WorldWideScience

Sample records for coli gene rrab

  1. Genes under positive selection in Escherichia coli

    DEFF Research Database (Denmark)

    Petersen, Lise; Bollback, J.P.; Dimmic, Matt

    2007-01-01

    We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome...

  2. Genes under positive selection in Escherichia coli

    DEFF Research Database (Denmark)

    Petersen, Lise; Bollback, J.P.; Dimmic, Matt

    2007-01-01

    We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome...

  3. Genes under positive selection in Escherichia coli

    DEFF Research Database (Denmark)

    Petersen, Lise; Bollback, Jonathan P; Dimmic, Matt

    2007-01-01

    We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome......, including cell surface proteins such as beta barrel porins, presumably because of the involvement of these genes in evolutionary arms races with other bacteria, phages, and/or the host immune system. Structural mapping of positively selected sites on trans-membrane beta barrel porins reveals...... that the residues under positive selection occur almost exclusively in the extracellular region of the proteins that are enriched with sites known to be targets of phages, colicins, or the host immune system. More surprisingly, we also find a number of other categories of genes that show very strong evidence...

  4. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    in expression have no current defined function. These genes, as well as those induced by stresses relevant to biofilm growth such as oxygen and nutrient limitation, may be important factors that trigger enhanced resistance mechanisms of sessile communities to antibiotics and hydrodynamic shear forces.......It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance...... to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...

  5. Detection of attaching and effacing virulence gene of E. coli

    Directory of Open Access Journals (Sweden)

    Maratu Soleha

    2013-07-01

    Full Text Available AbstrakLatar belakang: Bakteri Escherichia coli (E. coli ada yang telah bermutasi menjadi patogen yang menimbulkan berbagai penyakit seperti hemorrhagic colitis (HC, hemolytic uremic syndrome (HUS, sepsis, pnemonia, neonatal meningitis, dan infeksi saluran kemih. Mutasi terjadi karena bakteri ini menerima transfer gen yang virulen dari bakteri lain yang hidup di sekitarnya. E. coli yang biasanya hidup normal di dalam usus manusia telah beradaptasi sehingga bisa hidup di tanah, makanan, dan saluran kemih. Penelitian ini mendeteksi gene yang virulen pada DNA isolat E. coli. Metode: Untuk deteksi E. coli yang virulen pada penelitian ini digunakan metode Real-time PCR dengan mencocokkan hasil sekuensing dengan sekuens E. coli virulen yang telah di publikasikan sebagai rujukan. Hasil: Sekuens RT PCR menggambarkan DNA gen eae pada BLAST mempunyai kesesuaian dengan rujukan segmen E. coli yang virulen. Dari sampel yang berasal dari E. coli di sekitar perairan lingkungan didapatkan gen Eae sebagai gen yang menyebabkan E. coli menjadi virulen sebesar 7,3%. Kesimpulan: E. coli yang virulen ditemukan pada sampel E. coli yang berasal dari perairan lingkungan dengan metode realtime PCR. (Health Science Indones 2013;1:41-6 Kata kunci: gen virulen E. coli, real-time PCR, perairan lingkunganAbstractBackground: Escherichia coli(E. coli bacteria have developed into pathogenic bacteria that caused diseases such as hemorrhagic colitis (HC, hemolytic uremic syndrome (HUS, sepsis, pneumonia, neonatal meningitis, and urinary tract infections. Pathogenic E. coli have acquired pathogenic/virulence genes from other bacteria in their environment. E. coli that normally lived in the human gut had adapted to other niches such as soil, food and the urinary tract. This study investigated the presence of pathogenic E. coli from water samples by examining E. coli virulence genes present in E. coli genomes of water sourced isolates. Methods:This study used Real-time PCR to detect

  6. Detection of attaching and effacing virulence gene of E. coli

    Directory of Open Access Journals (Sweden)

    Maratu Soleha

    2013-07-01

    Full Text Available AbstrakLatar belakang: Bakteri Escherichia coli (E. coli ada yang telah bermutasi menjadi patogen yang menimbulkan berbagai penyakit seperti hemorrhagic colitis (HC, hemolytic uremic syndrome (HUS, sepsis, pnemonia, neonatal meningitis, dan infeksi saluran kemih. Mutasi terjadi karena bakteri ini menerima transfer gen yang virulen dari bakteri lain yang hidup di sekitarnya. E. coli yang biasanya hidup normal di dalam usus manusia telah beradaptasi sehingga bisa hidup di tanah, makanan, dan saluran kemih. Penelitian ini mendeteksi gene yang virulen pada DNA isolat E. coli. Metode: Untuk deteksi E. coli yang virulen pada penelitian ini digunakan metode Real-time PCR dengan mencocokkan hasil sekuensing dengan sekuens E. coli virulen yang telah di publikasikan sebagai rujukan. Hasil: Sekuens RT PCR menggambarkan DNA gen eae pada BLAST mempunyai kesesuaian dengan rujukan segmen E. coli yang virulen. Dari sampel yang berasal dari E. coli di sekitar perairan lingkungan didapatkan gen Eae sebagai gen yang menyebabkan E. coli menjadi virulen sebesar 7,3%. Kesimpulan: E. coli yang virulen ditemukan pada sampel E. coli yang berasal dari perairan lingkungan dengan metode realtime PCR. (Health Science Indones 2013;1:41-6 Kata kunci: gen virulen E. coli, real-time PCR, perairan lingkunganAbstractBackground: Escherichia coli(E. coli bacteria have developed into pathogenic bacteria that caused diseases such as hemorrhagic colitis (HC, hemolytic uremic syndrome (HUS, sepsis, pneumonia, neonatal meningitis, and urinary tract infections. Pathogenic E. coli have acquired pathogenic/virulence genes from other bacteria in their environment. E. coli that normally lived in the human gut had adapted to other niches such as soil, food and the urinary tract. This study investigated the presence of pathogenic E. coli from water samples by examining E. coli virulence genes present in E. coli genomes of water sourced isolates. Methods:This study used Real-time PCR to detect

  7. Evolution of the iss gene in Escherichia coli.

    Science.gov (United States)

    Johnson, Timothy J; Wannemuehler, Yvonne M; Nolan, Lisa K

    2008-04-01

    The increased serum survival gene iss has long been recognized for its role in extraintestinal pathogenic Escherichia coli (ExPEC) virulence. iss has been identified as a distinguishing trait of avian ExPEC but not of human ExPEC. This gene has been localized to large virulence plasmids and shares strong similarities with the bor gene from bacteriophage lambda. Here, we demonstrate that three alleles of iss occur among E. coli isolates that appear to have evolved from a common lambda bor precursor. In addition to the occurrence of iss on the ColV/BM virulence plasmids, at least two iss alleles occur within the E. coli chromosome. One of these alleles (designated type 3) was found to occur in the genomes of all currently sequenced ExPEC strains on a similar prophage element that also harbors the Sit iron and manganese transport system. When the prevalence of the three iss types was examined among 487 E. coli isolates, the iss type 3 gene was found to occur at a high frequency among ExPEC isolates, irrespective of the host source. The plasmid-borne iss allele (designated type 1) was highly prevalent among avian pathogenic E. coli and neonatal meningitis-associated E. coli isolates but not among uropathogenic E. coli isolates. This study demonstrates the evolution of iss in E. coli and provides an additional tool for discriminating among E. coli pathotypes through the differentiation of the three iss allele types and bor.

  8. EcoCyc: Encyclopedia of Escherichia coli genes and metabolism.

    Science.gov (United States)

    Karp, P D; Riley, M; Paley, S M; Pellegrini-Toole, A; Krummenacker, M

    1998-01-01

    The encyclopedia of Escherichia coli genes and metabolism (EcoCyc) is a database that combines information about the genome and the intermediary metabolism of E.coli. The database describes 3030 genes of E.coli , 695 enzymes encoded by a subset of these genes, 595 metabolic reactions that occur in E.coli, and the organization of these reactions into 123 metabolic pathways. The EcoCyc graphical user interface allows scientists to query and explore the EcoCyc database using visualization tools such as genomic-map browsers and automatic layouts of metabolic pathways. EcoCyc can be thought of as an electronic review article because of its copious references to the primary literature, and as a (qualitative) computational model of E.coli metabolism. EcoCyc is available at URL http://ecocyc.PangeaSystems.com/ecocyc/

  9. Efficient expression of the yeast metallothionein gene in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Berka, T.; Shatzman, A.; Zimmerman, J.; Strickler, J.; Rosenberg, M.

    1988-01-01

    The yeast metallothionein gene CUP1 was cloned into a bacterial expression system to achieve efficient, controlled expression of the stable, unprocessed protein product. The Escherichia coli-synthesized yeast metallothionein bound copper, cadmium, zinc, indicating that the protein was functional. Furthermore, E. coli cells expressing CUP1 acquired a new, inducible ability to selectively sequester heavy metal ions from the growth medium.

  10. Yeast DNA sequences initiating gene expression in Escherichia coli.

    Science.gov (United States)

    Lewin, Astrid; Tran, Thi Tuyen; Jacob, Daniela; Mayer, Martin; Freytag, Barbara; Appel, Bernd

    2004-01-01

    DNA transfer between pro- and eukaryotes occurs either during natural horizontal gene transfer or as a result of the employment of gene technology. We analysed the capacity of DNA sequences from a eukaryotic donor organism (Saccharomyces cerevisiae) to serve as promoter region in a prokaryotic recipient (Escherichia coli) by creating fusions between promoterless luxAB genes from Vibrio harveyi and random DNA sequences from S. cerevisiae and measuring the luminescence of transformed E. coli. Fifty-four out of 100 randomly analysed S. cerevisiae DNA sequences caused considerable gene expression in E. coli. Determination of transcription start sites within six selected yeast sequences in E. coli confirmed the existence of bacterial -10 and -35 consensus sequences at appropriate distances upstream from transcription initiation sites. Our results demonstrate that the probability of transcription of transferred eukaryotic DNA in bacteria is extremely high and does not require the insertion of the transferred DNA behind a promoter of the recipient genome.

  11. EcoCyc: Enyclopedia of Escherichia coli Genes and Metabolism.

    Science.gov (United States)

    Karp, P D; Riley, M; Paley, S M; Pellegrini-Toole, A; Krummenacker, M

    1997-01-01

    The Encyclopedia of Genes and Metabolism (EcoCyc) is a database that combines information about the genome and the intermediary metabolism of Escherichia coli. It describes 2970 genes of E.coli, 547 enzymes encoded by these genes, 702 metabolic reactions that occur in E.coli and the organization of these reactions into 107 metabolic pathways. The EcoCyc graphical user interface allows scientists to query and explore the EcoCyc database using visualization tools such as genomic-map browsers and automatic layouts of metabolic pathways. EcoCyc spans the space from sequence to function to allow scientists to investigate an unusually broad range of questions. EcoCyc can be thought of as both an electronic review article because of its copious references to the primary literature, and as an in silicio model of E.coli metabolism that can be probed and analyzed through computational means.

  12. Measuring Escherichia coli Gene Expression during Human Urinary Tract Infections

    Science.gov (United States)

    Mobley, Harry L. T.

    2016-01-01

    Extraintestinal Escherichia coli (E. coli) evolved by acquisition of pathogenicity islands, phage, plasmids, and DNA segments by horizontal gene transfer. Strains are heterogeneous but virulent uropathogenic isolates more often have specific fimbriae, toxins, and iron receptors than commensal strains. One may ask whether it is the virulence factors alone that are required to establish infection. While these virulence factors clearly contribute strongly to pathogenesis, bacteria must survive by metabolizing nutrients available to them. By constructing mutants in all major metabolic pathways and co-challenging mice transurethrally with each mutant and the wild type strain, we identified which major metabolic pathways are required to infect the urinary tract. We must also ask what else is E. coli doing in vivo? To answer this question, we examined the transcriptome of E. coli CFT073 in the murine model of urinary tract infection (UTI) as well as for E. coli strains collected and analyzed directly from the urine of patients attending either a urology clinic or a university health clinic for symptoms of UTI. Using microarrays and RNA-seq, we measured in vivo gene expression for these uropathogenic E. coli strains, identifying genes upregulated during murine and human UTI. Our findings allow us to propose a new definition of bacterial virulence. PMID:26784237

  13. Reproducible gene targeting in recalcitrant Escherichia coli isolates

    Directory of Open Access Journals (Sweden)

    De Greve Henri

    2011-06-01

    Full Text Available Abstract Background A number of allele replacement methods can be used to mutate bacterial genes. For instance, the Red recombinase system of phage Lambda has been used very efficiently to inactivate chromosomal genes in E. coli K-12, through recombination between regions of homology. However, this method does not work reproducibly in some clinical E. coli isolates. Findings The procedure was modified by using longer homologous regions (85 bp and 500-600 bp, to inactivate genes in the uropathogenic E. coli strain UTI89. An lrhA regulator mutant, and deletions of the lac operon as well as the complete type 1 fimbrial gene cluster, were obtained reproducibly. The modified method is also functional in other recalcitrant E. coli, like the avian pathogenic E. coli strain APEC1. The lrhA regulator and lac operon deletion mutants of APEC1 were successfully constructed in the same way as the UTI89 mutants. In other avian pathogenic E. coli strains (APEC3E, APEC11A and APEC16A it was very difficult or impossible to construct these mutants, with the original Red recombinase-based method, with a Red recombinase-based method using longer (85 bp homologous regions or with our modified protocol, using 500 - 600 bp homologous regions. Conclusions The method using 500-600 bp homologous regions can be used reliably in some clinical isolates, to delete single genes or entire operons by homologous recombination. However, it does not invariably show a greater efficiency in obtaining mutants, when compared to the original Red-mediated gene targeting method or to the gene targeting method with 85 bp homologous regions. Therefore the length of the homology regions is not the only limiting factor for the construction of mutants in these recalcitrant strains.

  14. Spectroscopic Comparison of Metal-Rich RRab Stars of the Galactic Field with Their Metal-Poor Counterparts

    CERN Document Server

    Chadid, Merieme; Preston, George W

    2016-01-01

    We investigate atmospheric properties of 35 stable RRab stars that possess the full ranges of period, light amplitude, and metal abundance found in Galactic RR Lyrae stars. Our results are derived from several thousand echelle spectra obtained over several years with the du Pont telescope of Las Campanas Observatory. Radial velocities of metal lines and the Halpha line were used to construct curves of radial velocity versus pulsation phase. From these we estimated radial velocity amplitudes for metal lines (formed near the photosphere) and Halpha Doppler cores (formed at small optical depths). We also measured Halpha emission fluxes when they appear during primary light rises. Spectra shifted to rest wavelengths, binned into small phase intervals, and coadded were used to perform model atmospheric and abundance analyses. The derived metallicities and those of some previous spectroscopic surveys were combined to produce a new calibration of the Layden abundance scale. We then divided our RRab sample into metal...

  15. VizieR Online Data Catalog: VVV Survey RRab stars in Southern Galactic plane (Minniti+, 2017)

    Science.gov (United States)

    Minniti, D.; Dekany, I.; Majaess, D.; Palma, T.; Pullen, J.; Rejkuba, M.; Alonso-Garcia, J.; Catelan, M.; Contreras Ramos, R.; Gonzalez, O. A.; Hempel, M.; Irwin, M.; Lucas, P. W.; Saito, R. K.; Tissera, P.; Valenti, E.; Zoccali, M.

    2017-08-01

    The NIR VISTA Variables in the Via Lactea (VVV) Survey observations were acquired with the VIRCAM camera at the VISTA 4.1m telescope at ESO Paranal Observatory. In the disk fields typically 70 epochs of observations were acquired in the Ks-band between the years 2010 and 2015, in addition to complementary single-epoch observations in the ZYJH bands. The 16 NIR detectors of VIRCAM produce an image of 11.6'*11.6' and a pixel scale of 0.34''/pixel. The deep multi-epoch Ks band photometry allows us to unveil faint variable sources deep in the disk regions of our Galaxy. A search for RRab stars was made throughout tiles d001 to d038 of the VVV survey's disk field, which is a thin slice through the Galactic plane spanning 295

  16. The Konkoly Blazhko Survey: Is light-curve modulation a common property of RRab stars?

    CERN Document Server

    Jurcsik, J; Szeidl, B; Hurta, Zs; Váradi, M; Posztobányi, K; Vida, K; Hajdu, G; Kővári, Zs; Nagy, I; Molnár, L; Belucz, B

    2009-01-01

    A systematic survey to establish the true incidence rate of the Blazhko modulation among short-period, fundamental-mode, Galactic field RR Lyrae stars has been accomplished. The Konkoly Blazhko Survey (KBS) was initiated in 2004. Since then more than 750 nights of observation have been devoted to this project. A sample of 30 RRab stars was extensively observed, and light-curve modulation was detected in 14 cases. The 47% occurrence rate of the modulation is much larger than any previous estimate. The significant increase of the detected incidence rate is mostly due to the discovery of small-amplitude modulation. Half of the Blazhko variables in our sample show modulation with so small amplitude that definitely have been missed in the previous surveys. We have found that the modulation can be very unstable in some cases, e.g. RY Com showed regular modulation only during one part of the observations while during two seasons it had stable light curve with abrupt, small changes in the pulsation amplitude. This ty...

  17. Floating Escherichia coli by expressing cyanobacterial gas vesicle genes

    Science.gov (United States)

    Wang, Tianhe; Kang, Li; Li, Jiaheng; Wu, Wenjie; Zhang, Peiran; Gong, Minghao; Lai, Weihong; Zhang, Chunyan; Chang, Lei; Peng, Yong; Yang, Zhongzhou; Li, Lian; Bao, Yingying; Xu, Haowen; Zhang, Xiaohua; Sui, Zhenghong; Yang, Guanpin; Wang, Xianghong

    2015-02-01

    Gas vesicles are hollow, air-filled polyprotein structures that provide the buoyancy to cells. They are found in a variety of prokaryotes. In this study, we isolated a partial gas vesicle protein gene cluster containing gvpA and gvpC20Ψ from Planktothrix rubescens, and inserted it into an expression vector and expressed it in E. coli. The gas vesicle was developed in bacterial cells, which made bacterial cells to float on medium surface. We also amplified gvpA and gvpC20Ψ separately and synthesized an artificial operon by fusing these two genes with the standardized gene expression controlling elements of E. coli. The artificial operon was expressed in E. coli, forming gas vesicles and floating bacteria cells. Our findings verified that the whole set of genes and the overall structure of gas vesicle gene cluster are not necessary for developing gas vesicles in bacteria cells. Two genes, gvpA and gvpC20Ψ, of the gas vesicle gene cluster are sufficient for synthesizing an artificial operon that can develop gas vesicles in bacteria cells. Our findings provided a wide range of applications including easing the harvest of cultured microalgae and bacteria, as well as enriching and remediating aquatic pollutants by constructing gas vesicles in their cells.

  18. FloatingEscherichia coli by Expressing Cyanobacterial Gas Vesicle Genes

    Institute of Scientific and Technical Information of China (English)

    WANG Tianhe; PENG Yong; YANG Zhongzhou; LI Lian; BAO Yingying; XU Haowen; ZHANG Xiaohua; SUI Zhenghong; YANG Guanpin; WANG Xianghong; KANG Li; LI Jiaheng; WU Wenjie; ZHANG Peiran; GONG Minghao; LAI Weihong; ZHANG Chunyan; CHANG Lei

    2015-01-01

    Gas vesicles are hollow, air-filled polyprotein structures that provide the buoyancy to cells. They are found in a variety of prokaryotes. In this study, we isolated a partial gas vesicle protein gene cluster containinggvpA andgvpC20ΨfromPlanktothrix rubescens, and inserted it into an expression vector and expressed it inE. coli. The gas vesicle was developed in bacterial cells, which made bacterial cells to float on medium surface. We also amplifiedgvpAandgvpC20Ψseparately and synthesized an artificial operon by fusing these two genes with the standardized gene expression controlling elements ofE. coli. The artificial operon was expressed inE. coli, forming gas vesicles and floating bacteria cells. Our findings verified that the whole set of genes and the overall structure of gas vesicle gene cluster are not necessary for developing gas vesicles in bacteria cells. Two genes,gvpAandgvpC20Ψ, of the gas vesicle gene cluster are sufficient for synthesizing an artificial operon that can develop gas vesicles in bacteria cells. Our findings provided a wide range of applications including easing the harvest of cultured microalgae and bacteria, as well as enriching and remediating aquatic pollutants by constructing gas vesicles in their cells.

  19. Characterization of pathogenic Escherichia coli isolated from humans in Austria : phenotypes, toxin gene types and epidemiology

    NARCIS (Netherlands)

    Wagner, M; Allerberger, F; Manafi, M; Lindner, G; Friedrich, A W; Sonntag, A-K; Foissy, H

    2004-01-01

    One hundred and ten clinical Escherichia coli isolates of serovar O157 (n = 102) and O26 (n = 8) were characterized for the presence of putative virulence genes by PCR. All but one of these isolates contained the eae gene. The EHEC-hly gene could be detected in all E. coli O157 and in 50% of E. coli

  20. Characterization of pathogenic Escherichia coli isolated from humans in Austria : phenotypes, toxin gene types and epidemiology

    NARCIS (Netherlands)

    Wagner, M; Allerberger, F; Manafi, M; Lindner, G; Friedrich, A W; Sonntag, A-K; Foissy, H

    2004-01-01

    One hundred and ten clinical Escherichia coli isolates of serovar O157 (n = 102) and O26 (n = 8) were characterized for the presence of putative virulence genes by PCR. All but one of these isolates contained the eae gene. The EHEC-hly gene could be detected in all E. coli O157 and in 50% of E. coli

  1. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks.

    Science.gov (United States)

    Hur, Junguk; Özgür, Arzucan; He, Yongqun

    2017-03-14

    Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of

  2. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Motif Participation by Genes in E. coli Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Michael eMayo

    2012-09-01

    Full Text Available Motifs are patterns of recurring connections among the genes of genetic networks that occur more frequently than would be expected from randomized networks with the same degree sequence. Although the abundance of certain three-node motifs, such as the feed-forward loop, is positively correlated with a networks’ ability to tolerate moderate disruptions to gene expression, little is known regarding the connectivity of individual genes participating in multiple motifs. Using the transcriptional network of the bacterium Escherichia coli, we investigate this feature by reconstructing the distribution of genes participating in feed-forward loop motifs from its largest connected network component. We contrast these motif participation distributions with those obtained from model networks built using the preferential attachment mechanism employed by many biological and man-made networks. We report that, although some of these model networks support a motif participation distribution that appears qualitatively similar to that obtained from the bacterium Escherichia coli, the probability for a node to support a feed-forward loop motif may instead be strongly influenced by only a few master transcriptional regulators within the network. From these analyses we conclude that such master regulators may be a crucial ingredient to describe coupling among feed-forward loop motifs in transcriptional regulatory networks.

  4. Prevalence of Shiga toxin genes and intimin genes in uropathogenic Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Kobra Abbasi; Elahe Tajbakhsh

    2015-01-01

    Objective:To identifystx1, stx2 andeaeA genes inEscherichia coli (E. coli) strains isolated from urine samples in Shahrekord, Iran. Methods: In this cross study a total of 147 middle urine samples from patients with symptoms of urinary tract infection (UTI), referred to clinical laboratories of Shahrekord were studied. Taken samples were cultured to detect Shigatoxin-producing strains and finally 76E. coli isolates were identified using the standard biochemical tests as well as the selective and differential media. The multiplexPCR method was used to evaluate the presence ofstx1, stx2 andeaeA genes.DNA bacteria extraction was performed by boiling and thenPCR was performed in the presence of specific primers. Results: A total of 147 urine samples were collected from patients with suspectedUTI, and 76 samples (51.70%) were diagnosed withE. coli. Among 76 studied isolations ofE. coli, 3 (3.94%) had a positive reaction to lactose and negative reaction to sorbitol. In the female gender,stx1 gene that shown in the samples was related to 30–39 age group. In the other sample related to 20–29 age group,stx1 andeaeA gene were shown. But in male genderstx1 gene was reported in the sample related to 40–49 age group.stx1, stx2 andeaeA genes were not observed together in any samples. Conclusions: Isolation of Shiga toxin-producingE. coli strains has great importance because of the possibility of clinical complications such as hemolytic-uremic syndrome.

  5. rec genes and homologous recombination proteins in Escherichia coli.

    Science.gov (United States)

    Clark, A J

    1991-04-01

    The twenty-five years since the first published report of recA mutants in Escherichia coli has seen the identification of more than 12 other recombination genes. The genes are usually grouped into three pathways named RecBCD, RecE and RecF for prominent genes which function in each. A proposal is made here that there are two RecF pathways, one sensitive and one resistant to exonuclease I, the SbcB enzyme. Five methods of grouping the genes functionally are discussed: 1) by enzyme activity, 2) by common indirect suppressor, 3) by common phenotype, 4) by common regulation and 5) by epistasis. Five classes of enzyme activities implicated in recombination are discussed according to their involvement in presynapsis, synapsis or postsynapsis: 1) nucleases 2) helicases 3) DNA-binding proteins 4) topoisomerases and 5) ligases. Plausible presynaptic steps for the RecBCD, RecF (SbcBS) and RecE pathways show the common feature of generating 3'-terminated single-stranded DNA (ssDNA). On this ssDNA it is proposed that a RecA protein filament is generated discontinuously. This implies the existence of nucleation and possibly measurement and 3' end protection proteins. Specific proposals are made for which recombination genes might encode such products. Finally the generality of the RecA-ssDNA-filament mechanism of synapsis in the cellular biological world is discussed.

  6. Molecular cloning of the Salmonella typhimurium lep gene in Escherichia coli

    NARCIS (Netherlands)

    van Dijl, J M; van den Bergh, R; Reversma, T; Smith, H; Bron, S; Venema, G

    1990-01-01

    A system is described which enabled the selection of a heterologous lep gene, encoding signal peptidase I, in Escherichia coli. It is based on complementation of an E. coli mutant, in which the synthesis of signal peptidase I can be regulated. With this system the lep gene of Salmonella typhimurium

  7. DETECTION OF ESCHERICHIA COLI IN WATER USING A COLORIMETRIC GENE PROBE ASSAY

    Science.gov (United States)

    A commercially available DNA hydribization assay (Gene-trak , Framingham, MA. USA) was compared with the EC-MUG procedure for the detection of Escherichia coli in water. The gene probe gave positive responses for pure cultures of E. coli 0157:H7, E. fergusonii, Shigella sonnei, S...

  8. Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method.

    Science.gov (United States)

    Schierack, Peter; Rödiger, Stefan; Kuhl, Christoph; Hiemann, Rico; Roggenbuck, Dirk; Li, Ganwu; Weinreich, Jörg; Berger, Enrico; Nolan, Lisa K; Nicholson, Bryon; Römer, Antje; Frömmel, Ulrike; Wieler, Lothar H; Schröder, Christian

    2013-01-01

    We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.

  9. Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method.

    Directory of Open Access Journals (Sweden)

    Peter Schierack

    Full Text Available We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2 and their probiotic activity against infection by enteropathogenic E. coli (EPEC. 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.

  10. An attempt to identify the likely sources of Escherichia coli harboring toxin genes in rainwater tanks.

    Science.gov (United States)

    Ahmed, W; Sidhu, J P S; Toze, S

    2012-05-01

    In this study, 200 Escherichia coli isolates from 22 rainwater tank samples in Southeast Queensland, Australia were tested for the presence of 10 toxin genes (i.e., stx(1), stx(2), hlyA, ehxA, LT1, ST1, cdtB, east1, cnf1, and cvaC) associated with intestinal and extraintestinal pathotypes. Among the 22 rainwater tanks tested, 5 (28%), 7 (32%), 7 (32%), and 1 (5%) tanks contained E. coli harboring ST1, east1, cdtB, and cvaC genes, respectively. Of the 200 E. coli isolates from the 22 tanks, 43 (22%) strains from 13 (59%) tanks were harboring toxin gene. An attempt was made to establish a link between bird and possum fecal contamination and the presence of these potential clinically significant E. coli strains harboring toxin genes in rainwater tanks. Among the 214 E. coli isolates tested from birds, 30 (14%), 11 (5%) and 18 (8%) strains contained east1, cdtB, and cvaC toxin genes, respectively. Similarly, among the 214 possum E. coli isolates, 74 (35%) contained only the east1 toxin gene. All E. coli strains from rainwater tanks, bird and possum fecal samples harboring toxin genes were biochemically fingerprinted. Biochemical phenotypes (BPTs) of 14 (33%) E. coli strains from 7 rainwater tanks and 9 (21%) E. coli strains from 6 rainwater tanks were identical to a number of BPTs of E. coli strains isolated from bird and possum feces suggesting that these animals may be the sources of these E. coli in rainwater tanks. as a precautionary measure, it is recommended that rainwater should be treated prior to drinking. In addition, proper maintenance of roof and gutter hygiene and elimination of overhanging tree branches and other structures where possible to prevent the movement of possums are highly recommended.

  11. E. coli recA gene improves gene targeted homologous recombination in Mycoplasma hyorhinis.

    Science.gov (United States)

    Ishag, Hassan Z A; Xiong, Qiyan; Liu, Maojun; Feng, Zhixin; Shao, Guoqing

    2017-05-01

    Mycoplasma hyorhinis is an opportunistic pathogen of pigs. Recently, it has been shown to transform cell cultures, increasing the attention of the researchers. Studies on the pathogenesis require specific genetic tool that is not yet available for the pathogen. To address this limitation, we constructed two suicide plasmids pGEMT-tetM/LR and pGEMT-recA-tetM/LR having a tetracycline resistance marker flanked by two hemolysin gene arms. The latter plasmid encodes an E. coli recA, a gene involved in DNA recombination, repair and maintenance of DNA. Using inactivation of the hemolysin gene, which results in a detectable and measurable phenotype, we found that each plasmid can disrupt the hemolysin gene of M. hyorhinis through a double cross-over homologous recombination. However, inclusion of the E. coli recA gene in the construct resulted in 9-fold increase in the frequency of hemolysin gene mutants among the screened tetracycline resistance colonies. The resultant hemolysin mutant strain lacks the ability to lyse mouse bed blood cells (RBC) when tested in vitro (p<0.001). The host-plasmid system described in this study, has applications for the genetic manipulation of this pathogen and potentially other mycoplasmas.

  12. Inactivation and Gene Expression of a Virulent Wastewater Escherichia coli Strain and the Nonvirulent Commensal Escherichia coli DSM1103 Strain upon Solar Irradiation

    KAUST Repository

    Aljassim, Nada I.

    2017-03-06

    This study examined the decay kinetics and molecular responses of two Escherichia coli strains upon solar irradiation. The first is E. coli PI-7, a virulent and antibiotic-resistant strain that was isolated from wastewater and carries the emerging NDM-1 antibiotic resistance gene. The other strain, E. coli DSM1103, displayed lower virulence and antibiotic resistance than E. coli PI-7. In a buffer solution, E. coli PI-7 displayed a longer lag phase prior to decay and a longer half-life compared with E. coli DSM1103 (6.64 ± 0.63 h and 2.85 ± 0.46 min vs 1.33 ± 0.52 h and 2.04 ± 0.36 min). In wastewater, both E. coli strains decayed slower than they did in buffer. Although solar irradiation remained effective in reducing the numbers of both strains by more than 5-log10 in <24 h, comparative genomics and transcriptomics revealed differences in the genomes and overall regulation of genes between the two E. coli strains. A wider arsenal of genes related to oxidative stress, cellular repair and protective mechanisms were upregulated in E. coli PI-7. Subpopulations of E. coli PI-7 expressed genes related to dormancy and persister cell formation during the late decay phase, which may have accounted for its prolonged persistence. Upon prolonged solar irradiation, both E. coli strains displayed upregulation of genes related to horizontal gene transfer and antibiotic resistance. Virulence functions unique to E. coli PI-7 were also upregulated. Our findings collectively indicated that, whereas solar irradiation is able to reduce total cell numbers, viable E. coli remained and expressed genes that enable survival despite solar treatment. There remains a need for heightened levels of concern regarding risks arising from the dissemination of E. coli that may remain viable in wastewater after solar irradiation.

  13. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    OpenAIRE

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains...

  14. Urease genes in non-O157 Shiga toxin-producing Escherichia coli : mostly silent but valuable markers for pathogenicity

    NARCIS (Netherlands)

    Friedrich, A W; Lukas, R; Mellmann, A; Köck, R; Zhang, W; Mathys, W; Bielaszewska, M; Karch, H

    2006-01-01

    The distribution of ureC was investigated among 294 Escherichia coli isolates, comprising 72 strains from the E. coli standard reference collection (ECOR), 62 strains from the diarrhoeagenic E. coli (DEC) collection, and 160 clinical isolates of Shiga toxin-producing E. coli (STEC). The ureC gene wa

  15. Urease genes in non-O157 Shiga toxin-producing Escherichia coli : mostly silent but valuable markers for pathogenicity

    NARCIS (Netherlands)

    Friedrich, A W; Lukas, R; Mellmann, A; Köck, R; Zhang, W; Mathys, W; Bielaszewska, M; Karch, H

    2006-01-01

    The distribution of ureC was investigated among 294 Escherichia coli isolates, comprising 72 strains from the E. coli standard reference collection (ECOR), 62 strains from the diarrhoeagenic E. coli (DEC) collection, and 160 clinical isolates of Shiga toxin-producing E. coli (STEC). The ureC gene wa

  16. Detection of attaching and effacing virulence gene of E. coli

    OpenAIRE

    Maratu Soleha

    2013-01-01

    AbstrakLatar belakang: Bakteri Escherichia coli (E. coli) ada yang telah bermutasi menjadi patogen yang menimbulkan berbagai penyakit seperti hemorrhagic colitis (HC), hemolytic uremic syndrome (HUS), sepsis, pnemonia, neonatal meningitis, dan infeksi saluran kemih. Mutasi terjadi karena bakteri ini menerima transfer gen yang virulen dari bakteri lain yang hidup di sekitarnya. E. coli yang biasanya hidup normal di dalam usus manusia telah beradaptasi sehingga bisa hidup di tanah, makanan, dan...

  17. Identification of the Fucose Synthetase Gene in the Colanic Acid Gene Cluster of Escherichia coli K-12

    OpenAIRE

    Andrianopoulos, Kanella; Wang, Lei; Reeves, Peter R.

    1998-01-01

    GDP–l-fucose, the substrate for fucosyltransferases for addition of fucose to polysaccharides or glycoproteins in both procaryotes and eucaryotes, is made from GDP–d-mannose. l-Fucose is a component of bacterial surface antigens, including the extracellular polysaccharide colanic acid produced by most Escherichia coli strains. We previously sequenced the E. coli colanic acid gene cluster and identified one of the GDP–l-fucose biosynthetic pathway genes, gmd. We report here the identification ...

  18. Chromatin architecture and gene expression in Escherichia coli

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2004-01-01

    Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli.......Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli....

  19. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Zou Ruiyang

    2011-04-01

    Full Text Available Abstract Background Accurate interpretation of quantitative PCR (qPCR data requires normalization using constitutively expressed reference genes. Ribosomal RNA is often used as a reference gene for transcriptional studies in E. coli. However, the choice of reliable reference genes has not been systematically validated. The objective of this study is to identify a set of reliable reference genes for transcription analysis in recombinant protein over-expression studies in E. coli. Results In this study, the meta-analysis of 240 sets of single-channel Affymetrix microarray data representing over-expressions of 63 distinct recombinant proteins in various E. coli strains identified twenty candidate reference genes that were stably expressed across all conditions. The expression of these twenty genes and two commonly used reference genes, rrsA encoding ribosomal RNA 16S and ihfB, was quantified by qPCR in E. coli cells over-expressing four genes of the 1-Deoxy-D-Xylulose 5-Phosphate pathway. From these results, two independent statistical algorithms identified three novel reference genes cysG, hcaT, and idnT but not rrsA and ihfB as highly invariant in two E. coli strains, across different growth temperatures and induction conditions. Transcriptomic data normalized by the geometric average of these three genes demonstrated that genes of the lycopene synthetic pathway maintained steady expression upon enzyme overexpression. In contrast, the use of rrsA or ihfB as reference genes led to the mis-interpretation that lycopene pathway genes were regulated during enzyme over-expression. Conclusion This study identified cysG/hcaT/idnT to be reliable novel reference genes for transcription analysis in recombinant protein producing E. coli.

  20. Identification of Genes Important for Growth of Asymptomatic Bacteriuria Escherichia coli in Urine

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; de Evgrafov, Mari Cristina Rodriguez; Phan, Minh Duy;

    2012-01-01

    reduced competitive advantage in the bladder and/or kidney during coinoculation experiments with the parent strain, whereas 83972metE and 83972ilvC did not. Taken together, our data have identified several biosynthesis pathways as new important fitness factors associated with the growth of ABU E. coli......Escherichia coli is the most important etiological agent of urinary tract infections (UTIs). Unlike uropathogenic E. coli, which causes symptomatic infections, asymptomatic bacteriuria (ABU) E. coli strains typically lack essential virulence factors and colonize the bladder in the absence...... of symptoms. While ABU E. coli can persist in the bladder for long periods of time, little is known about the genetic determinants required for its growth and fitness in urine. To identify such genes, we have employed a transposon mutagenesis approach using the prototypic ABU E. coli strain 83972...

  1. Nucleotide sequence of the structural gene for tryptophanase of Escherichia coli K-12.

    OpenAIRE

    Deeley, M C; Yanofsky, C

    1981-01-01

    The tryptophanase structural gene, tnaA, of Escherichia coli K-12 was cloned and sequenced. The size, amino acid composition, and sequence of the protein predicted from the nucleotide sequence agree with protein structure data previously acquired by others for the tryptophanase of E. coli B. Physiological data indicated that the region controlling expression of tnaA was present in the cloned segment. Sequence data suggested that a second structural gene of unknown function was located distal ...

  2. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes

    DEFF Research Database (Denmark)

    Kaas, Rolf Sommer; Rundsten, Carsten Friis; Ussery, David

    2012-01-01

    more biologically relevant, especially considering that many of these genome sequences are draft quality. The E. coli pan-genome for this set of isolates contains 16,373 gene clusters. A core-gene tree, based on alignment and a pan-genome tree based on gene presence/absence, maps the relatedness...

  3. Escherichia coli and Salmonella typhimurium supX genes specify deoxyribonucleic acid topoisomerase I.

    OpenAIRE

    Trucksis, M; Golub, E I; Zabel, D J; Depew, R E

    1981-01-01

    Mutations of the Escherichia coli or Salmonella typhimurium supX genes eliminated deoxyribonucleic acid topoisomerase I. Suppression of a supX amber mutation partially restored the topoisomerase. Multicopy plasmids carrying supX+ caused overproduction of topoisomerase. Thus, these supX genes were identified as topA genes which specify deoxyribonucleic acid topoisomerase I.

  4. The gusBC genes of Escherichia coli encode a glucuronide transport system

    NARCIS (Netherlands)

    Liang, WJ; Wilson, KJ; Xie, H; Knol, J; Suzuki, S; Rutherford, NG; Henderson, PJF; Jefferson, RA

    2005-01-01

    Two genes, gusB and gusC, from a natural fecal isolate of Escherichia coli are shown to encode proteins responsible for transport of beta-glucuronides with synthetic [C-14] phenyl-l-thio-beta-D-glucuronide as the substrate. These genes are located in the gus operon downstream of the gusA gene on the

  5. Escherichia coli and Salmonella typhimurium supX genes specify deoxyribonucleic acid topoisomerase I.

    OpenAIRE

    Trucksis, M; Golub, E I; Zabel, D J; Depew, R E

    1981-01-01

    Mutations of the Escherichia coli or Salmonella typhimurium supX genes eliminated deoxyribonucleic acid topoisomerase I. Suppression of a supX amber mutation partially restored the topoisomerase. Multicopy plasmids carrying supX+ caused overproduction of topoisomerase. Thus, these supX genes were identified as topA genes which specify deoxyribonucleic acid topoisomerase I.

  6. Co-detection of virulent Escherichia coli genes in surface water sources.

    Science.gov (United States)

    Ndlovu, Thando; Le Roux, Marcellous; Khan, Wesaal; Khan, Sehaam

    2015-01-01

    McNemar's test and the Pearson Chi-square were used to assess the co-detection and observed frequency, respectively, for potentially virulent E. coli genes in river water. Conventional multiplex Polymerase Chain Reaction (PCR) assays confirmed the presence of the aggR gene (69%), ipaH gene (23%) and the stx gene (15%) carried by Enteroaggregative E. coli (EAEC), Enteroinvasive E. coli (EIEC) and Enterohermorrhagic E. coli (EHEC), respectively, in river water samples collected from the Berg River (Paarl, South Africa). Only the aggR gene was present in 23% of samples collected from the Plankenburg River system (Stellenbosch, South Africa). In a comparative study, real-time multiplex PCR assays confirmed the presence of aggR (EAEC) in 69%, stx (EHEC) in 15%, ipaH (EIEC) in 31% and eae (EPEC) in 8% of the river water samples collected from the Berg River. In the Plankenburg River, aggR (EAEC) was detected in 46% of the samples, while eae (EPEC) was present in 15% of the water samples analyzed using real-time multiplex PCR in the Plankenburg River. Pearson Chi-square showed that there was no statistical difference (p > 0.05) between the conventional and real-time multiplex PCRs for the detection of virulent E. coli genes in water samples. However, the McNemar's test showed some variation in the co-detection of virulent E. coli genes, for example, there was no statistical difference in the misclassification of the discordant results for stx versus ipaH, which implies that the ipaH gene was frequently detected with the stx gene. This study thus highlights the presence of virulent E. coli genes in river water and while early detection is crucial, quantitative microbial risk analysis has to be performed to identify and estimate the risk to human health.

  7. Co-detection of virulent Escherichia coli genes in surface water sources.

    Directory of Open Access Journals (Sweden)

    Thando Ndlovu

    Full Text Available McNemar's test and the Pearson Chi-square were used to assess the co-detection and observed frequency, respectively, for potentially virulent E. coli genes in river water. Conventional multiplex Polymerase Chain Reaction (PCR assays confirmed the presence of the aggR gene (69%, ipaH gene (23% and the stx gene (15% carried by Enteroaggregative E. coli (EAEC, Enteroinvasive E. coli (EIEC and Enterohermorrhagic E. coli (EHEC, respectively, in river water samples collected from the Berg River (Paarl, South Africa. Only the aggR gene was present in 23% of samples collected from the Plankenburg River system (Stellenbosch, South Africa. In a comparative study, real-time multiplex PCR assays confirmed the presence of aggR (EAEC in 69%, stx (EHEC in 15%, ipaH (EIEC in 31% and eae (EPEC in 8% of the river water samples collected from the Berg River. In the Plankenburg River, aggR (EAEC was detected in 46% of the samples, while eae (EPEC was present in 15% of the water samples analyzed using real-time multiplex PCR in the Plankenburg River. Pearson Chi-square showed that there was no statistical difference (p > 0.05 between the conventional and real-time multiplex PCRs for the detection of virulent E. coli genes in water samples. However, the McNemar's test showed some variation in the co-detection of virulent E. coli genes, for example, there was no statistical difference in the misclassification of the discordant results for stx versus ipaH, which implies that the ipaH gene was frequently detected with the stx gene. This study thus highlights the presence of virulent E. coli genes in river water and while early detection is crucial, quantitative microbial risk analysis has to be performed to identify and estimate the risk to human health.

  8. Role of glycoside hydrolase genes in sinigrin degradation by E. coli O157:H7.

    Science.gov (United States)

    Cordeiro, Roniele P; Doria, Juan H; Zhanel, George G; Sparling, Richard; Holley, Richard A

    2015-07-16

    This work examined Escherichia coli O157:H7 strain 02-0304 for putative genes responsible for sinigrin hydrolysis. Sinigrin is a glucosinolate present in Oriental mustard (Brassica juncea), and its hydrolysis is mediated in plants by the enzyme myrosinase. Sinigrin hydrolysis by plant or bacterial myrosinase yields allyl isothiocyanate (AITC) which is bactericidal. In silico analysis using public databases found sequence similarity between plant myrosinase and enzymes encoded by genes from β-glucosidase families in E. coli O157:H7. Specifically, 6-phospho-β-glucosidase encoded by the genes bglA and ascB (family 1), and chbF (family 4) present in E. coli O157:H7 showed the highest similarity. Polymerase chain reaction (PCR) confirmed the presence of bglA, ascB, and chbF in the clinical E. coli strain tested. Disruption of these genes in wild-type E. coli O157:H7 strain 02-0304 using lambda-red replacement created single and double mutants. The relative importance of each gene in the hydrolysis of sinigrin by E. coli O157:H7 was also assessed by comparing gene expression and sinigrin degradation rates among the E. coli O157:H7 wild-type strain and its mutants. The results suggested that the genes bglA and ascB play a substantial role in the degradation of sinigrin by E. coli O157:H7 strain 02-0304. Copyright © 2015. Published by Elsevier B.V.

  9. EcoCyc: an encyclopedia of Escherichia coli genes and metabolism.

    Science.gov (United States)

    Karp, P D; Riley, M; Paley, S M; Pelligrini-Toole, A

    1996-01-01

    The encyclopedia of Escherichia coli genes and metabolism (EcoCyc) is a database that combines information about the genome and the intermediary metabolism of E.coli. It describes 2034 genes, 306 enzymes encoded by these genes, 580 metabolic reactions that occur in E.coli and the organization of these reactions into 100 metabolic pathways. The EcoCyc graphical user interface allows query and exploration of the EcoCyc database using visualization tools such as genomic map browsers and automatic layouts of metabolic pathways. EcoCyc spans the space from sequence to function to allow investigation of an unusually broad range of questions. EcoCyc can be thought of as both an electronic review article, because of its copious references to the primary literature, and as an in silico model of E.coli that can be probed and analyzed through computational means.

  10. Virulence genes and antimicrobial susceptibility of Escherichia coli taken from women with vaginitis in Talca, Chile.

    Science.gov (United States)

    Padilla, Carlos; Padilla, Andrés; Lobos, Olga

    2014-03-13

    Vaginitis is one of the most common reasons women visit a gynecologist. Escherichia coli has been isolated from women with vaginitis, but its role as a vaginal infection aetiological agent is controversial. This study aimed to detect virulence genes and determine the antimicrobial susceptibility of E. coli strains isolated from monomicrobial and polymicrobial cultures collected from women with vaginitis. The presence of the following virulence genes: papC, hly, iucC, afa, fimH, neuC, sfa/foc, cnf1, usp, and ibeA in two E. coli groups was determined by PCR. The antibacterial susceptibility of strains was tested. A higher percentage (93.3%) of isolated strains from monomicrobial cultures with virulence genes in relation to polymicrobial cultures (56.7%) was found. The most frequent virulence genes in both groups were hly (p = 0.0357), fimH (p = 0.000), and cfn1 (p = 0.000). In addition, E. coli isolated from monomicrobial cultures showed 5 genetic combinations compared to the 10 observed in the polymicrobial cultures. An increased number of strains were sensitive to cefotaxime, moxifloxacin, and ciprofloxacin. A high resistance to trimethoprim-sulfamethoxazole was observed. Most of the E. coli strains isolated from monomicrobial cultures and some from polymicrobial cultures showed virulence genes. A better understanding of the virulence and antibacterial susceptibility of E. coli strains isolated from patients with vaginitis can contribute to improved diagnosis and treatment of this disease.

  11. Escherichia coli isolated from feces of brown bears (Ursus arctos) have a lower prevalence of human extraintestinal pathogenic E. coli virulence-associated genes.

    Science.gov (United States)

    Vadnov, Maruša; Barbič, Damjana; Žgur-Bertok, Darja; Erjavec, Marjanca Starčič

    2017-01-01

    Eighty-six Escherichia coli strains from feces of either wild brown bears or those living in a zoo were screened for phylogenetic groups using the revisited Clermont phylotyping method and the prevalence of 24 virulence-associated genes (VAGs) of extraintestinal pathogenic E. coli (ExPEC). Our results showed that most strains of E. coli in bears belonged to phylogenetic groups III/IV/V (29%) and B1 (26%). Only half of the tested VAGs were found in the E. coli bear strains, with fimH present in 72%, ompT in 63%, and kpsMT in 43% of the strains. When the data obtained on the fecal E. coli strains from brown bears were compared with the data obtained on 90 fecal E. coli strains from healthy humans, there were significant differences in E. coli population structures between both hosts.

  12. The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli

    OpenAIRE

    Jean-Philippe Côtôé; Shawn French; Gehrke, Sebastian S.; MacNair, Craig R.; Mangat, Chand S.; Amrita Bharat; Brown, Eric D.

    2016-01-01

    ABSTRACT Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vi...

  13. Functional cooperation of the dnaE and dnaN gene products in Escherichia coli.

    OpenAIRE

    Kuwabara, N; Uchida, H.

    1981-01-01

    A system was designed to isolate second-site intergenic suppressors of a thermosensitive mutation of the dnaE gene of Escherichia coli. The dnaE gene codes for the alpha subunit of DNA polymerase III [McHenry, C. S. & Crow, W. (1979) J. Biol. Chem. 254, 1748-1753]. One such suppressor, named sueA77, was finely mapped and found to be located at 82 min on the E. coli chromosome, between dnaA and recF, and within the dnaN gene [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553]....

  14. [Osmotic shock induces expression of Vibrio fischeri lux genes in Escherichia coli cells].

    Science.gov (United States)

    Zavil'gel'skiĭ, G B; Kotova, V Iu

    2003-04-01

    The effect of osmotic shock on the expression of genes in the lux regulon of marine bacteria Vibrio fischeri was studied in cells of Escherichia coli. Bioluminescence of cells was shown to drastically increase, when cells were exposed to osmotic shock at the early logarithmic growth phase. The expression of lux genes induced by osmotic shock is determined by the two-component regulatory system RcsC-RcsB. A nucleotide sequence in the regulatory region of the luxR gene homologous to the RcsB-box consensus of E. coli is assumed to be a primary site for this system.

  15. [Expression of phosphofructokinase gene from Escherichia coli K-12 in obligately autotrophic bacterium Acidithiobacillus thiooxidans].

    Science.gov (United States)

    Tian, Keli; Lin, Jianqun; Liu, Xiangmei; Liu, Ying; Zhang, Changkai

    2003-10-01

    A plasmid pSDK-1 containing the Escherichia coli phosphofructokinase-1 (EC 2.7.1. 11) gene (pfkA) was constructed and transferred into Acidithiobacillus thiooxidans Tt-Z2 by conjugation. The transfer frequency of plasmid from E. coli to Tt-Z2 was 2.6 x 10(-6). More than 68% of Tt-Z2 cells carried the recombinant plasmids after being cultured for 50 generations without selective pressure, which showed that pSDK-1 was maintained consistently in Tt-Z2. The pfkA gene from E. coli could be expressed in this obligately autotrophic bacterium but the enzyme activity (14 U/g was lower than that in E. coli (K-12: 86 U/g; DF1010 carrying plasmid pSDK-1: 97 U/g). In th presence of glucose, the Tt-Z2 transconjugant consumed glucose leading to a better growth yield.

  16. The emergence and fate of horizontally acquired genes in Escherichia coli

    NARCIS (Netherlands)

    Passel, van M.W.J.; Marri, P.R.; Ochman, H.

    2008-01-01

    Bacterial species, and even strains within species, can vary greatly in their gene contents and metabolic capabilities. We examine the evolution of this diversity by assessing the distribution and ancestry of each gene in 13 sequenced isolates of Escherichia coli and Shigella. We focus on the emerge

  17. The gntP Gene of Escherichia coli Involved in Gluconate Uptake

    DEFF Research Database (Denmark)

    Klemm, Per; Tong, S.; Nielsen, Henrik

    1996-01-01

    The gntP gene, located between the fim and uxu loci in Escherichia coli K-12, has been cloned and characterized. Nucleotide sequencing of a region encompassing the gntP gene revealed an open reading frame of 447 codons with significant homology to the Bacillus subtilis gluconate permease. Northern...

  18. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli.

    Science.gov (United States)

    Lewin, Astrid; Mayer, Martin; Chusainow, Janet; Jacob, Daniela; Appel, Bernd

    2005-06-20

    The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms.

  19. Blue ghosts: a new method for isolating amber mutants defective in essential genes of Escherichia coli

    DEFF Research Database (Denmark)

    Brown, S; Brickman, E R; Beckwith, J

    1981-01-01

    We describe a technique which permits an easy screening for amber mutants defective in essential genes of Escherichia coli. Using this approach, we have isolated three amber mutants defective in the rho gene. An extension of the technique allows the detection of ochre mutants and transposon inser...

  20. Association between antimicrobial resistance and virulence genes in Escherichia coli obtained from blood and faeces

    DEFF Research Database (Denmark)

    Bagger-Skjøt, Line; Sandvang, Dorthe; Frimodt-Møller, Niels;

    2007-01-01

    Escherichia coli isolates obtained from faeces (n = 85) and blood (n = 123) were susceptibility tested against 17 antimicrobial agents and the presence of 9 virulence genes was determined by PCR. Positive associations between several antimicrobial resistances and 2 VF genes (iutA and traT) were...

  1. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    Science.gov (United States)

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  2. The emergence and fate of horizontally acquired genes in Escherichia coli

    NARCIS (Netherlands)

    Passel, van M.W.J.; Marri, P.R.; Ochman, H.

    2008-01-01

    Bacterial species, and even strains within species, can vary greatly in their gene contents and metabolic capabilities. We examine the evolution of this diversity by assessing the distribution and ancestry of each gene in 13 sequenced isolates of Escherichia coli and Shigella. We focus on the emerge

  3. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes

    Directory of Open Access Journals (Sweden)

    Kaas Rolf S

    2012-10-01

    Full Text Available Abstract Background Escherichia coli exists in commensal and pathogenic forms. By measuring the variation of individual genes across more than a hundred sequenced genomes, gene variation can be studied in detail, including the number of mutations found for any given gene. This knowledge will be useful for creating better phylogenies, for determination of molecular clocks and for improved typing techniques. Results We find 3,051 gene clusters/families present in at least 95% of the genomes and 1,702 gene clusters present in 100% of the genomes. The former 'soft core' of about 3,000 gene families is perhaps more biologically relevant, especially considering that many of these genome sequences are draft quality. The E. coli pan-genome for this set of isolates contains 16,373 gene clusters. A core-gene tree, based on alignment and a pan-genome tree based on gene presence/absence, maps the relatedness of the 186 sequenced E. coli genomes. The core-gene tree displays high confidence and divides the E. coli strains into the observed MLST type clades and also separates defined phylotypes. Conclusion The results of comparing a large and diverse E. coli dataset support the theory that reliable and good resolution phylogenies can be inferred from the core-genome. The results further suggest that the resolution at the isolate level may, subsequently be improved by targeting more variable genes. The use of whole genome sequencing will make it possible to eliminate, or at least reduce, the need for several typing steps used in traditional epidemiology.

  4. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression

    DEFF Research Database (Denmark)

    Beloin, C.; Valle, J.; Latour-Lambert, P.

    2004-01-01

    with the exponential growth phase, 1.9% of the genes showed a consistent up- or downregulation by a factor greater than two, and that 10% of the E. coli genome is significantly differentially expressed. The functions of the genes induced in these conditions correspond to stress response as well as energy production...... that the biofilm lifestyle, although sharing similarities with the stationary growth phase, triggers the expression of specific sets of genes. Using gene disruption of 54 of the most biofilm-induced genes followed by a detailed phenotypic study, we validated the biological relevance of our analysis and showed......The formation of biofilm results in a major lifestyle switch that is thought to affect the expression of multiple genes and operons. We used DNA arrays to study the global effect of biofilm formation on gene expression in mature Escherichia coli K-12 biofilm. We show that, when biofilm is compared...

  5. Adherence and virulence genes of Escherichia coli from children diarrhoea in the Brazilian Amazon.

    Science.gov (United States)

    Benevides-Matos, Najla; Pieri, Fabio A; Penatti, Marilene; Orlandi, Patrícia P

    2015-03-01

    The bacterial pathogen most commonly associated with endemic forms of childhood diarrhoea is Escherichia coli . Studies of epidemiological characteristics of HEp-2 cell-adherent E. coli in diarrhoeal disease are required, particularly in developing countries. The aim of this study was evaluate the presence and significance of adherent Escherichia coli from diarrhoeal disease in children. The prevalence of LA, AA, and DA adherence patterns were determined in HEp-2 cells, the presence of virulence genes and the presence of the O serogroups in samples obtained from 470 children with acute diarrhoea and 407 controls in Porto Velho, Rondônia, Brazil. E. coli isolates were identified by PCR specific for groups of adherent E. coli . Out of 1,156 isolates obtained, 128 (11.0%) were positive for eae genes corresponding to EPEC, however only 38 (29.6%) of these amplified bfpA gene . EAEC were isolated from 164 (14.1%) samples; of those 41(25%), 32 (19%) and 16 (9.7%) amplified eagg , aggA or aafA genes, respectively and aggA was significantly associated with diarrhoea ( P = 0.00006). DAEC identified by their adhesion pattern and there were few isolates. In conclusion, EAEC was the main cause of diarrhoea in children, especially when the aggA gene was present, followed by EPEC and with a negligible presence of DAEC.

  6. Adherence and virulence genes of Escherichia coli from children diarrhoea in the Brazilian Amazon

    Science.gov (United States)

    Benevides-Matos, Najla; Pieri, Fabio A.; Penatti, Marilene; Orlandi, Patrícia P.

    2015-01-01

    The bacterial pathogen most commonly associated with endemic forms of childhood diarrhoea is Escherichia coli . Studies of epidemiological characteristics of HEp-2 cell-adherent E. coli in diarrhoeal disease are required, particularly in developing countries. The aim of this study was evaluate the presence and significance of adherent Escherichia coli from diarrhoeal disease in children. The prevalence of LA, AA, and DA adherence patterns were determined in HEp-2 cells, the presence of virulence genes and the presence of the O serogroups in samples obtained from 470 children with acute diarrhoea and 407 controls in Porto Velho, Rondônia, Brazil. E. coli isolates were identified by PCR specific for groups of adherent E. coli . Out of 1,156 isolates obtained, 128 (11.0%) were positive for eae genes corresponding to EPEC, however only 38 (29.6%) of these amplified bfpA gene . EAEC were isolated from 164 (14.1%) samples; of those 41(25%), 32 (19%) and 16 (9.7%) amplified eagg , aggA or aafA genes, respectively and aggA was significantly associated with diarrhoea ( P = 0.00006). DAEC identified by their adhesion pattern and there were few isolates. In conclusion, EAEC was the main cause of diarrhoea in children, especially when the aggA gene was present, followed by EPEC and with a negligible presence of DAEC. PMID:26221098

  7. Design and construction of a synthetic Bacillus thuringiensis Cry4Aa gene: hyperexpression in Escherichia coli.

    Science.gov (United States)

    Hayakawa, Tohru; Howlader, Mohammad Tofazzal Hossain; Yamagiwa, Masashi; Sakai, Hiroshi

    2008-10-01

    Cry4Aa produced by Bacillus thuringiensis is a dipteran-specific toxin and is, therefore, of great interest for developing a bioinsecticide to control mosquitoes. However, the expression of Cry4Aa in Escherichia coli is relatively low, which is a major disadvantage in its development as a bioinsecticide. In this study, to establish an effective production system, a 1,914-bp modified gene (cry4Aa-S1) encoding Cry4Aa was designed and synthesized in accordance with the G + C content and codon preference of E. coli genes without altering the encoded amino acid sequence. The cry4Aa-S1 gene allowed a significant improvement in expression level, over five-fold, compared to that of the original cry4Aa gene. The product of the cry4Aa-S1 gene showed the same level of insecticidal activity against Culex pipiens larvae as that from cry4Aa. This suggested that unfavorable codon usage was one of the reasons for poor expression of cry4Aa in E. coli, and, therefore, changing the cry4Aa codons to accord with the codon usage in E. coli led to efficient production of Cry4Aa. Efficient production of Cry4Aa in E. coli can be a powerful measure to prepare a sufficient amount of Cry4Aa protein for both basic analytical and applied researches.

  8. Probiotic bacteria change Echherichia coli-induced gene expression in cultured colonocytes: Implications in intestinal pathophysiology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the change in eukaryotic gene expression profile in Caco-2 cells after infection with strains of Escherichia coli and commensal probiotic bacteria.METHODS: A 19200 gene/expressed sequence tag gene chip was used to examine expression of genes after infection of Caco-2 cells with strains of normal flora E.coli, Lactobacillus plantarum, and a combination of the two.RESULTS: The cDNA microarray revealed up-regulation of 155 and down-regulation of 177 genes by E. coli. L. plantarum up-regulated 45 and down-regulated 36 genes. During mixed infection, 27 genes were upregulated and 59 were down-regulated, with nullification of stimulatory/inhibitory effects on most of the genes. Expression of several new genes was noted in this group.CONCLUSION: The commensal bacterial strains used in this study induced the expression of a large number of genes in colonocyte-like cultured cells and changed the expression of several genes involved in important cellular processes such as regulation of transcription, protein biosynthesis, metabolism, cell adhesion, ubiquitination,and apoptosis. Such changes induced by the presence of probiotic bacteria may shape the physiologic and pathologic responses they trigger in the host.

  9. The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Côtôé

    2016-11-01

    Full Text Available Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo. To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli. Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms.

  10. Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs ▿

    OpenAIRE

    2009-01-01

    Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotyp...

  11. Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli.

    OpenAIRE

    Kashiwagi, K; Miyamoto, S.; Suzuki, F; Kobayashi, H.; Igarashi, K.

    1992-01-01

    Excretion of putrescine from Escherichia coli was assessed by measuring its uptake into inside-out membrane vesicles. The vesicles were prepared from wild-type E. coli or E. coli transformed with plasmids containing one of the three polyamine transport systems. The results indicate that excretion of putrescine is catalyzed by the putrescine transport protein, encoded by the potE gene located at 16 min on the E. coli chromosome. Loading of ornithine (or lysine) inside the vesicles was essentia...

  12. Organization and transcription of the dnaA and dnaN genes of Escherichia coli.

    Science.gov (United States)

    Sakakibara, Y; Tsukano, H; Sako, T

    1981-01-01

    The locations of the linked dnaA and dnaN genes of Escherichia coli in a specialized transducing lambda phage genome have been determined by electron microscopic heteroduplex analysis, using phages with deletions or insertions in the dnaA or dnaN gene. The transcription initiation sites for the dna genes were also localized by electron microscopic analysis of DNA-RBA heteroduplex molecules formed between the E. coli DNA fragment of the phage genome and the in vitro transcription products of the fragment. The dnaN gene was found to be transcribed in the same direction as the dnaA gene, and predominantly from the promoter of the dnaA gene.

  13. [Cloning of new acylamidase gene from Rhodococcus erythropolis and its expression in Escherichia coli].

    Science.gov (United States)

    Lavrov, K V; Ianenko, A S

    2013-10-01

    The gene for new Rhodococcus erythropolis TA37 acylamidase, which possesses unique substrate specificity, has been cloned and expressed in E. coli. Substrates for this enzyme are not only simple amides, such as acetamide and propionamide, but also N-substituted amides, such as 4'-nitroacetanilide. The 1431-bp gene was expressed in E. coli BL21 (DE3) cells on pET16b plasmid under the control of a promoter of the φ 10 gene from the T7 phage. The molecular mass of recombinant acylamidase in E. coli was 55 kDa, which corresponded to that of native acylamidase from Rhodococcus erythropolis TA37. Recombinant acylamidase was able to hydrolize N-substituted amides. A search of a nucleotide database and multiple alignment revealed that acylamidase belonged to the Amidase protein family PF01425, but its nucleotide and amino acid sequences differed significantly from those of the described amidases.

  14. CLONING SEGMENT SPIKE PROTEIN GENE OF SARS-COV AND ITS EXPRESSION IN ESCHERICHIA COLI

    Institute of Scientific and Technical Information of China (English)

    刘中华; 许文波; 毛乃颖; 张燕; 朱贞; 崔爱利; 杨建国; 胡海涛

    2004-01-01

    Objective Expressing and purifying the segment of SARS-CoV spike protein in E.Coli. Methods The target gene was obtained by RT-PCR. The PCR product was cloned into pEGM- T Easy Vector, sequencing and double restriction digestion ( BamHⅠ,PstⅠ) were performed. The target gene was subcloned into PQE30 expression vector. The gene was expressed in the E.coli strain M15 cells induced by IPTG. The protein was purified with a nickel HiTrap chelating metal affinity column. Results The recombinant expression plasmid was successfully constructed and the protein was well expressed in E. coli strain M15 cells. The ideal pure protein was obtained by purification. Western blotting analysis suggested the protein could act with the convalescent sera of lab confirmed SARS patients. Conclusion The segment of SARS-CoV spike protein was well expressed and purified, and can be applied in diagnosis and immunological research of SARS.

  15. In silico phylogenetic and virulence gene profile analyses of avian pathogenic Escherichia coli genome sequences

    Directory of Open Access Journals (Sweden)

    Thaís C.G. Rojas

    2014-02-01

    Full Text Available Avian pathogenic Escherichia coli (APEC infections are responsible for significant losses in the poultry industry worldwide. A zoonotic risk has been attributed to APEC strains because they present similarities to extraintestinal pathogenic E. coli (ExPEC associated with illness in humans, mainly urinary tract infections and neonatal meningitis. Here, we present in silico analyses with pathogenic E. coli genome sequences, including recently available APEC genomes. The phylogenetic tree, based on multi-locus sequence typing (MLST of seven housekeeping genes, revealed high diversity in the allelic composition. Nevertheless, despite this diversity, the phylogenetic tree was able to cluster the different pathotypes together. An in silico virulence gene profile was also determined for each of these strains, through the presence or absence of 83 well-known virulence genes/traits described in pathogenic E. coli strains. The MLST phylogeny and the virulence gene profiles demonstrated a certain genetic similarity between Brazilian APEC strains, APEC isolated in the United States, UPEC (uropathogenic E. coli and diarrheagenic strains isolated from humans. This correlation corroborates and reinforces the zoonotic potential hypothesis proposed to APEC.

  16. Overexpressions of Lambda Phage Lysis Genes and Biosynthetic Genes of Poly-β-hydroxybutyrate in Recombinant E.coli

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A plasmid (pTU9) containing the lambda (λ) phage lysis genes S(-)RRz and the biosynthetic genes phbCAB of poly-β-hydroxybutyrate (PHB) was constructed and transformed into E.coli JM109. Cultured in Luria-Bertani (LB) medium with 20 g/L glucose, E.coli JM109 (pTU9) could accumulate PHB in cells up to 40% (g PHB per g dry cells). A chelating agent EDTA was applied to induce a complete cell lysis and PHB granules were released. This method has a potential application in PHB separation.

  17. EcoGene: a genome sequence database for Escherichia coli K-12.

    Science.gov (United States)

    Rudd, K E

    2000-01-01

    The EcoGene database provides a set of gene and protein sequences derived from the genome sequence of Escherichia coli K-12. EcoGene is a source of re-annotated sequences for the SWISS-PROT and Colibri databases. EcoGene is used for genetic and physical map compilations in collaboration with the Coli Genetic Stock Center. The EcoGene12 release includes 4293 genes. EcoGene12 differs from the GenBank annotation of the complete genome sequence in several ways, including (i) the revision of 706 predicted or confirmed gene start sites, (ii) the correction or hypothetical reconstruction of 61 frame-shifts caused by either sequence error or mutation, (iii) the reconstruction of 14 protein sequences interrupted by the insertion of IS elements, and (iv) pre-dictions that 92 genes are partially deleted gene fragments. A literature survey identified 717 proteins whose N-terminal amino acids have been verified by sequencing. 12 446 cross-references to 6835 literature citations and s are provided. EcoGene is accessible at a new website: http://bmb.med.miami.edu/EcoGene/EcoWeb. Users can search and retrieve individual EcoGene GenePages or they can download large datasets for incorporation into database management systems, facilitating various genome-scale computational and functional analyses.

  18. EcoliNet: a database of cofunctional gene network for Escherichia coli.

    Science.gov (United States)

    Kim, Hanhae; Shim, Jung Eun; Shin, Junha; Lee, Insuk

    2015-01-01

    During the past several decades, Escherichia coli has been a treasure chest for molecular biology. The molecular mechanisms of many fundamental cellular processes have been discovered through research on this bacterium. Although much basic research now focuses on more complex model organisms, E. coli still remains important in metabolic engineering and synthetic biology. Despite its long history as a subject of molecular investigation, more than one-third of the E. coli genome has no pathway annotation supported by either experimental evidence or manual curation. Recently, a network-assisted genetics approach to the efficient identification of novel gene functions has increased in popularity. To accelerate the speed of pathway annotation for the remaining uncharacterized part of the E. coli genome, we have constructed a database of cofunctional gene network with near-complete genome coverage of the organism, dubbed EcoliNet. We find that EcoliNet is highly predictive for diverse bacterial phenotypes, including antibiotic response, indicating that it will be useful in prioritizing novel candidate genes for a wide spectrum of bacterial phenotypes. We have implemented a web server where biologists can easily run network algorithms over EcoliNet to predict novel genes involved in a pathway or novel functions for a gene. All integrated cofunctional associations can be downloaded, enabling orthology-based reconstruction of gene networks for other bacterial species as well. Database URL: http://www.inetbio.org/ecolinet.

