WorldWideScience

Sample records for coli expressing cyp109b1

  1. Regioselective biooxidation of (+-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system

    Directory of Open Access Journals (Sweden)

    Schmid Rolf D

    2009-07-01

    Full Text Available Abstract Background (+-Nootkatone (4 is a high added-value compound found in grapefruit juice. Allylic oxidation of the sesquiterpene (+-valencene (1 provides an attractive route to this sought-after flavoring. So far, chemical methods to produce (+-nootkatone (4 from (+-valencene (1 involve unsafe toxic compounds, whereas several biotechnological approaches applied yield large amounts of undesirable byproducts. In the present work 125 cytochrome P450 enzymes from bacteria were tested for regioselective oxidation of (+-valencene (1 at allylic C2-position to produce (+-nootkatone (4 via cis- (2 or trans-nootkatol (3. The P450 activity was supported by the co-expression of putidaredoxin reductase (PdR and putidaredoxin (Pdx from Pseudomonas putida in Escherichia coli. Results Addressing the whole-cell system, the cytochrome CYP109B1 from Bacillus subtilis was found to catalyze the oxidation of (+-valencene (1 yielding nootkatol (2 and 3 and (+-nootkatone (4. However, when the in vivo biooxidation of (+-valencene (1 with CYP109B1 was carried out in an aqueous milieu, a number of undesired multi-oxygenated products has also been observed accounting for approximately 35% of the total product. The formation of these byproducts was significantly reduced when aqueous-organic two-liquid-phase systems with four water immiscible organic solvents – isooctane, n-octane, dodecane or hexadecane – were set up, resulting in accumulation of nootkatol (2 and 3 and (+-nootkatone (4 of up to 97% of the total product. The best productivity of 120 mg l-1 of desired products was achieved within 8 h in the system comprising 10% dodecane. Conclusion This study demonstrates that the identification of new P450s capable of producing valuable compounds can basically be achieved by screening of recombinant P450 libraries. The biphasic reaction system described in this work presents an attractive way for the production of (+-nootkatone (4, as it is safe and can easily be

  2. Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system.

    Science.gov (United States)

    Girhard, Marco; Machida, Kazuhiro; Itoh, Masashi; Schmid, Rolf D; Arisawa, Akira; Urlacher, Vlada B

    2009-07-10

    (+)-Nootkatone (4) is a high added-value compound found in grapefruit juice. Allylic oxidation of the sesquiterpene (+)-valencene (1) provides an attractive route to this sought-after flavoring. So far, chemical methods to produce (+)-nootkatone (4) from (+)-valencene (1) involve unsafe toxic compounds, whereas several biotechnological approaches applied yield large amounts of undesirable byproducts. In the present work 125 cytochrome P450 enzymes from bacteria were tested for regioselective oxidation of (+)-valencene (1) at allylic C2-position to produce (+)-nootkatone (4) via cis- (2) or trans-nootkatol (3). The P450 activity was supported by the co-expression of putidaredoxin reductase (PdR) and putidaredoxin (Pdx) from Pseudomonas putida in Escherichia coli. Addressing the whole-cell system, the cytochrome CYP109B1 from Bacillus subtilis was found to catalyze the oxidation of (+)-valencene (1) yielding nootkatol (2 and 3) and (+)-nootkatone (4). However, when the in vivo biooxidation of (+)-valencene (1) with CYP109B1 was carried out in an aqueous milieu, a number of undesired multi-oxygenated products has also been observed accounting for approximately 35% of the total product. The formation of these byproducts was significantly reduced when aqueous-organic two-liquid-phase systems with four water immiscible organic solvents - isooctane, n-octane, dodecane or hexadecane - were set up, resulting in accumulation of nootkatol (2 and 3) and (+)-nootkatone (4) of up to 97% of the total product. The best productivity of 120 mg l-1 of desired products was achieved within 8 h in the system comprising 10% dodecane. This study demonstrates that the identification of new P450s capable of producing valuable compounds can basically be achieved by screening of recombinant P450 libraries. The biphasic reaction system described in this work presents an attractive way for the production of (+)-nootkatone (4), as it is safe and can easily be controlled and scaled up.

  3. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  4. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    International Nuclear Information System (INIS)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-01-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression

  5. CYP1B1 expression, a potential risk factor for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Goth-Goldstein, Regine; Erdmann, Christine A.; Russell, Marion

    2001-05-31

    CYP1B1 expression in non-tumor breast tissue from breast cancer patients and cancer-free individuals was determined to test the hypothesis that high CYP1B1 expression is a risk factor for breast cancer. Large interindividual variations in CYP1B1 expression were found with CYP1B1 levels notably higher in breast cancer patients than cancer-free individuals. The results indicate that CYP1B1 might play a role in breast cancer either through increased PAH activation or through metabolism of endogenous estrogen to a carcinogenic derivative.

  6. Flavonoids exhibit diverse effects on CYP11B1 expression and cortisol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li-Chuan; Li, Lih-Ann, E-mail: lihann@nhri.org.tw

    2012-02-01

    CYP11B1 catalyzes the final step of cortisol biosynthesis. The effects of flavonoids on transcriptional expression and enzyme activity of CYP11B1 were investigated using the human adrenocortical H295R cell model. All tested nonhydroxylated flavones including 3′,4′-dimethoxyflavone, α-naphthoflavone, and β-naphthoflavone upregulated CYP11B1 expression and cortisol production, whereas apigenin and quercetin exhibited potent cytotoxicity and CYP11B1 repression at high concentrations. Nonhydroxylated flavones stimulated CYP11B1-catalyzed cortisol formation at transcriptional level. Resveratrol increased endogenous and substrate-supported cortisol production like nonhydroxylated flavones tested, but it had no effect on CYP11B1 gene expression and enzyme activity. Resveratrol appeared to alter cortisol biosynthesis at an earlier step. The Ad5 element situated in the − 121/− 106 region was required for basal and flavone-induced CYP11B1 expression. Overexpression of COUP-TFI did not improve the responsiveness of Ad5 to nonhydroxylated flavones. Although COUP-TFI overexpression increased CYP11B1 and CYP11B2 promoter activation, its effect was not mediated through the common Ad5 element. Treating cells with PD98059 (a flavone-type MEK1 inhibitor) increased CYP11B1 promoter activity, but not involving ERK signaling because phosphorylation of ERK1/2 remained unvarying throughout the course of treatment. Likewise, AhR was not responsible for the CYP11B1-modulating effects of flavonoids because inconsistency with their effects on AhR activation. 3′,4′-dimethoxyflavone and 8-Br-cAMP additively activated CYP11B1 promoter activity. H-89 reduced 3′,4′-dimethoxyflavone-induced CYP11B1 promoter activation but to a lesser extent as compared to its inhibition on cAMP-induced transactivation. Our data suggest that constant exposure to nonhydroxylated flavones raises a potential risk of high basal and cAMP-induced cortisol synthesis in consequence of increased CYP11B1

  7. Flavonoids exhibit diverse effects on CYP11B1 expression and cortisol synthesis

    International Nuclear Information System (INIS)

