process of mercury removal from aqueous solution by growing recombinant E. coli cells and modeling study

    International Nuclear Information System (INIS)

    Deng, X.; Hu, Z.L.; Yi, X.E.

    2008-01-01

    A continuous treatment process was developed to investigate the capability of genetically engineered E. coli to simultaneously accumulate mercuric ions and reproduce itself in a continuous stirred tank reactor (CSTR) system. The influence of dilution rate and initial Hg 2+ concentration on continuous process was evaluated. Results indicated that the recombinant E. coli could effectively accumulate Hg 2+ from aqueous solution with Hg 2+ removal ratio up to about 90%, and propagate its cells at the same time in the continuous treatment system under suitable operational conditions. A kinetic model based on mass balance of Hg 2+ was proposed to simulate the continuous process. The modeling results were in good agreement with the experimental data

  17. Expression of bacterial virulence factors and cytokines during in vitro macrophage infection by enteroinvasive Escherichia coli and Shigella flexneri: a comparative study

    Directory of Open Access Journals (Sweden)

    Silvia Y Bando

    2010-09-01

    Full Text Available Enteroinvasive Escherichia coli (EIEC and Shigellaspp cause bacillary dysentery in humans by invading and multiplying within epithelial cells of the colonic mucosa. Although EIEC and Shigellashare many genetic and biochemical similarities, the illness caused by Shigellais more severe. Thus, genomic and structure-function molecular studies on the biological interactions of these invasive enterobacteria with eukaryotic cells have focused on Shigella rather than EIEC. Here we comparatively studied the interactions of EIEC and of Shigella flexneriwith cultured J774 macrophage-like cells. We evaluated several phenotypes: (i bacterial escape from macrophages after phagocytosis, (ii macrophage death induced by EIEC and S. flexneri, (iii macrophage cytokine expression in response to infection and (iv expression of plasmidial (pINV virulence genes. The results showed thatS. flexneri caused macrophage killing earlier and more intensely than EIEC. Both pathogens induced significant macrophage production of TNF, IL-1 and IL-10 after 7 h of infection. Transcription levels of the gene invasion plasmid antigen-C were lower in EIEC than in S. flexneri throughout the course of the infection; this could explain the diminished virulence of EIEC compared to S. flexneri.

  18. Acquisition of Carbapenem Resistance by Plasmid-Encoded-AmpC-Expressing Escherichia coli.

    Science.gov (United States)

    van Boxtel, Ria; Wattel, Agnes A; Arenas, Jesús; Goessens, Wil H F; Tommassen, Jan

    2017-01-01

    Although AmpC β-lactamases can barely degrade carbapenems, if at all, they can sequester them and prevent them from reaching their targets. Thus, carbapenem resistance in Escherichia coli and other Enterobacteriaceae can result from AmpC production and simultaneous reduction of antibiotic influx into the periplasm by mutations in the porin genes. Here we investigated the route and genetic mechanisms of acquisition of carbapenem resistance in a clinical E. coli isolate carrying bla CMY-2 on a plasmid by selecting for mutants that are resistant to increasing concentrations of meropenem. In the first step, the expression of OmpC, the only porin produced in the strain under laboratory conditions, was lost, leading to reduced susceptibility to meropenem. In the second step, the expression of the CMY-2 β-lactamase was upregulated, leading to resistance to meropenem. The loss of OmpC was due to the insertion of an IS1 element into the ompC gene or to frameshift mutations and premature stop codons in this gene. The bla CMY-2 gene was found to be located on an IncIγ plasmid, and overproduction of the CMY-2 enzyme resulted from an increased plasmid copy number due to a nucleotide substitution in the inc gene. The clinical relevance of these genetic mechanisms became evident from the analysis of previously isolated carbapenem-resistant clinical isolates, which appeared to carry similar mutations. Copyright © 2016 American Society for Microbiology.

  19. Phylogenetic Analysis Reveals Common Antimicrobial Resistant Campylobacter coli Population in Antimicrobial-Free (ABF) and Commercial Swine Systems

    Science.gov (United States)

    Quintana-Hayashi, Macarena P.; Thakur, Siddhartha

    2012-01-01

    The objective of this study was to compare the population biology of antimicrobial resistant (AR) Campylobacter coli isolated from swine reared in the conventional and antimicrobial-free (ABF) swine production systems at farm, slaughter and environment. A total of 200 C. coli isolates selected from fecal, environmental, and carcass samples of ABF (n = 100) and conventional (n = 100) swine production systems were typed by multilocus sequence typing (MLST). Sequence data from seven housekeeping genes was analyzed for the identification of allelic profiles, sequence types (STs) and clonal complex determination. Phylogenetic trees were generated to establish the relationships between the genotyped isolates. A total of 51 STs were detected including two novel alleles (glnA 424 and glyA 464) and 14 novel STs reported for the first time. The majority of the C. coli isolates belonged to ST-854 (ABF: 31, conventional: 17), and were grouped in clonal complex ST-828 (ABF: 68%, conventional: 66%). The mean genetic diversity (H) for the ABF (0.3963+/−0.0806) and conventional (0.4655+/−0.0714) systems were similar. The index of association () for the ABF ( = 0.1513) and conventional ( = 0.0991) C. coli populations were close to linkage equilibrium, indicative of a freely recombining population. Identical STs were detected between the pigs and their environment both at farm and slaughter. A minimum spanning tree revealed the close clustering of C. coli STs that originated from swine and carcass with those from the environment. In conclusion, our study reveals a genotypic diverse C. coli population that shares a common ancestry in the conventional and ABF swine production systems. This could potentially explain the high prevalence of antimicrobial resistant C. coli in the ABF system in the absence of antimicrobial selection pressure. PMID:22984540

  20. Improved crystallization of Escherichia coli ATP synthase catalytic complex (F1) by introducing a phosphomimetic mutation in subunit ∊

    International Nuclear Information System (INIS)

    Roy, Ankoor; Hutcheon, Marcus L.; Duncan, Thomas M.; Cingolani, Gino

    2012-01-01

    A phosphomimetic mutation in subunit ∊ dramatically increases reproducibility for crystallization of Escherichia coli ATP synthase catalytic complex (F 1 ) (subunit composition α 3 β 3 γ∊). Diffraction data were collected to ∼3.15 Å resolution using synchrotron radiation. The bacterial ATP synthase (F O F 1 ) of Escherichia coli has been the prominent model system for genetics, biochemical and more recently single-molecule studies on F-type ATP synthases. With 22 total polypeptide chains (total mass of ∼529 kDa), E. coli F O F 1 represents nature’s smallest rotary motor, composed of a membrane-embedded proton transporter (F O ) and a peripheral catalytic complex (F 1 ). The ATPase activity of isolated F 1 is fully expressed by the α 3 β 3 γ ‘core’, whereas single δ and ∊ subunits are required for structural and functional coupling of E. coli F 1 to F O . In contrast to mitochondrial F 1 -ATPases that have been determined to atomic resolution, the bacterial homologues have proven very difficult to crystallize. In this paper, we describe a biochemical strategy that led us to improve the crystallogenesis of the E. coli F 1 -ATPase catalytic core. Destabilizing the compact conformation of ∊’s C-terminal domain with a phosphomimetic mutation (∊S65D) dramatically increased crystallization success and reproducibility, yielding crystals of E. coli F 1 that diffract to ∼3.15 Å resolution

  1. Human immune responsiveness to Lolium perenne pollen allergen Lol p III (rye III) is associated with HLA-DR3 and DR5.

    Science.gov (United States)

    Ansari, A A; Freidhoff, L R; Meyers, D A; Bias, W B; Marsh, D G

    1989-05-01

    A well-characterized allergen of Lolium perenne (perennial rye grass) pollen, Lol p III, has been used as a model antigen to study the genetic control of the human immune response. Associations between HLA type and IgE or IgG antibody (Ab) responsiveness to Lol p III were studied in two groups of skin-test-positive Caucasoid adults (N = 135 and 67). We found by nonparametric and parametric analyses that immune responsiveness to Lol p III was significantly associated with HLA-DR3 and DR5. No association was found between any DQ type and immune responsiveness to Lol p III. Geometric mean IgE or IgG Ab levels to Lol p III were not different between B8+, DR3+ subjects and B8-, DR3+ subjects, showing that HLA-B8 had no influence on the association. Lol p III IgG Ab data obtained on subjects after grass antigen immunotherapy showed that 100% of DR3 subjects and 100% of DR5 subjects were Ab+. A comparison of all the available protein sequences of DRB gene products showed that the first hypervariable region of DR3 and DR5 (and DRw6), and no other region, contains the sequence Glu9-Tyr-Ser-Thr-Ser13. Our observations are consistent with the possibility that immune responsiveness to the allergen Lol p III is associated with this amino acid sequence in the first hypervariable region of the DR beta 1 polypeptide chain.

  2. Characterization of the E.coli proteome and its modifications during growth and ethanol stress

    Directory of Open Access Journals (Sweden)

    Boumediene eSoufi

    2015-02-01

    Full Text Available We set out to provide a resource to the microbiology community especially with respect to systems biology based endeavors. To this end, we generated a comprehensive dataset monitoring the changes in protein expression, copy number, and post translational modifications in a systematic fashion during growth and ethanol stress in E.coli. We utilized high-resolution mass spectrometry combined with the Super-SILAC approach. In a single experiment, we have identified over 2,300 proteins, which represent approximately 88% of the estimated expressed proteome of E. coli and estimated protein copy numbers using the Intensity Based Absolute Quantitation (IBAQ. The dynamic range of protein expression spanned up to six orders of magnitude, with the highest protein copy per cell estimated at approximately 300,000. We focused on the proteome dynamics involved during stationary phase growth. A global up-regulation of proteins related to stress response was detected in later stages of growth. We observed the down-regulation of the methyl directed mismatch repair system containing MutS and MutL of E. coli growing in long term growth cultures, confirming that higher incidence of mutations presents an important mechanism in the increase in genetic diversity and stationary phase survival in E.coli. During ethanol stress, known markers such as alcohol dehydrogenase and aldehyde dehydrogenase were induced, further validating the dataset. Finally, we performed unbiased protein modification detection and revealed changes of many known and unknown protein modifications in both experimental conditions.

  3. Metabolic engineering of Escherichia coli for the production of riboflavin

    Science.gov (United States)

    2014-01-01

    Background Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification of central metabolism, riboflavin biosynthesis pathway and optimization of the fermentation conditions. Results The basic producer RF01S, in which the riboflavin biosynthesis genes ribABDEC from E. coli were overexpressed under the control of the inducible trc promoter, could accumulate 229.1 mg/L of riboflavin. Further engineering was performed by examining the impact of expression of zwf (encodes glucose 6-phosphate dehydrogenase) and gnd (encodes 6-phosphogluconate dehydrogenase) from Corynebacterium glutamicum and pgl (encodes 6-phosphogluconolactonase) from E. coli on riboflavin production. Deleting pgi (encodes glucose-6-phosphate isomerase) and genes of Entner-Doudoroff (ED) pathway successfully redirected the carbon flux into the oxidative pentose phosphate pathway, and overexpressing the acs (encodes acetyl-CoA synthetase) reduced the acetate accumulation. These modifications increased riboflavin production to 585.2 mg/L. By further modulating the expression of ribF (encodes riboflavin kinase) for reducing the conversion of riboflavin to FMN in RF05S, the final engineering strain RF05S-M40 could produce 1036.1 mg/L riboflavin in LB medium at 37°C. After optimizing the fermentation conditions, strain RF05S-M40 produced 2702.8 mg/L riboflavin in the optimized semi-defined medium, which was a value nearly 12-fold higher than that of RF01S, with a yield of 137.5 mg riboflavin/g glucose. Conclusions The engineered strain RF05S-M40 has the highest yield among all

  4. Metabolic engineering of Escherichia coli for the production of riboflavin.

    Science.gov (United States)

    Lin, Zhenquan; Xu, Zhibo; Li, Yifan; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2014-07-16

    Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification of central metabolism, riboflavin biosynthesis pathway and optimization of the fermentation conditions. The basic producer RF01S, in which the riboflavin biosynthesis genes ribABDEC from E. coli were overexpressed under the control of the inducible trc promoter, could accumulate 229.1 mg/L of riboflavin. Further engineering was performed by examining the impact of expression of zwf (encodes glucose 6-phosphate dehydrogenase) and gnd (encodes 6-phosphogluconate dehydrogenase) from Corynebacterium glutamicum and pgl (encodes 6-phosphogluconolactonase) from E. coli on riboflavin production. Deleting pgi (encodes glucose-6-phosphate isomerase) and genes of Entner-Doudoroff (ED) pathway successfully redirected the carbon flux into the oxidative pentose phosphate pathway, and overexpressing the acs (encodes acetyl-CoA synthetase) reduced the acetate accumulation. These modifications increased riboflavin production to 585.2 mg/L. By further modulating the expression of ribF (encodes riboflavin kinase) for reducing the conversion of riboflavin to FMN in RF05S, the final engineering strain RF05S-M40 could produce 1036.1 mg/L riboflavin in LB medium at 37°C. After optimizing the fermentation conditions, strain RF05S-M40 produced 2702.8 mg/L riboflavin in the optimized semi-defined medium, which was a value nearly 12-fold higher than that of RF01S, with a yield of 137.5 mg riboflavin/g glucose. The engineered strain RF05S-M40 has the highest yield among all reported riboflavin production