  19. Detection of the staphylococcal multiresistance gene cfr in Escherichia coli of domestic-animal origin.

    Science.gov (United States)

    Wang, Yang; He, Tao; Schwarz, Stefan; Zhou, Degang; Shen, Zhangqi; Wu, Congming; Wang, Yu; Ma, Licai; Zhang, Qijing; Shen, Jianzhong

    2012-05-01

    To investigate the presence and the genetic environment of the multiresistance gene cfr in Escherichia coli found in domestic animals. A total of 1230 E. coli isolates, collected from pigs, chickens and ducks, were screened by PCR for the cfr gene. The location of the cfr gene was determined by Southern blotting, the transferability of cfr gene was tested by conjugation and transformation, and the regions flanking the cfr gene were sequenced by a modified random primer walking strategy. The location of the cfr promoter sequence was analysed by mapping the cfr transcription start site using rapid amplification of 5' cDNA ends (5' RACE). Only a single strain from the nasal swab of a pig harboured the cfr gene. Southern blotting indicated that the cfr gene was located on a ~110 kb plasmid, designated pEC-01. A cfr-carrying segment of 1545 bp with a sequence identical to that of the cfr-harbouring plasmid pSCFS1 was flanked by two IS26 elements in the same orientation. The IS26 transposition created a new hybrid promoter in which the -35 region was part of the left inverted repeat of IS26 while the -10-like sequence was part of the original cfr upstream region. To the best of our knowledge, this is the first report of the cfr gene in a naturally occurring E. coli strain. Continued surveillance of the presence of the cfr gene in Gram-negative bacteria of domestic-animal origin is warranted.

  20. Structure and gene cluster of the O-antigen of Escherichia coli O133.

    Science.gov (United States)

    Shashkov, Alexander S; Zhang, Yuanyuan; Sun, Qiangzheng; Guo, Xi; Senchenkova, Sof'ya N; Perepelov, Andrei V; Knirel, Yuriy A

    2016-07-22

    The O-specific polysaccharide (O-antigen) of Escherichia coli O133 was obtained by mild acid hydrolysis of the lipopolysaccharide of E. coli O133. The structure of the hexasaccharide repeating unit of the polysaccharide was elucidated by (1)H and (13)C NMR spectroscopy, including a two-dimensional (1)H-(1)H ROESY experiment: Functions of genes in the O-antigen gene cluster were putatively identified by comparison with sequences in the available databases and, particularly, an encoded predicted multifunctional glycosyltransferase was assigned to three α-l-rhamnosidic linkages.

  1. Urinary Tract Infection and fimH Gene in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ali Shojaeiani

    2013-07-01

    Full Text Available AbstractBackground and objective: E. coli is considered causes of urinary tract infection (UTI and the majority part of nosocomial infections. This bacterium for having pathogenicity effects is necessary to have virulence factors. One of this factors is fimH (Type I fimbriae. The aim of this research “Study of prevalence of fimH gene in Escherichia coli isolated from patients with and without kidney stone.Materials and methods: A total of 70 urinary samples of stricken with UTI of referred to Ttaleghani Hospital, 42 urinary samples were contaminated with E. coli. Then, is accomplished antibiogram with 9 conventional antibiotics for all of the bacteria. The presence of fimH gene was investigated by PCR. Results: A total of 70 urinary samples were collected, 42 samples (60% were contaminated with Escherichia coli. Of 42 samples, 12 samples (28.6% have had kidney stone & 30 samples (71.4% have not had kidney stone (P<0.05. 24 samples (57.1% have had fimH gene & 18 samples (42.9% have not had fimH gene (P<0.05. Of 12 samples individuals of stricken with kidney stone, 8 samples (66.7% have had fimH gene & 4 samples (33. 3% have not had fimH gene (P<0.05. By doing antibiogram, recommended antibiotics for Urinary Tract Infection were included Imipeneme & Gentamicin. Conclusion: Eschrichia coli with prevalence of 60% were the most common bacteria isolated from the urine of patients with UTI. Individuals with UTI are susceptible for kidney stone formation. fimH gene in patients with UTI is an important pathogenic factor. This gene is involved in advancing kidney stones formation. The identification of microorganisms present in the kidney stone can be treated with appropriate antibiotics to reduce the risk of stone.

  2. Cloning of Bacillus subtilis leucina A, B and C genes with Escherichia coli plasmids and expression of the leuC gene in E. coli.

    Science.gov (United States)

    Nagahari, K; Sakaguchi, K

    1978-01-17

    The leucine genes of Bacillus subtilis have been cloned directly from the chromosomal DNA into Escherichia coli leuB cells by selection for the Leu+ phenotype using RSF2124 as a vector plasmid. The hybrid plasmid designated RSF2124-B.leu contained a 4.2 megadalton fragment derived from B. subtilis DNA, including the leu genes. The fragment had one site susceptible to EcoRI* and another site susceptible to BamNI endonuclease. Among the three fragments produced by EcoRI* and BamNI endonucleases, the 1.2 megadalton fragment had the ability to transform B. subtilis leuA, leuB and leuC auxotrophs to leu+. However, B. subtilis ilvB and ilvc auxotrophs were not rescued even by the whole 4.2 megadalton fragment present in the hybrid plasmid. beta-Isopropylmalate dehydrogenase (leuB gene product) activity found in E. coli cells containing the hybrid plasmid was about 60% of that in E. coli wild type cells, despite the high copy number (7.8) of the plasmid per chromosome observed.

  3. Characterization of the gcd gene from Escherichia coli K-12 W3110 and regulation of its expression.

    Science.gov (United States)

    Yamada, M; Asaoka, S; Saier, M H; Yamada, Y

    1993-01-01

    DNA sequence and expressional analyses of the gcd gene of Escherichia coli K-12 W3110 revealed that two promoters that were detected were regulated negatively by cyclic AMP and positively by oxygen. Sequence conservation of the gcd gene between E. coli K-12 W3110 and PPA42 suggests that glucose dehydrogenase is required for the E. coli cells, even though it ordinarily exists as an apoprotein.

  4. fimH gene cloning, of Escherichia coli uropathogen and examination of its subsequence diversity

    Directory of Open Access Journals (Sweden)

    Samaneh Ostad Mohammadi

    2013-09-01

    Full Text Available Background: Escherichia coli uropathogen is the most prevalent pathogen separated from urinary tract that often is originated from intestinal flora of the own person. Urinary tract infection is one of the most prevalent infectious diseases in Human. Whereas binding stage has an important role in bacteria colonization and then the infection is created, one of the most important strategies for inhibiting the infection is inhibiting the bacterial binding. As fimH protein is acting as adhesion it could be an appropriate candidate for producingvaccine. Material and Methods: First, genomic DNA of Escherichia coli bacteria extracted from strain 35218 ATCC. Upon designing primer for fimH gene, the PCR reaction has been applied with Taq DNA Polymerase and then pfu DNA polymerase enzymes. pBluescript (SK- plasmid has been applied for cloning the product of PCR. Using ClustalW and MEGA4 software, the subsequence was alignmented with the gene subsequence existing in gene bank and its gene diversity was examined. Results: After sequencing the cloned fimH gene using ClustalW and MEGA4 software, the result of this subsequence were alignmented with the subsequence of Escherichia coli containing fimH gene existing in gene bank and based on this alignment, N terminal on the protein surface and DNA are protected. Conclusion: N terminal domain of fimH gene is a conserved sequence among clinical isolates and it could be used for designing a vaccine against urinary tract infection.

  5. Induction of the Escherichia coli yijE gene expression by cystine.

    Science.gov (United States)

    Yamamoto, Kaneyoshi; Nonaka, Gen; Ozawa, Takahiro; Takumi, Kazuhiro; Ishihama, Akira

    2015-01-01

    Cystine is formed from two molecules of the cysteine under oxidized conditions, but is reversibly converted to cysteine by reduction. Growth of Escherichia coli is retarded in the presence of excess cystine. Transcriptome analysis showed 11 up-regulated and 26 down-regulated genes upon exposure to excess cystine. The reporter assay confirmed regulation by cystine of the expression of one up-regulated membrane gene, yijE, and two down-regulated membrane genes, yhdT and yihN. In order to identify the as yet unidentified gene encoding cystine efflux transporter, the putative cystine efflux candidate, yijE gene, was over-expressed. Expression of the yijE gene suppressed the slow growth of E. coli in the presence of high concentration of extracellular cystine. In good agreement, the knock-out of yijE gene increased the sensibility to cystine. These observations altogether imply that the yijE gene is involved in response to cystine in E. coli.

  6. Large scale analysis of virulence genes in Escherichia coli strains isolated from Avalon Bay, CA.

    Science.gov (United States)

    Hamilton, Matthew J; Hadi, Asbah Z; Griffith, John F; Ishii, Satoshi; Sadowsky, Michael J

    2010-10-01

    Contamination of recreational waters with Escherichia coli and Enterococcus sp. is a widespread problem resulting in beach closures and loss of recreational activity. While E. coli is frequently used as an indicator of fecal contamination, and has been extensively measured in waterways, few studies have examined the presence of potentially pathogenic E. coli strains in beach waters. In this study, a combination of high-throughput, robot-assisted colony hybridization and PCR-based analyses were used to determine the genomic composition and frequency of virulence genes present in E. coli isolated from beach water in Avalon Bay, Santa Catalina Island, CA. A total of 24,493 E. coli isolates were collected from two sites at a popular swimming beach between August through September 2007 and from July through August 2008. All isolates were examined for the presence of shiga-like toxins (stx1/stx2), intimin (eaeA), and enterotoxins (ST/LT). Of the 24,493 isolates examined, 3.6% contained the eaeA gene, indicating that these isolates were potential EPEC strains. On five dates, however, greater than 10% of the strains were potential EPEC, suggesting that incidence of virulence genes at this beach has a strong temporal component. No STEC or ETEC isolates were detected, and only eight (water and their presence needs to be considered as one of the factors used in decisions concerning beach closures.

  7. Prevalence of Avian Pathogenic Escherichia coli (APEC Clone Harboring sfa Gene in Brazil

    Directory of Open Access Journals (Sweden)

    Terezinha Knöbl

    2012-01-01

    Full Text Available Escherichia coli sfa+ strains isolated from poultry were serotyped and characterized by polymerase chain reaction (PCR and amplified fragment length polymorphism (AFLP. Isolates collected from 12 Brazilian poultry farms mostly belonged to serogroup O6, followed by serogroups O2, O8, O21, O46, O78, O88, O106, O111, and O143. Virulence genes associated were: iuc 90%, fim 86% neuS 60%, hly 34%, tsh 28%, crl/csg 26%, iss 26%, pap 18%, and 14% cnf. Strains from the same farm presented more than one genotypic pattern belonging to different profiles in AFLP. AFLP showed a clonal relation between Escherichia coli sfa+ serogroup O6. The virulence genes found in these strains reveal some similarity with extraintestinal E. coli (ExPEC, thus alerting for potential zoonotic risk.

  8. Identification of the dnaA and dnaN gene products of Escherichia coli.

    Science.gov (United States)

    Yuasa, S; Sakakibara, Y

    1980-01-01

    A specialized transducing lambda phage carrying the dnaN genes of Escherichia coli specifies two proteins of about 41 and 48 kilodaltons (kd). The temperature-sensitive mutations, dnaN59 and dnaA167, were found to result in altered isoelectric points of the 41 and 48 kd proteins, respectively. Thus the dnaN gene product was identified as a weakly acidic 41 and 48 kd protein. The synthesis of the dnaN gene product is greatly reduced by insertion of a transposon Tn3 in the dnaA gene and by deletion in the gene at the distal end to the dnaN gene. Temperature-sensitive dnaA mutations, on the dnaN gene product. These results indicate that the synthesis of the dnaN gene product is dependent on the structural integrity of the dnaA gene.

  9. Expression and characterization of streptococcal rgp genes required for rhamnan synthesis in Escherichia coli.

    Science.gov (United States)

    Shibata, Yukie; Yamashita, Yoshihisa; Ozaki, Kazuhisa; Nakano, Yoshio; Koga, Toshihiko

    2002-06-01

    Six genes (rgpA through rgpF) that were involved in assembling the rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans were previously identified (Y. Yamashita, Y. Tsukioka, K. Tomihisa, Y. Nakano, and T. Koga, J. Bacteriol. 180:5803-5807, 1998). The group-specific antigens of Lancefield group A, C, and E streptococci and the polysaccharide antigen of Streptococcus sobrinus have the same rhamnan backbone as the RGP of S. mutans. Escherichia coli harboring plasmid pRGP1 containing all six rgp genes did not synthesize complete RGP. However, E. coli carrying a plasmid with all of the rgp genes except for rgpE synthesized the rhamnan backbone of RGP without glucose side chains, suggesting that in addition to rgpE, another gene is required for glucose side-chain formation. Synthesis of the rhamnan backbone in E. coli required the initiation of transfer of N-acetylglucosamine to a lipid carrier and the expression of the rgpC and rgpD genes encoding the putative ABC transporter specific for RGP. The similarities in RGP synthesis between E. coli and S. mutans suggest common pathways for rhamnan synthesis. Therefore, we evaluated the rhamnosyl polymerization process in E. coli by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the lipooligosaccharide (LOS). An E. coli transformant harboring rgpA produced the LOS modified by the addition of a single rhamnose residue. Furthermore, the rgpA, rgpB, and rgpF genes of pRGP1 were independently mutated by an internal deletion, and the LOS chemotypes of their transformants were examined. The transformant with an rgpA deletion showed the same LOS profile as E. coli without a plasmid. The transformant with an rgpB deletion showed the same LOS profile as E. coli harboring rgpA alone. The transformant with an rgpF deletion showed the LOS band with the most retarded migration. On the basis of these results, we speculated that RgpA, RgpB, and RgpF, in that order, function in rhamnan polymerization.

  10. Functional characterization of the Escherichia coli K-12 yiaMNO transport protein genes

    NARCIS (Netherlands)

    Plantinga, TH; van der Does, C; Badia, J; Aguilar, J; Konings, WN; Driessen, AJM; Plantinga, Titia H.

    2004-01-01

    The yiaMNO genes of Escherichia coli K-12 encode a binding protein-dependent secondary, or tri-partite ATP-independent periplasmic (TRAP), transporter. Since only a few members of this family have been functionally characterized to date, we aimed to identify the substrate for this transporter. Cells

  11. Identification and Characterization of a Gene Cluster Mediating Enteroaggregative Escherichia Coli Aggregative Adherence Fimbria I Biogenesis

    Science.gov (United States)

    1994-08-01

    adherent E. coli ( DAEC ). respectively. The LA ties to other known fimbrial biogenesis systems of pathogenic pattern is typified by the formation of...agg gene cluster is configured similarly to 60 to 80% of DAEC strains share relatedness with F1845 the determinants of members of the Dr adhesin

  12. Assembly of Highly Standardized Gene Fragments for High-Level Production of Porphyrins in E. coli

    DEFF Research Database (Denmark)

    Nielsen, Morten Thrane; Madsen, Karina Marie; Seppala, Susanna;

    2015-01-01

    to formulate a molecular cloning pipeline and iteratively assemble and optimize a six-gene pathway for protoporphyrin IX synthesis in Escherichia coli. State of the art production levels were achieved through two simple cycles of engineering and screening. The principles defined here are generally applicable...

  13. THE BACILLUS-SUBTILIS ADDAB GENES ARE FULLY FUNCTIONAL IN ESCHERICHIA-COLI

    NARCIS (Netherlands)

    KOOISTRA, J; HAIJEMA, BJ; VENEMA, G

    1993-01-01

    An Escherichia coli recBCD deletion mutant was transformed with plasmids containing the Bacillus subtilis add genes. The transformants had relatively high ATP-dependent exonuclease- and ATP-dependent helicase activities, and their viability, the ability to repair u.v.-damaged DNA and the recombinati

  14. The global gene expression response of Escherichia coli to L-phenylalanine.

    NARCIS (Netherlands)

    Polen, T.; Kramer, M.; Bongaerts, J.; Wubbolts, M.; Wendisch, V.F.

    2005-01-01

    We investigated the global gene expression changes of Escherichia coli due to the presence of different concentrations of phenylalanine or shikimate in the growth medium. The response to 0.5 g l(-1) phenylalanine primarily reflected a perturbed aromatic amino acid metabolism, in particular due to Ty

  15. Distribution and Polymorphism of the Flagellin Genes from Isolates of Campylobacter coli and Campylobacter jejuni

    Science.gov (United States)

    1993-05-01

    American Society for Microbioloc% Distribution and Polymorphism of the Flagellin Genes from Isolates of Campylobacter coli and Campylobacter jejuni RICHARD...in Campylobacter jejuni . serogroups both the flaA and flaB genes are extremely Mol. M;crobiol. 5:1151-1158. z homologous. Within most LIO heat-labile...irllwn hungatei. J1. Bacteriol. 123:-28 proteins of Campylobacter jejuni 81116. Infect. Immun. 59: 42. Thomashow, L S., and S. C. Rittenberg. 198

  16. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jacob Daniela

    2005-06-01

    Full Text Available Abstract Background The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. Results We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. Conclusion According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms.

  17. Colistin Resistance mcr-1-Gene-Bearing Escherichia coli Strain from the United States.

    Science.gov (United States)

    Meinersmann, Richard J; Ladely, Scott R; Plumblee, Jodie R; Hall, M Carolina; Simpson, Sheron A; Ballard, Linda L; Scheffler, Brian E; Genzlinger, Linda L; Cook, Kimberly L

    2016-09-01

    Transmissible colistin resistance in the form of an mcr-1-gene-bearing plasmid has been recently reported in Enterobacteriaceae in several parts of the world. We report here the completed genome sequence of an Escherichia coli strain isolated from swine in the United States that carried the mcr-1 gene on an IncI2-type plasmid. Copyright © 2016 Meinersmann et al.

  18. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions

    Directory of Open Access Journals (Sweden)

    Edwards Jeremy S

    2000-07-01

    Full Text Available Abstract Background Genome sequencing and bioinformatics are producing detailed lists of the molecular components contained in many prokaryotic organisms. From this 'parts catalogue' of a microbial cell, in silico representations of integrated metabolic functions can be constructed and analyzed using flux balance analysis (FBA. FBA is particularly well-suited to study metabolic networks based on genomic, biochemical, and strain specific information. Results Herein, we have utilized FBA to interpret and analyze the metabolic capabilities of Escherichia coli. We have computationally mapped the metabolic capabilities of E. coli using FBA and examined the optimal utilization of the E. coli metabolic pathways as a function of environmental variables. We have used an in silico analysis to identify seven gene products of central metabolism (glycolysis, pentose phosphate pathway, TCA cycle, electron transport system essential for aerobic growth of E. coli on glucose minimal media, and 15 gene products essential for anaerobic growth on glucose minimal media. The in silico tpi-, zwf, and pta- mutant strains were examined in more detail by mapping the capabilities of these in silico isogenic strains. Conclusions We found that computational models of E. coli metabolism based on physicochemical constraints can be used to interpret mutant behavior. These in silica results lead to a further understanding of the complex genotype-phenotype relation. Supplementary information: http://gcrg.ucsd.edu/supplementary_data/DeletionAnalysis/main.htm

  19. DFI-seq identification of environment-specific gene expression in uropathogenic Escherichia coli

    DEFF Research Database (Denmark)

    Madelung, Michelle; Kronborg, Tina; Doktor, Thomas Koed

    2017-01-01

    BACKGROUND: During infection of the urinary tract, uropathogenic Escherichia coli (UPEC) are exposed to different environments, such as human urine and the intracellular environments of bladder epithelial cells. Each environment elicits a distinct bacterial environment-specific transcriptional...... genes upregulated during infection of bladder cell culture. DFI-seq holds potential for the study of bacterial gene expression in live-animal infection systems. By linking fitness genes, such as those genes involved in amino acid biosynthesis, to virulence, this study contributes to our understanding...

  20. Many chromosomal genes modulate MarA-mediated multidrug resistance in Escherichia coli.

    Science.gov (United States)

    Ruiz, Cristian; Levy, Stuart B

    2010-05-01

    Multidrug resistance (MDR) in clinical isolates of Escherichia coli can be associated with overexpression of marA, a transcription factor that upregulates multidrug efflux and downregulates membrane permeability. Using random transposome mutagenesis, we found that many chromosomal genes and environmental stimuli affected MarA-mediated antibiotic resistance. Seven genes affected resistance mediated by MarA in an antibiotic-specific way; these were mostly genes encoding unrelated enzymes, transporters, and unknown proteins. Other genes affected MarA-mediated resistance to all antibiotics tested. These genes were acrA, acrB, and tolC (which encode the major MarA-regulated multidrug efflux pump AcrAB-TolC), crp, cyaA, hns, and pcnB (four genes involved in global regulation of gene expression), and the unknown gene damX. The last five genes affected MarA-mediated MDR by altering marA expression or MarA function specifically on acrA. These findings demonstrate that MarA-mediated MDR is regulated at multiple levels by different genes and stimuli, which makes it both complex and fine-tuned and interconnects it with global cell regulation and metabolism. Such a regulation could contribute to the adaptation and spread of MDR strains and may be targeted to treat antibiotic-resistant E. coli and related pathogens.

  1. Biochemical genetics of the cryptic gene system for cellobiose utilization in Escherichia coli K12.

    Science.gov (United States)

    Kricker, M; Hall, B G

    1987-03-01

    The cellobiose catabolic system of Escherichia coli K12 is being used to study the role of cryptic genes in microbial evolution. Wild-type E. coli K12 do not utilize the beta-glucoside sugars, arbutin, salicin and cellobiose. A Cel+ (cellobiose utilizing) mutant which grows on cellobiose, arbutin, and salicin was isolated previously from wild-type E. coli K12. Biochemical assays indicate that a cel structural gene (celT) specifies a single transport protein that is a beta-glucoside specific enzyme of the phosphoenolpyruvate-dependent phosphotransferase system. The transport protein phosphorylates beta-glucosides at the expense of phosphoenolpyruvate. A single phosphoglucosidase, specified by celH, hydrolyzes phosphorylated cellobiose, arbutin, and salicin. The genes of the cel system are expressed constitutively in the Cel+ mutant, whereas they are not expressed at a detectable level in the wild-type strain. The transport and hydrolase genes are simultaneously silenced or simultaneously expressed and thus constitute an operon. Cel+ strains which fail to utilize one or more beta-glucosides express the transport system at a lower level than do Cel+ strains which grow on all three beta-glucosides. Other strains inducibly express a gene which specifies transport of arbutin but not the other beta-glucosides. The arbutin transport gene, arbT, maps outside of the cel locus.

  2. Cloning and Sequencing of the Pokeweed Antiviral Protein Gene and Its Expression in E. coli

    Institute of Scientific and Technical Information of China (English)

    CHEN Ding-hu; WANG Xi-feng; LI Li; ZHOU Guang-he

    2002-01-01

    The total RNA was isolated from pokeweed (Phytolacca americana ) leaves using the method of guanidine isothiocyanite and used as a template to amplify the deleted mutant pokeweed antiviral protein (PAP) gene by RT-PCR and then the gene was cloned into the pGEMR-T vector. The sequencing results showed that the PAP gene consisted of 711nt, which was 99.6% identical to the PAP gene reported by Lin et al (1991). The IPTG-inducible expression vector containing the PAP gene was constructed and transferred into the E. coli strain BL21 (DE3)-plysS. A specific protein was produced after induction with 0.4m mol/L IPTG and its molecular weight was 26ku. The results of the double diffusion on the agar plate and the western blotting test showed that the protein produced in E. coli was highly identical with the PAP extracted by a Frenchman from French pokeweed leaves. These revealed that PAP gene was actually achieved and exactly expressed in E . coli.

  3. Inhibition of expression of virulence genes of Yersinia pestis in Escherichia coli by external guide sequences and RNase P.

    Science.gov (United States)

    Ko, Jae-hyeong; Izadjoo, Mina; Altman, Sidney

    2008-08-01

    External guide sequences (EGSs) targeting virulence genes from Yersinia pestis were designed and tested in vitro and in vivo in Escherichia coli. Linear EGSs and M1 RNA-linked EGSs were designed for the yscN and yscS genes that are involved in type III secretion in Y. pestis. RNase P from E. coli cleaves the messages of yscN and yscS in vitro with the cognate EGSs, and the expression of the EGSs resulted in the reduction of the levels of these messages of the virulence genes when those genes were expressed in E. coli.

  4. Prevalence, genetic characterization and virulence genes of sorbitol-fermenting Escherichia coli O157:H- and E. coli O157:H7 isolated from retail beef.

    Science.gov (United States)

    Sallam, Khalid Ibrahim; Mohammed, Mahmoud Ahmed; Ahdy, Asmaa Mohammed; Tamura, Tomohiro

    2013-08-01

    Sorbitol-fermenting (SF) Escherichia coli O157:H- strains have emerged as important pathogens and have been associated with a higher incidence of progression to hemolytic-uremic syndrome (HUS) than non-sorbitol fermenting (NSF) E. coli O157:H7. The present study was carried out to determine the prevalence of SF E. coli O157:H- and NSF E. coli O157:H7 strains in retail beef products in Mansoura, Egypt. The contamination rates with rfbEO157-positive E. coli O157 strains were 26.7% (8/30), 10% (3/30) and 3.7% (1/27) in ground beef, beef burger, and fresh beef samples, respectively with an overall mean of 13.8% (12/87) among all meat products tested. SF E. coli O157:H- were the most dominant among the isolated O157 strains. Of the fifteen O157 strains isolated, 11 (73.3%) were SF E. coli O157:H-, while the remaining 4 (26.7%) were NSF E. coli O157:H7. The 11 SF O157H- strains were genetically positive for sfpA gene. Restriction fragment length polymorphism (RFLP) analysis for fliC gene demonstrated a similar pattern for both SF and NSF O157 isolates. PCR assays verified the existence of stx1 gene in 7 (46.7%) and stx2 gene in 13 (86.7%) of the 15 O157 strains isolated. Unexpectedly, two of the 15 O157 strains isolated were negative for Shiga toxin genes. The eae gene was identified in all of the 15 O157 strains except in one NSF O157:H7 strain. EHEC-hlyA gene was detected in 14 (93.3%) of the 15 O157 isolates, nonetheless only 11 strains showed enterohemolytic phenotype on blood agar. A combination of the four virulence genes, stx1, stx2, eae and EHEC-hlyA were detected in 7 (46.7%) strains, while six (40%) strains were positive for stx2, eae and hlyA genes. This is the first record for isolation of E. coli O157: H- in Egypt as well as in the African continent.

  5. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    DEFF Research Database (Denmark)

    Shuyu, Wu; Dalsgaard, A.; Hammerum, A. M.

    2010-01-01

    Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids...... involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli...... isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids...

  6. Urinary Tract Infection and fimH Gene in Escherichia coli

    OpenAIRE

    2013-01-01

    AbstractBackground and objective: E. coli is considered causes of urinary tract infection (UTI) and the majority part of nosocomial infections. This bacterium for having pathogenicity effects is necessary to have virulence factors. One of this factors is fimH (Type I fimbriae). The aim of this research “Study of prevalence of fimH gene in Escherichia coli isolated from patients with and without kidney stone.Materials and methods: A total of 70 urinary samples of stricken with UTI of referred...

  7. Cloning, expression and purification of d-tagatose 3-epimerase gene from Escherichia coli JM109.

    Science.gov (United States)

    He, Xiaoliang; Zhou, Xiaohui; Yang, Zi; Xu, Le; Yu, Yuxiu; Jia, Lingling; Li, Guoqing

    2015-10-01

    An unknown d-tagatose 3-epimerase (DTE) containing a IoIE domain was identified and cloned from Escherichia coli. This gene was subcloned into the prokaryotic expression vector pET-15b, and induced by IPTG in E. coli BL21 expression system. Through His-select gel column purification and fast-protein liquid chromatography, highly purified and stable DTE protein was produced. The molecular weight of the DTE protein was estimated to be 29.8kDa. The latest 83 DTE sequences from public database were selected and analyzed by molecular clustering, multi-sequence alignment. DTEs were roughly divided into five categories.

  8. EXPRESSING HUMAN MATURED BRAIN-DERIVED NEUROTROPHIC FACTOR GENE IN E. Coli AND DETERMINING ITS BIOACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Expressing the human matured brain-derived neurotrophic factor (mBDNF) gene in E.Coli and determining its bioactivity. Methods The resulting gene of mBDNF was subcloned into the EcoRI-BamHI site of the expression vector plasmid pBV220. The ligation products were used to transform the competent E. Coli DH5α. The proteins of mBDNF were experessed by temperature inducing. The expression products were dealed with solubilizing inclusion bodies and refolding protein. It was introduced into the embryonic chicken DRG to test whether the expressed mBDNF is a biologically active protein. Results The recombinant plasmid pBV/mBDNF was successfully constructed. By temperature inducing,under the control of the bacteriophage λ PL promoter, the experessed mBDNF protein was a 14Kd non-fusion protein,which existed in E. Coli as inclusion bodies. The size of expressed mBDNF is identical to the prediction. Bioactivity of the products was proved that it could support the cell survival and neurite growth in the primary cultures of embryonic 8-day-old chicken DRG neurons as compared to control.Conclusion The mBDNF gene can be expressed bioactively in E. Coli.

  9. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners

    Science.gov (United States)

    Carvalho, A.C.; Barbosa, A.V.; Arais, L.R.; Ribeiro, P.F.; Carneiro, V.C.; Cerqueira, A.M.F.

    2016-01-01

    Antimicrobial resistance in Escherichia coli isolated from pet dogs can be considered a potential threat of infection for the human population. Our objective was to characterize the resistance pattern, extended spectrum beta-lactamase production and genetic relatedness of multiresistant E. coli strains isolated from dogs (n = 134), their owners (n = 134), and humans who claim to have no contact with dogs (n = 44, control), searching for sharing of strains. The strains were assessed for their genetic relatedness by phylogenetic grouping and pulsed-field gel electrophoresis. Multiresistant E. coli strains were isolated from 42 (31.3%) fecal samples from pairs of dogs and owners, totaling 84 isolates, and from 19 (43.1%) control group subjects. The strains showed high levels of resistance to ampicillin, streptomycin, tetracycline, trimethoprim and sulfamethoxazole regardless of host species or group of origin. The blaTEM, blaCTX-M, and blaSHV genes were detected in similar proportions in all groups. All isolates positive for bla genes were ESBL producers. The phylogenetic group A was the most prevalent, irrespective of the host species. None of the strains belonging to the B2 group contained bla genes. Similar resistance patterns were found for strains from dogs, owners and controls; furthermore, identical PFGE profiles were detected in four (9.5%) isolate pairs from dogs and owners, denoting the sharing of strains. Pet dogs were shown to be a potential household source of multiresistant E. coli strains. PMID:26887238

  10. Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India

    Directory of Open Access Journals (Sweden)

    Abdul Rouf Mir

    2016-01-01

    Full Text Available This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR. Out of 98 isolates, 71 (72.45% isolates were identified as E. coli and the remaining 27 (27.55% as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients.

  11. Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India

    Science.gov (United States)

    Bashir, Yasir; Dar, Firdous Ahmad; Sekhar, M.

    2016-01-01

    This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR). Out of 98 isolates, 71 (72.45%) isolates were identified as E. coli and the remaining 27 (27.55%) as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients. PMID:27403451

  12. THE CONSTRUCTION AND EXPRESSION OF THE MURINE SCFV GENE IN E. COLI AGAINST HUMAN CERVICAL CANCER

    Institute of Scientific and Technical Information of China (English)

    Wang Ying; Chen Wei; Li Xu

    2006-01-01

    Objective To obtain the gene of murine Single chain Fv fragment (ScFv) against human cervical cancer and to express it in E. coli. Methods The variable region gene fragments of the heavy and light chains, which were amplified respectively using recombinant DNA techniques from CsA125 hybridoma cells, were spliced together through a flexible linker to ScFv against human cervical cancer. The ScFv genes were then cloned into expression vector pCANTAB 5E and expressed in E. coli HB2151 and TG1 respectively. The soluble ScFv were characterized by SDS PAGE and Western blot. The antigen-binding activities of the soluble and phage displayed ScFv were assayed by ELISA and cell immunohistochemical analysis. Results The expressed ScFv antibodies were soluble and phage displayed. The soluble ScFv secreted and expressed in E. coli HB2151 induced by IPTG were confirmed with SDS-PAGE, Western blot and ELISA. The specific binding capacity of the soluble and phage displayed ScFv to the surface associated antigen of human cervical cancer cell line was further confirmed with immunohistochemical studies. Conclusion The soluble and phage displayed ScFv expressed in E. coli against human cervical cancer showed high, specific affinity for the cervical cancer cell line surface associated antigen.

  13. Escherichia coli of poultry food origin as reservoir of sulphonamide resistance genes and integrons.

    Science.gov (United States)

    Soufi, Leila; Sáenz, Yolanda; Vinué, Laura; Abbassi, Mohamed Salah; Ruiz, Elena; Zarazaga, Myriam; Ben Hassen, Assia; Hammami, Salah; Torres, Carmen

    2011-01-05

    The antimicrobial resistance phenotype and genotype, the flanking regions of sulphonamide resistance genes and the integrons were analyzed in 166 Escherichia coli isolates recovered from poultry meat in Tunisia. High percentages of resistance were detected to ampicillin, streptomycin, nalidixic acid, sulphonamide and tetracycline (66-95%), and lower percentages to gentamicin, amoxicillin-clavulanic acid and cefoxitin (1-4%). The bla(TEM), tet(A)/tet(B), aph(3')-Ia, aac(6')-Ib-cr, aac(3)-II and cmlA genes were identified in 92, 82, 29, 2, 2 and 7 isolates, respectively. Class 1 and/or class 2 integrons were detected in 52% of E. coli isolates and five different gene cassette arrangements were identified in the variable regions of class 1 integrons, which included antimicrobial resistance determinants. Sixty-eight isolates contained the sul1 gene and 37 of them presented this gene into a class 1 integron structure. The sul3 gene was detected associated with non-classic class 1 integrons in 4 out of 46 sul3-positive isolates. The sul2 gene was detected in 66 isolates, 51 of them were linked to strA/B genes in seven different genetic structures. Seventy-three-per-cent of integron-positive isolates presented resistance to at least five different antimicrobial families versus 38.7% of integron-negative isolates. Our study highlights the role of commensal E. coli isolates from poultry meat as an important reservoir for sulphonamide resistance genes and integrons carrying antimicrobial resistance genes.

  14. Characterization of the rec-1 gene of Haemophilus influenzae and behavior of the gene in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, J.K.; Spikes, D.; Griffin, K.

    1988-09-01

    The rec-1 gene of Haemophilus influenzae was cloned into a shuttle vector that replicates in Escherichia coli as well as in H. influenzae. The plasmid, called pRec1, complemented the defects of a rec-1 mutant in repair of UV damage, transformation, and ability of prophage to be induced by UV radiation. Although UV resistance and recombination were caused by pRec1 in E. coli recA mutants, UV induction of lambda and UV mutagenesis were not. We suggest that the ability of the H. influenzae Rec-1 protein to cause cleavage of repressors but not the recombinase function differs from that of the E. coli RecA protein.

  15. Colistin-resistant Escherichia coli clinical isolate harbouring the mcr-1 gene in Ecuador.

    Science.gov (United States)

    Ortega-Paredes, D; Barba, P; Zurita, J

    2016-10-01

    Colistin resistance mediated by the mcr-1 gene has been reported worldwide, but to date not from the Andean region, South America. We report the first clinical isolate of Escherichia coli harbouring the mcr-1 gene in Ecuador. The strain was isolated from peritoneal fluid from a 14-year-old male with acute appendicitis, and subjected to molecular analysis. The minimum inhibitory concentration of colistin for the strain was 8 mg/ml and it was susceptible to carbapenems but resistant to tigecycline. The strain harboured mcr-1 and bla CTX-M-55 genes and was of sequence type 609. The recognition of an apparently commensal strain of E. coli harbouring mcr-1 serves as an alert to the presence in the region of this recently described resistance mechanism to one of the last line of drugs available for the treatment of multi-resistant Gram-negative infections.

  16. Functional cooperation of the dnaE and dnaN gene products in Escherichia coli.

    Science.gov (United States)

    Kuwabara, N; Uchida, H

    1981-09-01

    A system was designed to isolate second-site intergenic suppressors of a thermosensitive mutation of the dnaE gene of Escherichia coli. The dnaE gene codes for the alpha subunit of DNA polymerase III [McHenry, C. S. & Crow, W. (1979) J. Biol. Chem. 254, 1748-1753]. One such suppressor, named sueA77, was finely mapped and found to be located at 82 min on the E. coli chromosome, between dnaA and recF, and within the dnaN gene [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553]. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme [Burgers, P. M. J., Kornberg, A. & Sakakibara, Y. (1981) Proc. Natl. Acad. Sci. USA 78, 5391-5395]. The sueA77 mutation was trans-dominant over its wild-type allele, and it suppressed different thermosensitive mutations of dnaE with different maximal permissive temperature. These properties were interpreted as providing genetic evidence for interaction of the dnaE and dnaN gene products in E. coli.

  17. Cloning and heterologous expression of ectoine biosynthesis genes from Bacillus halodurans in Escherichia coli.

    Science.gov (United States)

    Anbu Rajan, Lawrance; Joseph, Toms C; Thampuran, Nirmala; James, Roswin; Ashok Kumar, Kesavan; Viswanathan, Chinnusamy; Bansal, Kailash C

    2008-08-01

    The genes involved in the biosynthetic pathway of ectoine (2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylic acid) from Bacillus halodurans were cloned as an operon and expressed in E. coli. Analysis of the deduced ectoine biosynthesis cluster amino acid sequence revealed that the ectoine operon contain 2,389 bp, encoded by three genes; ectA, ectB and ectC that encode proteins of 189, 427 and 129 amino acids with deduced molecular masses of 21,048, 47,120 and 14,797 Da respectively. Extracts of induced cells showed two bands at 41 kDa and 17 kDa, possibly corresponding to the products of the later two genes. However the expression of ectA gene could not be ascertained by SDS-PAGE. The activity of the ectA protein was confirmed by an acylation assay. The transgenic E. coli accumulated upto 4.6 mg ectoine/l culture. This is the first report of an engineered E. coli strain carrying the ectoine genes of the alkaliphilic bacterium, B. halodurans.

  18. Detection of virulence genes in Escherichia coli isolated from patients with cystitis and pyelonephritis.

    Science.gov (United States)

    Firoozeh, Farzaneh; Saffari, Mahmood; Neamati, Foroogh; Zibaei, Mohammad

    2014-12-01

    Uropathogenic Escherichia coli (UPEC) is a common cause of ascending urinary tract infections including cystitis and pyelonephritis. The purpose of this study was to investigate virulence genes among Escherichia coli isolated from patients with cystitis and pyelonephritis. Between December 2012 and June 2013, 150 E. coli isolates from hospitalized patients with pyelonephritis (n = 72) and cystitis (n=78) were collected at Shahid Beheshti Hospital in Kashan. A PCR assay was used to evaluate the presence of virulence genes including pap, hly, aer, sfa, cnf, afa, traT, and pathogenicity island (PAI) markers in isolates. Of the total 150 UPEC isolates, 130 (86.7%) were found to carry the virulence genes studied. Nineteen different virulence patterns were identified. The most prevalent virulence pattern was UPEC including traT-PAI operons. The pap, traT, aer, hly, and PAI operons were more prevalent among patients with pyelonephritis than cystitis, and the sfa, afa, and cnf genes were not detected in any of the isolates. Higher virulence gene diversity was found among pyelonephritis UPEC isolates in comparison to cystitis UPEC isolates, showing that UPEC strains that cause pyelonephritis need more virulence factors. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The Truncated Gene cfaD′ Positively Regulates CFA/Ⅰ Expression of Enterotoxigenic Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    齐小保; 徐建国

    2004-01-01

    The gene cluster cfaABCED′ of enterotoxigenic Escherichia coli, encoding the fimbriae which is called colonization factor antigen Ⅰ (CFA/Ⅰ), located on a plasmid. It is positively regulated by cfaR, a member of the AraC family, and the cfaD′ gene region, which is located downstream of cfaE and is homologous to cfaR, had been described as a truncated cryptic gene. In the present study we observed that the CFA/Ⅰ fimbriae subunit, cfaB, was expressed in lower amount by the cfoABCED′ clone pNTP513 in host E. coli HB101. The expression of CFA/Ⅰ diminished by deletion of cfaD′ gene region from pNTP513, and was restored by acquisition of cfaD′ in trans. Furthermore, CFA/Ⅰ expression by cfaD′ deletion mutant, the cfaABCE clone, was remarkably increased by the presence of CFA/Ⅰ in trans in a topoisomerase A deficient strain of E. coli DM800. These data suggest that cfaD′ region is a functional region of gene, that regulates the CFA/Ⅰ expression with cfaR by unknown mechanism.

  20. Identification and molecular characterization of Escherichia coli blaSHV genes in a Chinese teaching hospital.

    Science.gov (United States)

    Zhu, Mei; Yang, Guangjian; Li, Ailing; Zong, Li; Dong, Zhaoguang; Lu, Junwan; Zhang, Kaibo; Cheng, Cong; Chang, Qingli; Wu, Xiuying; Ying, Jianchao; Li, Xianneng; Ding, Li; Zheng, Haixiao; Yu, Junping; Ying, Jun; Xu, Teng; Yi, Huiguang; Li, Peizhen; Li, Kewei; Wu, Songquan; Bao, Qiyu; Wang, Junrong

    2017-02-05

    Escherichia coli (E. coli) commonly reside in human intestine and most E. coli strains are harmless, but some serotypes cause serious food poisoning. This study identified and molecularly characterized blaSHV genes from 490 E. coli strains with multi-drug resistance in a hospital population. PCR and molecular cloning and southern blot were performed to assess functions and localizations of this resistant E. coli gene and the pulsed-field gel electrophoresis (PFGE) was utilized to demonstrate the clonal relatedness of the positive E. coli strains. The data showed that 4 of these 490 E. coli strains (4/499, 0.8%) carried blaSHV genes that included EC D2485 (blaSHV-5), EC D2487 (blaSHV-5), EC D2684 (blaSHV-11) and EC D2616 (blaSHV-195, a novel blaSHV). Analysis of blaSHV open-reading frame showed that blaSHV-5 had a high hydrolysis activity to the broad-spectrum penicillin (ampicillin or piperacillin), ceftazidime, ceftriaxone, cefotaxime and aztreonam. blaSHV-195 and blaSHV-11 had similar resistant characteristics with high hydrolysis activities to ampicillin and piperacillin, but low activities to cephalosporins. Moreover, the two blaSHV-5 genes were located on a transferable plasmid (23kb), whereas the other two blaSHV variants (blaSHV-11 and blaSHV-195) seemed to be located in the chromosomal material. Both EC D2485 and EC D2487 clones isolated in 2010 had the same DNA finger printing profile and they might be the siblings of clonal dissemination. The data from the current study suggest that the novel blaSHV and clonal dissemination may be developed, although blaSHV genes were infrequently identified in this hospital population. The results of the work demonstrate the necessity for molecular surveillance in tracking blaSHV-producing strains in large teaching hospital settings and emphasize the need for epidemiological monitoring.

  1. Characterization of sulphonamide-resistant Escherichia coli using comparison of sul2 gene sequences and multilocus sequence typing

    DEFF Research Database (Denmark)

    Trobos, Margarita; Christensen, Henrik; Sunde, Marianne

    2009-01-01

    The sul2 gene encodes sulphonamide resistance (Sul(R)) and is commonly found in Escherichia coli from different hosts. We typed E coli isolates by multilocus sequence typing (MLST) and compared the results to sequence variation of sul2, in order to investigate the relation to host origin of patho......The sul2 gene encodes sulphonamide resistance (Sul(R)) and is commonly found in Escherichia coli from different hosts. We typed E coli isolates by multilocus sequence typing (MLST) and compared the results to sequence variation of sul2, in order to investigate the relation to host origin...... of pathogenic and commensal E coli strains and to investigate whether transfer of sul2 into different genomic lineages has happened multiple times. Sixty-eight E coli isolated in Denmark and Norway from different hosts and years were MLST typed and sul2 PCR products were sequenced and compared. PFGE...

  2. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Penn Charles W

    2009-12-01

    Full Text Available Abstract Background Homologous recombination mediated by the λ-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the λ-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these λ-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains. Results Our goal was to develop a high-throughput recombineering system, primarily for the coupling of genes to epitope tags, which could also be used for deletion of genes in both pathogenic and K-12 E. coli strains. To that end we have designed a series of donor plasmids for use with the λ-Red recombination system, which when cleaved in vivo by the I-SceI meganuclease generate a discrete linear DNA fragment, allowing for C-terminal tagging of chromosomal genes with a 6 × His, 3 × FLAG, 4 × ProteinA or GFP tag or for the deletion of chromosomal regions. We have enhanced existing protocols and technologies by inclusion of a cassette conferring kanamycin resistance and, crucially, by including the sacB gene on the donor plasmid, so that all but true recombinants are counter-selected on kanamycin and sucrose containing media, thus eliminating the need for extensive screening. This method has the added advantage of limiting the exposure of cells to the potential damaging effects of the λ-Red system, which can lead

  3. Induction of YdeO, a regulator for acid resistance genes, by ultraviolet irradiation in Escherichia coli.

    Science.gov (United States)

    Yamanaka, Yuki; Ishihama, Akira; Yamamoto, Kaneyoshi

    2012-01-01

    YdeO, an AraC-type transcription factor, is an important regulator in the induction of acid-resistance genes in Escherichia coli. In this study, we found that ydeO expression was induced 20 min after exposure to UV irradiation. This required the evgA and gadE genes in vivo. YdeO, induced by UV, controls the expression of a total of 21 genes. This accompanies SOS response in E. coli.

  4. Expression of a Carrot Antifreeze Protein Gene in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Ma Xinyu; Shen Xin; Lu Cunfu

    2003-01-01

    The recombinant expression vectorpET43. lb-AFP, which contains full encoding region of a carrot 36 kD antifreeze protein (AFP) gene was constructed. The recombinant was transformed into expression host carrying T7 RNA polymerase gene (DE3 lysogen) and induced by 1 mmol. L-1 IPTG (isopropyl-β-D-thiogalactoside) to express 110 kD polypeptide of AFP fusion protein.The analysis of product solubility revealed that pET43. 1b-AFP was predominately soluble, and the expressed amount reached the maximum after the IPTG treatment for 3 h.

  5. Improvement of a Sulfolobus-E. coli shuttle vector for heterologous gene expression in Sulfolobus acidocaldarius.

    Science.gov (United States)

    Hwang, Sungmin; Choi, Kyoung-Hwa; Yoon, Naeun; Cha, Jaeho

    2015-02-01

    A Sulfolobus-E. coli shuttle vector for an efficient expression of the target gene in S. acidocaldarius strain was constructed. The plasmid-based vector pSM21 and its derivative pSM21N were generated based on the pUC18 and Sulfolobus cryptic plasmid pRN1. They carried the S. solfataricus P2 pyrEF gene for the selection marker, a multiple cloning site (MCS) with C-terminal histidine tag, and a constitutive promoter of the S. acidocaldarius gdhA gene for strong expression of the target gene, as well as the pBR322 origin and ampicillin-resistant gene for E. coli propagation. The advantage of pSM21 over other Sulfolobus shuttle vectors is that it contains a MCS and a histidine tag for the simple and easy cloning of a target gene as well as one-step purification by histidine affinity chromatography. For successful expression of the foreign genes, two genes from archaeal origins (PH0193 and Ta0298) were cloned into pSM21N and the functional expression was examined by enzyme activity assay. The recombinant PH0193 was successfully expressed under the control of the gdhA promoter and purified from the cultures by His-tag affinity chromatography. The yield was approximately 1 mg of protein per liter of cultures. The enzyme activity measurements of PH0913 and Ta0298 revealed that both proteins were expressed as an active form in S. acidocaldarius. These results indicate that the pSM21N shuttle vector can be used for the functional expression of foreign archaeal genes that form insoluble aggregates in the E. coli system.

  6. Temporal dynamics of gene expression in the lung in a baboon model of E. coli sepsis

    Directory of Open Access Journals (Sweden)

    Zhu Hua

    2007-02-01

    Full Text Available Abstract Background Bacterial invasion during sepsis induces disregulated systemic responses that could lead to fatal lung failure. The purpose of this study was to relate the temporal dynamics of gene expression to the pathophysiological changes in the lung during the first and second stages of E. coli sepsis in baboons. Results Using human oligonucleotide microarrays, we have explored the temporal changes of gene expression in the lung of baboons challenged with sublethal doses of E. coli. Temporal expression pattern and biological significance of the differentially expressed genes were explored using clustering and pathway analysis software. Expression of selected genes was validated by real-time PCR. Cytokine levels in tissue and plasma were assayed by multiplex ELISA. Changes in lung ultrastructure were visualized by electron microscopy. We found that genes involved in primary inflammation, innate immune response, and apoptosis peaked at 2 hrs. Inflammatory and immune response genes that function in the stimulation of monocytes, natural killer and T-cells, and in the modulation of cell adhesion peaked at 8 hrs, while genes involved in wound healing and functional recovery were upregulated at 24 hrs. Conclusion The analysis of gene expression modulation in response to sepsis provides the baseline information that is crucial for the understanding of the pathophysiology of systemic inflammation and may facilitate the development of future approaches for sepsis therapy.

  7. Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Laura J Searle

    Full Text Available Iron is essential for Escherichia coli growth and survival in the host and the external environment, but its availability is generally low due to the poor solubility of its ferric form in aqueous environments and the presence of iron-withholding proteins in the host. Most E. coli can increase access to iron by excreting siderophores such as enterobactin, which have a very strong affinity for Fe3+. A smaller proportion of isolates can generate up to 3 additional siderophores linked with pathogenesis; aerobactin, salmochelin, and yersiniabactin. However, non-pathogenic E. coli are also able to synthesise these virulence-associated siderophores. This raises questions about their role in the ecology of E. coli, beyond virulence, and whether specific siderophores might be linked with persistence in the external environment. Under the assumption that selection favours phenotypes that confer a fitness advantage, we compared siderophore production and gene distribution in E. coli isolated either from agricultural plants or the faeces of healthy mammals. This population-level comparison has revealed that under iron limiting growth conditions plant-associated isolates produced lower amounts of siderophores than faecal isolates. Additionally, multiplex PCR showed that environmental isolates were less likely to contain loci associated with aerobactin and yersiniabactin synthesis. Although aerobactin was linked with strong siderophore excretion, a significant difference in production was still observed between plant and faecal isolates when the analysis was restricted to strains only able to synthesise enterobactin. This finding suggests that the regulatory response to iron limitation may be an important trait associated with adaptation to the non-host environment. Our findings are consistent with the hypothesis that the ability to produce multiple siderophores facilitates E. coli gut colonisation and plays an important role in E. coli commensalism.

  8. Identification, mapping, and cloning of the gene encoding cyanase in Escherichia coli K-12.

    Science.gov (United States)

    Sung, Y C; Parsell, D; Anderson, P M; Fuchs, J A

    1987-06-01

    The gene in Escherichia coli for cyanase, designated cynS, was localized to a BglII restriction site approximately 1.7 kilobases from the lacA end of the lac operon. The gene was cloned into the pUC13 vector. Maxicell analysis of plasmid-encoded proteins confirmed that the BglII site is in the region encoding the structural gene for cyanase. Cyanase-deficient strains had increased sensitivity to cyanate and were not able to use cyanate as a nitrogen source.

  9. Identification, mapping, and cloning of the gene encoding cyanase in Escherichia coli K-12.

    OpenAIRE

    Sung, Y C; Parsell, D; Anderson, P. M.; Fuchs, J A

    1987-01-01

    The gene in Escherichia coli for cyanase, designated cynS, was localized to a BglII restriction site approximately 1.7 kilobases from the lacA end of the lac operon. The gene was cloned into the pUC13 vector. Maxicell analysis of plasmid-encoded proteins confirmed that the BglII site is in the region encoding the structural gene for cyanase. Cyanase-deficient strains had increased sensitivity to cyanate and were not able to use cyanate as a nitrogen source.

  10. Diversity of CRISPR loci and virulence genes in pathogenic Escherichia coli isolates from various sources.

    Science.gov (United States)

    Jiang, Yun; Yin, Shuang; Dudley, Edward G; Cutter, Catherine N

    2015-07-01

    Shiga toxin-producing Escherichia coli (STEC) strains, including those of O157:H7 and the "big six" serogroups (i.e., O26, O45, O103, O111, O121, and O145) are food-borne pathogens that pose a serious health threat to humans. Ruminants, especially cattle, are a major reservoir for O157 and non-O157 STEC. In the present study, 115 E. coli strains isolated from small and very small beef processing plants were screened for virulence genes (stx1, stx2, eae) using a multiplex polymerase chain reaction (PCR). Thirteen (11.3%) of the 115 isolates tested positive for stx1, stx2, or eae genes, but only 4 (3.5%) tested positive for either stx1 or stx2. A multiplex PCR reaction targeting eight O-serogroups (O26, O45, O103, O111, O113, O121, O145, O157) identified 12 isolates as O26, O103, O111, or O145, with E. coli O26 being the most predominant serogroup (61.5%). The thirteen isolates were further analyzed using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) subtyping. Consistent with previous studies, CRISPR alleles from strains of the same serogroup were similar in their spacer content and order, regardless of the isolation source. A completely different CRISPR allele was observed in one isolate ("7-J") which exhibited a different O-serogroup (O78). Our results confirmed previous findings that CRISPR loci are conserved among phylogenetically-related strains. In addition, 8 E. coli O26 isolates and a collection of 42 E. coli O26 isolates were screened for 12 enterohemorrhagic E. coli-specific genes. Seven genes (ECs848-Hypothetical Protein, ECs2226-Hypothetical Protein, ECs3857-nleB, ECs3858-Hypothetical Protein, ECs4552-escF, ECs4553-Hypothetical Protein, and ECs4557-sepL) were found in all 50 isolates. An additional 5 genes (ECs1322-ureA urease subunit γ, ECs1323-ureB urease subunit β, ECs1326-ureF, ECs1561-Hypothetical Protein, and ECs1568-Hypothetical Protein) were found to be highly prevalent in isolates from human sources, while lower in

  11. Phylogeny, clinical associations, and diagnostic utility of the pilin subunit gene (sfpA) of sorbitol-fermenting, enterohemorrhagic Escherichia coli O157:H-

    NARCIS (Netherlands)

    Friedrich, Alexander W; Nierhoff, Katja V; Bielaszewska, Martina; Mellmann, Alexander; Karch, Helge

    2004-01-01

    The plasmid-borne sfpA gene encodes the pilin subunit in sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H-. We investigated the distribution of sfpA among 600 E. coli isolates comprising the complete E. coli standard reference (ECOR) and diarrheagenic E. coli (DEC) strain co

  12. Phylogeny, clinical associations, and diagnostic utility of the pilin subunit gene (sfpA) of sorbitol-fermenting, enterohemorrhagic Escherichia coli O157:H-

    NARCIS (Netherlands)

    Friedrich, Alexander W; Nierhoff, Katja V; Bielaszewska, Martina; Mellmann, Alexander; Karch, Helge

    2004-01-01

    The plasmid-borne sfpA gene encodes the pilin subunit in sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H-. We investigated the distribution of sfpA among 600 E. coli isolates comprising the complete E. coli standard reference (ECOR) and diarrheagenic E. coli (DEC) strain co

  13. Effect of random and hub gene disruptions on environmental and mutational robustness in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Schneider Dominique

    2006-09-01

    Full Text Available Background Genome-wide profiling has allowed the regulatory interaction networks of many organisms to be visualised and the pattern of connections between genes to be studied. These networks are non-random, following a power-law distribution with a small number of well-connected 'hubs' and many genes with only one or a few connections. Theoretical work predicts that power-law networks display several unique properties. One of the most biologically interesting of these is an intrinsic robustness to disturbance such that removal of a random gene will have little effect on network function. Conversely, targeted removal of a hub gene is expected to have a large effect. Results We compared the response of Escherichia coli to environmental and mutational stress following disruption of random or hub genes. We found that disruption of random genes had less effect on robustness to environmental stress than did the targeted disruption of hub genes. In contrast, random disruption strains were slightly less robust to the effect of mutational stress than were hub disruption strains. When we compared the effect of each disruption on environmental and mutational stress, we found a negative relationship, such that strains that were more environmentally robust tended to be less robust to mutational stress. Conclusion Our results demonstrate that mutant strains of E. coli respond differently to stress, depending on whether random or hub genes are disrupted. This difference indicates that the power-law distribution of regulatory interactions has biological significance, making random disruptions less deleterious to organisms facing environmental stress. That E. coli can reduce the effect of environmental stress without reducing the phenotypic effect of additional mutations, indicates that robustness and evolvability need not be antagonistic.

  14. Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Joshua Mbanga

    2015-02-01

    Full Text Available Colibacillosis, a disease caused by avian pathogenic Escherichia coli (APEC, is one of the main causes of economic losses in the poultry industry worldwide. This study was carried out in order to determine the APEC-associated virulence genes contained by E. coli isolates causing colibacillosis in chickens. A total of 45 E. coli isolates were obtained from the diagnostics and research branch of the Central Veterinary Laboratories, Bulawayo, Zimbabwe. These isolates were obtained from chickens with confirmed cases of colibacillosis after postmortem examination. The presence of the iutA, hlyF, ompT, frz, sitD, fimH, kpsM, sitA, sopB, uvrY, pstB and vat genes were investigated by multiplex polymerase chain reaction (PCR assay. Of the 45 isolates, 93% were positive for the presence of at least one virulence gene. The three most prevalent virulence genes were iutA (80%, fimH (33.3% and hlyF (24.4%. The kpsM, pstB and ompT genes had the lowest prevalence, having been detected in only 2.2% of the isolates. All 12 virulence genes studied were detected in the 45 APEC isolates. Virulence gene profiles were constructed for each APEC isolate from the multiplex data. The APEC isolates were profiled as 62.2% fitting profile A, 31.1% profile B and 6.7% profile C. None of the isolates had more than seven virulence genes. Virulence profiles of Zimbabwean APEC isolates are different from those previously reported. Zimbabwean APEC isolates appear to be less pathogenic and may rely on environmental factors and stress in hosts to establish infection.

  15. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae

    Directory of Open Access Journals (Sweden)

    Santillán Moisés

    2008-01-01

    Full Text Available Abstract Background The regulatory interactions between transcription factors (TF and regulated genes (RG in a species genome can be lumped together in a single directed graph. The TF's and RG's conform the nodes of this graph, while links are drawn whenever a transcription factor regulates a gene's expression. Projections onto TF nodes can be constructed by linking every two nodes regulating a common gene. Similarly, projections onto RG nodes can be made by linking every two regulated genes sharing at least one common regulator. Recent studies of the connectivity pattern in the transcription-factor regulatory network of many organisms have revealed some interesting properties. However, the differences between TF and RG nodes have not been widely explored. Results After analysing the RG and TF projections of the transcription-factor gene regulatory networks of Escherichia coli and Saccharomyces cerevisiae, we found several common characteristic as well as some noticeable differences. To better understand these differences, we compared the properties of the E. coli and S. cerevisiae RG- and TF-projected networks with those of the corresponding projections built from randomized versions of the original bipartite networks. These last results indicate that the observed differences are mostly due to the very different ratios of TF to RG counts of the E. coli and S. cerevisiae bipartite networks, rather than to their having different connectivity patterns. Conclusion Since E. coli is a prokaryotic organism while S. cerevisiae is eukaryotic, there are important differences between them concerning processing of mRNA before translation, DNA packing, amount of junk DNA, and gene regulation. From the results in this paper we conclude that the most important effect such differences have had on the development of the corresponding transcription-factor gene regulatory networks is their very different ratios of TF to RG numbers. This ratio is more than three

  16. Structure and gene cluster of the o-antigen of Escherichia coli o96.

    Science.gov (United States)

    Guo, Xi; Senchenkova, Sof'ya N; Shashkov, Alexander S; Perepelov, Andrei V; Liu, Bin; Knirel, Yuriy A

    2016-02-01

    Mild acid degradation of the lipopolysaccharide of Escherichia coli O96 afforded a mixture of two polysaccharides. The following structure of the pentasaccharide repeating unit of the major polymer was established by sugar analysis, Smith degradation, and (1)H and (13)C NMR spectroscopy: [Formula: see text]. The O-antigen gene cluster of E. coli O96 between conserved galF and gnd genes was found to be consistent with this structure, and hence, the major polysaccharide represents the O96-antigen. The O96-antigen structure and gene cluster are similar to those of E. coli O170, and two proteins encoded in the gene clusters of both bacteria were putatively assigned a function of galactofuranosyltransferases. The minor polymer has the same structure as a peptidoglycan-related polysaccharide reported earlier in Providencia alcalifeciens O45 and several other O-serogoups of this species (Ovchinnikova OG, Liu B, Kocharova NA, Shashkov AS, Kondakova AN, Siwinska M, Feng L, Rozalski A, Wang L, Knirel YA. Biochemistry (Moscow) 2012;77:609-15) → 4)-β-D-GlcpNAc-(1 → 4)-β-D-GlcpNAc3(Rlac-lAla)-(1 → where Rlac-lAla indicates (R)-1-[(S)-1-carboxyethylaminocarbonyl]ethyl.

  17. Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors.

    Science.gov (United States)

    Falkner, F G; Moss, B

    1988-06-01

    Mycophenolic acid, an inhibitor of purine metabolism, was shown to block the replication of vaccinia virus in normal cell lines. This observation led to the development of a dominant one-step plaque selection system, based on expression of the Escherichia coli gpt gene, for the isolation of recombinant vaccinia viruses. Synthesis of xanthine-guanine phosphoribosyltransferase enabled only the recombinant viruses to form large plaques in a selective medium containing mycophenolic acid, xanthine, and hypoxanthine. To utilize the selection system efficiently, we constructed a series of plasmids that contain the E. coli gpt gene and allow insertion of foreign genes into multiple unique restriction endonuclease sites in all three reading frames between the translation initiation codon of a strong late promoter and synthetic translation termination sequences. The selection-expression cassette is flanked by vaccinia virus DNA that directs homologous recombination into the virus genome. The new vectors allow high-level expression of complete or partial open reading frames and rapid construction of recombinant viruses by facilitating the cloning steps and by simplifying their isolation. The system was tested by cloning the E. coli beta-galactosidase gene; in 24 h, this enzyme accounted for approximately 3.5% of the total infected-cell protein.

  18. Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Wenjuan Yin

    2017-06-01

    Full Text Available The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3. The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia coli. mcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ΔTnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3.

  19. Virulence Genes, Genetic Diversity, Antimicrobial Susceptibility and Phylogenetic Background of Escherichia coli Isolates

    Directory of Open Access Journals (Sweden)

    Abdi

    2015-08-01

    Full Text Available Background The epidemiology of Uropathogenic Escherichia coli (UPEC in urban and rural communities in Iran was never investigated prior to this study. Objectives The aims of this study were to detect the frequency of virulence genes and determine the antimicrobial susceptibility and phylogenetic background of Escherichia coli isolates collected from urban and rural communities. Materials and Methods A total of 100 E. coli isolates were collected from urine samples of patients with urinary tract infections (UTIs residing in two different locations, and confirmed by current biochemical tests. The phylogenetic groups were determined by the triplex-polymerase chain reaction (PCR method, and multiplex PCRs were used to detect eight Vf genes (fimH, iucD, irp2, hlyA, ompT, iha, iroN, and cnf1. The susceptibility profile of E. coli isolates was determined by the disk diffusion method. Results Ninety-five percent of UPEC showed at least one of the virulence genes, the most prevalent being fimH (95%, followed by irp2 (89%, iucD (69%, ompT (67%, iroN (29%, and iha (29%. The various combinations of detected genes were designated as virulence patterns. Phylogenetic groups, B2 (55% and D (22%, comprised the majority of isolated strains. Phenotypic tests showed that 92%, 74% and 71% of the isolates were resistant to ampicillin, ceftizoxime and cefixime, respectively. Conclusions These findings indicate that the UPEC isolates had eight virulence factors with high frequencies. Moreover, these results suggest a direct connection between virulence factors, gene diversity, phylogenetic background, and antimicrobial resistance in UPEC isolates.

  20. Low-level lasers and mRNA levels of reference genes used in Escherichia coli

    Science.gov (United States)

    Teixeira, A. F.; Machado, Y. L. R. C.; Fonseca, A. S.; Mencalha, A. L.

    2016-11-01

    Low-level lasers are widely used for the treatment of diseases and antimicrobial photodynamic therapy. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is widely used to evaluate mRNA levels and output data from a target gene are commonly relative to a reference mRNA that cannot vary according to treatment. In this study, the level of reference genes from Escherichia coli exposed to red or infrared lasers at different fluences was evaluated. E. coli AB1157 cultures were exposed to red (660 nm) and infrared (808 nm) lasers, incubated (20 min, 37 °C), the total RNA was extracted, and cDNA synthesis was performed to evaluate mRNA levels from arcA, gyrA and rpoA genes by RT-qPCR. Melting curves and agarose gel electrophoresis were carried out to evaluate specific amplification. Data were analyzed by geNorm, NormFinder and BestKeeper. The melting curve and agarose gel electrophoresis showed specific amplification. Although mRNA levels from arcA, gyrA or rpoA genes presented no significant variations trough a traditional statistical analysis, Excel-based tools revealed that these reference genes are not suitable for E. coli cultures exposed to lasers. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from arcA, gyrA and rpoA in E. coli cells.

  1. Gene Expression during Survival of Escherichia coli O157:H7 in Soil and Water

    Directory of Open Access Journals (Sweden)

    Ashley D. Duffitt

    2011-01-01

    Full Text Available The in vitro survival of Escherichia coli O157:H7 at 15∘C under two experimental conditions (sterile soil and sterile natural water was examined. DNA microarrays of the entire set of E. coli O157:H7 genes were used to measure the genomic expression patterns after 14 days. Although the populations declined, some E. coli O157:H7 cells survived in sterile stream water up to 234 days and in sterile soil for up to 179 days. Cells incubated in soil microcosms for 14 days expressed genes for antibiotic resistance, biosynthesis, DNA replication and modification, metabolism, phages, transposons, plasmids, pathogenesis and virulence, antibiotic resistance, ribosomal proteins, the stress response, transcription, translation, and transport and binding proteins at significantly higher levels than cells grown in Luria broth. These results suggest that E. coli O157:H7 may develop a different phenotype during transport through the environment. Furthermore, this pathogen may become more resistant to antibiotics making subsequent infections more difficult to treat.

  2. Antimicrobial Resistance to Ceftazidime and Ceftriaxone, and Detection of TEM Gene in Esherchia Coli

    Directory of Open Access Journals (Sweden)

    Jahani, S. (MSc

    2014-11-01

    Full Text Available Background and Objective: In the past, most strains of E. coli were susceptible to a wide range of antimicrobial agents, but this situation is now changed by indiscriminate use of antibiotics. Ceftriaxone and Ceftazidime are the most current antibiotics used for Enterobacteriaceae infections in hospitals. The aim of this study was to determine antimicrobial resistance of Escherichia coli strains isolated from patients. Material and Methods: During a 12-month period, 200 clinical samples taken from patients referred to Zahedan hospitals were assessed to isolate Escherichia coli. Antibiotic susceptibility was determined by disk diffusion method and micro-broth dilution; and Bla TEM resistance genes were detected by PCR. Results: Following phenotype verification testing, 112 isolates (56% were produced Extended Spectrum Beta Lactamase (ESBLs and 130 isolates were potential producers of beta-lactamase (ESBL. Using PCR, 72 isolates (38.55% have TEM gene. Conclusion: The rate of antibiotic resistance of Escherichia coli isolates to ceftriaxone and ceftazidime is high; therefore, it seems reasonable to do antibiogram before treatment.

  3. Similarity of genes horizontally acquired by Escherichia coli and Salmonella enterica is evidence of a supraspecies pangenome.

    Science.gov (United States)

    Karberg, Katherine A; Olsen, Gary J; Davis, James J

    2011-12-13

    Most bacterial and archaeal genomes contain many genes with little or no similarity to other genes, a property that impedes identification of gene origins. By comparing the codon usage of genes shared among strains (primarily vertically inherited genes) and genes unique to one strain (primarily recently horizontally acquired genes), we found that the plurality of unique genes in Escherichia coli and Salmonella enterica are much more similar to each other than are their vertically inherited genes. We conclude that E. coli and S. enterica derive these unique genes from a common source, a supraspecies phylogenetic group that includes the organisms themselves. The phylogenetic range of the sharing appears to include other (but not all) members of the Enterobacteriaceae. We found evidence of similar gene sharing in other bacterial and archaeal taxa. Thus, we conclude that frequent gene exchange, particularly that of genetic novelties, extends well beyond accepted species boundaries.

  4. Gene synthesis, expression in Escherichia coli, purification and characterization of the recombinant bovine acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Mandrup, S; Højrup, P; Kristiansen, K

    1991-01-01

    -initiation codon were chosen to allow efficient expression in Escherichia coli as well as in yeast. The synthetic gene was inserted into the expression vector pKK223-3 and expressed in E. coli. In maximally induced cultures, recombinant ACBP constitutes 12-15% of total cellular protein. A fraction highly enriched...