    Cheng, Li-Chuan; Li, Lih-Ann

    2012-01-01

    CYP11B1 catalyzes the final step of cortisol biosynthesis. The effects of flavonoids on transcriptional expression and enzyme activity of CYP11B1 were investigated using the human adrenocortical H295R cell model. All tested nonhydroxylated flavones including 3′,4′-dimethoxyflavone, α-naphthoflavone, and β-naphthoflavone upregulated CYP11B1 expression and cortisol production, whereas apigenin and quercetin exhibited potent cytotoxicity and CYP11B1 repression at high concentrations. Nonhydroxylated flavones stimulated CYP11B1-catalyzed cortisol formation at transcriptional level. Resveratrol increased endogenous and substrate-supported cortisol production like nonhydroxylated flavones tested, but it had no effect on CYP11B1 gene expression and enzyme activity. Resveratrol appeared to alter cortisol biosynthesis at an earlier step. The Ad5 element situated in the − 121/− 106 region was required for basal and flavone-induced CYP11B1 expression. Overexpression of COUP-TFI did not improve the responsiveness of Ad5 to nonhydroxylated flavones. Although COUP-TFI overexpression increased CYP11B1 and CYP11B2 promoter activation, its effect was not mediated through the common Ad5 element. Treating cells with PD98059 (a flavone-type MEK1 inhibitor) increased CYP11B1 promoter activity, but not involving ERK signaling because phosphorylation of ERK1/2 remained unvarying throughout the course of treatment. Likewise, AhR was not responsible for the CYP11B1-modulating effects of flavonoids because inconsistency with their effects on AhR activation. 3′,4′-dimethoxyflavone and 8-Br-cAMP additively activated CYP11B1 promoter activity. H-89 reduced 3′,4′-dimethoxyflavone-induced CYP11B1 promoter activation but to a lesser extent as compared to its inhibition on cAMP-induced transactivation. Our data suggest that constant exposure to nonhydroxylated flavones raises a potential risk of high basal and cAMP-induced cortisol synthesis in consequence of increased CYP11B1

  8. Biodegradation of dioxins by recombinant Escherichia coli expressing rat CYP1A1 or its mutant

    Energy Technology Data Exchange (ETDEWEB)

    Shinkyo, Raku; Inouye, Kuniyo [Kyoto Univ. (Japan). Div. of Food Science and Biotechnology; Kamakura, Masaki; Ikushiro, Shin-ichi; Sakaki, Toshiyuki [Toyama Prefectural Univ. (Japan). Biotechnology Research Center

    2006-09-15

    Among polychlorinated dibenzo-p-dioxins (PCDDs), 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TetraCDD) is the most toxic one. Recently, we reported that rat CYP1A1 mutant, F240A, expressed in yeast showed metabolic activity toward 2,3,7,8-TetraCDD. In this study, we successfully expressed N-terminal truncated P450s ({delta}1A1 and {delta}F240A) in Escherichia coli cells. Kinetic analysis using membrane fractions prepared from the recombinant E. coli cells revealed that {delta}F240A has enzymatic properties similar to F240A expressed in yeast. The metabolism of PCDDs by recombinant E. coli cells expressing both {delta}F240A and human NADPH-P450 reductase was also examined. When 2,3,7-TriCDD was added to the E. coli cell culture at a final concentration of 10 {mu}M, approximately 90% of the 2,3,7-TriCDD was converted into multiple metabolites within 8 h. These results indicate the possible application of prokaryotic cells expressing {delta}F240A to the bioremediation of PCDD-contaminated soil. (orig.)

  9. CYP1A1 and CYP1B1 in human lymphocytes as biomarker of exposure: effect of dioxin exposure and polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Duursen, M. van; Sanderson, T.; Berg, M. van den [Inst. for Risk Assessment Sciences, Utrecht (Netherlands)

    2004-09-15

    There are several known genetic polymorphisms of the CYP1A1 and CYP1B1 genes. A polymorphism in the 3'-untranslated region of the CYP1A1 gene (CYP1A1 MspI or CYP1A1 m1) is often studied in relation with breast or lung cancer, but little is known about the functional effect of this polymorphism. An amino acid substitution in codon 432 (Val to Leu) of the CYP1B1 gene is associated with a lower catalytic activity of the enzyme. However, the involvement of these polymorphisms on the inducibility of CYP1A1 and CYP1B1 gene expression is unclear. CYP1A1 and CYP1B1 mRNA expression levels can be determined in peripheral blood lymphocytes. This makes them potential candidates for use as biomarker of exposure to environmental compounds. Interindividual variations in mRNA expression patterns, catalytic activity and polymorphisms are very important factors when CYP1A1 and CYP1B1 expression patterns are used as biomarker of exposure, but little is known about it. Spencer et al. showed a concentration-dependent increase of CYP1B1 mRNA in lymphocytes upon exposure in vitro to 2,3,7,8-tetrachloro-p-dibenzodioxin (TCDD), the most potent dioxin. Yet, only a few studies describe the in vivo correlation between polymorphisms, mRNA expression level and exposure to environmental factors. In this study, we wanted to obtain a better insight in the CYP1A1 and CYP1B1 mRNA expression and enzyme activity in human lymphocytes. We determined the constitutive CYP1A1 and CYP1B1 mRNA expression in lymphocytes of ten healthy volunteers and the variability in sensitivity toward enzyme induction by TCDD. Further, the CYP1A1 m1 and CYP1B1 Val432Leu polymorphisms were determined.

  10. A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale.

    Science.gov (United States)

    Schiffer, Lina; Anderko, Simone; Hobler, Anna; Hannemann, Frank; Kagawa, Norio; Bernhardt, Rita

    2015-02-25

    Human mitochondrial CYP11B1 catalyzes a one-step regio- and stereoselective 11β-hydroxylation of 11-deoxycortisol yielding cortisol which constitutes not only the major human stress hormone but also represents a commercially relevant therapeutic drug due to its anti-inflammatory and immunosuppressive properties. Moreover, it is an important intermediate in the industrial production of synthetic pharmaceutical glucocorticoids. CYP11B1 thus offers a great potential for biotechnological application in large-scale synthesis of cortisol. Because of its nature as external monooxygenase, CYP11B1-dependent steroid hydroxylation requires reducing equivalents which are provided from NADPH via a redox chain, consisting of adrenodoxin reductase (AdR) and adrenodoxin (Adx). We established an Escherichia coli based whole-cell system for selective cortisol production from 11-deoxycortisol by recombinant co-expression of the demanded 3 proteins. For the subsequent optimization of the whole-cell activity 3 different approaches were pursued: Firstly, CYP11B1 expression was enhanced 3.3-fold to 257 nmol∗L(-1) by site-directed mutagenesis of position 23 from glycine to arginine, which was accompanied by a 2.6-fold increase in cortisol yield. Secondly, the electron transfer chain was engineered in a quantitative manner by introducing additional copies of the Adx cDNA in order to enhance Adx expression on transcriptional level. In the presence of 2 and 3 copies the initial linear conversion rate was greatly accelerated and the final product concentration was improved 1.4-fold. Thirdly, we developed a screening system for directed evolution of CYP11B1 towards higher hydroxylation activity. A culture down-scale to microtiter plates was performed and a robot-assisted, fluorescence-based conversion assay was applied for the selection of more efficient mutants from a random library. Under optimized conditions a maximum productivity of 0.84 g cortisol∗L(-1)∗d(-1) was achieved, which

  11. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    Energy Technology Data Exchange (ETDEWEB)

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kang, Wonku [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  12. CYP109E1 is a novel versatile statin and terpene oxidase from Bacillus megaterium.