  5. The Mobilome; A Major Contributor to Escherichia coli stx2-Positive O26:H11 Strains Intra-Serotype Diversity

    Directory of Open Access Journals (Sweden)

    Sabine Delannoy

    2017-09-01

    Full Text Available Shiga toxin-producing Escherichia coli of serotype O26:H11/H- constitute a diverse group of strains and several clones with distinct genetic characteristics have been identified and characterized. Whole genome sequencing was performed using Illumina and PacBio technologies on eight stx2-positive O26:H11 strains circulating in France. Comparative analyses of the whole genome of the stx2-positive O26:H11 strains indicate that several clones of EHEC O26:H11 are co-circulating in France. Phylogenetic analysis of the French strains together with stx2-positive and stx-negative E. coli O26:H11 genomes obtained from Genbank indicates the existence of four clonal complexes (SNP-CCs separated in two distinct lineages, one of which comprises the “new French clone” (SNP-CC1 that appears genetically closely related to stx-negative attaching and effacing E. coli (AEEC strains. Interestingly, the whole genome SNP (wgSNP phylogeny is summarized in the cas gene phylogeny, and a simple qPCR assay targeting the CRISPR array specific to SNP-CC1 (SP_O26-E can distinguish between the two main lineages. The PacBio sequencing allowed a detailed analysis of the mobile genetic elements (MGEs of the strains. Numerous MGEs were identified in each strain, including a large number of prophages and up to four large plasmids, representing overall 8.7–19.8% of the total genome size. Analysis of the prophage pool of the strains shows a considerable diversity with a complex history of recombination. Each clonal complex (SNP-CC is characterized by a unique set of plasmids and phages, including stx-prophages, suggesting evolution through separate acquisition events. Overall, the MGEs appear to play a major role in O26:H11 intra-serotype clonal diversification.

  6. The Mobilome; A Major Contributor to Escherichia coli stx2-Positive O26:H11 Strains Intra-Serotype Diversity.

    Science.gov (United States)

    Delannoy, Sabine; Mariani-Kurkdjian, Patricia; Webb, Hattie E; Bonacorsi, Stephane; Fach, Patrick

    2017-01-01

    Shiga toxin-producing Escherichia coli of serotype O26:H11/H- constitute a diverse group of strains and several clones with distinct genetic characteristics have been identified and characterized. Whole genome sequencing was performed using Illumina and PacBio technologies on eight stx2 -positive O26:H11 strains circulating in France. Comparative analyses of the whole genome of the stx2 -positive O26:H11 strains indicate that several clones of EHEC O26:H11 are co-circulating in France. Phylogenetic analysis of the French strains together with stx2 -positive and stx -negative E. coli O26:H11 genomes obtained from Genbank indicates the existence of four clonal complexes (SNP-CCs) separated in two distinct lineages, one of which comprises the "new French clone" (SNP-CC1) that appears genetically closely related to stx -negative attaching and effacing E. coli (AEEC) strains. Interestingly, the whole genome SNP (wgSNP) phylogeny is summarized in the cas gene phylogeny, and a simple qPCR assay targeting the CRISPR array specific to SNP-CC1 (SP_O26-E) can distinguish between the two main lineages. The PacBio sequencing allowed a detailed analysis of the mobile genetic elements (MGEs) of the strains. Numerous MGEs were identified in each strain, including a large number of prophages and up to four large plasmids, representing overall 8.7-19.8% of the total genome size. Analysis of the prophage pool of the strains shows a considerable diversity with a complex history of recombination. Each clonal complex (SNP-CC) is characterized by a unique set of plasmids and phages, including stx -prophages, suggesting evolution through separate acquisition events. Overall, the MGEs appear to play a major role in O26:H11 intra-serotype clonal diversification.

  7. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Wu, Hui; San, Ka-Yiu

    2014-11-01

    Free fatty acids (FFAs) can be used as precursors for the production of biofuels or chemicals. Different composition of FFAs will be useful for further modification of the biofuel/biochemical quality. Microbial biosynthesis of even chain FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into E. coli. In this study, odd straight medium chain FFAs production was investigated by using metabolic engineered E. coli carrying acyl-ACP thioesterase (TE, Ricinus communis), propionyl-CoA synthase (Salmonella enterica), and β-ketoacyl-acyl carrier protein synthase III (four different sources) with supplement of extracellular propionate. By using these metabolically engineered E. coli, significant quantity of C13 and C15 odd straight-chain FFAs could be produced from glucose and propionate. The highest concentration of total odd straight chain FFAs attained was 1205 mg/L by the strain HWK201 (pXZ18, pBHE2), and 85% of the odd straight chain FFAs was C15. However, the highest percentage of odd straight chain FFAs was achieved by the strain HWK201 (pXZ18, pBHE3) of 83.2% at 48 h. This strategy was also applied successfully in strains carrying different TE, such as the medium length acyl-ACP thioesterase gene from Umbellularia californica. C11 and C13 became the major odd straight-chain FFAs. © 2014 Wiley Periodicals, Inc.

  8. Occurrence, genotyping, shiga toxin genes and associated risk factors of E. coli isolated from dairy farms, handlers and milk consumers.

    Science.gov (United States)

    Awadallah, M A; Ahmed, H A; Merwad, A M; Selim, M A

    2016-11-01

    The objectives of the current study were to determine the occurrence and genotypes of E. coli in dairy farms, workers and milk consumers and to evaluate risk factors associated with contamination of milk in dairy farms. Molecular characterization of shiga toxin associated genes and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) finger printing of E. coli from different sources were also studied. Paired milk samples and rectal swabs from 125 dairy cows, rectal swabs from 82 calves and hand swabs from 45 dairy workers from five dairy farms were collected. In addition, 100 stool samples from 70 diarrheic and 30 healthy humans were collected and examined for the presence of E. coli. E. coli was isolated from milk (22.4%), dairy cattle feces (33.6%), calf feces (35.4%), dairy worker hand swabs (11.1%) and stools of milk consumers (2%, from diarrheic patients only). Only stx1 was identified in seven of 12 E. coli O125 isolated from different sources. High genetic diversity was determined (Simpson's index of diversity, D = 1) and E. coli O125 isolates were classified into 12 distinct profiles, E1-E12. The dendrogram analysis showed that two main clusters were generated. Mastitis in dairy cows was considered a risk factor associated with contamination of the produced milk with E. coli. The isolation of E. coli from rectal swabs of dairy cows and calves poses a zoonotic risk through consumption of unpasteurized contaminated dairy milk. Educational awareness should be developed to address risks related to consumption of raw milk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Identificación de péptidos bloqueantes del sistema de secreción de tipo III y de la adherencia a epitelios de Escherichia coli enterohemorrágico (EHEC) y Escherichia coli enteropatógeno (EPEC)

    OpenAIRE

    Larzábal, Mariano

    2010-01-01

    Escherichia coli Enteropatógeno (EPEC) y Escherichia coli Enterohemorrágico (EHEC) se encuentran asociadas con diarrea en seres humanos. EPEC es una de las principales causas de diarrea infantil en países desarrollados, mientras que EHEC es responsable de enfermedades cuyo espectro clínico incluye diarrea, colitis hemorrágica y síndrome urémico hemolítico (SUH), que es la principal causa de insuficiencia renal aguda de niños menores de 5 años en la Argentina. La expresión de la toxina Shiga (...

  10. Dissemination and genetic support of broad-spectrum beta-lactam-resistant Escherichia coli strain isolated from two Tunisian hospitals during 2004-2012.

    Science.gov (United States)

    Ayari, Khaoula; Bourouis, Amel; Chihi, Hela; Mahrouki, Sihem; Naas, Thierry; Belhadj, Omrane

    2017-06-01

    The dissemination of extended-spectrum β-lactamase (ESBL)-producing bacteria presented a great concern worldwide. Gram-negative organisms such as Escherichia coli and Klebsiella pneumoniae are the most frequently isolated pathogens responsible for nosocomial infections. The aim of this study was to investigate and to follow the emergence of resistance and the characterization of Extended-Spectrum Beta-Lactamases (ESBL) among broad-spectrum beta-lactam- Escherichia coli clinical isolates recovered from the military hospital and Habib Thameur hospital in Tunisia. A total of 113 E.coli isolates obtained during the period 2004 through 2012 showed a significant degree of multi-resistance. Among these strains, the double-disk synergy test confirmed the ESBL phenotype in 46 isolates. These included 32(70%) strains from Hospital A and 14(30%) from Hospital B. The ESBL was identified as CTX-M-15. The ESBL resistance was transferred by a 60 kb plasmid CTXM-15-producing isolates were unrelated according to the PFGE analysis and characterization of the regions surrounding the blaCTX-M-15 showed the ISEcp1 elements located in the upstream region of the bla gene and 20 of them truncated by IS26. ESBL producing E. coli strains are a serious threat in the community in Tunisia and we should take into consideration any possible spread of such epidemiological resistance.

  11. Complexation of trivalent actinides and lanthanides with hydrophilic N-donor ligands for Am(III)/Cm(III) and An(III)/Ln(III) separation; Komplexierung von trivalenten Actiniden und Lanthaniden mit hydrophilen N-Donorliganden zur Am(III)/Cm(III)- bzw. An(III)/Ln(III)-Trennung

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Christoph

    2017-07-24

    The implementation of actinide recycling processes is considered in several countries, aiming at the reduction of long-term radiotoxicity and heat load of used nuclear fuel. This requires the separation of the actinides from the fission and corrosion products. The separation of the trivalent actinides (An(III)) Am(III) and Cm(III), however, is complicated by the presence of the chemically similar fission lanthanides (Ln(III)). Hydrophilic N-donor ligands are employed as An(III) or Am(III) selective complexing agents in solvent extraction to strip An(III) or Am(III) from an organic phase loaded with An(III) and Ln(III). Though they exhibit excellent selectivity, the complexation chemistry of these ligands and the complexes formed during solvent extraction are not sufficiently characterized. In the present thesis the complexation of An(III) and Ln(III) with hydrophilic N-donor ligands is studied by time resolved laser fluorescence spectroscopy (TRLFS), UV/Vis, vibronic sideband spectroscopy and solvent extraction. TRLFS studies on the complexation of Cm(III) and Eu(III) with the Am(III) selective complexing agent SO{sub 3}-Ph-BTBP (tetrasodium 3,3{sup '},3'',3{sup '''}-([2,2{sup '}-bipyridine]-6,6{sup '}-diylbis(1,2,4-triazine-3,5,6-triyl)) tetrabenzenesulfonate) revealed the formation of [M(SO{sub 3}-Ph-BTBP){sub n}]{sup (4n-3)-} complexes (M = Cm(III), Eu(III); n = 1, 2). The conditional stability constants were determined in different media yielding two orders of magnitude larger β{sub 2}-values for the Cm(III) complexes, independently from the applied medium. A strong impact of ionic strength on the stability and stoichiometry of the formed complexes was identified, resulting from the stabilization of the pentaanionic [M(SO{sub 3}-Ph-BTBP){sub 2}]{sup 5-} complex with increasing ionic strength. Thermodynamic studies of Cm(III)-SO{sub 3}-Ph-BTBP complexation showed that the proton concentration of the applied medium impacts

  12. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    Science.gov (United States)

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  13. Structural and Biochemical Characterization of SrcA, a Multi-cargo Type III Secretion Chaperone in Salmonella Required for Pathogenic Association with a Host

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C.; Zhang, K; Andres, S; Fnag, Y; Kaniuk, N; Hannemann, M; Brumell, J; Foster, L; Junop, M; Coombes, B

    2010-01-01

    Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 {angstrom} revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.

  14. Structural and biochemical characterization of SrcA, a multi-cargo type III secretion chaperone in Salmonella required for pathogenic association with a host.

    Directory of Open Access Journals (Sweden)

    Colin A Cooper

    2010-02-01

    Full Text Available Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2 is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 A revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2 and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.

  15. High diversity of plasmids harbouring blaCMY-2 among clinical Escherichia coli isolates from humans and companion animals in the upper Midwestern USA

    DEFF Research Database (Denmark)

    Bortolaia, Valeria; Hansen, Katrine Hartung; Nielsen, Christine

    2014-01-01

    To determine the population structure and genetic relatedness of plasmids encoding CMY-2 β-lactamase in clinical Escherichia coli from humans and companion animals within a defined geographical area....