  5. Direct Detection of Escherichia coli Virulence Genes by Real-Time PCR in Fecal Samples from Bats in Brazil.

    Science.gov (United States)

    Cabal, Adriana; Pereira, Maria J; Aguiar, Ludmilla M S; Domínguez, Lucas; Fonseca, Carlos; Álvarez, Julio; Drexler, Jan F; Gortázar, Christian

    2015-10-01

    Guano samples from 412 Brazilian bats were screened with real-time PCR for the virulence genes (eae, est, elt, stx1, stx2, ehxA, invA, bfpA, aggR) representing five intestinal pathotypes of Escherichia coli. From 82 pooled samples, 22% contained Escherichia coli DNA, and eae, est, bfpA, aggR were detected.

  6. Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene.

    Science.gov (United States)

    Anyanful, Akwasi; Dolan-Livengood, Jennifer M; Lewis, Taiesha; Sheth, Seema; Dezalia, Mark N; Sherman, Melanie A; Kalman, Lisa V; Benian, Guy M; Kalman, Daniel

    2005-08-01

    Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water-borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non-pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin-filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif-1 and egl-9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek-1, mek-1, mev-1, pgp-1,3 and vhl-1, rendered C. elegans more

  7. Coordinate expression of Escherichia coli dnaA and dnaN genes.

    Science.gov (United States)

    Sako, T; Sakakibara, Y

    1980-01-01

    The defects of temperature-sensitive dnaA and dnaN mutants of Escherichia coli are complemented by a recombinant lambda phage, which carries the bacterial DNA segment composed of two EcoRI segments of 1.0 and 3.3 kilobases. Derivatives of the phage, which have an insertion segment of Tn3 in the dnaA gene, are much less active in expressing the dnaN gene function than the parent phage. The dnaN gene activity was determined as the efficiency of superinfecting phage to suppress loss of the viability of lambda lysogenic dnaN59 cells at the non-permissive temperature. Deletions that include the end of the dnaA gene distal to the dnaN gene also reduce the expression of the dnaN gene function. Deletion and insertion in the dnaN gene do not affect the expression of the dnaA gene function. The expression of the dnaN gene function by the dnaA- dnaN+ phages remains weak upon simultaneous infection with dnaA+ dnaN- phages. Thus the insertion and deletion of the dnaA gene influence in cis the expresion of the dnaN gene. We propose that the dnaA and dnaN genes constitute an operon, where the former is upstream to the latter.

  8. Structure elucidation and gene cluster characterization of the O-antigen of Escherichia coli O80.

    Science.gov (United States)

    Senchenkova, Sof'ya N; Guo, Xi; Filatov, Andrei V; Perepelov, Andrei V; Liu, Bin; Shashkov, Alexander S; Knirel, Yuriy A

    2016-09-02

    Mild alkaline degradation of the lipopolysaccharide of Escherichia coli O80 afforded a polysaccharide, which was studied by sugar analysis, selective cleavage of glycosidic linkages, and (1)H and (13)C NMR spectroscopy. Solvolysis of the polysaccharide with CF3CO2H cleaved the linkages of α-Fuc and β-linked GlcNAc and GalNAc residues to give two disaccharides. The following structure of the hexasaccharide repeating unit of the O-polysaccharide was established: The polysaccharide repeat also contains a minor O-acetyl group but its position was not determined. The O-antigen gene cluster of E. coli O80 between the conserved galF and gnd genes was analyzed and found to be consistent with the O-polysaccharide structure established.

  9. Cloning and expression in Escherichia coli of histidine utilization genes from Pseudomonas putida.

    OpenAIRE

    Consevage, M W; Porter, R D; Phillips, A. T.

    1985-01-01

    A library of the Pseudomonas putida chromosome, prepared through the use of the cosmid pJB8 ligated to a partial Sau3A digest of bacterial DNA, followed by in vitro packaging into bacteriophage lambda particles, was used to construct a strain of Escherichia coli which contained the genes for histidine utilization. This isolate produced a repressor product and all five enzymes required in Pseudomonas spp. for histidine dissimilation, whereas none of these could be detected in the nontransduced...

  10. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    OpenAIRE

    Adelowo, Olawale O.; Obasola E. Fagade; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resista...

  11. Trichloroethylene degradation by Escherichia coli containing the cloned Pseudomonas putida F1 toluene dioxygenase genes.

    OpenAIRE

    Zylstra, G J; Wackett, L P; Gibson, D T

    1989-01-01

    Toluene dioxygenase from Pseudomonas putida F1 has been implicated as an enzyme capable of degrading trichloroethylene. This has now been confirmed with Escherichia coli JM109(pDTG601) that contains the structural genes (todC1C2BA) of toluene dioxygenase under the control of the tac promoter. The extent of trichloroethylene degradation by the recombinant organism depended on the cell concentration and the concentration of trichloroethylene. A linear rate of trichloroethylene degradation was o...

  12. A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Jason Ernst

    2008-03-01

    Full Text Available While Escherichia coli has one of the most comprehensive datasets of experimentally verified transcriptional regulatory interactions of any organism, it is still far from complete. This presents a problem when trying to combine gene expression and regulatory interactions to model transcriptional regulatory networks. Using the available regulatory interactions to predict new interactions may lead to better coverage and more accurate models. Here, we develop SEREND (SEmi-supervised REgulatory Network Discoverer, a semi-supervised learning method that uses a curated database of verified transcriptional factor-gene interactions, DNA sequence binding motifs, and a compendium of gene expression data in order to make thousands of new predictions about transcription factor-gene interactions, including whether the transcription factor activates or represses the gene. Using genome-wide binding datasets for several transcription factors, we demonstrate that our semi-supervised classification strategy improves the prediction of targets for a given transcription factor. To further demonstrate the utility of our inferred interactions, we generated a new microarray gene expression dataset for the aerobic to anaerobic shift response in E. coli. We used our inferred interactions with the verified interactions to reconstruct a dynamic regulatory network for this response. The network reconstructed when using our inferred interactions was better able to correctly identify known regulators and suggested additional activators and repressors as having important roles during the aerobic-anaerobic shift interface.

  13. Detection of virulence genes in Uropathogenic E. coli (UPEC strains by Multiplex-PCR method

    Directory of Open Access Journals (Sweden)

    Javad Mohammadi

    2017-06-01

    Full Text Available Background & Objectives: Urinary tract infection caused by E. coli is one of the most common illnesses in all age groups worldwide. Presence of virulence genes is a key factor in bacterial pathogens in uroepithelial cells. The present study was performed to detect iha, iroN, ompT genes in the Uropathogenic E.coli isolates from clinical samples using multiplex-PCR method in Kerman. Materials & Methods: In this descriptive cross-sectional study, 200 samples of patients with urinary tract infections in Kerman hospitals were collected. After biochemical and microbiological tests, all strains were tested with regard to the presence of iha, iroN, and ompT genes using multiplex-PCR method. Results: The results of Multiplex-PCR showed that all specimens had one, two, or three virulence genes simultaneously. The highest and lowest frequency distribution of genes was related to iha (56.7% and iroN (20% respectively. Conclusion: According to the prevalence of urinary tract infection in the community and distribution of resistance and virulence factors, the fast and accurate detection of the strains and virulence genes is necessary

  14. A Lactobacillus nifS-like gene suppresses an Escherichia coli transaminase B mutation.

    Science.gov (United States)

    Leong-Morgenthaler, P; Oliver, S G; Hottinger, H; Söll, D

    1994-01-01

    The nifS gene was first identified in nitrogen-fixing bacteria where its protein product is essential for efficient nitrogen fixation. Here, we demonstrate that a nifS-like gene also occurs in Lactobacillus bulgaricus, an organism which does not fix nitrogen, and that the nifS gene product suppresses the leucine auxotrophy of an ilvD, ilvE Escherichia coli strain. The known nifS genes from prokaryotes and eukaryotes exhibit a high degree of sequence conservation although the genes have diverse functions, as shown by their ability to complement or suppress dissimilar mutations. It was suggested that the nifS gene products represent a group of enzymes which mediate a specific chemical reaction common to diverse metabolic pathways. The purified NifS protein from Azotobacter vinelandii was experimentally shown to be a pyridoxal phosphate-dependent cysteine desulfurase. Curiously, the NifS proteins exhibit also a remarkable sequence homology to a new class of pyridoxal phoshate-dependent aminotransferases. We show that the L bulgaricus NifS-like protein is able to replace in vivo transaminase B in E coli. This experimental observation supports the prediction that some NifS-like proteins may be aminotransferases.

  15. Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli W.

    Science.gov (United States)

    Arikawa, Hisashi; Matsumoto, Keiji; Fujiki, Tetsuya

    2017-09-09

    Cupriavidus necator H16 is the most promising bacterium for industrial production of polyhydroxyalkanoates (PHAs) because of their remarkable ability to accumulate them in the cells. With genetic modifications, this bacterium can produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), which has better physical properties, as well as poly(3-hydroxybutyrate) (PHB) using plant oils and sugars as a carbon source. Considering production cost, sucrose is a very attractive raw material because it is inexpensive; however, this bacterium cannot assimilate sucrose. Here, we used the sucrose utilization (csc) genes of Escherichia coli W to generate C. necator strains that can assimilate sucrose. Especially, glucose-utilizing recombinant C. necator strains harboring the sucrose hydrolase gene (cscA) and sucrose permease gene (cscB) of E. coli W grew well on sucrose as a sole carbon source and accumulated PHB. In addition, strains introduced with a crotonyl-CoA reductase gene (ccr), ethylmalonyl-CoA decarboxylase gene (emd), and some other genetic modifications besides the csc genes and the glucose-utilizing mutations produced PHBHHx with a 3-hydroxyhexanoate (3HHx) content of maximum approximately 27 mol% from sucrose. Furthermore, when one of the PHBHHx-producing strains was cultured with sucrose solution in a fed-batch fermentation, PHBHHx with a 3HHx content of approximately 4 mol% was produced and reached 113 g/L for 65 h, which is approximately 1.5-fold higher than that produced using glucose solution.

  16. [Cloning and expression of Streptococcus salivarius urease gene in Escherichia coli].

    Science.gov (United States)

    Wang, Yan; Feng, Xi-ping; Xie, You-hua; Tao, Dan-ying; Luan, Xiao-ling

    2010-08-01

    To clone Streptococcus salivarius (Ss) 57. I urease gene, which can express ureolytic activity in Escherichia coli (Ec) without adding extra nickel ions. Urease gene was cloned by polymerase chain reaction in three separate parts. The three separate plasmids were digested by specific restriction enzymes and ligated together. The expression of the complete urease gene in Ec was detected by phenol red assay and pH analysis. Urease gene of Ss 57.I was eventually cloned and proved correct. Urease activity of the obtained clone was positive in Ec. Without adding extra NiCl(2), the recombinant Ec could hydrolyze urea to produce ammonia, resulting in the increase of pH value. The clone of Ss urease gene obtained in this study could express ureolytic activity in Ec without adding extra nickel ions. The current clone can be used to construct ureolytic effector strain used in replacement therapy in caries prevention.

  17. Molecular cloning, sequencing, and expression in Escherichia coli of the potato virus Y cytoplasmic inclusion gene.

    Science.gov (United States)

    Ohshima, K; Inoue, A K; Shikata, E

    1993-01-01

    Complete nucleotide sequences of cytoplasmic inclusion (CI) genes of two strains of potato virus Y (PVY) were determined from six polymerase chain reaction (PCR)-amplified cDNA clones. The size of the CI genes of both ordinary (PVY-O) and necrotic strains (PVY-T13) was 1902 nucleotides, with a sequence homology of 83.4%. Comparison of the predicted amino acid sequences showed more than 90% homology. When these were compared with those of other potyviruses, the homology ranged from 53 to 61%. cDNAs of all or a part of the PVY-O CI gene containing an additional initiation codon (ATG) at the 5' end and a stop codon at the 3' end were constructed by PCR amplification and cloned into an Escherichia coli expression vector, pKK 223-3. Complete and truncated PVY-O CI proteins were successfully produced in E. coli as judged by reactivities with PVY-O CI protein-specific antiserum. To our knowledge, this is the first report on expression of PVY CI proteins in E. coli.

  18. Detection of Amp C genes encoding for beta-lactamases in Escherichia coli and Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    M Shanthi

    2012-01-01

    Full Text Available Purpose : Amp C beta-lactamase are Ambler class C enzymes that confer resistance to extended spectrum cephalosporins and are not inhibited by beta-lactamase inhibitors. Their detection is crucial, since the phenotypic tests are not standardised leading to ambiguity in interpretation of results. This study was done to detect the types of Amp C prevalent in Escherichia coli and Klebsiella pneumoniae by multiplex polymerase chain reaction (PCR. Materials and Methods : Seventy-seven consecutive cefoxitin resistant clinical isolates of E. coli (n = 25 and K. pneumoniae (n = 52 were included in the study. Antibiotic susceptibility testing to various classes of antibiotics was performed by disc diffusion using Clinical Laboratory Standards Institute (CLSI guidelines. Minimum inhibitory concentration (MIC to cefoxitin, imipenem and meropenem were determined by broth microdilution method. Isolates were screened for production of Extended Spectrum Beta-Lactamase (ESBL. Multiplex PCR was performed for the detection of Amp C genes after phenotypic testing (Hodge test and inhibitor based test. Results : Cefoxitin Hodge test was positive in 40 isolates which included 20 E. coli and 20 K. pneumoniae. There was zone enhancement with boronic acid in 55 isolates, of which 36 were K. pneumoniae and 19 were E. coli. Multiplex PCR detected Amp C in 11/25 E. coli and 12/52 K. pneumoniae isolates. The Amp C genes detected were CIT (Amp C origin - Citrobacter freundii, DHA (Dhahran Hospital, Saudi Arabia, ACC (Ambler class C, EBC (Amp C origin - Enterobacter cloacae groups. ESBL was co-produced in 54 isolates. Conclusions : Amp C was detected in 29.87% of the study isolates. Majority of them co-produced ESBL. The most common Amp C was the CIT family. Screen tests for cefoxitin resistance may be falsely positive due to production of carbapenamases.

  19. Co-expression of five genes in E coli for L-phenylalanine in Brevibacterium fiavum

    Institute of Scientific and Technical Information of China (English)

    Yong-Qing Wu; Pei-Hong Jiang; Chang-Sheng Fan; Jian-Gang Wang; Liang Shang; Wei-Da Huang

    2003-01-01

    AIM: To study the effect of co-expression of ppsA, pckA,aroG, pheA and tyrB genes on the production of L-phenylalanine, and to construct a genetic engineering strainfor L-phenylalanine.METHODS: ppsA and pckA genes were amplified fromgenomic DNA of E. coli by polymerase chain reaction, andthen introduced into shuttle vectors between E coli andBrevibacterium flavumto generate constructs pJN2 and pJN5.pJN2 was generated by inserting ppsA and pckA genes intovector pCZ; whereas pJN5 was obtained by introducing ppsAand pckA genes into pCZ-GAB, which was originallyconstructed for co-expression of aroG, pheA and tyrB genes.The recombinant plasmids were then introduced into B.flavum by electroporation and the transformants were usedfor L-phenylalanine fermentation.RESULTS: Compared with the original B. flavum cells, all the transformants were showed to have increased five enzyme activities specifically, and have enhanced Lphenylalanine biosynthesis ability variably. pJN5 transformant was observed to have the highest elevation of Lphenylalanine production by a 3.4-fold. Co-expression of ppsA and pckA increased activity of DAHP synthetase significantly.CONCLUSION: Co-expression of ppsA and pckA genes in B. flavum could remarkably increase the expression of DAHP synthetase; Co-expression of ppsA, pckA, aroG, pheA and tyrB of E. coli in B. flavum was a feasible approach toconstruct a strain for phenylalanine production.

  20. Prevalence of aac(3-IIa gene among clinical isolates of uropathogenic Escherichia coli in Delfan, Lorestan

    Directory of Open Access Journals (Sweden)

    Somayeh Momeni Mofrad

    2013-09-01

    Full Text Available Backgrounds: Uropathogenic Escherichia coli strains are the predominant causative organisms of urinary tract infections (UTIs. Aminoglycosides are clinically useful antibiotics with bactericidal activity against this bacterium. The most common mechanism for resistance to these antibiotics are mediated through production of aminoglycoside modifying enzymes (AMEs. The most common of these enzymes are Aminoglycoside Acetyltransferases (AACs. The epidemiology of the dominant type of these enzymes, AAC(3-II, varies from region to region. The aim of this study was to determine the antimicrobial susceptibility pattern with a focus on aminoglycosides and the prevalence of aac(3-IIa gene among clinical isolates of uropathogenic Escherichia coli obtained from Delfan, Lorestan, Iran. Materials and Methods: In this descriptive study, a total of 100 uropathogenic Escherichia coli isolates were collected from BoAli hospital in Delfan city, Lorestan, from July to November 2010. Antibiotic susceptibility patterns of the isolates were determined using disk diffusion method according to Clinical and Laboratory Standards Institute CLSI guidelines. Prevalence of aac(3-IIa gene was determined by PCR and the relationship between resistance phenotypes to aminoglycosides and presence of aac(3-IIa gene was evaluated. Results: Among the 100 tested isolates, maximal resistance was seen to ampicillin (85%; whereas, no resistance to imipenem was found. Sixty percent of the isolates demonstrated resistance to at least one of the tested aminoglycosides. Resistance rate towards these agents were as followed: gentamicin 39%, kanamycin 26%, neomycin 31% and amikacin 1%. Forty–four isolates (44% harbored the aac(3-IIa gene. The maximal rate of gene presence (36 isolates, 92.3% was detected in strains with gentamicin resistant phenotype (39 isolates, 39%. Conclusion: On the basis of our findings, use of antibiotics such as nitrofurantoin, amikacin or imipenem are recommended for

  1. Complete Genome Sequence of a Colistin Resistance Gene (mcr-1)-Bearing Isolate of Escherichia coli from the United States.

    Science.gov (United States)

    Meinersmann, Richard J; Ladely, Scott R; Bono, James L; Plumblee, Jodie R; Hall, M Carolina; Genzlinger, Linda L; Cook, Kimberly L

    2016-11-10

    Transmissible colistin resistance conferred by the mcr-1 gene-bearing IncI2 plasmid has been recently reported in Escherichia coli in the United States. We report here the completed genome sequence of a second E. coli strain isolated from swine in the United States that carried the mcr-1 gene on an IncI2-type plasmid. Copyright © 2016 Meinersmann et al.

  2. Global Escherichia coli Sequence Type 131 Clade with blaCTX-M-27 Gene.

    Science.gov (United States)

    Matsumura, Yasufumi; Pitout, Johann D D; Gomi, Ryota; Matsuda, Tomonari; Noguchi, Taro; Yamamoto, Masaki; Peirano, Gisele; DeVinney, Rebekah; Bradford, Patricia A; Motyl, Mary R; Tanaka, Michio; Nagao, Miki; Takakura, Shunji; Ichiyama, Satoshi

    2016-11-01

    The Escherichia coli sequence type (ST) 131 C2/H30Rx clade with the blaCTX-M-15 gene had been most responsible for the global dissemination of extended-spectrum β-lactamase (ESBL)-producing E. coli. ST131 C1/H30R with blaCTX-M-27 emerged among ESBL-producing E. coli in Japan during the late 2000s. To investigate the possible expansion of a single clade, we performed whole-genome sequencing for 43 Japan and 10 global ST131 isolates with blaCTX-M-27 (n = 16), blaCTX-M-14 (n = 16), blaCTX-M-15 (n = 13), and others (n = 8). We also included 8 ST131 genomes available in public databases. Core genome-based analysis of 61 isolates showed that ST131 with blaCTX-M-27 from 5 countries formed a distinct cluster within the C1/H30R clade, named C1-M27 clade. Accessory genome analysis identified a unique prophage-like region, supporting C1-M27 as a distinct clade. Our findings indicate that the increase of ESBL-producing E. coli in Japan is due mainly to emergence of the C1-M27 clade.

  3. Preliminary investigation of naringenin hydroxylation with recombinant E. coli expressing plant flavonoid hydroxylation gene.

    Science.gov (United States)

    Amor, Ilef Limem-Ben; Salem, Nidhal; Guedon, Emmanuel; Engasser, Jean-Marc; Chekir-Ghedrira, Leila; Ghoul, Mohamed

    2010-05-01

    Flavonoid hydroxylation is one way to increase the biological activities of these molecules and the number of hydroxyl groups needed for polymerization, esterification, alkylation, glycosylation and acylation reactions. These reactions have been suggested as a promising route to enhance flavonoid solubility and stability. In our preliminary study we hydroxylated naringenin (the first flavonoid core synthesized in plants) with recombinant E. coli harboring flavanone 3 hydroxylase (F3H). We demonstrated that recombinant E. coli harboring the F3H from Petroselinum crispum, can convert naringenin to dihydrokaempferol. The whole cell hydroxylase activity was often influenced by the stability of the plasmid harboring the cloned gene and the biomass yield. When the composition of the growth media became richer the amount of formed product decreased about twofold; the naringenin bioconversion yield in LB media was 70% and decreased to 33% in TB. However, the enrichment of culture media increased the biomass yield nearly threefold in LB media, only 0.5 g/L of bacteria was formed, but in TB there was 1.6 g/L. Thus, LB constitutes the best medium for naringenin bioconversion using the recombinant E. coli harboring the F3H; this allows for maximum bioconversion yield and plasmid stability when compared with the fourth tested culture medium. Consequently, E. coli harboring F3H from Petroselinum crispum can be used to produce flavonoids hydroxylated in position 3 that can serve in additional reactions like polymerization, glycosylation, and acylation,

  4. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Shan Goh

    Full Text Available BACKGROUND: Genes essential for bacterial growth are of particular scientific interest. Many putative essential genes have been identified or predicted in several species, however, little is known about gene expression requirement stringency, which may be an important aspect of bacterial physiology and likely a determining factor in drug target development. METHODOLOGY/PRINCIPAL FINDINGS: Working from the premise that essential genes differ in absolute requirement for growth, we describe silencing of putative essential genes in E. coli to obtain a titration of declining growth rates and transcript levels by using antisense peptide nucleic acids (PNA and expressed antisense RNA. The relationship between mRNA decline and growth rate decline reflects the degree of essentiality, or stringency, of an essential gene, which is here defined by the minimum transcript level for a 50% reduction in growth rate (MTL(50. When applied to four growth essential genes, both RNA silencing methods resulted in MTL(50 values that reveal acpP as the most stringently required of the four genes examined, with ftsZ the next most stringently required. The established antibacterial targets murA and fabI were less stringently required. CONCLUSIONS: RNA silencing can reveal stringent requirements for gene expression with respect to growth. This method may be used to validate existing essential genes and to quantify drug target requirement.

  5. Distribution of Virulence-Associated Genes of Avian Pathogenic Escherichia coli Isolates in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    216 avian pathogenic Escherichia coli (APEC) isolates were obtained from poultry with colibacillosis in different areas of China. Among them, 195 were serotyped as O78, O88, and O93. Thirteen virulence-associated genes, including fimC, iucD, iss, tsh, fyuA, irp2, eaeA, hlyE, colV, papC, stx2f, vat, and astA, were submitted to PCR amplification. The fimC gene was the most prevalent with a detection rate of 93.6%, followed by iucD (70.8%), iss (58.8%), and tsh (51.4%) in APEC isolates. The detection rate of high pathogenicity islands (HPI)-associatedfyuA and irp2 genes were both 44.9%, with no LEE (the locus of enterocyte effacement) island-associated gene eaeA detected. In terms of distribution patterns of the 13 virulence-associated genes, 5 isolates harborbed 10 genes, 19 isolates contained only fimC gene, and only 4 isolates had no virulence-associated gene detected. Different correlations of the virulence-associated genes with O serotypes were also investigated and 50% O78 isolates had a gene distribution patterns of fimC+iucD+irp2+fyuA+iss+colV+tsh+.

  6. Chicken Meat as a Reservoir of Colistin-Resistant Escherichia coli Strains Carrying mcr-1 Genes in South America.

    Science.gov (United States)

    Monte, Daniel Farias; Mem, Andressa; Fernandes, Miriam R; Cerdeira, Louise; Esposito, Fernanda; Galvão, Julia A; Franco, Bernadette D G M; Lincopan, Nilton; Landgraf, Mariza

    2017-05-01

    The detection and rapid spread of colistin-resistant Enterobacteriaceae carrying the mcr-1 gene has created an urgent need to strengthen surveillance. In this study, eight clonally unrelated colistin-resistant Escherichia coli isolates carrying mcr-1 and blaCTX-M or blaCMY-2 genes were isolated from commercial chicken meat in Brazil. Most E. coli strains carried IncX4 plasmids, previously identified in human and animal isolates. These results highlight a new reservoir of mcr-1-harboring E. coli strains in South America. Copyright © 2017 American Society for Microbiology.

  7. Occurrence of plasmid-mediated quinolone resistance and virulence genes in avian Escherichia coli isolates from Algeria.

    Science.gov (United States)

    Laarem, Meradi; Barguigua, Abouddihaj; Nayme, Kaotar; Akila, Abdi; Zerouali, Khalid; El Mdaghri, Naima; Timinouni, Mohammed

    2017-02-28

    The emergence and spread of quinolone-resistant Escherichia coli in poultry products puts consumers at risk of exposure to the strains of E. coli that resist antibiotic treatment. The objective of this study was to define the prevalence and virulence potential of poultry-associated nalidixic acid (NAL)-resistant E. coli in the Annaba city, Algeria. In total, 33 samples of retail chicken meat were purchased from various butcher shops and examined for bacterial contamination with NAL-resistant E. coli. These isolates were subjected to antimicrobial susceptibility testing and were also investigated for the presence of plasmid-mediated quinolone resistance (PMQR) genes and virulence genes using conventional polymerase chain reaction (PCR) and DNA sequencing. Phylogenetic grouping of the NAL-resistant E. coli isolates was determined by the conventional multiplex PCR method. Twenty-nine (87.8%) products yielded NAL-resistant E. coli. Antibiograms revealed that 96.55% of NAL-resistant E. coli isolates were multidrug resistant (MDR). Resistance was most frequently observed against sulfamethoxazole-trimethoprim (96.6%), tetracycline (96.6%), ciprofloxacin (72%), and amoxicillin (65.5%). Group A was the most prevalent phylogenetic group, followed by groups D, B1, and B2. The PMQR determinants were detected in three isolates with qnrB72 and qnrS1 type identified. Four (13.8%) isolates carried one of the Shiga toxin E. coli-associated genes stx1, stx2, and ehxA alleles. The high prevalence of NAL-resistant E. coli isolated from retail chicken meat with detection of MDR E. coli harboring Shiga toxin genes in this study gives a warning signal for possible occurrence of foodborne infections with failure in antibiotic treatment.

  8. Detection of eae, bfpA, espA Genes on Diarrhoeagenic Strains of Escherichia coli Isolates

    Directory of Open Access Journals (Sweden)

    Agnes Sri Harti

    2015-10-01

    Full Text Available The Enteropathogenic Escherichia coli (EPEC is one of pathogenic strain of diarrheagenic E. coli group in children andinfant that occurs in developing countries. The significant virulence factors in pathogenic EPEC are eaeA (E. coli attachingeffacing, bfpA (bundle-forming pilus A and espA (encoding secreted protein A genes. The use of DNA probes to detect thevirulence genes in E. coli in Indonesia is not common yet. In this experiment the gene fragments of eae, bfpA, and espA were usedas probes to detect the EPEC among E. coli isolates from stool specimensin of diarrheic children attending Public Health Centersin Yogyakarta. The DNA samples were isolated from 49 diarrheagenic E. coli isolates. The DNA probes of eae, bfpA and espAwere obtained by amplification of DNA fragment of EPEC O126 using PCR technique. Furthermore, those probes were used toidentify the presence of those genes among E. coli isolates using hybridization technique. The results showed that 42 (85.7%isolates were espA+, 25 isolates (51% were eaeA+ (EPEC strains. Therefore among 25 isolates of EPEC, 20 isolates (80 %among EPEC were bfpA+ (typical EPEC strains.Keywords : DNA probe, eae, bfpA, espA, EPEC.

  9. A vector library for silencing central carbon metabolism genes with antisense RNAs in Escherichia coli.

    Science.gov (United States)

    Nakashima, Nobutaka; Ohno, Satoshi; Yoshikawa, Katsunori; Shimizu, Hiroshi; Tamura, Tomohiro

    2014-01-01

    We describe here the construction of a series of 71 vectors to silence central carbon metabolism genes in Escherichia coli. The vectors inducibly express antisense RNAs called paired-terminus antisense RNAs, which have a higher silencing efficacy than ordinary antisense RNAs. By measuring mRNA amounts, measuring activities of target proteins, or observing specific phenotypes, it was confirmed that all the vectors were able to silence the expression of target genes efficiently. Using this vector set, each of the central carbon metabolism genes was silenced individually, and the accumulation of metabolites was investigated. We were able to obtain accurate information on ways to increase the production of pyruvate, an industrially valuable compound, from the silencing results. Furthermore, the experimental results of pyruvate accumulation were compared to in silico predictions, and both sets of results were consistent. Compared to the gene disruption approach, the silencing approach has an advantage in that any E. coli strain can be used and multiple gene silencing is easily possible in any combination.

  10. Investigation of Escherichia coli Harboring the mcr-1 Resistance Gene - Connecticut, 2016.

    Science.gov (United States)

    Vasquez, Amber M; Montero, Noelisa; Laughlin, Mark; Dancy, Ehren; Melmed, Russell; Sosa, Lynn; Watkins, Louise Francois; Folster, Jason P; Strockbine, Nancy; Moulton-Meissner, Heather; Ansari, Uzma; Cartter, Matthew L; Walters, Maroya Spalding

    2016-09-16

    The mcr-1 gene confers resistance to the polymyxins, including the antibiotic colistin, a medication of last resort for multidrug-resistant infections. The mcr-1 gene was first reported in 2015 in food, animal, and patient isolates from China (1) and is notable for being the first plasmid-mediated colistin resistance mechanism to be identified. Plasmids can be transferred between bacteria, potentially spreading the resistance gene to other bacterial species. Since its discovery, the mcr-1 gene has been reported from Africa, Asia, Europe, South America, and North America (2,3), including the United States, where it has been identified in Escherichia coli isolated from three patients and from two intestinal samples from pigs (2,4-6). In July 2016, the Pathogen Detection System at the National Center for Biotechnology Information (Bethesda, Maryland) identified mcr-1 in the whole genome sequence of an E. coli isolate from a Connecticut patient (7); this is the fourth isolate from a U.S. patient to contain the mcr-1 gene.

  11. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    Science.gov (United States)

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively.

  12. Characterization and expression of codon optimized soybean phytase gene in E. coli.

    Science.gov (United States)

    Singh, Pritee; Punjabi, Mansi; Jolly, Monica; Rai, R D; Sachdev, Archana

    2013-12-01

    Phytic acid, the major storage form of phosphorus in plant seeds is degraded by the phytases to yield inositol and free phosphate, contributing thereby to the improved bioavailability of phytate phosphorus and essential minerals in plant foods and simultaneous reduction in phosphorus pollution of the terrestrial and aquatic ecosystems. As a possible strategy for altering seed phytate levels, the approach involving reduction of phytate content by ectopically expressing endogenous phytase gene during seed development of soybean (Glycine max L. cv. Pusa-20) was attempted in the present study. Semi-quantitative RT-PCR revealed the maximum expression of phytase gene transcripts in germinating cotyledons (approximately 10 days after germinations), compared to other vegetative tissues. A full-length phytase cDNA was amplified from the germinating seedlings by splicing by overlap extension (SOE)-PCR and its sequence analysis revealed an open-reading-frame of 1644 bp, including an N terminal signal peptide of 28 amino acids. Predicted amino acid sequence (547-aa) of molecular mass 62 kDa on alignment with related purple acid phosphatases in other plants shared five conserved domains and seven invariant amino acids involved in coordination of the metals in the binuclear center of purple acid phosphatases. Owing to a large number of E. coli low-usage codons in soybean phytase gene, the modified gene was cloned into a prokaryotic expression vector pET-28a (+) and its expression in E. coli was confirmed by SDS-PAGE and Western blot analysis. Bioassay of the crude expression product in E. coli revealed a functional phytase gene, showing a great potential for developing low phytate transgenic soybean through its seed-specific overexpression in the early stages of seed development.

  13. Structural analysis of the dnaA and dnaN genes of Escherichia coli.

    Science.gov (United States)

    Ohmori, H; Kimura, M; Nagata, T; Sakakibara, Y

    1984-05-01

    The nucleotide sequence of the entire region containing the Escherichia coli dnaA and dnaN genes was determined. Base substitutions by such mutations as dnaA46, dnaA167, dnaN59, and dnaN806 were also identified. Analyses of coding frames, the mutational base substitutions, and other data indicate that dnaN follows dnaA, both have the same orientation, and are separated by only 4 bp. The deduced amino acid sequence specifies Mrs and isoelectric points consistent with those of the previously identified gene products. The transcriptional initiation site of the dnaA gene was assigned by analysis of in vitro RNA products. Examination of the intercistronic sequence and analysis of in vitro transcription supported the notion that the dnaA and dnaN genes constitute a single operon.

  14. Enhanced production of ε-caprolactone by coexpression of bacterial hemoglobin gene in recombinant Escherichia coli expressing cyclohexanone monooxygenase gene.

    Science.gov (United States)

    Lee, Won-Heong; Park, Eun-Hee; Kim, Myoung-Dong

    2014-12-28

    Baeyer-Villiger (BV) oxidation of cyclohexanone to epsilon-caprolactone in a microbial system expressing cyclohexanone monooxygenase (CHMO) can be influenced by not only the efficient regeneration of NADPH but also a sufficient supply of oxygen. In this study, the bacterial hemoglobin gene from Vitreoscilla stercoraria (vhb) was introduced into the recombinant Escherichia coli expressing CHMO to investigate the effects of an oxygen-carrying protein on microbial BV oxidation of cyclohexanone. Coexpression of Vhb allowed the recombinant E. coli strain to produce a maximum epsilon-caprolactone concentration of 15.7 g/l in a fed-batch BV oxidation of cyclohexanone, which corresponded to a 43% improvement compared with the control strain expressing CHMO only under the same conditions.

  15. HIGN LEVEL EXPRESSION OF HEPATITIS C VIRUS CORE GENE IN E. COLI

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To express the hepatitis C virus (HCV) core gene in E . coli on a high level. Methods  The cDNA coding for HCV core protein was amplified by polymerase chain reaction (PCR). The PCR product was  purified and digested with restriction enzymes and inserted into the downstream of PRPL promoter of a high-level ex- pression vector pBV220. HCV core gene was expressed in E. coli in a non-fused form. The expression protein was analysed by SDS-PAGE , and its immunoactivity was tested by ELISA. Results Sequence analysis of the amplified PCR products confirmed that we have successfully cloned and expresssed the intact core protein of HCV. SDS-PAGE showed that a specific protein with a molecular weight of 21kDa at a level of 14. 0% of the total bacterial proteins ap- peared in bacteria harboring pBV/HCVCore, while this protein was absent in the control bacteria harboring pBV220. The results of enzyme immunoassay analysis showed that this protein could be specifically recognized by the HCV pos- itive sera from patients with hepatitis C . Conclusion The intact HCV core protein was successfully expressed in E . coli in a non-fused form on a high level, and its immunoactivity was high.

  16. Assessment of AmpC Beta-Lactamase Genes among Clinical Escherichia coli Isolates

    Directory of Open Access Journals (Sweden)

    HedrooshaMolla Agha-Mirzaeie

    2015-11-01

    Full Text Available Background: AmpC bta lactamases play a significant role in creating resistance to third generation cephalosporins worldwide. They mostly express on chromosome of Enterobacteriaceae especially Escherichia coli and cause consequential problem inclinical treatment and lead to failure in diagnosis and phenotypic test recommended byClinical and Laboratory Standards Institute.Methods:Totally 200 E. coli isolates from different hospitals of Tehran were collected. The isolates were screened by disk diffusion method according to the CLSI guidelines. The profiles and prevalence surveys of AmpC (Dha, CITM, Mox and FOX-type β-lactamase genes in clinical isolates of E. coli by phenotypic and molecular methods.  Results:Out of 200 Ecoli isolated, 115 (89.8% and 13 (10.2% isolates were identified as ESBL- and AmpC- beta-lactamase producers, respectively. Among mpC producers, 13 (100% and 5 (38.5% isolates was reported by PCR assay as bla-CITM and Dha respectively. Mox and FOX genes were not detected in any sample.Conclusions:Our results highlight the importance of using molecular detection methods to identify β-lactamase-producer that have resistance to antibiotics. 

  17. Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene.

    Science.gov (United States)

    Charusanti, Pep; Conrad, Tom M; Knight, Eric M; Venkataraman, Karthik; Fong, Nicole L; Xie, Bin; Gao, Yuan; Palsson, Bernhard Ø

    2010-11-04

    Bacterial survival requires adaptation to different environmental perturbations such as exposure to antibiotics, changes in temperature or oxygen levels, DNA damage, and alternative nutrient sources. During adaptation, bacteria often develop beneficial mutations that confer increased fitness in the new environment. Adaptation to the loss of a major non-essential gene product that cripples growth, however, has not been studied at the whole-genome level. We investigated the ability of Escherichia coli K-12 MG1655 to overcome the loss of phosphoglucose isomerase (pgi) by adaptively evolving ten replicates of E. coli lacking pgi for 50 days in glucose M9 minimal medium and by characterizing endpoint clones through whole-genome re-sequencing and phenotype profiling. We found that 1) the growth rates for all ten endpoint clones increased approximately 3-fold over the 50-day period; 2) two to five mutations arose during adaptation, most frequently in the NADH/NADPH transhydrogenases udhA and pntAB and in the stress-associated sigma factor rpoS; and 3) despite similar growth rates, at least three distinct endpoint phenotypes developed as defined by different rates of acetate and formate secretion. These results demonstrate that E. coli can adapt to the loss of a major metabolic gene product with only a handful of mutations and that adaptation can result in multiple, alternative phenotypes.

  18. Counterselection method based on conditional silencing of antitoxin genes in Escherichia coli.

    Science.gov (United States)

    Tsukuda, Miyuki; Nakashima, Nobutaka; Miyazaki, Kentaro

    2015-11-01

    Counterselection is a genetic engineering technique to eliminate specific genetic fragments containing selectable marker genes. Although the technique is widely used in bacterial genome engineering and plasmid curing experiments, the repertoire of the markers usable in Escherichia coli is limited. Here we developed a novel counterselection method in E. coli based on antisense RNA (asRNA) technology directed against toxin-antitoxin (TA) modules. Under normal conditions, excess antitoxin neutralizes its cognate toxin and thus the module is stably maintained in the genome. We hypothesised that repression of an antitoxin gene would perturb cell growth due to the toxin being released. We designed asRNAs corresponding to all 19 type II antitoxins encoded in the E. coli genome. asRNAs were then conditionally expressed; repression of MqsA in the MqsR/MqsA module had the greatest inhibitory effect, followed by RnlB in the RnlA/RnlB module. The utility of asRNA(MqsA) as a counterselection marker was demonstrated by efficient plasmid curing and strain improvement experiments.

  19. Enterohaemolysin production and verotoxin genes in Esche-richia coli strains isolated from neonatal calves in India

    Institute of Scientific and Technical Information of China (English)

    Diganta Pan; Ashok Kumar Bhatia; KNBhilegaonkar

    2009-01-01

    Objective:To screened all haemolytic strains of Escherichia coli (E.coli)for the presence of verotoxin genes and speculate the association between enterohaemolysin production and presence of verotoxin genes.Methods:A total 176 of E.coli strains of 64 serogroups isolated from neonatal calves were selected and screened for al-pha-haemolysin and enterohaemolysin production on sheep blood agar and 5% washed sheep blood agar.Two types of haemolytic strains were further characterized by PCR for presence of Verotoxin gene (VT1 and VT2) and confirmed by verocell cytotoxicity assay.Results:Among 27 enterohaemolytic positive strains,19 (70. 37%)strains were found positive for presence of verotoxins (VTs)gene and verocell cytotoxicity assay. Whereas 34 alpha-haemolysin strains were found negative for VTs.Eight strains of E.coli were found VTs neg-ative but Ehx positive.Conclusion:The close association between enterohaemolysin production and presence of verotoxin genes makes it useful epidemiological marker for rapid screening of Verotoxic E.coli but this pheno-typic marker for screening of verotoxigenic Escherichia coli(VTEC)alone may raise a question in animal.

  20. Expression of key glycosphingolipid biosynthesis-globo series pathway genes in Escherichia coli F18-resistant and Escherichia coli F18-sensitive piglets.

    Science.gov (United States)

    Dong, W H; Dai, C H; Sun, L; Wang, J; Sun, S Y; Zhu, G Q; Wu, S L; Bao, W B

    2016-08-01

    A pioneering study showed that the glycosphingolipid biosynthesis-globo series pathway genes (FUT1, FUT2, ST3GAL1, HEXA, HEXB, B3GALNT1 and NAGA) may play an important regulatory role in resistance to Escherichia coli F18 in piglets. Therefore, we analysed differential gene expression in 11 tissues of two populations of piglets sensitive and resistant respectively to E. coli F18 and the correlation of differential gene expression in duodenal and jejunal tissues. We found that the mRNA expression of the seven genes was relatively high in spleen, liver, lung, kidney, stomach and intestinal tract; the levels in thymus and lymph nodes were lower, with the lowest levels in heart and muscle. FUT2 gene expression in the duodenum and jejunum of the resistant population was significantly lower than that in the sensitive group (P gene expression was also significantly lower in the duodenum of the resistant population than in the sensitive group (P genes. The expression level of FUT1 was extremely significantly positively correlated with FUT2 and B3GALNT1 expression (P < 0.01) and also had a significant positive correlation with NAGA expression (P < 0.05). The expression level of FUT2 had extremely significant positive correlations with FUT1, ST3GAL1 and B3GALNT1 (P < 0.01). These results suggest that FUT2 plays an important role in E. coli F18 resistance in piglets. FUT1, ST3GAL1, B3GALNT1 and NAGA may also participate in the mechanism of resistance to E. coli F18.

  1. 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria.

    Science.gov (United States)

    Przystałowska, Hanna; Zeyland, Joanna; Szymanowska-Powałowska, Daria; Szalata, Marlena; Słomski, Ryszard; Lipiński, Daniel

    2015-02-01

    1,3-Propanediol (1,3-PDO) is an organic compound, which is a valuable intermediate product, widely used as a monomer for synthesizing biodegradable polymers, increasing their strength; as well as an ingredient of textile, cosmetic and medical products. 1,3-PDO is mostly synthesized chemically. Global companies have developed technologies for 1,3-PDO synthesis from petroleum products such as acrolein and ethylene oxide. A potentially viable alternative is offered by biotechnological processes using microorganisms capable of synthesizing 1,3-PDO from renewable substrates (waste glycerol, a by-product of biofuel production, or glucose). In the present study, genes from Citrobacter freundii and Klebsiella pneumoniae were introduced into Escherichia coli bacteria to enable the synthesis of 1,3-PDO from waste glycerol. These strains belong to the best 1,3-PDO producers, but they are pathogenic, which restricts their application in industrial processes. The present study involved the construction of two gene expression constructs, containing a total of six heterologous glycerol catabolism pathway genes from C. freundii ATCC 8090 and K. pneumoniae ATCC 700721. Heterologous genes encoding glycerol dehydratase (dhaBCE) and the glycerol dehydratase reactivation factor (dhaF, dhaG) from C. freundii and gene encoding 1,3-PDO oxidoreductase (dhaT) from K. pneumoniae were expressed in E. coli under the control of the T7lac promoter. An RT-PCR analysis and overexpression confirmed that 1,3-PDO synthesis pathway genes were expressed on the RNA and protein levels. In batch fermentation, recombinant E. coli bacteria used 32.6gl(-1) of glycerol to produce 10.6 gl(-1) of 1,3-PDO, attaining the efficiency of 0.4 (mol₁,₃-PDO molglycerol(-1)). The recombinant E. coli created is capable of metabolizing glycerol to produce 1,3-PDO, and the efficiency achieved provides a significant research potential of the bacterium. In the face of shortage of fossil fuel supplies and climate warming

  2. Occurrence of intestinal and extraintestinal virulence genes in Escherichia coli isolates from rainwater tanks in Southeast Queensland, Australia.

    Science.gov (United States)

    Ahmed, W; Hodgers, L; Masters, N; Sidhu, J P S; Katouli, M; Toze, S

    2011-10-01

    In this study, 200 Escherichia coli isolates from 22 rainwater tank samples in Southeast Queensland, Australia, were tested for the presence of 20 virulence genes (VGs) associated with intestinal and extraintestinal pathotypes. In addition, E. coli isolates were also classified into phylogenetic groups based on the detection of the chuA, yjaA, and TSPE4.C2 genes. Of the 22 rainwater tanks, 8 (36%) and 5 (23%) were positive for the eaeA (belonging to enteropathogenic E. coli [EPEC] and Shiga-toxigenic E. coli [STEC]) and ST1 (belonging to enterotoxigenic E. coli [ETEC]) genes, respectively. VGs (cdtB, cvaC, ibeA, kpsMT allele III, PAI, papAH, and traT) belonging to extraintestinal pathogenic E. coli (ExPEC) were detected in 15 (68%) of the 22 rainwater tanks. Of the 22 samples, 17 (77%) and 11 (50%) contained E. coli belonging to phylogenetic groups A and B1, respectively. Similarly, 10 (45%) and 16 (72%) contained E. coli belonging to phylogenetic groups B2 and D, respectively. Of the 96 of the 200 strains from 22 tanks that were VG positive, 40 (42%) were carrying a single VG, 36 (37.5%) were carrying two VGs, 17 (18%) were carrying three VGs, and 3 (3%) had four or more VGs. This study reports the presence of multiple VGs in E. coli strains belonging to the STEC, EPEC, ETEC, and ExPEC pathotypes in rainwater tanks. The public health risks associated with potentially clinically significant E. coli in rainwater tanks should be assessed, as the water is used for drinking and other, nonpotable purposes. It is recommended that rainwater be disinfected using effective treatment procedures such as filtration, UV disinfection, or simply boiling prior to drinking.

  3. Expression in E. coli of the gene encoding phenylalanine ammonia-lyase from Rhodosporidium toruloides.

    Science.gov (United States)

    Orum, H; Rasmussen, O F

    1992-03-01

    The active sites of the enzyme phenylalanine ammonia-lyase (Pal) from Rhodosporidium toruloides contains a dehydroalanine residue that is believed to be essential for catalytic activity. Furthermore, the dehydroalanine is believed to be added post-translationally as part of a prosthetic group covalently attached to the enzyme. Perhaps for this reason no attempts to produce Pal in foreign host cells have been reported. We have inserted the entire uninterupted pal gene from R. toruloides into the Escherichia coli expression vector pKK 223-3. E. coli cells containing this vector synthesize a protein of the expected size, and extracts prepared from these cells contain a Pal-like activity. The potential implications of this finding are discussed.

  4. Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Klemm, Per

    2007-01-01

    asymptomatic bacteriuria (ABU) E. coli strains 83972 and VR50 are significantly better biofilm formers in their natural growth medium, human urine, than the two uropathogenic E. coli isolates CFT073 and 536. We used DNA microarrays to monitor the expression profile during biofilm growth in urine of the two ABU...... strains 83972 and VR50. Significant differences in expression levels were seen between the biofilm expression profiles of the two strains with the corresponding planktonic expression profiles in morpholinepropanesulfonic acid minimal laboratory medium and human urine; 417 and 355 genes were up- and down...... versions of 83972 and VR50; all mutants showed reduced biofilm formation in urine by 18 to 43% compared with the wild type (P profile of strain 83972 in the human urinary tract partially overlaps with the biofilm expression profile....

  5. EXPRESSION OF NITROREDUCTASE GENE NOR1 IN E.Coli AND THE PREPARATION OF ANTISERUM

    Institute of Scientific and Technical Information of China (English)

    聂新民; 周鸣; 桂嵘; 李小玲; 张必成; 李伟芳; 王蓉; 曹利; 李桂源

    2004-01-01

    Objective: To express nitroreductase gene NOR1 in Escherichia coli and to purify the expressed protein in order to get the polyclonal antibody of NOR1. Methods: The full length of NOR1 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and digested with BamHI and XhoI restriction endonucleases.The plasmid pGEX-4T-2 was also digested with BamHI and XhoI, then the NOR1 gene was inserted into vector pGEX-4T-2. The recombinant expression vector pGEX-4T-2/NOR1 was identified by sequencing and restriction enzymes digestion. E.coli Jm105 transformed with the recombinant plasmid was induced by IPTG to express the GST fusion protein. The purified targeted protein obtained by affinity chromatography was used to immunize New Zealand rabbits to acquire antiserum.Antiserum was analyzed with immunoblot. Results: The1.25 kb NOR1 gene was successfully isolated. After induction,a new anticipated protein of 74 kDa appeared on sodiumdodecylsulfate polyacrylamide (SDS-PAGE). The result was confirmed by Western blot analysis, and the purified targeted protein was obtained by affinity chromatography.The titer of antiserum was 1:8. Conclusion: A high level of expression of GST-NOR1 is obtained in JM 105, and its antiserum can be prepared successfully.

  6. Host-specific induction of Escherichia coli fitness genes during human urinary tract infection.

    Science.gov (United States)

    Subashchandrabose, Sargurunathan; Hazen, Tracy H; Brumbaugh, Ariel R; Himpsl, Stephanie D; Smith, Sara N; Ernst, Robert D; Rasko, David A; Mobley, Harry L T

    2014-12-23

    Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of uncomplicated urinary tract infection (UTI), manifested by inflammation of the urinary bladder, in humans and is a major global public health concern. Molecular pathogenesis of UPEC has been primarily examined using murine models of UTI. Translational research to develop novel therapeutics against this major pathogen, which is becoming increasingly antibiotic resistant, requires a thorough understanding of mechanisms involved in pathogenesis during human UTIs. Total RNA-sequencing (RNA-seq) and comparative transcriptional analysis of UTI samples to the UPEC isolates cultured in human urine and laboratory medium were used to identify novel fitness genes that were specifically expressed during human infection. Evidence for UPEC genes involved in ion transport, including copper efflux, nickel and potassium import systems, as key fitness factors in uropathogenesis were generated using an experimental model of UTI. Translational application of this study was investigated by targeting Cus, a bacterial copper efflux system. Copper supplementation in drinking water reduces E. coli colonization in the urinary bladder of mice. Additionally, our results suggest that anaerobic processes in UPEC are involved in promoting fitness during UTI in humans. In summary, RNA-seq was used to establish the transcriptional signature in UPEC during naturally occurring, community acquired UTI in women and multiple novel fitness genes used by UPEC during human infection were identified. The repertoire of UPEC genes involved in UTI presented here will facilitate further translational studies to develop innovative strategies against UTI caused by UPEC.

  7. Combining Shigella Tn-seq data with gold-standard E. coli gene deletion data suggests rare transitions between essential and non-essential gene functionality.

    Science.gov (United States)

    Freed, Nikki E; Bumann, Dirk; Silander, Olin K

    2016-09-06

    Gene essentiality - whether or not a gene is necessary for cell growth - is a fundamental component of gene function. It is not well established how quickly gene essentiality can change, as few studies have compared empirical measures of essentiality between closely related organisms. Here we present the results of a Tn-seq experiment designed to detect essential protein coding genes in the bacterial pathogen Shigella flexneri 2a 2457T on a genome-wide scale. Superficial analysis of this data suggested that 481 protein-coding genes in this Shigella strain are critical for robust cellular growth on rich media. Comparison of this set of genes with a gold-standard data set of essential genes in the closely related Escherichia coli K12 BW25113 revealed that an excessive number of genes appeared essential in Shigella but non-essential in E. coli. Importantly, and in converse to this comparison, we found no genes that were essential in E. coli and non-essential in Shigella, implying that many genes were artefactually inferred as essential in Shigella. Controlling for such artefacts resulted in a much smaller set of discrepant genes. Among these, we identified three sets of functionally related genes, two of which have previously been implicated as critical for Shigella growth, but which are dispensable for E. coli growth. The data presented here highlight the small number of protein coding genes for which we have strong evidence that their essentiality status differs between the closely related bacterial taxa E. coli and Shigella. A set of genes involved in acetate utilization provides a canonical example. These results leave open the possibility of developing strain-specific antibiotic treatments targeting such differentially essential genes, but suggest that such opportunities may be rare in closely related bacteria.

  8. Comparison of adhesin genes and antimicrobial susceptibilities between uropathogenic and intestinal commensal Escherichia coli strains.

    Science.gov (United States)

    Qin, Xiaohua; Hu, Fupin; Wu, Shi; Ye, Xinyu; Zhu, Demei; Zhang, Ying; Wang, Minggui

    2013-01-01

    The presence of adhesins is arguably an important determinant of pathogenicity for Uropathogenic Escherichia coli (UPEC). Antimicrobial susceptibilities were tested by agar dilution method, fifteen adhesin genes were detected by polymerase chain reaction, and multilocus sequence typing (MLST) was analyzed in 70 UPEC isolates and 41 commensal E. coli strains. Extended-spectrum β-lactamase (ESBL) was determined with confirmatory test. The prevalence of ESBL-producers in UPEC (53%, 37/70) was higher than the commensal intestinal isolates (7%, 3/41), and 97% (36/37) of the ESBL-producing UPEC harbored bla CTX-M genes. afa was present in 36% (10/28) UPEC isolates from recurrent lower urinary tract infection (UTI), and none in the acute pyelonephritis, acute uncomplicated cystitis or commensal strains (PUPEC isolates, while 5% (2/41) of the commensal strains were papG positive (P = 0.0025), and the prevalence of papG was significantly higher in acute pyelonephritis group (71%) than the other two UTI groups (PUPEC isolates than in the commensal strains. ESBL-producing UPEC showed a lower prevalence of adhesin genes compared with non-ESBL-producing strains. The MLST profiles were different between UPEC and commensal strains, with ST131 (19%, 13/70) and ST10 (20%, 8/41) being the most common MLSTs, respectively. This study demonstrated that several adhesin genes were more prevalent in UPEC isolates than in commensal E. coli, and afa may be associated with recurrent lower UTI whereas papG is more frequently associated with acute pyelonephritis.

  9. Impact of intramammary treatment on gene expression profiles in bovine Escherichia coli mastitis.

    Directory of Open Access Journals (Sweden)

    Anja Sipka

    Full Text Available Clinical mastitis caused by E. coli accounts for significant production losses and animal welfare concerns on dairy farms worldwide. The benefits of therapeutic intervention in mild to moderate cases are incompletely understood. We investigated the effect of intramammary treatment with cefapirin alone or in combination with prednisolone on gene expression profiles in experimentally-induced E. coli mastitis in six mid-lactating Holstein Friesian cows. Cows were challenged with E. coli in 3 quarters and received 4 doses of 300 mg cefapirin in one quarter and 4 doses of 300 mg cefapirin together with 20 mg prednisolone in another quarter. At 24 h (n = 3 or 48 h (n = 3 post-challenge, tissue samples from control and treated quarters were collected for microarray analysis. Gene expression analysis of challenged, un-treated quarters revealed an up-regulation of transcripts associated with immune response functions compared to un-challenged quarters. Both treatments resulted in down-regulation of these transcripts compared to challenged, un-treated quarters most prominently for genes representing Chemokine and TLR-signaling pathways. Gene expression of Lipopolysaccharide Binding Protein (LBP, CCL2 and CXCL2 were only significantly down-regulated in cefapirin-prednisolone-treated quarters compared to un-treated controls. Down-regulation of chemokines was further confirmed on the basis of protein levels in milk whey for CXCL1, CXCL2 and CXCL8 in both treatments with a greater decrease in cefapirin-prednisolone-treated quarters. The data reveal a significant effect of treatment on cell recruitment with a more pronounced effect in cefapirin-prednisolone treated quarters. Provided a rapid bacteriological clearance, combination therapy may prevent neutrophil-induced tissue damage and promote recovery of the gland.

  10. First detection of Escherichia coli harboring mcr-1 gene from retail domestic chicken meat in Japan.

    Science.gov (United States)

    Ohsaki, Yusuke; Hayashi, Wataru; Saito, Satomi; Osaka, Shunsuke; Taniguchi, Yui; Koide, Shota; Kawamura, Kumiko; Nagano, Yukiko; Arakawa, Yoshichika; Nagano, Noriyuki

    2017-07-01

    Global spread of plasmid-mediated colistin resistance gene, mcr-1 poses a public health concern because colistin is the last-line-of-defense against severe infections due to multidrug-resistant Gram- negative bacteria. In Japan, a few studies have reported the prevalence of mcr-1 among food animal-derived Escherichia coli isolates, but the epidemiology of mcr-1 from retail meats is not well known. We report here the first detection of mcr-1 from retail chicken meats. A total of 70 ESBL-producing E. coli isolates recovered from retail chicken meats collected between August 2015 and June 2016 were screened for mcr-1, which resulted in positive for one isolate of CTX-M-1 producing E. coli belonging to ST1684, phylogroup A. The mcr-1 was not located in an IncI1 plasmid encoding a blaCTX-M-1. However, whole plasmid sequencing revealed that mcr-1 was located on an IncI2 plasmid. Sequences of nikB-mcr-1-pap2-ydfA-topB region were mostly identical to those of previously described IncI2 plasmid pECJS-61-63 harbored by E. coli from pig feces in China except for containing a synonymous mutation in mcr-1 gene of this study. The mcr-1-encoding plasmids have not yet been identified in human isolates in Japan. Thus, strict monitoring or surveillance of colistin resistance among Gram-negative bacteria recovered from retail meat, food animals under colistin pressure, and human are crucial to assess their current prevalence status.

  11. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Werf, M.J. [Michigan State Univ., East Lansing, MI (United States); Zeikus, J.G. [Michigan State Univ., East Lansing, MI (United States)]|[MBI International, Lansing, MI (United States)

    1996-10-01

    The Rhodobacter sphaeroides hemA gene codes for 5-aminolevulinate (ALA) synthase. This enzyme catalyzes the pyridoxal phosphate-dependent condensation of succinyl coenzyme A and glycine-forming ALA. The R. sphaeroides hemA gene in the pUC18/19 vector system was transformed into Escherichia coli. The effects of both genetic and physiological factors on the expression of ALA synthase and the production of ALA were studied. ALA synthase activity levels were maximal when hemA had the same transcription direction as the lac promoter. The distance between the lac promoter and hemA affected the expression of ALA synthase on different growth substrates. The E. coli host strain used had an enormous effect on the ALA synthase activity level and on the production of ALA, with E. coli DH1 being best suited. The ALA synthase activity level was also dependent on the carbon source. Succinate, L-malate, fumarate, and L-aspartate gave the highest levels of ALA synthase activity, while the use of lactose as a carbon source resulted in a repression of ALA synthase. After growth on succinate, ALA synthase represented {approx}5% of total cellular protein. The ALA synthase activity level was also dependent on the pH of the medium, with maximal activity occurring at pH 6.5. ALA production by whole cells was limited by the availability of glycine, and the addition of 2 g of glycine per liter to the growth medium increased the production of ALA fivefold, to 2.25 mM. In recombinant E. coli extracts, up to 22 mM ALA was produced from succinate, glycine, and ATP. 58 refs., 4 figs., 7 tabs.

  12. 1,3-Propanediol production by Escherichia coli using genes from Citrobacter freundii atcc 8090.

    Science.gov (United States)

    Przystałowska, Hanna; Zeyland, Joanna; Kośmider, Alicja; Szalata, Marlena; Słomski, Ryszard; Lipiński, Daniel

    2015-01-01

    Compared with chemical synthesis, fermentation has the advantage of mass production at low cost, and has been used in the production of various industrial chemicals. As a valuable organic compound, 1,3-propanediol (1,3-PDO) has numerous applications in the production of polymers, lubricants, cosmetics and medicines. Here, conversion of glycerol (a renewable substrate and waste from biodiesel production) to 1,3-PDO by E. coli bacterial strain carrying altered glycerol metabolic pathway was investigated. Two gene constructs containing the 1,3-PDO operon from Citrobacter freundii (pCF1 and pCF2) were used to transform the bacteria. The pCF1 gene expression construct contained dhaBCE genes encoding the three subunits of glycerol dehydratase, dhaF encoding the large subunit of the glycerol dehydratase reactivation factor and dhaG encoding the small subunit of the glycerol dehydratase reactivating factor. The pCF2 gene expression construct contained the dhaT gene encoding the 1,3-propanediol dehydrogenase. Expression of the genes cloned in the above constructs was under regulation of the T7lac promoter. RT-PCR, SDS-PAGE analyses and functional tests confirmed that 1,3-PDO synthesis pathway genes were expressed at the RNA and protein levels, and worked flawlessly in the heterologous host. In a batch flask culture, in a short time applied just to identify the 1,3-PDO in a preliminary study, the recombinant E. coli bacteria produced 1.53 g/L of 1,3-PDO, using 21.2 g/L of glycerol in 72 h. In the Sartorius Biostat B Plus reactor, they produced 11.7 g/L of 1,3-PDO using 24.2 g/L of glycerol, attaining an efficiency of 0.58 [mol1,3-PDO/molglycerol].

  13. Horizontal gene transfer and the evolution of transcriptionalregulation in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2007-12-20

    Background: Most bacterial genes were acquired by horizontalgene transfer from other bacteria instead of being inherited bycontinuous vertical descent from an ancient ancestor}. To understand howthe regulation of these {acquired} genes evolved, we examined theevolutionary histories of transcription factors and of regulatoryinteractions from the model bacterium Escherichia coli K12. Results:Although most transcription factors have paralogs, these usually arose byhorizontal gene transfer rather than by duplication within the E. colilineage, as previously believed. In general, most neighbor regulators --regulators that are adjacent to genes that they regulate -- were acquiredby horizontal gene transfer, while most global regulators evolvedvertically within the gamma-Proteobacteria. Neighbor regulators wereoften acquired together with the adjacent operon that they regulate, sothe proximity might be maintained by repeated transfers (like "selfishoperons"). Many of the as-yet-uncharacterized (putative) regulators havealso been acquired together with adjacent genes, so we predict that theseare neighbor regulators as well. When we analyzed the histories ofregulatory interactions, we found that the evolution of regulation byduplication was rare, and surprisingly, many of the regulatoryinteractions that are shared between paralogs result from convergentevolution. Another surprise was that horizontally transferred genes aremore likely than other genes to be regulated by multiple regulators, andmost of this complex regulation probably evolved after the transfer.Conclusions: Our results highlight the rapid evolution of niche-specificgene regulation in bacteria.

  14. Cloning and characterization of the iron uptake gene iutA from avian Escherichia coli

    Directory of Open Access Journals (Sweden)

    Dorismey Vieira Tokano

    2008-06-01

    Full Text Available The aim of this work was to isolate, clone and characterize the iron uptake gene iutA from avian pathogenic E. coli (APEC. The iutA gene was isolated from the strain APEC 9, serotype O2:H9, which was cloned in the expression vector pET101/D-TOPO. The gene of 2.2 Kb was sequenced (AY602767, which showed high similarity to the iutA gene from three plasmids, two from APEC, pAPEC-02-ColV (AY545598.4 and pTJ100 (AY553855.1, and one from a human invasive E. coli strain, the pColV K30. The recombinant protein IutA was over expressed in E. coli BL21(DE-3 and was solubilized with urea and purified by Ni-NTA column. This method produced a relatively high yield of r-IutA of approximately 74kDa, which was used to produce the antibody anti-IutA. This anti-IutA reacted with the protein r-IutA and native IutA of APEC 9, as demonstrated by Western blot, showing that the r-IutA conserved epitopes and its antigenicity was preserved. The anti-IutA IgY was able to inhibit the IutA biological activity, inhibiting the sensitivity to cloacin DF13 of APEC9. However, it did not inhibit the growth of APEC9 in M9 and did not protect the chickens inoculated with the APEC, suggesting that the APEC possessed another iron acquisition mechanism distinct of aerobactin.A proteína de membrane externa IutA (iron uptake transport é o receptor para aerobactina férrica, um fator de virulência encontrado mais frequentemente entre as amostras de E. coli pathogênicas para aves (APEC do que entre os isolados fecais de aves saudáveis. O gene iutA da amostra APEC 9, sorotipo O2:H9, foi amplificado e clonado no vetor pET101/D-TOPO. O gene iutA 2.2 Kb foi sequenciado (AY602767 e mostrou alta similaridade para gene iutA de três plasmidios, dois da APEC, pAPEC-02-ColV (AY545598.4 e pTJ100 (AY553855.1, e um da amostra E. coli invasiva humana, pColV K30. A proteína IutA recombinante (r-IutA foi produzida em Escherichia coli BL21(DE-3, solubilizada com uréia e purificada em coluna de n

  15. Biofilm formation, antimicrobial susceptibility, serogroups and virulence genes of uropathogenic E. coli isolated from clinical samples in Iran.

    Science.gov (United States)

    Tajbakhsh, Elahe; Ahmadi, Parvin; Abedpour-Dehkordi, Elham; Arbab-Soleimani, Nazila; Khamesipour, Faham

    2016-01-01

    Uropathogenic Escherichia coli O- Serogroups with their virulence factors are the most prevalent causes of UTIs. The present research performed to track common uropathogenic E.coli serogroups, antibiotic resistance pattern of strains and prevalence of virulence genes in isolations having the ability to constitute biofilm. In this research 130 E.coli isolation from patients having UTI symptoms were collected and antimicrobial resistance pattern was performed by Kirby-Bauer method. Polymerase chain reaction was done using primer pairs to identify common serogroups of uropathogenic E.coli and studying virulence genes in isolations creating biofilm. Among 130 E.coli isolates, 80 (61.53 %) were able to make biofilm that 15 isolates (18.75 %) indicated strong reaction, 20 (25 %) of medium and 45 (56.25 %) of weak biofilm reaction. Among isolations creating biofilm, the highest resistance reported to Ampicillin (87.5 %) and the lowest to Nitrofurantoin (3.75 %). The frequency of fimH, pap, sfa and afa genes in isolations having the ability to create strong biofilm reported 93.33 %, 86.66 %, 86.66 % and 66.66 %, respectively. The findings indicated the importance of virulence genes in serogroups producing uropathogenic E.coli biofilm. It is recommended that strains producing biofilm before antibiotic use should be studied.

  16. Plasmid selection in Escherichia coli using an endogenous essential gene marker

    Directory of Open Access Journals (Sweden)

    Good Liam

    2008-08-01

    Full Text Available Abstract Background Antibiotic resistance genes are widely used for selection of recombinant bacteria, but their use risks contributing to the spread of antibiotic resistance. In particular, the practice is inappropriate for some intrinsically resistant bacteria and in vaccine production, and costly for industrial scale production. Non-antibiotic systems are available, but require mutant host strains, defined media or expensive reagents. An unexplored concept is over-expression of a host essential gene to enable selection in the presence of a chemical inhibitor of the gene product. To test this idea in E. coli, we used the growth essential target gene fabI as the plasmid-borne marker and the biocide triclosan as the selective agent. Results The new cloning vector, pFab, enabled selection by triclosan at 1 μM. Interestingly, pFab out-performed the parent pUC19-ampicillin system in cell growth, plasmid stability and plasmid yield. Also, pFab was toxic to host cells in a way that was reversed by triclosan. Therefore, pFab and triclosan are toxic when used alone but in combination they enhance growth and plasmid production through a gene-inhibitor interaction. Conclusion The fabI-triclosan model system provides an alternative plasmid selection method based on essential gene over-expression, without the use of antibiotic-resistance genes and conventional antibiotics.

  17. Molecular cloning of the obese gene from Cyprinus carpio and its expression in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Dai Hanchuan; Long Liangqi; Ding Guang

    2006-01-01

    Aiming to analyze the characteristics of the Cyprinus carpio obese gene structure and the biological activity of its expression product,we amplified the carp obese gene using reverse transcription-polymerase chain reaction from carp mesentery adipose tissue RNA.Sequence analysis revealed that it has a length of 438 nt,which encodes a 146-amino acid peptide.When nucleotide sequence and deduced amino acid sequence were compared with homologous sequences from those of humans,pigs,and rats,they displayed a fairly high degree of conservation (the homology of the nucleotide sequence was 84%,86%,and 95%,respectively,while that of the amino acid sequence was 84%,82%,and 96%,respectively,for humans,pigs,and rats).The cDNA fragment was inserted into the expression vector pET-28a,and the resulting plasmid was expressed in Escherichia coli BL21 (DE3) by isopropylthiogalactoside induction.Resuits of sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that a fusion protein was specifically expressed in E.coli BL21 (DE3).The weight of the fusion protein was about 20 kDa,and a 16-kDa protein was expressed from the carp obese gene.By gel thin-layer scanning analysis,the amount of target protein was determined to be about 20%.The purified product was found to be biologically active and to reduce the food intake and body weight of mice during tests.