    Science.gov (United States)

    Putkaradze, Natalia; Litzenburger, Martin; Abdulmughni, Ammar; Milhim, Mohammed; Brill, Elisa; Hannemann, Frank; Bernhardt, Rita

    2017-12-01

    CYP109E1 is a cytochrome P450 monooxygenase from Bacillus megaterium with a hydroxylation activity for testosterone and vitamin D3. This study reports the screening of a focused library of statins, terpene-derived and steroidal compounds to explore the substrate spectrum of this enzyme. Catalytic activity of CYP109E1 towards the statin drug-precursor compactin and the prodrugs lovastatin and simvastatin as well as biotechnologically relevant terpene compounds including ionones, nootkatone, isolongifolen-9-one, damascones, and β-damascenone was found in vitro. The novel substrates induced a type I spin-shift upon binding to P450 and thus permitted to determine dissociation constants. For the identification of conversion products by NMR spectroscopy, a B. megaterium whole-cell system was applied. NMR analysis revealed for the first time the ability of CYP109E1 to catalyze an industrially highly important reaction, the production of pravastatin from compactin, as well as regioselective oxidations generating drug metabolites (6'β-hydroxy-lovastatin, 3'α-hydroxy-simvastatin, and 4″-hydroxy-simvastatin) and valuable terpene derivatives (3-hydroxy-α-ionone, 4-hydroxy-β-ionone, 11,12-epoxy-nootkatone, 4(R)-hydroxy-isolongifolen-9-one, 3-hydroxy-α-damascone, 4-hydroxy-β-damascone, and 3,4-epoxy-β-damascone). Besides that, a novel compound, 2-hydroxy-β-damascenone, produced by CYP109E1 was identified. Docking calculations using the crystal structure of CYP109E1 rationalized the experimentally observed regioselective hydroxylation and identified important amino acid residues for statin and terpene binding.

  13. Linked expression of Ah receptor, ARNT, CYP1A1, and CYP1B1 in rat mammary epithelia, in vitro, is each substantially elevated by specific extracellular matrix interactions that precede branching morphogenesis.

    Science.gov (United States)

    Larsen, Michele Campaigne; Brake, Paul B; Pollenz, Richard S; Jefcoate, Colin R

    2004-11-01

    Cytochrome P4501B1 (CYP1B1), the major constitutively expressed CYP in the rat mammary gland, is induced by Ah-receptor (AhR) ligands, while CYP1A1 is predominantly expressed only after induction. These CYPs contribute to carcinogenic activation of polycyclic aromatic hydrocarbons (PAHs). AhR, ARNT, and CYP1B1 were only weakly expressed, even after 2,3,7,8-tetrachlorodibenzo-p-dioxin induction, when rat mammary epithelial cells (RMEC) were cultured on plastic. RMEC cultured on the extracellular matrix (ECM), Matrigel, or on a floating gel of collagen I demonstrated branching morphogenesis and substantially increased basal CYP1B1 and induced CYP1A1 expression, in parallel with large increases in AhR and ARNT expression. Branching was more pronounced in the Wistar Kyoto than in the Wistar Furth rat strain. Although EGF enhanced branching, neither strain nor growth factor treatment substantially impacted CYP expression. Increased AhR and ARNT expression is observed within 24 h of dispersal on Matrigel, substantially prior to branch formation. Culture on thin layers of collagen I, collagen IV, and laminin, respectively, failed to reproduce the branching morphogenesis or increases in AhR, ARNT, or CYP expression. However, adherent, gelled collagen I recapitulated the increased protein expression, without supporting branching. This increased protein expression was closely paralleled by enhanced expression of beta-catenin and E-cadherin, components of cell-cell adhesion complexes. A synthetic peptide that selectively antagonizes integrin-ECM interactions reduced branch formation, without diminishing AhR, ARNT, and CYP expression. These data demonstrate that early ECM surface adhesion interactions mediate AhR and ARNT expression, which enhances CYP expression, independent of branching morphogenesis.

  14. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jaruchotikamol, Atika [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Jarukamjorn, Kanokwan [Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Sirisangtrakul, Wanna [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Sakuma, Tsutomu; Kawasaki, Yuki [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Nemoto, Nobuo [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2007-10-15

    The effects of andrographolide, the major diterpenoid constituent of Andrographis paniculata, on the expression of cytochrome P450 superfamily 1 members, including CYP1A1, CYP1A2, and CYP1B1, as well as on aryl hydrocarbon receptor (AhR) expression in primary cultures of mouse hepatocytes were investigated in comparison with the effects of typical CYP1A inducers, including benz[a]anthracene, {beta}-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Andrographolide significantly induced the expression of CYP1A1 and CYP1A2 mRNAs in a concentration-dependent manner, as did the typical CYP1A inducers, but did not induce that of CYP1B1 or AhR. Interestingly, andrographolide plus the typical CYP1A inducers synergistically induced CYP1A1 expression, and the synergism was blocked by an AhR antagonist, resveratrol. The CYP1A1 enzyme activity showed a similar pattern of induction. This is the first report that shows that andrographolide has a potency to induce CYP1A1 enzyme and indicates that andrographolide could be a very useful compound for investigating the regulatory mechanism of the CYP1A1 induction pathway. In addition, our findings suggest preparing advice for rational administration of A. paniculata, according to its ability to induce CYP1A1 expression.

  15. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes

    International Nuclear Information System (INIS)

    Jaruchotikamol, Atika; Jarukamjorn, Kanokwan; Sirisangtrakul, Wanna; Sakuma, Tsutomu; Kawasaki, Yuki; Nemoto, Nobuo

    2007-01-01

    The effects of andrographolide, the major diterpenoid constituent of Andrographis paniculata, on the expression of cytochrome P450 superfamily 1 members, including CYP1A1, CYP1A2, and CYP1B1, as well as on aryl hydrocarbon receptor (AhR) expression in primary cultures of mouse hepatocytes were investigated in comparison with the effects of typical CYP1A inducers, including benz[a]anthracene, β-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Andrographolide significantly induced the expression of CYP1A1 and CYP1A2 mRNAs in a concentration-dependent manner, as did the typical CYP1A inducers, but did not induce that of CYP1B1 or AhR. Interestingly, andrographolide plus the typical CYP1A inducers synergistically induced CYP1A1 expression, and the synergism was blocked by an AhR antagonist, resveratrol. The CYP1A1 enzyme activity showed a similar pattern of induction. This is the first report that shows that andrographolide has a potency to induce CYP1A1 enzyme and indicates that andrographolide could be a very useful compound for investigating the regulatory mechanism of the CYP1A1 induction pathway. In addition, our findings suggest preparing advice for rational administration of A. paniculata, according to its ability to induce CYP1A1 expression

  16. Biochemical and structural characterization of CYP109A2, a vitamin D3 25-hydroxylase from Bacillus megaterium.

    Science.gov (United States)

    Abdulmughni, Ammar; Jóźwik, Ilona K; Brill, Elisa; Hannemann, Frank; Thunnissen, Andy-Mark W H; Bernhardt, Rita

    2017-11-01

    Cytochrome P450 enzymes are increasingly investigated due to their potential application as biocatalysts with high regio- and/or stereo-selectivity and under mild conditions. Vitamin D 3 (VD 3 ) metabolites are of pharmaceutical importance and are applied for the treatment of VD 3 deficiency and other disorders. However, the chemical synthesis of VD 3 derivatives shows low specificity and low yields. In this study, cytochrome P450 CYP109A2 from Bacillus megaterium DSM319 was expressed, purified, and shown to oxidize VD 3 with high regio-selectivity. The in vitro conversion, using cytochrome P450 reductase (BmCPR) and ferredoxin (Fdx2) from the same strain, showed typical Michaelis-Menten reaction kinetics. A whole-cell system in B. megaterium overexpressing CYP109A2 reached 76 ± 5% conversion after 24 h and allowed to identify the main product by NMR analysis as 25-hydroxylated VD 3 . Product yield amounted to 54.9 mg·L -1 ·day -1 , rendering the established whole-cell system as a highly promising biocatalytic route for the production of this valuable metabolite. The crystal structure of substrate-free CYP109A2 was determined at 2.7 Å resolution, displaying an open conformation. Structural analysis predicts that CYP109A2 uses a highly similar set of residues for VD 3 binding as the related VD 3 hydroxylases CYP109E1 from B. megaterium and CYP107BR1 (Vdh) from Pseudonocardia autotrophica. However, the folds and sequences of the BC loops in these three P450s are highly divergent, leading to differences in the shape and apolar/polar surface distribution of their active site pockets, which may account for the observed differences in substrate specificity and the regio-selectivity of VD 3 hydroxylation. The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession code 5OFQ (substrate-free CYP109A2). Cytochrome P450 monooxygenase CYP109A2, EC 1.14.14.1, UniProt ID: D5DF88, Ferredoxin, UniProt ID: D5DFQ0, cytochrome P450

  17. Heterologous expression of Helicoverpa armigera cytochrome P450 CYP6B7 in Pichia pastoris and interactions of CYP6B7 with insecticides.