  16. Induction of genetic recombination in the lambda bacteriophage by ultraviolet radiation of the Escherichia Coli cells

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1986-12-01

    In this work there are reported the results that show that although the stimulation of the recombination of the Lambda bacteriophage, by UV irradiation of the cells of Escherichia Coli, it looks to be the result of the high expression of the functions of the SOS system, doesn't keep some relationship with the high concentration of protein reached RecA. (Author)

  17. Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic E. coli.

    Science.gov (United States)

    Hazen, Tracy H; Michalski, Jane; Luo, Qingwei; Shetty, Amol C; Daugherty, Sean C; Fleckenstein, James M; Rasko, David A

    2017-06-14

    Escherichia coli that are capable of causing human disease are often classified into pathogenic variants (pathovars) based on their virulence gene content. However, disease-associated hybrid E. coli, containing unique combinations of multiple canonical virulence factors have also been described. Such was the case of the E. coli O104:H4 outbreak in 2011, which caused significant morbidity and mortality. Among the pathovars of diarrheagenic E. coli that cause significant human disease are the enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC). In the current study we use comparative genomics, transcriptomics, and functional studies to characterize isolates that contain virulence factors of both EPEC and ETEC. Based on phylogenomic analysis, these hybrid isolates are more genomically-related to EPEC, but appear to have acquired ETEC virulence genes. Global transcriptional analysis using RNA sequencing, demonstrated that the EPEC and ETEC virulence genes of these hybrid isolates were differentially-expressed under virulence-inducing laboratory conditions, similar to reference isolates. Immunoblot assays further verified that the virulence gene products were produced and that the T3SS effector EspB of EPEC, and heat-labile toxin of ETEC were secreted. These findings document the existence and virulence potential of an E. coli pathovar hybrid that blurs the distinction between E. coli pathovars.

  18. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Thioredoxin from Escherichia coli

    International Nuclear Information System (INIS)

    Holmgren, A.; Ohlsson, I.; Grankvist, M.L.

    1978-01-01

    A competition radioimmunoassay for Escherichia coli thioredoxin using 125 I-labeled thioredoxin-S 2 and a double antibody technique was developed. The method permits determination of picomole amounts of thioredoxin in crude cell extracts and was used to study the localization of thioredoxin cell fractions. E. coli B was calculated to have approximately 10,000 copies of thioredoxin per cell mainly located in the soluble fraction after separation of the membrane and soluble fractions by gentle lysis and centrifugation. E. coli B tsnC mutants which are defective in the replication of phage T7 DNA in vivo and in vitro were examined for their content of thioredoxin. E. coli B tsnC 7004 contained no detectable level of thioredoxin in cell-free extracts examined under a variety of conditions. The results strongly suggest that tsnC 7004 is a nonsense or deletion mutant. Two other E. coli tsnC mutants, 7007 and 7008, contained detectable levels of thioredoxin in crude extracts as measured by thioredoxin reductase and gave similar immunoprecipitation reactions as the parent strain B/1. By radioimmunoassay incompletely cross-reacting material was present in both strains. These results show that tsnC 7007 and 7008 belong to a type of thioredoxin mutants with missence mutations in the thioredoxin gene affecting the function of thioredoxin as subunit in phage T7 DNA polymerase

  20. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates.

    Science.gov (United States)

    Paixão, A C; Ferreira, A C; Fontes, M; Themudo, P; Albuquerque, T; Soares, M C; Fevereiro, M; Martins, L; Corrêa de Sá, M I

    2016-07-01

    Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E.coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E.coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival. © 2016 Poultry Science Association Inc.

  1. Complexes of 4-chlorophenoxyacetates of Nd(III), Gd(III) and Ho(III)

    International Nuclear Information System (INIS)

    Ferenc, W.; Bernat, M; Gluchowska, H.W.; Sarzynski, J.

    2010-01-01

    The complexes of 4-chlorophenoxyacetates of Nd(III), Gd(III) and Ho(III) have been synthesized as polycrystalline hydrated solids, and characterized by elemental analysis, spectroscopy, magnetic studies and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have the following colours: violet for Nd(III), white for Gd(III) and cream for Ho(III) compounds. The carboxylate groups bind as bidentate chelating (Ho) or bridging ligands (Nd, Gd). On heating to 1173K in air the complexes decompose in several steps. At first, they dehydrate in one step to form anhydrous salts, that next decompose to the oxides of respective metals. The gaseous products of their thermal decomposition in nitrogen were also determined and the magnetic susceptibilities were measured over the temperature range of 76-303K and the magnetic moments were calculated. The results show that 4-chlorophenoxyacetates of Nd(III), Gd(III) and Ho(III) are high-spin complexes with weak ligand fields. The solubility value in water at 293K for analysed 4-chlorophenoxyacetates is in the order of 10 -4 mol/dm 3 . (author)

  2. Genetic characterization of Shiga toxin-producing Escherichia coli O26:H11 strains isolated from animal, food, and clinical samples

    Science.gov (United States)

    Krüger, Alejandra; Lucchesi, Paula M. A.; Sanso, A. Mariel; Etcheverría, Analía I.; Bustamante, Ana V.; Burgán, Julia; Fernández, Luciana; Fernández, Daniel; Leotta, Gerardo; Friedrich, Alexander W.; Padola, Nora L.; Rossen, John W. A.

    2015-01-01

    The Shiga-toxin producing Escherichia coli (STEC) may cause serious illness in human. Here we analyze O26:H11 strains known to be among the most reported STEC strains causing human infections. Genetic characterization of strains isolated from animal, food, and clinical specimens in Argentina showed that most carried either stx1a or stx2a subtypes. Interestingly, stx2a-positive O26:H11 rarely isolated from cattle in other countries showed to be an important proportion of O26:H11 strains circulating in cattle and food in our region. Seventeen percent of the isolates harbored more than one gene associated with antimicrobial resistance. In addition to stx, all strains contained the virulence genes eae-β, tir, efa, iha, espB, cif, espA, espF, espJ, nleA, nleB, nleC, and iss; and all except one contained ehxA, espP, and cba genes. On the other hand, toxB and espI genes were exclusively observed in stx2-positive isolates, whereas katP was only found in stx1a-positive isolates. Our results show that O26:H11 STEC strains circulating in Argentina, including those isolated from humans, cattle, and meat products, present a high pathogenic potential, and evidence that cattle can be a reservoir of O26:H11 strains harboring stx2a. PMID:26539413

  3. Frameshift mutations in infectious cDNA clones of Citrus tristeza virus: a strategy to minimize the toxicity of viral sequences to Escherichia coli

    International Nuclear Information System (INIS)

    Satyanarayana, Tatineni; Gowda, Siddarame; Ayllon, Maria A.; Dawson, William O.

    2003-01-01

    The advent of reverse genetics revolutionized the study of positive-stranded RNA viruses that were amenable for cloning as cDNAs into high-copy-number plasmids of Escherichia coli. However, some viruses are inherently refractory to cloning in high-copy-number plasmids due to toxicity of viral sequences to E. coli. We report a strategy that is a compromise between infectivity of the RNA transcripts and toxicity to E. coli effected by introducing frameshift mutations into 'slippery sequences' near the viral 'toxicity sequences' in the viral cDNA. Citrus tristeza virus (CTV) has cDNA sequences that are toxic to E. coli. The original full-length infectious cDNA of CTV and a derivative replicon, CTV-ΔCla, cloned into pUC119, resulted in unusually limited E. coli growth. However, upon sequencing of these cDNAs, an additional uridinylate (U) was found in a stretch of U's between nts 3726 and 3731 that resulted in a change to a reading frame with a stop codon at nt 3734. Yet, in vitro produced RNA transcripts from these clones infected protoplasts, and the resulting progeny virus was repaired. Correction of the frameshift mutation in the CTV cDNA constructs resulted in increased infectivity of in vitro produced RNA transcripts, but also caused a substantial increase of toxicity to E. coli, now requiring 3 days to develop visible colonies. Frameshift mutations created in sequences not suspected to facilitate reading frame shifting and silent mutations introduced into oligo(U) regions resulted in complete loss of infectivity, suggesting that the oligo(U) region facilitated the repair of the frameshift mutation. Additional frameshift mutations introduced into other oligo(U) regions also resulted in transcripts with reduced infectivity similarly to the original clones with the +1 insertion. However, only the frameshift mutations introduced into oligo(U) regions that were near and before the toxicity region improved growth and stability in E. coli. These data demonstrate that

  4. The bacterial nanorecorder: engineering E. coli to function as a chemical recording device.

    Science.gov (United States)

    Bhomkar, Prasanna; Materi, Wayne; Wishart, David S

    2011-01-01

    Synthetic biology is an emerging branch of molecular biology that uses synthetic genetic constructs to create man-made cells or organisms that are capable of performing novel and/or useful applications. Using a synthetic chemically sensitive genetic toggle switch to activate appropriate fluorescent protein indicators (GFP, RFP) and a cell division inhibitor (minC), we have created a novel E. coli strain that can be used as a highly specific, yet simple and inexpensive chemical recording device. This biological "nanorecorder" can be used to determine both the type and the time at which a brief chemical exposure event has occurred. In particular, we show that the short-term exposure (15-30 min) of cells harboring this synthetic genetic circuit to small molecule signals (anhydrotetracycline or IPTG) triggered long-term and uniform cell elongation, with cell length being directly proportional to the time elapsed following a brief chemical exposure. This work demonstrates that facile modification of an existing genetic toggle switch can be exploited to generate a robust, biologically-based "nanorecorder" that could potentially be adapted to detect, respond and record a wide range of chemical stimuli that may vary over time and space.

  5. A Strong Impact of Genetic Background on Gut Microflora in Mice

    Directory of Open Access Journals (Sweden)

    R. Steven Esworthy

    2010-01-01

    Full Text Available Genetic background affects susceptibility to ileocolitis in mice deficient in two intracellular glutathione peroxidases, GPx1 and GPx2. The C57BL/6 (B6 GPx1/2 double-knockout (DKO mice have mild ileocolitis, and 129S1/Sv (129 DKO mice have severe inflammation. We used diet to modulate ileocolitis; a casein-based defined diet with AIN76A micronutrients (AIN attenuates inflammation compared to conventional LabDiets. Because luminal microbiota induce DKO ileocolitis, we assessed bacterial composition with automated ribosomal intergenic-spacer analysis (ARISA on cecal DNA. We found that mouse strain had the strongest impact on the composition of microbiota than diet and GPx genotypes. In comparing AIN and LabDiet, DKO mice were more resistant to change than the non-DKO or WT mice. However, supplementing yeast and inulin to AIN diet greatly altered microflora profiles in the DKO mice. From 129 DKO strictly, we found overgrowth of Escherichia coli. We conclude that genetic background predisposes mice to colonization of potentially pathogenic E. coli.

  6. Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli.

    Science.gov (United States)

    Kato , J; Katayama, T

    2001-08-01

    The bacterial DnaA protein binds to the chromosomal origin of replication to trigger a series of initiation reactions, which leads to the loading of DNA polymerase III. In Escherichia coli, once this polymerase initiates DNA synthesis, ATP bound to DnaA is efficiently hydrolyzed to yield the ADP-bound inactivated form. This negative regulation of DnaA, which occurs through interaction with the beta-subunit sliding clamp configuration of the polymerase, functions in the temporal blocking of re-initiation. Here we show that the novel DnaA-related protein, Hda, from E.coli is essential for this regulatory inactivation of DnaA in vitro and in vivo. Our results indicate that the hda gene is required to prevent over-initiation of chromosomal replication and for cell viability. Hda belongs to the chaperone-like ATPase family, AAA(+), as do DnaA and certain eukaryotic proteins essential for the initiation of DNA replication. We propose that the once-per-cell-cycle rule of replication depends on the timely interaction of AAA(+) proteins that comprise the apparatus regulating the activity of the initiator of replication.

  7. Hemolytic Porcine Intestinal Escherichia coli without Virulence-Associated Genes Typical of Intestinal Pathogenic E. coli ▿ †

    Science.gov (United States)

    Schierack, Peter; Weinreich, Joerg; Ewers, Christa; Tachu, Babila; Nicholson, Bryon; Barth, Stefanie

    2011-01-01

    Testing 1,666 fecal or intestinal samples from healthy and diarrheic pigs, we obtained hemolytic Escherichia coli isolates from 593 samples. Focusing on hemolytic E. coli isolates without virulence-associated genes (VAGs) typical for enteropathogens, we found that such isolates carried a broad variety of VAGs typical for extraintestinal pathogenic E. coli. PMID:21965399

  8. Genetic virulence profile of enteroaggregative Escherichia coli strains isolated from Danish children with either acute or persistent diarrhea

    DEFF Research Database (Denmark)

    Jensen, Betina Hebbelstrup; Poulsen, Anja; Rasmussen, Stig Hebbelstrup Rye

    2017-01-01

    Enteroaggregative Escherichia coli (EAEC) is frequently found in diarrheal stools worldwide. It has been associated with persistent diarrhea, weight loss, and failure to thrive in children living in developing countries. A number of important EAEC virulence genes are identified; however...