  18. Involvement of multiple transcription factors for metal-induced spy gene expression in Escherichia coli.

    Science.gov (United States)

    Yamamoto, Kaneyoshi; Ogasawara, Hiroshi; Ishihama, Akira

    2008-01-20

    Bacteria are directly exposed to metals in environment. To maintain the intracellular metal homeostasis, Escherichia coli contain a number of gene regulation systems, each for response to a specific metal. A periplasmic protein Spy of E. coli was found to be induced upon short-exposure to copper ion in CpxAR-dependent manner. Transcription of the spy gene was also induced by long-exposure to zinc ion. This induction, however, depended on another two-component system BaeSR. Using DNase-I footprinting assay, we identified two BaeR-binding regions on the spy promoter with a direct repeat of the BaeR-box sequence, TCTNCANAA. The zinc-responsive BaeR-binding sites were separated from copper-responsive CpxR-binding site, implying that the spy promoter responds to two species of metal independently through different using sensor-response regulator systems. Since BaeSR-dependent zinc response requires longer time, the induction of spy gene transcription by external zinc may include multiple steps such as through sensing the zinc-induced envelope disorder by BaeSR.

  19. Genome-wide mapping of furfural tolerance genes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tirzah Y Glebes

    Full Text Available Advances in genomics have improved the ability to map complex genotype-to-phenotype relationships, like those required for engineering chemical tolerance. Here, we have applied the multiSCale Analysis of Library Enrichments (SCALEs; Lynch et al. (2007 Nat. Method. approach to map, in parallel, the effect of increased dosage for >10(5 different fragments of the Escherichia coli genome onto furfural tolerance (furfural is a key toxin of lignocellulosic hydrolysate. Only 268 of >4,000 E. coli genes (∼ 6% were enriched after growth selections in the presence of furfural. Several of the enriched genes were cloned and tested individually for their effect on furfural tolerance. Overexpression of thyA, lpcA, or groESL individually increased growth in the presence of furfural. Overexpression of lpcA, but not groESL or thyA, resulted in increased furfural reduction rate, a previously identified mechanism underlying furfural tolerance. We additionally show that plasmid-based expression of functional LpcA or GroESL is required to confer furfural tolerance. This study identifies new furfural tolerant genes, which can be applied in future strain design efforts focused on the production of fuels and chemicals from lignocellulosic hydrolysate.

  20. Genome-wide mapping of furfural tolerance genes in Escherichia coli.

    Science.gov (United States)

    Glebes, Tirzah Y; Sandoval, Nicholas R; Reeder, Philippa J; Schilling, Katherine D; Zhang, Min; Gill, Ryan T

    2014-01-01

    Advances in genomics have improved the ability to map complex genotype-to-phenotype relationships, like those required for engineering chemical tolerance. Here, we have applied the multiSCale Analysis of Library Enrichments (SCALEs; Lynch et al. (2007) Nat. Method.) approach to map, in parallel, the effect of increased dosage for >10(5) different fragments of the Escherichia coli genome onto furfural tolerance (furfural is a key toxin of lignocellulosic hydrolysate). Only 268 of >4,000 E. coli genes (∼ 6%) were enriched after growth selections in the presence of furfural. Several of the enriched genes were cloned and tested individually for their effect on furfural tolerance. Overexpression of thyA, lpcA, or groESL individually increased growth in the presence of furfural. Overexpression of lpcA, but not groESL or thyA, resulted in increased furfural reduction rate, a previously identified mechanism underlying furfural tolerance. We additionally show that plasmid-based expression of functional LpcA or GroESL is required to confer furfural tolerance. This study identifies new furfural tolerant genes, which can be applied in future strain design efforts focused on the production of fuels and chemicals from lignocellulosic hydrolysate.

  1. Gene synthesis, expression in Escherichia coli, purification and characterization of the recombinant bovine acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Mandrup, S; Højrup, P; Kristiansen, K;

    1991-01-01

    A synthetic gene encoding the 86 amino acid residues of mature acyl-CoA-binding protein (ACBP), and the initiating methionine was constructed. The synthetic gene was assembled from eight partially overlapping oligonucleotides. Codon usage and nucleotides surrounding the ATG translation......-initiation codon were chosen to allow efficient expression in Escherichia coli as well as in yeast. The synthetic gene was inserted into the expression vector pKK223-3 and expressed in E. coli. In maximally induced cultures, recombinant ACBP constitutes 12-15% of total cellular protein. A fraction highly enriched...

  2. Expression of a Modified Crylle Gene in E.Coli and in Transgenic Tobacco Confers Resistance to Corn Borer

    Institute of Scientific and Technical Information of China (English)

    Yun-Jun LIU; Fu-Ping SONG; Kang-Lai HE; Yuan YUAN; Xiao-Xia ZHANG; Peng GAO; Jian-Hua WANG; Guo-Ying WANG

    2004-01-01

    The wild-type Crylle gene from Bacillus thuringiensis was modified for its efficient expression in transgenic plants. Modified Cry1 Ie gene (designated as Cry1 Iem) was cloned into prokaryotic expression vector pET28b and its expression in E. coli was confirmed by SDS-PAGE analysis. Bioassays using crude expression products in E. coli revealed that Cry1 Iem protein had a similar toxicity to corn borer as wild-type Cry1 Ie. Cry1 Iem gene was then inserted downstream of the maize ubiquitin-1 promoter in plant expression vector p3301. Transgenic tobacco plants carrying Cry1 Iem showed insecticidal activity against com borer.

  3. Molecular cloning and expression of two alpha-amylase genes from Streptococcus bovis 148 in Escherichia coli.

    OpenAIRE

    Satoh, E; Niimura, Y; UCHIMURA, T; Kozaki, M; Komagata, K

    1993-01-01

    The alpha-amylase genes of Streptococcus bovis 148 were cloned in Escherichia coli MC1061, using pBR322. The recombinant plasmids were classified into two groups on the basis of their restriction maps. Southern blot analysis did not show homology between the two types of alpha-amylase genes, and the two alpha-amylase genes existed on the chromosomal DNA of S. bovis 148. The enzymatic properties and N-terminal amino acid sequences of the two purified enzymes produced by the cloned E. coli stra...

  4. Detection and source tracking of Escherichia coli, harboring intimin and Shiga toxin genes, isolated from the Little Bighorn River, Montana.

    Science.gov (United States)

    Hamner, Steve; Broadaway, Susan C; Berg, Ethan; Stettner, Sean; Pyle, Barry H; Big Man, Nita; Old Elk, Joseph; Eggers, Margaret J; Doyle, John; Kindness, Larry; Good Luck, Brandon; Ford, Timothy E; Camper, Anne C

    2014-08-01

    The Little Bighorn River flows through the Crow Indian Reservation in Montana. In 2008, Escherichia coli concentrations as high as 7179 MPN/100 ml were detected in the river at the Crow Agency Water Treatment Plant intake site. During 2008, 2009, and 2012, 10 different serotypes of E. coli, including O157:H7, harboring both intimin and Shiga toxin genes were isolated from a popular swim site of the Little Bighorn River in Crow Agency. As part of a microbial source tracking study, E. coli strains were isolated from river samples as well as from manure collected from a large cattle feeding operation in the upper Little Bighorn River watershed; 23% of 167 isolates of E. coli obtained from the manure tested positive for the intimin gene. Among these manure isolates, 19 were identified as O156:H8, matching the serotype of an isolate collected from a river sampling site close to the cattle feeding area.

  5. Cloning and Expression of a Ralstonia eutropha HF39 Gene Mediating Indigo Formation in Escherichia coli

    Science.gov (United States)

    Drewlo, Sascha; Brämer, Christian O.; Madkour, Mohamed; Mayer, Frank; Steinbüchel, Alexander

    2001-01-01

    On complex medium Escherichia coli strains carrying hybrid plasmid pBEC/EE:11.0, pSKBEC/BE:9.0, pSKBEC/PP:3.3, or pSKBEC/PP:2.4 harboring genomic DNA of Ralstonia eutropha HF39 produced a blue pigment characterized as indigo by several chemical and spectroscopic methods. A 1,251-bp open reading frame (bec) was cloned and sequenced. The deduced amino acid sequence of bec showed only weak similarities to short-chain acyl-coenzyme A dehydrogenases, and the gene product catalyzed formation of indoxyl, a reactive preliminary stage for production of indigo. PMID:11282658

  6. Introduction of the Escherichia coli gdhA gene into Rhizobium phaseoli: effect on nitrogen fixation.

    Science.gov (United States)

    Bravo, A; Becerril, B; Mora, J

    1988-01-01

    Rhizobium phaseoli lacks glutamate dehydrogenase (GDH) and assimilates ammonium by the glutamine synthetase-glutamate synthase pathway. A strain of R. phaseoli harboring the Escherichia coli GDH structural gene (gdhA) was constructed. GDH activity was expressed in R. phaseoli in the free-living state and in symbiosis. Nodules with bacteroids that expressed GDH activity had severe impairment of nitrogen fixation. Also, R. phaseoli cells that lost GDH activity and assimilated ammonium by the glutamine synthetase-glutamate synthase pathway preferentially nodulated Phaseolus vulgaris. PMID:2892830

  7. Three fim genes required for the regulation of length and mediation of adhesion of Escherichia coli type 1 fimbriae

    DEFF Research Database (Denmark)

    Klemm, P; Christiansen, Gunna

    1987-01-01

    Three novel fim genes of Escherichia coli, fimF, fimG and fimH, were characterized. These genes were not necessary for the production of fimbriae but were shown to be involved in the adhesive property and longitudinal regulation of these structures. Complementation experiments indicated that both...

  8. Cloning and manipulation of the Escherichia coli cyclopropane fatty acid synthase gene: physiological aspects of enzyme overproduction.

    OpenAIRE

    Grogan, D W; Cronan, J E

    1984-01-01

    Like many other eubacteria, cultures of Escherichia coli accumulate cyclopropane fatty acids (CFAs) at a well-defined stage of growth, due to the action of the cytoplasmic enzyme CFA synthase. We report the isolation of the putative structural gene, cfa, for this enzyme on an E. coli-ColE1 chimeric plasmid by the use of an autoradiographic colony screening technique. When introduced into a variety of E. coli strains, this plasmid, pLC18-11, induced corresponding increases in CFA content and C...

  9. Decoding the nucleoid organisation of Bacillus subtilis and Escherichia coli through gene expression data

    Directory of Open Access Journals (Sweden)

    Grossmann Alex

    2005-06-01

    Full Text Available Abstract Background Although the organisation of the bacterial chromosome is an area of active research, little is known yet on that subject. The difficulty lies in the fact that the system is dynamic and difficult to observe directly. The advent of massive hybridisation techniques opens the way to further studies of the chromosomal structure because the genes that are co-expressed, as identified by microarray experiments, probably share some spatial relationship. The use of several independent sets of gene expression data should make it possible to obtain an exhaustive view of the genes co-expression and thus a more accurate image of the structure of the chromosome. Results For both Bacillus subtilis and Escherichia coli the co-expression of genes varies as a function of the distance between the genes along the chromosome. The long-range correlations are surprising: the changes in the level of expression of any gene are correlated (positively or negatively to the changes in the expression level of other genes located at well-defined long-range distances. This property is true for all the genes, regardless of their localisation on the chromosome. We also found short-range correlations, which suggest that the location of these co-expressed genes corresponds to DNA turns on the nucleoid surface (14–16 genes. Conclusion The long-range correlations do not correspond to the domains so far identified in the nucleoid. We explain our results by a model of the nucleoid solenoid structure based on two types of spirals (short and long. The long spirals are uncoiled expressed DNA while the short ones correspond to coiled unexpressed DNA.

  10. A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Li Mingji

    2012-02-01

    Full Text Available Abstract Background For metabolic engineering, many rate-limiting steps may exist in the pathways of accumulating the target metabolites. Increasing copy number of the desired genes in these pathways is a general method to solve the problem, for example, the employment of the multi-copy plasmid-based expression system. However, this method may bring genetic instability, structural instability and metabolic burden to the host, while integrating of the desired gene into the chromosome may cause inadequate transcription or expression. In this study, we developed a strategy for obtaining gene overexpression by engineering promoter clusters consisted of multiple core-tac-promoters (MCPtacs in tandem. Results Through a uniquely designed in vitro assembling process, a series of promoter clusters were constructed. The transcription strength of these promoter clusters showed a stepwise enhancement with the increase of tandem repeats number until it reached the critical value of five. Application of the MCPtacs promoter clusters in polyhydroxybutyrate (PHB production proved that it was efficient. Integration of the phaCAB genes with the 5CPtacs promoter cluster resulted in an engineered E.coli that can accumulate 23.7% PHB of the cell dry weight in batch cultivation. Conclusions The transcription strength of the MCPtacs promoter cluster can be greatly improved by increasing the tandem repeats number of the core-tac-promoter. By integrating the desired gene together with the MCPtacs promoter cluster into the chromosome of E. coli, we can achieve high and stale overexpression with only a small size. This strategy has an application potential in many fields and can be extended to other bacteria.

  11. Discoordinate gene expression in the dnaA-dnaN operon of Escherichia coli.

    Science.gov (United States)

    Quiñones, A; Messer, W

    1988-07-01

    The dnaN gene of Escherichia coli encodes the beta-subunit of the DNA polymerase III holoenzyme. Previous work has established that dnaN lies immediately downstream of dnaA and that both genes may be cotranscribed from the dnaA promoters; no promoter for dnaN has been described. We investigated the in vivo regulation of transcription of the dnaN gene by transcriptional fusions to the galK gene, translational fusion to the lacZ gene and S1 mapping analysis. We found that there are at least three dnaN promoters residing entirely in the reading frame of the preceding dnaA gene, and that transcription from these promoters can occur independently of dnaA transcription which, however, extends at least up to dnaN. Furthermore, we found evidence for the inducibility of the dnaN promoters in a dam background under conditions of simultaneously reduced dnaA transcription. These results are consistent with the hypothesis that although dnaA and dnaN are organized in an operon considerable discoordinate transcription can occur, thus uncoupling dnaN and dnaA regulation, when needed.

  12. Identification of APC gene mutations in Italian adenomatous polyposis coli patients by PCR-SSCP analysis

    Energy Technology Data Exchange (ETDEWEB)

    Varesco, L.; Gismondi, V.; James, R.; Casarino, L.; De Benedetti, L.; Bafico, A.; Allegretti, A.; Aste, H. (Istituto Nazionale per la Ricerca sul Cancro, Genoa (Italy)); Robertson, M.; Groden, J.; White, R. (Univ. of Utah, Salt Lake City (United States)); Grammatico, P.; De Sanctis, S.; Sciarra, A.; Del Porto, G. (Universita di Roma, Rome (Italy)); Bertario, L.; Sala, P.; Rossetti, C.; Illeni, M.T. (Istituto Nazionale Tumori, Milan (Italy)); Sassatelli, R.; Ponz de Leon, M. (Universita di Modena (Italy)); Biasco, G. (Universita di Bologna (Italy)); Ferrara, G.B. (Istituto Nazionale per la Ricerca sul Cancro, Genoa (Italy) Universita di Napoli, Naples (Italy))

    1993-02-01

    The APC gene is a putative human tumor-suppressor gene responsible for adenomatous polyposis coli (APC), an inherited, autosomal dominant predisposition to colon cancer. It is also implicated in the development of sporadic colorectal tumors. The characterization of APC gene mutations in APC patients is clinically important because DNA-based tests can be applied for presymptomatic diagnosis once a specific mutation has been identified in a family. Moreover, the identification of the spectrum of APC gene mutations in patients is of great interest in the study of the biological properties of the APC gene product. The authors analyzed the entire coding region of the APC gene by the PCR-single-strand conformation polymorphism method in 42 unrelated Italian APC patients. Mutations were found in 12 cases. These consist of small (5-14 bp) base-pair deletions leading to frameshifts; all are localized within exon 15. Two of these deletions, a 5-bp deletion at position 3183-3187 and a 5-bp deletion at position 3926-3930, are present in 3/42 and 7/42 cases of the series, respectively, indicating the presence of mutational hot spots at these two sites. 17 refs., 2 figs., 1 tab.

  13. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli.

    Science.gov (United States)

    Prigent-Combaret, C; Vidal, O; Dorel, C; Lejeune, P

    1999-10-01

    To get further information on bacterial surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli K-12, random insertion mutagenesis with Mu dX, a mini-Mu carrying the promoterless lacZ gene, was performed with an ompR234 adherent strain, and a simple screen was developed to assess changes in gene expression in biofilm cells versus planktonic cells. This screen revealed that major changes in the pattern of gene expression occur during biofilm development: the transcription of 38% of the genes was affected within biofilms. Different cell functions were more expressed in sessile bacteria: the OmpC porin, the high-affinity transport system of glycine betaine (encoded by the proU operon), the colanic acid exopolysaccharide (wca locus, formerly called cps), tripeptidase T (pepT), and the nickel high-affinity transport system (nikA). On the other hand, the syntheses of flagellin (fliC) and of a putative protein of 92 amino acids (f92) were both reduced in biofilms. Such a genetic reprogramming of gene expression in biofilms seems to result from changes in multiple environmental physicochemical conditions. In this work, we show that bacteria within biofilms encounter higher-osmolarity conditions, greater oxygen limitation, and higher cell density than in the liquid phase.

  14. Engineering artificial small RNAs for conditional gene silencing in Escherichia coli.

    Science.gov (United States)

    Sharma, Vandana; Yamamura, Asami; Yokobayashi, Yohei

    2012-01-20

    It has become increasingly evident that noncoding small RNAs (sRNAs) play a significant and global role in bacterial gene regulation. A majority of the trans-acting sRNAs in bacteria interact with the 5' untranslated region (UTR) and/or the translation initiation region of the targeted mRNAs via imperfect base pairing, resulting in reduced translation efficiency and/or mRNA stability. Additionally, bacterial sRNAs often contain distinct scaffolds that recruit RNA chaperones such as Hfq to facilitate gene regulation. In this study, we describe a strategy to engineer artificial sRNAs that can regulate desired endogenous genes in Escherichia coli. Using a fluorescent reporter gene that was translationally fused to a native 5' mRNA leader sequence, active artificial sRNAs were screened from libraries in which natural sRNA scaffolds were fused to a randomized antisense domain. Artificial sRNAs that posttranscriptionally repress two endogenous genes ompF and fliC were isolated and characterized. We anticipate that the artificial sRNAs will be useful for dynamic control and fine-tuning of endogenous gene expression in bacteria for applications in synthetic biology.

  15. Molecular Epidemiology of ESBL Genes and Multi-Drug Resistance in Diarrheagenic Escherichia Coli Strains Isolated from Adults in Iran.

    Science.gov (United States)

    Ghorbani-Dalini, Sadegh; Kargar, Mohammad; Doosti, Abbas; Abbasi, Pejman; Sarshar, Meysam

    2015-01-01

    Resistance to oxyimino cephalosporins antibiotics in Enterobacteriaceae is primarily done by the extended spectrum β-lactamases (ESBLs). Clear identification of risk factors for ESBLs-producing infections is necessary. Therefore, efficient strategies can be developed to decrease outbreak of these infections. The aim of this study was to determine the antibacterial susceptibility and ESBLs pattern of diarrhogenic Escherichia coli (E. coli) strains isolated from adult patients. In the present study, diarrheogenic E. coli strains were isolated from 54 patients from the University of Medical Sciences hospitals in Shiraz. Antimicrobial susceptibility testing was done by disk diffusion method by CLSI criteria. The presence of bla TEM , bla SHV and bla CTX-M genes was investigated by PCR using designated primers. The prevalence of ESBLs-producer E. coli strains was 12.96%. Antimicrobial resistance testing showed a high resistance to cefexime, trimethoprim-sulfamethoxazole, ampicillin and penicillin. Overall, β-lactamase genes were identified in 52 (96.30%) isolates which were identified as 45 (83.33%) bla TEM, 17 (31.48%) blaSHV and 11 (20.37%) blaCTX-M. ESBLs-producer E. coli is very prevalent in Diarrheogenic strains isolated from adult patients. Also, this study clearly showed that the bla TEM gene for ESBLs-producer E. coli was widespread in Iran.

  16. Metabolic engineering of Escherichia coli for ethanol production without foreign genes

    Science.gov (United States)

    Kim, Youngnyun

    Worldwide dependence on finite petroleum-based energy necessitates alternative energy sources that can be produced from renewable resources. A successful example of an alternative transportation fuel is bioethanol, produced by microorganisms, from corn starch that is blended with gasoline. However, corn, currently the main feedstock for bioethanol production, also occupies a significant role in human food and animal feed chains. As more corn is diverted to bioethanol, the cost of corn is expected to increase with an increase in the price of food, feed and ethanol. Using lignocellulosic biomass for ethanol production is considered to resolve this problem. However, this requires a microbial biocatalyst that can ferment hexoses and pentoses to ethanol. Escherichia coli is an efficient biocatalyst that can use all the monomeric sugars in lignocellulose, and recombinant derivatives of E. coli have been engineered to produce ethanol as the major fermentation product. In my study, ethanologenic E. coli strains were isolated from a ldhA-, pflB- derivative without introduction of foreign genes. These isolates grew anaerobically and produced ethanol as the main fermentation product. The mutation responsible for anaerobic growth and ethanol production was mapped in the lpdA gene and the mutation was identified as E354K in three of the isolates tested. Another three isolates carried an lpdA mutation, H352Y. Enzyme kinetic studies revealed that the mutated form of the dihydrolipoamide dehydrogenase (LPD) encoded by the lpdA was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity to NADH of the pyruvate dehydrogenase complex in strain SE2378. The net yield of 4 moles of NADH and 2 moles of acetyl-CoA per mole of glucose produced by a combination of glycolysis and PDH provided a logical basis to explain the production of 2 moles of ethanol per glucose. The development of E

  17. Functional analysis of bifidobacterial promoters in Bifidobacterium longum and Escherichia coli using the α-galactosidase gene as a reporter.

    Science.gov (United States)

    Sakanaka, Mikiyasu; Tamai, Saki; Hirayama, Yosuke; Onodera, Ai; Koguchi, Hiroka; Kano, Yasunobu; Yokota, Atsushi; Fukiya, Satoru

    2014-11-01

    Heterologous gene expression in bifidobacteria requires weak, strong, and inducible promoters depending on the objectives of different expression studies. Weak promoters in Escherichia coli can also be desirable for stable heterologous gene cloning. Here, we developed a reporter system using the Bifidobacterium longum α-galactosidase gene and investigated the activity and inducibility of seven bifidobacterial promoters in B. longum and their activities in E. coli. These studies revealed diverse promoter activities. Three promoters were highly active in B. longum, but only slightly active in E. coli. Among these, two phosphoketolase gene (xfp) promoters exhibited strong activity in B. longum cells grown on glucose. In contrast, the promoter activity of the fructose transporter operon (fruEKFG) was strongly induced by carbohydrates other than glucose, including fructose, xylose, and ribose. These promoters will allow strong or highly inducible expression in bifidobacteria and stable gene cloning in E. coli. In contrast to the functions of these promoters, the promoter of sucrose-utilization operon cscBA showed very high activity in E. coli but low activity in B. longum. Other three promoters were functional in both B. longum and E. coli. In particular, two sucrose phosphorylase gene (scrP) promoters showed inducible activity by sucrose and raffinose in B. longum, indicating their applicability for regulated expression studies. The diverse promoter functions revealed in this study will contribute to enabling the regulated expression of heterologous genes in bifidobacteria research.

  18. Tandem transcription termination sites in the dnaN gene of Escherichia coli.

    Science.gov (United States)

    Armengod, M E; García-Sogo, M; Pérez-Roger, I; Macián, F; Navarro-Aviñó, J P

    1991-10-15

    The dnaN gene of Escherichia coli encodes the beta-subunit of DNA polymerase III and maps between the dnaA and recF genes. We demonstrated previously that dnaN and recF constitute a transcriptional unit under control of the dnaN promoters. However, the recF gene has its own promoter region located in the middle of the dnaN structural gene. In this report, we use S1 mapping of mRNAs, transcriptional and translational fusions to the galK and lacZ genes, and in vitro mutagenesis to identify and characterize three tandem transcription termination sites responsible for transcriptional polarity in the dnaN-recF operon. These sites are located in the dnaN gene, downstream from the recF promoter region. Cumulatively, they terminate about 80% of the untranslated transcripts started at the recF promoters. As expected, they do not reduce transcription coming from the dnaN promoters unless dnaN translation was prematurely disrupted by the presence of a nonsense codon. The particular arrangement of regulatory elements (promoters and terminators) in the dnaN-recF region provides an exceptional in vivo system to confirm the latent termination site model of transcriptional polarity. In addition, our results contribute to the understanding of the complex regulation of the dnaA, dnaN, and recF genes. We propose that these three genes constitute an operon and that the terminators described in this work could be used to reduce expression of the distal genes of the operon under circumstances in which the dnaN translation happens to be slowed down.

  19. RpoS regulation of gene expression during exponential growth of Escherichia coli K12.

    Science.gov (United States)

    Dong, Tao; Kirchhof, Mark G; Schellhorn, Herb E

    2008-03-01

    RpoS is a major regulator of genes required for adaptation to stationary phase in E. coli. However, the exponential phase expression of some genes is affected by rpoS mutation, suggesting RpoS may also have an important physiological role in growing cells. To test this hypothesis, we examined the regulatory role of RpoS in exponential phase using both genomic and biochemical approaches. Microarray expression data revealed that, in the rpoS mutant, the expression of 268 genes was attenuated while the expression of 24 genes was enhanced. Genes responsible for carbon source transport (the mal operon for maltose), protein folding (dnaK and mopAB), and iron acquisition (fepBD, entCBA, fecI, and exbBD) were positively controlled by RpoS. The importance of RpoS-mediated control of iron acquisition was confirmed by cellular metal analysis which revealed that the intracellular iron content of wild type cells was two-fold higher than in rpoS mutant cells. Surprisingly, many previously identified RpoS stationary-phase dependent genes were not controlled by RpoS in exponential phase and several genes were RpoS-regulated only in exponential phase, suggesting the involvement of other regulators. The expression of RpoS-dependent genes osmY, tnaA and malK was controlled by Crl, a transcriptional regulator that modulates RpoS activity. In summary, the identification of a group of exponential phase genes controlled by RpoS reveals a novel aspect of RpoS function.

  20. Cloning and expression of catalytic domain of Abl protein tyrosine kinase gene in E. coli

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Protein tyrosine kinases (PTKs) regulate cell proliferation, differentiation and are involved in signal transduction. Uncontrolled signaling from receptor tyrosine kinases to intracellular tyrosine kinases can lead to inflamma tory responses and diseases such as cancer and atherosclerosis. Thus, inhibitors that block the activity of tyrosine kinases or the signaling pathways of PTKs activation could be assumed as the potential candidate for drug development. On this assumption, we cloned and expressed the Abl PTK gene in E. coli, and purified the PTK, which was used to screen the PTK inhibitors from the extracts of Chinese herbs. The catalytic domain sequence of PTK gene was amplified by PCR us ing the cDNA of abl from Abelson murine leukemia virus as template. The amplified fragment was then cloned into the GST-tagged expression vector pGEX2T. The recombinant plasmid was transformed into host cell E. coli DH5α and was induced to express PTK protein. The expression of the protein was detected using SDS-PAGE. The result showed that a specific protein was induced to express after 12 min induction, and reached peak level about 40% of the host total pro tein after 4 h induction. The molecular weight of the fusion protein was about 58 kD. The purified GST-PTK fusion pro tein presented higher activity for tyrosine phosphorylation.

  1. Gene envY of Escherichia coli K-12 affects thermoregulation of major porin expression.

    Science.gov (United States)

    Lundrigan, M D; Earhart, C F

    1984-01-01

    The temperature-dependent expression of OmpF and OmpC, the major channel-forming proteins of the Escherichia coli K-12 outer membrane, was studied. In wild-type cells, decreasing growth temperatures resulted in increased amounts of OmpF protein and correspondingly decreased quantities of OmpC protein. Bacteria deleted for the 13-min chromosomal region did not exhibit this temperature-dependent fluctuation in porin proteins. Plasmid pML22, which consists of pBR322 containing a 0.5-megadalton E. coli chromosomal DNA insert, complemented the thermoregulatory defect. The regulatory gene was named envY. In minicells, pML22 directed the synthesis of an envelope polypeptide (EnvY) having an apparent molecular weight of 25,000. The EnvY protein was synthesized in minicells in greater amounts at 27 degrees C than at 37 degrees C, and a reducing agent was necessary in the solubilization buffer for its subsequent detection on polyacrylamide gels. The results describe the initial characterization of a regulatory system which, along with proteins of the ompB operon, the cyclic AMP system, and the tolC gene product, is involved in a complex network affecting major porin expression. Images PMID:6317653

  2. The 4.5 S RNA gene of Escherichia coli is essential for cell growth

    DEFF Research Database (Denmark)

    Brown, S; Fournier, M J

    1984-01-01

    The Escherichia coli gene coding for the metabolically stable 4.5 S RNA (ffs) has been shown to be required for cell viability. Essentiality was demonstrated by examining the recombination behavior of substitution mutations of ffs generated in vitro. Substitution mutants of ffs are able to replace...... the chromosomal allele only in the presence of a second, intact copy of ffs. Independent evidence of essentiality and the finding that 4.5 S RNA is important for protein synthetic activity came from characterization of cells dependent on the lac operon inducer isopropyl-beta-D-thiogalactoside for ffs gene...... expression. Here, a strain dependent on isopropyl-beta-D-thiogalactoside for 4.5 S RNA synthesis was developed by inactivation of the chromosomal ffs allele and lysogenization by a lambda phage containing 4.5 S DNA fused to a hybrid trp-lac promoter. Withdrawal of the thiogalactoside leads to a deficiency...

  3. Nucleotide sequence of maize dwarf mosaic virus capsid protein gene and its expression in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    赛吉庆; 康良仪; 黄忠; 史春霖; 田波; 谢友菊

    1995-01-01

    The 3’-terminal 1 279 nucleotide sequence of maize dwarf mosaic virus (MDMV) genome has been determined. This sequence contains an open reading frame of 1023 nudeotides and a 3’ -non-coding region of 256 nucleotides. The open reading frame includes all of the coding regions for the viral capsid protein (CP) and part of the viral nuclear inclusion protein (Nib). The predicted viral CP consists of 313 amino acid residues with a calculated molecular weight of 35400. The amino acid sequence of the viral CP derived from MDMV cDNA shows about 47%-54% homology to that of 4 other potyviruses. The viral CP gene was constructed in frame with the lacZ gene in pUC19 plasmid and expressed in E. coli cells. The fusion polypeptide positively reacted in Western blot with an antiserum prepared against the native viral CP.

  4. Human C5a anaphylatoxin: gene cloning and expression in Escherichia coli.

    Science.gov (United States)

    Bautsch, W; Emde, M; Kretzschmar, T; Köhl, J; Suckau, D; Bitter-Suermann, D

    1992-06-01

    A gene coding for the human anaphylatoxin C5a was cloned and expressed in Escherichia coli. A combination of reverse transcription of mRNA of the U937 cell line with subsequent preparative polymerase chain reaction was employed to obtain the gene. The sequence was cloned into the plasmid vector pKK 233-2 behind an ATG initiation codon under the control of a trc promotor. After purification by ion exchange chromatography and reversed phase FPLC a mixture of predominantly non-glycosylated recombinant human C5a with a beta-mercaptoethanol adduct at cysteine 27 and the N-methionyl derivative was obtained which was homogeneous on silver-stained gels, immunoreactive with C5a-specific monoclonal antibodies and functionally active in releasing myeloperoxidase from human granulocytes and ATP from guinea pig platelets. The final yield was about 0.4-0.8 mg purified recombinant C5a per liter bacterial culture.

  5. Expression of the lacZ gene in Escherichia coli irradiated with gamma rays

    Directory of Open Access Journals (Sweden)

    Mikio Kato

    2014-10-01

    Full Text Available Exposure of bacterial cells to ionizing radiation damages cellular components and causes cell death. We examined the induction of the plasmid-encoded lacZ gene in Escherichia coli JM109 harboring pUC19 after irradiation with gamma rays. The data demonstrated that cells irradiated with 6 or 8 kGy gamma rays lost their ability to grow on nutrient agar plates, but retained the ability to induce lacZ gene expression by IPTG at about 10% the level of the nonirradiated control. Thus, inactivation of cells by irradiation may provide another option for establishing a vehicle of protein and DNA, as nonpropagating protein-producing apparatus, albeit with lower capacity than intact cells.

  6. Development and validation of a resistance and virulence gene microarray targeting Escherichia coli and Salmonella enterica

    Science.gov (United States)

    Davis, Margaret A.; Lim, Ji Youn; Soyer, Yesim; Harbottle, Heather; Chang, Yung-Fu; New, Daniel; Orfe, Lisa H.; Besser, Thomas E.; Call, Douglas R.

    2010-01-01

    A microarray was developed to simultaneously screen Escherichia coli and Salmonella enterica for multiple genetic traits. The final array included 203 60-mer oligonucleotide probes, including 117 for resistance genes, 16 for virulence genes, 25 for replicon markers, and 45 other markers. Validity of the array was tested by assessing interlaboratory agreement among four collaborating groups using a blinded study design. Internal validation indicated that the assay was reliable (area under the receiver-operator characteristic curve=0.97). Inter-laboratory agreement, however, was poor when estimated using the intraclass correlation coefficient, which ranged from 0.27 (95% confidence interval 0.24, 0.29) to 0.29 (0.23, 0.34). These findings suggest that extensive testing and procedure standardization will be needed before bacterial genotyping arrays can be readily shared between laboratories. PMID:20362014

  7. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    DEFF Research Database (Denmark)

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using...... the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42......%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), str...

  8. Phenotype profiling of single gene deletion mutants of E. coli using Biolog technology.

    Science.gov (United States)

    Tohsato, Yukako; Mori, Hirotada

    2008-01-01

    Phenotype MicroArray (PM) technology is high-throughput phenotyping system and is directly applicable to assay the effects of genetic changes in cells. In this study, we performed comprehensive PM analysis using single gene deletion mutants of central metabolic pathway and related genes. To elucidate the structure of central metabolic networks in Escherichia coli K-12, we focused 288 different PM conditions of carbon and nitrogen sources and performed bioinformatic analysis. For data processing, we employed noise reduction procedures. The distance between each of the mutants was defined by Manhattan distance and agglomerative Ward's hierarchical method was applied for clustering analysis. As a result, five clusters were revealed which represented to activate or repress cellular respiratory activities. Furthermore, the results might suggest that Glyceraldehyde-3P plays a key role as a molecular switch of central metabolic network.

  9. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones

    Science.gov (United States)

    Yamaguchi, Yuko; Tomoyasu, Toshifumi; Takaya, Akiko; Morioka, Mizue; Yamamoto, Tomoko

    2003-01-01

    Background It is well known that expression of certain bacterial genes responds rapidly to such stimuli as exposure to toxic chemicals and physical agents. It is generally believed that the proteins encoded in these genes are important for successful survival of the organism under the hostile conditions. Analogously, the proteins induced in bacterial cells exposed to antibiotics are believed to affect the organisms' susceptibility to these agents. Results We demonstrated that Escherichia coli cells exposed to levofloxacin (LVFX), a fluoroquinolone (FQ), induce the syntheses of heat shock proteins and RecA. To examine whether the heat shock proteins affect the bactericidal action of FQs, we constructed E. coli strains with mutations in various heat shock genes and tested their susceptibility to FQs. Mutations in dnaK, groEL, and lon increased this susceptibility; the lon mutant exhibited the greatest effects. The increased susceptibility of the lon mutant was corroborated by experiments in which the gene encoding the cell division inhibitor, SulA, was subsequently disrupted. SulA is induced by the SOS response and degraded by the Lon protease. The findings suggest that the hypersusceptibility of the lon mutant to FQs could be due to abnormally high levels of SulA protein resulting from the depletion of Lon and the continuous induction of the SOS response in the presence of FQs. Conclusion The present results show that the bactericidal action of FQs is moderately affected by the DnaK and GroEL chaperones and strongly affected by the Lon protease. FQs have contributed successfully to the treatment of various bacterial infections, but their widespread use and often misuse, coupled with emerging resistance, have gradually compromised their utility. Our results suggest that agents capable of inhibiting the Lon protease have potential for combination therapy with FQs. PMID:12911840

  10. Prevalence of Toxigenic Genes in Escherichia Coli Isolates From Hospitalized Patients in Zabol, Iran

    Directory of Open Access Journals (Sweden)

    Shookohi

    2016-02-01

    Full Text Available Background Uropathogenic Escherichia coli (UPEC are a common causative agent of urinary tract infections. Strains of UPEC encode a number of virulence factors that facilitate their dissemination and persistence within the host. To diminish the burden of UPEC, using effective preventive measures, data on virulence factor prevalence in different geographic regions must be assessed. Objectives As no such data was available for this geographic region of Iran, the purpose of this study was to analyze the prevalence of ten UPEC virulence genes among 100 E. coli isolates collected from patients with urinary tract infections (UTI in Zabol, Iran. Patients and Methods One hundred UPEC obtained from patients with urinary tract infection were screened by the polymerase chain reaction (PCR with primers specific for the following UPEC virulence genes: astA (enterotoxins, cdtB (enterotoxins, cvi/cva (colicin V operon, ibeA (an invasive protein, iss (increased serum survival protein, iutA (aerobactin, kpsII (group 2 capsule, neuS (K1 polysialyltransferase, tsh (an adhesive and proteolytic protein, and vat (vacuolating autotransporter toxin. Results Amongst the total of 100 UPEC isolates, 99 (99% isolates were found to carry the studied virulence genes. Twenty-six different virulence patterns were identified. The prevalence of astA, cdtB, cvi/cva, ibeA, iss, iutA, kpsII, neuS, tsh and vat were 29%, 0%, 19%, 67%, 47%, 99%, 98% 96%, 1% and 18%, respectively. Conclusions We concluded that major differences exist in the prevalence of virulence factors between different UPEC isolated from different countries. Detecting these genes as primary controllers of UPEC virulence may aid in better management of related infections.

  11. ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12.

    Science.gov (United States)

    Caldara, Marina; Minh, Phu Nguyen Le; Bostoen, Sophie; Massant, Jan; Charlier, Daniel

    2007-10-19

    In Escherichia coli L-arginine is taken up by three periplasmic binding protein-dependent transport systems that are encoded by two genetic loci: the artPIQM-artJ and argT-hisJQMP gene clusters. The transcription of the artJ, artPIQM and hisJQMP genes and operons is repressed by liganded ArgR, whereas argT, encoding the LAO (lysine, arginine, ornithine) periplasmic binding protein, is insensitive to the repressor. Here we characterize the repressible Esigma70 P artJ, P artP and P hisJ promoters and demonstrate that the cognate operators consist of two 18 bp ARG boxes separated by 3 bp. Determination of the energy landscape of the ArgR-operator contacts by missing contact probing and mutant studies indicated that each box of a pair contributes to complex formation in vitro and to the repressibility in vivo, but to a different extent. The organization of the ARG boxes and promoter elements in the control regions of the uptake genes is distinct from that of the arginine biosynthetic genes. The hisJQMP operon is the first member of the E. coli ArgR regulon, directly repressed by liganded ArgR, where none of the core promoter elements overlaps the ARG boxes. Single round in vitro transcription assays and DNase I footprinting experiments indicate that liganded ArgR inhibits P artJ and P artP promoter activity by steric exclusion of the RNA polymerase. In contrast, ArgR-mediated repression of P hisJ by inhibition of RNA polymerase binding appears to occur through topological changes of the promoter region.

  12. Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis.

    Science.gov (United States)

    Vianney, Anne; Jubelin, Grégory; Renault, Sophie; Dorel, Corine; Lejeune, Philippe; Lazzaroni, Jean Claude

    2005-07-01

    Curli are necessary for the adherence of Escherichia coli to surfaces, and to each other, during biofilm formation, and the csgBA and csgDEFG operons are both required for their synthesis. A recent survey of gene expression in Pseudomonas aeruginosa biofilms has identified tolA as a gene activated in biofilms. The tol genes play a fundamental role in maintaining the outer-membrane integrity of Gram-negative bacteria. RcsC, the sensor of the RcsBCD phosphorelay, is involved, together with RcsA, in colanic acid capsule synthesis, and also modulates the expression of tolQRA and csgDEFG. In addition, the RcsBCD phosphorelay is activated in tol mutants or when Tol proteins are overexpressed. These results led the authors to investigate the role of the tol genes in biofilm formation in laboratory and clinical isolates of E. coli. It was shown that the adherence of cells was lowered in the tol mutants. This could be the result of a drastic decrease in the expression of the csgBA operon, even though the expression of csgDEFG was slightly increased under such conditions. It was also shown that the Rcs system negatively controls the expression of the two csg operons in an RcsA-dependent manner. In the tol mutants, activation of csgDEFG occurred via OmpR and was dominant upon repression by RcsB and RcsA, while these two regulatory proteins repressed csgBA through a dominant effect on the activator protein CsgD, thus affecting curli synthesis. The results demonstrate that the Rcs system, previously known to control the synthesis of the capsule and the flagella, is an additional component involved in the regulation of curli. Furthermore, it is shown that the defect in cell motility observed in the tol mutants depends on RcsB and RcsA.

  13. Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli.

    Science.gov (United States)

    Kochanowski, Karl; Gerosa, Luca; Brunner, Simon F; Christodoulou, Dimitris; Nikolaev, Yaroslav V; Sauer, Uwe

    2017-01-03

    Transcription networks consist of hundreds of transcription factors with thousands of often overlapping target genes. While we can reliably measure gene expression changes, we still understand relatively little why expression changes the way it does. How does a coordinated response emerge in such complex networks and how many input signals are necessary to achieve it? Here, we unravel the regulatory program of gene expression in Escherichia coli central carbon metabolism with more than 30 known transcription factors. Using a library of fluorescent transcriptional reporters, we comprehensively quantify the activity of central metabolic promoters in 26 environmental conditions. The expression patterns were dominated by growth rate-dependent global regulation for most central metabolic promoters in concert with highly condition-specific activation for only few promoters. Using an approximate mathematical description of promoter activity, we dissect the contribution of global and specific transcriptional regulation. About 70% of the total variance in promoter activity across conditions was explained by global transcriptional regulation. Correlating the remaining specific transcriptional regulation of each promoter with the cell's metabolome response across the same conditions identified potential regulatory metabolites. Remarkably, cyclic AMP, fructose-1,6-bisphosphate, and fructose-1-phosphate alone explained most of the specific transcriptional regulation through their interaction with the two major transcription factors Crp and Cra. Thus, a surprisingly simple regulatory program that relies on global transcriptional regulation and input from few intracellular metabolites appears to be sufficient to coordinate E. coli central metabolism and explain about 90% of the experimentally observed transcription changes in 100 genes. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones

    Directory of Open Access Journals (Sweden)

    Morioka Mizue

    2003-08-01

    Full Text Available Abstract Background It is well known that expression of certain bacterial genes responds rapidly to such stimuli as exposure to toxic chemicals and physical agents. It is generally believed that the proteins encoded in these genes are important for successful survival of the organism under the hostile conditions. Analogously, the proteins induced in bacterial cells exposed to antibiotics are believed to affect the organisms' susceptibility to these agents. Results We demonstrated that Escherichia coli cells exposed to levofloxacin (LVFX, a fluoroquinolone (FQ, induce the syntheses of heat shock proteins and RecA. To examine whether the heat shock proteins affect the bactericidal action of FQs, we constructed E. coli strains with mutations in various heat shock genes and tested their susceptibility to FQs. Mutations in dnaK, groEL, and lon increased this susceptibility; the lon mutant exhibited the greatest effects. The increased susceptibility of the lon mutant was corroborated by experiments in which the gene encoding the cell division inhibitor, SulA, was subsequently disrupted. SulA is induced by the SOS response and degraded by the Lon protease. The findings suggest that the hypersusceptibility of the lon mutant to FQs could be due to abnormally high levels of SulA protein resulting from the depletion of Lon and the continuous induction of the SOS response in the presence of FQs. Conclusion The present results show that the bactericidal action of FQs is moderately affected by the DnaK and GroEL chaperones and strongly affected by the Lon protease. FQs have contributed successfully to the treatment of various bacterial infections, but their widespread use and often misuse, coupled with emerging resistance, have gradually compromised their utility. Our results suggest that agents capable of inhibiting the Lon protease have potential for combination therapy with FQs.

  15. Virulence gene content in Escherichia coli isolates from poultry flocks with clinical signs of colibacillosis in Brazil.

    Science.gov (United States)

    De Carli, Silvia; Ikuta, Nilo; Lehmann, Fernanda Kieling Moreira; da Silveira, Vinicius Proença; de Melo Predebon, Gabriela; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2015-11-01

    Escherichia coli is a commensal bacterium of the bird's intestinal tract, but it can invade different tissues resulting in systemic symptoms (colibacillosis). This disease occurs only when the E. coli infecting strain presents virulence factors (encoded by specific genes) that enable the adhesion and proliferation in the host organism. Thus, it is important to differentiate pathogenic (APEC, avian pathogenic E. coli) and non-pathogenic or fecal (AFEC, avian fecal E. coli) isolates. Previous studies analyzed the occurrence of virulence factors in E. coli strains isolated from birds with colibacillosis, demonstrating a high frequency of the bacterial genes cvaC, iroN, iss, iutA, sitA, tsh, fyuA, irp-2, ompT and hlyF in pathogenic strains. The aim of the present study was to evaluate the occurrence and frequency of these virulence genes in E. coli isolated from poultry flocks in Brazil. A total of 138 isolates of E. coli was obtained from samples of different tissues and/or organs (spleen, liver, kidney, trachea, lungs, skin, ovary, oviduct, intestine, cloaca) and environmental swabs collected from chicken and turkey flocks suspected to have colibacillosis in farms from the main Brazilian producing regions. Total DNA was extracted and the 10 virulence genes were detected by traditional and/or real-time PCR. At least 11 samples of each gene were sequenced and compared to reference strains. All 10 virulence factors were detected in Brazilian E. coli isolates, with frequencies ranging from 39.9% (irp-2) to 68.8% (hlyF and sitA). Moreover, a high nucleotide similarity (over 99%) was observed between gene sequences of Brazilian isolates and reference strains. Seventy-nine isolates were defined as pathogenic (APEC) and 59 as fecal (AFEC) based on previously described criteria. In conclusion, the main virulence genes of the reference E. coli strains are also present in isolates associated with colibacillosis in Brazil. The analysis of this set of virulence factors can be

  16. Enhancement of crystallinity of cellulose produced by Escherichia coli through heterologous expression of bcsD gene from Gluconacetobacter xylinus.

    Science.gov (United States)

    Sajadi, Elaheh; Babaipour, Valiollah; Deldar, Ali Asghar; Yakhchali, Bagher; Fatemi, Seyed Safa-Ali

    2017-09-01

    To evaluate the crystallinity index of the cellulose produced by Escherichia coli Nissle 1917 after heterologous expression of the cellulose synthase subunit D (bcsD) gene of Gluconacetobacter xylinus BPR2001. The bcsD gene of G. xylinus BPR2001 was expressed in E. coli and its protein product was visualized using SDS-PAGE. FTIR analysis showed that the crystallinity index of the cellulose produced by the recombinants was 0.84, which is 17% more than that of the wild type strain. The increased crystallinity index was also confirmed by X-ray diffraction analysis. The cellulose content was not changed significantly after over-expressing the bcsD. The bcsD gene can improve the crystalline structure of the bacterial cellulose but there is not any significant difference between the amounts of cellulose produced by the recombinant and wild type E. coli Nissle 1917.

  17. Simulated microgravity affects ciprofloxacin susceptibility and expression of acrAB-tolC genes in E. coli ATCC25922.

    Science.gov (United States)

    Xu, Bingxin; Li, Chenglin; Zheng, Yanhua; Si, Shaoyan; Shi, Yuhua; Huang, Yuling; Zhang, Jianzhong; Cui, Yan; Cui, Yimin

    2015-01-01

    As a representative fluoroquinolone antibacterial, ciprofloxacin is frequently used to treat infections caused by bacteria such as E. coli. It is much meaningful to explore ciprofloxacin susceptibility and investigate a possible mechanism of drug susceptibility changes in E. coli ATCC25922 exposed to the environmental stress of simulated microgravity. The subculture of E. coli lasted for 7 days under simulated microgravity conditions (SMG) and normal microgravity (NG) conditions. On the 8th day, the cultures were divided into three groups: (1) NG group (continuous NG cultures); (2) SMG group (continuous SMG cultures); (3) SMCNG group (simulated microgravity change into normal gravity cultures). Ciprofloxacin (a final concentration of 0.125 μg/ml) sensitivity and expression of acrAB-tolC genes were detected in E. coli cells. The count and percentage of viable cells in the SMG cultures bacteria exposed to ciprofloxacin were higher than that in NG cultures and reduced to the levels of NG group when they were subcultivated from SMG to NG. The expressions of efflux pump genes (acrA, acrB and tolC) were upregulated in SMG culture and downregulated to the levels of NG group when they were subcultivated from SMG to NG. Susceptibility to ciprofloxacin and expression of acrAB-tolC genes in E. coli could be reversibly affected by SMG conditions. Over expression of efflux pump genes acrAB-tolC perhaps played an important role in decreased CIP susceptibility under SMG.

  18. Robust Parameter Identification to Perform the Modeling of pta and poxB Genes Deletion Effect on Escherichia Coli.

    Science.gov (United States)

    Guerrero-Torres, V; Rios-Lozano, M; Badillo-Corona, J A; Chairez, I; Garibay-Orijel, C

    2016-08-01

    The aim of this study was to design a robust parameter identification algorithm to characterize the effect of gene deletion on Escherichia coli (E. coli) MG1655. Two genes (pta and poxB) in the competitive pathways were deleted from this microorganism to inhibit pyruvate consumption. This condition deviated the E. coli metabolism toward the Krebs cycle. As a consequence, the biomass, substrate (glucose), lactic, and acetate acids as well as ethanol concentrations were modified. A hybrid model was proposed to consider the effect of gene deletion on the metabolism of E. coli. The model parameters were estimated by the application of a least mean square method based on the instrument variable technique. To evaluate the parametric identifier method, a set of robust exact differentiators, based on the super-twisting algorithm, was implemented. The hybrid model was successfully characterized by the parameters obtained from experimental information of E. coli MG1655. The significant difference between parameters obtained with wild-type strain and the modified (with deleted genes) justifies the application of the parametric identification algorithm. This characterization can be used to optimize the production of different byproducts of commercial interest.

  19. Global Expression of Prophage Genes in Escherichia coli O157:H7 Strain EDL933 in Response to Norfloxacin

    Science.gov (United States)

    Herold, Sylvia; Siebert, Jutta; Huber, Andrea; Schmidt, Herbert

    2005-01-01

    We investigated the influence of a low concentration of the gyrase inhibitor norfloxacin on the transcriptome of enterohemorrhagic Escherichia coli O157:H7 strain EDL933. For this purpose, we used a commercial DNA microarray containing oligonucleotides specific for E. coli O157:H7 strains EDL933 and RIMD0509952 and E. coli K-12 strain MG1655. Under the conditions applied, 5,963 spots (94% of all spots) could be analyzed. Among these, 118 spots (P norfloxacin. Twenty-two additional upregulated genes appeared to be E. coli O157:H7 strain RIMD0509952-specific phage elements, and the remaining 11 genes were related mainly to recombination and stress functions. Downregulation was indicated predominantly for genes responsible for bacterial primary metabolism, such as energy production, cell division, and amino acid biosynthesis. Interestingly, some genes present in the locus of enterocyte effacement appeared to be downregulated. The results of the study have shown that a low concentration of norfloxacin has profound effects on the transcriptome of E. coli O157:H7. PMID:15728886

  20. Expression in Escherichia coli of Three Different Soybean Late Embryogenesis Abundant (LEA) Genes to Investigate Enhanced Stress Tolerance

    Institute of Scientific and Technical Information of China (English)

    Ying LAN; Dan CAI; Yi-Zhi ZHENG

    2005-01-01

    In order to identify the function of late embryogenesis abundant (LEA) genes, in vitro functional analyses were perfo rmed using an Escherichia coli heterologous expression system. Three soybean late embryogenesis abundant (LEA) genes, PM11 (GenBank accession No. AF004805; group 1), PM30 (AF1 17884; group 3), and ZLDE-2 (AY351918; group 2), were cloned and expressed in a pET-28a system.The gene products were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by mass spectrometry. E. coli cells containing the recombinant plasmids or empty vector as controls were treated by salt and low temperature stress. Compared with control cells, the E. coli cells expressing either PM11 or PM30 showed a shorter lag period and improved growth when transferred to LB (Luria-Bertani) liquid media containing 800 mmol/L NaCl or 700 mmol/L KCl or after 4 ℃ treatment. E. coli cells expressing ZLDE-2 did not show obvious growth improvement both in either high KCl medium or after 4 ℃ treatment. The results indicate that the E. coli expression system is a simple, useful method to identify the functions of some stress-tolerant genes from plants.

  1. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli.

    Science.gov (United States)

    Alper, Hal; Jin, Yong-Su; Moxley, J F; Stephanopoulos, G

    2005-05-01

    The identification of genetic targets that are effective in bringing about a desired phenotype change is still an open problem. While random gene knockouts have yielded improved strains in certain cases, it is also important to seek the guidance of cell-wide stoichiometric constraints in identifying promising gene knockout targets. To investigate these issues, we undertook a genome-wide stoichiometric flux balance analysis as an aid in discovering putative genes impacting network properties and cellular phenotype. Specifically, we calculated metabolic fluxes such as to optimize growth and then scanned the genome for single and multiple gene knockouts that yield improved product yield while maintaining acceptable overall growth rate. For the particular case of lycopene biosynthesis in Escherichia coli, we identified such targets that we subsequently tested experimentally by constructing the corresponding single, double and triple gene knockouts. While such strains are suggested (by the stoichiometric calculations) to increase precursor availability, this beneficial effect may be further impacted by kinetic and regulatory effects not captured by the stoichiometric model. For the case of lycopene biosynthesis, the so identified knockout targets yielded a triple knockout construct that exhibited a nearly 40% increase over an engineered, high producing parental strain.

  2. Mechanistic basis for transcriptional bursting of ribosomal genes in E. coli

    Science.gov (United States)

    Choubey, Sandeep; Sanchez, Alvaro; Kondev, Jane

    2012-02-01

    Upon adding more ribosomal genes to the E. coli cell, it adjusts the overall transcription of these genes by reducing the average transcription rate per gene, so as to keep constant the level of ribosomal RNA in the cell. It was observed that this reduction in the average transcription level per gene is accompanied by the generation of transcriptional bursts. The biophysical mechanism responsible for this type of transcriptional control is not yet known. We consider three possible mechanisms suggested in the literature: proximal pausing by RNA polymerase, cooperative recruitment of RNA polymerase by DNA supercoiling, and competition between RNA polymerase and a transcription factor for binding to regulatory DNA. We compute the expected statistical properties of transcription initiation for each one of these models,and compare our predictions with published distributions of distances between the polymerases transcribing the ribosomal genes, obtained from electron micrographs.We use this data to estimate the rates of transcription initiation, which are found to be in good agreement with independent measurements. We also show that the three mechanisms considered here can be discriminated by comparing their predictions for the mean and the variance of interpolymerase distances.

  3. A newly discovered tRNA(1Asp) gene (aspV) of Escherichia coli K12.

    Science.gov (United States)

    Horiuchi, T; Nagasawa, T; Takano, K; Sekiguchi, M

    1987-02-01

    We report a new tRNA(1Asp) gene near the dnaQ gene, which is located at 5 min on the Escherichia coli linkage map. We named it aspV. The sequence corresponding to the mature tRNA is identical with that of the two previously identified tRNA(1Asp) genes (aspT and aspU), but there is no homology in the sequences of their 3'- and 5'-flanking regions.

  4. Regulation of transcription of cell division genes in the Escherichia coli dcw cluster.

    Science.gov (United States)

    Vicente, M; Gomez, M J; Ayala, J A

    1998-04-01

    The Escherichia coli dcw cluster contains cell division genes, such as the phylogenetically ubiquitous ftsZ, and genes involved in peptidoglycan synthesis. Transcription in the cluster proceeds in the same direction as the progress of the replication fork along the chromosome. Regulation is exerted at the transcriptional and post-transcriptional levels. The absence of transcriptional termination signals may, in principle, allow extension of the transcripts initiated at the up-stream promoter (mraZ1p) even to the furthest down-stream gene (envA). Complementation tests suggest that they extend into ftsW in the central part of the cluster. In addition, the cluster contains other promoters individually regulated by cis- and trans-acting signals. Dissociation of the expression of the ftsZ gene, located after ftsQ and A near the 3' end of the cluster, from its natural regulatory signals leads to an alteration in the physiology of cell division. The complexities observed in the regulation of gene expression in the cluster may then have an important biological role. Among them, LexA-binding SOS boxes have been found at the 5' end of the cluster, preceding promoters which direct the expression of ftsI (coding for PBP3, the penicillin-binding protein involved in septum formation). A gearbox promoter, ftsQ1p, forms part of the signals regulating the transcription of ftsQ, A and Z. It is an inversely growth-dependent mechanism driven by RNA polymerase containing sigma s, the factor involved in the expression of stationary phase-specific genes. Although the dcw cluster is conserved to a different extent in a variety of bacteria, the regulation of gene expression, the presence or absence of individual genes, and even the essentiality of some of them, show variations in the phylogenetic scale which may reflect adaptation to specific life cycles.

  5. Dietary plant extracts modulate gene expression profiles in ileal mucosa of weaned pigs after an Escherichia coli infection.

    Science.gov (United States)

    Liu, Y; Song, M; Che, T M; Lee, J J; Bravo, D; Maddox, C W; Pettigrew, J E

    2014-05-01

    This study was conducted to characterize the effects of infection with a pathogenic F-18 Escherichia coli and 3 different plant extracts on gene expression of ileal mucosa in weaned pigs. Weaned pigs (total = 64, 6.3 ± 0.2 kg BW, and 21-d old) were housed in individual pens for 15 d, 4 d before and 11 d after the first inoculation (d 0). Treatments were in a 2 × 4 factorial arrangement: with or without an F-18 E. coli challenge and 4 diets (a nursery basal, control diet [CON], 10 ppm of capsicum oleoresin [CAP], garlic botanical [GAR], or turmeric oleoresin [TUR]). Results reported elsewhere showed that the plant extracts reduced diarrhea in challenged pigs. Total RNA (4 pigs/treatment) was extracted from ileal mucosa of pigs at d 5 post inoculation. Double-stranded cDNA was amplified, labeled, and further hybridized to the microarray, and data were analyzed in R. Differential gene expression was tested by fitting a mixed linear model in a 2 × 4 factorial ANOVA. Bioinformatics analysis was conducted by DAVID Bioinformatics Resources 6.7 (DAVID; National Institute of Allergy and Infectious Diseases [NIAID, NIH], http://david.abcc.ncifcrf.gov). The E. coli infection altered (P < 0.05) the expression of 240 genes in pigs fed the CON (148 up- and 92 down-regulated). Compared with the infected CON, feeding CAP, GAR, or TUR altered (P < 0.05) the expression of 52 genes (18 up, 34 down), 117 genes (34 up- and 83 down-regulated), or 84 genes (16 up- and 68 down-regulated), respectively, often counteracting the effects of E. coli. The E. coli infection up-regulated (P < 0.05) the expression of genes related to the activation of immune response and complement and coagulation cascades, but down-regulated (P < 0.05) the expression of genes involved in protein synthesis and accumulation. Compared with the CON, feeding CAP and GAR increased (P < 0.05) the expression of genes related to integrity of membranes in infected pigs, indicating enhanced gut mucosa health. Moreover

  6. Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering.

    Science.gov (United States)

    Juhas, Mario; Reuß, Daniel R; Zhu, Bingyao; Commichau, Fabian M

    2014-11-01

    Investigation of essential genes, besides contributing to understanding the fundamental principles of life, has numerous practical applications. Essential genes can be exploited as building blocks of a tightly controlled cell 'chassis'. Bacillus subtilis and Escherichia coli K-12 are both well-characterized model bacteria used as hosts for a plethora of biotechnological applications. Determination of the essential genes that constitute the B. subtilis and E. coli minimal genomes is therefore of the highest importance. Recent advances have led to the modification of the original B. subtilis and E. coli essential gene sets identified 10 years ago. Furthermore, significant progress has been made in the area of genome minimization of both model bacteria. This review provides an update, with particular emphasis on the current essential gene sets and their comparison with the original gene sets identified 10 years ago. Special attention is focused on the genome reduction analyses in B. subtilis and E. coli and the construction of minimal cell factories for industrial applications.

  7. On the mechanism of gene amplification induced under stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Gene amplification is a collection of processes whereby a DNA segment is reiterated to multiple copies per genome. It is important in carcinogenesis and resistance to chemotherapeutic agents, and can underlie adaptive evolution via increased expression of an amplified gene, evolution of new gene functions, and genome evolution. Though first described in the model organism Escherichia coli in the early 1960s, only scant information on the mechanism(s of amplification in this system has been obtained, and many models for mechanism(s were possible. More recently, some gene amplifications in E. coli were shown to be stress-inducible and to confer a selective advantage to cells under stress (adaptive amplifications, potentially accelerating evolution specifically when cells are poorly adapted to their environment. We focus on stress-induced amplification in E. coli and report several findings that indicate a novel molecular mechanism, and we suggest that most amplifications might be stress-induced, not spontaneous. First, as often hypothesized, but not shown previously, certain proteins used for DNA double-strand-break repair and homologous recombination are required for amplification. Second, in contrast with previous models in which homologous recombination between repeated sequences caused duplications that lead to amplification, the amplified DNAs are present in situ as tandem, direct repeats of 7-32 kilobases bordered by only 4 to 15 base pairs of G-rich homology, indicating an initial non-homologous recombination event. Sequences at the rearrangement junctions suggest nonhomologous recombination mechanisms that occur via template switching during DNA replication, but unlike previously described template switching events, these must occur over long distances. Third, we provide evidence that 3'-single-strand DNA ends are intermediates in the process, supporting a template-switching mechanism. Fourth, we provide evidence that lagging

  8. Synthesis, cloning and expression of a novel pre-miniproinsulin analogue gene in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ahmed A. Abolliel

    2015-09-01

    Full Text Available In the present study, a novel pre-miniproinsulin analogue was designed to have a short 9 residue sequence replacing the 35 residue C-chain, one lysine and one arginine added to the C-terminus of the B-chain in combination with glycine and arginine substitution at A21 and B29, respectively, and a 16-residue fusion partner comprising the pentapeptide sequence (PSDKP of the N-terminus of human tumor necrosis factor-α (TNF-α, 6 histidine residues for Ni2+ chelated affinity purification and a pentapeptide ending with methionine for ease of chemical cleavage fused at the N-terminus. Homology modeling of the designed protein against miniproinsulin (protein databank file 1 efeA as a template showed that the distance between the α-carbons of the C-terminus of the B-chain and the N-terminus of the A-chain did not change; the root-mean-square deviation of the backbone atoms between the structures of modeled miniproinsulin and miniproinsulin template was 0.000 Å. DNA sequencing of the synthesized gene showed 100% identity with theoretical sequence. The gene was constructed taking into account the codon preference of Escherichia coli (CAI value 0.99 in order to increase the expression rate of the DNA in the host strain. The designed gene was synthesized using DNA synthesis technology and then cloned into the expression plasmid pET-24a(+ and propagated in E. coli strain JM109. Gene expression was successful in two E. coli strains: namely JM109(DE3 and BL21(DE3pLysS. SDS–PAGE analysis was carried out to check protein size and to check and optimize expression. Rapid screening and purification of the resulting protein was carried out by Ni–NTA technology. The identity of the expressed protein was verified by immunological detection method of western blot using polyclonal rabbit antibody against insulin.

  9. Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes.

    Science.gov (United States)

    Zhang, Chong-Miao; Xu, Li-Mei; Wang, Xiaochang C; Zhuang, Kai; Liu, Qiang-Qiang

    2017-04-29

    To evaluate the effect of ultraviolet (UV) disinfection on antibiotic-resistant Escherichia coli (E. coli). Antibiotic-resistant E. coli strains were isolated from a wastewater treatment plant and subjected to UV disinfection. The effect of UV disinfection on the antibiotic resistance profiles and the antibiotic resistance genes (ARGs) of antibiotic-resistant E. coli was evaluated by a combination of antibiotic susceptibility analysis and molecular methods. Results indicated that multiple-antibiotic-resistant (MAR) E. coli were more resistant at low UV doses and required a higher UV dose (20 mJ cm(-2) ) to enter the tailing phase compared with those of antibiotic-sensitive E. coli (8 mJ cm(-2) ). UV disinfection caused a selective change in the inhibition zone diameters of surviving antibiotic-resistant E. coli and a slight damage to ARGs. The inhibition zone diameters of the strains resistant to antibiotics were more difficult to alter than those susceptible to antibiotics because of the existence and persistence of corresponding ARGs. The resistance of MAR bacteria to UV disinfection at low UV doses and the changes in inhibition zone diameters could potentially contribute to the selection of ARB in wastewater treatment after UV disinfection. The risk of spread of antibiotic resistance still exists owing to the persistence of ARGs. Our study highlights the acquisition of other methods to control the spread of ARGs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Relationship between eae and stx virulence genes and Escherichia coli in an agricultural watershed: implications for irrigation water standards and leafy green commodities.

    Science.gov (United States)

    Shelton, Daniel R; Karns, Jeffrey S; Coppock, Cary; Patel, Jitu; Sharma, Manan; Pachepsky, Yakov A

    2011-01-01

    The California Leafy Greens Marketing Agreement (LGMA) was adopted in an effort to minimize the risk of contamination of leafy greens with enteric pathogens from a variety of sources, including ground and surface irrigation waters. The LGMA contains standards similar to those established for recreational waters, based on Escherichia coli concentrations. However, no correlation between E. coli and any specific waterborne pathogen(s) has been reported. We conducted this monitoring study in an agricultural watershed to (i) evaluate spatial and temporal fluctuations in E. coli populations and virulence genes associated with pathogenic E. coli and (ii) investigate whether a relationship could be established between E. coli and virulence genes. The virulence genes targeted for analysis were the eae and stx genes, encoding for intimin and Shiga-like toxins, respectively; they were detected with PCR methods. E. coli concentrations and eae and stx prevalence varied both spatially and temporally. In general, both were higher in agricultural than in forested areas and were higher in the summer and fall seasons than in winter. The eae and stx genes were prevalent throughout the watershed. However, in the absence of actual isolates, no conclusions could be drawn regarding the prevalence of specific pathogenic E. coli. No correlation was observed between E. coli concentrations and virulence genes; lower E. coli concentrations were not necessarily associated with decreased prevalence of eae and stx genes. These results suggest that the LGMA standards might not adequately address the issue of waterborne contamination, and that alternative criteria might be required.

  11. Influence of the xonA gene of Escherichia coli in response to radiation; Influencia del gen xonA de Escherichia coli en la respuesta a radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ponce M, J.; Serment G, J.; Brena V, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The Escherichia coli bacteria has a repair and tolerance system known as SOS that works when there is damage in the DNA. However it is necessary that this damage modifies before the system is activated. For this it has intended to the enzymes that degrade DNA like responsible for generating this modifications. It has already been identified to the product of the gene recJ and according to the results that here are presented that of the gene xonA has similar activity. When both genes fail, not alone the activity SOS is inhibited but rather the mortality increases, for ionizing radiation. The above mentioned reinforces the importance of these genes in the recovery to the damage caused to the genome. (Author)

  12. Comprehensive expression analysis of pathogenicity genes in uropathogenic Escherichia coli strains.

    Science.gov (United States)

    Paniagua-Contreras, Gloria Luz; Hernández-Jaimes, Tania; Monroy-Pérez, Eric; Vaca-Paniagua, Felipe; Díaz-Velásquez, Clara; Uribe-García, Alina; Vaca, Sergio

    2017-02-01

    In this study, we investigated distinct expression patterns of genes encoding iron-acquisition systems, adhesins, protectins, and toxins in human uroepithelial cells infected with 194 uropathogenic Escherichia coli (UPEC) strains in vitro. We assessed the association of these genes with antibiotic resistance genes in this group of UPEC strains, previously characterised by polymerase chain reaction (PCR). Strains were isolated from patients with urinary tract infections (UTIs) from Unidad Médica Familiar de Salud Pública, located in Estado de México, México. Antibiotic resistance genes were identified by PCR, and the expression of virulence genes was detected by reverse-transcriptase-PCR after in vitro infection of cultured A431 human keratinocytes derived from a vulvar epidermoid carcinoma. The most frequently expressed virulence genotypes among the investigated UPEC strains included usp (68%), iha (64.9%), kpsMT (61.3%), fim (58.2%), irp2 (48.4), papC (33.5%), set (31.4%) and astA (30.9%), whereas the most frequently detected antibiotic resistance genes were tet(A) (34%), sul1 (31.4%) and TEM (26.3%). Furthermore, the most abundant pattern of gene expression (irp2/fim/iha/kpsMT/usp), associated with 8 different combinations of antibiotic resistance genotypes, was exhibited by 28 strains (14.4%). Taken together, these results indicate collective participation of distinct virulence UPEC genotypes during in vitro infection of cultured human epithelial cells, suggesting their potential involvement in UTI pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Phenylalanine biosynthesis in Brevibacterium lactofermentum using Escherichia coli genes pheA, aroG and tyrB

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Genetic engineering technology to increase the production of L-phenylalanine was used in the study.Three genes encoding the key enzymes involved in the biosynthesis of L-phenylalanine were utilized, in which the gene aroG encodes 3-deoxy-D-arabino-heptulosonate-7-phosphate synthetase (DS); the gene pheA encodes bifunctional enzyme of chorisate mutase (CM) and prephenate dehydratase (PD); and the gene tyrb encodes aminotransferase (AT).The three genes were amplified by polymerase chain reaction (PCR) from the genome of the E. coli mutant strains resistant to fluro-DL-phenylalanine and inserted into the cloning vectors. Then, they were expressed in E. coli and Brevibacterium lactofermentum in a tandem arrangement. The expressed enzymes had high activities in the host cells.