    Science.gov (United States)

    Zhao, Chunqing; Song, Genmiao; Duan, Hongxia; Tang, Tao; Wang, Chen; Qiu, Lihong

    2017-09-01

    Previous studies indicated that constitutive over-expression of cytochrome P450 CYP6B7 was involved in fenvalerate resistance in Helicoverpa armigera. In this study, the CYP6B7 gene from H. armigera (namely HaCYP6B7), was heterologously expressed in Pichia pastoris GS115. A vector pPICZA-HaCYP6B7 was constructed and transformed into P. pastoris GS115, the transformant of pPICZA-HaCYP6B7-GS115 was then cultured and induced by 1% (v/v) methanol and the heterologous expression of HaCYP6B7 protein in P. pastoris was confirmed by SDS-PAGE and western blot. Microsomes containing the expressed HaCYP6B7 showed activities against model substrate p-nitroanisole and 7-ethoxycoumarin, with p-nitroanisole O-demethylation (PNOD) and 7-ethoxycoumarin O-deethylation (ECOD) activities of 15.66- and 4.75-fold of the control, respectively. Moreover, it showed degradation activities against the insecticides bifenthrin, fenvalerate and chlorpyrifos, with clearance activities of 6.88-, 1.49- and 2.27-fold of the control, respectively. The interactions of HaCYP6B7 with insecticides were further confirmed by molecular docking in silico with binding scores of 5.450, 5.295 and 2.197 between putative HaCYP6B7 protein and bifenthrin, fenvalerate and chlorpyrifos, respectively. The results of present study provided more direct and important evidence on the role of HaCYP6B7 conferring pyrethroid resistance in H. armigera. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Biocatalytic synthesis of flavones and hydroxyl-small molecules by recombinant Escherichia coli cells expressing the cyanobacterial CYP110E1 gene

    Directory of Open Access Journals (Sweden)

    Makino Takuya

    2012-07-01

    Full Text Available Abstract Background Cyanobacteria possess several cytochrome P450s, but very little is known about their catalytic functions. CYP110 genes unique to cyanaobacteria are widely distributed in heterocyst-forming cyanobacteria including nitrogen-fixing genera Nostoc and Anabaena. We screened the biocatalytic functions of all P450s from three cyanobacterial strains of genus Nostoc or Anabaena using a series of small molecules that contain flavonoids, sesquiterpenes, low-molecular-weight drugs, and other aromatic compounds. Results Escherichia coli cells carrying each P450 gene that was inserted into the pRED vector, containing the RhFRed reductase domain sequence from Rhodococcus sp. NCIMB 9784 P450RhF (CYP116B2, were co-cultured with substrates and products were identified when bioconversion reactions proceeded. Consequently, CYP110E1 of Nostoc sp. strain PCC 7120, located in close proximity to the first branch point in the phylogenetic tree of the CYP110 family, was found to be promiscuous for the substrate range mediating the biotransformation of various small molecules. Naringenin and (hydroxyl flavanones were respectively converted to apigenin and (hydroxyl flavones, by functioning as a flavone synthase. Such an activity is reported for the first time in prokaryotic P450s. Additionally, CYP110E1 biotransformed the notable sesquiterpene zerumbone, anti-inflammatory drugs ibuprofen and flurbiprofen (methylester forms, and some aryl compounds such as 1-methoxy and 1-ethoxy naphthalene to produce hydroxylated compounds that are difficult to synthesize chemically, including novel compounds. Conclusion We elucidated that the CYP110E1 gene, C-terminally fused to the P450RhF RhFRed reductase domain sequence, is functionally expressed in E. coli to synthesize a robust monooxygenase, which shows promiscuous substrate specificity (affinity for various small molecules, allowing the biosynthesis of not only flavones (from flavanones but also a variety of

  19. Characterization of cytochrome P450 CYP109E1 from Bacillus megaterium as a novel vitamin D3 hydroxylase.

    Science.gov (United States)

    Abdulmughni, Ammar; Jóźwik, Ilona K; Putkaradze, Natalia; Brill, Elisa; Zapp, Josef; Thunnissen, Andy-Mark W H; Hannemann, Frank; Bernhardt, Rita

    2017-02-10

    In this study the ability of CYP109E1 from Bacillus megaterium to metabolize vitamin D 3 (VD 3 ) was investigated. In an in vitro system using bovine adrenodoxin reductase (AdR) and adrenodoxin (Adx 4-108 ), VD 3 was converted by CYP109E1 into several products. Furthermore, a whole-cell system in B. megaterium MS941 was established. The new system showed a conversion of 95% after 24h. By NMR analysis it was found that CYP109E1 catalyzes hydroxylation of VD 3 at carbons C-24 and C-25, resulting in the formation of 24(S)-hydroxyvitamin D 3 (24S(OH)VD 3 ), 25-hydroxyvitamin D 3 (25(OH)VD 3 ) and 24S,25-dihydroxyvitamin D 3 (24S,25(OH) 2 VD 3 ). Through time dependent whole-cell conversion of VD 3 , we identified that the formation of 24S,25(OH) 2 VD 3 by CYP109E1 is derived from VD 3 via the intermediate 24S(OH)VD 3 . Moreover, using docking analysis and site-directed mutagenesis, we identified important active site residues capable of determining substrate specificity and regio-selectivity. HPLC analysis of the whole-cell conversion with the I85A-mutant revealed an increased selectivity towards 25-hydroxylation of VD 3 compared with the wild type activity, resulting in an approximately 2-fold increase of 25(OH)VD 3 production (45mgl -1 day -1 ) compared to wild type (24.5mgl -1 day -1 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice.

    Science.gov (United States)

    Magome, Hiroshi; Nomura, Takahito; Hanada, Atsushi; Takeda-Kamiya, Noriko; Ohnishi, Toshiyuki; Shinma, Yuko; Katsumata, Takumi; Kawaide, Hiroshi; Kamiya, Yuji; Yamaguchi, Shinjiro

    2013-01-29

    Bioactive gibberellins (GAs) control many aspects of growth and development in plants. GA(1) has been the most frequently found bioactive GA in various tissues of flowering plants, but the enzymes responsible for GA(1) biosynthesis have not been fully elucidated due to the enzymes catalyzing the 13-hydroxylation step not being identified. Because of the lack of mutants defective in this enzyme, biological significance of GA 13-hydroxylation has been unknown. Here, we report that two cytochrome P450 genes, CYP714B1 and CYP714B2, encode GA 13-oxidase in rice. Transgenic Arabidopsis plants that overexpress CYP714B1 or CYP714B2 show semidwarfism. There was a trend that the levels of 13-OH GAs including GA(1) were increased in these transgenic plants. Functional analysis using yeast or insect cells shows that recombinant CYP714B1 and CYP714B2 proteins can convert GA(12) into GA(53) (13-OH GA(12)) in vitro. Moreover, the levels of 13-OH GAs including GA(1) were decreased, whereas those of 13-H GAs including GA(4) (which is more active than GA(1)) were increased, in the rice cyp714b1 cyp714b2 double mutant. These results indicate that CYP714B1 and CYP714B2 play a predominant role in GA 13-hydroxylation in rice. The double mutant plants appear phenotypically normal until heading, but show elongated uppermost internode at the heading stage. Moreover, CYP714B1 and CYP714B2 expression was up-regulated by exogenous application of bioactive GAs. Our results suggest that GA 13-oxidases play a role in fine-tuning plant growth by decreasing GA bioactivity in rice and that they also participate in GA homeostasis.