  9. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7.

    Science.gov (United States)

    Pandey, Ashish; Gurbuz, Yasar; Ozguz, Volkan; Niazi, Javed H; Qureshi, Anjum

    2017-05-15

    E. coli O157:H7 is an enterohemorrhagic bacteria responsible for serious foodborne outbreaks that causes diarrhoea, fever and vomiting in humans. Recent foodborne E. coli outbreaks has left a serious concern to public health. Therefore, there is an increasing demand for a simple, rapid and sensitive method for pathogen detection in contaminated foods. In this study, we developed a label-free electrical biosensor interfaced with graphene for sensitive detection of pathogenic bacteria. This biosensor was fabricated by interfacing graphene with interdigitated microelectrodes of capacitors that were biofunctionalized with E. coli O157:H7 specific antibodies for sensitive pathogenic bacteria detection. Here, graphene nanostructures on the sensor surface provided superior chemical properties such as high carrier mobility and biocompatibility with antibodies and bacteria. The sensors transduced the signal based on changes in dielectric properties (capacitance) through (i) polarization of captured cell-surface charges, (ii) cells' internal bioactivity, (iii) cell-wall's electronegativity or dipole moment and their relaxation and (iv) charge carrier mobility of graphene that modulated the electrical properties once the pathogenic E. coli O157:H7 captured on the sensor surface. Sensitive capacitance changes thus observed with graphene based capacitors were specific to E. coli O157:H7 strain with a sensitivity as low as 10-100 cells/ml. The proposed graphene based electrical biosensor provided advantages of speed, sensitivity, specificity and in-situ bacterial detection with no chemical mediators, represents a versatile approach for detection of a wide variety of other pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synthesis, Structural and Antibacterial Studies of New Dithiocarbamate Complexes of Sb (III) And Bi (III)

    International Nuclear Information System (INIS)

    Nur Amirah Jamaluddin; Ibrahim Baba; Nazlina Ibrahim

    2014-01-01

    Six new dithiocarbamate complexes from three different amines, for example N-ethyl ethanol-, N-butylethyl- and N-benzylmethylamine were successfully prepared using in situ method. All complexes were characterized by elemental analysis, IR, UV-Vis, 13 C and 1 H NMR. Elemental analysis data (C, H, N and S) showed an agreement with the general formula of MCl(S 2 CNR ' R '' ) 2 , (M = Sb (III), Bi (III); R ' = ethyl, butyl and benzyl; R '' = ethanol, ethyl and methyl). The complexes had been characterized by infrared spectroscopy that showed a thioureido bands, v(C-N) in the region of 1427 - 1490 cm -1 followed by v(C-S) bands that can be seen in the region of 935 - 1060 cm -1 and v(M-S) bands existed in the region of 350 - 392 cm -1 . Maximum wavelength absorption for ultraviolet-visible spectroscopy for N-C-S group was at 254 nm which indicates π → π * transition. Data from 13 C NMR showed a signal in the region of 198.39 - 199.44 ppm that corresponded to the NCS 2 group. The crystal structure of bis(N,N ' utylethyldithiocarbamato)chloride antimony (III), SbCl (S 2 CN(C 4 H 9 )(C 2 H 5 )) 2 demonstrated a five-coordination geometry, triclinic system, space group P1 with a = 10.0141(8) Armstrong, b = 10.1394(7) Am strong, c = 11.8665(9) Armstrong, α = 67.960(2) degree, β = 87.616(2) degree and γ = 80.172(2) degree. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests were done using five dithiocarbamate complexes which are Bi Cl[S 2 CN(C 2 H 5 )(C 2 H 4 OH)) 2 , SbCl[S 2 CN(C 2 H 5 )(C 2 H 4 OH)) 2 , Bi Cl(S 2 CN(C 4 H 9 )(C 2 H 5 )) 2 , SbCl(S 2 CN(C 4 H 9 )(C 2 H 5 )) 2 , Bi Cl(S 2 CN(C 7 H 7 )(CH 3 )) 2 towards S. aureus, S. epidermidis, E. aerogenes and E. coli. It was found that all four complexes were active against S. aureus except SbCl(S 2 CN(C 2 H 5 )(C 2 H 4 OH)) 2 while Bi Cl(S 2 CN(C 7 H 7 )(CH 3 )) 2 and Bi Cl(S 2 CN(CH 3 )(C 6 H 11 )) 2 complexes were active against S. epidermidis with MIC value of 5.0 mg/ m

  11. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from cultured...

  12. Usher syndrome type III can mimic other types of Usher syndrome.

    NARCIS (Netherlands)

    Pennings, R.J.E.; Fields, R.R.; Huygen, P.L.M.; Deutman, A.F.; Kimberling, W.J.; Cremers, C.W.R.J.

    2003-01-01

    Clinical and genetic characteristics are presented of 2 patients from a Dutch Usher syndrome type III family who have a new homozygous USH3 gene mutation: 149-152delCAGG + insTGTCCAAT. One individual (IV:1) is profoundly hearing impaired and has normal vestibular function and retinitis punctata

  13. A yigP mutant strain is a small colony variant of E. coli and shows pleiotropic antibiotic resistance.

    Science.gov (United States)

    Xia, Hui; Tang, Qiongwei; Song, Jie; Ye, Jiang; Wu, Haizhen; Zhang, Huizhan

    2017-12-01

    Small colony variants (SCVs) are a commonly observed subpopulation of bacteria that have a small colony size and distinctive biochemical characteristics. SCVs are more resistant than the wild type to some antibiotics and usually cause persistent infections in the clinic. SCV studies have been very active during the past 2 decades, especially Staphylococcus aureus SCVs. However, fewer studies on Escherichia coli SCVs exist, so we studied an E. coli SCV during an experiment involving the deletion of the yigP locus. PCR and DNA sequencing revealed that the SCV was attributable to a defect in the yigP function. Furthermore, we investigated the antibiotic resistance profile of the E. coli SCV and it showed increased erythromycin, kanamycin, and d-cycloserine resistance, but collateral sensitivity to ampicillin, polymyxin, chloramphenicol, tetracycline, rifampin, and nalidixic acid. We tried to determine the association between yigP and the pleiotropic antibiotic resistance of the SCV by analyzing biofilm formation, cellular morphology, and coenzyme Q (Q 8 ) production. Our results indicated that impaired Q 8 biosynthesis was the primary factor that contributed to the increased resistance and collateral sensitivity of the SCV. This study offers a novel genetic basis for E. coli SCVs and an insight into the development of alternative antimicrobial strategies for clinical therapy.

  14. Effects of UV radiation on genetic recombination

    International Nuclear Information System (INIS)

    Vlahovic, K.; Zahradka, D.; Petranovic, M.; Petranovic, D.

    1996-01-01

    We have used the model consisting of Escherichia coli cells and l phage to study the effects of UV radiation on genetic recombination. We found two radiation induced processes that reduce or inhibit genetic recombination. One such process leads to the inability of prophage to excise itself from the irradiated bacterial chromosome by the site-specific recombination. The other process was shown to inhibit a type of general recombination by which the prophage transfers one of its genetic markers to the infecting homologous phage. Loss of the prophage ability to take part in both site-specific and general recombination was shown to develop in recB + but not in recB cells. From this we infer that the loss of prophage recombinogenicity in irradiated cells is a consequence of one process in which RecBCD enzyme (the product of recB, recC and recD genes) plays an essential role. (author)

  15. Formation constants of Sm(III), Dy(III), Gd(III), Pr(III) and Nd(III) complexes of tridentate schiff base, 2-[(1H-benzimidazol-2-yl-methylene) amino] phenol

    International Nuclear Information System (INIS)

    Omprakash, K.L.; Chandra Pal, A.V.; Reddy, M.L.N.

    1982-01-01

    A new tridentate schiff base, 2- (1H-benzimidazol-2-yl-methylene)amino phenol derived from benzimididazole-2-carbo-xaldehyde and 2-aminophenol has been synthesised and characterised by spectral and analytical data. Proton-ligand formation constants of the schiff base and metal-ligand formation constants of its complexes with Sm(III), Dy(III), Gd(III), Nd(III) and Pr(III) have been determined potentiometrically in 50% (v/v) aqueous dioxane at an ionic strength of 0.1M (NaClO 4 ) and at 25deg C using the Irving-Rossotti titration technique. The order of stability constants (logβ 2 ) is found to be Sm(III)>Dy(III)>Gd(III)>Pr(III)>Nd(III). (author)

  16. Formation constants of Sm(III), Dy(III), Gd(III), Pr(III) and Nd(III) complexes of tridentate schiff base, 2-((1H-benzimidazol-2-yl-methylene) amino) phenol

    Energy Technology Data Exchange (ETDEWEB)

    Omprakash, K L; Chandra Pal, A V; Reddy, M L.N. [Osmania Univ., Hyderabad (India). Dept. of Chemistry

    1982-03-01

    A new tridentate schiff base, 2- (1H-benzimidazol-2-yl-methylene)amino phenol derived from benzimididazole-2-carbo-xaldehyde and 2-aminophenol has been synthesised and characterised by spectral and analytical data. Proton-ligand formation constants of the schiff base and metal-ligand formation constants of its complexes with Sm(III), Dy(III), Gd(III), Nd(III) and Pr(III) have been determined potentiometrically in 50% (v/v) aqueous dioxane at an ionic strength of 0.1M (NaClO/sub 4/) and at 25deg C using the Irving-Rossotti titration technique. The order of stability constants (log..beta../sub 2/) is found to be Sm(III)>Dy(III)>Gd(III)>Pr(III)>Nd(III).

  17. Asymptomatic bacteriuria Escherichia coli strains

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Nielsen, E.M.; Klemm, Per

    2006-01-01

    Urinary tract infections (UTIs) affect millions of people each year. Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. Persons affected by ABU may carry a particular E. coli strain for extended periods of time without any symptoms. In contrast...... to uropathogenic E. coli (UPEC) that cause symptomatic UTI, very little is known about the mechanisms by which these strains colonize the urinary tract. Here, we have investigated the growth characteristics in human urine as well as adhesin repertoire of nine ABU strains; the ability of ABU strains to compete...

  18. Stage III & IV colon and rectal cancers share a similar genetic profile: a review of the Oregon Colorectal Cancer Registry.

    Science.gov (United States)

    Gawlick, Ute; Lu, Kim C; Douthit, Miriam A; Diggs, Brian S; Schuff, Kathryn G; Herzig, Daniel O; Tsikitis, Vassiliki L

    2013-05-01

    Determining the molecular profile of colon and rectal cancers offers the possibility of personalized cancer treatment. The purpose of this study was to determine whether known genetic mutations associated with colorectal carcinogenesis differ between colon and rectal cancers and whether they are associated with survival. The Oregon Colorectal Cancer Registry is a prospectively maintained, institutional review board-approved tissue repository with associated demographic and clinical information. The registry was queried for any patient with molecular analysis paired with clinical data. Patient demographics, tumor characteristics, microsatellite instability status, and mutational analysis for p53, AKT, BRAF, KRAS, MET, NRAS, and PIK3CA were analyzed. Categorical variables were compared using chi-square tests. Continuous variables between groups were analyzed using Mann-Whitney U tests. Kaplan-Meier analysis was used for survival studies. Comparisons of survival were made using log-rank tests. The registry included 370 patients: 69% with colon cancer and 31% with rectal cancer. Eighty percent of colon cancers and 68% of rectal cancers were stages III and IV. Mutational analysis found no significant differences in detected mutations between colon and rectal cancers, except that there were significantly more BRAF mutations in colon cancers compared with rectal cancers (10% vs 0%, P colon versus rectal cancers when stratified by the presence of KRAS, PIK3CA, and BRAF mutations. Stage III and IV colon and rectal cancers share similar molecular profiles, except that there were significantly more BRAF mutations in colon cancers compared with rectal cancers. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Correlation between apramycin and gentamicin use in pigs and an increasing reservoir of gentamicin-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Vibeke Frøkjær; Jakobsen, Lotte; Emborg, Hanne-Dorthe

    2006-01-01

    Objectives: Resistance towards the veterinary drug apramycin can be caused by the aac(3)-IV gene, which also confers resistance towards the important human antibiotic gentamicin. The objectives of this study were to investigate the temporal occurrence and the genetic background of apramycin...... and gentamicin resistance in Escherichia coli strains from pork, healthy pigs and diagnostic submissions from pigs and to investigate potential relationships to the use of apramycin and gentamicin at farm and national levels. Methods: Data on Danish E. coli isolates from healthy pigs (indicator bacteria......), diagnostic submissions from pigs (clinical isolates) and pork were obtained from the national surveillance of antimicrobial resistance and from routine diagnostic laboratories. Antimicrobial consumption data were obtained from the Danish Medicines Agency (1997-2000) and from the VetStat database (2001...