  14. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Yanlong Wang

    Full Text Available We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli, Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology and KEGG (Kyoto encyclopedia of genes and genomes enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species scavenging, membrane proteins and ABC (ATP binding cassette transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli.

  15. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria.

    Science.gov (United States)

    Adelowo, Olawale O; Fagade, Obasola E; Agersø, Yvonne

    2014-09-12

    This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), strB (61%), catA1 (25%), cmlA1 (13%), tetA (21%) and tetB (17%). Class 1 and 2 integrons were found in five (14%) and six (17%) isolates, respectively, while one isolate was positive for both classes of integrons. Seven out of eight isolates with resistance to ciprofloxacin and MIC ≤ 32 mg/L to nalidixic acid contained qnrS genes. Our findings provided additional evidence that the poultry production environment in Nigeria represents an important reservoir of antibiotic resistance genes such as qnrS that may spread from livestock production farms to human populations via manure and water.

  16. Comparison of genome-wide selection strategies to identify furfural tolerance genes in Escherichia coli.

    Science.gov (United States)

    Glebes, Tirzah Y; Sandoval, Nicholas R; Gillis, Jacob H; Gill, Ryan T

    2015-01-01

    Engineering both feedstock and product tolerance is important for transitioning towards next-generation biofuels derived from renewable sources. Tolerance to chemical inhibitors typically results in complex phenotypes, for which multiple genetic changes must often be made to confer tolerance. Here, we performed a genome-wide search for furfural-tolerant alleles using the TRackable Multiplex Recombineering (TRMR) method (Warner et al. (2010), Nature Biotechnology), which uses chromosomally integrated mutations directed towards increased or decreased expression of virtually every gene in Escherichia coli. We employed various growth selection strategies to assess the role of selection design towards growth enrichments. We also compared genes with increased fitness from our TRMR selection to those from a previously reported genome-wide identification study of furfural tolerance genes using a plasmid-based genomic library approach (Glebes et al. (2014) PLOS ONE). In several cases, growth improvements were observed for the chromosomally integrated promoter/RBS mutations but not for the plasmid-based overexpression constructs. Through this assessment, four novel tolerance genes, ahpC, yhjH, rna, and dicA, were identified and confirmed for their effect on improving growth in the presence of furfural.

  17. Clonal expansion of Escherichia coli ST38 carrying a chromosomally integrated OXA-48 carbapenemase gene.

    Science.gov (United States)

    Turton, Jane F; Doumith, Michel; Hopkins, Katie L; Perry, Claire; Meunier, Daniele; Woodford, Neil

    2016-06-01

    Many isolates of Escherichia coli carrying blaOXA-48 referred to Public Health England's national reference laboratory during 2014 and 2015 shared similar pulsed-field gel electrophoresis (PFGE) profiles, despite coming from patients in multiple different hospitals and regions. Whole genome sequencing on an Illumina platform revealed that these belonged to sequence type (ST) 38. The OXA-48 gene is usually carried on a 62 kb IncL/M plasmid (pOXA48a), but those belonging to this ST appeared either to lack plasmid elements or to have only a partial complement. Two isolates, one belonging to a main cluster sharing identical PFGE profiles and the other having a distinct profile, were further sequenced on a minION. The long reads provided by the nanopore sequencing technology facilitated assembly of a much larger contig around the blaOXA-48 region, showing that both isolates shared a similar arrangement, with a plasmid fragment containing blaOXA-48 flanked by IS1R elements integrated into the chromosome, although the length of the plasmid fragment and the insertion site differed between the two isolates. That belonging to the main cluster contained a 21.9 kb Tn6237 insert, as previously described in E. coli EC-15 from Lebanon, but in a different insertion site. PCR mapping indicated that a further 14/31 representatives of this cluster also contained this insert in the same insertion site, with most of the remainder differing only by having additional E. coli sequence on one side of the insertion. This sub-cluster of ST38 was found from 25 different hospital laboratories, suggesting widespread distribution of a successful type.

  18. Contribution of rpoS and bolA genes in biofilm formation in Escherichia coli K-12 MG1655.

    Science.gov (United States)

    Adnan, Mohd; Morton, Glyn; Singh, Jaipaul; Hadi, Sibte

    2010-09-01

    Flexibility of gene expression in bacteria permits its survival in varied environments. The genetic adaptation of bacteria through systematized gene expression is not only important, but also clinically relevant in their ability to grow biofilms in stress environments. Stress responses enable their survival under more severe conditions, enhanced resistance and/or virulence. In Escherichia coli (E. coli), two of the possible important genes for biofilm growth are rpoS and bolA gene. RpoS is also called as a master regulator of general stress response. Even though many studies have revealed the importance of rpoS in planktonic cells, little is known about the functions of rpoS in biofilms. In contrast, bolA which is a morphogene in E. coli is overexpressed under stressed environments resulting in round morphology. The hypothesis is that bolA could be implicated in biofilm development. This study reviewed the literature with the aim of understanding the stress tolerance response of E. coli in relation with rpoS and bolA genes in different environmental conditions including heat shock, cold shock, and stress in response to oxidation, acidic condition and in presence of cadmium. Knowledge of the genetic regulation of biofilm formation may lead to the understanding of the factors that drive the bacteria to switch to the biofilm mode of growth.

  19. Virulence genes and antimicrobial susceptibilities of hemolytic and nonhemolytic Escherichia coli isolated from post-weaning piglets in central Thailand.

    Science.gov (United States)

    Prapasarakul, Nuvee; Tummaruk, Padet; Niyomtum, Waree; Tripipat, Titima; Serichantalergs, Oralak

    2010-12-01

    The purpose of this study was to compare the existence of virulence genes in hemolytic Escherichia coli (HEC) and nonhemolytic E. coli (NHEC) isolated from weaner pigs in Thailand, and to determine their susceptibility to 10 antimicrobial agents. A total of 304 E. coli isolates were obtained from 90 piglets with diarrhea and 110 healthy piglets. Of these, 74 HEC isolates were obtained from 70 pigs with diarrhea, and 4 were obtained from 4 healthy pigs, while 190 and 40 NHEC were recovered from 110 healthy and 20 pigs with diarrhea, respectively. A ten digoxigenin (DIG)-labeled probe system was utilized for detecting genes encoding virulence-associated toxins and proteins in these isolates, and the minimal inhibitory concentration values against 10 antimicrobials were determined by means of the agar dilution technique. In total, 70.3% of the HEC isolates contained an exotoxin gene, lth, estp or stx2e, whereas 2.6% of the NHEC isolates hybridized with a gene probe for estp or stx2e. Over 90% of the isolates were resistant to most agents other than colistin and halquinol. The MIC(90) values of the HEC isolates for halquinol and colistin were 4 and 8 times greater than those of the NHEC isolates, respectively. The results represent the first characterization of resistant pathogenic E. coli distributed in the Thai pig industry. Amongst the HEC isolates, there appeared to be an association between the presence of some exotoxin genes, including lth, estp and stx2e, and reduced antimicrobial susceptibility.

  20. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli.

    Science.gov (United States)

    Stephenson, Stacy Ann-Marie; Brown, Paul D

    2016-01-01

    Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam's vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use of

  1. Cloning and expression in Escherichia coli of a new gene of Schistosoma japonicum encoding casein kinase Ⅱ beta subunit

    Institute of Scientific and Technical Information of China (English)

    彭寨玉; 余新炳; 吴忠道; 徐劲; 吴德; 李孜

    2004-01-01

    Background Nowadays it is now a focus topic in schistosomiasis research to find ideal vaccine candidates and new drug targets for developing anti-schistosomiasis vaccine. We cloned a new gene, casein kinase Ⅱ beta subunit, of Schistosoma japonicum (S. japonicum) and express it in Escherichia coli (E.coli).Methods The ESTs obtained in our laboratory were analyzed by homologous searching, and a new gene was recognized. The full-length cDNA of the new gene was obtained by joining the 3'RACE PCR fragment and the EST clone. To express the new gene, the cDNA was cloned into pGEX-4T-1 vector and then transformed into E.coli JM109. The recombinant protein was analyzed by SDS-PAGE and Western-blot. Results A 908 bp cDNA was isolated from S. japonicum and identified to be casein kinase Ⅱ beta subunit gene by sequence analysis. The open reading frame of the gene encodes a protein of 217 amino acids exhibiting 75.8%, 75.8%, 73.9%, 68.2%, 51.6% identity to the amino acids sequence of the corresponding genes of Homo sapiens (H. sapiens), Xenopus laevi (X. laevi), Drosophila melanogaster (D. melanogaster), Caenorhabditis elegan (C. elegan), and Schizosaccharomyces pombe (S. promber) respectively. The predicted molecular weight of the protein was 24.921 kDa. The new cDNA sequence had been submitted to GenBank, and its accession number is AY241391. This cDNA was subcloned into the pGEX-4T-1 vector and expressed in E.coli JM109.The recombinant protein could be recognized by the S. japonicum infected rabbit serum. Conclusion The full-length cDNA sequences encoding S. japonicum casein kinase Ⅱ beta subunit were firstly sequenced, cloned, and expressed in E.coli.

  2. Presence of qnr gene in Escherichia coli and Klebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China

    Directory of Open Access Journals (Sweden)

    Wang Chuanqing

    2008-05-01

    Full Text Available Abstract Background Quinolone resistance in Enterobacteriaceae results mainly from mutations in type II DNA topoisomerase genes and/or changes in the expression of outer membrane and efflux pumps. Several recent studies have indicated that plasmid-mediated resistance mechanisms also play a significant role in fluoroquinolone resistance, and its prevalence is increasing worldwide. In China, the presence of the qnr gene in the clinical isolates of Enterobacteriaceae has been reported, but this transmissible quinolone resistance gene has not been detected in strains isolated singly from pediatric patients. Because quinolones associated with a variety of adverse side effects on children, they are not authorized for pediatric use. This study therefore aimed to investigate the presence of the qnr gene in clinical isolates of E. coli and K. pneumoniae from pediatric patients in China. Methods A total 213 of non-repetitive clinical isolates resistant to ciprofloxacin from E. coli and K. pneumoniae were collected from hospitalized patients at five children's hospital in Beijing, Shanghai, Guangzhou, and Chongqing. The isolates were screened for the plasmid-mediated quinolone resistance genes of qnrA, qnrB, and qnrS by PCR. Transferability was examined by conjugation with the sodium azide-resistant E. coli J53. All qnr-positive were analyzed for clonality by enterobacterial repetitive intergenic consensus (ERIC-PCR. Results The study found that 19 ciprofloxacin-resistant clinical isolates of E. coli and K. pneumoniae were positive for the qnr gene, and most of the qnr positive strains were ESBL producers. Conjugation experiments showed that quinolone resitance could be transferred to recipients. Apart from this, different DNA banding patterns were obtained by ERIC-PCR from positive strains, which means that most of them were not clonally related. Conclusion This report on transferable fluoroquinolone resistance due to the qnr gene among E. coli and K

  3. The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia.

    Science.gov (United States)

    Alyamani, Essam J; Khiyami, Anamil M; Booq, Rayan Y; Majrashi, Majed A; Bahwerth, Fayez S; Rechkina, Elena

    2017-01-06

    The infection and prevalence of extended-spectrum β-lactamases (ESBLs) is a worldwide problem, and the presence of ESBLs varies between countries. In this study, we investigated the occurrence of plasmid-mediated ESBL/AmpC/carbapenemase/aminoglycoside resistance gene expression in Escherichia coli using phenotypic and genotypic techniques. A total of 58 E. coli isolates were collected from hospitals in the city of Makkah and screened for the production of ESBL/AmpC/carbapenemase/aminoglycoside resistance genes. All samples were subjected to phenotypic and genotypic analyses. The antibiotic susceptibility of the E. coli isolates was determined using the Vitek-2 system and the minimum inhibitory concentration (MIC) assay. Antimicrobial agents tested using the Vitek 2 system and MIC assay included the expanded-spectrum (or third-generation) cephalosporins (e.g., cefoxitin, cefepime, aztreonam, cefotaxime, ceftriaxone, and ceftazidime) and carbapenems (meropenem and imipenem). Reported positive isolates were investigated using genotyping technology (oligonucleotide microarray-based assay and PCR). The genotyping investigation was focused on ESBL variants and the AmpC, carbapenemase and aminoglycoside resistance genes. E. coli was phylogenetically grouped, and the clonality of the isolates was studied using multilocus sequence typing (MLST). Our E. coli isolates exhibited different levels of resistance to ESBL drugs, including ampicillin (96.61%), cefoxitin (15.25%), ciprofloxacin (79.66%), cefepime (75.58%), aztreonam (89.83%), cefotaxime (76.27%), ceftazidime (81.36%), meropenem (0%) and imipenem (0%). Furthermore, the distribution of ESBL-producing E. coli was consistent with the data obtained using an oligonucleotide microarray-based assay and PCR genotyping against genes associated with β-lactam resistance. ST131 was the dominant sequence type lineage of the isolates and was the most uropathogenic E. coli lineage. The E. coli isolates also carried aminoglycoside

  4. Distribution of Pathogenic Genes aatA, aap, aggR, among Uropathogenic Escherichia coli (UPEC) and Their Linkage with StbA Gene.

    Science.gov (United States)

    Nazemi, A; Mirinargasi, M; Merikhi, N; Sharifi, S H

    2011-07-01

    Urinary tract infection (UTI) with E. coli (UPEC) is one of the most common bacterial infections among human beings. In addition to the host predisposing factors, genes are also proposed to have an important role in the occurrence of UTIs. This study investigated the distribution of three pathogenic genes including aggR, aap and aatA among UPEC infected samples and their linkage with stbA, the essential gene for maintaining of pAA plasmid. A total of 244 samples were collected from patients with UTIs through clinical laboratories located in western side of Tehran (Iran) during years 2008-2009. E. coli isolation was performed according to standard laboratory methods. DNAs were extracted from samples using Boiling method, and the presence of aap, aggR, aatA and stbA genes were investigated by PCR. No pathogenic genes (aap, aggR, aatA) were found in 104 out of 244 UPEC samples, while 14 of them were carrying stbA gene. Out of 140 UPEC samples with pathogenic genes, 94 (46.6%) were carrying aap gene, 52 (23%) aggR gene, and 80 (35.4%) aatA gene. A total of 18 samples were also carrying all pathogenic genes together. Moreover, 44 out of 144 samples were carrying stbA gene. The results obtained by this study showed that the aggR, aap and aatA pathogenic genes have different existence patterns in different E. coli strains that infect different organs. Our study also showed that these three plasmid genes in EAEC strains are able to transpose in the genome and change their level of linkage with pAA plasmid essential gene stbA. Meanwhile, this study confirmed that aggR, aap and aatA genes are not specific to only EAEC strains.

  5. Cloning and characterization of the gsk gene encoding guanosine kinase of Escherichia coli

    DEFF Research Database (Denmark)

    Harlow, Kenneth W.; Nygaard, Per; Hove-Jensen, Bjarne

    1995-01-01

    The Escherichia coli gsk gene encoding guanosine kinase was cloned from the Kohara gene library by complementation of the E. coli gsk-1 mutant allele. The cloned DNA fragment was sequenced and shown to encode a putative polypeptide of 433 amino acids with a molecular mass of 48,113 Da. Minicell...

  6. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.

    Science.gov (United States)

    Harwani, Dharmesh

    2014-01-01

    Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside) operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s) apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP) phenotype to Bgl(+) cells and exerts its regulation on at least twelve downstream target genes.

  7. Regulation of gene expression: Cryptic β-glucoside (bgl operon of Escherichia coli as a paradigm

    Directory of Open Access Journals (Sweden)

    Dharmesh Harwani

    2014-12-01

    Full Text Available Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP phenotype to Bgl+ cells and exerts its regulation on at least twelve downstream target genes.

  8. Robust detection of hierarchical communities from Escherichia coli gene expression data.

    Directory of Open Access Journals (Sweden)

    Santiago Treviño

    Full Text Available Determining the functional structure of biological networks is a central goal of systems biology. One approach is to analyze gene expression data to infer a network of gene interactions on the basis of their correlated responses to environmental and genetic perturbations. The inferred network can then be analyzed to identify functional communities. However, commonly used algorithms can yield unreliable results due to experimental noise, algorithmic stochasticity, and the influence of arbitrarily chosen parameter values. Furthermore, the results obtained typically provide only a simplistic view of the network partitioned into disjoint communities and provide no information of the relationship between communities. Here, we present methods to robustly detect co-regulated and functionally enriched gene communities and demonstrate their application and validity for Escherichia coli gene expression data. Applying a recently developed community detection algorithm to the network of interactions identified with the context likelihood of relatedness (CLR method, we show that a hierarchy of network communities can be identified. These communities significantly enrich for gene ontology (GO terms, consistent with them representing biologically meaningful groups. Further, analysis of the most significantly enriched communities identified several candidate new regulatory interactions. The robustness of our methods is demonstrated by showing that a core set of functional communities is reliably found when artificial noise, modeling experimental noise, is added to the data. We find that noise mainly acts conservatively, increasing the relatedness required for a network link to be reliably assigned and decreasing the size of the core communities, rather than causing association of genes into new communities.

  9. Pangenome evidence for higher codon usage bias and stronger translational selection in core genes of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Shixiang Sun

    2016-08-01

    Full Text Available Codon usage bias, as a combined interplay from mutation and selection, has been intensively studied in Escherichia coli. However, codon usage analysis in an E. coli pangenome remains unexplored and the relative importance of mutation and selection acting on core genes and strain-specific genes is unknown. Here we perform comprehensive codon usage analyses based on a collection of multiple complete genome sequences of E. coli. Our results show that core genes that are present in all strains have higher codon usage bias than strain-specific genes that are unique to single strains. We further explore the forces in influencing codon usage and investigate the difference of the major force between core and strain-specific genes. Our results demonstrate that although mutation may exert genome-wide influences on codon usage acting similarly in different gene sets, selection dominates as an important force to shape biased codon usage as genes are present in an increased number of strains. Together, our results provide important insights for better understanding genome plasticity and complexity as well as evolutionary mechanisms behind codon usage bias.

  10. Pangenome Evidence for Higher Codon Usage Bias and Stronger Translational Selection in Core Genes of Escherichia coli.

    Science.gov (United States)

    Sun, Shixiang; Xiao, Jingfa; Zhang, Huiyong; Zhang, Zhang

    2016-01-01

    Codon usage bias, as a combined interplay from mutation and selection, has been intensively studied in Escherichia coli. However, codon usage analysis in an E. coli pangenome remains unexplored and the relative importance of mutation and selection acting on core genes and strain-specific genes is unknown. Here we perform comprehensive codon usage analyses based on a collection of multiple complete genome sequences of E. coli. Our results show that core genes that are present in all strains have higher codon usage bias than strain-specific genes that are unique to single strains. We further explore the forces in influencing codon usage and investigate the difference of the major force between core and strain-specific genes. Our results demonstrate that although mutation may exert genome-wide influences on codon usage acting similarly in different gene sets, selection dominates as an important force to shape biased codon usage as genes are present in an increased number of strains. Together, our results provide important insights for better understanding genome plasticity and complexity as well as evolutionary mechanisms behind codon usage bias.

  11. Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters.

    Science.gov (United States)

    Aldea, M; Garrido, T; Pla, J; Vicente, M

    1990-11-01

    The cell division ftsQAZ cluster and the ftsZ-dependent bolA morphogene of Escherichia coli are found to be driven by gearboxes, a distinct class of promoters characterized by showing an activity that is inversely dependent on growth rate. These promoters contain specific sequences upstream from the mRNA start point, and their -10 region is essential for the inverse growth rate dependence. Gearbox promoters are essential for driving ftsQAZ and bolA gene expression so that the encoded products are synthesized at constant amounts per cell independently of cell size. This mode of regulation would be expected for the expression of proteins that either play a regulatory role in cell division or form a stoichiometric component of the septum, a structure that, independently of cell size and growth rate, is produced once per cell cycle.

  12. Physical properties and heavy metal uptake of encapsulated Escherichia coli expressing a metal binding gene (NCP).

    Science.gov (United States)

    Bang, S S; Pazirandeh, M

    1999-01-01

    A recombinant Escherichia coli expressing the Neurospora crassa metallothionein gene (NCP) has previously been shown to remove low levels of Cd and other metals from solution. For further development as a biosorbent, the encapsulation of the NCP is investigated by various matrices. The NCP was encapsulated in alginate, chitosan-alginate or kappa-carrageenan, and its physical properties characterized. Results indicated that encapsulation in alginate resulted in fragile beads, whereas encapsulation in kappa-carrageenan or chitosan-alginate provided more physical and chemical integrity to the beads. Maximal heavy metal removal by cells encapsulated in carrageenan occurred within 3 h, while a gradual increase in removal was observed up to 24 h for cells encapsulated in chitosan-alginate. Metal removal by cells encapsulated in alginate beads was lower than those encapsulated in carrageenan or chitosan-alginate.

  13. Colistin Resistance Gene mcr-1 and Its Variant in Escherichia coli Isolates from Chickens in China.

    Science.gov (United States)

    Yang, Yong-Qiang; Li, Yun-Xia; Song, Tao; Yang, Yan-Xian; Jiang, Wei; Zhang, An-Yun; Guo, Xin-Yi; Liu, Bi-Hui; Wang, Yong-Xiang; Lei, Chang-Wei; Xiang, Rong; Wang, Hong-Ning

    2017-05-01

    The mcr-1 gene was detected in 5.11% (58/1136) of Escherichia coli isolates of chicken origin from 13 provinces in China. A novel mcr-1 variant, named mcr-1.3, encoding an Ile-to-Val functional variant of MCR-1 was identified in a sequence type 155 (ST155) strain. An mcr-1.3-containing IncI2 plasmid, pHeN867 (60,757 bp), was identified. The transfer of pHeN867 led to a 32-fold increase in the MIC of colistin in the recipient, exhibiting an effect on colistin resistance that was similar to that of mcr-1. Copyright © 2017 American Society for Microbiology.

  14. Diversification of Gene Expression during Formation of Static Submerged Biofilms by Escherichia coli

    Science.gov (United States)

    Besharova, Olga; Suchanek, Verena M.; Hartmann, Raimo; Drescher, Knut; Sourjik, Victor

    2016-01-01

    Many bacteria primarily exist in nature as structured multicellular communities, so called biofilms. Biofilm formation is a highly regulated process that includes the transition from the motile planktonic to sessile biofilm lifestyle. Cellular differentiation within a biofilm is a commonly accepted concept but it remains largely unclear when, where and how exactly such differentiation arises. Here we used fluorescent transcriptional reporters to quantitatively analyze spatio-temporal expression patterns of several groups of genes during the formation of submerged Escherichia coli biofilms in an open static system. We first confirm that formation of such submerged biofilms as well as pellicles at the liquid-air interface requires the major matrix component, curli, and flagella-mediated motility. We further demonstrate that in this system, diversification of gene expression leads to emergence of at least three distinct subpopulations of E. coli, which differ in their levels of curli and flagella expression, and in the activity of the stationary phase sigma factor σS. Our study reveals mutually exclusive expression of curli fibers and flagella at the single cell level, with high curli levels being confined to dense cell aggregates/microcolonies and flagella expression showing an opposite expression pattern. Interestingly, despite the known σS-dependence of curli induction, there was only a partial correlation between the σS activity and curli expression, with subpopulations of cells having high σS activity but low curli expression and vice versa. Finally, consistent with different physiology of the observed subpopulations, we show striking differences between the growth rates of cells within and outside of aggregates. PMID:27761132

  15. Diversification of gene expression during formation of static submerged biofilms by Escherichia coli

    Directory of Open Access Journals (Sweden)

    Olga Besharova

    2016-10-01

    Full Text Available Many bacteria primarily exist in nature as structured multicellular communities, so called biofilms. Biofilm formation is a highly regulated process that includes the transition from the motile planktonic to sessile biofilm lifestyle. Cellular differentiation within a biofilm is a commonly accepted concept but it remains largely unclear when, where and how exactly such differentiation arises. Here we used fluorescent transcriptional reporters to quantitatively analyze spatio-temporal expression patterns of several groups of genes during the formation of submerged Escherichia coli biofilms in an open static system. We first confirm that formation of such submerged biofilms as well as pellicles at the liquid-air interface requires the major matrix component, curli, and flagella-mediated motility. We further demonstrate that in this system, diversification of gene expression leads to emergence of at least three distinct subpopulations of E. coli, which differ in their levels of curli and flagella expression, and in the activity of the stationary phase sigma factor σS. Our study reveals mutually exclusive expression of curli fibers and flagella at the single cell level, with high curli levels being confined to dense cell aggregates/microcolonies and flagella expression showing an opposite expression pattern. Interestingly, despite the known σS-dependence of curli induction, there was only a partial correlation between the σS activity and curli expression, with subpopulations of cells having high σS activity but low curli expression and vice versa. Finally, consistent with different physiology of the observed subpopulations, we show striking differences between the growth rates of cells within and outside of aggregates.

  16. Detection and linkage to mobile genetic elements of tetracycline resistance gene tet(M) in Escherichia coli isolates from pigs

    DEFF Research Database (Denmark)

    Jurado-Rabadan, Sonia; de la Fuente, Ricardo; Ruiz-Santa-Quiteria, Jose A.

    2014-01-01

    Background: In Escherichia coli the genes involved in the acquisition of tetracycline resistance are mainly tet(A) and tet(B). In addition, tet(M) is the most common tetracycline resistance determinant in enterococci and it is associated with conjugative transposons and plasmids. Although tet(M) ...

  17. Simulating Results of Experiments on Gene Regulation of the Lactose Operon in Escherichia coli; a Problem-Solving Exercise.

    Science.gov (United States)

    Hitchen, Trevor; Metcalfe, Judith

    1987-01-01

    Describes a simulation of the results of real experiments which use different strains of Escherichia coli. Provides an inexpensive practical problem-solving exercise to aid the teaching and understanding of the Jacob and Monod model of gene regulation. (Author/CW)

  18. Distribution of the urease gene cluster among and urease activities of enterohemorrhagic Escherichia coli O157 isolates from humans

    NARCIS (Netherlands)

    Friedrich, Alexander W; Köck, Robin; Bielaszewska, Martina; Zhang, Wenlan; Karch, Helge; Mathys, Werner

    2005-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157 strains belong to two closely related major groups, which are differentiated by their sorbitol fermentation phenotypes. Here we studied the conservation of urease genes and their expression in sorbitol-fermenting (SF) and non-SF EHEC O157 isolates. PCR

  19. Molecular screening of virulence genes in extraintestinal pathogenic Escherichia coli isolated from human blood culture in Brazil.

    Science.gov (United States)

    Koga, Vanessa L; Tomazetto, Geizecler; Cyoia, Paula S; Neves, Meiriele S; Vidotto, Marilda C; Nakazato, Gerson; Kobayashi, Renata K T

    2014-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) is one of the main etiological agents of bloodstream infections caused by Gram-negative bacilli. In the present study, 20 E. coli isolates from human hemocultures were characterized to identify genetic features associated with virulence (pathogenicity islands markers, phylogenetic group, virulence genes, plasmid profiles, and conjugative plasmids) and these results were compared with commensal isolates. The most prevalent pathogenicity island, in strains from hemoculture, were PAI IV536, described by many researchers as a stable island in enterobacteria. Among virulence genes, iutA gene was found more frequently and this gene enconding the aerobactin siderophore receptor. According to the phylogenetic classification, group B2 was the most commonly found. Additionally, through plasmid analysis, 14 isolates showed plasmids and 3 of these were shown to be conjugative. Although in stool samples of healthy people the presence of commensal strains is common, human intestinal tract may serve as a reservoir for ExPEC.

  20. A Unique Profile of Adenomatous Polyposis Coli Gene Mutations in Iranian Patients Suffering Sporadic Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Mojtaba Hasanpour

    2014-03-01

    Full Text Available Objective: Colorectal cancer (CRC is one of the most common and aggressive cancers worldwide. The majority of CRC cases are sporadic that caused by somatic mutations. The Adenomatous Polyposis Coli (APC; OMIM 611731 is a tumor suppressor gene of Wnt pathway and is frequently mutated in CRC cases. This study was designed to investigate the spectrum of APC gene mutations in Iranian patients with sporadic colorectal cancer. Materials and Methods: In this descriptive study, Tumor and normal tissue samples were obtained from thirty randomly selected and unrelated sporadic CRC patients. We examined the hotspot region of the APC gene in all patients. Our mutation detection method was direct DNA sequencing. Results: We found a total of 8 different APC mutations, including two nonsense mutations (c.4099C>T and c.4348C>T, two missense mutations (c.3236C>G and c.3527C>T and four frame shift mutations (c.2804dupA, c.4317delT, c.4464_4471delATTACATT and c.4468_4469dupCA. The c.3236C>G and c.4468_4469dupCA are novel mutations. The overall frequency of APC mutation was 26.7% (8 of 30 patients. Conclusion: This mutation rate is lower in comparison with previous studies from other countries. The findings of present study demonstrate a different APC mutation spectrum in CRC patients of Iranian origin compared with other populations.

  1. The global gene expression response of Escherichia coli to L-phenylalanine.

    Science.gov (United States)

    Polen, T; Krämer, M; Bongaerts, J; Wubbolts, M; Wendisch, V F

    2005-02-09

    We investigated the global gene expression changes of Escherichia coli due to the presence of different concentrations of phenylalanine or shikimate in the growth medium. The response to 0.5 g l(-1) phenylalanine primarily reflected a perturbed aromatic amino acid metabolism, in particular due to TyrR-mediated regulation. The addition of 5g l(-1) phenylalanine reduced the growth rate by half and elicited a great number of likely indirect effects on genes regulated in response to changed pH, nitrogen or carbon availability. Consistent with the observed gene expression changes, supplementation with shikimate, tyrosine and tryptophan relieved growth inhibition by phenylalanine. In contrast to the wild-type, a tyrR disruption strain showed increased expression of pckA and of tktB in the presence of phenylalanine, but its growth was not affected by phenylalanine at the concentrations tested. The absence of growth inhibition by phenylalanine suggested that at high phenylalanine concentrations TyrR-defective strains might perform better in phenylalanine production.

  2. Transformation and characterization of an arsenic gene operon from urease-positive thermophilic Campylobacter (UPTC) in Escherichia coli.

    Science.gov (United States)

    Matsuda, M; Kuribayashi, T; Yamamoto, S; Millar, B C; Moore, J E

    2016-01-01

    An arsenate susceptibility test was performed with transformed and cultured Escherichia coli DH5α cells, which carried recombinant DNA of full-length arsenic (ars) operon, namely a putative membrane permease, ArsP; a transcriptional repressor, ArsR; an arsenate reductase, ArsC; and an arsenical-resistance membrane transporter, Acr3, from the Japanese urease-positive thermophilic Campylobacter lari (UPTC) CF89-12. The E. coli DH5α transformant showed reduced susceptibility to arsenate (~1536 μg/mL), compared to the control. Thus, these ars four-genes from the UPTC CF89-12 strain cells could confer a reduced susceptibility to arsenate in the transformed and E. coli DH5α cells. E. coli transformants with truncated ars operons, acr3 (acr3) and arsC-acr3 (∆arsC-acr3), of the ars operon, showed an MIC value of 384 μg/mL (~384 μg/mL), similar to the E. coli cells which carried the pGEM-T vector (control). Reverse transcription PCR confirmed in vivo transcription of recombinant full-length ars operon and deletion variants (∆acr3 and ∆arsC-acr3) in the transformed E. coli cells.

  3. Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction.

    Science.gov (United States)

    Ewers, Christa; Janssen, Traute; Kiessling, Sabine; Philipp, Hans-C; Wieler, Lothar H

    2005-06-01

    Based on recently published prevalence data of virulence-associated factors in avian pathogenic Escherichia coli (APEC) and their roles in the pathogenesis of colibacillosis, we developed a multiplex polymerase chain reaction (PCR) as a molecular tool supplementing current diagnostic schemes that mainly rely on serological examination of strains isolated from diseased birds. Multiple isolates of E. coli from clinical cases of colibacillosis known to possess different combinations of eight genes were used as sources of template DNA to develop the multiplex PCR protocol, targeting genes for P-fimbriae (papC), aerobactin (iucD), iron-repressible protein (irp2), temperature-sensitive hemagglutinin (tsh), vacuolating autotransporter toxin (vat), enteroaggregative toxin (astA), increased serum survival protein (iss), and colicin V plasmid operon genes (cva/cvi). In order to verify the usefulness of this diagnostic tool, E. coli strains isolated from fecal samples of clinically healthy chickens were also included in this study, as were uropathogenic (UPEC), necrotoxigenic, and diarrhegenic E. coli strains. The application of the multiplex PCR protocol to 14 E. coli strains isolated from septicemic poultry showed that these strains harbored four to eight of the genes mentioned above. In contrast, those isolates that have been shown to be nonpathogenic for 5-wk-old chickens possessed either none or, at most, three of these genes. We found only one enterohemorrhagic (EHEC), one enteropathogenic (EPEC), and two enterotoxic (ETEC) E. coli strains positive for irp2, and another two ETEC strains positive for astA. As expected, UPEC isolates yielded different combinations of the genes iss, papC, iucD, irp2, and a sequence similar to vat. However, neither the colicin V operon genes cva/cvi nor tsh were amplified in UPEC isolates. The multiplex PCR results were compared with those obtained by DNA-DNA-hybridization analyses to validate the specificity of oligonucleotide primers, and

  4. Amplification of the aroA gene from Escherichia coli results in tolerance to the herbicide glyphosate.

    OpenAIRE

    Rogers, S G; Brand, L A; Holder, S B; Sharps, E S; Brackin, M J

    1983-01-01

    The predominant cellular target of the herbicide glyphosate is thought to be the enzyme 5-enolpyruvylshikimate-3-phosphoric acid synthase (EPSP synthase). As a means of biologically testing this finding, we cloned a segment of DNA from Escherichia coli that encodes this enzyme. Clones carrying the gene for EPSP synthase were identified by genetic complementation. Cells that contain a multicopy plasmid carrying the EPSP synthase gene overproduce the enzyme 5- to 17-fold and exhibit at least an...

  5. Detection of mcr-1 colistin resistance gene in polyclonal Escherichia coli isolates in Barcelona, Spain, 2012 to 2015.

    Science.gov (United States)

    Prim, Núria; Rivera, Alba; Rodríguez-Navarro, Judith; Español, Montserrat; Turbau, Miquel; Coll, Pere; Mirelis, Beatriz

    2016-01-01

    Colistin resistance was detected in 53 of 10,011 Escherichia coli (0.5%) by prospective phenotypic testing of consecutive clinical isolates in a single hospital in Barcelona, Spain (2012-15). The mcr-1 gene was retrospectively identified by PCR and sequencing in 15 of 50 available isolates. Each isolate had a unique PFGE pattern except for two. This clonal diversity supports the hypothesis of horizontal dissemination of the mcr-1 gene in the local study population.

  6. Detection of the mcr-1 Gene in a Multidrug-Resistant Escherichia coli Isolate from an Austrian Patient.

    Science.gov (United States)

    Hartl, Rainer; Kerschner, Heidrun; Lepuschitz, Sarah; Ruppitsch, Werner; Allerberger, Franz; Apfalter, Petra

    2017-04-01

    Since colistin resistance based on the plasmid-encoded mcr-1 gene was first described, this resistance gene in Enterobacteriaceae has been found worldwide. These organisms are typically of heterogeneous genetic background and show exceptional clonal diversity. We describe the first confirmation of mcr-1 in a human Escherichia coli strain cultured from a surveillance stool sample of an Austrian oncology patient. Copyright © 2017 American Society for Microbiology.

  7. Some virulence genes of Escherichia coli isolated from cloacal swabs of healthy Alagoas Curassows (Pauxi mitu in Brazil Alguns genes de virulência de Escherichia coli isoladas de mutuns-do-nordeste (Pauxi mitu sadios no Brasil

    Directory of Open Access Journals (Sweden)

    André A.B. Saidenberg

    2013-04-01

    Full Text Available Birds of the Cracidae family (curassows, guans, and chachalacas are endemic of the Neotropics and 50 species are currently classified. Brazil has 22 species, seven of which are considered threatened. The Alagoas Curassow (Pauxi mitu species is considered extinct in the wild; but about 120 birds are alive in captivity. Conservation of this species depends entirely on correct management. Health reports of both wildlife and captive curassows are rare. In this study the presence of Escherichia coli was evaluated in 23 healthy Alagoas Curassows from two private breeding centres. E. coli was isolated from cloacal swabs, and the presence of genes encoding cytotoxic necrotising factor 1 (cnf1, alpha-haemolysin (hly, aerobactin (iuc, serum resistance (iss and the following adhesions: S fimbriae (sfa, pili associated with pyelonephritis (pap and temperature-sensitive haemagglutinin (tsh were investigated. E. coli was isolated from 78.3% (18/23 of the birds, and the percentage of curassows colonized by E. coli was similar between the two facilities. From the 22 E. coli isolates, 15 (68.2% were positive for at least one virulence factor by PCR, and the most frequently found gene was iss (50%. No curassows had clinical signs of disease. Nevertheless, the presence of some E. coli strains may be a concern to the wildlife in captivity. Additional health surveillance studies are essential to guarantee successful conservation programmes for threatened cracids in Brazil.Aves da família Cracidae (mutuns, jacutingas e aracuãs são endêmicas da região Neotropical com 50 espécies atualmente classificadas. O Brasil possui 22 espécies nesta família e sete delas são consideradas ameaçadas de extinção. O mutum-do-nordeste (Pauxi mitu é considerado extinto na natureza, no entanto, aproximadamente 120 indivíduos são mantidos em cativeiro. A conservação desta espécie depende inteiramente de um manejo correto. Informações sobre o status sanitário de mutuns

  8. On the trail of EHEC/EAEC--unraveling the gene regulatory networks of human pathogenic Escherichia coli bacteria.

    Science.gov (United States)

    Pauling, Josch; Röttger, Richard; Neuner, Andreas; Salgado, Heladia; Collado-Vides, Julio; Kalaghatgi, Prabhav; Azevedo, Vasco; Tauch, Andreas; Pühler, Alfred; Baumbach, Jan

    2012-07-01

    Pathogenic Escherichia coli, such as Enterohemorrhagic E. coli (EHEC) and Enteroaggregative E. coli (EAEC), are globally widespread bacteria. Some may cause the hemolytic uremic syndrome (HUS). Varying strains cause epidemics all over the world. Recently, we observed an epidemic outbreak of a multi-resistant EHEC strain in Western Europe, mainly in Germany. The Robert Koch Institute reports >4300 infections and >50 deaths (July, 2011). Farmers lost several million EUR since the origin of infection was unclear. Here, we contribute to the currently ongoing research with a computer-aided study of EHEC transcriptional regulatory interactions, a network of genetic switches that control, for instance, pathogenicity, survival and reproduction of bacterial cells. Our strategy is to utilize knowledge of gene regulatory networks from the evolutionary relative E. coli K-12, a harmless strain mainly used for wet lab studies. In order to provide high-potential candidates for human pathogenic E. coli bacteria, such as EHEC, we developed the integrated online database and an analysis platform EhecRegNet. We utilize 3489 known regulations from E. coli K-12 for predictions of yet unknown gene regulatory interactions in 16 human pathogens. For these strains we predict 40,913 regulatory interactions. EhecRegNet is based on the identification of evolutionarily conserved regulatory sites within the DNA of the harmless E. coli K-12 and the pathogens. Identifying and characterizing EHEC's genetic control mechanism network on a large scale will allow for a better understanding of its survival and infection strategies. This will support the development of urgently needed new treatments. EhecRegNet is online via http://www.ehecregnet.de.

  9. Occurrence, genotyping, shiga toxin genes and associated risk factors of E. coli isolated from dairy farms, handlers and milk consumers.

    Science.gov (United States)

    Awadallah, M A; Ahmed, H A; Merwad, A M; Selim, M A

    2016-11-01

    The objectives of the current study were to determine the occurrence and genotypes of E. coli in dairy farms, workers and milk consumers and to evaluate risk factors associated with contamination of milk in dairy farms. Molecular characterization of shiga toxin associated genes and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) finger printing of E. coli from different sources were also studied. Paired milk samples and rectal swabs from 125 dairy cows, rectal swabs from 82 calves and hand swabs from 45 dairy workers from five dairy farms were collected. In addition, 100 stool samples from 70 diarrheic and 30 healthy humans were collected and examined for the presence of E. coli. E. coli was isolated from milk (22.4%), dairy cattle feces (33.6%), calf feces (35.4%), dairy worker hand swabs (11.1%) and stools of milk consumers (2%, from diarrheic patients only). Only stx1 was identified in seven of 12 E. coli O125 isolated from different sources. High genetic diversity was determined (Simpson's index of diversity, D = 1) and E. coli O125 isolates were classified into 12 distinct profiles, E1-E12. The dendrogram analysis showed that two main clusters were generated. Mastitis in dairy cows was considered a risk factor associated with contamination of the produced milk with E. coli. The isolation of E. coli from rectal swabs of dairy cows and calves poses a zoonotic risk through consumption of unpasteurized contaminated dairy milk. Educational awareness should be developed to address risks related to consumption of raw milk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A Strong Promoter Provided with the Gene Encoding Arginyl-tRNA Synthetase(argS) from Escherichia coli.

    Science.gov (United States)

    Liu, Mo-Fang; Li, Tong; Yin, Zhao-Bao; Xu, Min-Gang; Wang, En-Duo; Wang, Yin-Lai

    2000-01-01

    Previous studies showed that the gene argS encoding the arginyl-tRNA synthetase(ArgRS) from Escherichia coli(E.coli), was overexpressed 1 000 folds in the E.coli transformant TG1/pUC-argS, while the gene leuS, encoding the leucyl-tRNA synthetase(LeuRS) from E.coli, was only overproduced 35-fold in the same case. To investigate why the expression of these two aminoacyl-tRNA synthetase genes is so different, a fused gene (termed parg-leuS) was constructed by replacement of the 5' flanking region of leuS to 5' flanking region of argS. In the E.coli transformant TG1/pUC-parg-leuS, the activity of LeuRS was only improved 8.5-fold, which was much lower than that of the transformant harboring the recombinant plasmid pUC18-leuS or pKK-leuS. However, by RNA dot hybridization the amount of mRNA produced in the transcription of parg-leuS was about 5 times than that of the wild type leuS, and was similar to that of pKK-leuS, suggesting that the promoter of argS is very strong. Analysis of the secondary structure around the initiation codon among three mRNAs showed that the secondary structure of the mRNA from parg-leuS was the strongest of the three mRNAs. From the results, it could be deduced that expression of the fused gene parg-leuS might be controlled at the translational level and the strong secondary structure of this mRNA may hinder translation initiation and result in a low translation efficiency.

  11. High Prevalence of Colistin Resistance and mcr-1 Gene in Escherichia coli Isolated from Food Animals in China.

    Science.gov (United States)

    Huang, Xianhui; Yu, Linfeng; Chen, Xiaojie; Zhi, Chanping; Yao, Xu; Liu, Yiyun; Wu, Shengjun; Guo, Zewen; Yi, Linxian; Zeng, Zhenling; Liu, Jian-Hua

    2017-01-01

    The objective of this study was to determine the minimal inhibitory concentration of colistin for Escherichia coli from food animals and the possible underlying colistin resistance mechanisms. During 2007-2014, 4,438 E. coli isolates of food animal origins were collected. The susceptibility of colistin was tested by the agar dilution method. Mutations in pmrA, pmrB, and mgrB and the presence of mcr-1 gene were determined by PCR and DNA sequencing. Complementation experiments were carried out to evaluate the contribution of the mutations to colistin resistance. There was a high frequency of colistin resistance in E. coli from pigs on farm (24.1%) and at slaughter (24.3%) in 2013-2014, followed by chickens on farm (14.0%) and at slaughter (9.5%). The resistance frequency of E. coli in cow isolates was the lowest (0.9%). MIC distribution for colistin showed that most isolates (75.2%) were distributed at 0.25 mg/L-0.5 mg/L, followed by 4 mg/L-8 mg/L (16.8%). Compared with the isolates from pigs and chickens recovered during 2013-2014, E. coli isolates collected during 2007-2008 (5.5%) and 2010-2011 (12.4%) showed significantly lower frequency of colistin resistance (P mcr-1. The high frequency of colistin resistance and mcr-1 gene among E. coli isolates from food animals in China urged the need to minimize potential risks of colistin resistance development and the spread of mcr-1 gene.

  12. Prevalence of virulence genes associated with pathogenic Escherichia coli strains isolated from domestically harvested rainwater during low- and high-rainfall periods.

    Science.gov (United States)

    Dobrowsky, P H; van Deventer, A; De Kwaadsteniet, M; Ndlovu, T; Khan, S; Cloete, T E; Khan, W

    2014-03-01

    The possible health risks associated with the consumption of harvested rainwater remains one of the major obstacles hampering its large-scale implementation in water limited countries such as South Africa. Rainwater tank samples collected on eight occasions during the low- and high-rainfall periods (March to August 2012) in Kleinmond, South Africa, were monitored for the presence of virulence genes associated with Escherichia coli. The identity of presumptive E. coli isolates in rainwater samples collected from 10 domestic rainwater harvesting (DRWH) tanks throughout the sampling period was confirmed through universal 16S rRNA PCR with subsequent sequencing and phylogenetic analysis. Species-specific primers were also used to routinely screen for the virulent genes, aggR, stx, eae, and ipaH found in enteroaggregative E. coli (EAEC), enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and enteroinvasive E. coli, respectively, in the rainwater samples. Of the 92 E. coli strains isolated from the rainwater using culture based techniques, 6% were presumptively positively identified as E. coli O157:H7 using 16S rRNA. Furthermore, virulent pathogenic E. coli genes were detected in 3% (EPEC and EHEC) and 16% (EAEC) of the 80 rainwater samples collected during the sampling period from the 10 DRWH tanks. This study thus contributes valuable information to the limited data available regarding the ongoing prevalence of virulent pathotypes of E. coli in harvested rainwater during a longitudinal study in a high-population-density, periurban setting.

  13. Structure and gene cluster of the O-antigen of Escherichia coli O156 containing a pyruvic acid acetal.

    Science.gov (United States)

    Duan, Zhifeng; Senchenkova, Sof'ya N; Guo, Xi; Perepelov, Andrei V; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2016-07-22

    The lipopolysaccharide of Escherichia coli O156 was degraded under mild acidic and alkaline conditions and the resulting polysaccharides were studied by sugar analysis and (1)H and (13)C NMR spectroscopy. The following structure of the pentasaccharide repeating unit of the O-polysaccharide was established: where Rpyr indicates R-configurated pyruvic acid acetal. Minor O-acetyl groups also were present and tentatively localized on the Gal residues. The gene cluster for biosynthesis of the O-antigen of E. coli O156 was analyzed and shown to be consistent with the O-polysaccharide structure.

  14. Synthetic genes for human muscle-type adenylate kinase in Escherichia coli.

    Science.gov (United States)

    Kim, H J; Nishikawa, S; Tanaka, T; Uesugi, S; Takenaka, H; Hamada, M; Kuby, S A

    1989-01-01

    An artificial gene coding for the human muscle-type cytosolic adenylate kinase (hAK1) was chemically synthesized and directly expressed in Escherichia coli under the control of trp promoter. The DNA duplex of 596 bp was designed and constructed from 40 oligonucleotide fragments of typically 30 nucleotides in length. Twelve unique restriction sites were fairly evenly spaced in the synthetic gene to facilitate site-specific mutagenesis at any part of this recombinant protein. The genes for mutant hAK1 (Tyr 95----Phe 95, Y95F hAK1; Arg 97----Ala 97, R97A hAK1) were constructed by cassette mutagenesis and utilized restriction sites incorporated in the hAK1 gene. The recombinant hAK1 was purified to homogeneity by a two-step chromatographic procedure with a good yield, and showed the same adenylate kinase activity as that of authentic hAK1. Preliminary kinetic studies show that the enzymatic activity (Vmax app,cor/Et) of Y95F hAK1 was slightly greater than that of recombinant hAK1, whereas R97A hAK1 still possessed approximately 4% of recombinant hAK1 activity. These results suggest that the Arg-97 residue is important but not essential for catalytic activity, and that Tyr-95 can be replaced by phenylalanine without substantial effects on the enzymatic activity. Moreover, preliminary estimates of the apparent kinetic parameters suggest that these residues are not required for MgATP binding, and therefore they do not appear to be part of the MgATP binding site.

  15. The occurrence of subtilase-cytotoxin-encoding genes in environmental Escherichia coli isolated from a Northern California estuary.

    Science.gov (United States)

    Pereira, Maria das Graças C; Byrne, Barbara A; Nguyen, Trân B H; Lewis, David J; Atwill, E Robert

    2013-06-01

    The presence of subtilase-cytotoxin-encoding genes was determined in 397 environmental Escherichia coli strains isolated from water, suspended solids, and sediments sampled from different hydrological and environmental conditions in a California estuary. A total of 7 strains (1.76%) were found to harbor subtilase-cytotoxin-encoding genes. Using primers targeting subA only, we generated PCR amplicons from 2 strains; while using primers targeting the 3' end of SubA downstream to the 5' end of SubB, amplicons of 232 bp were generated from 5 additional strains. The 556 bp subA sequences were almost identical to that in the subtilase-cytotoxin-positive strain ED 591 (98%), while subAB sequences of 2 non-Shiga-toxigenic strains revealed 100% similarity with the Shiga-toxigenic E. coli O113:H21 strain 98NK2 that was isolated from an outbreak of hemolytic uremic syndrome. Additionally, the serogroup O113:H21 was present in this collection of environmental E. coli, and it was found to harbor stx2d, hra1 that encodes the heat resistant agglutinin 1, and a subAB sequence similar to that in the non-Shiga-toxigenic E. coli subtilase cytotoxin strain ED 591. To further understand potential health risks posed by strains encoding SubAB, future epidemiological studies should consider screening isolates for subAB regardless of the presence of Shiga-toxin-encoding genes.

  16. High resolution genetic map of the adenomatous polyposis coli gene (APC) region

    Energy Technology Data Exchange (ETDEWEB)

    Olschwang, S.; Laurent-Puig, P.; Melot, T. [Institut Curie, Paris (France)

    1995-05-08

    Familial adenomatous polyposis coli (APC) is a dominantly inherited colorectal cancer susceptibility disease caused by mutation in a gene called APC located on chromosome 5q21. Presymptomatic diagnosis of this condition is recommended because it enables restriction of the efficient but demanding prevention program to those relatives that are genetically affected. The large size of the APC gene makes the direct search for the casual alteration difficult to implement in routine diagnostic laboratories. Because APC appears to be genetically homogeneous with alteration in a single locus causing the disease, cosegregation analysis may represent an alternative efficient method for presymptomatic diagnosis. However, the reliability of the risk estimation by linkage analysis in APC families is hampered by the lack of a short range genetic map of the APC locus. A combined approach including genotyping of 65 APC families, analysis of the CEPH database, and complementary typing of both APC and CEPH families has made it possible to derive the following genetic map: Centromere-[D5S82-D5S49]-0.02-D5S122-0.01-D5S136-0.01-D5S135-0.02-[APC-D5S346-MCC]-0.04-[D5S81-D5S64]-Telomere. This order, which differs from previously proposed genetic maps, is fully compatible with recent physical mapping data. These data should contribute to increase the reliability of the presymptomatic test for APC. 42 refs., 1 fig., 3 tabs.

  17. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12.

    Directory of Open Access Journals (Sweden)

    Anthony W Kingston

    Full Text Available In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12 CFU/recipient per hour.

  18. The dsdA gene from Escherichia coli provides a novel selectable marker for plant transformation.

    Science.gov (United States)

    Erikson, Oskar; Hertzberg, Magnus; Näsholm, Torgny

    2005-02-01

    Plants are sensitive to D-serine, but functional expression of the dsdA gene, encoding D-serine ammonia lyase, from Escherichia coli can alleviate this toxicity. Plants, in contrast to many other organisms, lack the common pathway for oxidative deamination of D-amino acids. This difference in metabolism has major consequences for plant responses to D-amino acids, since several D-amino acids are toxic to plants even at relatively low concentrations. Therefore, introducing an enzyme specific for a phytotoxic D-amino acid should generate a selectable characteristic that can be screened. Here we present the use of the dsdA gene as a selectable marker for transformation of Arabidopsis. D-serine ammonia lyase catalyses the deamination of D-serine into pyruvate, water and ammonium. dsdA transgenic seedlings can be clearly distinguished from wild type, having an unambiguous phenotype immediately following germination when selected on D-serine containing medium. The dsdA marker allows flexibility in application of the selective agent: it can be applied in sterile plates, in foliar sprays or in liquid culture. Selection with D-serine resistance was compared with selection based on kanamycin resistance, and was found to generate similar transformation frequencies but also to be more unambiguous, more rapid and more versatile with respect to the way the selective agent can be supplied.

  19. The Escherichia coli SOS gene dinF protects against oxidative stress and bile salts.

    Directory of Open Access Journals (Sweden)

    Jerónimo Rodríguez-Beltrán

    Full Text Available DNA is constantly damaged by physical and chemical factors, including reactive oxygen species (ROS, such as superoxide radical (O(2(-, hydrogen peroxide (H(2O(2 and hydroxyl radical (•OH. Specific mechanisms to protect and repair DNA lesions produced by ROS have been developed in living beings. In Escherichia coli the SOS system, an inducible response activated to rescue cells from severe DNA damage, is a network that regulates the expression of more than 40 genes in response to this damage, many of them playing important roles in DNA damage tolerance mechanisms. Although the function of most of these genes has been elucidated, the activity of some others, such as dinF, remains unknown. The DinF deduced polypeptide sequence shows a high homology with membrane proteins of the multidrug and toxic compound extrusion (MATE family. We describe here that expression of dinF protects against bile salts, probably by decreasing the effects of ROS, which is consistent with the observed decrease in H(2O(2-killing and protein carbonylation. These results, together with its ability to decrease the level of intracellular ROS, suggests that DinF can detoxify, either direct or indirectly, oxidizing molecules that can damage DNA and proteins from both the bacterial metabolism and the environment. Although the exact mechanism of DinF activity remains to be identified, we describe for the first time a role for dinF.

  20. Engineering the Production of Major Catechins by Escherichia coli Carrying Metabolite Genes of Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Kabir Mustapha Umar

    2012-01-01

    Full Text Available A mimicked biosynthetic pathway of catechin metabolite genes from C. sinensis, consisting of flavanone 3 hydroxylase (F3H, dihydroflavonol reductase (DFR, and leucoanthocyanidin reductase (LCR, was designed and arranged in two sets of constructs: (a single promoter in front of F3H and ribosome-binding sequences both in front of DFR and LCR; (b three different promoters with each in the front of the three genes and ribosome-binding sequences at appropriate positions. Recombinant E. coli BL (DE3 harbouring the constructs were cultivated for 65 h at 26°C in M9 medium consisting of 40 g/L glucose, 1 mM IPTG, and 3 mM eriodictyol. Compounds produced were extracted in ethyl acetate in alkaline conditions after 1 h at room temperature and identified by HPLC. Two of the four major catechins, namely, (−-epicatechin (0.01  and (−-epicatechin gallate (0.36 mg/L, and two other types ((+-catechin hydrate (0.13 mg/L and (−-catechin gallate (0.04 mg/L were successfully produced.

  1. pic gene of enteroaggregative Escherichia coli and its association with diarrhea in Peruvian children.

    Science.gov (United States)

    Durand, David; Contreras, Carmen A; Mosquito, Susan; Ruíz, Joaquim; Cleary, Thomas G; Ochoa, Theresa J

    2016-08-01

    Enteroaggregative Escherichia coli (EAEC) causes acute and persistent diarrhea among children, HIV-infected patients, and travelers to developing countries. We have searched for 18 genes-encoding virulence factors associated with aggregative adherence, dispersion, biofilm, toxins, serine protease autotransporters of Enterobacteriaceae (SPATEs) and siderophores, analyzed in 172 well-characterized EAEC strains (aggR(+)) isolated from stool samples of 97 children with diarrhea and 75 healthy controls from a passive surveillance diarrhea cohort study in Peru. Eighty-one different genetic profiles were identified, 37 were found only associated with diarrhea and 25 with control samples. The most frequent genetic profile was aggC(+)aatA(+)aap(+)shf(+)fyuA(+), present in 19 strains, including diarrhea and controls. The profile set1A(+)set1B(+)pic(+) was associated with diarrhea (P pic was associated with diarrhea (P < 0.05) and with prolonged diarrhea (diarrhea ≥ 7 days) (P < 0.05). In summary, this is the first report on the prevalence of a large set of EAEC virulence genes and its association with diarrhea in Peruvian children. More studies are needed to elucidate the exact role of each virulence factor.

  2. Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15.

    Science.gov (United States)

    Fang, Haitian; Xie, Xixian; Xu, Qingyang; Zhang, Chenglin; Chen, Ning

    2013-02-01

    Cytidine is a precursor of several antiviral drugs. The pentose phosphate pathway (PPP) is primarily responsible for NADPH and 5-phospho-α-D-ribose 1-diphosphate as an important precursor of cytidine biosynthesis in Escherichia coli. To enhance cytidine production, we obtained the recombinant E. coli CYT15-gnd-prs-zwf that co-expressed the prs, zwf, and gnd genes encoding phosphoribosylpyrophosphate synthetase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (three key enzymes in PPP) respectively. In fermentation experiments, strain CYT15-gnd-prs-zwf produced 735 mg cytidine/l using glucose as substrate, which was approx. 128 % higher than the cytidine production by the parental strain (CYT15). Co-expression of zwf, gnd, and prs decreased growth (3.2 %) slightly and increased glucose uptake (72 %). This is the first study to report increased cytidine production by increasing metabolic flux through the PPP in E. coli.

  3. Gene cloning and soluble expression of Aspergillus niger phytase in E. coli cytosol via chaperone co-expression.

    Science.gov (United States)

    Ushasree, Mrudula Vasudevan; Vidya, Jalaja; Pandey, Ashok

    2014-01-01

    A phytase gene from Aspergillus niger was isolated and two Escherichia coli expression systems, based on T7 RNA polymerase promoter and tac promoter, were used for its recombinant expression. Co-expression of molecular chaperone, GroES/EL, aided functional cytosolic expression of the phytase in E. coli BL21 (DE3). Untagged and maltose-binding protein-tagged recombinant phytase showed an activity band of ~49 and 92 kDa, respectively, on a zymogram. Heterologously-expressed phytase was fractionated from endogenous E. coli phytase by (NH4)2SO4 precipitation. The enzyme had optimum activity at 50 °C and pH 6.5.

  4. Prevalence of Escherichia coli Virulence Genes in Patients with Diarrhea and a Subpopulation of Healthy Volunteers in Madrid, Spain.

    Science.gov (United States)

    Cabal, Adriana; García-Castillo, María; Cantón, Rafael; Gortázar, Christian; Domínguez, Lucas; Álvarez, Julio

    2016-01-01

    Etiological diagnosis of diarrheal diseases may be complicated by their multi-factorial nature. In addition, Escherichia coli strains present in the gut can occasionally harbor virulence genes (VGs) without causing disease, which complicates the assessment of their clinical significance in particular. The aim of this study was to detect and quantify nine VGs (stx1, stx2, eae, aggR, ehxA, invA, est, elt and bfpA) typically present in five E. coli enteric pathotypes [enterohaemorrhagic E. coli (EHEC), enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), and enteroinvasive E. coli (EIEC)] in fecal samples collected from 49 patients with acute diarrhea and 32 healthy controls from Madrid, Spain. In addition, the presence of four serotype-related genes (wzx O104 and fliCH4, rfb O157, and fliCH7) was also determined. Presence of target genes was assessed using a quantitative real-time PCR assay previously developed, and the association of presence and burden of VGs with clinical disease and/or other risk factors was explored. Prevalence of ehxA [typically associated with Shigatoxin producing E. coli (STEC) and (EPEC), invA (EIEC), and the rfb O157+fliCH7 (STEC)] combination were significantly (p < 0.02) higher in the diarrheic group, while the wzx O104+fliCH4 combination was significantly (p = 0.014) more prevalent in the control group. On the other hand, eae was detected in more than 90% of the individuals in both patient and control populations, and it was not associated with bfpA, suggesting the absence of typical EPEC. No significant differences in the quantitative values were detected for any VG among study groups, but the difference in the load of aggR (EAEC) and invA in the patients with respect to the controls was close to the significance, suggesting a potential role of these VGs in the clinical signs observed when they are present at high levels.

  5. Environmental emission of multiresistant Escherichia coli carrying the colistin resistance gene mcr-1 from German swine farms.

    Science.gov (United States)

    Guenther, Sebastian; Falgenhauer, Linda; Semmler, Torsten; Imirzalioglu, Can; Chakraborty, Trinad; Roesler, Uwe; Roschanski, Nicole

    2017-05-01

    Pigs have been the focus of the worldwide spread of colistin resistance. However, there is little information on the transmission of mcr-1 -containing bacteria into the environment of pig farms. We therefore rescreened environmental Escherichia coli isolates from the surrounding farm areas of three previously mcr-1 -positive swine herds in Germany. Thirty-five mixed bacterial cultures obtained from boot swabs, flies, dog faeces and manure from three pig farms in Germany in 2011-12 were non-selectively recultivated and the presence of the mcr-1 gene was checked by real-time PCR. After separation, single E. coli colonies were subsequently isolated and the presence of mcr-1 was confirmed by PCR and sequencing. In addition, phenotypic antimicrobial resistance screening and WGS followed by phylogenetic analysis and resistance genotyping as well as plasmid typing were performed. Seven mcr-1 -positive E. coli strains originating from environmental boot swabs, dog faeces, stable flies and manure were found. The isolates belonged to five different STs (ST10, ST1011, ST1140, ST5281 and ST342) and harboured extensive additional resistance genes. Comparative plasmid analysis predominantly located mcr-1 on IncX4 plasmids, which are strongly related to a recently described plasmid of human clinical origin (pICBEC72Hmcr). WGS-based analysis of the environmental E. coli isolates of farm surroundings showed clear links to mcr-1 -harbouring E. coli recovered from pig production in Europe as well as from human clinical isolates worldwide, presenting another piece of the puzzle, which further complicates the rapidly evolving epidemiology of plasmid-mediated colistin-resistant E. coli strains.

  6. Molecular characterization of enterohemorrhagic Escherichia coli hemolysin gene (EHEC-hlyA)-harboring isolates from cattle reveals a diverse origin and hybrid diarrheagenic strains.

    Science.gov (United States)

    Askari Badouei, Mahdi; Morabito, Stefano; Najafifar, Arash; Mazandarani, Emad

    2016-04-01

    In the present study we investigated the occurrence of Escherichia coli strains harboring the gene encoding enterohemorrhagic E. coli hemolysin (EHEC-HlyA) in cattle and the association of this gene with various diarrheagenic E. coli (DEC) pathotypes. First, the bovine E. coli isolates were screened for EHEC-hlyA gene by PCR, and then they were characterized for the phylogenetic groups and the presence of the major virulence genes of different DEC pathotypes. In total, 25 virulence gene profiles were observed in 54 EHEC-hlyA+ isolates that reflect a considerable heterogeneity. The EHEC-hlyA+ strains were mostly associated with EHEC (72%), while only 7.4% were enteropathogenic E. coli (EPEC). We also showed the presence of estA gene of enterotoxigenic E. coli (ETEC) in 6 isolates (11.1%). Interestingly, two of the estA+ strains showed hybrid pathotypes with one carrying eae/estA (EPEC/ETEC), and the other one stx2/astA/estA (EHEC/ETEC). None of the isolates were related to enteroaggregative E. coli (EAggEC), enteroinvasive E. coli (EIEC), and necrotoxigenic E. coli (NTEC). The EHEC-plasmid encoded genes occurred in seven different combinations with EHEC-hlyA/saa/subA/espP being the most prevalent (46.3%). All stx-/eae+ strains carried O island 57 (OI-57) molecular marker(s) that may indicate these to be the progenitors of EHEC or strains losing stx. The most prevalent phylogroup was B1 (61.1%), but the most heterogeneous strains including the hybrid strains belonged to A phylogroup. Overall, our results indicate that cattle EHEC-hlyA encoding E. coli isolates consist of diverse diarrheagenic strains with the possible existence of hybrid pathotypes. Future studies are required to clarify the evolutionary aspects and clinical significance of these strains in humans and domestic animals.

  7. Comparative characterization of the virulence gene clusters (lipooligosacharide [LOS] and capsular polysaccharide [CPS]) for Campylobacter coli, Campylobacter jejuni subsp. jejuni and related Campylobacter species

    Science.gov (United States)

    Richards, Vincent P.; Lefébure, Tristan; Pavinski Bitar, Paulina D.; Stanhope, Michael J.

    2013-01-01

    Campylobacter jejuni subsp. jejuni and Campylobacter coli are leading causes of gastroenteritis, with virulence linked to cell surface carbohydrate diversity. Although the associated gene clusters are well studied for C. jejuni subsp. jejuni, C. coli has been largely neglected. Here we provide comparative analysis of the lipooligosacharide (LOS) and capsular polysaccharide (CPS) gene clusters, using genome and cluster sequence data for 36 C. coli strains, 67 C. jejuni subsp. jejuni strains and ten additional Campylobacter species. Similar to C. jejuni subsp. jejuni, C. coli showed high LOS/CPS gene diversity, with each cluster delineated into eight gene content classes. This diversity was predominantly due to extensive gene gain/loss, with the lateral transfer of genes likely occurring both within and between species and also between the LOS and CPS. Additional mechanisms responsible for LOS/CPS diversity included phase-variable homopolymeric repeats, gene duplication/inactivation, and possibly host environment selection pressure. Analyses also showed that (i) strains of C. coli and Campylobacter upsaliensis possessed genes homologous to the sialic acid genes implicated in the neurological disorder Guillain Barré syndrome (GBS), and (ii) C. coli LOS classes were differentiated between bovine and poultry hosts, potentially aiding post infection source tracking. PMID:23279811

  8. Comparative characterization of the virulence gene clusters (lipooligosaccharide [LOS] and capsular polysaccharide [CPS]) for Campylobacter coli, Campylobacter jejuni subsp. jejuni and related Campylobacter species.