  1. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels

    Directory of Open Access Journals (Sweden)

    Jacob Aude

    2011-08-01

    Full Text Available Abstract Background AhR activates the transcription of several target genes including CYP1B1. Recently, we showed CYP1B1 as the major cytochrome P450 (CYP enzyme expressed in human brain microvessels. Here, we studied the effect of AhR activation by environmental pollutants on the expression of Cyp1b1 in rat brain microvessels. Methods Expression of AhR and Cyp1b1 was detected in isolated rat brain microvessels. AhR was immunovisualised in brain microvessel endothelial cells. The effect of AhR ligands on Cyp1b1 expression was studied using isolated brain microvessels after ex vivo and/or in vivo exposure to TCDD, heavy hydrocarbons containing diesel exhaust particles (DEP or Δ9-tetrahydrocannabinol (Δ9-THC. Results After ex vivo exposure to TCDD (a highly potent AhR ligand for 3 h, Cyp1b1 expression was significantly increased by 2.3-fold in brain microvessels. A single i.p. dose of TCDD also increased Cyp1b1 transcripts (22-fold and Cyp1b1 protein (2-fold in rat brain microvessels at 72 h after TCDD. Likewise, DEP treatment (in vivo and ex vivo strongly induced Cyp1b1 protein in brain microvessels. DEP-mediated Cyp1b1 induction was inhibited by actinomycin D, cycloheximide, or by an AhR antagonist. In contrast, a sub-chronic in vivo treatment with Δ9-THC once daily for 7 seven days had no effect on Cyp1b1 expression Conclusions Our results show that TCDD and DEP strongly induced Cyp1b1 in rat brain microvessels, likely through AhR activation.

  2. Role of CYP1B1 in PAH-DNA adduct formation and breast cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Goth-Goldstein, Regine; Russell, Marion L.; Muller, A.P.; Caleffi, M.; Eschiletti, J.; Graudenz, M.; Sohn, Michael D.

    2010-04-01

    This study investigated the hypothesis that increased exposure to polycyclic aromatic hydrocarbons (PAHs) increases breast cancer risk. PAHs are products of incomplete burning of organic matter and are present in cigarette smoke, ambient air, drinking water, and diet. PAHs require metabolic transformation to bind to DNA, causing DNA adducts, which can lead to mutations and are thought to be an important pre-cancer marker. In breast tissue, PAHs appear to be metabolized to their cancer-causing form primarily by the cytochrome P450 enzyme CYP1B1. Because the genotoxic impact of PAH depends on their metabolism, we hypothesized that high CYP1B1 enzyme levels result in increased formation of PAH-DNA adducts in breast tissue, leading to increased development of breast cancer. We have investigated molecular mechanisms of the relationship between PAH exposure, CYP1B1 expression and breast cancer risk in a clinic-based case-control study. We collected histologically normal breast tissue from 56 women (43 cases and 13 controls) undergoing breast surgery and analyzed these specimens for CYP1B1 genotype, PAH-DNA adducts and CYP1B1 gene expression. We did not detect any difference in aromatic DNA adduct levels of cases and controls, only between smokers and non-smokers. CYP1B1 transcript levels were slightly lower in controls than cases, but the difference was not statistically significant. We found no correlation between the levels of CYP1B1 expression and DNA adducts. If CYP1B1 has any role in breast cancer etiology it might be through its metabolism of estrogen rather than its metabolism of PAHs. However, due to the lack of statistical power these results should be interpreted with caution.

  3. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk

    Directory of Open Access Journals (Sweden)

    Withey Laura

    2007-07-01

    Full Text Available Abstract Background Cytochrome P450 (CYP enzymes have the potential to affect colorectal cancer (CRC risk by determining the genotoxic impact of exogenous carcinogens and levels of sex hormones. Methods To investigate if common variants of CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1 and CYP19A1 influence CRC risk we genotyped 2,575 CRC cases and 2,707 controls for 20 single nucleotide polymorphisms (SNPs that have not previously been shown to have functional consequence within these genes. Results There was a suggestion of increased risk, albeit insignificant after correction for multiple testing, of CRC for individuals homozygous for CYP1B1 rs162558 and heterozygous for CYP1A2 rs2069522 (odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.03–1.80 and OR = 1.34, 95% CI: 1.00–1.79 respectively. Conclusion This study provides some support for polymorphic variation in CYP1A2 and CYP1B1 playing a role in CRC susceptibility.

  4. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse

    Energy Technology Data Exchange (ETDEWEB)

    Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Bunde, Kristi L. [College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331 (United States); Harper, Tod A. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); McQuistan, Tammie J. [Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States); Löhr, Christiane V. [Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331 (United States); Bramer, Lisa M. [Applied Statistics and Computational Modeling, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M. [Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Tilton, Susan C. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Krueger, Sharon K. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States); and others

    2015-09-01

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8 h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8 h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4 h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8 h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. - Highlights: • Cyp1b1 null mice exhibit lower skin cancer sensitivity to DBC but not BaP or CTE. • Cyp1b1 expression impacts expression of other PAH metabolizing enzymes. • cis/trans-DBCDE-dA ratio significantly higher in the skin than the spleen, lung or liver • Potency of DBC and CTE in mouse skin is higher than predicted by RPFs.

  5. Expression of CYP1C1 and CYP1A in Fundulus heteroclitus during PAH-induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lu [Pharmacology and Environmental Toxicology, University of Mississippi, University, MS (United States); Camus, Alvin C. [Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA (United States); Dong, Wu; Thornton, Cammi [Pharmacology and Environmental Toxicology, University of Mississippi, University, MS (United States); Willett, Kristine L., E-mail: kwillett@olemiss.edu [Pharmacology and Environmental Toxicology, University of Mississippi, University, MS (United States)

    2010-09-15

    CYP1C1 is a relatively newly identified member of the cytochrome P450 family 1 in teleost fish. However, CYP1C1's expression and physiological roles relative to the more recognized CYP1A in polycyclic aromatic hydrocarbons (PAHs) induced toxicities are unclear. Fundulus heteroclitus fry were exposed at 6-8 days post-hatch (dph) and again at 13-15 dph for 6 h to dimethyl sulfoxide (DMSO) control, 5 mg/L benzo[a]pyrene (BaP), or 5 mg/L dimethylbenzanthracene (DMBA). Fry were euthanized at 0, 6, 18, 24 and 30 h after the second exposure. In these groups, both CYP1A and CYP1C1 protein expression were induced within 6 h after the second exposure. Immunohistochemistry (IHC) results from fry revealed strongest CYP1C1 expression in renal tubular and intestinal epithelial cells. Additional fish were examined for liver lesions 8 months after initial exposure. Gross lesions were observed in 20% of the BaP and 35% of the DMBA-treated fish livers. Histopathologic findings included foci of cellular alteration and neoplasms, including hepatocellular adenoma, hepatocellular carcinoma and cholangioma. Strong CYP1A immunostaining was detected diffusely in altered cell foci and on the invading margin of hepatocelluar carcinomas. Lower CYP1A expression was seen in central regions of the neoplasms. In contrast, CYP1C1 was only detectable and highly expressed in proliferated bile duct epithelial cells. Our CYP1C1 results suggest the potential for tissue specific CYP1C1-mediated PAH metabolism but not a more chronic role in progression to liver hepatocellular carcinoma.