  20. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii.

    Science.gov (United States)

    Lindsey, Rebecca L; Garcia-Toledo, L; Fasulo, D; Gladney, L M; Strockbine, N

    2017-09-01

    Escherichia coli, Escherichia albertii, and Escherichia fergusonii are closely related bacteria that can cause illness in humans, such as bacteremia, urinary tract infections and diarrhea. Current identification strategies for these three species vary in complexity and typically rely on the use of multiple phenotypic and genetic tests. To facilitate their rapid identification, we developed a multiplex PCR assay targeting conserved, species-specific genes. We used the Daydreamer™ (Pattern Genomics, USA) software platform to concurrently analyze whole genome sequence assemblies (WGS) from 150 Enterobacteriaceae genomes (107 E. coli, 5 Shigella spp., 21 E. albertii, 12 E. fergusonii and 5 other species) and design primers for the following species-specific regions: a 212bp region of the cyclic di-GMP regulator gene (cdgR, AW869_22935 from genome K-12 MG1655, CP014225) for E. coli/Shigella; a 393bp region of the DNA-binding transcriptional activator of cysteine biosynthesis gene (EAKF1_ch4033 from genome KF1, CP007025) for E. albertii; and a 575bp region of the palmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase (EFER_0790 from genome ATCC 35469, CU928158) for E. fergusonii. We incorporated the species-specific primers into a conventional multiplex PCR assay and assessed its performance with a collection of 97 Enterobacteriaceae strains. The assay was 100% sensitive and specific for detecting the expected species and offers a quick and accurate strategy for identifying E. coli, E. albertii, and E. fergusonii in either a single reaction or by in silico PCR with sequence assemblies. Published by Elsevier B.V.

  1. Escherichia coli EDL933 Requires Gluconeogenic Nutrients To Successfully Colonize the Intestines of Streptomycin-Treated Mice Precolonized with E. coli Nissle 1917

    Science.gov (United States)

    Schinner, Silvia A. C.; Mokszycki, Matthew E.; Adediran, Jimmy; Leatham-Jensen, Mary; Conway, Tyrrell

    2015-01-01

    Escherichia coli MG1655, a K-12 strain, uses glycolytic nutrients exclusively to colonize the intestines of streptomycin-treated mice when it is the only E. coli strain present or when it is confronted with E. coli EDL933, an O157:H7 strain. In contrast, E. coli EDL933 uses glycolytic nutrients exclusively when it is the only E. coli strain in the intestine but switches in part to gluconeogenic nutrients when it colonizes mice precolonized with E. coli MG1655 (R. L. Miranda et al., Infect Immun 72:1666–1676, 2004, http://dx.doi.org/10.1128/IAI.72.3.1666-1676.2004). Recently, J. W. Njoroge et al. (mBio 3:e00280-12, 2012, http://dx.doi.org/10.1128/mBio.00280-12) reported that E. coli 86-24, an O157:H7 strain, activates the expression of virulence genes under gluconeogenic conditions, suggesting that colonization of the intestine with a probiotic E. coli strain that outcompetes O157:H7 strains for gluconeogenic nutrients could render them nonpathogenic. Here we report that E. coli Nissle 1917, a probiotic strain, uses both glycolytic and gluconeogenic nutrients to colonize the mouse intestine between 1 and 5 days postfeeding, appears to stop using gluconeogenic nutrients thereafter in a large, long-term colonization niche, but continues to use them in a smaller niche to compete with invading E. coli EDL933. Evidence is also presented suggesting that invading E. coli EDL933 uses both glycolytic and gluconeogenic nutrients and needs the ability to perform gluconeogenesis in order to colonize mice precolonized with E. coli Nissle 1917. The data presented here therefore rule out the possibility that E. coli Nissle 1917 can starve the O157:H7 E. coli strain EDL933 of gluconeogenic nutrients, even though E. coli Nissle 1917 uses such nutrients to compete with E. coli EDL933 in the mouse intestine. PMID:25733524

  2. A forward-design approach to increase the production of poly-3-hydroxybutyrate in genetically engineered Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Richard Kelwick

    Full Text Available Biopolymers, such as poly-3-hydroxybutyrate (P(3HB are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104 and RBS (native and B0034 design. P(3HB production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB.

  3. A forward-design approach to increase the production of poly-3-hydroxybutyrate in genetically engineered Escherichia coli.

    Science.gov (United States)

    Kelwick, Richard; Kopniczky, Margarita; Bower, Iain; Chi, Wenqiang; Chin, Matthew Ho Wai; Fan, Sisi; Pilcher, Jemma; Strutt, James; Webb, Alexander J; Jensen, Kirsten; Stan, Guy-Bart; Kitney, Richard; Freemont, Paul

    2015-01-01

    Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB).

  4. Presence of Type I-F CRISPR/Cas systems is associated with antimicrobial susceptibility in Escherichia coli.

    OpenAIRE

    Aydin, Seyid; Personne, Yoann; Newire, Enas; Laverick, Rebecca; Russell, Oliver; Roberts, Adam; Enne, Virve I

    2017-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated cas genes are sequence-specific DNA nuclease systems found in bacteria and archaea. CRISPR/Cas systems use RNA transcripts of previously acquired DNA (spacers) to target invading genetic elements with the same sequence, including plasmids. In this research we studied the relationship between CRISPR/Cas systems and multidrug resistance in Escherichia coli . The presence of Type I-E and Type I-F CRISPR syste...

  5. Molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli in the community and hospital in Korea: emergence of ST131 producing CTX-M-15

    Directory of Open Access Journals (Sweden)

    Park Sun

    2012-06-01

    Full Text Available Abstract Background The prevalence of extended-spectrum β-lactamase (ESBL-producing Escherichia coli has been increased not only in the hospital but also in the community worldwide. This study was aimed to characterize ESBL- producing E. coli isolates and to investigate the molecular epidemiology of community isolates in comparison with hospital isolates at a single center in Korea. Methods A total of 142 ESBL-producing E. coli isolates were collected at Daejeon St Mary’s Hospital in Korea from January 2008 to September 2009. The ESBLs were characterized by PCR sequencing using specific primers. The genetic relatedness was determined by pulsed field gel electrophoresis (PFGE and multilocus sequence typing (MLST. Results Of 142 isolates, 139 were positive for CTX-M type ESBLs; CTX-M-14 (n = 69, 49.6 %, CTX-M-15 (n = 53, 38.1 % and both CTX-M-14 and -15 (n = 17, 12.2 %. CTX-M-14 and CTX-M-15 were detected in both community and hospital isolates whereas isolates producing both CTX-M14 and-15 were mainly identified in the hospital. CTX-M producing E. coli isolates were genetically heterogeneous, revealing 75 distinct PFGE types. By MLST, 21 distinctive STs including 5 major STs (ST131, ST405, ST38, ST10, and ST648 were identified. Major STs were distributed in both community and hospital isolates, and ST131 was the predominant clone regardless of the locations of acquisition. No specific major STs were confined to a single type of ESBLs. However, ST131 clones were significantly associated with CTX-M-15 and the majority of them were multidrug-resistant. Distinctively, we identified a hospital epidemic caused by the dissemination of an epidemic strain, ST131-PFGE type 10, characterized by multidrug resistance and co-producing both CTX-Ms with OXA-1 or TEM-1b. Conclusions The epidemiology of ESBL-producing E. coli is a complex and evolving phenomenon attributed to the horizontal transfer of genetic elements and clonal spread of

  6. Spectrophotometric and pH-Metric Studies of Ce(III, Dy(III, Gd(III,Yb(III and Pr(III Metal Complexes with Rifampicin

    Directory of Open Access Journals (Sweden)

    A. N. Sonar

    2011-01-01

    Full Text Available The metal-ligand and proton-ligand stability constant of Ce(III, Dy(III, Gd(III,Yb(III and Pr(III metals with substituted heterocyclic drug (Rifampicin were determined at various ionic strength by pH metric titration. NaClO4 was used to maintain ionic strength of solution. The results obtained were extrapolated to the zero ionic strength using an equation with one individual parameter. The thermodynamic stability constant of the complexes were also calculated. The formation of complexes has been studied by Job’s method. The results obtained were of stability constants by pH metric method is confirmed by Job’s method.

  7. The effect of deep frying or conventional oven cooking on inactivation of Shiga toxin-producing cells of Escherichia coli (STEC) in meatballs

    Science.gov (United States)

    We investigated the effects deep frying or oven cooking on inactivation of Shiga toxin-producing cells of Escherichia coli (STEC) in meatballs. A finely-ground veal and/or a beef-pork-veal mixture were inoculated (ca. 7.0 log CFU/g) with an eight-strain, genetically-marked cocktail of rifampicin-res...

  8. Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs)

    Science.gov (United States)

    Sims, Gregory E.; Kim, Sung-Hou

    2011-01-01

    A whole-genome phylogeny of the Escherichia coli/Shigella group was constructed by using the feature frequency profile (FFP) method. This alignment-free approach uses the frequencies of l-mer features of whole genomes to infer phylogenic distances. We present two phylogenies that accentuate different aspects of E. coli/Shigella genomic evolution: (i) one based on the compositions of all possible features of length l = 24 (∼8.4 million features), which are likely to reveal the phenetic grouping and relationship among the organisms and (ii) the other based on the compositions of core features with low frequency and low variability (∼0.56 million features), which account for ∼69% of all commonly shared features among 38 taxa examined and are likely to have genome-wide lineal evolutionary signal. Shigella appears as a single clade when all possible features are used without filtering of noncore features. However, results using core features show that Shigella consists of at least two distantly related subclades, implying that the subclades evolved into a single clade because of a high degree of convergence influenced by mobile genetic elements and niche adaptation. In both FFP trees, the basal group of the E. coli/Shigella phylogeny is the B2 phylogroup, which contains primarily uropathogenic strains, suggesting that the E. coli/Shigella ancestor was likely a facultative or opportunistic pathogen. The extant commensal strains diverged relatively late and appear to be the result of reductive evolution of genomes. We also identify clade distinguishing features and their associated genomic regions within each phylogroup. Such features may provide useful information for understanding evolution of the groups and for quick diagnostic identification of each phylogroup. PMID:21536867

  9. Complexes of lanthanum(III), cerium(III), samarium(III) and dysprosium(III) with substituted piperidines

    Energy Technology Data Exchange (ETDEWEB)

    Manhas, B S; Trikha, A K; Singh, H; Chander, M

    1983-11-01

    Complexes of the general formulae M/sub 2/Cl/sub 6/(L)/sub 3/.C/sub 2/H/sub 5/OH and M/sub 2/(NO/sub 3/)/sub 6/(L)/sub 2/.CH/sub 3/OH have been synthesised by the reactions of chlorides and nitrates of La(III), Ce(III), Sm(III) and Dy(III) with 2-methylpiperidine, 3-methylpiperidine and 4-methylpiperidine. These complexes have been characterised on the basis of their elemental analysis, and IR and electronic reflectance spectra. IR spectral data indicate the presence of coordinated ethanol and methanol molecules and bidentate nitrate groups. Coordination numbers of the metal ions vary from 5 to 8. 19 refs.

  10. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa.

    Science.gov (United States)

    de Chial, Magaly; Ghysels, Bart; Beatson, Scott A; Geoffroy, Valérie; Meyer, Jean Marie; Pattery, Theresa; Baysse, Christine; Chablain, Patrice; Parsons, Yasmin N; Winstanley, Craig; Cordwell, Stuart J; Cornelis, Pierre

    2003-04-01

    Pseudomonas aeruginosa produces, under conditions of iron limitation, a high-affinity siderophore, pyoverdine (PVD), which is recognized at the level of the outer membrane by a specific TonB-dependent receptor, FpvA. So far, for P. aeruginosa, three different PVDs, differing in their peptide chain, have been described (types I-III), but only the FpvA receptor for type I is known. Two PVD-producing P. aeruginosa strains, one type II and one type III, were mutagenized by a mini-TnphoA3 transposon. In each case, one mutant unable to grow in the presence of the strong iron chelator ethylenediaminedihydroxyphenylacetic acid (EDDHA) and the cognate PVD was selected. The first mutant, which had an insertion in the pvdE gene, upstream of fpvA, was unable to take up type II PVD and showed resistance to pyocin S3, which is known to use type II FpvA as receptor. The second mutant was unable to take up type III PVD and had the transposon insertion in fpvA. Cosmid libraries of the respective type II and type III PVD wild-type strains were constructed and screened for clones restoring the capacity to grow in the presence of PVD. From the respective complementing genomic fragments, type II and type III fpvA sequences were determined. When in trans, type II and type III fpvA restored PVD production, uptake, growth in the presence of EDDHA and, in the case of type II fpvA, pyocin S3 sensitivity. Complementation of fpvA mutants obtained by allelic exchange was achieved by the presence of cognate fpvA in trans. All three receptors posses an N-terminal extension of about 70 amino acids, similar to FecA of Escherichia coli, but only FpvAI has a TAT export sequence at its N-terminal end.