    Science.gov (United States)

    Richards, Vincent P; Lefébure, Tristan; Pavinski Bitar, Paulina D; Stanhope, Michael J

    2013-03-01

    Campylobacter jejuni subsp. jejuni and Campylobacter coli are leading causes of gastroenteritis, with virulence linked to cell surface carbohydrate diversity. Although the associated gene clusters are well studied for C. jejuni subsp. jejuni, C. coli has been largely neglected. Here we provide comparative analysis of the lipooligosaccharide (LOS) and capsular polysaccharide (CPS) gene clusters, using genome and cluster sequence data for 36 C. coli strains, 67 C. jejuni subsp. jejuni strains and ten additional Campylobacter species. Similar to C. jejuni subsp. jejuni, C. coli showed high LOS/CPS gene diversity, with each cluster delineated into eight gene content classes. This diversity was predominantly due to extensive gene gain/loss, with the lateral transfer of genes likely occurring both within and between species and also between the LOS and CPS. Additional mechanisms responsible for LOS/CPS diversity included phase-variable homopolymeric repeats, gene duplication/inactivation, and possibly host environment selection pressure. Analyses also showed that (i) strains of C. coli and Campylobacter upsaliensis possessed genes homologous to the sialic acid genes implicated in the neurological disorder Guillain-Barré syndrome (GBS), and (ii) C. coli LOS classes were differentiated between bovine and poultry hosts, potentially aiding post infection source tracking. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Increased retention of functional fusions to toxic genes in new two-hybrid libraries of the E. coli strain MG1655 and B. subtilis strain 168 genomes, prepared without passaging through E. coli

    Directory of Open Access Journals (Sweden)

    Projan Steve

    2003-09-01

    Full Text Available Abstract Background Cloning of genes in expression libraries, such as the yeast two-hybrid system (Y2H, is based on the assumption that the loss of target genes is minimal, or at worst, managable. However, the expression of genes or gene fragments that are capable of interacting with E. coli or yeast gene products in these systems has been shown to be growth inhibitory, and therefore these clones are underrepresented (or completely lost in the amplified library. Results Analysis of candidate genes as Y2H fusion constructs has shown that, while stable in E. coli and yeast for genetic studies, they are rapidly lost in growth conditions for genomic libraries. This includes the rapid loss of a fragment of the E. coli cell division gene ftsZ which encodes the binding site for ZipA and FtsA. Expression of this clone causes slower growth in E. coli. This clone is also rapidly lost in yeast, when expressed from a GAL1 promoter, relative to a vector control, but is stable when the promoter is repressed. We have demonstrated in this report that the construction of libraries for the E. coli and B. subtilis genomes without passaging through E. coli is practical, but the number of transformants is less than for libraries cloned using E. coli as a host. Analysis of several clones in the libraries that are strongly growth inhibitory in E. coli include genes for many essential cellular processes, such as transcription, translation, cell division, and transport. Conclusion Expression of Y2H clones capable of interacting with E. coli and yeast targets are rapidly lost, causing a loss of complexity. The strategy for preparing Y2H libraries described here allows the retention of genes that are toxic when inappropriately expressed in E. coli, or yeast, including many genes that represent potential antibacterial targets. While these methods are generally applicable to the generation of Y2H libraries from any source, including mammalian and plant genomes, the

  10. Polymorphisms in the adenomatous polyposis coli (APC) gene and advanced colorectal adenoma risk.

    Science.gov (United States)

    Wong, Hui-Lee; Peters, Ulrike; Hayes, Richard B; Huang, Wen-Yi; Schatzkin, Arthur; Bresalier, Robert S; Velie, Ellen M; Brody, Lawrence C

    2010-09-01

    While germline mutations in the adenomatous polyposis coli (APC) gene cause the hereditary colon cancer syndrome (familial adenomatous polyposis (FAP)), the role of common germline APC variants in sporadic adenomatous polyposis remains unclear. We studied the association of eight APC single nucleotide polymorphisms (SNPs), possibly associated with functional consequences, and previously identified gene-environment (dietary fat intake and hormone replacement therapy (HRT) use) interactions, in relation to advanced colorectal adenoma in 758 cases and 767 sex- and race-matched controls, randomly selected from the screening arm of the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Cases had at least one verified advanced adenoma of the distal colon; controls, a negative sigmoidoscopy. We did not observe an association between genotypes for any of the eight APC SNPs and advanced distal adenoma risk (P(global gene-based)=0.92). Frequencies of identified common haplotypes did not differ between cases and controls (P(global haplotype test)=0.97). However, the risk for advanced distal adenoma was threefold higher for one rare haplotype (cases: 2.7%; controls: 1.6%) (odds ratio (OR)=3.27; 95% confidence interval (CI)=1.08-9.88). The genetic association between D1822V and advanced distal adenoma was confined to persons consuming a high-fat diet (P(interaction)=0.03). Similar interactions were not observed with HRT use. In our large, nested case-control study of advanced distal adenoma and clinically verified adenoma-free controls, we observed no association between specific APC SNPs and advanced adenoma. Fat intake modified the APC D1822V-adenoma association, but further studies are warranted.

  11. Validating tyrosinase homologue melA as a photoacoustic reporter gene for imaging Escherichia coli

    Science.gov (United States)

    Paproski, Robert J.; Li, Yan; Barber, Quinn; Lewis, John D.; Campbell, Robert E.; Zemp, Roger

    2015-10-01

    To understand the pathogenic processes for infectious bacteria, appropriate research tools are required for replicating and characterizing infections. Fluorescence and bioluminescence imaging have primarily been used to image infections in animal models, but optical scattering in tissue significantly limits imaging depth and resolution. Photoacoustic imaging, which has improved depth-to-resolution ratio compared to conventional optical imaging, could be useful for visualizing melA-expressing bacteria since melA is a bacterial tyrosinase homologue which produces melanin. Escherichia coli-expressing melA was visibly dark in liquid culture. When melA-expressing bacteria in tubes were imaged with a VisualSonics Vevo LAZR system, the signal-to-noise ratio of a 9× dilution sample was 55, suggesting that ˜20 bacteria cells could be detected with our system. Multispectral (680, 700, 750, 800, 850, and 900 nm) analysis of the photoacoustic signal allowed unmixing of melA-expressing bacteria from blood. To compare photoacoustic reporter gene melA (using Vevo system) with luminescent and fluorescent reporter gene Nano-lantern (using Bruker Xtreme In-Vivo system), tubes of bacteria expressing melA or Nano-lantern were submerged 10 mm in 1% Intralipid, spaced between bioluminescence and fluorescence imaging could not resolve the two tubes of Nano-lantern-expressing bacteria even when the tubes were spaced 10 mm from each other. After injecting 100-μL of melA-expressing bacteria in the back flank of a chicken embryo, photoacoustic imaging allowed visualization of melA-expressing bacteria up to 10-mm deep into the embryo. Photoacoustic signal from melA could also be separated from deoxy- and oxy-hemoglobin signal observed within the embryo and chorioallantoic membrane. Our results suggest that melA is a useful photoacoustic reporter gene for visualizing bacteria, and further work incorporating photoacoustic reporters into infectious bacterial strains is warranted.

  12. Comparative possession of Shiga toxin, intimin, enterohaemolysin and major extended spectrum beta lactamase (ESBL) genes in Escherichia coli isolated from backyard and farmed poultry

    OpenAIRE

    2015-01-01

    The present work was conducted to compare the occurrence of Escherichia coli possessing virulence and ESBL genes in backyard and farmed poultry. Three hundred and sixty samples from the poultry kept in backyard system and 120 samples from the farmed birds were collected from West Bengal, India. Among the E. coli isolates of backyard poultry (O2, O10, O25, O55, O60, O106, UT), none of them possessed any of the Shiga toxin genes and eight E. coli isolates (8/272; 2.9%) harboured eaeA gene alone...

  13. Participation of different genes in the ruptures repair of double chain in Escherichia coli stumps exposed to gamma radiation; Participacion de diferentes genes en la reparacion de rupturas de doble cadena en cepas de Escherichia coli expuestas a radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Serment G, J. H.; Martinez M, E.; Alcantara D, D., E-mail: jorge.serment@inin.gob.mx [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-05-01

    All living organisms are naturally exposed to radiation from different sources. Ionizing radiation produces a plethora of lesions upon DNA that can be categorized as single and double strand breaks and base damage. Among them, unrepaired double strand breaks (Dbs) have the greatest biological significance, since they are responsible of cell death. In Escherichia coli this kind of lesions are repaired mostly by homologous recombination. In this work the participation of some recombination genes in the repair of Dbs is evaluated. Escherichia coli defective strains were exposed to gamma radiation and incubated for different periods in ideal conditions. Both micro electrophoresis and pulse field gel electrophoresis techniques were used to evaluate the kinetics of repair of such lesions, reflecting the importance of each defective gene in the process. (Author)

  14. [Effects of plasmid pKM101 on the expression of Escherichia coli and Salmonella typhimurium genes under ultraviolet irradiation].

    Science.gov (United States)

    Tiganova, I G; Rusina, O Iu; Andreeva, I V; Skavronskaia, A G

    2003-01-01

    The study focused on plasmid pKM101, which is a necessary component of the short-term test of Eim's system (Salmonella-microsome test), to detect the potential carcinogens through their mutagen activity. We found a previously unknown feature of the plasmid to enhance the expression of certain plasmid and chromosome genes. The purpose of the present study was to examine and specify the role of operon mucAB responsible for the mutation properties of the plasmid in activating the expression of bacterial genes. An ultraviolet-induction examination of bacterial genes, with the mutants of plasmid pKM101 affecting operon mucAB being used, showed that the function of genes mucAB did activate, but, on the contrary, suppressed the induction of genes elt (i.e. of genes controlling the formation of LT-toxin of Escherichia coli) and of sfiA (SOS-regulated gen E. col controlling the cell division.

  15. Generation of Newly Discovered Resistance Gene mcr-1 Knockout in Escherichia coli Using the CRISPR/Cas9 System.

    Science.gov (United States)

    Sun, Lichang; He, Tao; Zhang, Lili; Pang, Maoda; Zhang, Qiaoyan; Zhou, Yan; Bao, Hongduo; Wang, Ran

    2017-07-28

    The mcr-1 gene is a new "superbug" gene discoverd in China in 2016 that makes bacteria highly resistant to the last-resort class of antibiotics. The mcr-1 gene raised serious concern about its possible global dissemination and spread. Here, we report a potential anti-resistant strategy using the CRISPR/Cas9-mediated approach that can efficiently induce mcr-1 gene knockout in Escherichia coli. Our findings suggested that using the CRISPR/Cas9 system to knock out the resistance gene mcr-1 might be a potential anti-resistant strategy. Bovine myeloid antimicrobial peptide-27 could help deliver plasmid pCas::mcr targeting specific DNA sequences of the mcr-1 gene into microbial populations.

  16. Construction of a fusion gene comprising the Taka-amylase A promoter and the Escherichia coli beta-glucuronidase gene and analysis of its expression in Aspergillus oryzae.

    Science.gov (United States)

    Tada, S; Gomi, K; Kitamoto, K; Takahashi, K; Tamura, G; Hara, S

    1991-10-01

    Northern blot analysis of glucose-grown and starch-grown mycelia of Aspergillus oryzae RIB40 was conducted using the cloned Taka-amylase A (TAA) gene as a probe. The amount of mRNA homologous to the TAA gene was increased when this fungus was grown with starch as a sole carbon source. In order to analyze the induction mechanism, we inserted the Escherichia coli uidA gene encoding beta-glucuronidase (GUS) down-stream of the TAA promoter and introduced the resultant fusion gene into the A. oryzae genome. Production of a functional GUS protein was induced by starch, but not by glucose. When the effects of various sugars on expression of the fusion gene were examined, the results suggested that the expression of the fusion gene was under control of the TAA gene promoter.

  17. aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species

    Directory of Open Access Journals (Sweden)

    Tuffery Pierre

    2009-12-01

    Full Text Available Abstract Background Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. Results We identified the gene encoding esterase B as the acetyl-esterase gene (aes using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Conclusion Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.

  18. Adhesion of human and animal Escherichia coli strains in association with their virulence-associated genes and phylogenetic origins.

    Science.gov (United States)

    Frömmel, Ulrike; Lehmann, Werner; Rödiger, Stefan; Böhm, Alexander; Nitschke, Jörg; Weinreich, Jörg; Groß, Julia; Roggenbuck, Dirk; Zinke, Olaf; Ansorge, Hermann; Vogel, Steffen; Klemm, Per; Wex, Thomas; Schröder, Christian; Wieler, Lothar H; Schierack, Peter

    2013-10-01

    Intestinal colonization is influenced by the ability of the bacterium to inhabit a niche, which is based on the expression of colonization factors. Escherichia coli carries a broad range of virulence-associated genes (VAGs) which contribute to intestinal (inVAGs) and extraintestinal (exVAGs) infection. Moreover, initial evidence indicates that inVAGs and exVAGs support intestinal colonization. We developed new screening tools to genotypically and phenotypically characterize E. coli isolates originating in humans, domestic pigs, and 17 wild mammal and avian species. We analyzed 317 isolates for the occurrence of 44 VAGs using a novel multiplex PCR microbead assay (MPMA) and for adhesion to four epithelial cell lines using a new adhesion assay. We correlated data for the definition of new adhesion genes. inVAGs were identified only sporadically, particularly in roe deer (Capreolus capreolus) and the European hedgehog ( Erinaceus europaeus). The prevalence of exVAGs depended on isolation from a specific host. Human uropathogenic E. coli isolates carried exVAGs with the highest prevalence, followed by badger (Meles meles) and roe deer isolates. Adhesion was found to be very diverse. Adhesion was specific to cells, host, and tissue, though it was also unspecific. Occurrence of the following VAGs was associated with a higher rate of adhesion to one or more cell lines: afa-dra, daaD, tsh, vat, ibeA, fyuA, mat, sfa-foc, malX, pic, irp2, and papC. In summary, we established new screening methods which enabled us to characterize large numbers of E. coli isolates. We defined reservoirs for potential pathogenic E. coli. We also identified a very broad range of colonization strategies and defined potential new adhesion genes.

  19. Genome-Wide Screening Identifies Six Genes That Are Associated with Susceptibility to Escherichia coli Microcin PDI.

    Science.gov (United States)

    Zhao, Zhe; Eberhart, Lauren J; Orfe, Lisa H; Lu, Shao-Yeh; Besser, Thomas E; Call, Douglas R

    2015-10-01

    The microcin PDI inhibits a diverse group of pathogenic Escherichia coli strains. Coculture of a single-gene knockout library (BW25113; n=3,985 mutants) against a microcin PDI-producing strain (E. coli 25) identified six mutants that were not susceptible (ΔatpA, ΔatpF, ΔdsbA, ΔdsbB, ΔompF, and ΔompR). Complementation of these genes restored susceptibility in all cases, and the loss of susceptibility was confirmed through independent gene knockouts in E. coli O157:H7 Sakai. Heterologous expression of E. coli ompF conferred susceptibility to Salmonella enterica and Yersinia enterocolitica strains that are normally unaffected by microcin PDI. The expression of chimeric OmpF and site-directed mutagenesis revealed that the K47G48N49 region within the first extracellular loop of E. coli OmpF is a putative binding site for microcin PDI. OmpR is a transcriptional regulator for ompF, and consequently loss of susceptibility by the ΔompR strain most likely is related to this function. Deletion of AtpA and AtpF, as well as AtpE and AtpH (missed in the original library screen), resulted in the loss of susceptibility to microcin PDI and the loss of ATP synthase function. Coculture of a susceptible strain in the presence of an ATP synthase inhibitor resulted in a loss of susceptibility, confirming that a functional ATP synthase complex is required for microcin PDI activity. In trans expression of ompF in the ΔdsbA and ΔdsbB strains did not restore a susceptible phenotype, indicating that these proteins are probably involved with the formation of disulfide bonds for OmpF or microcin PDI.

  20. [Relationship between ureolytic activity expression of Streptococcus salivarius urease genes ureIABCEFGD in Escherichia coli and nickel ions].

    Science.gov (United States)

    Wang, Yan; Li, Cun-rong; Tao, Dan-ying; Feng, Xi-ping

    2013-10-01

    To obtain the clone of Streptococcus salivarius 57.I urease genes ureIABCEFGD and investigate the relationship between ureolytic activity expression of this clone in Escherichia coli and nickel ions. The target gene was cloned by polymerase chain reaction in 2 parts separately. Then, 2 plasmids were digested by specific restriction enzymes and ligated together. The obtained plasmids were subjected to nucleotide sequence analysis and transformed into E.coli TG-1. The recombinant E.coli was added without or with different level of NiCl2. The amount of ammonia generated by ureolytic activity of each sample was measured by Nessler's assay. SPSS 17.0 software package was used for correlation analysis. The clone of urease genes ureIABCEFGD was proved by sequence analysis and BLAST search. The amount of ammonia generated by the recombinant strain had a positive correlation with the level of NiCl2(r=0.9714,PStreptococcus salivarius urease gene. Supported by Natural Science Foundation of Shanghai Municipality(08ZR1416800) and Research Fund of Science and Technology Committee of Shanghai Municipality(11411950900).

  1. Mismatch repair genes of Streptococcus pneumoniae: HexA confers a mutator phenotype in Escherichia coli by negative complementation.

    Science.gov (United States)

    Prudhomme, M; Méjean, V; Martin, B; Claverys, J P

    1991-11-01

    DNA repair systems able to correct base pair mismatches within newly replicated DNA or within heteroduplex molecules produced during recombination are widespread among living organisms. Evidence that such generalized mismatch repair systems evolved from a common ancestor is particularly strong for two of them, the Hex system of the gram-positive Streptococcus pneumoniae and the Mut system of the gram-negative Escherichia coli and Salmonella typhimurium. The homology existing between HexA and MutS and between HexB and MutL prompted us to investigate the effect of expressing hex genes in E. coli. Complementation of mutS or mutL mutations, which confer a mutator phenotype, was assayed by introducing on a multicopy plasmid the hexA and hexB genes, under the control of an inducible promoter, either individually or together in E. coli strains. No decrease in mutation rate was conferred by either hexA or hexB gene expression. However, a negative complementation effect was observed in wild-type E. coli cells: expression of hexA resulted in a typical Mut- mutator phenotype. hexB gene expression did not increase the mutation rate either individually or in conjunction with hexA. Since expression of hexA did not affect the mutation rate in mutS mutant cells and the hexA-induced mutator effect was recA independent, it is concluded that this effect results from inhibition of the Mut system. We suggest that HexA, like its homolog MutS, binds to mismatches resulting from replication errors, but in doing so it protects them from repair by the Mut system. In agreement with this hypothesis, an increase in mutS gene copy number abolished the hexA-induced mutator phenotype. HexA protein could prevent repair either by being unable to interact with Mut proteins or by producing nonfunctional repair complexes.

  2. The Escherichia coli Serogroup O1 and O2 Lipopolysaccharides Are Encoded by Multiple O-antigen Gene Clusters

    Science.gov (United States)

    Delannoy, Sabine; Beutin, Lothar; Mariani-Kurkdjian, Patricia; Fleiss, Aubin; Bonacorsi, Stéphane; Fach, Patrick

    2017-01-01

    Escherichia coli strains belonging to serogroups O1 and O2 are frequently associated with human infections, especially extra-intestinal infections such as bloodstream infections or urinary tract infections. These strains can be associated with a large array of flagellar antigens. Because of their frequency and clinical importance, a reliable detection of E. coli O1 and O2 strains and also the frequently associated K1 capsule is important for diagnosis and source attribution of E. coli infections in humans and animals. By sequencing the O-antigen clusters of various O1 and O2 strains we showed that the serogroups O1 and O2 are encoded by different sets of O-antigen encoding genes and identified potentially new O-groups. We developed qPCR-assays to detect the various O1 and O2 variants and the K1-encoding gene. These qPCR assays proved to be 100% sensitive and 100% specific and could be valuable tools for the investigations of zoonotic and food-borne infection of humans with O1 and O2 extra-intestinal (ExPEC) or Shiga toxin-producing E. coli (STEC) strains.

  3. Detection of Ampicillin Resistance Genes (bla in Clinical Isolates of Escherichia coli with Polymerase Chain Reaction Method

    Directory of Open Access Journals (Sweden)

    Tiana Milanda

    2014-09-01

    Full Text Available Escherichia coli is a rod negative Gram which could be pathogenic, if its value increases or located in outer gastrointestinal tract. Pathogenic E. coli will produce enterotoxin which will cause diarrhoea or infection in urine tract. Ampicilin was one of particular antibiotics to overcome infection. Ampicilin nowadays is no longer used as primary medicine, because of its resistance case. The aim of this research is to detect the presence of gene which is responsible to ampicilin resistant E. coli. We used isolated midstream urine from cystitis object in Hasan Sadikin Hospital (RSHS as samples. Polymerase Chain Reaction (PCR method (colony-PCR and DNA-PCR were done to invenstigate the antibiotic resistency. Based on the result of antibiotic susceptibility testing to ampicillin, E. coli samples were resistant to ampicilin. Elektroforegram products of colony-PCR and DNA-PCR showed that the resistance case of ampicilin caused by bla gene (199 bp. Selective and rational antibiotic treatment is required to prevent ampicillin resistance in patients with symptoms

  4. Cloning and expression of the fadH gene and characterization of the gene product 2,4-dienoyl coenzyme A reductase from Escherichia coli.

    Science.gov (United States)

    He, X Y; Yang, S Y; Schulz, H

    1997-09-01

    The fadH gene coding for an NADPH-dependent 2.4-dienoyl-CoA reductase from Escherichia coli has been cloned by the polymerase chain reaction. This gene is located at 67.65 min on the E. coli chromosome. The complete open reading frame contains 2019 bp coding for the processed protein of 671 amino acid residues, with a calculated molecular mass of 72.55 kDa, which lacks the N-terminal methionine. Construction and expression of the plasmid pNDH, which contained the fadH gene under the control of the T7 promoter, resulted in a 110-fold increase in the reductase activity above the level detected in E. coli cells containing the control vector. The kinetic parameters of the purified reductase were determined to be 50 microM and 2.3 microM for the Km values of NADPH and 2-trans, 4-trans-decadienoyl-CoA, respectively, and 16 s(-1) for the k(cat) value. Analysis of the kinetic data revealed that the reaction catalyzed by this enzyme proceeds via a ping-pong mechanism. The observed dissimilarity between the E. coli and mammalian 2,4-dienoyl-CoA reductase sequences suggests that they have evolved from distinct ancestral genes. Sequence analysis also suggests that the N-terminal part of the E. coli reductase contains the FAD-binding domain whereas the NADPH-binding domain is located in the C-terminal region of the protein.

  5. Variable Persister Gene Interactions with (pppGpp for Persister Formation in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    2017-09-01

    Full Text Available Persisters comprise a group of phenotypically heterogeneous metabolically quiescent bacteria with multidrug tolerance and contribute to the recalcitrance of chronic infections. Although recent work has shown that toxin-antitoxin (TA system HipAB depends on stringent response effector (pppGppin persister formation, whether other persister pathways are also dependent on stringent response has not been explored. Here we examined the relationship of (pppGpp with 15 common persister genes (dnaK, clpB, rpoS, pspF, tnaA, sucB, ssrA, smpB, recA, umuD, uvrA, hipA, mqsR, relE, dinJ using Escherichia coli as a model. By comparing the persister levels of wild type with their single gene knockout and double knockout mutants with relA, we divided their interactions into five types, namely A “dependent” (dnaK, recA, B “positive reinforcement” (rpoS, pspF, ssrA, recA, C “antagonistic” (clpB, sucB, umuD, uvrA, hipA, mqsR, relE, dinJ, D “epistasis” (clpB, rpoS, tnaA, ssrA, smpB, hipA, and E “irrelevant” (dnaK, clpB, rpoS, tnaA, sucB, smpB, umuD, uvrA, hipA, mqsR, relE, dinJ. We found that the persister gene interactions are intimately dependent on bacterial culture age, cell concentrations (diluted versus undiluted culture, and drug classifications, where the same gene may belong to different groups with varying antibiotics, culture age or cell concentrations. Together, this study represents the first attempt to systematically characterize the intricate relationships among the different mechanisms of persistence and as such provide new insights into the complexity of the persistence phenomenon at the level of persister gene network interactions.

  6. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa

    Science.gov (United States)

    Abia, Akebe Luther King; Schaefer, Lisa; Ubomba-Jaswa, Eunice; Le Roux, Wouter

    2017-01-01

    In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes (eagg, eaeA, stx1, stx2, flichH7, ST, ipaH, ibeA) were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN)/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6%) and the stx2 gene the least detected gene (8/140; 5.7%). Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern. PMID:28335539

  7. PREVALENCE OF SULFONAMIDE AND FLORFENICOL RESISTANCE GENES IN ESCHERICHIA COLI ISOLATED FROM YAKS (BOS GRUNNIENS) AND HERDSMEN IN THE TIBETAN PASTURE.

    Science.gov (United States)

    Zhang, Anyun; Yang, Yunfei; Wang, Hongning; Lei, Changwei; Xu, Changwen; Guan, Zhongbin; Liu, Bihui; Huang, Xi; Peng, Linyao

    2015-07-01

    To determine the antimicrobial susceptibility profiles and prevalence of resistance genes in Escherichia coli isolated from yaks (Bos grunniens) and herdsmen in nine plateau pastures in Tibet, we isolated 184 nonidentical strains of E. coli from yaks and herdsmen. Antimicrobial susceptibility testing of 15 antimicrobials was conducted and the prevalence of sulfonamide resistance genes (sul1, sul2, and sul3) and florfenicol resistance genes (floR, cfr, cmlA, fexA, pexA, and estDL136) was determined. Escherichia coli isolated from yaks had a high resistance rate to sulfamethoxazole (44%), sulphafurazole (40.4%), and florfenicol (11.4%). Escherichia coli isolated from herdsmen had a high resistance rate to sulfamethoxazole (57%) and sulphafurazole (51%). In addition, sul genes were present in 93% of sulfonamide-resistant isolates (84/90), and 17 floR genes and four cmlA genes were found in 19 florfenicol-resistant isolates. Even though florfenicol is prohibited from use in humans, three floR genes were detected in strains isolated from herdsmen. The three floR-positive isolates from herdsmen had pulsed-field gel electrophoresis patterns similar to isolates from yaks. In addition to documenting the sul and floR genes in E. coli isolated from yaks and herdsmen in the Tibetan pasture, we demonstrated the potential risk that antimicrobial-resistant E. coli could spread among herdsmen and yaks.

  8. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa

    Directory of Open Access Journals (Sweden)

    Akebe Luther King Abia

    2017-03-01

    Full Text Available In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes (eagg, eaeA, stx1, stx2, flichH7, ST, ipaH, ibeA were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6% and the stx2 gene the least detected gene (8/140; 5.7%. Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern.

  9. The detection of K88, K99 fimbrial antigen and enterotoxin genes of Escherichia coli isolated from piglets and calves with diarrhoea in Indonesia

    Directory of Open Access Journals (Sweden)

    Supar

    1996-03-01

    Full Text Available Enterotoxigenic Escherichia coli (ETEC strains cause diarrhoeal disease in piglets and calves in Indonesia. These strains possess two virulence factors namely attachment and enterotoxin antigens . These factors could be detected phenotypically and genetically. Haemolytic Escherichia coli (E coli isolates possessing K88 fimbrial antigen associated with 0-group 108 and 149. They were positive for K88 gene and demonstrated their ability to produce heat labile enterotoxin (LT and genetically were all positive for LT gene . Seventeen isolates ofE coli K88 which associated with 0-group 149 were positive forSTb gene, other O-serotypes were negative . Ten isolates of Ecoli K88 which associated with 0-group 108 possessed K88, K99, LT and STa genes, but negative for STb gene . However, phenotypically the K99 antigen and STa toxin were not expressed under laboratory conditions, the reason was not well understood . E. coli K99 strains isolated from calves wit h diarrhoea were all associated with 0-group 9 and produced STa toxin when tested by suckling mousse bioassay. The E. coli K99 calf isolates were all hybridized with K99 and STa gene only . It is likely that K99 gene is associated with STa gene . The DNA hybridization technique is more convenience to be used for confirmation diagnosis of colibacillosis, however, not all veterinary laboratories could perform these tests .

  10. Phylogenetic grouping and distribution of virulence genes in Escherichia coli along the production and supply chain of pork around Hubei, China.

    Science.gov (United States)

    Khan, Sher Bahadar; Zou, Geng; Cheng, Yu-Ting; Xiao, Ran; Li, Lu; Wu, Bin; Zhou, Rui

    2016-03-31

    Escherichia coli is an important foodborne zoonotic pathogen. A total of 285 strains of E. coli were isolated from the production and supply chain of pork in Hubei, China and characterized. Their phylogroups (A, B1, B2, and D) and virulence genes of public health importance become more and more diverse along the production and supply chain.

  11. The orphan gene ybjN conveys pleiotropic effects on multicellular behavior and survival of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Dongping Wang

    Full Text Available YbjN, encoding an enterobacteria-specific protein, is a multicopy suppressor of temperature sensitivity in the ts9 mutant strain of Escherichia coli. In this study, we further explored the role(s of ybjN. First, we demonstrated that the ybjN transcript was about 10-fold lower in the ts9 strain compared to that of E. coli strain BW25113 (BW. Introduction of multiple copies of ybjN in the ts9 strain resulted in over-expression of ybjN by about 10-fold as compared to that of BW. These results suggested that temperature sensitivity of the ts9 mutant of E. coli may be related to expression levels of ybjN. Characterization of E. coli ybjN mutant revealed that ybjN mutation resulted in pleiotropic phenotypes, including increased motility, fimbriation (auto-aggregation, exopolysaccharide production, and biofilm formation. In contrast, over-expression of ybjN (in terms of multiple copies resulted in reduced motility, fimbriation, exopolysaccharide production, biofilm formation and acid resistance. In addition, our results indicate that a ybjN-homolog gene from Erwinia amylovora, a plant enterobacterial pathogen, is functionally conserved with that of E. coli, suggesting similar evolution of the YbjN family proteins in enterobacteria. A microarray study revealed that the expression level of ybjN was inversely correlated with the expression of flagellar, fimbrial and acid resistance genes. Over-expression of ybjN significantly down-regulated genes involved in citric acid cycle, glycolysis, the glyoxylate shunt, oxidative phosphorylation, amino acid and nucleotide metabolism. Furthermore, over-expression of ybjN up-regulated toxin-antitoxin modules, the SOS response pathway, cold shock and starvation induced transporter genes. Collectively, these results suggest that YbjN may play important roles in regulating bacterial multicellular behavior, metabolism, and survival under stress conditions in E. coli. These results also suggest that ybjN over

  12. Detection and coexistence of six categories of resistance genes in Escherichia coli strains from chickens in Anhui Province, China

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-12-01

    Full Text Available The aim of this study was to characterise the prevalence of class 1 integrons and gene cassettes, tetracycline-resistance genes, phenicol-resistance genes, 16S rRNA methylase genes, extended-spectrum β-lactamase genes and plasmid-mediated fluoroquinolone resistance determinants in 184 Escherichia coli isolates from chickens in Anhui Province, China. Susceptibility to 15 antimicrobials was determined using broth micro-dilution. Polymerase chain reaction and DNA sequencing were used to characterise the molecular basis of the antibiotic resistance. High rates of antimicrobial resistance were observed; 131 out of the 184 (72.3% isolates were resistant to at least six antimicrobial agents. The prevalences of class 1 integrons, tetracycline-resistance genes, phenicol-resistance genes, 16S rRNA methylase genes, extended-spectrum β-lactamase genes and plasmid-mediated fluoroquinolone resistance determinants were 49.5, 17.4, 15.8, 0.5, 57.6 and 46.2%, respectively. In 82 isolates, 48 different kinds of coexistence of the different genes were identified. Statistical (χ2 analysis showed that the resistance to amoxicillin, doxycycline, florfenicol, ofloxacin and gentamicin had significant differences (P<0.01 or 0.01genes, which showed a certain correlation between antimicrobial resistance and the presence of resistance genes.

  13. Restriction enzyme-free construction of random gene mutagenesis libraries in Escherichia coli.

    Science.gov (United States)

    Pai, Jen C; Entzminger, Kevin C; Maynard, Jennifer A

    2012-02-15

    Directed evolution relies on both random and site-directed mutagenesis of individual genes and regulatory elements to create variants with altered activity profiles for engineering applications. Central to these experiments is the construction of large libraries of related variants. However, a number of technical hurdles continue to limit routine construction of random mutagenesis libraries in Escherichia coli, in particular, inefficiencies during digestion and ligation steps. Here, we report a restriction enzyme-free approach to library generation using megaprimers termed MegAnneal. Target DNA is first exponentially amplified using error-prone polymerase chain reaction (PCR) and then linearly amplified with a single 3' primer to generate long, randomly mutated, single-stranded megaprimers. These are annealed to single-stranded dUTP-containing template plasmid and extended with T7 polymerase to create a complementary strand, and the resulting termini are ligated with T4 DNA ligase. Using this approach, we are able to reliably generate libraries of approximately 10⁷ colony-forming units (cfu)/μg DNA/transformation in a single day. We have created MegAnneal libraries based on three different single-chain antibodies and identified variants with enhanced expression and ligand-binding affinity. The key advantages of this approach include facile amplification, restriction enzyme-free library generation, and a significantly reduced risk of mutations outside the targeted region and wild-type contamination as compared with current methods.

  14. Expression of Immune-Related Genes of Ducks Infected with Avian Pathogenic Escherichia coli (APEC

    Directory of Open Access Journals (Sweden)

    Rong eLi

    2016-05-01

    Full Text Available Avian pathogenic Escherichia coli (APEC can cause severe disease in ducks, characterized by perihepatitis, pericarditis and airsacculitis. Although the studies of bacteria isolation and methods of detection have been reported, host immune responses to APEC infection remain unclear. In response, we systemically examined the expression of immune-related genes and bacteria distribution in APEC-infected ducks. Results demonstrated that APEC can quickly replicate in the liver, spleen and brain, with the highest bacteria content at 2 day post infection. The expression of Toll-like receptors (TLRs, avian β-defensins (AvBDs and major histocompatibility complex (MHC were tested in the liver, spleen and brain of infected ducks. TLR2, TLR4, TLR5 and TLR15 showed different expression patterns, which indicated that they all responded to APEC infection. The expression of AvBD2 was upregulated in all tested tissues during the 3 days of testing, whereas the expression of AvBD4, AvBD5, AvBD7 and AvBD9 were downregulated, and though MHC-I was upregulated on all test days, MHC-II was dramatically downregulated. Overall, our results suggest that APEC can replicate in various tissues in a short time, and the activation of host immune responses begins at onset of infection. These findings thus clarify duck immune responses to APEC infection and offer insights into its pathogenesis.

  15. Insight into Shiga toxin genes encoded by Escherichia coli O157 from whole genome sequencing

    Directory of Open Access Journals (Sweden)

    Philip M. Ashton

    2015-02-01

    Full Text Available The ability of Shiga toxin-producing Escherichia coli (STEC to cause severe illness in humans is determined by multiple host factors and bacterial characteristics, including Shiga toxin (Stx subtype. Given the link between Stx2a subtype and disease severity, we sought to identify the stx subtypes present in whole genome sequences (WGS of 444 isolates of STEC O157. Difficulties in assembling the stx genes in some strains were overcome by using two complementary bioinformatics methods: mapping and de novo assembly. We compared the WGS analysis with the results obtained using a PCR approach and investigated the diversity within and between the subtypes. All strains of STEC O157 in this study had stx1a, stx2a or stx2c or a combination of these three genes. There was over 99% (442/444 concordance between PCR and WGS. When common source strains were excluded, 236/349 strains of STEC O157 had multiple copies of different Stx subtypes and 54 had multiple copies of the same Stx subtype. Of those strains harbouring multiple copies of the same Stx subtype, 33 had variants between the alleles while 21 had identical copies. Strains harbouring Stx2a only were most commonly found to have multiple alleles of the same subtype (42%. Both the PCR and WGS approach to stx subtyping provided a good level of sensitivity and specificity. In addition, the WGS data also showed there were a significant proportion of strains harbouring multiple alleles of the same Stx subtype associated with clinical disease in England.

  16. Draft Genome Sequence of Escherichia coli S51, a Chicken Isolate Harboring a Chromosomally Encoded mcr-1 Gene.

    Science.gov (United States)

    Zurfluh, Katrin; Tasara, Taurai; Poirel, Laurent; Nordmann, Patrice; Stephan, Roger

    2016-08-04

    We present the draft genome of Escherichia coli S51, a colistin-resistant extended-spectrum β-lactamase-producing strain isolated in 2015 from raw chicken meat imported from Germany. Assembly and annotation of this draft genome resulted in a 4,994,918-bp chromosome and revealed a chromosomally encoded mcr-1 gene responsible for the colistin resistance of the strain. Copyright © 2016 Zurfluh et al.

  17. NDM-5 Carbapenemase-Encoding Gene in Multidrug-Resistant Clinical Isolates of Escherichia coli from Algeria

    Science.gov (United States)

    Sassi, Asma; Loucif, Lotfi; Gupta, Sushim Kumar; Dekhil, Mazouz; Chettibi, Houria

    2014-01-01

    Here, we report the first autochthonous cases of infections caused by blaNDM-5 New Delhi metallo-β-lactamase-producing Escherichia coli strains recovered from urine and blood specimens of three patients from Algeria between January 2012 and February 2013. The three isolates belong to sequence type 2659 and they coexpress blaCTX-M-15 with the blaTEM-1 and blaaadA2 genes. PMID:24982080

  18. Comparative possession of Shiga toxin, intimin, enterohaemolysin and major extended spectrum beta lactamase (ESBL) genes in Escherichia coli isolated from backyard and farmed poultry.

    Science.gov (United States)

    Samanta, I; Joardar, S N; Das, P K; Sar, T K

    2015-01-01

    The present work was conducted to compare the occurrence of Escherichia coli possessing virulence and ESBL genes in backyard and farmed poultry. Three hundred and sixty samples from the poultry kept in backyard system and 120 samples from the farmed birds were collected from West Bengal, India. Among the E. coli isolates of backyard poultry (O2, O10, O25, O55, O60, O106, UT), none of them possessed any of the Shiga toxin genes and eight E. coli isolates (8/272; 2.9%) harboured eaeA gene alone. Whereas among the E. coli isolated from the farmed poultry (O17, O20, O22, O102, O114, O119, rough, UT), four isolates (4/78, 5.1%) harboured stx 1/stx 2 gene and 11 isolates (11/78, 14.1%) possessed eaeA gene. None of the E. coli isolates from the backyard poultry harboured any studied ESBL gene. Whereas 29.4% of E. coli isolates from the farmed poultry were found to possess the ESBL genes.

  19. Plasmid-Mediated Quinolone Resistance (PMQR) Genes and Class 1 Integrons in Quinolone-Resistant Marine Bacteria and Clinical Isolates of Escherichia coli from an Aquacultural Area.

    Science.gov (United States)

    Tomova, Alexandra; Ivanova, Larisa; Buschmann, Alejandro H; Godfrey, Henry P; Cabello, Felipe C

    2017-06-23

    Antimicrobial usage in aquaculture selects for antimicrobial-resistant microorganisms in the marine environment. The relevance of this selection to terrestrial animal and human health is unclear. Quinolone-resistance genes qnrA, qnrB, and qnrS were chromosomally located in four randomly chosen quinolone-resistant marine bacteria isolated from an aquacultural area with heavy quinolone usage. In quinolone-resistant uropathogenic clinical isolates of Escherichia coli from a coastal area bordering the same aquacultural region, qnrA was chromosomally located in two E. coli isolates, while qnrB and qnrS were located in small molecular weight plasmids in two other E. coli isolates. Three quinolone-resistant marine bacteria and three quinolone-resistant E. coli contained class 1 integrons but without physical association with PMQR genes. In both marine bacteria and uropathogenic E. coli, class 1 integrons had similar co-linear structures, identical gene cassettes, and similarities in their flanking regions. In a Marinobacter sp. marine isolate and in one E. coli clinical isolate, sequences immediately upstream of the qnrS gene were homologous to comparable sequences of numerous plasmid-located qnrS genes while downstream sequences were different. The observed commonality of quinolone resistance genes and integrons suggests that aquacultural use of antimicrobials might facilitate horizontal gene transfer between bacteria in diverse ecological locations.

  20. Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Klemm, Per

    2007-01-01

    asymptomatic bacteriuria (ABU) E. coli strains 83972 and VR50 are significantly better biofilm formers in their natural growth medium, human urine, than the two uropathogenic E. coli isolates CFT073 and 536. We used DNA microarrays to monitor the expression profile during biofilm growth in urine of the two ABU...

  1. Genetic regulation of spy gene expression in Escherichia coli in the presence of protein unfolding agent ethanol.

    Science.gov (United States)

    Srivastava, Santosh Kumar; Lambadi, Paramesh Ramulu; Ghosh, Tamoghna; Pathania, Ranjana; Navani, Naveen Kumar

    2014-09-10

    In a living cell, folding of proteins is assisted by molecular chaperones and other folding helpers. In Escherichia coli (E. coli), recently an ATP independent chaperon 'Spy' was discovered which is highly up-regulated in the presence of protein unfolding agents like ethanol, butanol and tannic acid. Two response regulators; BaeR and CpxR have been recognized as transcriptional regulators of spy gene. However, the mechanism of genetic regulation of spy under protein denaturants like ethanol has not been studied in detail so far. Based on a combination of genetic, molecular biology and biochemical experimental data, we propose that BaeR protein is the primary regulator of spy gene in response to ethanol stress in E. coli. In addition, we expanded the experimental spectrum and validated that regulation of spy gene in the presence of zinc and copper metal stress is primarily via BaeR and CpxR regulators respectively. We also performed in-silico analysis to identify the homologs of Spy protein and their cognate regulatory elements in bacterial species belonging to enterobacteriaceae family. Based on the unique ATP-independent chaperone nature and genetic regulation of spy we also propose its importance in biosensor development and facilitated production of properly folded recombinant proteins.

  2. The yajC gene from Lactobacillus buchneri and Escherichia coli and its role in ethanol tolerance.

    Science.gov (United States)

    Liu, Siqing; Skory, Chris; Qureshi, Nasib; Hughes, Stephen

    2016-04-01

    The yajC gene (Lbuc_0921) from Lactobacillus buchneri NRRL B-30929 was identified from previous proteomics analyses in response to ethanol treatment. The YajC protein expression was increased by 15-fold in response to 10 % ethanol vs 0 % ethanol. The yajC gene encodes the smaller subunit of the preprotein translocase complex, which interacts with membrane protein SecD and SecF to coordinate protein transport and secretion across cytoplasmic membrane in Escherichia coli. The YajC protein was linked to sensitivity to growth temperatures in E. coli, involved in translocation of virulence factors during Listeria infection, and stimulating a T cell-mediated response of Brucella abortus. In this study, the L. buchneri yajC gene was over-expressed in E. coli. The strain carrying pET28byajC that produces YajC after isopropyl β-D-1-thiogalactopyranoside induction showed tolerance to 4 % ethanol in growth media, compared to the control carrying pET28b. This is the first report linking YajC to ethanol stress and tolerance.

  3. Frequencies of virulence genes and pulse field gel electrophoresis fingerprints in Escherichia coli isolates from canine pyometra.

    Science.gov (United States)

    Maluta, Renato P; Borges, Clarissa A; Beraldo, Lívia G; Cardozo, Marita V; Voorwald, Fabiana A; Santana, André M; Rigobelo, Everlon C; Toniollo, Gilson H; Avila, Fernando A

    2014-11-01

    Escherichia coli is the most common bacterial agent isolated from canine pyometra. The frequencies of 24 virulence genes and pulsed field gel electrophoresis (PFGE) profiles were determined for 23 E. coli isolates from cases of canine pyometra in Brazil. The frequencies of virulence genes were 91.3% fimH, 91.3% irp-2, 82.6% fyuA, 56.5% iroN, 47.8% traT, 39.1% usp, 34.8% sfaD/E, 34.8% tsh, 30.4% papC, 30.4% hlyA, 26.1% papGIII, 26.1% cnf-1, 21.7% papE/F, 21.7% iss, 17.4% iutA, 17.4% ompT, 17.4% cvaC, 17.4% hlyF, 17.4% iucD, 13.0% iucC, 13.0% astA, 4.3% papGII, 0% afaB/C and 0% papGI. The high frequency of yersiniabactin (fyuA and irp2) and salmochelin (iroN) genes suggests that iron uptake systems might be important in the pathogenesis of canine pyometra. PFGE profiles of 19 isolates were heterogeneous, confirming that E. coli isolates from canine pyometra are unlikely to be epidemic clones.

  4. Nucleotide sequence of the Dpn II DNA methylase gene of Streptococcus pneumoniae and its relationship to the dam gene of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Mannarelli, B.M.; Balganesh, T.S.; Greenberg, B.; Springhorn, S.S.; Lacks, S.A.

    1985-07-01

    The structural gene (dpnM) for the Dpn II DNA methylase of Streptococcus pneumoniae, which is part of the Dpn II restriction system and methylates adenine in the sequence 5'-G-A-T-C-3', was identified by subcloning fragments of a chromosomal segment from a Dpn II-producing strain in an S. pneumoniae host/vector cloning system and demonstrating function of the gene also in Bacillus subtilis. Determination of the nucleotide sequence of the gene and adjacent DNA indicates that it encodes a polypeptide of 32,903 daltons. A putative promoter for transcription of the gene lies within a hundred nucleotides of the polypeptide start codon. Comparison of the coding sequence to that of the dam gene of Escherichia coli, which encodes a similar methylase, revealed 30% of the amino acid residues in the two enzymes to be identical. This homology presumably reflects a common origin of the two genes prior to the divergence of Gram-positive and Gram-negative bacteria. It is suggested that the restriction function of the gene is primitive, and that the homologous restriction system in E. coli has evolved to play an accessory role in heteroduplex DNA base mismatch repair.

  5. Cloning of xylanase gene of Streptomyces flavogriseus in Escherichia coli and bacteriophage lambda-induced lysis for the release of cloned enzyme.

    Science.gov (United States)

    Srivastava, R; Ali, S S; Srivastava, B S

    1991-03-01

    The xylanase gene of Streptomyces flavogriseus was cloned in pUC8 plasmid and expressed in Escherichia coli lysogenic for lambda cI857. lambda-Induced lysis of E. coli at 42 degrees C allowed efficient release of cloned enzyme activity in extracellular environment. The xylanase gene was located in the 0.8-kb HindIII fragment and coded for 18,000 Mr xylanase.

  6. Cloning and expression in Escherichia coli of a gene coding for a secondary alcohol dehydrogenase from Candida parapsilosis.

    Science.gov (United States)

    Yamamoto, H; Kawada, N; Matsuyama, A; Kobayashi, Y

    1999-06-01

    A gene encoding a stereo-specific secondary alcohol dehydrogenase (CpSADH) that catalyzed the oxidation of (S)-1,3-BDO to 4-hydroxy-2-butanone was cloned from Candida parapsilosis. This CpSADH-gene consisted of 1,009 nucleotides coding for a protein with M(r) 35,964. A recombinant Escherichia coli JM109 strain harboring the expression plasmid, pKK-CPA1, produced (R)-1,3-BDO (93.5% ee., 94.7% yield) from the racemate without any additive to regenerate NAD+ from NADH.

  7. Rapid detection of translation-terminating mutations at the adenomatous polyposis coli (APC) gene by direct protein truncation test

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Luut, R.; Khan, P.M.; Van Leeuwen, C.; Tops, C.; Roest, P.; Den Dunnen, J. (Leiden Univ. (Netherlands))

    1994-03-01

    Familial adenomatous polyposis (FAP) is usually associated with protein truncating mutations in the adenomatous polyposis coli (APC) gene. The APC mutations are known to play a major role in colorectal carcinogensis. For the identification of protein truncating mutations of the APC gene, the authors developed a rapid, sensitive, and direct screening procedure. The technique is based on the in vitro transcription and translation of the genomic PCR products and is called the protein truncation test. Samples of DNA from individual FAP patients, members of a FAP family, colorectal tumors, and colorectal tumor-derived cell lines were used to show the effectiveness of this method. 9 refs., 2 figs.

  8. Escherichia coli Vertebral Osteomyelitis Diagnosed According to Broad-range 16S rRNA Gene Polymerase Chain Reaction (PCR).

    Science.gov (United States)

    Shibata, Satoshi; Tanizaki, Ryutaro; Watanabe, Koji; Makabe, Kenta; Shoda, Naoki; Kutsuna, Satoshi; Nagamatsu, Maki; Oka, Shinichi; Ohmagari, Norio

    2015-01-01

    Identifying the causative agent of pyogenic osteomyelitis is often challenging, especially when antibiotics are administered before a biopsy. We herein present a case of osteomyelitis in the cervical vertebrae presenting with progressive paralytic symptoms, in which we successfully identified Escherichia coli from a biopsy specimen using broad-range 16S rRNA gene polymerase chain reaction (PCR) even though sensitive antibiotics had been used for more than 50 days before the biopsy. Broad-range 16S rRNA gene PCR is a useful diagnostic method, especially when prebiopsy antibiotics are unavoidably used for a clinically unstable state.

  9. Transfer of E. coli gutD gene into maize and regeneration of salt-tolerant transgenic plants

    Institute of Scientific and Technical Information of China (English)

    刘岩; 王国英; 刘俊君; 彭学贤; 谢友菊; 戴景瑞; 郭世伟; 张福锁

    1999-01-01

    GutD gene, encoding a key enzyme (glucitol-6-phosphate dehydrogenase) of sugar alcohol metabolic pathway in E. coli, was transferred into maize. Results of Southern and Western blotting analysis certified that this gene had integrated and been expressed in transgenic maize plants and their progeny. The synthesis and accumulation of sorbitol were detected in transgenic maize plants and a preliminary nutrient solution culture experiment showed that gutD transgenic maize plants had an increased tolerance to salt stress compared with nontransgenic ones.

  10. Validating tyrosinase homologue melA as a photoacoustic reporter gene for imaging Escherichia coli.

    Science.gov (United States)

    Paproski, Robert J; Li, Yan; Barber, Quinn; Lewis, John D; Campbell, Robert E; Zemp, Roger

    2015-10-01

    To understand the pathogenic processes for infectious bacteria, appropriate research tools are required for replicating and characterizing infections. Fluorescence and bioluminescence imaging have primarily been used to image infections in animal models, but optical scattering in tissue significantly limits imaging depth and resolution. Photoacoustic imaging, which has improved depth-to-resolution ratio compared to conventional optical imaging, could be useful for visualizing melA-expressing bacteria since melA is a bacterial tyrosinase homologue which produces melanin. Escherichia coli-expressing melA was visibly dark in liquid culture. When melA-expressing bacteria in tubes were imaged with a VisualSonics Vevo LAZR system, the signal-to-noise ratio of a 9×dilution sample was 55, suggesting that ∼20 bacteria cells could be detected with our system. Multispectral (680, 700, 750, 800, 850, and 900 nm) analysis of the photoacoustic signal allowed unmixing of melA-expressing bacteria from blood. To compare photoacoustic reporter gene melA (using Vevo system) with luminescent and fluorescent reporter gene Nano-lantern (using Bruker Xtreme In-Vivo system), tubes of bacteria expressing melA or Nano-lantern were submerged 10 mm in 1% Intralipid, spaced between Photoacoustic imaging could resolve the two tubes of melA-expressing bacteria even when the tubes were less than 1 mm from each other, while bioluminescence and fluorescence imaging could not resolve the two tubes of Nano-lantern-expressing bacteria even when the tubes were spaced 10 mm from each other. After injecting 100-μL of melA-expressing bacteria in the back flank of a chicken embryo, photoacoustic imaging allowed visualization of melA-expressing bacteria up to 10-mm deep into the embryo. Photoacoustic signal from melA could also be separated from deoxy- and oxy-hemoglobin signal observed within the embryo and chorioallantoic membrane. Our results suggest that melA is a useful photoacoustic reporter gene

  11. Investigation on prevalence of Escherichia coli strains carrying virulence genes ipaH, estA, eaeA and bfpA isolated from different water sources

    Directory of Open Access Journals (Sweden)

    Reza Ranjbar

    2016-04-01

    Full Text Available Objective: To investigate prevalence of Escherichia coli (E. coli strains carrying virulence genes ipaH, estA, eaeA and bfpA, isolated from different water sources in Alborz Province. Methods: This study was carried out in 2014. The research included all E. coli strains isolated from different surface water sources in Alborz Province of Iran. E. coli isolates were detected and identified by standard microbiological and biochemical tests. The strains were evaluated for the presence of virulence genes ipaH, estA, eaeA and bfpA by PCR using specific primers. The PCR amplicons were visualized via electrophoresis and stained with ethidium bromide. Results: One hundred E. coli strains were isolated and included in the study. The PCR results showed that 97% of the strains harbored ipaH gene. Moreover, estA, eaeA and bfpA genes were found in 37%, 31% and 3% of the isolates. Conclusions: Our finding showed that the prevalence rates of virulence genes ipaH and estA were very high among E. coli strains isolated from different surface water sources in Alborz Province. Considering their plasmid-borne nature, the risk of transmission of these genes between other bacterial species could pose a high threat to public health.

  12. Uropathogenic Escherichia coli pathogenicity islands and other ExPEC virulence genes may contribute to the genome variability of enteroinvasive E. coli.

    Science.gov (United States)

    da Silva, Laís Cristina; de Mello Santos, Ana Carolina; Silva, Rosa Maria

    2017-03-16

    Enteroinvasive Escherichia coli (EIEC) may be the causative agent of part of those million cases of diarrhea illness reported worldwide every year and attributable to Shigella. That is because both enteropathogens have many common characteristics that difficult their identification either by traditional microbiological methods or by molecular tools used in the clinical laboratory settings. While Shigella has been extensively studied, EIEC remains barely characterized at the molecular level. Recent EIEC important outbreaks, apparently generating more life-threatening cases, have prompted us to screen EIEC for virulence traits usually related to extraintestinal pathogenic E. coli (ExPEC). That could explain the appearance of EIEC strains presenting higher virulence potential. EIEC strains were distributed mainly in three phylogroups in a serogroup-dependent manner. Serogroups O124, O136, O144, and O152 were exclusively classified in phylogroup A; O143 in group E; and O28ac and O29 in group B1. Only two serogroups showed diverse phylogenetic origin as follows: O164 was assigned to groups A, B1, C, and B2 (one strain each), and O167 in groups E (five strains), and A (one strain) (Table 1). Eleven of 20 virulence genes (VGs) searched were detected, and the majority of the 19 different VGs combinations found were serogroup-specific. Uropathogenic E. coli (UPEC) PAI genetic markers were detected in all EIEC strains. PAIs IJ96 and IICFT073 were the most frequent (92.1 and 80.4%, respectively). PAI IV536 was restricted to some serogroups from phylogroups A, B1 and E. PAI ICFT073 was uniquely detected in phylogroups B2 and E. A total of 45 (88%) strains presented multiple PAI markers (two to four). PAIs IJ96 and IICFT073 were found together in 80% of strains. EIEC is a DEC pathovar that presents VGs and pathogenicity island genetic markers typically associated with ExPEC, especially UPEC. These features are distributed in a phylogenetic and serogroup-dependent manner

  13. Identification of genes expressed in cultures of E. coli lysogens carrying the Shiga toxin-encoding prophage Φ24B

    Directory of Open Access Journals (Sweden)

    Riley Laura M

    2012-03-01

    Full Text Available Abstract Background Shigatoxigenic E. coli are a global and emerging health concern. Shiga toxin, Stx, is encoded on the genome of temperate, lambdoid Stx phages. Genes essential for phage maintenance and replication are encoded on approximately 50% of the genome, while most of the remaining genes are of unknown function nor is it known if these annotated hypothetical genes are even expressed. It is hypothesized that many of the latter have been maintained due to positive selection pressure, and that some, expressed in the lysogen host, have a role in pathogenicity. This study used Change Mediated Antigen Technology (CMAT™ and 2D-PAGE, in combination with RT-qPCR, to identify Stx phage genes that are expressed in E. coli during the lysogenic cycle. Results Lysogen cultures propagated for 5-6 hours produced a high cell density with a low proportion of spontaneous prophage induction events. The expression of 26 phage genes was detected in these cultures by differential 2D-PAGE of expressed proteins and CMAT. Detailed analyses of 10 of these genes revealed that three were unequivocally expressed in the lysogen, two expressed from a known lysogenic cycle promoter and one uncoupled from the phage regulatory network. Conclusion Propagation of a lysogen culture in which no cells at all are undergoing spontaneous lysis is impossible. To overcome this, RT-qPCR was used to determine gene expression profiles associated with the growth phase of lysogens. This enabled the definitive identification of three lambdoid Stx phage genes that are expressed in the lysogen and seven that are expressed during lysis. Conservation of these genes in this phage genome, and other Stx phages where they have been identified as present, indicates their importance in the phage/lysogen life cycle, with possible implications for the biology and pathogenicity of the bacterial host.

  14. Identification of genes expressed in cultures of E. coli lysogens carrying the Shiga toxin-encoding prophage Φ24B.

    Science.gov (United States)

    Riley, Laura M; Veses-Garcia, Marta; Hillman, Jeffrey D; Handfield, Martin; McCarthy, Alan J; Allison, Heather E

    2012-03-22

    Shigatoxigenic E. coli are a global and emerging health concern. Shiga toxin, Stx, is encoded on the genome of temperate, lambdoid Stx phages. Genes essential for phage maintenance and replication are encoded on approximately 50% of the genome, while most of the remaining genes are of unknown function nor is it known if these annotated hypothetical genes are even expressed. It is hypothesized that many of the latter have been maintained due to positive selection pressure, and that some, expressed in the lysogen host, have a role in pathogenicity. This study used Change Mediated Antigen Technology (CMAT)™ and 2D-PAGE, in combination with RT-qPCR, to identify Stx phage genes that are expressed in E. coli during the lysogenic cycle. Lysogen cultures propagated for 5-6 hours produced a high cell density with a low proportion of spontaneous prophage induction events. The expression of 26 phage genes was detected in these cultures by differential 2D-PAGE of expressed proteins and CMAT. Detailed analyses of 10 of these genes revealed that three were unequivocally expressed in the lysogen, two expressed from a known lysogenic cycle promoter and one uncoupled from the phage regulatory network. Propagation of a lysogen culture in which no cells at all are undergoing spontaneous lysis is impossible. To overcome this, RT-qPCR was used to determine gene expression profiles associated with the growth phase of lysogens. This enabled the definitive identification of three lambdoid Stx phage genes that are expressed in the lysogen and seven that are expressed during lysis. Conservation of these genes in this phage genome, and other Stx phages where they have been identified as present, indicates their importance in the phage/lysogen life cycle, with possible implications for the biology and pathogenicity of the bacterial host.

  15. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bechard Matthew E.

    2003-01-01

    Full Text Available Tetrahydromethanopterin (H4MPT is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase. Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  16. Crosstalk of Escherichia coli FadR with global regulators in expression of fatty acid transport genes.

    Directory of Open Access Journals (Sweden)

    Youjun Feng

    Full Text Available Escherichia coli FadR plays two regulatory roles in fatty acid metabolism. FadR represses the fatty acid degradation (fad system and activates the unsaturated fatty acid synthetic pathway. Cross-talk between E. coli FadR and the ArcA-ArcB oxygen-responsive two-component system was observed that resulted in diverse regulation of certain fad regulon β-oxidation genes. We have extended such analyses to the fadL and fadD genes, the protein products of which are required for long chain fatty acid transport and have also studied the role of a third global regulator, the CRP-cAMP complex. The promoters of both the fadL and fadD genes contain two experimentally validated FadR-binding sites plus binding sites for ArcA and CRP-cAMP. Despite the presence of dual binding sites FadR only modestly regulates expression of these genes, indicating that the number of binding sites does not determine regulatory strength. We report complementary in vitro and in vivo studies indicating that the CRP-cAMP complex directly activates expression of fadL and fadD as well as the β-oxidation gene, fadH. The physiological relevance of the fadL and fadD transcription data was validated by direct assays of long chain fatty acid transport.

  17. Prevalence of adhesive genes among uropathogenic Escherichia coli strains isolated from patients with urinary tract infection in Mangalore

    Directory of Open Access Journals (Sweden)

    A V Shetty

    2014-01-01

    Full Text Available The study was carried out to detect the adhesive genes pap (pyelonephritis associated pili, sfa (S fimbrial adhesin and afa (afimbrial adhesin from Escherichia coli strains isolated in patients diagnosed with urinary tract infection (UTI. A total of 23% of the isolates were positive for pap, sfa and afa genes with a prevalence of 60.87% (14/23, 39.1% (9/23 and 39.1% (9/23, respectively. Prevalence of multiple adhesive genes was 8.7% (2/23 for pap and afa, 30.43% (7/23 for pap and sfa. Significant numbers of isolates were positive for Congo red binding (80% and haemolysin production 60%. The prevalence of multiple adhesive genes indicate the potential to adhere and subsequently cause a systemic infection among UTI patients.

  18. In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis

    DEFF Research Database (Denmark)

    Buitenhuis, Albert Johannes; Rontved, Christine M.; Edwards, Stefan McKinnon

    2011-01-01

    .i. to represent the acute phase response (APR) and chronic stage, respectively. Differentially expressed (DE) genes for each stage were analyzed and the DE genes detected at T=24h were also compared to data collected from two previous E. coli mastitis studies that were carried out on post mortem tissue. Results...... of the up-regulated transcripts were associated with tissue healing processes. Comparison of T=24h DE genes detected in the three E. coli mastitis studies revealed 248 were common and mainly involved immune response functions. KEGG pathway analysis indicated these genes were involved in 12 pathways related...

  19. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli.

    Science.gov (United States)

    Wang, Liying; Zhang, Lihong; Liu, Zhanzhi; Liu, Zhangzhi; Zhao, Dehua; Liu, Xiaomeng; Zhang, Bo; Xie, Jianbo; Hong, Yuanyuan; Li, Pengfei; Chen, Sanfeng; Dixon, Ray; Li, Jilun

    2013-01-01

    Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ(70) (σ(A))-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.

  20. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Liying Wang

    Full Text Available Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ(70 (σ(A-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.

  1. Cloning of affecting pyruvate decarboxylase gene in the production bioethanol of agricultural waste in the E.coli bacteria

    Directory of Open Access Journals (Sweden)

    Masome Zeinali

    2016-09-01

    Full Text Available Introduction: Ethanol made by a biomass is one of the useful strategies in terms of economic and environmental and as a clean and safe energy to replace fossil fuels considered and examined. Materials and methods: In this study, key enzyme in the production of ethanol (Pyruvate decarboxylase from Zymomonas mobilis bacteria was isolated and cloned at E. coli bacteria by freeze and thaw method. For gene cloning, we used specific primers of pdc and PCR reaction and then pdc gene isolated and pET 28a plasmid double digested with (Sal I and Xho I enzymes. Digestion Products were ligated by T4 DNA ligase in 16 °C for 16 hours. Results: Results of bacteria culture showed that a few colonies containing pET 28a plasmid could grow. Result of colony pcr of pdc gene with specific primers revealed 1700 bp bands in 1% agarose gel electrophoresis. The results of PCR with T7 promotor forward primer and pdc revers primer have proved the accurate direction of integration of pdc gene into plasmid and revealed 1885 bp band. Double digestion of recombinant plasmid with SalI and XhoI enzymes revealed same bands. Finally, RT showed the expected band of 1700 bp that implies the desired gene expression in the samples. Discussion and conclusion: Due to the increased production of ethanol via pyruvate decarboxylase gene cloning in expression plasmids with a strong promoter upstream of the cloning site can conclude that, pyruvate decarboxylase cloning as a key gene would be useful and according to beneficial properties of E. coli bacteria, transfering the gene to bacteria appears to be reasonable.

  2. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Liying Wang

    Full Text Available Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ(70 (σ(A-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.

  3. A Minimal Nitrogen Fixation Gene Cluster from Paenibacillus sp. WLY78 Enables Expression of Active Nitrogenase in Escherichia coli

    Science.gov (United States)

    Zhao, Dehua; Liu, Xiaomeng; Zhang, Bo; Xie, Jianbo; Hong, Yuanyuan; Li, Pengfei; Chen, Sanfeng; Dixon, Ray; Li, Jilun

    2013-01-01

    Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ70 (σA)-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes. PMID:24146630

  4. Genetic Diversity of the fliC Genes Encoding the Flagellar Antigen H19 of Escherichia coli and Application to the Specific Identification of Enterohemorrhagic E. coli O121:H19.

    Science.gov (United States)

    Beutin, Lothar; Delannoy, Sabine; Fach, Patrick

    2015-06-15

    Enterohemorrhagic Escherichia coli (EHEC) O121:H19 belong to a specific clonal type distinct from other classical EHEC and major enteropathogenic E. coli groups and is regarded as one of the major EHEC serogroups involved in severe infections in humans. Sequencing of the fliC genes associated with the flagellar antigen H19 (fliCH19) revealed the genetic diversity of the fliCH19 gene sequences in E. coli. A cluster analysis of 12 fliCH19 sequences, 4 from O121 and 8 from non-O121 E. coli strains, revealed five different genotypes. All O121:H19 strains fell into one cluster, whereas a second cluster was formed by five non-O121:H19 strains. Cluster 1 and cluster 2 strains differ by 27 single nucleotide exchanges in their fliCH19 genes (98.5% homology). Based on allele discrimination of the fliCH19 genes, a real-time PCR test was designed for specific identification of EHEC O121:H19. The O121 fliCH19 PCR tested negative in 73 E. coli H19 strains that belonged to serogroups other than O121, including 28 different O groups, O-nontypeable H19, and O-rough:H19 strains. The O121 fliCH19 PCR reacted with all 16 tested O121:H19 strains and 1 O-rough:H19 strain which was positive for the O121 wzx gene. A cross-reaction was observed only with E. coli H32 strains which share sequence similarities in the target region of the O121 fliCH19 PCR. The combined use of O-antigen genotyping (O121 wzx) and the detection of O121 fliCH19 allele type contributes to improving the identification and molecular serotyping of EHEC O121:H19 motile and nonmotile strains and variants of these strains lacking stx genes.

  5. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages.

    Directory of Open Access Journals (Sweden)

    Mark de Been

    2014-12-01

    Full Text Available Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of

  6. In Vivo Gene Expression Analysis Identifies Genes Required for Enhanced Colonization of the Mouse Urinary Tract by Uropathogenic Escherichia coli Strain CFT073 dsdA▿ †

    OpenAIRE

    Haugen, Brian J.; Pellett, Shahaireen; Redford, Peter; Hamilton, Holly L.; Roesch, Paula L.; Welch, Rodney A.

    2006-01-01

    Deletional inactivation of the gene encoding d-serine deaminase, dsdA, in uropathogenic Escherichia coli strain CFT073 results in a hypermotile strain with a hypercolonization phenotype in the bladder and kidneys of mice in a model of urinary tract infection (UTI). The in vivo gene expression profiles of CFT073 and CFT073 dsdA were compared by isolating RNA directly from the urine of mice challenged with each strain individually. Hybridization of cDNAs derived from these samples to CFT073-spe...

  7. Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12.

    Science.gov (United States)

    Poole, R K; Anjum, M F; Membrillo-Hernández, J; Kim, S O; Hughes, M N; Stewart, V

    1996-01-01

    Escherichia coli possesses a soluble flavohemoglobin, with an unknown function, encoded by the hmp gene. A monolysogen containing an hmp-lacZ operon fusion was constructed to determine how the hmp promoter is regulated in response to heme ligands (O2, NO) or the presence of anaerobically utilized electron acceptors (nitrate, nitrite). Expression of the phi (hmp-lacZ)1 fusion was similar during aerobic growth in minimal medium containing glucose, glycerol, maltose, or sorbitol as a carbon source. Mutations in cya (encoding adenylate cyclase) or changes in medium pH between 5 and 9 were without effect on aerobic expression. Levels of aerobic and anaerobic expression in glucose-containing minimal media were similar; both were unaffected by an arcA mutation. Anaerobic, but not aerobic, expression of phi (hmp-lacZ)1 was stimulated three- to four-fold by an fnr mutation; an apparent Fnr-binding site is present in the hmp promoter. Iron depletion of rich broth medium by the chelator 2'2'-dipyridyl (0.1 mM) enhanced hmp expression 40-fold under anaerobic conditions, tentatively attributed to effects on Fnr. At a higher chelator concentration (0.4 mM), hmp expression was also stimulated aerobically. Anaerobic expression was stimulated 6-fold by the presence of nitrate and 25-fold by the presence of nitrite. Induction by nitrate or nitrite was unaffected by narL and/or narP mutations, demonstrating regulation of hmp by these ions via mechanisms alternative to those implicated in the regulation of other respiratory genes. Nitric oxide (10 to 20 microM) stimulated aerobic phi (hmp-lacZ)1 activity by up to 19-fold; soxS and soxR mutations only slightly reduced the NO effect. We conclude that hmp expression is negatively regulated by Fnr under anaerobic conditions and that additional regulatory mechanisms are involved in the responses to oxygen, nitrogen compounds, and iron availability. Hmp is implicated in reactions with small nitrogen compounds. PMID:8808940

  8. Diarrheagenic Escherichia coli carrying supplementary virulence genes are an important cause of moderate to severe diarrhoeal disease in Mexico.

    Science.gov (United States)

    Patzi-Vargas, Sandra; Zaidi, Mussaret Bano; Perez-Martinez, Iza; León-Cen, Magda; Michel-Ayala, Alba; Chaussabel, Damien; Estrada-Garcia, Teresa

    2015-03-01

    Diarrheagenic Escherichia coli (DEC) cause acute and persistent diarrhoea worldwide, but little is known about their epidemiology in Mexico. We determined the prevalence of bacterial enteropathogens in 831 children with acute diarrhoea over a four-year period in Yucatan, Mexico. Six DEC supplementary virulence genes (SVG), mainly associated with enteroaggregative E. coli (EAEC), were sought in 3100 E. coli isolates. DEC was the most common bacterial enteropathogen (28%), surpassing Salmonella (12%) and Shigella (9%). Predominant DEC groups were diffusely adherent E. coli (DAEC) (35%), EAEC (24%), and enteropathogenic E. coli (EPEC) (19%). Among children with DEC infections, 14% had severe illness mainly caused by EPEC (26%) and DAEC (18%); 30% had moderate diarrhoea mainly caused by DAEC (36%), mixed DEC infections (33%) and EAEC (32%). DAEC was most prevalent during spring, while ETEC, EAEC and EPEC predominated in summer. EAEC was more frequent in children 6-24 months old than in those younger than 6 months of age (P = 0.008, OR = 4.2, 95% CI, 1.3-13.9). The presence of SVG dispersin, (aatA), dispersin-translocator (aatA), enteroaggregative heat-stable toxin 1 (astA), plasmid encoded toxin (pet), cytolethal distending toxin (cdt) was higher in DEC than non-DEC strains, (36% vs 26%, P DAEC patients had strains with SVG. 54% of EPEC patients carried pet-positive strains alone or in combination with astA; only this DEC group harboured cdt-positive isolates. All ETEC patients carried astA- or astA-aap-positive strains. astA and aap were the most common SVG in DAEC (3% and 2%) and non-DEC strains (21% and 13%). DEC carrying SVG are an important cause of moderate to severe bacterial diarrhoea in Mexican children.