  6. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    Science.gov (United States)

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.

  7. Temporal kinetics and concentration-response relationships for induction of CYP1A, CYP2B, and CYP3A in primary cultures of beagle dog hepatocytes.

    Science.gov (United States)

    Graham, Richard A; Tyler, Lindsey O; Krol, Wojciech L; Silver, Ivin S; Webster, Lindsey O; Clark, Philip; Chen, Liangfu; Banks, Troy; LeCluyse, Edward L

    2006-01-01

    Compared to other species, little information is available on the xenobiotic-induced regulation of cytochrome P450 enzymes in the beagle dog. Dogs are widely used in the pharmaceutical industry for many study types, including those that will impact decisions on compound progression. The purpose of this study was (1) to determine the temporal kinetics of drug-induced changes in canine CYP1A, CYP2B, and CYP3A mRNA and enzymatic activity, and (2) to characterize concentration-response relationships for CYP1A2, CYP2B11, and CYP3A12 using primary cultures of canine hepatocytes treated with beta-naphthoflavone (BNF), phenobarbital (PB), and rifampin (RIF), respectively. CYP1A1 and CYP1A2 mRNA exhibited maximal expression (12,700-fold and 206-fold, respectively) after 36 h of treatment with BNF. PB treatment, but not RIF treatment, caused maximal induction of CYP2B11 mRNA (149-fold) after 48 h of treatment. CYP3A12 and CYP3A26 mRNA levels were increased maximally after 72 h of treatment with PB and RIF (CYP3A12, 35-fold and 18-fold, and CYP3A26, 72-fold and 22-fold with PB and RIF treatment, respectively). Concentration-response relationships for BNF induced 7-ethoxyresorufin O-dealkylation (EROD) (EC(50) = 7.8 +/- 4.2 microM), PB induced 7-benzyloxyresorufin O-dealkylation (BROD) (EC(50) = 123 +/- 30 microM), and PB and RIF induced testosterone 6beta-hydroxylation (EC(50) = 132 +/- 28 microM and 0.98 +/- 0.16 microM) resembled the relationship for human CYP induction compared to that of rodent. Interestingly, RIF had no effect on CYP2B11 expression, which represents a species difference overlooked in previous investigations. Overall, the induction of dog CYP1A, CYP2B, and CYP3A exhibits characteristics that are intermediate to those of rodent and human. (c) 2006 Wiley Periodicals, Inc.

  8. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    International Nuclear Information System (INIS)

    Minegishi, Yoshiki; Sakai, Yasuo; Yahara, Yasuhito; Akiyama, Haruhiko; Yoshikawa, Hideki; Hosokawa, Ko; Tsumaki, Noriyuki

    2014-01-01

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1 Δchon cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone

  9. Effect of sulfur dioxide inhalation on CYP2B1/2 and CYP2E1 in rat liver and lung

    Energy Technology Data Exchange (ETDEWEB)

    Guohua Qin; Ziqiang Meng [Shanxi University, Taiyuan (China). Institute of Environmental Medicine and Toxicology

    2006-07-15

    Sulfur dioxide (SO{sub 2}) is a ubiquitous air pollutant, present in low concentrations in the urban air and in higher concentrations in the working environment. In this study, we investigated the effects of inhaled SO{sub 2} on the O-dealkylase of pentoxyresorufin (PROD) and p-nitrophenol hydroxylases (p-NP) activities and mRNA levels of CYP2B1/2 and CYP2E1 in the lung and liver of Wistar rats. Male Wistar rats were housed in exposure chambers and treated with 14.11 {+-}1.53, 28.36 {+-} 2.12, and 56.25 {+-} 4.28 mg /m{sup 3}SO{sub 2} for 6 h/day for 7 days, while control rats were exposed to filtered air in the same condition. The mRNAs of CYP2B1/2 and -2E1 were analyzed in livers and lungs by using reverse-transcription polymerase chain reaction (RT-PCR). Results showed that the PROD activities and mRNA of CYP2B1/2 were decreased in livers and lungs of rats exposed to SO{sub 2}. The p-NP activities and mRNA of CYP2E1 were decreased in lungs but not in livers of rats exposed to SO{sub 2}. Total liver microsomal cytochrome P-450 (CYP) contents were diminished in SO{sub 2} -exposed rats. These results lead to two conclusions: (1) SO{sub 2} exposure can suppress CYP2B1/2 and CYP2E1 in lungs and CYP2B1/2 in livers of rats, thus modifying the liver and lung toxication/detoxication potential, and (2) the total liver microsomal CYP contents were diminished, although the activity and mRNA expression of CYP2E1 in rat livers were not affected by SO{sub 2} exposure.

  10. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, Yoshiki [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193 (Japan); Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sakai, Yasuo [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Plastic Surgery, Bellland General Hospital, 500-3 Higashiyama Naka-ku, Sakai, Osaka 599-8247 (Japan); Yahara, Yasuhito [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Akiyama, Haruhiko [Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194 (Japan); Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hosokawa, Ko [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsumaki, Noriyuki, E-mail: ntsumaki@cira.kyoto-u.ac.jp [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Japan Science and Technology Agency, CREST, Tokyo 102-0075 (Japan)

    2014-11-07

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.

  11. 2,3,7,8-Tetrachlorodibenzo-p-dioxin modulates estradiol-induced aldehydic DNA lesions in human breast cancer cells through alteration of CYP1A1 and CYP1B1 expression.

    Science.gov (United States)

    Chen, Shou-Tung; Chen, Dar-Ren; Fang, Ju-Pin; Lin, Po-Hsiung

    2015-05-01

    Many genes responsible for the bioactivation of endogenous estrogen to reactive quinonoid metabolites, including cytochrome P450 (CYP) 1A1, 1A2, and 1B1, are well-known target genes of the aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The purpose of this research was to investigate the roles of TCDD-mediated altered gene expression in the induction of aldehydic DNA lesions (ADLs) by 17β-estradiol (E2) in human MDA-MB-231 and MCF-7 breast cancer cells. We demonstrated that increases in the number of oxidant-mediated ADLs, including abasic sites and aldehydic base/sugar lesions, were detected in MDA-MB-231 cells exposed to E2. The DNA-damaging effects of E2 in MDA-MB-231 cells were prevented by pretreatment of cells with TCDD. In contrast, we did not observe statistically significant increases in the number of ADLs in MCF-7 cells exposed to E2. However, with TCDD pretreatment, an approximately twofold increase in the number of ADLs was detected in MCF-7 cells exposed to E2. TCDD pretreatment induces disparity in the disposition of E2 to reactive quinonoid metabolites and the subsequent formation of oxidative DNA lesions through alteration of CYP1A1 and CYP1B1 expression in human breast cancer cells.

  12. CAR expression and inducibility of CYP2B genes in liver of rats treated with PB-like inducers

    International Nuclear Information System (INIS)

    Pustylnyak, Vladimir O.; Gulyaeva, Lyudmila F.; Lyakhovich, Vyacheslav V.