  11. Chlamydia abortus YhbZ, a truncated Obg family GTPase, associates with the Escherichia coli large ribosomal subunit.

    Science.gov (United States)

    Polkinghorne, Adam; Vaughan, Lloyd

    2011-01-01

    The stringent stress response is vital for bacterial survival under adverse environmental conditions. Obligate intracellular Chlamydia lack key stringent response proteins, but nevertheless can interrupt the cell cycle and enter stasis or persistence upon amino acid starvation. A possible key protein retained is YhbZ, a homologue of the ObgE guanosine triphosphatase (GTPase) superfamily connecting the stringent stress response to ribosome maturation. Curiously, chlamydial YhbZ lacks the ObgE C-terminal domain thought to be essential for binding the large ribosomal subunit. We expressed recombinant Chlamydia abortus YhbZ and showed it to be a functional GTPase, with similar activity to other Obg GTPase family members. As Chlamydia are resistant to genetic manipulation, we performed heterologous expression and gradient centrifugation experiments in Escherichia coli and found that, despite the missing C-terminal domain, C. abortus YhbZ co-fractionates with the E. coli 50S large ribosomal subunit. In addition, overexpression of chlamydial YhbZ in E. coli leads to growth defects and elongation, as reported for other Obg members. YhbZ did not complement an E. coli obgE temperature-sensitive mutant, indicating the C-terminal acidic domain may have an additional role. This data supports a role for YhbZ linking the chlamydial stress response to ribosome function and cellular growth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis).

    Science.gov (United States)

    VanderWaal, Kimberly L; Atwill, Edward R; Isbell, Lynne A; McCowan, Brenda

    2014-03-01

    Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in

  13. Biocontainment of genetically modified organisms by synthetic protein design

    Science.gov (United States)

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.

  14. Mutagenic action of heavy ions on Escherichia coli cells

    International Nuclear Information System (INIS)

    Tokarova, B.; Amirtayev, K.G.; Kozubek, S.; Krasavin, E.A.

    1989-01-01

    Introduction of direct mutations in the lactose operon of E.coli cells by γ radiation and accelerated heavy ions with different LET was studied. The experiments were performed with the wide type polA and lexA strains. The quadratic dependence of the mutation rate on the dose of different radiation for the wild type strain and the polA mutant was observed. However different radiations showed different relative genetic effectiveness. The dependence of RGE on LET for the wild type and polA strain has a maximum. In the experiments with the lexA strain low mutation rates and linear dose-response dependences N m /N(D) were observed. The RGE falls down with increasing LET of ionizing radiation. 22 refs.; 5 figs.; 2 tabs

  15. Evolution and Biophysics of the Escherichia coli lac Operon

    Science.gov (United States)

    Ray, J. Christian; Igoshin, Oleg; Quan, Selwyn; Monds, Russell; Cooper, Tim; Balázsi, Gábor

    2011-03-01

    To understand, predict, and control the evolution of living organisms, we consider biophysical effects and molecular network architectures. The lactose utilization system of E. coli is among the most well-studied molecular networks in biology, making it an ideal candidate for such studies. Simulations show how the genetic architecture of the wild-type operon attenuates large metabolic intermediate fluctuations that are predicted to occur in an equivalent system with the component genes on separate operons. Quantification of gene expression in the lac operon evolved in growth conditions containing constant lactose, alternating with glucose, or constant glucose, shows characteristic gene expression patterns depending on conditions. We are simulating these conditions to show context-dependent biophysical sources and costs of different lac operon architectures.

  16. Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis.

    Science.gov (United States)

    Gui, Wen-Jun; Lin, Shi-Qiang; Chen, Yuan-Yuan; Zhang, Xian-En; Bi, Li-Jun; Jiang, Tao

    2011-02-11

    The sliding clamp is a key component of DNA polymerase III (Pol III) required for genome replication. It is known to function with diverse DNA repair proteins and cell cycle-control proteins, making it a potential drug target. To extend our understanding of the structure/function relationship of the sliding clamp, we solved the crystal structure of the sliding clamp from Mycobacterium tuberculosis (M. tuberculosis), a human pathogen that causes most cases of tuberculosis (TB). The sliding clamp from M. tuberculosis forms a ring-shaped head-to-tail dimer with three domains per subunit. Each domain contains two α helices in the inner ring that lie against two β sheets in the outer ring. Previous studies have indicated that many Escherichia coli clamp-binding proteins have a conserved LF sequence, which is critical for binding to the hydrophobic region of the sliding clamp. Here, we analyzed the binding affinities of the M. tuberculosis sliding clamp and peptides derived from the α and δ subunits of Pol III, which indicated that the LF motif also plays an important role in the binding of the α and δ subunits to the sliding clamp of M. tuberculosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Cell Factory Stability and Genetic Circuits for Improved Strain Development

    DEFF Research Database (Denmark)

    Rugbjerg, Peter

    . However, all synthetic gene systems -­ including the target metabolic pathways themselves -­ represent a possible fitness burden to the cell and thus constitute a threat to strain stability. In this thesis, several studies served to develop genetic systems for optimizing cell factory development...... systems can challenge the stability of strain designs. A metabolite-­producing Escherichia coli strain was long-­term cultured to study production stability and the dynamic effects of mutations within the cell population. A genetic error landscape of pathway disruptions was identified including particular......Development of new chemical-­‐producing microbial cell factories is an iterative trial-­and-­error process, and to screen candidate cells at high throughput, genetic biosensor systems are appealing. Each biosensor has distinct biological parameters, making modular tuning networks attractive...

  18. D-Alanine-Controlled Transient Intestinal Mono-Colonization with Non-Laboratory-Adapted Commensal E. coli Strain HS.

    Science.gov (United States)

    Cuenca, Miguelangel; Pfister, Simona P; Buschor, Stefanie; Bayramova, Firuza; Hernandez, Sara B; Cava, Felipe; Kuru, Erkin; Van Nieuwenhze, Michael S; Brun, Yves V; Coelho, Fernanda M; Hapfelmeier, Siegfried

    2016-01-01

    Soon after birth the mammalian gut microbiota forms a permanent and collectively highly resilient consortium. There is currently no robust method for re-deriving an already microbially colonized individual again-germ-free. We previously developed the in vivo growth-incompetent E. coli K-12 strain HA107 that is auxotrophic for the peptidoglycan components D-alanine (D-Ala) and meso-diaminopimelic acid (Dap) and can be used to transiently associate germ-free animals with live bacteria, without permanent loss of germ-free status. Here we describe the translation of this experimental model from the laboratory-adapted E. coli K-12 prototype to the better gut-adapted commensal strain E. coli HS. In this genetic background it was necessary to complete the D-Ala auxotrophy phenotype by additional knockout of the hypothetical third alanine racemase metC. Cells of the resulting fully auxotrophic strain assembled a peptidoglycan cell wall of normal composition, as long as provided with D-Ala and Dap in the medium, but could not proliferate a single time after D-Ala/Dap removal. Yet, unsupplemented bacteria remained active and were able to complete their cell cycle with fully sustained motility until immediately before autolytic death. Also in vivo, the transiently colonizing bacteria retained their ability to stimulate a live-bacteria-specific intestinal Immunoglobulin (Ig)A response. Full D-Ala auxotrophy enabled rapid recovery to again-germ-free status. E. coli HS has emerged from human studies and genomic analyses as a paradigm of benign intestinal commensal E. coli strains. Its reversibly colonizing derivative may provide a versatile research tool for mucosal bacterial conditioning or compound delivery without permanent colonization.

  19. Inner-sphere and outer-sphere complexes of yttrium(III), lanthanum (III), neodymium(III), terbium(III) and thulium(III) with halide ions in N,N-dimethylformamide

    International Nuclear Information System (INIS)

    Takahashi, Ryouta; Ishiguro, Shin-ichi

    1991-01-01

    The formation of chloro, bromo and iodo complexes of yttrium(III), and bromo and iodo complexes of lanthanum(III), neodymium(III), terbium(III) and thulium(III) has been studied by precise titration calorimetry in N,N-dimethylformamide (DMF) at 25 o C. The formation of [YCl] 2+ , [YCl 2 ] + , [YCl 3 ] and [YCl 4 ] - , and [MBr] 2+ and [MBr 2 ] + (M = Y, La, Nd, Tb, Tm) was revealed, and their formation constants, enthalpies and entropies were determined. It is found that the formation enthalpies change in the sequence ΔH o (Cl) > ΔH o (l), which is unusual for hard metal (III) ions. This implies that, unlike the chloride ion, the bromide ion forms outer-sphere complexes with the lanthanide(III) and yttrium(III) ions in DMF. Evidence for either an inner- or outer-sphere complex was obtained from 89 Y NMR spectra for Y(ClO 4 ) 3 , YCl 3 and YBr 3 DMF solutions at room temperature. (author)

  20. Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 β-lactamases from bovine mastitis isolates in the United Kingdom.

    Science.gov (United States)

    Timofte, Dorina; Maciuca, Iuliana E; Evans, Nicholas J; Williams, Helen; Wattret, Andrew; Fick, Jenny C; Williams, Nicola J

    2014-01-01

    Recent reports raised concerns about the role that farm stock may play in the dissemination of extended-spectrum β-lactamase (ESBL)-producing bacteria. This study characterized the ESBLs in two Escherichia coli and three Klebsiella pneumoniae subsp. pneumoniae isolates from cases of clinical bovine mastitis in the United Kingdom. Bacterial culture and sensitivity testing of bovine mastitic milk samples identified Gram-negative cefpodoxime-resistant isolates, which were assessed for their ESBL phenotypes. Conjugation experiments and PCR-based replicon typing (PBRT) were used for characterization of transferable plasmids. E. coli isolates belonged to sequence type 88 (ST88; determined by multilocus sequence typing) and carried blaCTX-M-15 and blaTEM-1, while K. pneumoniae subsp. pneumoniae isolates carried blaSHV-12 and blaTEM-1. Conjugation experiments demonstrated that blaCTX-M-15 and blaTEM-1 were carried on a conjugative plasmid in E. coli, and PBRT identified this to be an IncI1 plasmid. The resistance genes were nontransferable in K. pneumoniae subsp. pneumoniae isolates. Moreover, in the E. coli isolates, an association of ISEcp1 and IS26 with blaCTX-M-15 was found where the IS26 element was inserted upstream of both ISEcp1 and the blaCTX-M promoter, a genetic arrangement highly similar to that described in some United Kingdom human isolates. We report the first cases in Europe of bovine mastitis due to E. coli CTX-M-15 and also of bovine mastitis due to K. pneumoniae subsp. pneumoniae SHV-12 β-lactamases in the United Kingdom. We also describe the genetic environment of blaCTX-M-15 and highlight the role that IncI1 plasmids may play in the spread and dissemination of ESBL genes, which have been described in both human and cattle isolates.

  1. Influence of some exo nucleases in response to the induced genetic damage in Escherichia coli by alpha radiation

    International Nuclear Information System (INIS)

    Aguilar M, M.