  9. Occurrence of virulence genes associated with diarrheagenic Escherichia coli isolated from raw cow's milk from two commercial dairy farms in the Eastern Cape Province, South Africa.

    Science.gov (United States)

    Caine, Lesley-Anne; Nwodo, Uchechukwu U; Okoh, Anthony I; Ndip, Roland N; Green, Ezekiel

    2014-11-18

    Escherichia coli remains a public health concern worldwide as an organism that causes diarrhea and its reservoir in raw milk may play an important role in the survival and transport of pathogenic strains. Diarrheagenic E. coli strains are diverse food-borne pathogens and causes diarrhea with varying virulence in humans. We investigated the prevalence of pathogenic E. coli in raw milk from two commercial dairy farms. Four hundred raw milk samples, 200 from each dairy farm, were screened for the presence of fliCH7, eagR, ial, eagg, lt, and papC genes. In dairy farm A, 100 E. coli were identified based on culture, oxidase and Gram staining, while 88 isolates from dairy farm B were identified in the same manner. Gene detection showed fliCH7 27 (54%) to be the highest gene detected from farm A and lt 2 (4%) to be the lowest. The highest gene detected in dairy farm B was fliCH7 16 (43.2%) and papC 1 (2.7%) was the least. The amplification of pathogenic genes associated with diarrheagenic E. coli from cows' raw milk demonstrates that potentially virulent E. coli strains are widely distributed in raw milk and may be a cause of concern for human health.

  10. Genome-Wide Mapping of Furfural Tolerance Genes in Escherichia coli

    OpenAIRE

    Glebes, Tirzah Y.; Sandoval, Nicholas R.; Philippa J Reeder; Schilling, Katherine D.; Min ZHANG; Ryan T Gill

    2014-01-01

    Advances in genomics have improved the ability to map complex genotype-to-phenotype relationships, like those required for engineering chemical tolerance. Here, we have applied the multiSCale Analysis of Library Enrichments (SCALEs; Lynch et al. (2007) Nat. Method.) approach to map, in parallel, the effect of increased dosage for >105 different fragments of the Escherichia coli genome onto furfural tolerance (furfural is a key toxin of lignocellulosic hydrolysate). Only 268 of >4,000 E. coli ...

  11. CANINE PARVOVIRUS GENE GROW IN E.Coli USING MOLASSES MEDIUM WHICH CAN BE USE AS A VACCINE.

    Directory of Open Access Journals (Sweden)

    Nitin Sharma

    2010-10-01

    Full Text Available The Canine parvovirus gene is inserted in E.coli (DH5α strain. Grow the recombinant E. coli for the plasmid DNA using molasses medium to make the vaccine. During the initial studies I have found that the molasses can manipulate the C/N ratio as per requirement of cell. Molasses is one of the best alternatives as it is cheap and can be easily manipulated. During the experiment the O.D of culture and O.D of plasmid DNA was observed in respective of different optimization method. I observed that the O.D value has increase to i.e. 2.129, as it was earlier i.e. 0.393. The quality and quantity of the plasmid DNA was very good. It is possible to produce vaccine by molasses medium. The paper is opening a new face of study.

  12. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    Science.gov (United States)

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-09-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.

  13. A new process for obtaining hydroxytyrosol using transformed Escherichia coli whole cells with phenol hydroxylase gene from Geobacillus thermoglucosidasius.

    Science.gov (United States)

    Orenes-Piñero, Esteban; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro

    2013-08-15

    Phenol hydroxylase gene cloning from the thermophilic bacteria Geobacillus thermoglucosidasius was used to develop an effective method to convert tyrosol into the high-added-value compound hydroxytyrosol by hydroxylation. Phenol hydroxylase is a two-component enzyme encoded by pheA1 and pheA2 genes and strictly dependent on NADH and FAD. These two genes were subcloned together as a 2 kb fragment into Escherichia coli Rosetta cells, and the transformants were able to grow and effectively transform up to 5 mM of phenol and tyrosol using IPTG (isopropyl-β-D-thiogalactopyranoside) as inducer. In addition, when a new fragment with a 340 pb upstream pheA1 gene was subcloned, a similar biotransformation rate was attained without IPTG, confirming that this fragment encodes for a phenol hydroxylase promoter that can be recognised by E. coli. Both transformants brought about the total bioconversion of monophenols at a high concentration (5 mM), which represents an increase, both in concentration and in yield, compared with that previously described in the bibliography. The use of the transformant with its constitutive promoter was more interesting from a biotechnological point of view, since it is not necessary to use IPTG. It also gave rise to greater operational stability.

  14. Stimulation of DNA repair and increased light output in response to UV irradiation in Escherichia coli expressing lux genes.

    Science.gov (United States)

    Cutter, Kerry L; Alloush, Habib M; Salisbury, Vyv C

    2007-01-01

    It has previously been suggested that the evolutionary drive of bacterial bioluminescence is a mechanism of DNA repair. By assessing the UV sensitivity of Escherichia coli, it is shown that the survival of UV-irradiated E. coli constitutively expressing luxABCDE in the dark is significantly better than either a strain with no lux gene expression or the same strain expressing only luciferase (luxAB) genes. This shows that UV resistance is dependent on light output, and not merely on luciferase production. Also, bacterial survival was found to be dependent on the conditions following UV irradiation, as bioluminescence-mediated repair was not as efficient as repair in visible light. Moreover, photon emission revealed a dose-dependent increase in light output per cell after UV exposure, suggesting that increased lux gene expression correlates with UV-induced DNA damage. This phenomenon has been previously documented in organisms where the lux genes are under their natural luxR regulation but has not previously been demonstrated under the regulation of a constitutive promoter.

  15. Prevalence of ESBLs and PMQR genes in fecal Escherichia coli isolated from the non-human primates in six zoos in China.

    Science.gov (United States)

    Wang, Yang; He, Tao; Han, Jing; Wang, Juan; Foley, Steven L; Yang, Guangyou; Wan, Shuangxiu; Shen, Jianzhong; Wu, Congming

    2012-09-14

    The aim of this study is to characterize the prevalence of extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR) genes in Escherichia coli from captive non-human primates. A total of 206 E. coli isolates were collected from primates in six zoos in China in 2009 and their susceptibility to 10 antimicrobials were tested by broth microdilution. The susceptibility patterns of E. coli strains varied greatly among different zoos reflecting different backgrounds of antimicrobial usage. Both the ESBL-encoding genes and the PMQR genes were detected by PCR. Of the 206 strains, 65 (32%) were confirmed as phenotypic ESBL producers with bla(CTX-M) (27%, bla(CTX-M-15), n=31, bla(CTX-M-3), n=23 and bla(CTX-M-14), n=2) mainly mediating the ESBL phenotype. qnrS1 (18%, n=36) and oqxAB (15%, n=31) were the predominant PMQR genes and the prevalence of PMQR genes was much higher among phenotypic ESBL producers than that among phenotypic non-ESBL producers from any zoo. Notably, the PMQR genes qnrS1 and oqxAB and β-lactamase genes bla(TEM-1) and bla(CTX-M-3) were found together in 23 E. coli isolates in two zoos in Shanghai. PFGE analysis of these 23 isolates demonstrated nearly identical PFGE profiles (similarity matrix >97%) indicating this specific E. coli genotype was prevalent in these two zoos. To the best of our knowledge, this is the first report of these four genes coexisting in an E. coli genotype and the first report of antimicrobial resistance profiles in E. coli isolated from primates in China. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Microarray-Based Screening of Differentially Expressed Genes of E. coli O157:H7 Sakai during Preharvest Survival on Butterhead Lettuce

    Directory of Open Access Journals (Sweden)

    Inge Van der Linden

    2016-01-01

    Full Text Available Numerous outbreaks of Escherichia coli O157:H7 have been linked to the consumption of leafy vegetables. However, up to the present, little has been known about E. coli O157:H7’s adaptive responses to survival on actively growing (and thus responsive plants. In this study, whole genome transcriptional profiles were generated from E. coli O157:H7 cells (isolate Sakai, stx- one hour and two days after inoculation on the leaves of growing butterhead lettuce, and compared with an inoculum control. A total of 273 genes of E. coli O157:H7 Sakai (5.04% of the whole genome were significantly induced or repressed by at least two-fold (p < 0.01 in at least one of the analyzed time points in comparison with the control. Several E. coli O157:H7 genes associated with oxidative stress and antimicrobial resistance were upregulated, including the iron-sulfur cluster and the multiple antibiotic resistance (mar operon, whereas the Shiga toxin virulence genes were downregulated. Nearly 40% of the genes with significantly different expression were poorly characterized genes or genes with unknown functions. These genes are of special interest for future research as they may play an important role in the pathogens’ adaptation to a lifestyle on plants. In conclusion, these findings suggest that the pathogen actively interacts with the plant environment by adapting its metabolism and responding to oxidative stress.

  17. Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants.

    Science.gov (United States)

    Ichige, A; Walker, G C

    1997-01-01

    The Rhizobium meliloti bacA gene encodes a function that is essential for bacterial differentiation into bacteroids within plant cells in the symbiosis between R. meliloti and alfalfa. An Escherichia coli homolog of BacA, SbmA, is implicated in the uptake of microcin B17, microcin J25 (formerly microcin 25), and bleomycin. When expressed in E. coli with the lacZ promoter, the R. meliloti bacA gene was found to suppress all the known defects of E. coli sbmA mutants, namely, increased resistance to microcin B17, microcin J25, and bleomycin, demonstrating the functional similarity between the two proteins. The R. meliloti bacA386::Tn(pho)A mutant, as well as a newly constructed bacA deletion mutant, was found to show increased resistance to bleomycin. However, it also showed increased resistance to certain aminoglycosides and increased sensitivity to ethanol and detergents, suggesting that the loss of bacA function causes some defect in membrane integrity. The E. coli sbmA gene suppressed all these bacA mutant phenotypes as well as the Fix- phenotype when placed under control of the bacA promoter. Taken together, these results strongly suggest that the BacA and SbmA proteins are functionally similar and thus provide support for our previous hypothesis that BacA may be required for uptake of some compound that plays an important role in bacteroid development. However, the additional phenotypes of bacA mutants identified in this study suggest the alternative possibility that BacA may be needed for membrane integrity, which is likely to be critically important during the early stages of bacterial differentiation within plant cells.

  18. Characterization of the ftsZ cell division gene of Neisseria gonorrhoeae: expression in Escherichia coli and N. gonorrhoeae.

    Science.gov (United States)

    Salimnia, H; Radia, A; Bernatchez, S; Beveridge, T J; Dillon, J R

    2000-01-01

    We cloned the cell division gene ftsZ of the gram-negative coccus Neisseria gonorrhoeae (Ng) strain CH811, characterized it genetically and phenotypically, and studied its localization in N. gonorrhoeae and Escherichia coli (Ec). The 1,179-bp ORF of ftsZ(Ng) encodes a protein with a predicted molecular mass of 41.5 kDa. Protein sequence alignments indicate that FtsZ(Ng) is similar to other FtsZ proteins and contains the conserved GTP binding motif. FtsZ homologues were identified in several N. gonorrhoeae strains and in Neisseria lactamica, Neisseria sicca, Neisseria polysaccharae and Neisseria cinerea either by Western blot or by PCR-Southern blot analysis. Attempts to inactivate the ftsZ(Ng) on the chromosome failed, indicating that it is essential for gonococcal growth. FtsZ(Ng) was synthesized in an in vitro transcription/translation system and was shown to be 43 kDa, the same size as in Western blots. Expression of the ftsZ(Ng) gene from nongonococcal promoters resulted in a filamentous phenotype in E. coli. Under controlled expression, the FtsZ(Ng)-GFP fusion protein localized at the mid-cell division site in E. coli. E. coli expressing high levels of the FtsZ(Ng)-GFP fusion protein formed filaments and exhibited different fluorescent structures including helices, spiral tubules extending from pole to pole, and regularly spaced dots or bands that did not localize at the middle of the cell. Expression of the FtsZ(Ng)-GFP fusion protein in N. gonorrhoeae resulted in abnormal cell division as shown by electron microscopy. FtsZ(Ng)-GFP fusions were also expressed in a gonococcal background using a unique shuttle vector.

  19. Characterization of ovine hepatic gene expression profiles in response to Escherichia coli lipopolysaccharide using a bovine cDNA microarray

    Directory of Open Access Journals (Sweden)

    Boermans Herman J

    2006-11-01

    Full Text Available Abstract Background During systemic gram-negative bacterial infections, lipopolysaccharide (LPS ligation to the hepatic Toll-like receptor-4 complex induces the production of hepatic acute phase proteins that are involved in the host response to infection and limit the associated inflammatory process. Identifying the genes that regulate this hepatic response to LPS in ruminants may provide insight into the pathogenesis of bacterial diseases and eventually facilitate breeding of more disease resistant animals. The objective of this research was to profile the expression of ovine hepatic genes in response to Escherichia coli LPS challenge (0, 200, 400 ng/kg using a bovine cDNA microarray and quantitative real-time PCR (qRT-PCR. Results Twelve yearling ewes were challenged iv with E. coli LPS (0, 200, 400 ng/kg and liver biopsies were collected 4–5 hours post-challenge to assess hepatic gene expression profiles by bovine cDNA microarray and qRT-PCR analyses. The expression of CD14, C3, IL12R, NRAMP1, SOD and IGFBP3 genes was down regulated, whereas the expression of ACTHR, IFNαR, CD1, MCP-1 and GH was increased during LPS challenge. With the exception of C3, qRT-PCR analysis of 7 of these genes confirmed the microarray results and demonstrated that GAPDH is not a suitable housekeeping gene in LPS challenged sheep. Conclusion We have identified several potentially important genes by bovine cDNA microarray and qRT-PCR analyses that are differentially expressed during the ovine hepatic response to systemic LPS challenge. Their potential role in regulating the inflammatory response to LPS warrants further investigation.

  20. Design and Construction of ctxB-gfp-stxB Gene Cassette and Investigation of Its Expression in E. coli Bl21 (DE3

    Directory of Open Access Journals (Sweden)

    Aghil Esmaeili

    2013-06-01

    Full Text Available Background & Objective: In order to enhance the expression of soluble proteins and facilitate their purification and development of multi-functional polypeptide , chimerical recombinant proteins have been invented . The purpose of this study was to construct ctxB-gfp-stxB gene cassette to measure the uptake and excretion of chimerical antigen in future studies.   Materials & Methods: After preparation of primers for gfp gene as a reporter gene , ctxB and stxB, attempts were made to amplify the genes via the PCR techniques . The amplified genes were clone d in the pGEM vector; and after confirmation of the gene fragments, they were fused as ctxB-gfp-stxB. The gene cassette was thereafter sub-cloned in the pET28a(+ expression vector. E. coli Bl21 (DE3 was transformed by the recombinant vector pET28a(+, and the expression of the recombinant protein was investigated by IPTG induction and SDS-PAGEelectrophoresis.   Results: The amplified genes were cloned in the pGEM vector, and were confirmed via PCR, restriction enzymes, and sequence analyzing system. The confirmed gene fragments were mixed together as ctxB-gfp-stxB . The existence of the gene cassette was confirmed after sub-cloning. The expression was not observed for this gene cassette in E . coli.   Conclusion: The presence of a large number of E. coli rare codons in ctxB and stxB gene sequences precluded the expression of the gene cassette in E. coli; it, therefore, requires the discovery of a suitable host cell for its expression and optimization. Given the gene cassette structure and position of restriction enzymes on the constructed fragment, this gene can be replaced with different genes and can produce a variety of gene fragments.

  1. Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli.

    Science.gov (United States)

    Knietsch, Anja; Waschkowitz, Tanja; Bowien, Susanne; Henne, Anke; Daniel, Rolf

    2003-03-01

    Enrichment of microorganisms with special traits and the construction of metagenomic libraries by direct cloning of environmental DNA have great potential for identifying genes and gene products for biotechnological purposes. We have combined these techniques to isolate novel genes conferring oxidation of short-chain (C(2) to C(4)) polyols or reduction of the corresponding carbonyls. In order to favor the growth of microorganisms containing the targeted genes, samples collected from four different environments were incubated in the presence of glycerol and 1,2-propanediol. Subsequently, the DNA was extracted from the four samples and used to construct complex plasmid libraries. Approximately 100,000 Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from polyols on indicator agar. Twenty-four positive E. coli clones were obtained during the initial screen. Sixteen of them contained a plasmid (pAK101 to pAK116) which conferred a stable carbonyl-forming phenotype. Eight of the positive clones exhibited NAD(H)-dependent alcohol oxidoreductase activity with polyols or carbonyls as the substrates in crude extracts. Sequencing revealed that the inserts of pAK101 to pAK116 encoded 36 complete and 17 incomplete presumptive protein-encoding genes. Fifty of these genes showed similarity to sequenced genes from a broad collection of different microorganisms. The genes responsible for the carbonyl formation of E. coli were identified for nine of the plasmids (pAK101, pAK102, pAK105, pAK107 to pAK110, pAK115, and pAK116). Analyses of the amino acid sequences deduced from these genes revealed that three (orf12, orf14, and orf22) encoded novel alcohol dehydrogenases of different types, four (orf5, sucB, fdhD, and yabF) encoded novel putative oxidoreductases belonging to groups distinct from alcohol dehydrogenases, one (glpK) encoded a putative glycerol kinase, and one (orf1) encoded a protein which showed no similarity to any

  2. In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA.

    Science.gov (United States)

    Haugen, Brian J; Pellett, Shahaireen; Redford, Peter; Hamilton, Holly L; Roesch, Paula L; Welch, Rodney A

    2007-01-01

    Deletional inactivation of the gene encoding d-serine deaminase, dsdA, in uropathogenic Escherichia coli strain CFT073 results in a hypermotile strain with a hypercolonization phenotype in the bladder and kidneys of mice in a model of urinary tract infection (UTI). The in vivo gene expression profiles of CFT073 and CFT073 dsdA were compared by isolating RNA directly from the urine of mice challenged with each strain individually. Hybridization of cDNAs derived from these samples to CFT073-specific microarrays allowed identification of genes that were up- or down-regulated in the dsdA deletion strain during UTI. Up-regulated genes included the known d-serine-responsive gene dsdX, suggesting in vivo intracellular accumulation of d-serine by CFT073 dsdA. Genes encoding F1C fimbriae, both copies of P fimbriae, hemolysin, OmpF, a dipeptide transporter DppA, a heat shock chaperone IbpB, and clusters of open reading frames with unknown functions were also up-regulated. To determine the role of these genes as well as motility in the hypercolonization phenotype, mutants were constructed in the CFT073 dsdA background and tested in competition against the wild type in the murine model of UTI. Strains with deletions of one or both of the two P fimbrial operons, hlyA, fliC, ibpB, c0468, locus c3566 to c3568, or c2485 to c2490 colonized mouse bladders and kidneys at levels indistinguishable from wild type. CFT073 dsdA c2398 and CFT073 dsdA focA maintained a hypercolonization phenotype. A CFT073 dsdA dppA mutant was attenuated 10- to 50-fold in its colonization ability compared to CFT073. Our results support a role for d-serine catabolism and signaling in global virulence gene regulation of uropathogenic E. coli.

  3. Tetrachloroethene Dehalogenase from Dehalospirillum multivorans: Cloning, Sequencing of the Encoding Genes, and Expression of the pceA Gene in Escherichia coli

    Science.gov (United States)

    Neumann, Anke; Wohlfarth, Gert; Diekert, Gabriele

    1998-01-01

    The genes encoding tetrachloroethene reductive dehalogenase, a corrinoid-Fe/S protein, of Dehalospirillum multivorans were cloned and sequenced. The pceA gene is upstream of pceB and overlaps it by 4 bp. The presence of a ς70-like promoter sequence upstream of pceA and of a ρ-independent terminator downstream of pceB indicated that both genes are cotranscribed. This assumption is supported by reverse transcriptase PCR data. The pceA and pceB genes encode putative 501- and 74-amino-acid proteins, respectively, with calculated molecular masses of 55,887 and 8,354 Da, respectively. Four peptides obtained after trypsin treatment of tetrachloroethene (PCE) dehalogenase were found in the deduced amino acid sequence of pceA. The N-terminal amino acid sequence of the PCE dehalogenase isolated from D. multivorans was found 30 amino acids downstream of the N terminus of the deduced pceA product. The pceA gene contained a nucleotide stretch highly similar to binding motifs for two Fe4S4 clusters or for one Fe4S4 cluster and one Fe3S4 cluster. A consensus sequence for the binding of a corrinoid was not found in pceA. No significant similarities to genes in the databases were detected in sequence comparisons. The pceB gene contained two membrane-spanning helices as indicated by two hydrophobic stretches in the hydropathic plot. Sequence comparisons of pceB revealed no sequence similarities to genes present in the databases. Only in the presence of pUBS 520 supplying the recombinant bacteria with high levels of the rare Escherichia coli tRNA4Arg was pceA expressed, albeit nonfunctionally, in recombinant E. coli BL21 (DE3). PMID:9696761

  4. Role of SeqA and Dam in Escherichia coli gene expression: A global/microarray analysis

    DEFF Research Database (Denmark)

    Løbner-Olesen, Anders; Marinus, M.G.; Hansen, Flemming G.

    2003-01-01

    High-density oligonucleotide arrays were used to monitor global transcription patterns in Escherichia coli with various levels of Dam and SeqA proteins. Cells lacking Dam methyltransferase showed a modest increase in transcription of the genes belonging to the SOS regulon. Bacteria devoid...... of the SeqA protein, which preferentially binds hemimethylated DNA, were found to have a transcriptional profile almost identical to WT bacteria overexpressing Dam methyltransferase. The latter two strains differed from WT in two ways. First, the origin proximal genes were transcribed with increased...... frequency due to increased gene dosage. Second, chromosomal domains of high transcriptional activity alternate with regions of low activity, and our results indicate that the activity in each domain is modulated in the same way by SeqA deficiency or Dam overproduction. We suggest that the methylation status...

  5. Translational Regulation of Gene Expression by an Anaerobically Induced Small Non-coding RNA in Escherichia coli*

    Science.gov (United States)

    Boysen, Anders; Møller-Jensen, Jakob; Kallipolitis, Birgitte; Valentin-Hansen, Poul; Overgaard, Martin

    2010-01-01

    Small non-coding RNAs (sRNA) have emerged as important elements of gene regulatory circuits. In enterobacteria such as Escherichia coli and Salmonella many of these sRNAs interact with the Hfq protein, an RNA chaperone similar to mammalian Sm-like proteins and act in the post-transcriptional regulation of many genes. A number of these highly conserved ribo-regulators are stringently regulated at the level of transcription and are part of major regulons that deal with the immediate response to various stress conditions, indicating that every major transcription factor may control the expression of at least one sRNA regulator. Here, we extend this view by the identification and characterization of a highly conserved, anaerobically induced small sRNA in E. coli, whose expression is strictly dependent on the anaerobic transcriptional fumarate and nitrate reductase regulator (FNR). The sRNA, named FnrS, possesses signatures of base-pairing RNAs, and we show by employing global proteomic and transcriptomic profiling that the expression of multiple genes is negatively regulated by the sRNA. Intriguingly, many of these genes encode enzymes with “aerobic” functions or enzymes linked to oxidative stress. Furthermore, in previous work most of the potential target genes have been shown to be repressed by FNR through an undetermined mechanism. Collectively, our results provide insight into the mechanism by which FNR negatively regulates genes such as sodA, sodB, cydDC, and metE, thereby demonstrating that adaptation to anaerobic growth involves the action of a small regulatory RNA. PMID:20075074

  6. Translational regulation of gene expression by an anaerobically induced small non-coding RNA in Escherichia coli.

    Science.gov (United States)

    Boysen, Anders; Møller-Jensen, Jakob; Kallipolitis, Birgitte; Valentin-Hansen, Poul; Overgaard, Martin

    2010-04-02

    Small non-coding RNAs (sRNA) have emerged as important elements of gene regulatory circuits. In enterobacteria such as Escherichia coli and Salmonella many of these sRNAs interact with the Hfq protein, an RNA chaperone similar to mammalian Sm-like proteins and act in the post-transcriptional regulation of many genes. A number of these highly conserved ribo-regulators are stringently regulated at the level of transcription and are part of major regulons that deal with the immediate response to various stress conditions, indicating that every major transcription factor may control the expression of at least one sRNA regulator. Here, we extend this view by the identification and characterization of a highly conserved, anaerobically induced small sRNA in E. coli, whose expression is strictly dependent on the anaerobic transcriptional fumarate and nitrate reductase regulator (FNR). The sRNA, named FnrS, possesses signatures of base-pairing RNAs, and we show by employing global proteomic and transcriptomic profiling that the expression of multiple genes is negatively regulated by the sRNA. Intriguingly, many of these genes encode enzymes with "aerobic" functions or enzymes linked to oxidative stress. Furthermore, in previous work most of the potential target genes have been shown to be repressed by FNR through an undetermined mechanism. Collectively, our results provide insight into the mechanism by which FNR negatively regulates genes such as sodA, sodB, cydDC, and metE, thereby demonstrating that adaptation to anaerobic growth involves the action of a small regulatory RNA.

  7. Enhanced production of shikimic acid using a multi-gene co-expression system in Escherichia coli.

    Science.gov (United States)

    Liu, Xiang-Lei; Lin, Jun; Hu, Hai-Feng; Zhou, Bin; Zhu, Bao-Quan

    2016-04-01

    Shikimic acid (SA) is the key synthetic material for the chemical synthesis of Oseltamivir, which is prescribed as the front-line treatment for serious cases of influenza. Multi-gene expression vector can be used for expressing the plurality of the genes in one plasmid, so it is widely applied to increase the yield of metabolites. In the present study, on the basis of a shikimate kinase genetic defect strain Escherichia coli BL21 (ΔaroL/aroK, DE3), the key enzyme genes aroG, aroB, tktA and aroE of SA pathway were co-expressed and compared systematically by constructing a series of multi-gene expression vectors. The results showed that different gene co-expression combinations (two, three or four genes) or gene orders had different effects on the production of SA. SA production of the recombinant BL21-GBAE reached to 886.38 mg·L(-1), which was 17-fold (P < 0.05) of the parent strain BL21 (ΔaroL/aroK, DE3).

  8. Effect of Culture Condition Variables on Human Endostatin Gene Expression in Escherichia coli Using Response Surface Methodology

    Science.gov (United States)

    Mohajeri, Abbas; Pilehvar-Soltanahmadi, Yones; Abdolalizadeh, Jalal; Karimi, Pouran; Zarghami, Nosratollah

    2016-01-01

    Background Recombinant human endostatin (rhES) is an angiogenesis inhibitor used as a specific drug for the treatment of non-small-cell lung cancer. As mRNA concentration affects the recombinant protein expression level, any factor affecting mRNA concentration can alter the protein expression level. Response surface methodology (RSM) based on the Box-Behnken design (BBD) is a statistical tool for experimental design and for optimizing biotechnological processes. Objectives This investigation aimed to predict and develop the optimal culture conditions for mRNA expression of the synthetic human endostatin (hES) gene in Escherichia coli BL21 (DE3). Materials and Methods The hES gene was amplified, cloned, and expressed in the E. coli expression system. Three factors, including isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration, post-induction time, and cell density before induction, were selected as important factors. The mRNA expression level was determined using real-time PCR. The expression levels of hES mRNA under the different growth conditions were analyzed. SDS-PAGE and western blot analyses were carried out for further confirmation of interest-gene expression. Results A maximum rhES mRNA level of 376.16% was obtained under the following conditions: 0.6 mM IPTG, 7 hours post-induction time, and 0.9 cell density before induction. The level of rhES mRNA was significantly correlated with post-induction time, IPTG concentration, and cell density before induction (P coli.

  9. Cloning of BMP-2 Gene and Its Expression Study in E. coli in Order to Produce a Recombinant Drug

    Directory of Open Access Journals (Sweden)

    N. Mohammadi

    2014-10-01

    Full Text Available Introduction & Objective: Bone morphogenetic proteins are a group of cytokines that belongs to superfamily TGF?. These proteins play an important role in evolution of many of organs and tissues through germinal period followed by amending and rebuilding of bone tissue and car-tilage. The aim of this study was to clone and expression analysis of BMP-2 gene in E. coli bacteria. Materials & Methods: In this experimental study the sequence of cDNA related to the mature peptide of human morphogenetic protein-2 (BMP-2 in E.coli was synthesized and cloned in a PET system. After sequencing, recombinant plasmid pET28a/BMP-2 was transformed into the expression host, E.coli BL21 (DE3. The transformed bacteria were cultured in LB me-dium containing kanamaycin antibiotic at 37° C for O/N. Then, induction with IPTG took place. The expression was evaluated by reverse transcriptase PCR and SDS-PAGE followed by western blotting to confirm its identity. The observed band on SDS-PSGE showed the presence of the expressed protein at the 14k Dalton segment which was confirmed by west-ern blotting technique. Results: The gene sequence was amplified by PCR. After gene and plasmid preparation, lega-tion was performed. Sequencing confirmed accuracy of cloning. Protein expression was demonstrated by RT-PCR and SDS-PAGE. Results were confirmed by western blotting. Conclusion: In this study over-expression of this recombinant protein was achieved in a pro-karyotic system. Different concentrations of inducer were applied and harvesting was per-formed in different times after induction. The best expression was detected in 4 hours after induction with a concentration of 1mM IPTG. (Sci J Hamadan Univ Med Sci 2014; 21 (3: 196-202

  10. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene.

    Science.gov (United States)

    Prigent-Combaret, C; Brombacher, E; Vidal, O; Ambert, A; Lejeune, P; Landini, P; Dorel, C

    2001-12-01

    The Escherichia coli OmpR/EnvZ two-component regulatory system, which senses environmental osmolarity, also regulates biofilm formation. Up mutations in the ompR gene, such as the ompR234 mutation, stimulate laboratory strains of E. coli to grow as a biofilm community rather than in a planktonic state. In this report, we show that the OmpR234 protein promotes biofilm formation by binding the csgD promoter region and stimulating its transcription. The csgD gene encodes the transcription regulator CsgD, which in turn activates transcription of the csgBA operon encoding curli, extracellular structures involved in bacterial adhesion. Consistent with the role of the ompR gene as part of an osmolarity-sensing regulatory system, we also show that the formation of biofilm by E. coli is inhibited by increasing osmolarity in the growth medium. The ompR234 mutation counteracts adhesion inhibition by high medium osmolarity; we provide evidence that the ompR234 mutation promotes biofilm formation by strongly increasing the initial adhesion of bacteria to an abiotic surface. This increase in initial adhesion is stationary phase dependent, but it is negatively regulated by the stationary-phase-specific sigma factor RpoS. We propose that this negative regulation takes place via rpoS-dependent transcription of the transcription regulator cpxR; cpxR-mediated repression of csgB and csgD promoters is also triggered by osmolarity and by curli overproduction, in a feedback regulation loop.

  11. Transcriptional organization of the dnaN and recF genes of Escherichia coli K-12.

    Science.gov (United States)

    Armengod, M E; García-Sogo, M; Lambíes, E

    1988-08-25

    The dnaN gene of Escherichia coli determines the beta subunit of DNA polymerase III, a multisubunit enzyme responsible for most of the replicative DNA synthesis. The dnaN gene maps between the dnaA and recF genes. We have characterized the regulatory region of the dnaN gene by screening DNA restriction fragments for promoter activity, S1 mapping of mRNAs, deletion analysis, and in vivo dnaN complementation tests. There are at least three dnaN promoters located in the second half of the dnaA coding region. The one closest to the dnaN structural gene is the weakest, but it provides sufficient dnaN expression for complementation when the gene is present on a multicopy plasmid. Deletion of sequences needed for initiation of dnaN translation or introduction of nonsense codons into dnaN causes reduction of recF expression. However, a deletion inactivating dnaN without changing the reading frame of the gene does not affect expression of the recF gene. These results indicate that the dnaN and recF genes are organized in an operon. We have previously shown the presence of termination signals within the dnaN coding region (Armengod, M.E., and Lambíes, E. (1986) Gene (Amst.) 43, 183-196). Therefore, we propose that the polarity produced by nonsense mutations in dnaN is primarily transcriptional. The uncoupling of transcription and translation of the dnaN gene (when translation is interrupted by premature nonsense codons or by other mechanisms) probably results in transcription termination at termination signals in dnaN.

  12. Integrated signaling pathway and gene expression regulatory model to dissect dynamics of Escherichia coli challenged mammary epithelial cells.

    Science.gov (United States)

    den Breems, Nicoline Y; Nguyen, Lan K; Kulasiri, Don

    2014-12-01

    Cells transform external stimuli, through the activation of signaling pathways, which in turn activate gene regulatory networks, in gene expression. As more omics data are generated from experiments, eliciting the integrated relationship between the external stimuli, the signaling process in the cell and the subsequent gene expression is a major challenge in systems biology. The complex system of non-linear dynamic protein interactions in signaling pathways and gene networks regulates gene expression. The complexity and non-linear aspects have resulted in the study of the signaling pathway or the gene network regulation in isolation. However, this limits the analysis of the interaction between the two components and the identification of the source of the mechanism differentiating the gene expression profiles. Here, we present a study of a model of the combined signaling pathway and gene network to highlight the importance of integrated modeling. Based on the experimental findings we developed a compartmental model and conducted several simulation experiments. The model simulates the mRNA expression of three different cytokines (RANTES, IL8 and TNFα) regulated by the transcription factor NFκB in mammary epithelial cells challenged with E. coli. The analysis of the gene network regulation identifies a lack of robustness and therefore sensitivity for the transcription factor regulation. However, analysis of the integrated signaling and gene network regulation model reveals distinctly different underlying mechanisms in the signaling pathway responsible for the variation between the three cytokine's mRNA expression levels. Our key findings reveal the importance of integrating the signaling pathway and gene expression dynamics in modeling. Modeling infers valid research questions which need to be verified experimentally and can assist in the design of future biological experiments.

  13. Genes encoding two lipoproteins in the leuS-dacA region of the Escherichia coli chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Takase, I.; Ishino, F.; Wachi, M.; Kamata, H.; Doi, M.; Asoh, S.; Matsuzawa, H.; Ohta, T.; Matsuhashi, M.

    1987-12-01

    The coding of two rare lipoproteins by two genes, rlpA and rlpB, located in the leuS-dacA region (15 min) on the Escherichia coli chromosome was demonstrated by expression of subcloned genes in a maxicell system. The formation of these two proteins was inhibited by globomycin, which is an inhibitor of the signal peptidase for the known lipoproteins of E. coli. In each case, this inhibition was accompanied by formation of a new protein, which showed a slightly lower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and which we suppose to be a prolipoprotein with an N-terminal signal peptide sequence similar to those of the bacterial major lipoproteins and lysis proteins of some bacteriocins. The incorporation of /sup 3/H-labeled palmitate and glycerol into the two lipoproteins was also observed. Sequencing of DNA showed that the two lipoprotein genes contained sequences that could code for signal peptide sequences of 17 amino acids (rlpA lipoprotein) and 18 amino acids (rlpB lipoprotein). The deduced sequences of the mature peptides consisted of 345 amino acids (M/sub r/ 35,615, rlpA lipoprotein) and 175 amino acids (M/sub r/ 19,445, rlpB lipoprotein), with an N-terminal cysteine to which thioglyceride and N-fatty acyl residues may be attached. These two lioproteins may be important in duplication of the cells.

  14. Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products

    DEFF Research Database (Denmark)

    Li, Lili; Ye, Lei; Kromann, Sofie

    2017-01-01

    There are growing concerns about the coselection of resistance against antibiotics and disinfectants in bacterial pathogens. The aim of this study was to characterize the antimicrobial susceptibility profiles, the prevalence of extended-spectrum β-lactamases (ESBLs), plasmid-mediated quinolone...... resistance genes (PMQRs), and quaternary ammonium compound resistance genes (QACs) in Escherichia coli isolated from ready-to-eat (RTE) meat products obtained in Guangzhou, China, and to determine whether these genes were colocalized in the isolates. A total of 64 E. coli isolates were obtained from 720 RTE...... meat samples. Multidrug resistance was observed in 70.3% of the isolates. A 100% of the isolates were resistant to benzalkonium chloride. Four types of β-lactamase genes were identified in the 16 ESBL-producing E. coli isolates: blaSHV (9.4%), blaTEM (7.8%), blaCTX-M-15 (1.6%), and blaCTX-M-9 (1...

  15. Requirement for autoinducer in transcriptional negative autoregulation of the Vibrio fischeri luxR gene in Escherichia coli.

    OpenAIRE

    Dunlap, P V; Ray, J M

    1989-01-01

    The effect of a mutation in luxI (autoinducer synthetase gene) on transcription of luxR in the cloned Vibrio fischeri lux system (luxR, luxICDABE) was examined in Escherichia coli. For the luxI mutant, transcription from the luxR promoter (monitored with beta-galactosidase levels from a luxR::lacZ fusion, with LuxR supplied in trans) decreased fivefold, to levels of the luxI+ strain, only in the presence of added autoinducer. The results demonstrate that, as has been shown at the translationa...

  16. Identification of genes required for growth of Escherichia coli MG1655 at moderately low pH

    Directory of Open Access Journals (Sweden)

    Bram Vivijs

    2016-10-01

    Full Text Available The survival of some pathotypes of E. coli in very low pH environments like highly acidic foods and the stomach has been well documented and contributes to their success as foodborne pathogens. In contrast, the ability of E. coli to grow at moderately low pH has received less attention, although this property can be anticipated to be also very important for the safety of mildly acidic foods. Therefore, the objective of this study was to identify cellular functions required for growth of the non-pathogenic strain E. coli MG1655 at low pH. First, the role of the four E. coli amino acid decarboxylase systems, which are the major cellular mechanisms allowing extreme acid survival, was investigated using mutants defective in each of the systems. Only the lysine decarboxylase (CadA was required for low pH growth. Secondly, a screening of 8544 random transposon insertion mutants resulted in the identification of six genes affecting growth in LB broth acidified to pH 4.50 with HCl. Two of the genes, encoding the transcriptional regulator LeuO and the elongation factor P-β-lysine ligase EpmA, can be linked to CadA production. Two other genes, encoding the diadenosine tetraphosphatase ApaH and the tRNA modification GTPase MnmE, have been previously implicated in the bacterial response to stresses other than low pH. A fifth gene encodes the LPS heptosyltransferase WaaC, and its mutant has a deep rough colony phenotype, which has been linked to reduced acid tolerance in earlier work. Finally, tatC encodes a secA-independent protein translocase that exports a few dozen proteins and thus is likely to have a pleiotropic phenotype. For mnmE, apaH, epmA,and waaC, de novo in frame deletion and genetic complementation confirmed their role in low pH growth, and these deletion mutants were also affected in growth in apple juice and tomato juice. However, the mutants were not affected in survival in gastric simulation medium at pH 2.5, indicating that growth at

  17. Arsenic resistance and prevalence of arsenic resistance genes in Campylobacter jejuni and Campylobacter coli isolated from retail meats.

    Science.gov (United States)

    Noormohamed, Aneesa; Fakhr, Mohamed K

    2013-08-07

    Studies that investigate arsenic resistance in the foodborne bacterium Campylobacter are limited. A total of 552 Campylobacter isolates (281 Campylobacter jejuni and 271 Campylobacter coli) isolated from retail meat samples were subjected to arsenic resistance profiling using the following arsenic compounds: arsanilic acid (4-2,048 μg/mL), roxarsone (4-2048 μg/mL), arsenate (16-8,192 μg/mL) and arsenite (4-2,048 μg/mL). A total of 223 of these isolates (114 Campylobacter jejuni and 109 Campylobacter coli) were further analyzed for the presence of five arsenic resistance genes (arsP, arsR, arsC, acr3, and arsB) by PCR. Most of the 552 Campylobacter isolates were able to survive at higher concentrations of arsanilic acid (512-2,048 μg/mL), roxarsone (512-2,048 μg/mL), and arsenate (128-1,024 μg/mL), but at lower concentrations for arsenite (4-16 μg/mL). Ninety seven percent of the isolates tested by PCR showed the presence of arsP and arsR genes. While 95% of the Campylobacter coli isolates contained a larger arsenic resistance operon that has all of the four genes (arsP, arsR, arsC and acr3), 85% of the Campylobacter jejuni isolates carried the short operon (arsP, and arsR). The presence of arsC and acr3 did not significantly increase arsenic resistance with the exception of conferring resistance to higher concentrations of arsenate to some Campylobacter isolates. arsB was prevalent in 98% of the tested Campylobacter jejuni isolates, regardless of the presence or absence of arsC and acr3, but was completely absent in Campylobacter coli. To our knowledge, this is the first study to determine arsenic resistance and the prevalence of arsenic resistance genes in such a large number of Campylobacter isolates.

  18. Physical mapping of the Escherichia coli D-serine deaminase region: contiguity of the dsd structural and regulatory genes.

    OpenAIRE

    Carothers, A M; McFall, E; Palchaudhuri, S

    1980-01-01

    The genes dsdA, dsdO, and dsdC have been located on a 3.0-kilobase pair (kb) fragment of the Escherichia coli chromosome by a combination of techniques. The loci were first cloned onto lambda and various plasmid vectors. dsd hybrid plasmids were then digested with restriction enzymes, and the fragments were recloned to test for the presence of dsdC or dsdA. In one case, a 4.2-kb restriction fragment containing the dsdA operon was used to form a heteroduplex with a well-defined lambda dsd deox...

  19. Arsenic Resistance and Prevalence of Arsenic Resistance Genes in Campylobacter jejuni and Campylobacter coli Isolated from Retail Meats

    Directory of Open Access Journals (Sweden)

    Mohamed K. Fakhr

    2013-08-01

    Full Text Available Studies that investigate arsenic resistance in the foodborne bacterium Campylobacter are limited. A total of 552 Campylobacter isolates (281 Campylobacter jejuni and 271 Campylobacter coli isolated from retail meat samples were subjected to arsenic resistance profiling using the following arsenic compounds: arsanilic acid (4–2,048 μg/mL, roxarsone (4–2048 μg/mL, arsenate (16–8,192 μg/mL and arsenite (4–2,048 μg/mL. A total of 223 of these isolates (114 Campylobacter jejuni and 109 Campylobacter coli were further analyzed for the presence of five arsenic resistance genes (arsP, arsR, arsC, acr3, and arsB by PCR. Most of the 552 Campylobacter isolates were able to survive at higher concentrations of arsanilic acid (512–2,048 μg/mL, roxarsone (512–2,048 μg/mL, and arsenate (128–1,024 μg/mL, but at lower concentrations for arsenite (4–16 μg/mL. Ninety seven percent of the isolates tested by PCR showed the presence of arsP and arsR genes. While 95% of the Campylobacter coli isolates contained a larger arsenic resistance operon that has all of the four genes (arsP, arsR, arsC and acr3, 85% of the Campylobacter jejuni isolates carried the short operon (arsP, and arsR. The presence of arsC and acr3 did not significantly increase arsenic resistance with the exception of conferring resistance to higher concentrations of arsenate to some Campylobacter isolates. arsB was prevalent in 98% of the tested Campylobacter jejuni isolates, regardless of the presence or absence of arsC and acr3, but was completely absent in Campylobacter coli. To our knowledge, this is the first study to determine arsenic resistance and the prevalence of arsenic resistance genes in such a large number of Campylobacter isolates.

  20. Arsenic Resistance and Prevalence of Arsenic Resistance Genes in Campylobacter jejuni and Campylobacter coli Isolated from Retail Meats

    Science.gov (United States)

    Noormohamed, Aneesa; Fakhr, Mohamed K.

    2013-01-01

    Studies that investigate arsenic resistance in the foodborne bacterium Campylobacter are limited. A total of 552 Campylobacter isolates (281 Campylobacter jejuni and 271 Campylobacter coli) isolated from retail meat samples were subjected to arsenic resistance profiling using the following arsenic compounds: arsanilic acid (4–2,048 μg/mL), roxarsone (4–2048 μg/mL), arsenate (16–8,192 μg/mL) and arsenite (4–2,048 μg/mL). A total of 223 of these isolates (114 Campylobacter jejuni and 109 Campylobacter coli) were further analyzed for the presence of five arsenic resistance genes (arsP, arsR, arsC, acr3, and arsB) by PCR. Most of the 552 Campylobacter isolates were able to survive at higher concentrations of arsanilic acid (512–2,048 μg/mL), roxarsone (512–2,048 μg/mL), and arsenate (128–1,024 μg/mL), but at lower concentrations for arsenite (4–16 μg/mL). Ninety seven percent of the isolates tested by PCR showed the presence of arsP and arsR genes. While 95% of the Campylobacter coli isolates contained a larger arsenic resistance operon that has all of the four genes (arsP, arsR, arsC and acr3), 85% of the Campylobacter jejuni isolates carried the short operon (arsP, and arsR). The presence of arsC and acr3 did not significantly increase arsenic resistance with the exception of conferring resistance to higher concentrations of arsenate to some Campylobacter isolates. arsB was prevalent in 98% of the tested Campylobacter jejuni isolates, regardless of the presence or absence of arsC and acr3, but was completely absent in Campylobacter coli. To our knowledge, this is the first study to determine arsenic resistance and the prevalence of arsenic resistance genes in such a large number of Campylobacter isolates. PMID:23965921

  1. Heterologous expression of Mus musculus immunoresponsive gene 1 (irg1 in Escherichia coli results in itaconate production

    Directory of Open Access Journals (Sweden)

    Kiira S Vuoristo

    2015-08-01

    Full Text Available Itaconic acid, a C5-dicarboxylic acid, is a potential biobased building block for the polymer industry. It is obtained from the citric acid cycle by decarboxylation of cis-aconitic acid. This reaction is catalysed by CadA in the native itaconic acid producer Aspergillus terreus. Recently, another enzyme encoded by the mammalian immunoresponsive gene 1 (irg1, was found to decarboxylate cis-aconitate to itaconate in vitro. We show that heterologous expression of irg1 enabled itaconate production in E. coli with production titres up to 560 mg/L.

  2. Expression of a Buckwheat Trypsin Inhibitor Gene in Escherichia coli and its Effect on Multiple Myeloma IM-9 Cell Proliferation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The gene of buckwheat trypsin inhibitor (BTI) has been cloned and expressed in Escherichia coli. The yield of this recombinant inhibitor was over 12 mg/L by using one-step purification on a Ni2+-NTA Sepharose column. Its molecular weight was 9322.1 Da, determined by mass spectrum analysis. The MTT and cytometry analyses showed that recombinant BTI could specifically inhibit the proliferation of IM-9 human B lymphoblastoid cells (from patient with multiple myeloma) in a dose-dependent manner. The test of recombinant BTI-induced apoptosis in IM-9 cells implied that the inhibitor might have potential application in the treatment of cancer.

  3. SOE-LRed: a simple and time-efficient method to localize genes with point mutations onto the Escherichia coli chromosome

    Science.gov (United States)

    Benson, Ryan W.; Cafarelli, Tiziana M.; Godoy, Veronica G.

    2011-01-01

    We report a powerful method to replace wild type genes on the chromosome of Escherichia coli. Employing a unique form of PCR, we generate easily constructible gene fusions bearing single point mutations. Used in conjunction with homologous recombination, this method eliminates cloning procedures previously used for this purpose. PMID:21185880

  4. Identification, cloning and sequencing of Escherichia coli strain chi1378 (O78:K80) iss gene isolated from poultry colibacillosis in Iran.

    Science.gov (United States)

    Derakhshandeh, A; Zahraei Salehi, T; Tadjbakhsh, H; Karimi, V

    2009-09-01

    To identify, clone and sequence the iss (increased serum survival) gene from E. coli strain chi1378 isolated from Iranian poultry and to predict its protein product, Iss. The iss gene from E. coli strain chi1378 was amplified and cloned into the pTZ57R/T vector and sequenced. From the DNA sequence, the Iss predictive protein was evaluated using bioinformatics. Iss from strain chi1378 had 100% identity with other E. coli serotypes and isolates from different origins and also 98% identity with E. coli O157:H7 Iss protein. Phylogenetic analysis showed no significant different phylogenic groups among E. coli strains. The strong association of predicted Iss protein among different E. coli strains suggests that it could be a good antigen to control and detect avian pathogenic E. coli (APEC). Because the exact pathogenesis and the role of virulence factors are unknown, the Iss protein could be used as a target for vaccination in the future, but further research is required.

  5. Diarrheagenic Escherichia coli carrying supplementary virulence genes are an important cause of moderate to severe diarrhoeal disease in Mexico.

    Directory of Open Access Journals (Sweden)

    Sandra Patzi-Vargas

    2015-03-01

    Full Text Available Diarrheagenic Escherichia coli (DEC cause acute and persistent diarrhoea worldwide, but little is known about their epidemiology in Mexico. We determined the prevalence of bacterial enteropathogens in 831 children with acute diarrhoea over a four-year period in Yucatan, Mexico. Six DEC supplementary virulence genes (SVG, mainly associated with enteroaggregative E. coli (EAEC, were sought in 3100 E. coli isolates. DEC was the most common bacterial enteropathogen (28%, surpassing Salmonella (12% and Shigella (9%. Predominant DEC groups were diffusely adherent E. coli (DAEC (35%, EAEC (24%, and enteropathogenic E. coli (EPEC (19%. Among children with DEC infections, 14% had severe illness mainly caused by EPEC (26% and DAEC (18%; 30% had moderate diarrhoea mainly caused by DAEC (36%, mixed DEC infections (33% and EAEC (32%. DAEC was most prevalent during spring, while ETEC, EAEC and EPEC predominated in summer. EAEC was more frequent in children 6-24 months old than in those younger than 6 months of age (P = 0.008, OR = 4.2, 95% CI, 1.3-13.9. The presence of SVG dispersin, (aatA, dispersin-translocator (aatA, enteroaggregative heat-stable toxin 1 (astA, plasmid encoded toxin (pet, cytolethal distending toxin (cdt was higher in DEC than non-DEC strains, (36% vs 26%, P <0.0001, OR = 1.5, 95% CI, 1.3-1.8. 98% of EAEC-infected children harboured strains with SVG; 85% carried the aap-aatA gene combination, and 33% of these also carried astA. 28% of both EPEC and ETEC, and 6% of DAEC patients had strains with SVG. 54% of EPEC patients carried pet-positive strains alone or in combination with astA; only this DEC group harboured cdt-positive isolates. All ETEC patients carried astA- or astA-aap-positive strains. astA and aap were the most common SVG in DAEC (3% and 2% and non-DEC strains (21% and 13%. DEC carrying SVG are an important cause of moderate to severe bacterial diarrhoea in Mexican children.

  6. High Prevalence of β-lactamase and Plasmid-Mediated Quinolone Resistance Genes in Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Dogs in Shaanxi, China

    Science.gov (United States)

    Liu, Xiaoqiang; Liu, Haixia; Li, Yinqian; Hao, Caiju

    2016-01-01

    Objective: The aim of this study was to investigate the occurrence and molecular characterization of extended-spectrum β-lactamases (ESBL), plasmid-mediated AmpC β-lactamase (pAmpC) and carbapenemases as well as plasmid-mediated quinolone-resistant (PMQR) among extended-spectrum cephalosporin-resistant (ESC-R) Escherichia coli from dogs in Shaanxi province in China. Methods: A total of 40 ESC-R Escherichia coli selected from 165 Extraintestinal pathogenic E. coli (ExPEC) isolated from dogs were screened and characterized for the genes encoding for the ESBLs, pAmpC, carbapenemases and PMQR genes by PCR and sequencing. Phylogenetic groups, virulence gene profiles and multilocus sequence typing (MLST) were used to investigate the genetic background of the ESC-R E. coli isolates. Results: Among 40 ESC-R E. coli, the predominant β-lactamase gene was blaCTX−Ms (n = 35), and followed by blaTEM−1 (n = 31), blaSHV−12 (n = 14), blaOXA−48 (n = 8), blaTEM−30 (n = 4), blaCMY−2 (n = 3) and blaDHA−1 (n = 2). The most common specific blaCTX−M gene subtype was blaCTX−M−15 (n = 31), and followed by blaCTX−M−123 (n = 14), blaCTX−M−1 (n = 10), blaCTX−M−14 (n = 10) and blaCTX−M−9 (n = 7). PMQR genes were detected in 32 (80%) isolates, and the predominant PMQR gene was aac(6′)-Ib-cr (n = 26), followed by qnrS (n = 12), qnrD (n = 9), qnrB (n = 8), qepA (n = 4), and all PMQR genes were detected in co-existence with β-lactamase genes. traT (n = 34) and fimH (n = 32) were the most prevalent virulence genes, and virulence genes fimH, iutA, fyuA, malX, iha, and sat were more prevalent in phylogenetic group B2. The 40 ESC-R isolates analyzed were assigned to 22 sequence types (STs), and the clonal lineages ST131 (n = 10) and ST10 (n = 9) were the predominant STs. Conclusion: High prevalence of β-lantamases and PMQR genes were detected among ESC-R E. coli from companion animals. This is also the first description of the co-existence of six

  7. High Prevalence of β-lactamase and Plasmid-mediated Quinolone Resistance Genes in Extended-spectrum Cephalosporin-resistant Escherichia coli from Dogs in Shaanxi, China

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Liu

    2016-11-01

    Full Text Available Objective: The aim of this study was to investigate the occurrence and molecular characterization of extended-spectrum β-lactamases (ESBL, plasmid-mediated AmpC β-lactamase (pAmpC and carbapenemases as well as plasmid-mediated quinolone-resistant (PMQR among extended-spectrum cephalosporin-resistant (ESC-R Escherichia coli from dogs in Shaanxi province in China.Methods: A total of 40 ESC-R Escherichia coli selected from 165 Extraintestinal pathogenic E. coli (ExPEC isolated from dogs were screened and characterized for the genes encoding for the ESBLs, pAmpC, carbapenemases and PMQR genes by PCR and sequencing. Phylogenetic groups, virulence gene profiles and multilocus sequence typing (MLST were used to investigate the genetic background of the ESC-R E. coli isolates. Results: Among 40 ESC-R E. coli, the predominant β-lactamase gene was blaCTX-Ms (n=35, and followed by blaTEM-1 (n=31, blaSHV-12 (n=14, blaOXA-48 (n=8, blaTEM-30 (n=4, blaCMY-2 (n=3 and blaDHA-1 (n=2. The most common specific blaCTX-M gene subtype was blaCTX-M-15 (n=31, and followed by blaCTX-M-123 (n=14, blaCTX-M-1 (n=10, blaCTX-M-14 (n=10 and blaCTX-M-9 (n=7. PMQR genes were detected in 32 (80% isolates, and the predominant PMQR gene was aac(6'-Ib-cr (n=26, followed by qnrS (n=12, qnrD (n=9, qnrB (n=8, qepA (n=4, and all PMQR genes were detected in co-existence with β-lactamase genes. traT (n=34 and fimH (n=32 were the most prevalent virulence genes, and virulence genes fimH, iutA, fyuA, malX, iha and sat were more prevalent in phylogenetic group B2. The 40 ESC-R isolates analyzed were assigned to 22 sequence types (STs, and the clonal lineages ST131 (n=10 and ST10 (n=9 were the predominant STs. Conclusion: High prevalence of β-lantamases and PMQR genes were detected among ESC-R E. coli from companion animals. This is also the first description of the co-existence of six β-lantamase genes and five PMQR genes in one E. coli isolate. Moreover, ten ST131 clones harboring CTX

  8. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics.

    Science.gov (United States)

    Johnson, J R; Moseley, S L; Roberts, P L; Stamm, W E

    1988-02-01

    To assess the role of aerobactin as a virulence factor among uropathogenic Escherichia coli, we determined the prevalence, location, and phenotypic expression of aerobactin determinants among 58 E. coli strains causing bacteremic urinary tract infections. We correlated the presence of the aerobactin system with antimicrobial-agent resistance, the presence and phenotypic expression of other uropathogenic virulence factor determinants (P fimbriae, hemolysin, and type 1 fimbriae), and characteristics of patients. Colony and Southern hybridization of total and plasmid DNA with DNA probes for each virulence factor showed that aerobactin determinants were present in 78% of the strains and were plasmid associated in 21%, whereas P fimbria, hemolysin, and type 1 fimbria determinants were present in 74, 43, and 98% of the strains, respectively, and were always chromosomal. Chromosomal aerobactin, P fimbria, and hemolysin determinants occurred together on the chromosome more often in strains from patients without predisposing urological or medical conditions (P = 0.04). Strains with plasmid-encoded aerobactin lacked determinants for P fimbriae (P = 0.004) and hemolysin (P = 0.0004), were resistant to multiple antimicrobial agents (P = 0.0001), and were found only in compromised patients. Mating experiments demonstrated that some aerobactin plasmids also encoded antimicrobial-agent resistance. These findings suggest that the determinants for aerobactin, P fimbriae, and hemolysin are conserved on the chromosome of the antimicrobial-agent-susceptible uropathogenic strains of E. coli which invade noncompromised patients. In contrast, these chromosomal virulence factors are often absent from E. coli strains causing urosepsis in compromised hosts; these strains may acquire plasmid aerobactin in conjunction with antimicrobial-agent resistance genes.

  9. The Chromosomal Toxin Gene yafQ Is a Determinant of Multidrug Tolerance for Escherichia coli Growing in a Biofilm▿

    Science.gov (United States)

    Harrison, Joe J.; Wade, William D.; Akierman, Sarah; Vacchi-Suzzi, Caterina; Stremick, Carol A.; Turner, Raymond J.; Ceri, Howard

    2009-01-01

    Escherichia coli is refractory to elevated doses of antibiotics when it is growing in a biofilm, and this is potentially due to high numbers of multidrug-tolerant persister cells in the surface-adherent population. Previously, the chromosomal toxin-antitoxin loci hipBA and relBE have been linked to the frequency at which persister cells occur in E. coli populations. In the present study, we focused on the dinJ-yafQ-encoded toxin-antitoxin system and hypothesized that deletion of the toxin gene yafQ might influence cell survival in antibiotic-exposed biofilms. By using confocal laser scanning microscopy and viable cell counting, it was determined that a ΔyafQ mutant produced biofilms with a structure and a cell density equivalent to those of the parental strain. In-depth susceptibility testing identified that relative to wild-type E. coli, the ΔyafQ strain had up to a ∼2,400-fold decrease in cell survival after the biofilms were exposed to bactericidal concentrations of cefazolin or tobramycin. Corresponding to these data, controlled overexpression of yafQ from a high-copy-number plasmid resulted in up to a ∼10,000-fold increase in the number of biofilm cells surviving exposure to these bactericidal drugs. In contrast, neither the inactivation nor the overexpression of yafQ affected the tolerance of biofilms to doxycycline or rifampin (rifampicin). Furthermore, deletion of yafQ did not affect the tolerance of stationary-phase planktonic cells to any of the antibacterials tested. These results suggest that yafQ mediates the tolerance of E. coli biofilms to multiple but specific antibiotics; moreover, our data imply that this cellular pathway for persistence is likely different from that of multidrug-tolerant cells in stationary-phase planktonic cell cultures. PMID:19307375

  10. The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm.

    Science.gov (United States)

    Harrison, Joe J; Wade, William D; Akierman, Sarah; Vacchi-Suzzi, Caterina; Stremick, Carol A; Turner, Raymond J; Ceri, Howard

    2009-06-01

    Escherichia coli is refractory to elevated doses of antibiotics when it is growing in a biofilm, and this is potentially due to high numbers of multidrug-tolerant persister cells in the surface-adherent population. Previously, the chromosomal toxin-antitoxin loci hipBA and relBE have been linked to the frequency at which persister cells occur in E. coli populations. In the present study, we focused on the dinJ-yafQ-encoded toxin-antitoxin system and hypothesized that deletion of the toxin gene yafQ might influence cell survival in antibiotic-exposed biofilms. By using confocal laser scanning microscopy and viable cell counting, it was determined that a Delta yafQ mutant produced biofilms with a structure and a cell density equivalent to those of the parental strain. In-depth susceptibility testing identified that relative to wild-type E. coli, the Delta yafQ strain had up to a approximately 2,400-fold decrease in cell survival after the biofilms were exposed to bactericidal concentrations of cefazolin or tobramycin. Corresponding to these data, controlled overexpression of yafQ from a high-copy-number plasmid resulted in up to a approximately 10,000-fold increase in the number of biofilm cells surviving exposure to these bactericidal drugs. In contrast, neither the inactivation nor the overexpression of yafQ affected the tolerance of biofilms to doxycycline or rifampin (rifampicin). Furthermore, deletion of yafQ did not affect the tolerance of stationary-phase planktonic cells to any of the antibacterials tested. These results suggest that yafQ mediates the tolerance of E. coli biofilms to multiple but specific antibiotics; moreover, our data imply that this cellular pathway for persistence is likely different from that of multidrug-tolerant cells in stationary-phase planktonic cell cultures.

  11. Natural plant products inhibits growth and alters the swarming motility, biofilm formation, and expression of virulence genes in enteroaggregative and enterohemorrhagic Escherichia coli.

    Science.gov (United States)

    García-Heredia, Alam; García, Santos; Merino-Mascorro, José Ángel; Feng, Peter; Heredia, Norma

    2016-10-01

    The purpose of this study was to determine the effects of plant products on the growth, swarming motility, biofilm formation and virulence gene expression in enterohemorrhagic Escherichia coli O157:H7 and enteroaggregative E. coli strain 042 and a strain of O104:H4 serotype. Extracts of Lippia graveolens and Haematoxylon brassiletto, and carvacrol, brazilin were tested by an antimicrobial microdilution method using citral and rifaximin as controls. All products showed bactericidal activity with minimal bactericidal concentrations ranging from 0.08 to 8.1 mg/ml. Swarming motility was determined in soft LB agar. Most compounds reduced swarming motility by 7%-100%; except carvacrol which promoted motility in two strains. Biofilm formation studies were done in microtiter plates. Rifaximin inhibited growth and reduced biofilm formation, but various concentrations of other compounds actually induced biofilm formation. Real time PCR showed that most compounds decreased stx2 expression. The expression of pic and rpoS in E. coli 042 were suppressed but in E. coli O104:H4 they varied depending on compounds. In conclusion, these extracts affect E. coli growth, swarming motility and virulence gene expression. Although these compounds were bactericidal for pathogenic E. coli, sublethal concentrations had varied effects on phenotypic and genotypic traits, and some increased virulence gene expression.

  12. Characterization of shiga toxin subtypes and virulence genes in Porcine shiga toxin-producing Escherichia coli

    Science.gov (United States)

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a...

  13. Detection of Integrase Gene in E. coli Isolated from Pigs at Different Stages of Production System

    Directory of Open Access Journals (Sweden)

    Eulalia de la Torre

    2014-01-01

    Full Text Available Integrons are one of the genetic elements involved in the acquisition of antibiotic resistance. The aim of the present research is to investigate the presence of integrons in commensal Escherichia coli (E. coli strains, isolated from pigs at different stages of production system and from the environment in an Argentinian farm. Five sows postpartum and five randomly chosen piglets from each litter were sampled by rectal swabs. They were sampled again at day 21 and at day 70. Environmental samples from the farm were also obtained. E. coli containing any integron class or combination of both integrons was detected by polymerase chain reaction in 100% of sows and in piglets at different stages of production: farrowing pen stage 68.1%;, weaning 60%, and growing/finishing 85.8%, showing an increase along the production system. From environmental samples 78.4% of E. coli containing any integron class was detected. We conclude that animals and farm environment can act as reservoirs for potential spread of resistant bacteria by means of mobile genetic elements as integrons, which has a major impact on production of food animals and that can reach man through the food chain, constituting a problem for public health.

  14. Proteomic Analysis of Recombinant Escherichia coli Expressing Zymomonas mobilis pdc and adh Genes

    Institute of Scientific and Technical Information of China (English)

    Xiaoqin Wang; Xuefeng Li; Hui Wang; Mingfeng Yang; Xiushan Yang; Yikun He

    2012-01-01

    Pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) are efficient enzymes for ethanol production in Zymomonas mobilis.These two enzymes were over-expressed in Escherichia coli,which was a better candidate for industrial ethanol production,resulting in a recombinant Escherichia coli strain efficient for ethanol production.To investigate the underlying mechanism,2-DE and LC-MS/MS were preformed.More than 1000 protein spots were reproducibly detected in the gel by image analysis,and 99 protein spots showed significant changes in recombinant E.coli,in which 46 were down-regulated and 53 were up-regulated.These proteins were mainly involved in energy metabolism,small molecule biosynthesis and degradation,transport,and stress.Except for the expected significant upregulation of PDC and ADH,most proteins involved in energy metabolism,purine/pyrimidine ribonucleotide biosynthesis,amino acid biosynthesis,and transport were up-regulated.It suggested that in response to a significant up-regulation of foreign proteins,E.coli could readjust other pathways to reach a new balance in cells,and these up-regulated proteins and pathways cooperated in ethanol production efficiently.

  15. Detection of Integrase Gene in E. coli Isolated from Pigs at Different Stages of Production System.

    Science.gov (United States)

    de la Torre, Eulalia; Colello, Rocío; Padola, Nora Lía; Etcheverría, Analía; Rodríguez, Edgardo; Amanto, Fabián; Tapia, María Ofelia; Soraci, Alejandro Luis

    2014-01-01

    Integrons are one of the genetic elements involved in the acquisition of antibiotic resistance. The aim of the present research is to investigate the presence of integrons in commensal Escherichia coli (E. coli) strains, isolated from pigs at different stages of production system and from the environment in an Argentinian farm. Five sows postpartum and five randomly chosen piglets from each litter were sampled by rectal swabs. They were sampled again at day 21 and at day 70. Environmental samples from the farm were also obtained. E. coli containing any integron class or combination of both integrons was detected by polymerase chain reaction in 100% of sows and in piglets at different stages of production: farrowing pen stage 68.1%;, weaning 60%, and growing/finishing 85.8%, showing an increase along the production system. From environmental samples 78.4% of E. coli containing any integron class was detected. We conclude that animals and farm environment can act as reservoirs for potential spread of resistant bacteria by means of mobile genetic elements as integrons, which has a major impact on production of food animals and that can reach man through the food chain, constituting a problem for public health.

  16. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli

    OpenAIRE

    Daeun Chung; So Yeon Kim; Joong-Hoon Ahn

    2017-01-01

    Polyphenols, which include phenolic acids, flavonoids, stilbenes, and phenylethanoids, are generally known as useful antioxidants. Tyrosol, hydroxytyrosol, and salidroside are typical phenylethanoids. Phenylethanoids are found in plants such as olive, green tea, and Rhodiola and have various biological activities, including the prevention of cardiovascular diseases, cancer, and brain damage. We used Escherichia coli to synthesize three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside...

  17. Escherichia coli harboring Shiga toxin 2 gene variants : frequency and association with clinical symptoms

    NARCIS (Netherlands)

    Friedrich, Alexander W; Bielaszewska, Martina; Zhang, Wen-Lan; Pulz, Matthias; Kuczius, Thorsten; Ammon, Andrea; Karch, Helge

    2002-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) from patients with hemolytic-uremic syndrome (HUS), patients with diarrhea without HUS, or asymptomatic subjects were genotyped to assess associations between stx2 variants and clinical manifestations of infection. Neither stx2d nor stx2e was found

  18. Escherichia coli flagellar genes as target sites for integration and expression of genetic circuits.

    Directory of Open Access Journals (Sweden)

    Mario Juhas

    Full Text Available E. coli is a model platform for engineering microbes, so genetic circuit design and analysis will be greatly facilitated by simple and effective approaches to introduce genetic constructs into the E. coli chromosome at well-characterised loci. We combined the Red recombinase system of bacteriophage λ and Isothermal Gibson Assembly for rapid integration of novel DNA constructs into the E. coli chromosome. We identified the flagellar region as a promising region for integration and expression of genetic circuits. We characterised integration and expression at four candidate loci, fliD, fliS, fliT, and fliY, of the E. coli flagellar region 3a. The integration efficiency and expression from the four integrations varied considerably. Integration into fliD and fliS significantly decreased motility, while integration into fliT and fliY had only a minor effect on the motility. None of the integrations had negative effects on the growth of the bacteria. Overall, we found that fliT was the most suitable integration site.

  19. Cloning, sequencing, and expression of nitrile hydratase gene of mutant 4D strain of Rhodococcus rhodochrous PA 34 in E. coli.

    Science.gov (United States)

    Pratush, Amit; Seth, Amit; Bhalla, T C

    2012-10-01

    The NHase encoding gene of mutant 4D was isolated by PCR amplification. The NHase gene of mutant 4D was successfully cloned and expressed in Escherichia coli by using Ek/LIC Duet cloning kits (Novagen). For the active expression of the NHase gene, the co-expression of small cobalt transporter gene (P-protein gene) has also been co-expressed with NHase gene E. coli. The nucleotide sequence of this NHase gene revealed high homology with the H-NHase of Rhodococcus rhodochrous J1. The recombinant E. coli cells showed higher NHase activity (5.9 U/mg dcw) as compared to the wild (4.1 U/mg dcw) whereas it is less than the mutant strain (8.4 U/mg dcw). Addition of cobalt ion in Luria-Bertani medium is needed up to a very small concentration (0.4 mM) for NHase activity. The recombinant E. coli exhibited maximum NHase activity at 6 h of incubation and was purified with a yield of 56 % with specific activity of 37.1 U/mg protein.