    2005-01-01

    The expression of the CAR gene and inducibility of CYP2B protein in the liver of male Wistar rats treated with phenobarbital (PB) and triphenyldioxane (TPD) were investigated. To clarify the role of phosphorylation/dephosphorylation in these processes, rats were treated with inhibitors of Ca 2+ /calmodulin-dependent kinase II (W 7 ) or protein phosphatases PP1 and PP2A (OA) before induction. Constitutive expression of the CAR gene in livers of untreated rats was detected by multiplex RT-PCR. Treatment with W 7 resulted in a 2.8-fold induction of CAR gene expression, whereas OA led to a 2.4-fold decrease of the mRNA level. The same results were obtained for CYP2B genes expression, which were increased by W 7 treatment (two-fold) and decreased by OA (2.3-fold). PB-induction did not lead to significant alteration in the level of CAR gene expression, although CYP2B genes expression was enhanced two-fold over control values. TPD caused a two-fold increase of both CAR and CYP2B mRNA levels. Both inducers reduced the effects of inhibitors on CAR gene expression. Results of EMSA showed that PB, TPD or W 7 alone induced formation of complexes of NR1 with nuclear proteins. Appearance of the complexes correlated with an increase in CYP2B expression, and their intensities were modulated by the protein kinase inhibitors. Thus, our results demonstrate that constitutive expressions of CAR as well as CYP2B during induction are regulated by phosphorylation/dephosphorylation processes

  13. Biotransformation of the mineralocorticoid receptor antagonists spironolactone and canrenone by human CYP11B1 and CYP11B2: Characterization of the products and their influence on mineralocorticoid receptor transactivation.

    Science.gov (United States)

    Schiffer, Lina; Müller, Anne-Rose; Hobler, Anna; Brixius-Anderko, Simone; Zapp, Josef; Hannemann, Frank; Bernhardt, Rita

    2016-10-01

    Spironolactone and its major metabolite canrenone are potent mineralocorticoid receptor antagonists and are, therefore, applied as drugs for the treatment of primary aldosteronism and essential hypertension. We report that both compounds can be converted by the purified adrenocortical cytochromes P450 CYP11B1 and CYP11B2, while no conversion of the selective mineralocorticoid receptor antagonist eplerenone was observed. As their natural function, CYP11B1 and CYP11B2 carry out the final steps in the biosynthesis of gluco- and mineralocorticoids. Dissociation constants for the new exogenous substrates were determined by a spectroscopic binding assay and demonstrated to be comparable to those of the natural substrates, 11-deoxycortisol and 11-deoxycorticosterone. Metabolites were produced at preparative scale with a CYP11B2-dependent Escherichia coli whole-cell system and purified by HPLC. Using NMR spectroscopy, the metabolites of spironolactone were identified as 11β-OH-spironolactone, 18-OH-spironolactone and 19-OH-spironolactone. Canrenone was converted to 11β-OH-canrenone, 18-OH-canrenone as well as to the CYP11B2-specific product 11β,18-diOH-canrenone. Therefore, a contribution of CYP11B1 and CYP11B2 to the biotransformation of drugs should be taken into account and the metabolites should be tested for their potential toxic and pharmacological effects. A mineralocorticoid receptor transactivation assay in antagonist mode revealed 11β-OH-spironolactone as pharmaceutically active metabolite, whereas all other hydroxylation products negate the antagonist properties of spironolactone and canrenone. Thus, human CYP11B1 and CYP11B2 turned out to metabolize steroid-based drugs additionally to the liver-dependent biotransformation of drugs. Compared with the action of the parental drug, changed properties of the metabolites at the target site have been observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. From molecule to behavior: Brain aromatase (cyp19a1b) characterization, expression analysis and its relation with social status and male agonistic behavior in a Neotropical cichlid fish.

    Science.gov (United States)

    Ramallo, Martín R; Morandini, Leonel; Birba, Agustina; Somoza, Gustavo M; Pandolfi, Matías

    2017-03-01

    The enzyme aromatase, responsible for the conversion of C19 androgens to C18 estrogens, exists as two paralogue copies in teleost fish: Cyp19a1a mostly expressed in the gonads, referred as gonadal aromatase, and Cyp19a1b, mostly expressed in the brain, accordingly known as brain aromatase. The neural localization of Cyp19a1b is greatly contained within the social behavior network and mesolimbic reward system in fish, suggesting a strong role of estrogen synthesis in the regulation of social behavior. In this work we aimed to analyze the variation in cyp19a1b expression in brain and pituitary of males of a highly social cichlid, Cichlasoma dimerus (locally known as chanchita), and its relation with inter-individual variability in agonistic behavior in a communal social environment. We first characterized chanchita's cyp19a1b mRNA and deduced amino acid sequence, which showed a high degree of conservation when compared to other teleost brain aromatase sequences, and its tissue expression patterns. Within the brain, Cyp19a1b was solely detected at putative radial glial cells of the forebrain, close to the brain ventricles. We then studied the relative expression levels of cyp19a1b by Real Time PCR in the brain and pituitary of males of different social status, territorial vs. non-territorial, and its relationship with an index of agonistic behavior. We found that even though, brain aromatase expression did not differ between types of males, pituitary cyp19a1b expression levels positively correlated with the index of agonistic behavior. This suggests a novel role of the pituitary in the regulation of social behavior by local estrogen synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. CYP7B1

    DEFF Research Database (Denmark)

    Roos, P; Svenstrup, K; Danielsen, E R

    2014-01-01

    UNLABELLED: The SPG5A subtype of Hereditary Spastic Paraplegia (HSP) is a rare autosomal recessive neurodegenerative disorder caused by mutations in the CYP7B1 gene, which encodes a steroid cytochrome P450 7α-hydroxylase. This enzyme provides the primary metabolic route for neurosteroids. Clinica......UNLABELLED: The SPG5A subtype of Hereditary Spastic Paraplegia (HSP) is a rare autosomal recessive neurodegenerative disorder caused by mutations in the CYP7B1 gene, which encodes a steroid cytochrome P450 7α-hydroxylase. This enzyme provides the primary metabolic route for neurosteroids.......945_947 dupGGC p.A316AA). CONCLUSION: SPG5A could be characterized as a predominantly pure HSP. MRS showing elevated mI/Cr ratio in the white matter may be indicative of SPG5A....

  16. Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions Vitamin D pathways unbalanced in breast lesions

    International Nuclear Information System (INIS)

    Lopes, Nair; Schmitt, Fernando; Sousa, Bárbara; Martins, Diana; Gomes, Madalena; Vieira, Daniella; Veronese, Luiz A; Milanezi, Fernanda; Paredes, Joana; Costa, José L

    2010-01-01

    Breast cancer is a heterogeneous disease associated with different patient prognosis and responses to therapy. Vitamin D has been emerging as a potential treatment for cancer, as it has been demonstrated that it modulates proliferation, apoptosis, invasion and metastasis, among others. It acts mostly through the Vitamin D receptor (VDR) and the synthesis and degradation of this hormone are regulated by the enzymes CYP27B1 and CYP24A1, respectively. We aimed to study the expression of these three proteins by immunohistochemistry in a series of breast lesions. We have used a cohort comprising normal breast, benign mammary lesions, carcinomas in situ and invasive carcinomas and assessed the expression of the VDR, CYP27B1 and CYP24A1 by immunohistochemistry. The results that we have obtained show that all proteins are expressed in the various breast tissues, although at different amounts. The VDR was frequently expressed in benign lesions (93.5%) and its levels of expression were diminished in invasive tumours (56.2%). Additionally, the VDR was strongly associated with the oestrogen receptor positivity in breast carcinomas. CYP27B1 expression is slightly lower in invasive carcinomas (44.6%) than in benign lesions (55.8%). In contrast, CYP24A1 expression was augmented in carcinomas (56.0% in in situ and 53.7% in invasive carcinomas) when compared with that in benign lesions (19.0%). From this study, we conclude that there is a deregulation of the Vitamin D signalling and metabolic pathways in breast cancer, favouring tumour progression. Thus, during mammary malignant transformation, tumour cells lose their ability to synthesize the active form of Vitamin D and respond to VDR-mediated Vitamin D effects, while increasing their ability to degrade this hormone

  17. The roles of CYP6AY1 and CYP6ER1 in imidacloprid resistance in the brown planthopper: Expression levels and detoxification efficiency.