    2005-01-01

    Within the strategies with those that E. coli counts to overcome to the genetic damage there is the SOS response, a group of genes that participate in repair and/or tolerance that it confers to the bacteria major opportunities of surviving. These genes are repressed and its only are expressed when it happens genetic damage. So that this system is activated it is necessary that DNA of a band exists and in this sense the double ruptures (RDB) its are not able to induce this response unless there is a previous processing. In stumps with defects in certain genes that have to do with repair of RDB (as recO, recJ and xonA) the activity of SOS is smaller than in a wild stump what suggests that these participate in the previous processes to the activation of the response. The ionizing radiation produce among other many lesions, RDB in greater or smaller proportion, depending on the ionization capacity. A parameter to evaluate this capacity is the lineal energy transfer (LET), defined as the average energy given by unit of distance travelled. In general the LET of the corpuscular radiations is a lot but high that of the electromagnetic one, for what produces bigger quantity of ionizations inside a restricted zone and it increases by this way the probability that RDB has been generated. This work has for object to infer the participation of xonA and recJ in this response and to evaluate the damage produced by ionizing radiation of different LET (alpha particles of different energies) in a stump with all the functional repair mechanisms. Its were considered two parameters: the survival and the activity of SOS evaluated by means of the chromo test. The results indicate that the activity of these exo nucleases is necessary for the repair of RDB as well as for the processing of lesions foresaw to the activation of SOS. As for the treatment with alphas of different energies is observed that so much the survival like the activity of SOS vary as the LET of the radiation changes

  2. Prediction of transcriptional regulatory sites in the complete genome sequence of Escherichia coli K-12.

    Science.gov (United States)

    Thieffry, D; Salgado, H; Huerta, A M; Collado-Vides, J

    1998-06-01

    As one of the best-characterized free-living organisms, Escherichia coli and its recently completed genomic sequence offer a special opportunity to exploit systematically the variety of regulatory data available in the literature in order to make a comprehensive set of regulatory predictions in the whole genome. The complete genome sequence of E.coli was analyzed for the binding of transcriptional regulators upstream of coding sequences. The biological information contained in RegulonDB (Huerta, A.M. et al., Nucleic Acids Res.,26,55-60, 1998) for 56 different transcriptional proteins was the support to implement a stringent strategy combining string search and weight matrices. We estimate that our search included representatives of 15-25% of the total number of regulatory binding proteins in E.coli. This search was performed on the set of 4288 putative regulatory regions, each 450 bp long. Within the regions with predicted sites, 89% are regulated by one protein and 81% involve only one site. These numbers are reasonably consistent with the distribution of experimental regulatory sites. Regulatory sites are found in 603 regions corresponding to 16% of operon regions and 10% of intra-operonic regions. Additional evidence gives stronger support to some of these predictions, including the position of the site, biological consistency with the function of the downstream gene, as well as genetic evidence for the regulatory interaction. The predictions described here were incorporated into the map presented in the paper describing the complete E.coli genome (Blattner,F.R. et al., Science, 277, 1453-1461, 1997). The complete set of predictions in GenBank format is available at the url: http://www. cifn.unam.mx/Computational_Biology/E.coli-predictions ecoli-reg@cifn.unam.mx, collado@cifn.unam.mx

  3. Genetic and biochemical studies of the lipid-containing bacteriophage PR4

    International Nuclear Information System (INIS)

    Vanden Boom, T.J.

    1989-01-01

    Bacteriophage PR4 is a lipid-containing bacterial virus able to infect Escherichia coli and Salmonella typhimurium. The icosahedral virion consists of an external protein capsid layer which surrounds a membrane vesicle enclosed ds DNA genome. The author has analyzed the time course of phage PR4 protein synthesis and have identified at least 34 proteins present in phage infected cells not detected in uninfected control cultures. In addition, he has isolated a more extensive set of conditional-lethal nonsense mutants of this virus. This collection of mutants permitted the identification of seven additional phage PR4 gene products, including the terminal genome protein and an accessory lytic factor. The present collection of phage PR4 mutants has been assigned to 19 distinct genetic groups on the basis of genetic complementation tests and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of the proteins produced in mutant-infected UV-irradiated cells. A restriction endonuclease map of the phage PR4 genome was constructed which includes 59 sites for ten restriction endonucleases. In addition, he has constructed a collection of recombinant plasmids containing subgenomic DNA fragments of bacteriophage PR4. He has used this collection of plasmids to generate a physical-genetic map of the PR4 genome. The physical-genetic map localizes mutations in 13 phage PR4 genetic groups on the viral DNA molecule. To investigate the role of phosphatidylglycerol (PG) in phage assembly and infectivity, he propagated PR4 on an E. coli mutant defective in PG synthesis. The PG content of phage PR4 grown on the mutant host accounted for 0.4% of the total viral phospholipids, representing a 90-fold decrease in PG relative to the PG content of phage grown on a wild type host

  4. Identification of virulence factors and type III effectors of Phylotype I ...

    Indian Academy of Sciences (India)

    HP2000

    R. solanacearum finds its way into the plant through wounds in the roots and .... 10% (c) Acidic residues should be absent within the first twelve amino acids. .... PilA has been used to study the genetic diversity in soil bacterium ..... the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different.

  5. Comparative ligational, optical band gap and biological studies on Cr(III) and Fe(III) complexes of hydrazones derived from 2-hydrazinyl-2-oxo-N-phenylacetamide with both vanillin and O-vanillin

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; Attia, M. I.; El-Tabai, M. N.

    2015-09-01

    The Cr(III) and Fe(III) complexes of hydrazones derived from the condensation of 2-hydrazinyl-2-oxo-N-phenylacetamide with both vanillin and o-vanillin synthesized and characterized by different conventional physicochemical techniques. The kinetic and thermodynamic parameters for the different decomposition steps were calculated using Coats-Redfern and Horowitz-Metzger equations. The bond lengths, bond angles, HOMO, LUMO, dipole moment and binding energy calculated by DFT calculations. The optical band gap (Eg) values equal 3.28, 3.03, 3.58 and 3.57 eV for [Cr(HL1)Cl2(H2O)2](0.75H2O), [Cr(HL2)Cl2(H2O)](H2O), [Fe(HL1)Cl2(H2O)2](0.5H2O) and [Fe(HL2)2Cl(H2O)](3H2O) complexes, respectively. The antibacterial activities tested against Bacillus subtilis and Escherichia coli bacteria.

  6. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    Toma, Claudia; Lu, Yan; Higa, Naomi; Nakasone, Noboru; Chinen, Isabel; Baschkier, Ariela; Rivas, Marta; Iwanaga, Masaaki

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  7. Characterization of diarrhoeagenic Escherichia coli isolates in Jordanian children.

    Science.gov (United States)

    Shehabi, Asem A; Bulos, Najawa-Kuri; Hajjaj, Kamal G

    2003-01-01

    In a prospective study carried out among Jordanian children in Amman, a total of 73/250 (29.2%) stool specimens were positive for 1 or more diarrhoeagenic Escherichia coli strains using a multiplex polymerase chain reaction method. This study indicated that diarrhoeagenic E. coli isolates were found frequently more in stools of children with diarrhoea (34%) than without diarrhoea (23.1%), but without any significant difference (p > 0.05). The predominant diarrhoeagenic E. coli strains associated with diarrhoea were enteropathogenic E. coli (11.3%), followed by enterotoxigenic E. coli (9.8%) and enteroaggrative E. coli (9%), whereas in the control group these were 4.3%, 11.1% and 6%, respectively. Enteroinvasive E. coli strains (2.9%) were found only in stools of children with diarrhoea. This study revealed the absence of enterohaemorrhagic E. coli in both diarrhoeal and control stools, and found that diarrhoeagenic E. coli isolates were highly resistance to tetracycline (55%), co-trimoxazole (60%) and ampicillin (89%), which are commonly used antibiotics in Jordan.

  8. Influence of medium components on the expression of recombinant lipoproteins in Escherichia coli.

    Science.gov (United States)

    Tseng, Chi-Ling; Leng, Chih-Hsiang

    2012-02-01

    Bacterial lipoproteins are crucial antigens for protective immunity against bacterial pathogens. Expression of exogenous lipoproteins in Escherichia coli at high levels is thought to be an extremely difficult endeavor because it frequently results in incomplete or absent lipid modification. Previously, we identified a fusion sequence (D1) from a Neisseria meningitidis lipoprotein that induced a non-lipidated protein, E3 (the domain III of the dengue virus envelope protein), to become lipidated. However, without optimizing the growth conditions, some of the D1-fusion proteins were not lipidated. Here, we report the influence of medium components on the expression of recombinant lipoproteins in E. coli. For high-level expression of mature lipoproteins in the C43 (DE3) strain, M9 medium was better than M63 and the rich medium. Furthermore, we analyzed the influence of other media factors (including nitrogen and carbon sources, phosphate, ferrous ions, calcium, magnesium, and pH) on the levels of lipoprotein expression. The results showed that excess nitrogen sources and phosphate in M9 medium could increase the amount of immature lipoproteins, and glucose was a better carbon source than glycerol for expressing mature lipoproteins. We also found that lipoproteins tended to be completely processed in the alkaline environment, even in the nutrient-rich medium. Additional constructs expressing different immunogens or lipid signal peptides as targets were also utilized, demonstrating that these targets could be expressed as completely mature lipoproteins in the M9 medium but not in the rich medium. Our results provide the useful information for expressing mature exogenous lipoproteins in E. coli.

  9. Nuclear EGFRvIII resists hypoxic microenvironment induced apoptosis via recruiting ERK1/2 nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hui; Yang, Jinfeng; Xing, Wenjing; Dong, Yucui [Dept. of Immunology, Harbin Medical University, Harbin 150081 (China); Key Lab Infection & Immunity, Heilongjiang Province, Harbin 150081 (China); Ren, Huan, E-mail: renhuan@ems.hrbmu.edu.cn [Dept. of Immunology, Harbin Medical University, Harbin 150081 (China); Key Lab Infection & Immunity, Heilongjiang Province, Harbin 150081 (China)

    2016-02-05

    Glioblastoma (GBM) is the most aggressive type of primary brain tumor. Its interaction with the tumor microenvironment promotes tumor progression. Furthermore, GBM bearing expression of EGFRvIII displays more adaptation to tumor microenvironment related stress. But the mechanisms were poorly understood. Here, we presented evidence that in the human U87MG glioblastoma tumor model, EGFRvIII overexpression led aberrant kinase activation and nuclear translocation of EGFRvIII/ERK1/2 under hypoxia, which induced growth advantage by resisting apoptosis. Additionally, EGFRvIII defective in nuclear entry impaired this capacity in hypoxia adaptation, and partially interrupted ERK1/2 nuclear translocation. Pharmacology or genetic interference ERK1/2 decreased hypoxia resistance triggered by EGFRvIII expression, but not EGFRvIII nuclear translocation. In summary, this study identified a novel role for EGFRvIII in hypoxia tolerance, supporting an important link between hypoxia and subcellular localization alterations of the receptor. - Highlights: • Nuclear translocation of EGFRvIII contributes to GBM cell apoptotic resistance by hypoxia. • Nuclear ERK1/2 facilitates EGFRvIII in hypoxia resistance. • EGFRvIII nuclear translocation is not dependent on ERK1/2.

  10. Co-ordinate single-cell expression of LEE4- and LEE5-encoded proteins of Escherichia coli O157:H7.

    Science.gov (United States)

    Roe, Andrew J; Naylor, Stuart W; Spears, Kevin J; Yull, Helen M; Dransfield, Tracy A; Oxford, Matthew; McKendrick, Iain J; Porter, Megan; Woodward, Martin J; Smith, David G E; Gally, David L

    2004-10-01

    Escherichia coli O157:H7 is a zoonotic pathogen that can express a type III secretion system (TTSS) considered important for colonization and persistence in ruminants. E. coli O157:H7 strains have been shown to vary markedly in levels of protein secreted using the TTSS and this study has confirmed that a high secretion phenotype is more prevalent among isolates associated with human disease than isolates shed by healthy cattle. The variation in secretion levels is a consequence of heterogeneous expression, being dependent on the proportion of bacteria in a population that are actively engaged in protein secretion. This was demonstrated by indirect immunofluorescence and eGFP fusions that examined the expression of locus of enterocyte effacement (LEE)-encoded factors in individual bacteria. In liquid media, the expression of EspA, tir::egfp, intimin, but not map::egfp were co-ordinated in a subpopulation of bacteria. In contrast to E. coli O157:H7, expression of tir::egfp in EPEC E2348/69 was equivalent in all bacteria although the same fusion exhibited variable expression when transformed into an E. coli O157:H7 background. An E. coli O157:H7 strain deleted for the LEE demonstrated weak but variable expression of tir::egfp indicating that the elements controlling the heterogeneous expression lie outside the LEE. The research also demonstrated the rapid induction of tir::egfp and map::egfp on contact with bovine epithelial cells. This control in E. coli O157:H7 may be required to limit exposure of key surface antigens, EspA, Tir and intimin during colonization of cattle but allow their rapid production on contact with bovine gastrointestinal epithelium at the terminal rectum.

  11. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli.

    Science.gov (United States)

    Díez-Villaseñor, César; Guzmán, Noemí M; Almendros, Cristóbal; García-Martínez, Jesús; Mojica, Francisco J M

    2013-05-01

    Prokaryotes immunize themselves against transmissible genetic elements by the integration (acquisition) in clustered regularly interspaced short palindromic repeats (CRISPR) loci of spacers homologous to invader nucleic acids, defined as protospacers. Following acquisition, mono-spacer CRISPR RNAs (termed crRNAs) guide CRISPR-associated (Cas) proteins to degrade (interference) protospacers flanked by an adjacent motif in extrachomosomal DNA. During acquisition, selection of spacer-precursors adjoining the protospacer motif and proper orientation of the integrated fragment with respect to the leader (sequence leading transcription of the flanking CRISPR array) grant efficient interference by at least some CRISPR-Cas systems. This adaptive stage of the CRISPR action is poorly characterized, mainly due to the lack of appropriate genetic strategies to address its study and, at least in Escherichia coli, the need of Cas overproduction for insertion detection. In this work, we describe the development and application in Escherichia coli strains of an interference-independent assay based on engineered selectable CRISPR-spacer integration reporter plasmids. By using this tool without the constraint of interference or cas overexpression, we confirmed fundamental aspects of this process such as the critical requirement of Cas1 and Cas2 and the identity of the CTT protospacer motif for the E. coli K12 system. In addition, we defined the CWT motif for a non-K12 CRISPR-Cas variant, and obtained data supporting the implication of the leader in spacer orientation, the preferred acquisition from plasmids harboring cas genes and the occurrence of a sequential cleavage at the insertion site by a ruler mechanism.