  20. Engineering and Validation of a Vector for Concomitant Expression of Rare Transfer RNA (tRNA) and HIV-1 nef Genes in Escherichia coli.

    Science.gov (United States)

    Mualif, Siti Aisyah; Teow, Sin-Yeang; Omar, Tasyriq Che; Chew, Yik Wei; Yusoff, Narazah Mohd; Ali, Syed A

    2015-01-01

    Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW) rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef), HIV-1 p24 (ca), and HIV-1 vif in NiCo21(DE3) E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.

  1. Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen.

    Directory of Open Access Journals (Sweden)

    Mengzhou Zhou

    Full Text Available BACKGROUND: The nematode Caenorhabditis elegans has become increasingly used for screening antimicrobials and probiotics for pathogen control. It also provides a useful tool for studying microbe-host interactions. This study has established a C. elegans life-span assay to preselect probiotic bacteria for controlling K88(+ enterotoxigenic Escherichia coli (ETEC, a pathogen causing pig diarrhea, and has determined a potential mechanism underlying the protection provided by Lactobacillus. METHODOLOGY/PRINCIPAL FINDINGS: Life-span of C. elegans was used to measure the response of worms to ETEC infection and protection provided by lactic acid-producing bacteria (LAB. Among 13 LAB isolates that varied in their ability to protect C. elegans from death induced by ETEC strain JG280, Lactobacillus zeae LB1 offered the highest level of protection (86%. The treatment with Lactobacillus did not reduce ETEC JG280 colonization in the nematode intestine. Feeding E. coli strain JFF4 (K88(+ but lacking enterotoxin genes of estA, estB, and elt did not cause death of worms. There was a significant increase in gene expression of estA, estB, and elt during ETEC JG280 infection, which was remarkably inhibited by isolate LB1. The clone with either estA or estB expressed in E. coli DH5α was as effective as ETEC JG280 in killing the nematode. However, the elt clone killed only approximately 40% of worms. The killing by the clones could also be prevented by isolate LB1. The same isolate only partially inhibited the gene expression of enterotoxins in both ETEC JG280 and E. coli DH5α in-vitro. CONCLUSIONS/SIGNIFICANCE: The established life-span assay can be used for studies of probiotics to control ETEC (for effective selection and mechanistic studies. Heat-stable enterotoxins appeared to be the main factors responsible for the death of C. elegans. Inhibition of ETEC enterotoxin production, rather than interference of its intestinal colonization, appears to be the

  2. hTERT-targeted E. coli purine nucleoside phosphorylase gene/6-methylpurine deoxyribose therapy for pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jia-hua; TANG Bo; LIU Xun-liang; HE Dao-wei; YANG De-tong

    2007-01-01

    Background Pancreatic cancer is one of the most common tumors and has a 5-year survival for all stages of less than 5%. Most patients with pancreatic cancer are diagnosed at an advanced stage and therefore are not candidates for surgical resection. In recent years, investigation into alternative treatment strategies for this aggressive disease has led to advances in the field of gene therapy for pancreatic cancer. E. coli purine nucleoside phosphorylase/6-methylpurine deoxyribose (ePNP/MePdR) is a suicide gene/prodrug system where PNP enzyme cleaves nontoxic MePdR into cytotoxic membrane-permeable compounds 6-methylpurine (MeP) with high bystander activity, hTERT is expressed in cell lines and tissues for telomerase activity. In this study we examined the efficacy of ePNP under the control of hTERT promoter sequences and assessed the selective killing effects of the ePNP/prodrug MePdR system on pancreatic tumors.Methods Recombinant pET-PNP was established. The protein of E. coli PNPase was expressed and an antibody to E.coli PNPase was prepared. Transcriptional activities of hTERT promoter sequences were analyzed using a luciferase reporter gene. A recombinant phTERT-ePNP vector was constructed. The ePNP/MePdR system affects SW1990 human pancreatic cancer cell lines in vitro.Results The hTERT promoter had high transcriptional activity and conferred specificity on cancer cell lines. The antibody to E. coli PNPase was demonstrated to be specific for the ePNP protein. The MePdR treatment induced a high in vitro cytotoxicity on the sole hTERT-ePNP-producing cell lines and affected SW1990 cells in a dose-dependent manner.Conclusions The hTERT promoter control of the ePNP/MePdR system can provide a beneficial anti-tumor treatment in pancreatic cancer cell lines including a good bystander killing effect.

  3. Large plasmids of Escherichia coli and Salmonella encode highly diverse arrays of accessory genes on common replicon families.

    Science.gov (United States)

    Williams, Laura E; Wireman, Joy; Hilliard, Valda C; Summers, Anne O

    2013-01-01

    Plasmids are important in evolution and adaptation of host bacteria, yet we lack a comprehensive picture of their own natural variation. We used replicon typing and RFLP analysis to assess diversity and distribution of plasmids in the ECOR, SARA, SARB and SARC reference collections of Escherichia coli and Salmonella. Plasmids, especially large (≥30 kb) plasmids, are abundant in these collections. Host species and genotype clearly impact plasmid prevalence; plasmids are more abundant in ECOR than SAR, but, within ECOR, subgroup B2 strains have the fewest large plasmids. The majority of large plasmids have unique RFLP patterns, suggesting high variation, even within dominant replicon families IncF and IncI1. We found only four conserved plasmid types within ECOR, none of which are widely distributed. Within SAR, conserved plasmid types are primarily serovar-specific, including a pSLT-like plasmid in 13 Typhimurium strains. Conservation of pSLT contrasts with variability of other plasmids, suggesting evolution of serovar-specific virulence plasmids is distinct from that of most enterobacterial plasmids. We sequenced a conserved serovar Heidelberg plasmid but did not detect virulence or antibiotic resistance genes. Our data illustrate the high degree of natural variation in large plasmids of E. coli and Salmonella, even among plasmids sharing backbone genes.

  4. Sequence analysis of a bacteriocinogenic plasmid of Clostridium butyricum and expression of the bacteriocin gene in Escherichia coli.

    Science.gov (United States)

    Nakanishi, Shusuke; Tanaka, Mamoru

    2010-06-01

    A small cryptic plasmid, namely, pCBM588, was obtained from Clostridium butyricum MIYAIRI 588 (CBM588)--a bacterium used in probiotics. The complete sequence of pCBM588 was determined. The size of pCBM588 was 8060 bp and the G + C content was 24.3%. Nine open reading frames (ORFs) were predicted, and ORF3 showed significant homologies with a structural bacteriocin gene of Clostridium tyrobutyricum. The putative bacteriocin gene was inserted into the pET21d expression vector in frame; it was expressed as a His-tagged recombinant protein in Escherichia coli BL21 (DE3). A total of 10240AU of the recombinant bacteriocin were purified from 100 ml of E. coli culture. The bacteriocin was cleaved into 2 portions, and the small C-terminal polypeptide consisting of 83 amino acids possessed bactericidal activity. These results demonstrated that the ORF3 of pCBM588 encoded a bacteriocin, which is identical or very similar to the previously reported butyricin 7423.

  5. OsPOP5, A Prolyl Oligopeptidase Family Gene from Rice Confers Abiotic Stress Tolerance in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ping-Rong Wang

    2013-10-01

    Full Text Available The prolyl oligopeptidase family, which is a group of serine peptidases, can hydrolyze peptides smaller than 30 residues. The prolyl oligopeptidase family in plants includes four members, which are prolyl oligopeptidase (POP, EC3.4.21.26, dipeptidyl peptidase IV (DPPIV, EC3.4.14.5, oligopeptidase B (OPB, EC3.4.21.83, and acylaminoacyl peptidase (ACPH, EC3.4.19.1. POP is found in human and rat, and plays important roles in multiple biological processes, such as protein secretion, maturation and degradation of peptide hormones, and neuropathies, signal transduction and memory and learning. However, the function of POP is unclear in plants. In order to study POP function in plants, we cloned the cDNA of the OsPOP5 gene from rice by nested-PCR. Sequence analysis showed that the cDNA encodes a protein of 596 amino acid residues with Mw ≈ 67.29 kD. In order to analyze the protein function under different abiotic stresses, OsPOP5 was expressed in Escherichia coli. OsPOP5 protein enhanced the tolerance of E. coli to high salinity, high temperature and simulated drought. The results indicate that OsPOP5 is a stress-related gene in rice and it may play an important role in plant tolerance to abiotic stress.

  6. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation.

    Science.gov (United States)

    Veit, Andrea; Polen, Tino; Wendisch, Volker F

    2007-02-01

    During aerobic growth on glucose, Escherichia coli produces acetate in the so-called overflow metabolism. DNA microarray analysis was used to determine the global gene expression patterns of chemostat cultivations of E. coli MG1655 that were characterized by different acetate formation rates during aerobic growth on glucose. A correlation analysis identified that expression of ten genes (sdhCDAB, sucB, sucC, acnB, lpdA, fumC and mdh) encoding the TCA cycle enzymes succinate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, aconitase, fumarase and malate dehydrogenase, respectively, and of the acs-yjcH-actP operon for acetate utilization correlated negatively with acetate formation. Relieving transcriptional control of the sdhCDAB-b0725-sucABCD operon by chromosomal promoter exchange mutagenesis yielded a strain with increased specific activities of the TCA cycle enzymes succinate dehydrogenase, alpha-ketoglutarate dehydrogenase and succinyl-CoA synthetase, which are encoded by this operon. The resulting strain produced less acetate and directed more carbon towards carbon dioxide formation than the parent strain MG1655 while maintaining high growth and glucose consumption rates.

  7. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli.

    Science.gov (United States)

    Ma, Tian; Zhou, Yuanjie; Li, Xiaowei; Zhu, Fayin; Cheng, Yongbo; Liu, Yi; Deng, Zixin; Liu, Tiangang

    2016-02-01

    As a highly valued keto-carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α-Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole-genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio-Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high-efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4-fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future.

  8. High-level expression of whiG——A key gene for Streptomyces differentiation in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    谭华荣; 田宇清; 杨海花; 吴畏; 董可宁; K. F. Chater and M. J. Buttner

    1996-01-01

    Six nucleotides located in the region of translation start site of whiG were changed. whiG was amplified by PCR technique. Reformed sequences were determined. This gene was directly subcloned into expression vector pET11c containing strong T7 promoter, and the recombinant plasmid was introduced into E. coli BL21(DE3), which could be induced by IPTG to produce T7 RNA polymerase. The SDS-PAGE result showed that whiG highly expressed in E. coli BL21(DE3), and the yield of whiG product was about 20% of insoluble proteins in cell. whiG product (σwhiG) was further identified by Western blot hybridization after making its antibody. whiG gene was subcloned into Streptomyces plasmid pIJ6021, and then it was introduced into sporulation deficient mutant C71 from Streptomyces coelicolor. The result showed that C71 could restore sporulation and σwhiG has biological functions.

  9. [Repression of the enzyme inducible syntheses in Escherichia coli K12 mutant with a deleted ptsH gene].

    Science.gov (United States)

    Gershanovich, V N; Il'ina, T S; Rusina, O Iu; Iurovitskaia, N V; Bol'shakova, T N

    1977-01-01

    The genome of lambda phage with thermosensitive repressor was integrated into the pts region of the E. coli chromosome. Such a lysogenic culture behaves as a pts mutant at 30 degrees. Heating of cells of this strain leads to the induction of lambda prophage and formation of deletions in the pts region. A mutant with a deletion covering ptsH gene was isolated after prophage induction. The deletion nature of pts mutation was confirmed in genetic and biochemical experiments. It was shown that the deletion is small and does not involve ptsI and lig genes. The isolated deltaptsH mutant possesses all characteristics of pts mutants: pleiotropic impairment of transport and utilization of a number of carbohydrates, repression of the enzyme inducible synthesis and resistance to catabolite repression with glucose. These data (together with earlier ones) allow us to conclude that the phosphorylated form of HPr is involved (in direct of indirect manner/ in activation of DNA transcription.

  10. Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model.

    Science.gov (United States)

    Zhao, Lixiang; Gao, Song; Huan, Haixia; Xu, Xiaojing; Zhu, Xiaoping; Yang, Weixia; Gao, Qingqing; Liu, Xiufan

    2009-05-01

    Avian pathogenic Escherichia coli (APEC) and uropathogenic E. coli (UPEC) establish infections in extraintestinal habitats of different hosts. As the diversity, epidemiological sources and evolutionary origins of extraintestinal pathogenic E. coli (ExPEC) are so far only partially defined, in the present study,100 APEC isolates and 202 UPEC isolates were compared by their content of virulence genes and phylogenetic groups. The two groups showed substantial overlap in terms of their serogroups, phylogenetic groups and virulence genotypes, including their possession of certain genes associated with large transmissible plasmids of APEC. In a chicken challenge model, both UPEC U17 and APEC E058 had similar LD(50), demonstrating that UPEC U17 had the potential to cause significant disease in poultry. To gain further information about the similarities between UPEC and APEC, the in vivo expression of 152 specific genes of UPEC U17 and APEC E058 in both a murine urinary tract infection (UTI) model and a chicken challenge model was compared with that of these strains grown statically to exponential phase in rich medium. It was found that in the same model (murine UTI or chicken challenge), various genes of UPEC U17 and APEC E058 showed a similar tendency of expression. Several iron-related genes were upregulated in the UTI model and/or chicken challenge model, indicating that iron acquisition is important for E. coli to survive in blood or the urinary tract. Based on these results, the potential for APEC to act as human UPEC or as a reservoir of virulence genes for UPEC should be considered. Further, this study compared the transcriptional profile of virulence genes among APEC and UPEC in vivo.

  11. Occurrence of diarrheagenic virulence genes and genetic diversity in Escherichia coli isolates from fecal material of various avian hosts in British Columbia, Canada.

    Science.gov (United States)

    Chandran, Abhirosh; Mazumder, Asit

    2014-03-01

    Contamination of surface water by fecal microorganisms originating from human and nonhuman sources is a public health concern. In the present study, Escherichia coli isolates (n = 412) from the feces of various avian host sources were screened for various virulence genes: stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae (enteropathogenic E. coli [EPEC]), est-h, est-p, and elt (encoding heat-stable toxin [ST] variants STh and STp and heat-labile toxin [LT], respectively) (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). None of the isolates were found to be positive for stx1, while 23% (n = 93) were positive for only stx2, representing STEC, and 15% (n = 63) were positive for only eae, representing EPEC. In addition, five strains obtained from pheasant were positive for both stx2 and eae and were confirmed as non-O157 by using an E. coli O157 rfb (rfbO157) TaqMan assay. Isolates positive for the virulence genes associated with ETEC and EIEC were not detected in any of the hosts. The repetitive element palindromic PCR (rep-PCR) fingerprint analysis identified 143 unique fingerprints, with an overall Shannon diversity index of 2.36. Multivariate analysis of variance (MANOVA) showed that the majority of the STEC and EPEC isolates were genotypically distinct from nonpathogenic E. coli and clustered independently. MANOVA analysis also revealed spatial variation among the E. coli isolates, since the majority of the isolates clustered according to the sampling locations. Although the presence of virulence genes alone cannot be used to determine the pathogenicity of strains, results from this study show that potentially pathogenic STEC and EPEC strains can be found in some of the avian hosts studied and may contaminate surface water and potentially impact human health.

  12. Plasmid-Mediated Colistin Resistance Gene mcr-1 in an Escherichia coli ST10 Bloodstream Isolate in the Sultanate of Oman.

    Science.gov (United States)

    Mohsin, Jalila; Pál, Tibor; Petersen, Jorgen Eskild; Darwish, Dania; Ghazawi, Akela; Ashraf, Tanveer; Sonnevend, Agnes

    2017-08-11

    To identify plasmid-mediated colistin resistance in clinical Enterobacteriaceae isolates in Oman, where this resistance mechanism has not been encountered yet. Twenty-two colistin-resistant Enterobacteriaceae clinical isolates collected between July 2014 and June 2016 in a tertiary care hospital in Muscat were screened by PCR for the mcr-1 and mcr-2 genes. The strain identified as mcr-1 positive was genotyped and its antibiotic susceptibility was established. The mcr-1 containing plasmid was mobilized into Escherichia coli K-12 and its sequence was determined. A single E. coli isolate (OM97) carrying mcr-1 gene was identified, while no strains carrying the mcr-2 gene was found. E. coli OM97 was isolated in June 2016 from blood culture of a male patient with multiple comorbidities. It belonged to ST10. Beyond colistin, it was resistant to amoxicillin-clavulanic acid, piperacillin-tazobactam, amikacin, ciprofloxacin, tetracycline, and cotrimoxazole. The mcr-1 gene was located on a conjugative IncI2-type plasmid of 63722 bp size, which did not harbor any further resistance genes. The genetic surrounding of the mcr-1 gene lacked the ISApl1 element. Although colistin resistance caused by the mcr-1 gene is not common in our collection of clinical isolates, the occurrence of the plasmid-mediated colistin resistance in an E. coli ST10 strain is of concern as this clonal group was already shown to spread ESBL genes and quinolone resistance worldwide. It is especially worrisome that as the mcr-1 gene occurred in a non-ESBL, carbapenem-susceptible E. coli strain, current susceptibility testing algorithms may not detect its presence.

  13. ssb gene duplication restores the viability of ΔholC and ΔholD Escherichia coli mutants.

    Directory of Open Access Journals (Sweden)

    Stéphane Duigou

    2014-10-01

    Full Text Available The HolC-HolD (χψ complex is part of the DNA polymerase III holoenzyme (Pol III HE clamp-loader. Several lines of evidence indicate that both leading- and lagging-strand synthesis are affected in the absence of this complex. The Escherichia coli ΔholD mutant grows poorly and suppressor mutations that restore growth appear spontaneously. Here we show that duplication of the ssb gene, encoding the single-stranded DNA binding protein (SSB, restores ΔholD mutant growth at all temperatures on both minimal and rich medium. RecFOR-dependent SOS induction, previously shown to occur in the ΔholD mutant, is unaffected by ssb gene duplication, suggesting that lagging-strand synthesis remains perturbed. The C-terminal SSB disordered tail, which interacts with several E. coli repair, recombination and replication proteins, must be intact in both copies of the gene in order to restore normal growth. This suggests that SSB-mediated ΔholD suppression involves interaction with one or more partner proteins. ssb gene duplication also suppresses ΔholC single mutant and ΔholC ΔholD double mutant growth defects, indicating that it bypasses the need for the entire χψ complex. We propose that doubling the amount of SSB stabilizes HolCD-less Pol III HE DNA binding through interactions between SSB and a replisome component, possibly DnaE. Given that SSB binds DNA in vitro via different binding modes depending on experimental conditions, including SSB protein concentration and SSB interactions with partner proteins, our results support the idea that controlling the balance between SSB binding modes is critical for DNA Pol III HE stability in vivo, with important implications for DNA replication and genome stability.

  14. Multidrug resistance and extended-spectrum β-lactamases genes among Escherichia coli from patients with urinary tract infections in Northwestern Libya.

    Science.gov (United States)

    Abujnah, Abubaker A; Zorgani, Abdulaziz; Sabri, Mohamed A M; El-Mohammady, Hanan; Khalek, Rania A; Ghenghesh, Khalifa S

    2015-01-01

    Multidrug resistance (MDR) and emergence of extended-spectrum β-lactamases (ESBLs) that mediate resistance to β-lactam drugs among Escherichia coli and other uropathogens have been reported worldwide. However, there is little information on the detection of ESBLs genes in E. coli from patients with urinary tract infections (UTIs) in the Arab countries using polymerase chain reaction (PCR), and in Libya such information is lacking. All patients attending Zawiya Teaching Hospital in Zawiya city between November 2012 and June 2013 suspected of having UTIs and from whom midstream urine samples were taken as part of the clinical workup were included in this prospective study. Samples were examined for uropathogens by standard bacteriological procedures. VITEK-2 automated microbiology system was used to identify the isolated uropathogens and determine the susceptibility of E. coli and Klebsiella spp. isolates to antimicrobials. In addition, phenotypically ESBLs-positive E. coli isolates were tested for ESBLs genes by PCR. The present study enrolled 1,790 patients with UTIs. Uropathogens were found in 371 (20.7%) urine specimens examined. Mixed pathogens were detected in two specimens with 373 total pathogens isolated. E. coli and Klebsiella spp. were the predominant uropathogens at 55.8% (208/373) and 18.5% (69/373), respectively. Other pathogens were detected in 25.7% (96/373) of urine samples. Of the E. coli and Klebsiella spp. tested, 69.2 and 100% were resistant to ampicillin, 6.7 and 33.3% to ceftriaxone, and 23.1 and 17.4% to ciprofloxacin, respectively. MDR (resistance to ≥3 antimicrobial groups) was found in 69 (33.2%) of E. coli and in 29 (42%) of Klebsiella spp. isolates. ESBLs were detected phenotypically in 14 (6.7%) of E. coli and in 15 (21.7%) of Klebsiella spp. isolates. Thirteen out of the 14 phenotypically ESBL-positive E. coli were positive for ESBL genes by PCR. bla TEM gene was detected in seven isolates, bla OXA gene in 10 isolates and bla CTX

  15. Identification of new flagellin-encoding fliC genes in Escherichia coli isolated from domestic animals using RFLP-PCR and sequencing methods

    Directory of Open Access Journals (Sweden)

    Cláudia de Moura

    2013-04-01

    Full Text Available Identification of Escherichia coli requires knowledge regarding the prevalent serotypes and virulence factors profiles allows the classification in pathogenic/non-pathogenic. However, some of these bacteria do not express flagellar antigen invitro. In this case the PCR-restriction fragment length polymorphism (RFLP-PCR and sequencing of the fliC may be suitable for the identification of antigens by replacing the traditional serology. We studied 17 samples of E. coli isolated from animals and presenting antigen H nontypeable (HNT. The H antigens were characterized by PCR-RFLP and sequencing of fliC gene. Three new flagellin genes were identified, for which specific antisera were obtained. The PCR-RFLP was shown to be faster than the serotyping H antigen in E. coli, provided information on some characteristics of these antigens and indicated the presence of new genes fliC.

  16. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae: combinatorial expression of the five PRS genes in Escherichia coli.

    Science.gov (United States)

    Hove-Jensen, Bjarne

    2004-09-24

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS gene product had no PRPP synthase activity. In contrast, expression of five pairwise combinations of PRS genes resulted in the formation of active PRPP synthase. These combinations were PRS1 PRS2, PRS1 PRS3, and PRS1 PRS4, as well as PRS5 PRS2 and PRS5 PRS4. None of the remaining five possible pairwise combinations of PRS genes appeared to produce active enzyme. Extract of an E. coli strain containing a plasmid-borne PRS1 gene and a chromosome-borne PRS3 gene contained detectable PRPP synthase activity, whereas extracts of strains containing PRS1 PRS2, PRS1 PRS4, PRS5 PRS2, or PRS5 PRS4 contained no detectable PRPP synthase activity. In contrast PRPP could be detected in growing cells containing PRS1 PRS2, PRS1 PRS3, PRS5 PRS2, or PRS5 PRS4. These apparent conflicting results indicate that, apart from the PRS1 PRS3-specified enzyme, PRS-specified enzyme is functional in vivo but unstable when released from the cell. Certain combinations of three PRS genes appeared to produce an enzyme that is stable in vitro. Thus, extracts of strains harboring PRS1 PRS2 PRS5, PRS1 PRS4 PRS5, or PRS2 PRS4 PRS5 as well as extracts of strains harboring combinations with PRS1 PRS3 contained readily assayable PRPP synthase activity. The data indicate that although certain pairwise combinations of subunits produce an active enzyme, yeast PRPP synthase requires at least three different subunits to be stable in vitro. The activity of PRPP synthases containing subunits 1 and 3 or subunits 1, 2, and 5 was found to be dependent on Pi, to be temperature-sensitive, and inhibited by ADP.

  17. Demand theory of gene regulation. II. Quantitative application to the lactose and maltose operons of Escherichia coli.

    Science.gov (United States)

    Savageau, M A

    1998-08-01

    Induction of gene expression can be accomplished either by removing a restraining element (negative mode of control) or by providing a stimulatory element (positive mode of control). According to the demand theory of gene regulation, which was first presented in qualitative form in the 1970s, the negative mode will be selected for the control of a gene whose function is in low demand in the organism's natural environment, whereas the positive mode will be selected for the control of a gene whose function is in high demand. This theory has now been further developed in a quantitative form that reveals the importance of two key parameters: cycle time C, which is the average time for a gene to complete an ON/OFF cycle, and demand D, which is the fraction of the cycle time that the gene is ON. Here we estimate nominal values for the relevant mutation rates and growth rates and apply the quantitative demand theory to the lactose and maltose operons of Escherichia coli. The results define regions of the C vs. D plot within which selection for the wild-type regulatory mechanisms is realizable, and these in turn provide the first estimates for the minimum and maximum values of demand that are required for selection of the positive and negative modes of gene control found in these systems. The ratio of mutation rate to selection coefficient is the most relevant determinant of the realizable region for selection, and the most influential parameter is the selection coefficient that reflects the reduction in growth rate when there is superfluous expression of a gene. The quantitative theory predicts the rate and extent of selection for each mode of control. It also predicts three critical values for the cycle time. The predicted maximum value for the cycle time C is consistent with the lifetime of the host. The predicted minimum value for C is consistent with the time for transit through the intestinal tract without colonization. Finally, the theory predicts an optimum value

  18. Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells.

    Science.gov (United States)

    Macnab, Stuart A; Turrell, Susan J; Carr, Ian M; Markham, Alex F; Coletta, P Louise; Whitehouse, Adrian

    2011-11-01

    Colorectal cancer (CRC) is a major cause of cancer-related mortality. A contributing factor to the progression of this disease is sporadic or hereditary mutation of the adenomatous polyposis coli (APC) gene, a negative regulator of the Wnt signalling pathway. Inherited mutations in APC cause the disorder familial adenomatous polyposis (FAP), which leads to CRC development in early adulthood. However, the gene is also disrupted in some 60% of sporadic cancers. Restoration of functional APC may slow the growth of CRC by negatively regulating proliferation-associated genes such as c-myc. Therefore, we have cloned the cDNA of the APC tumour suppressor gene into a replication competent Herpesvirus saimiri (HVS)-based vector to assess APC gene delivery in SW480 and SW620 CRC cell lines. Our results demonstrate that full length APC protein was efficiently expressed from the HVS vector and that transgene expression inhibited proliferation of both the SW480 and the metastatic SW620 cancer cell lines. Moreover, a sustained effect could be observed for at least 8 weeks after initial infection in SW480 cells. In addition, monolayer wounding assays showed a marked reduction in proliferation and migration in HVS-GFP-APC infected cells. We believe that this is the first instance of infectious delivery and APC cDNA expression from a virus-based vector.

  19. Molecular analysis of mutations for the adenomatous polyposis coli (APC) gene in Romanian patients with colorectal cancer.

    Science.gov (United States)

    Toma, M; Cimponeriu, D; Pompilia, A; Stavarachi, M; Beluşică, L; Radu, I; Gavrilă, L

    2008-01-01

    Mutations in adenomatous polyposis coli (APC) gene have not been previously characterized among Romanian patients with colorectal cancer (CRC). We initiate this study to detect the mutations in APC gene in blood and tumor samples collected from 16 patients (10 men and 6 women) and blood samples from 21 first and second degree relatives of the patients. For this the presence of mutations in exons 6, 7, 12, 13, 14 as well as in regions B, L and W of exon 15 was investigated using PCR multiplex. In the same time, we have searched for 5 bp deletions at codon 1061 of APC gene by PAGE and SSCP methods. These methods allowed us to evidence identification of the presence of mutations in samples from 7 individuals. In one patient, was detected a deletion of exon 13th of APC gene both in DNA extracted from blood and tumor samples. Multiple deletions (e.g. in exon 6, 12, and in 15L and 15W regions) in DNA extracted from the tumor sample were detected, but not in DNA probe obtained from blood cells. We can speculate that these mutations are an example of genomic instability accompanying the malignancy. Till now, no mutation affecting 1061 codon of APC gene was identified in the patients investigated in our study.

  20. Wild-type Escherichia coli producing microcins B17, D93, J25, and L; cloning of genes for microcin L production and immunity.

    Science.gov (United States)

    Sablé, S; Duarte, M; Bravo, D; Lanneluc, I; Pons, A M; Cottenceau, G; Moreno, F

    2003-05-01

    For the first time, an Escherichia coli strain producing four microcins (Mcc), B17, D93, J25, and L, and showing immunity to Mcc V was isolated and characterized. Each of the gene clusters encoding the production of Mcc B17, D93, and L was cloned separately. The gene cluster for Mcc L was cloned within a 13.5-kb HindIII-SalI fragment, which includes the Mcc V immunity gene, cvi.

  1. Effects of Cinnamon extract on biochemical enzymes, TNF-α and NF-κB gene expression levels in liver of broiler chickens inoculated with Escherichia coli

    Directory of Open Access Journals (Sweden)

    Seyed Mahmoud Tabatabaei

    2015-09-01

    Full Text Available Abstract: Infection with Escherichia coli (E. coli is a common disease in poultry industry. The use of antibiotics to treat diseases is facing serious criticism and concerns. The medicinal plants may be effective alternatives because of their multiplex activities. The aim of this study was to investigate the effects of cinnamon extract on the levels of liver enzymes, tumor necrosis factor-alpha (TNF-α and nuclear factor-kappa B (NF-κB gene expressions in liver of broiler chickens infected with E. coli. Ninety Ross-308 broilers were divided into healthy or E. coli-infected groups, receiving normal or cinnamon extract (in concentrations of 100 or 200mg/kg of food supplemented diets. E. coli suspension (108cfu was injected subcutaneously after 12 days cinnamon administration. Seventy-two hours after E. coli injection, the blood samples were taken for biochemical analysis of liver enzymes in serum (spectrophotometrically, and liver tissue samples were obtained for detection of gene expression of inflammatory markers TNF-α and NF-κB, using real-time PCR. Infection with E. coli significantly increased the levels of TNF-α and NF-κB gene expressions as well as some liver enzymes including creatine-kinase (CK, lactate-dehydrogenase (LDH, alanine-transferase (ALT and aspartate-transferase (AST as compared with control group (P<0.05. Pre-administration of cinnamon extract in broilers diet (in both concentrations significantly reduced the tissue levels of TNF-α and NF-κB gene expressions and enzymes CK and ALT in serum of broiler chickens inoculated with E. coli in comparison with E. coli group (P<0.05 and P<0.01. The levels of LDH and AST were significantly decreased only by 200mg/kg cinnamon extract in infected broilers. The level of alkaline-phosphatase (ALP was not affected in any groups. Pre-administration of cinnamon extract in diets of broiler chickens inoculated with E. coli could significantly reduce the gene expression levels of pro

  2. Genomic comparison of Escherichia coli serotype O103:H2 isolates with and without verotoxin genes: implications for risk assessment of strains commonly found in ruminant reservoirs

    Directory of Open Access Journals (Sweden)

    Robert Söderlund

    2016-02-01

    Full Text Available Introduction: Escherichia coli O103:H2 occurs as verotoxigenic E. coli (VTEC carrying only vtx1 or vtx2 or both variants, but also as vtx-negative atypical enteropathogenic E. coli (aEPEC. The majority of E. coli O103:H2 identified from cases of human disease are caused by the VTEC form. If aEPEC strains frequently acquire verotoxin genes and become VTEC, they must be considered a significant public health concern. In this study, we have characterized and compared aEPEC and VTEC isolates of E. coli O103:H2 from Swedish cattle. Methods: Fourteen isolates of E. coli O103:H2 with and without verotoxin genes were collected from samples of cattle feces taken during a nationwide cattle prevalence study 2011–2012. Isolates were sequenced with a 2×100 bp setup on a HiSeq2500 instrument producing >100× coverage per isolate. Single-nucleotide polymorphism (SNP typing was performed using the genome analysis tool kit (GATK. Virulence genes and other regions of interest were detected. Susceptibility to transduction by two verotoxin-encoding phages was investigated for one representative aEPEC O103:H2 isolate. Results and Discussion: This study shows that aEPEC O103:H2 is more commonly found (64% than VTEC O103:H2 (36% in the Swedish cattle reservoir. The only verotoxin gene variant identified was vtx1a. Phylogenetic comparison by SNP analysis indicates that while certain subgroups of aEPEC and VTEC are closely related and have otherwise near identical virulence gene repertoires, they belong to separate lineages. This indicates that the uptake or loss of verotoxin genes is a rare event in the natural cattle environment of these bacteria. However, a representative of a VTEC-like aEPEC O103:H2 subgroup could be stably lysogenized by a vtx-encoding phage in vitro.

  3. NMR Structure of the hypothetical protein encoded by the YjbJ gene from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Pineda-Lucena, Antonio; Liao, Jack; Wu, Bin; Yee, Adelinda; Cort, John R.; Kennedy, Michael A.; Edwards, Aled M.; Arrowsmith, Cheryl H.

    2002-06-01

    Here we describe the solution structure of YjbJ (gil418541) as part of a structural proteomics project on the feasibility of the high-throughput generation of samples from Escherichia coli for structural studies. YjbJ is a hypothetical protein from Escherichia coli protein of unknown function. It is conserved, showing significant sequence identity to four predicted prokaryotic proteins, also of unknown function (Figure 1A). These include gil16762921 from Salmonella enterica (S. typhi), gil17938413 from Agrobacterium tumefaciens, gil16265654 from Sinorizhobium meliloti, and gil15599932 from Pseudomona aeruginosa. The structure of YjbJ reveals a new variation of a common motif (four-helix bundle) that could not be predicted from the protein sequence. Although the biochemical function is unknown, the existence of patterns of conserved residues on the protein surface suggest that the fold and function of all these proteins could be similar.

  4. Detection of ctx-M gene in ESBL-producing E. coli strains isolated from urinary tract infection in Semnan, Iran.

    Science.gov (United States)

    Tabar, Mahbobeh Mohammad; Mirkalantari, Shiva; Amoli, Rabeeh Izadi

    2016-07-01

    The incidence of urinary tract infections caused by Extended-Spectrum Beta Lactamase (ESBL) producing Escherichia coli (E. coli) strains due to long term and overuse of broad-spectrum cephalosporine is on the rise. CTX beta-lactamase type, a broad-spectrum beta-lactamase, has been expanding in many countries. The ctx gene is harbored on a plasmid that is spread between Enterobacteriaceae family, especially in E. coli. The aim of this study was to determine the pattern of antimicrobial resistance and investigate the prevalent ESBL phenotype and the ctx-M gene in E. coli isolated from patients with urinary tract infections (UTI) in Semnan. A cross sectional study was performed on 109 strains of E. coli isolated from the urine culture of patient suffering from a UTI referred to Shafa hospital (Semnan, Iran) during March-July 2015. Antimicrobial susceptibility testing was applied and the prevalence of the ESBL phenotype was confirmed using combination disk. PCR methods were completed for amplification of the bla ctx gene. Data were analyzed using SPSS version 18 software. One hundred ninety samples (4.16%) were identified as E. coli. Twenty one (26.6%) of E. coli were ESBL positive and 73.4% were ESBL negative. There was 100% susceptibility to imipeneme. Twenty (68.97%) out of 29 isolates were positive for the ctx-M gene, as detected by PCR. In urinary tract infections, antibiotic treatment was experimental and detailed information regarding the sensitivity of bacteria in the area can be useful to achieve the best treatment.

  5. Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12.

    OpenAIRE

    Vander Horn, P B; Backstrom, A D; Stewart, V; Begley, T. P.

    1993-01-01

    Escherichia coli K-12 synthesizes thiamine pyrophosphate (vitamin B1) de novo. Two precursors [4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate] are coupled to form thiamine monophosphate, which is then phosphorylated to make thiamine pyrophosphate. Previous studies have identified two classes of thi mutations, clustered at 90 min on the genetic map, which result in requirements for the thiazole or the hydroxymethylpryimidine. W...

  6. Effects of a recombinant gene expression on ColE1-like plasmid segregation in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ivanov Ivan

    2011-03-01

    Full Text Available Abstract Background Segregation of expression plasmids leads to loss of recombinant DNA from transformed bacterial cells due to the irregular distribution of plasmids between the daughter cells during cell division. Under non-selective conditions this segregational instability results in a heterogeneous population of cells, where the non-productive plasmid-free cells overgrow the plasmid-bearing cells thus decreasing the yield of recombinant protein. Amongst the factors affecting segregational plasmid instability are: the plasmid design, plasmid copy-number, host cell genotype, fermentation conditions etc. This study aims to investigate the influence of transcription and translation on the segregation of recombinant plasmids designed for constitutive gene expression in Escherichia coli LE392 at glucose-limited continuous cultivation. To this end a series of pBR322-based plasmids carrying a synthetic human interferon-gamma (hIFNγ gene placed under the control of different regulatory elements (promoter and ribosome-binding sites were used as a model. Results Bacterial growth and product formation kinetics of transformed E. coli LE392 cells cultivated continuously were described by a structured kinetic model proposed by Lee et al. (1985. The obtained results demonstrated that both transcription and translation efficiency strongly affected plasmid segregation. The segregation of plasmid having a deleted promoter did not exceed 5% after 190 h of cultivation. The observed high plasmid stability was not related with an increase in the plasmid copy-number. A reverse correlation between the yield of recombinant protein (as modulated by using different ribosome binding sites and segregational plasmid stability (determined by the above model was also observed. Conclusions Switching-off transcription of the hIFNγ gene has a stabilising effect on ColE1-like plasmids against segregation, which is not associated with an increase in the plasmid copy

  7. Multiplex PCR detection of stx1, stx2 and eaeA genes in Escherichia coli isolated from lambs in ChaharmahalvaBakhtiari, Iran

    Directory of Open Access Journals (Sweden)

    Marzieh Tadi Beni

    2013-01-01

    Full Text Available Introduction: Pathogens can be transmitted to the humans through the consumption of contaminated meat and thus causing disease. Shiga-toxin-producing Escherichia coli can cause mild watery diarrhea to more serious complications of hemorrhagic colitis, and hemolytic uremic syndrome to even death. Present study was conducted to detect Shiga toxin-producing Escherichia coli from sheep meat (lamb in ChaharmahalvaBakhtiari, Iran. Materials and methods: 90 Escherichia coli isolates from sheep meat in ChaharmahalvaBakhtiari were evaluated to investigate stx1, stx2 and eaeA genes by multiplex PCR.Results: The rate of stx1 and eaeA-positive Escherichia coli isolates were 11.11% (10/90 and 8.88% (8/90, respectively. Stx2 gene was not found in any isolate.Discussion and conclusion: Lamb harbored Shiga-toxin-producing E. coli and could be a component of Shiga-toxin-producing E. coli transmission from lambs to the humans and can pose a risk to human health in the region.

  8. Molecular Characterization of Escherichia coli Isolates Carrying mcr-1, fosA3, and Extended-Spectrum-β-Lactamase Genes from Food Samples in China.

    Science.gov (United States)

    Liu, Xiaobo; Li, Ruichao; Zheng, Zhiwei; Chen, Kaichao; Xie, Miaomiao; Chan, Edward Wai-Chi; Geng, Shu; Chen, Sheng

    2017-06-01

    This study surveyed the prevalence of mcr-1 in extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli strains of food origin in China and identified strains that carried mcr-1, fosA3, and ESBL genes, which were carried in various plasmids. The mcr-1 and ESBL genes could be cotransferred by one or more types of plasmids. The presence of these multidrug-resistant E. coli strains in food products might pose a huge threat to public health. Copyright © 2017 American Society for Microbiology.

  9. Various Sequence Types of Escherichia coli Isolates Coharboring blaNDM-5 and mcr-1 Genes from a Commercial Swine Farm in China.

    Science.gov (United States)

    Kong, Ling-Han; Lei, Chang-Wei; Ma, Su-Zhen; Jiang, Wei; Liu, Bi-Hui; Wang, Yong-Xiang; Guan, Ru; Men, Shuai; Yuan, Qi-Wu; Cheng, Guang-Yang; Zhou, Wen-Cheng; Wang, Hong-Ning

    2017-03-01

    Sixteen different sequence types (STs) of Escherichia coli isolates from a commercial swine farm in China were confirmed to coharbor the carbapenem resistance gene blaNDM-5 and the colistin resistance gene mcr-1 Whole-genome sequencing revealed that blaNDM-5 and mcr-1 were located on a 46-kb IncX3 plasmid and a 32-kb IncX4 plasmid, respectively. The two plasmids can transfer together with a low fitness cost, which might explain the presence of various STs of E. coli coharboring blaNDM-5 and mcr-1. Copyright © 2017 American Society for Microbiology.

  10. Crystal structure of pyridoxal kinase from the Escherichia coli pdxK gene: implications for the classification of pyridoxal kinases.

    Science.gov (United States)

    Safo, Martin K; Musayev, Faik N; di Salvo, Martino L; Hunt, Sharyn; Claude, Jean-Baptiste; Schirch, Verne

    2006-06-01

    The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were determined in the unliganded and binary complexes with either MgATP or pyridoxal to 2.1-, 2.6-, and 3.2-A resolutions, respectively. The active site of ePL kinase 1 does not show significant conformational change upon binding of either pyridoxal or MgATP. Like sheep PL kinase, ePL kinase 1 exhibits a sequential random mechanism. Unlike sheep pyridoxal kinase, ePL kinase 1 may not tolerate wide variation in the size and chemical nature of the 4' substituent on the substrate. This is the result of differences in a key residue at position 59 on a loop (loop II) that partially forms the active site. Residue 59, which is His in ePL kinase 1, interacts with the formyl group at C-4' of pyridoxal and may also determine if residues from another loop (loop I) can fill the active site in the absence of the substrate. Both loop I and loop II are suggested to play significant roles in the functions of PL kinases.

  11. Amount of colicin release in Escherichia coli is regulated by lysis gene expression of the colicin E2 operon.

    Directory of Open Access Journals (Sweden)

    Andreas Mader

    Full Text Available The production of bacteriocins in response to worsening environmental conditions is one means of bacteria to outcompete other microorganisms. Colicins, one class of bacteriocins in Escherichia coli, are effective against closely related Enterobacteriaceae. Current research focuses on production, release and uptake of these toxins by bacteria. However, little is known about the quantitative aspects of these dynamic processes. Here, we quantitatively study expression dynamics of the Colicin E2 operon in E. coli on a single cell level using fluorescence time-lapse microscopy. DNA damage, triggering SOS response leads to the heterogeneous expression of this operon including the cea gene encoding the toxin, Colicin E2, and the cel gene coding for the induction of cell lysis and subsequent colicin release. Advancing previous whole population investigations, our time-lapse experiments reveal that at low exogenous stress levels all cells eventually respond after a given time (heterogeneous timing. This heterogeneous timing is lost at high stress levels, at which a synchronized stress response of all cells 60 min after induction via stress can be observed. We further demonstrate, that the amount of colicin released is dependent on cel (lysis gene expression, independent of the applied exogenous stress level. A heterogeneous response in combination with heterogeneous timing can be biologically significant. It might enable a bacterial population to endure low stress levels, while at high stress levels an immediate and synchronized population wide response can give single surviving cells of the own species the chance to take over the bacterial community after the stress has ceased.

  12. Genetic Diversity of the fliC Genes Encoding the Flagellar Antigen H19 of Escherichia coli and Application to the Specific Identification of Enterohemorrhagic E. coli O121:H19

    Science.gov (United States)

    Beutin, Lothar; Delannoy, Sabine

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O121:H19 belong to a specific clonal type distinct from other classical EHEC and major enteropathogenic E. coli groups and is regarded as one of the major EHEC serogroups involved in severe infections in humans. Sequencing of the fliC genes associated with the flagellar antigen H19 (fliCH19) revealed the genetic diversity of the fliCH19 gene sequences in E. coli. A cluster analysis of 12 fliCH19 sequences, 4 from O121 and 8 from non-O121 E. coli strains, revealed five different genotypes. All O121:H19 strains fell into one cluster, whereas a second cluster was formed by five non-O121:H19 strains. Cluster 1 and cluster 2 strains differ by 27 single nucleotide exchanges in their fliCH19 genes (98.5% homology). Based on allele discrimination of the fliCH19 genes, a real-time PCR test was designed for specific identification of EHEC O121:H19. The O121 fliCH19 PCR tested negative in 73 E. coli H19 strains that belonged to serogroups other than O121, including 28 different O groups, O-nontypeable H19, and O-rough:H19 strains. The O121 fliCH19 PCR reacted with all 16 tested O121:H19 strains and 1 O-rough:H19 strain which was positive for the O121 wzx gene. A cross-reaction was observed only with E. coli H32 strains which share sequence similarities in the target region of the O121 fliCH19 PCR. The combined use of O-antigen genotyping (O121 wzx) and the detection of O121 fliCH19 allele type contributes to improving the identification and molecular serotyping of EHEC O121:H19 motile and nonmotile strains and variants of these strains lacking stx genes. PMID:25862232

  13. Relative gene expression in acid-adapted Escherichia coli O157:H7 during lactoperoxidase and lactic acid challenge in Tryptone Soy Broth.

    Science.gov (United States)

    Parry-Hanson, Angela A; Jooste, Piet J; Buys, Elna M

    2010-09-20

    Cross-protection of acid-adapted Escherichia coli O157:H7 against inimical stresses is mediated by the glucose-repressed sigma factor RpoS. However, many food systems in which E. coli O157:H7 occurs are complex and contain glucose. This study was aimed at investigating the contribution of acid and lactoperoxidase (LP)-inducible genes to cross-protection of E. coli O157:H7 against LP system and lactic acid (LA) in Tryptone Soy Broth (TSB). Acid-adapted and non-adapted E. coli O157:H7 were challenged to activated LP and LA at pH 4.0 and 5.0 in TSB for 6h at 25°C followed by expression of acid and LP-inducible genes. Acid-adapted E. coli showed cross-protection against activated LP and LA. All the acid-inducible genes tested were repressed at pH 4.0 with or without activated LP system. At pH 7.4, gadA, ompC and ompF were induced in acid-adapted cells. Induction of corA occurred in non-adapted cells but was repressed in acid-adapted cells. Although acid-inducible genes were repressed at pH 4.0, high resistance of acid-adapted cells indicates that expression of acid-inducible genes occurred during acid adaptation and not the actual challenge. Repression of rpoS indicates that RpoS-independent systems contribute to cross-protection in acid-adapted E. coli O157:H7.

  14. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Science.gov (United States)

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  15. Importance of stress-response genes to the survival of airborne Escherichia coli under different levels of relative humidity.

    Science.gov (United States)

    Ng, Tsz Wai; Chan, Wing Lam; Lai, Ka Man

    2017-12-01

    Other than the needs for infection control to investigate the survival and inactivation of airborne bacterial pathogens, there has been a growing interest in exploring bacterial communities in the air and the effect of environmental variables on them. However, the innate biological mechanism influencing the bacterial viability is still unclear. In this study, a mutant-based approach, using Escherichia coli as a model, was used to prove the concept that common stress-response genes are important for airborne survival of bacteria. Mutants with a single gene knockout that are known to respond to general stress (rpoS) and oxidative stress (oxyR, soxR) were selected in the study. Low relative humidity (RH), 30-40% was more detrimental to the bacteria than high RH, >90%. The log reduction of ∆rpoS was always higher than that of the parental strain at all RH levels but the ∆oxyR had a higher log reduction than the parental strain at intermediate RH only. ∆soxR had the same viability compared to the parental strain at all RH levels. The results hint that although different types and levels of stress are produced under different RH conditions, stress-response genes always play a role in the bacterial viability. This study is the first reporting the association between stress-response genes and viability of airborne bacteria.

  16. In Vivo Gene Expression Analysis Identifies Genes Required for Enhanced Colonization of the Mouse Urinary Tract by Uropathogenic Escherichia coli Strain CFT073 dsdA▿ †

    Science.gov (United States)

    Haugen, Brian J.; Pellett, Shahaireen; Redford, Peter; Hamilton, Holly L.; Roesch, Paula L.; Welch, Rodney A.

    2007-01-01

    Deletional inactivation of the gene encoding d-serine deaminase, dsdA, in uropathogenic Escherichia coli strain CFT073 results in a hypermotile strain with a hypercolonization phenotype in the bladder and kidneys of mice in a model of urinary tract infection (UTI). The in vivo gene expression profiles of CFT073 and CFT073 dsdA were compared by isolating RNA directly from the urine of mice challenged with each strain individually. Hybridization of cDNAs derived from these samples to CFT073-specific microarrays allowed identification of genes that were up- or down-regulated in the dsdA deletion strain during UTI. Up-regulated genes included the known d-serine-responsive gene dsdX, suggesting in vivo intracellular accumulation of d-serine by CFT073 dsdA. Genes encoding F1C fimbriae, both copies of P fimbriae, hemolysin, OmpF, a dipeptide transporter DppA, a heat shock chaperone IbpB, and clusters of open reading frames with unknown functions were also up-regulated. To determine the role of these genes as well as motility in the hypercolonization phenotype, mutants were constructed in the CFT073 dsdA background and tested in competition against the wild type in the murine model of UTI. Strains with deletions of one or both of the two P fimbrial operons, hlyA, fliC, ibpB, c0468, locus c3566 to c3568, or c2485 to c2490 colonized mouse bladders and kidneys at levels indistinguishable from wild type. CFT073 dsdA c2398 and CFT073 dsdA focA maintained a hypercolonization phenotype. A CFT073 dsdA dppA mutant was attenuated 10- to 50-fold in its colonization ability compared to CFT073. Our results support a role for d-serine catabolism and signaling in global virulence gene regulation of uropathogenic E. coli. PMID:17074858

  17. Genes for 7S RNAs can replace the gene for 4.5S RNA in growth of Escherichia coli

    DEFF Research Database (Denmark)

    Brown, S

    1991-01-01

    4.5S RNAs of eubacteria and 7S RNAs of archaebacteria and eukaryotes exist in a hairpin conformation. The apex of this hairpin displays structural and sequence similarities among both 4.5S and 7S RNAs. Furthermore, a hyphenated sequence of 16 nucleotides is conserved in all eubacterial 4.5S RNAs...... examined. In this article I report that 7S RNAs that contain this 16-nucleotide sequence are able to replace 4.5S RNAs and permit growth of Escherichia coli....

  18. The yfhQ gene of Escherichia coli encodes a tRNA:Cm32/Um32 methyltransferase

    Directory of Open Access Journals (Sweden)

    Mori Hirotada

    2006-07-01

    Full Text Available Abstract Background Naturally occurring tRNAs contain numerous modified nucleosides. They are formed by enzymatic modification of the primary transcripts during the complex RNA maturation process. In model organisms Escherichia coli and Saccharomyces cerevisiae most enzymes involved in this process have been identified. Interestingly, it was found that tRNA methylation, one of the most common modifications, can be introduced by S-adenosyl-L-methionine (AdoMet-dependent methyltransferases (MTases that belong to two structurally and phylogenetically unrelated protein superfamilies: RFM and SPOUT. Results As a part of a large-scale project aiming at characterization of a complete set of RNA modification enzymes of model organisms, we have studied the Escherichia coli proteins YibK, LasT, YfhQ, and YbeA for their ability to introduce the last unassigned methylations of ribose at positions 32 and 34 of the tRNA anticodon loop. We found that YfhQ catalyzes the AdoMet-dependent formation of Cm32 or Um32 in tRNASer1 and tRNAGln2 and that an E. coli strain with a disrupted yfhQ gene lacks the tRNA:Cm32/Um32 methyltransferase activity. Thus, we propose to rename YfhQ as TrMet(Xm32 according to the recently proposed, uniform nomenclature for all RNA modification enzymes, or TrmJ, according to the traditional nomenclature for bacterial tRNA MTases. Conclusion Our results reveal that methylation at position 32 is carried out by completely unrelated TrMet(Xm32 enzymes in eukaryota and prokaryota (RFM superfamily member Trm7 and SPOUT superfamily member TrmJ, respectively, mirroring the scenario observed in the case of the m1G37 modification (introduced by the RFM member Trm5 in eukaryota and archaea, and by the SPOUT member TrmD in bacteria.

  19. Determination of protein expression and plasmid copy number from cloned genes in Escherichia coli by flow injection analysis using an enzyme indicator vector.

    Science.gov (United States)

    Schendel, F J; Baude, E J; Flickinger, M C

    1989-10-20

    On-line determination of expression rates from cloned genes in Escherichia coli and of plasmid copy number would be useful for monitoring accumulation of non-secreted proteins. As an initial model for monitoring gene expression in intact cells, a non-gene-fusion enzyme-based indicator plasmid has been constructed containing the phoA gene coding for alkaline phosphatase (AP) in pUCIS and pACYC184. The activity of AP can be rapidly determined in permeabilized cells. A flow injection analysis (FIA) assay has been developed which allows the direct real-time measurement of the AP activity during cell growth. A model target gene coding for E. coli cyanase (cynS) has been inserted in order to determine the ratio between the expression of the target and indicator, AP. A linear relationship has been found between plasmid copy number and AP activity for the high-copy pUC vector. To minimize indicator expression, transcription terminators have been inserted between the cynS and phoA genes, altering the target-to-indicator ratio by 10- to 40-fold. These vectors may be useful for the rapid continuous determination of plasmid copy number and target gene expression for nonsecreted proteins and would overcome the limitations of in situ probe biosensors for real-time determination of the accumulation of proteins from cloned genes in E. coli.

  20. Identification of a cyclooxygenase gene from the red alga Gracilaria vermiculophylla and bioconversion of arachidonic acid to PGF(2α) in engineered Escherichia coli.

    Science.gov (United States)

    Kanamoto, Hirosuke; Takemura, Miho; Ohyama, Kanji

    2011-08-01

    Prostaglandins (PGs) are important local messenger molecules in many tissues and organs of animals including human. For applications in medicine and animal care, PGs are mostly purified from animal tissues or chemically synthesized. To generate a clean, reliable, and inexpensive source for PGs, we have now engineered expression of a suitable cyclooxygenase gene in Escherichia coli and achieved production levels of up to 2.7 mg l(-1) PGF(2α). The cyclooxygenase gene cloned from the red alga Gracilaria vermiculophylla appears to be fully functional without any eukaryotic modifications in E. coli. A crude extract of the recombinant E. coli cells is able to convert in vitro the substrate arachidonic acid (AA) to PGF(2α). Furthermore, these E. coli cells produced PGF(2α) in a medium supplemented with AA and secreted the PGF(2α) product. To our knowledge, this is the first report of the functional expression of a cyclooxygenase gene and concomitant production of PGF(2α) in E. coli. The successful microbial synthesis of PGs with reliable yields promises a novel pharmaceutical tool to produce PGF(2α) at significantly reduced prices and greater purity.

  1. Alteration of the Microbiota and Virulence Gene Expression in E. coli O157:H7 in Pig Ligated Intestine with and without AE Lesions.

    Directory of Open Access Journals (Sweden)

    Bianfang Liu

    Full Text Available Previously we found that E. coli O157:H7 inoculated into ligated pig intestine formed attaching and effacing (AE lesions in some pigs but not in others. The present study evaluated changes in the microbial community and in virulence gene expression in E. coli O157:H7 in ligated pig intestine in which the bacteria formed AE lesions or failed to form AE lesions.The intestinal microbiota was assessed by RNA-based denaturing gradient gel electrophoresis (DGGE analysis. The DGGE banding patterns showed distinct differences involving two bands which had increased intensity specifically in AE-negative pigs (AE- bands and several bands which were more abundant in AE-positive pigs. Sequence analysis revealed that the two AE- bands belonged to Veillonella caviae, a species with probiotic properties, and Bacteroides sp. Concurrent with the differences in microbiota, gene expression analysis by quantitative PCR showed that, compared with AE negative pigs, E. coli O157:H7 in AE positive pigs had upregulated genes for putative adhesins, non-LEE encoded nleA and quorum sensing qseF, acid resistance gene ureD, and genes from the locus of enterocyte effacement (LEE.The present study demonstrated that AE-positive pigs had reduced activities or populations of Veillonella caviae and Bacterioides sp. compared with AE-negative pigs. Further studies are required to understand how the microbiota was changed and the role of these organisms in the control of E. coli O157:H7.

  2. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12.

    Science.gov (United States)

    Maurer, Lisa M; Yohannes, Elizabeth; Bondurant, Sandra S; Radmacher, Michael; Slonczewski, Joan L

    2005-01-01

    Gene expression profiles of Escherichia coli K-12 W3110 were compared as a function of steady-state external pH. Cultures were grown to an optical density at 600 nm of 0.3 in potassium-modified Luria-Bertani medium buffered at pH 5.0, 7.0, and 8.7. For each of the three pH conditions, cDNA from RNA of five independent cultures was hybridized to Affymetrix E. coli arrays. Analysis of variance with an alpha level of 0.001 resulted in 98% power to detect genes showing a twofold difference in expression. Normalized expression indices were calculated for each gene and intergenic region (IG). Differential expression among the three pH classes was observed for 763 genes and 353 IGs. Hierarchical clustering yielded six well-defined clusters of pH profiles, designated Acid High (highest expression at pH 5.0), Acid Low (lowest expression at pH 5.0), Base High (highest at pH 8.7), Base Low (lowest at pH 8.7), Neutral High (highest at pH 7.0, lower in acid or base), and Neutral Low (lowest at pH 7.0, higher at both pH extremes). Flagellar and chemotaxis genes were repressed at pH 8.7 (Base Low cluster), where the cell's transmembrane proton potential is diminished by the maintenance of an inverted pH gradient. High pH also repressed the proton pumps cytochrome o (cyo) and NADH dehydrogenases I and II. By contrast, the proton-importing ATP synthase F1Fo and the microaerophilic cytochrome d (cyd), which minimizes proton export, were induced at pH 8.7. These observations are consistent with a model in which high pH represses synthesis of flagella, which expend proton motive force, while stepping up electron transport and ATPase components that keep protons inside the cell. Acid-induced genes, on the other hand, were coinduced by conditions associated with increased metabolic rate, such as oxidative stress. All six pH-dependent clusters included envelope and periplasmic proteins, which directly experience external pH. Overall, this study showed that (i) low pH accelerates acid

  3. A longitudinal study simultaneously exploring the carriage of APEC virulence associated genes and the molecular epidemiology of faecal and systemic E. coli in commercial broiler chickens.

    Directory of Open Access Journals (Sweden)

    Kirsty Kemmett

    Full Text Available Colibacillosis is an economically important syndromic disease of poultry caused by extra-intestinal avian pathogenic Escherichia coli (APEC but the pathotype remains poorly defined. Combinations of virulence-associated genes (VAGs have aided APEC identification. The intestinal microbiota is a potential APEC reservoir. Broiler chickens are selectively bred for fast, uniform growth. Here we simultaneously investigate intestinal E. coli VAG carriage in apparently healthy birds and characterise systemic E. coli from diseased broiler chickens from the same flocks. Four flocks were sampled longitudinally from chick placement until slaughter. Phylogrouping, macro-restriction pulsed-field gel electrophoresis (PFGE and multi-locus sequence typing (MLST were performed on an isolate subset from one flock to investigate the population structure of faecal and systemic E. coli. Early in production, VAG carriage among chick intestinal E. coli populations was diverse (average Simpson's D value  = 0.73; 24.05% of intestinal E. coli (n = 160 from 1 day old chicks were carrying ≥5 VAGs. Generalised Linear models demonstrated VAG prevalence in potential APEC populations declined with age; 1% of E. coli carrying ≥5 VAGs at slaughter and demonstrated high strain diversity. A variety of VAG profiles and high strain diversity were observed among systemic E. coli. Thirty three new MLST sequence types were identified among 50 isolates and a new sequence type representing 22.2% (ST-2999 of the systemic population was found, differing from the pre-defined pathogenic ST-117 at a single locus. For the first time, this study takes a longitudinal approach to unravelling the APEC paradigm. Our findings, supported by other studies, highlight the difficulty in defining the APEC pathotype. Here we report a high genetic diversity among systemic E. coli between and within diseased broilers, harbouring diverse VAG profiles rather than single and/or highly related

  4. Mutational robustness of 16S ribosomal RNA, shown by experimental horizontal gene transfer in Escherichia coli

    OpenAIRE

    Kitahara, Kei; Yasutake, Yoshiaki; Miyazaki, Kentaro

    2012-01-01

    The bacterial ribosome consists of three rRNA molecules and 57 proteins and plays a crucial role in translating mRNA-encoded information into proteins. Because of the ribosome’s structural and mechanistic complexity, it is believed that each ribosomal component coevolves to maintain its function. Unlike 5S rRNA, 16S and 23S rRNAs appear to lack mutational robustness, because they form the structural core of the ribosome. However, using Escherichia coli Δ7 (null mutant of operons) as a host, w...

  5. Expression and purification of porcine PID1 gene in Escherichia coli

    OpenAIRE

    Wang, Huan; Chen, Xiaoling; Huang, Zhiqing; ZHOU, BO; Jia, Gang; Liu, Guangmang; Zhao, Hua

    2014-01-01

    In this study, in order to scale up the production of recombinant porcine phosphotyrosine interaction domain containing 1 (pPID1), a pET-28a (+)-pPID1 expression plasmid was constructed and transformed into Escherichia coli Rosetta (DE3). The recombinant pPID1 was then purified and identified by western blotting, and was also analyzed in vitro for its function. The recombinant protein was tagged with only a His6 tag at its C-terminus, which could be conveniently purified by affinity column. T...

  6. Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas.

    Science.gov (United States)

    Virmani, A K; Rathi, A; Sathyanarayana, U G; Padar, A; Huang, C X; Cunnigham, H T; Farinas, A J; Milchgrub, S; Euhus, D M; Gilcrease, M; Herman, J; Minna, J D; Gazdar, A F

    2001-07-01

    The adenomatous polyposis coli (APC) gene is a tumor suppressor gene associated with both familial and sporadic cancer. Despite high rates of allelic loss in lung and breast cancers, point mutations of the APC gene are infrequent in these cancer types. Aberrant methylation of the APC promoter 1A occurs in some colorectal and gastric malignancies, and we investigated whether the same mechanism occurs in lung and breast cancers. The methylation status of the APC gene promoter 1A was analyzed in 77 breast, 50 small cell (SCLC), and 106 non-small cell (NSCLC) lung cancer tumors and cell lines and in 68 nonmalignant tissues by methylation-specific PCR. Expression of the APC promoter 1A transcript was examined in a subset of cell lines by reverse transcription-PCR, and loss of heterozygosity at the gene locus was analyzed by the use of 12 microsatellite and polymorphic markers. Statistical tests were two-sided. Promoter 1A was methylated in 34 of 77 breast cancer tumors and cell lines (44%), in 56 of 106 NSCLC tumors and cell lines (53%), in 13 of 50 SCLC cell lines (26%), and in 3 of 68 nonmalignant samples (4%). Most cell lines tested contained the unmethylated or methylated form exclusively. In 27 cell lines tested, there was complete concordance between promoter methylation and silencing of its transcript. Demethylation with 5-aza-2'-deoxycytidine treatment restored transcript 1A expression in all eight methylated cell lines tested. Loss of heterozygosity at the APC locus was observed in 85% of SCLCs, 83% of NSCLCs, and 63% of breast cancer cell lines. The frequency of methylation in breast cancers increased with tumor stage and size. In summary, aberrant methylation of the 1A promoter of the APC gene and loss of its specific transcript is frequently present in breast and NSCLC cancers and cell lines and, to a lesser extent, in SCLC cell lines. Our findings may be of biological and clinical importance.

  7. A phyletically rare gene promotes the niche-specific fitness of an E. coli pathogen during bacteremia.

    Directory of Open Access Journals (Sweden)

    Travis J Wiles

    2013-02-01

    Full Text Available In bacteria, laterally acquired genes are often concentrated within chromosomal regions known as genomic islands. Using a recently developed zebrafish infection model, we set out to identify unique factors encoded within genomic islands that contribute to the fitness and virulence of a reference urosepsis isolate-extraintestinal pathogenic Escherichia coli strain CFT073. By screening a series of deletion mutants, we discovered a previously uncharacterized gene, neaT, that is conditionally required by the pathogen during systemic infections. In vitro assays indicate that neaT can limit bacterial interactions with host phagocytes and alter the aggregative properties of CFT073. The neaT gene is localized within an integrated P2-like bacteriophage in CFT073, but was rarely found within other proteobacterial genomes. Sequence-based analyses revealed that neaT homologues are present, but discordantly conserved, within a phyletically diverse set of bacterial species. In CFT073, neaT appears to be unameliorated, having an exceptionally A+T-rich composition along with a notably altered codon bias. These data suggest that neaT was recently brought into the proteobacterial pan-genome from an extra-phyletic source. Interestingly, even in G+C-poor genomes, as found within the Firmicutes lineage, neaT-like genes are often unameliorated. Sequence-level features of neaT homologues challenge the common supposition that the A+T-rich nature of many recently acquired genes reflects the nucleotide composition of their genomes of origin. In total, these findings highlight the complexity of the evolutionary forces that can affect the acquisition, utilization, and assimilation of rare genes that promote the niche-dependent fitness and virulence of a bacterial pathogen.

  8. Sequence Variations in the Flagellar Antigen Genes fliCH25 and fliCH28 of Escherichia coli and Their Use in Identification and Characterization of Enterohemorrhagic E. coli (EHEC O145:H25 and O145:H28.

    Directory of Open Access Journals (Sweden)

    Lothar Beutin

    Full Text Available Enterohemorrhagic E. coli (EHEC serogroup O145 is regarded as one of the major EHEC serogroups involved in severe infections in humans. EHEC O145 encompasses motile and non-motile strains of serotypes O145:H25 and O145:H28. Sequencing the fliC-genes associated with the flagellar antigens H25 and H28 revealed the genetic diversity of the fliCH25 and fliCH28 gene sequences in E. coli. Based on allele discrimination of these fliC-genes real-time PCR tests were designed for identification of EHEC O145:H25 and O145:H28. The fliCH25 genes present in O145:H25 were found to be very similar to those present in E. coli serogroups O2, O100, O165, O172 and O177 pointing to their common evolution but were different from fliCH25 genes of a multiple number of other E. coli serotypes. In a similar way, EHEC O145:H28 harbor a characteristic fliCH28 allele which, apart from EHEC O145:H28, was only found in enteropathogenic (EPEC O28:H28 strains that shared some common traits with EHEC O145:H28. The real time PCR-assays targeting these fliCH25[O145] and fliCH28[O145] alleles allow better characterization of EHEC O145:H25 and EHEC O145:H28. Evaluation of these PCR assays in spiked ready-to eat salad samples resulted in specific detection of both types of EHEC O145 strains even when low spiking levels of 1-10 cfu/g were used. Furthermore these PCR assays allowed identification of non-motile E. coli strains which are serologically not typable for their H-antigens. The combined use of O-antigen genotyping (O145wzy and detection of the respective fliCH25[O145] and fliCH28[O145] allele types contributes to improve identification and molecular serotyping of E. coli O145 isolates.

  9. Sequence Variations in the Flagellar Antigen Genes fliCH25 and fliCH28 of Escherichia coli and Their Use in Identification and Characterization of Enterohemorrhagic E. coli (EHEC) O145:H25 and O145:H28

    Science.gov (United States)

    Beutin, Lothar; Delannoy, Sabine; Fach, Patrick

    2015-01-01

    Enterohemorrhagic E. coli (EHEC) serogroup O145 is regarded as one of the major EHEC serogroups involved in severe infections in humans. EHEC O145 encompasses motile and non-motile strains of serotypes O145:H25 and O145:H28. Sequencing the fliC-genes associated with the flagellar antigens H25 and H28 revealed the genetic diversity of the fliCH25 and fliCH28 gene sequences in E. coli. Based on allele discrimination of these fliC-genes real-time PCR tests were designed for identification of EHEC O145:H25 and O145:H28. The fliCH25 genes present in O145:H25 were found to be very similar to those present in E. coli serogroups O2, O100, O165, O172 and O177 pointing to their common evolution but were different from fliCH25 genes of a multiple number of other E. coli serotypes. In a similar way, EHEC O145:H28 harbor a characteristic fliCH28 allele which, apart from EHEC O145:H28, was only found in enteropathogenic (EPEC) O28:H28 strains that shared some common traits with EHEC O145:H28. The real time PCR-assays targeting these fliCH25[O145] and fliCH28[O145] alleles allow better characterization of EHEC O145:H25 and EHEC O145:H28. Evaluation of these PCR assays in spiked ready-to eat salad samples resulted in specific detection of both types of EHEC O145 strains even when low spiking levels of 1–10 cfu/g were used. Furthermore these PCR assays allowed identification of non-motile E. coli strains which are serologically not typable for their H-antigens. The combined use of O-antigen genotyping (O145wzy) and detection of the respective fliCH25[O145] and fliCH28[O145] allele types contributes to improve identification and molecular serotyping of E. coli O145 isolates. PMID:26000885

  10. Sequence Variations in the Flagellar Antigen Genes fliCH25 and fliCH28 of Escherichia coli and Their Use in Identification and Characterization of Enterohemorrhagic E. coli (EHEC) O145:H25 and O145:H28.