  12. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli

    Science.gov (United States)

    Díez-Villaseñor, César; Guzmán, Noemí M.; Almendros, Cristóbal; García-Martínez, Jesús; Mojica, Francisco J.M.

    2013-01-01

    Prokaryotes immunize themselves against transmissible genetic elements by the integration (acquisition) in clustered regularly interspaced short palindromic repeats (CRISPR) loci of spacers homologous to invader nucleic acids, defined as protospacers. Following acquisition, mono-spacer CRISPR RNAs (termed crRNAs) guide CRISPR-associated (Cas) proteins to degrade (interference) protospacers flanked by an adjacent motif in extrachomosomal DNA. During acquisition, selection of spacer-precursors adjoining the protospacer motif and proper orientation of the integrated fragment with respect to the leader (sequence leading transcription of the flanking CRISPR array) grant efficient interference by at least some CRISPR-Cas systems. This adaptive stage of the CRISPR action is poorly characterized, mainly due to the lack of appropriate genetic strategies to address its study and, at least in Escherichia coli, the need of Cas overproduction for insertion detection. In this work, we describe the development and application in Escherichia coli strains of an interference-independent assay based on engineered selectable CRISPR-spacer integration reporter plasmids. By using this tool without the constraint of interference or cas overexpression, we confirmed fundamental aspects of this process such as the critical requirement of Cas1 and Cas2 and the identity of the CTT protospacer motif for the E. coli K12 system. In addition, we defined the CWT motif for a non-K12 CRISPR-Cas variant, and obtained data supporting the implication of the leader in spacer orientation, the preferred acquisition from plasmids harboring cas genes and the occurrence of a sequential cleavage at the insertion site by a ruler mechanism. PMID:23445770

  13. The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Felipe A Arenas

    2011-01-01

    Full Text Available This work shows that the recently described Escherichia coli BtuE peroxidase protects the bacterium against oxidative stress that is generated by tellurite and by other reactive oxygen species elicitors (ROS. Cells lacking btuE (ΔbtuE displayed higher sensitivity to K(2TeO(3 and other oxidative stress-generating agents than did the isogenic, parental, wild-type strain. They also exhibited increased levels of cytoplasmic reactive oxygen species, oxidized proteins, thiobarbituric acid reactive substances, and lipoperoxides. E. coli ΔbtuE that was exposed to tellurite or H(2O(2 did not show growth changes relative to wild type cells either in aerobic or anaerobic conditions. Nevertheless, the elimination of btuE from cells deficient in catalases/peroxidases (Hpx(- resulted in impaired growth and resistance to these toxicants only in aerobic conditions, suggesting that BtuE is involved in the defense against oxidative damage. Genetic complementation of E. coli ΔbtuE restored toxicant resistance to levels exhibited by the wild type strain. As expected, btuE overexpression resulted in decreased amounts of oxidative damage products as well as in lower transcriptional levels of the oxidative stress-induced genes ibpA, soxS and katG.

  14. Profiling bacterial kinase activity using a genetic circuit

    DEFF Research Database (Denmark)

    van der Helm, Eric; Bech, Rasmus; Lehning, Christina Eva

    Phosphorylation is a post-translational modification that regulates the activity of several key proteins in bacteria and eukaryotes. Accordingly, a variety of tools has been developed to measure kinase activity. To couple phosphorylation to an in vivo fluorescent readout we used the Bacillus...... subtilis kinase PtkA, transmembrane activator TkmA and the repressor FatR to construct a genetic circuit in E. coli. By tuning the repressor and kinase expression level at the same time, we were able to show a 4.2-fold increase in signal upon kinase induction. We furthermore validated that the previously...... reported FatR Y45E mutation1 attenuates operator repression. This genetic circuit provides a starting point for computational protein design and a metagenomic library-screening tool....

  15. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development.

    Science.gov (United States)

    Yang, Shih-Chun; Lin, Chih-Hung; Aljuffali, Ibrahim A; Fang, Jia-You

    2017-08-01

    Food contamination by pathogenic microorganisms has been a serious public health problem and a cause of huge economic losses worldwide. Foodborne pathogenic Escherichia coli (E. coli) contamination, such as that with E. coli O157 and O104, is very common, even in developed countries. Bacterial contamination may occur during any of the steps in the farm-to-table continuum from environmental, animal, or human sources and cause foodborne illness. To understand the causes of the foodborne outbreaks by E. coli and food-contamination prevention measures, we collected and investigated the past 10 years' worldwide reports of foodborne E. coli contamination cases. In the first half of this review article, we introduce the infection and symptoms of five major foodborne diarrheagenic E. coli pathotypes: enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli/enterohemorrhagic E. coli (STEC/EHEC), Shigella/enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and enterotoxigenic E. coli (ETEC). In the second half of this review article, we introduce the foodborne outbreak cases caused by E. coli in natural foods and food products. Finally, we discuss current developments that can be applied to control and prevent bacterial food contamination.

  16. Famous people and genetic disorders: from monarchs to geniuses--a portrait of their genetic illnesses.

    Science.gov (United States)

    Ho, Nicola C; Park, Susan S; Maragh, Kevin D; Gutter, Emily M

    2003-04-15

    Famous people with genetic disorders have always been a subject of interest because such news feeds the curiosity the public has for celebrities. It gives further insight into their lives and provides a medical basis for any unexplained or idiosyncratic feature or behavior they exhibit. It draws admiration from society of those who excel in their specialized fields despite the impositions of their genetic illnesses and also elicits sympathy even in the most casual observer. Such news certainly catapults a rare genetic disorder into the realm of public awareness. We hereby present six famous figures: King George III, Toulouse-Lautrec, Queen Victoria, Nicolo Paganini, Abraham Lincoln, and Vincent van Gogh, all of whom made a huge indelible mark in either the history of politics or that of the arts. Copyright 2003 Wiley-Liss, Inc.

  17. Genetic markers of comorbid depression and alcoholism in women.

    Science.gov (United States)

    Procopio, Daniela O; Saba, Laura M; Walter, Henriette; Lesch, Otto; Skala, Katrin; Schlaff, Golda; Vanderlinden, Lauren; Clapp, Peter; Hoffman, Paula L; Tabakoff, Boris

    2013-06-01

    Alcohol dependence (AD) is often accompanied by comorbid depression. Recent clinical evidence supports the benefit of subtype-specific pharmacotherapy in treating the population of alcohol-dependent subjects with comorbid major depressive disorder (MDD). However, in many alcohol-dependent subjects, depression is a reactive response to chronic alcohol use and withdrawal and abates with a period of abstinence. Genetic markers may distinguish alcohol-dependent subjects with MDD not tied chronologically and etiologically to their alcohol consumption. In this work, we investigated the association of adenylyl cyclase genes (ADCY1-9), which are implicated in both AD and mood disorders, with alcoholism and comorbid depression. Subjects from Vienna, Austria (n = 323) were genotyped, and single nucleotide polymorphisms (1,152) encompassing the genetic locations of the 9 ADCY genes were examined. The Vienna cohort contained alcohol-dependent subjects differentiated using the Lesch Alcoholism Typology. In this typology, subjects are segregated into 4 types. Type III alcoholism is distinguished by co-occurrence of symptoms of depression and by affecting predominantly females. We identified 4 haplotypes associated with the phenotype of Type III alcoholism in females. One haplotype was in a genomic area in proximity to ADCY2, but actually within a lincRNA gene, 2 haplotypes were within ADCY5, and 1 haplotype was within the coding region of ADCY8. Three of the 4 haplotypes contributed independently to Type III alcoholism and together generated a positive predictive value of 72% and a negative predictive value of 78% for distinguishing women with a Lesch Type III diagnosis versus women designated as Type I or II alcoholics. Polymorphisms in ADCY8 and ADCY5 and within a lincRNA are associated with an alcohol-dependent phenotype in females, which is distinguished by comorbid signs of depression. Each of these genetic locations can rationally contribute to the polygenic etiology of

  18. Experimental induced avian E. coli salpingitis

    DEFF Research Database (Denmark)

    Olsen, Rikke Heidemann; Thøfner, Ida; Pors, Susanne Elisabeth

    2016-01-01

    Several types of Escherichia coli have been associated with extra-intestinal infections in poultry, however, they may vary significantly in their virulence potential. The aim of the present study was to investigate the virulence of five strains of E. coli obtained from different disease......) had a distinct ability to cause disease. Results of the study shows major differences in virulence of different strains of E. coli in ascending infections; however, there was no indication of tissue-specific adaptation, since strains obtained from lesions unrelated to the reproductive system were...... fully capable of causing experimental infection. In conclusion, the study provides evidence for the clinical outcome of infection with E. coli in poultry is largely influenced by the specific strain as well as individual host factors....

  19. Inactivation and Gene Expression of a Virulent WastewaterEscherichia coliStrain and the Nonvirulent CommensalEscherichia coliDSM1103 Strain upon Solar Irradiation

    KAUST Repository

    Aljassim, Nada I.; Mantilla-Calderon, David; Wang, Tiannyu; Hong, Pei-Ying

    2017-01-01

    This study examined the decay kinetics and molecular responses of two Escherichia coli strains upon solar irradiation. The first is E. coli PI-7, a virulent and antibiotic-resistant strain that was isolated from wastewater and carries the emerging NDM-1 antibiotic resistance gene. The other strain, E. coli DSM1103, displayed lower virulence and antibiotic resistance than E. coli PI-7. In a buffer solution, E. coli PI-7 displayed a longer lag phase prior to decay and a longer half-life compared with E. coli DSM1103 (6.64 ± 0.63 h and 2.85 ± 0.46 min vs 1.33 ± 0.52 h and 2.04 ± 0.36 min). In wastewater, both E. coli strains decayed slower than they did in buffer. Although solar irradiation remained effective in reducing the numbers of both strains by more than 5-log10 in <24 h, comparative genomics and transcriptomics revealed differences in the genomes and overall regulation of genes between the two E. coli strains. A wider arsenal of genes related to oxidative stress, cellular repair and protective mechanisms were upregulated in E. coli PI-7. Subpopulations of E. coli PI-7 expressed genes related to dormancy and persister cell formation during the late decay phase, which may have accounted for its prolonged persistence. Upon prolonged solar irradiation, both E. coli strains displayed upregulation of genes related to horizontal gene transfer and antibiotic resistance. Virulence functions unique to E. coli PI-7 were also upregulated. Our findings collectively indicated that, whereas solar irradiation is able to reduce total cell numbers, viable E. coli remained and expressed genes that enable survival despite solar treatment. There remains a need for heightened levels of concern regarding risks arising from the dissemination of E. coli that may remain viable in wastewater after solar irradiation.

  20. Inactivation and Gene Expression of a Virulent WastewaterEscherichia coliStrain and the Nonvirulent CommensalEscherichia coliDSM1103 Strain upon Solar Irradiation

    KAUST Repository

    Aljassim, Nada I.

    2017-03-06

    This study examined the decay kinetics and molecular responses of two Escherichia coli strains upon solar irradiation. The first is E. coli PI-7, a virulent and antibiotic-resistant strain that was isolated from wastewater and carries the emerging NDM-1 antibiotic resistance gene. The other strain, E. coli DSM1103, displayed lower virulence and antibiotic resistance than E. coli PI-7. In a buffer solution, E. coli PI-7 displayed a longer lag phase prior to decay and a longer half-life compared with E. coli DSM1103 (6.64 ± 0.63 h and 2.85 ± 0.46 min vs 1.33 ± 0.52 h and 2.04 ± 0.36 min). In wastewater, both E. coli strains decayed slower than they did in buffer. Although solar irradiation remained effective in reducing the numbers of both strains by more than 5-log10 in <24 h, comparative genomics and transcriptomics revealed differences in the genomes and overall regulation of genes between the two E. coli strains. A wider arsenal of genes related to oxidative stress, cellular repair and protective mechanisms were upregulated in E. coli PI-7. Subpopulations of E. coli PI-7 expressed genes related to dormancy and persister cell formation during the late decay phase, which may have accounted for its prolonged persistence. Upon prolonged solar irradiation, both E. coli strains displayed upregulation of genes related to horizontal gene transfer and antibiotic resistance. Virulence functions unique to E. coli PI-7 were also upregulated. Our findings collectively indicated that, whereas solar irradiation is able to reduce total cell numbers, viable E. coli remained and expressed genes that enable survival despite solar treatment. There remains a need for heightened levels of concern regarding risks arising from the dissemination of E. coli that may remain viable in wastewater after solar irradiation.