    Science.gov (United States)

    Bao, Haibo; Gao, Hongli; Zhang, Yixi; Fan, Dongzhe; Fang, Jichao; Liu, Zewen

    2016-05-01

    Two P450 monooxygenase genes, CYP6AY1 and CYP6ER1, were reported to contribute importantly to imidacloprid resistance in the brown planthopper, Nilaparvata lugens. Although recombinant CYP6AY1 could metabolize imidacloprid efficiently, the expression levels of CYP6ER1 gene were higher in most resistant populations. In the present study, three field populations were collected from different countries, and the bioassay, RNAi and imidacloprid metabolism were performed to evaluate the importance of two P450s in imidacloprid resistance. All three populations, DOT (Dongtai) from China, CNA (Chainat) from Thailand and HCM (Ho Chi Minh) from Vietnam, showed high resistance to imidacloprid (57.0-, 102.9- and 89.0-fold). CYP6AY1 and CYP6ER1 were both over expressed in three populations, with highest ratio of 13.2-fold for CYP6ER1 in HCM population. Synergism test and RNAi analysis confirmed the roles of both P450 genes in imidacloprid resistance. However, CYP6AY1 was indicated more important in CNA population, and CYP6AY1 and CYP6ER1 were equal in HCM population, although the expression level of CYP6ER1 (13.2-fold) was much higher than that of CYP6AY1 (4.11-fold) in HCM population. Although the recombinant proteins of both P450 genes could metabolize imidacloprid efficiently, the catalytic activity of CYP6AY1 (Kcat=3.627 pmol/min/pmol P450) was significantly higher than that of CYP6ER1 (Kcat=2.785 pmol/min/pmol P450). It was supposed that both P450 proteins were important for imidacloprid resistance, in which CYP6AY1 metabolized imidacloprid more efficiently and CYP6ER1 gene could be regulated by imidacloprid to a higher level. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K-12 (JM109 and MG1655 and E. coli B (BL21

    Directory of Open Access Journals (Sweden)

    Ng Weng-Ian

    2010-09-01

    Full Text Available Abstract Background The effect of high glucose concentration on the transcription levels of the small RNA SgrS and the messenger RNA ptsG, (encoding the glucose transporter IICBGlc, was studied in both E. coli K-12 (MG1655 and JM109 and E. coli B (BL21. It is known that the transcription level of sgrS increases when E. coli K-12 (MG1655 and JM109 is exposed to the non-metabolized glucose alpha methyl glucoside (αMG or when the bacteria with a defective glycolysis pathway is grown in presence of glucose. The increased level of sRNA SgrS reduces the level of the ptsG mRNA and consequently lowers the level of the glucose transporter IICBGlc. The suggested trigger for this action is the accumulation of the corresponding phospho-sugars. Results In the course of the described work, it was found that E. coli B (BL21 and E. coli K-12 (JM109 and MG1655 responded similarly to αMG: both strains increased SgrS transcription and reduced ptsG transcription. However, the two strains reacted differently to high glucose concentration (40 g/L. E. coli B (BL21 reacted by increasing sgrS transcription and reducing ptsG transcription while E. coli K-12 (JM109 and MG1655 did not respond to the high glucose concentration, and, therefore, transcription of sgrS was not detected and ptsG mRNA level was not affected. Conclusions The results suggest that E. coli B (BL21 tolerates high glucose concentration not only by its more efficient central carbon metabolism, but also by controlling the glucose transport into the cells regulated by the sRNA SgrS, which may suggest a way to control glucose consumption and increase its efficient utilization.

  19. Expression of cytochromes P450 1A1 and 1B1 in human lung from smokers, non-smokers, and ex-smokers

    International Nuclear Information System (INIS)

    Kim, James H.; Sherman, Mark E.; Curriero, Frank C.; Guengerich, F. Peter; Strickland, Paul T.; Sutter, Thomas R.

    2004-01-01

    Cytochromes P450 1A1 and 1B1 are known to bioactivate procarcinogens such as polycyclic aromatic hydrocarbons (PAHs) found in cigarette smoke and are inducible via an Ah receptor-mediated mechanism. The aim of this study was to examine the levels of expression of CYP1A1 and CYP1B1 in samples of lung from smokers (n = 18), non-smokers (n = 7), and ex-smokers (n = 7). Using immunoglobulin preparations of highly specific polyclonal antibodies and immunoblot analysis of microsomes from lung tissues, we determined the specific content for CYP1A1 and CYP1B1. For CYP1A1, we found median expression levels of 15.5 pmol/mg microsomal protein in smokers, 6.0 pmol/mg microsomal protein in non-smokers, and 19.0 pmol/mg microsomal protein in ex-smokers. The difference in median expression levels of smokers and ex-smokers compared to non-smokers was statistically significant. For CYP1B1, we found median expression levels of 1.8 pmol/mg microsomal protein in smokers, 1.0 pmol/mg microsomal protein in non-smokers, and 4.4 pmol/mg microsomal protein in ex-smokers. The difference in median expression levels between ex-smokers and non-smokers was statistically significant. These results suggest that levels of expression of CYP1A1 and CYP1B1 protein in lung tissues from smokers and ex-smokers are quantitatively greater than in non-smokers. By immunohistochemical analysis, we demonstrated the expression of CYP1A1 and CYP1B1 in normal human alveolar type I and II cells, ciliated columnar epithelial cells lining bronchoalveolar airways, and alveolar macrophages. These results confirm that CYP1A1 is expressed in normal human lung, appears to be induced in smokers, and show interindividual variation; the similar characteristics of CYP1B1 are demonstrated

  20. Induction of CYP1A1, CYP1A2, and CYP1B1 mRNAs by nitropolycyclic aromatic hydrocarbons in various human tissue-derived cells: chemical-, cytochrome P450 isoform-, and cell-specific differences

    Energy Technology Data Exchange (ETDEWEB)

    Iwanari, M.; Nakajima, M.; Yokoi, T. [Div. of Drug Metabolism, Kanazawa Univ., Kanazawa (Japan); Kizu, R.; Hayakawa, K. [Lab. of Hygienic Chemistry, Kanazawa Univ., Kanazawa (Japan)

    2002-06-01

    study demonstrated that NPAHs as well as PAHs induced human CYP1A1, CYP1A2, and CYP1B1 in a chemical-, CYP isoform-, and cell-specific manner. Furthermore, the cell-specific induction of the CYP1 family was not related to the expression levels of aryl hydrocarbon receptor, aryl hydrocarbon nuclear translocator, or estrogen receptors {alpha} and {beta}. (orig.)

  1. Effects of gene silencing of CypB on gastric cancer cells.

    Science.gov (United States)

    Guo, Feng; Zhang, Ying; Zhao, Chun-Na; Li, Lin; Guo, Yan-Jun

    2015-04-01

    To determine the effect of gene silencing of cyclophilin B (CypB) on growth and proliferation of gastric cancer cells. CypB siRNA lentivirus (LV-CypB-si) and control lentivirus (LV-si-con) were produced. CypB expression in gastric cancer cell lines was detected by Western blot. BGC823 and SGC7901 cells were chosen to be infected with LV-si-con and LV-CypB-si, and stable transfectants were isolated. The cell groups transfected with LV-CypB-siRNA, LV-siRNA-con and transfected no carrier were served as the experimental group, the implicit control group and the blank control group respectively. MTT and colony formation assays were used to examine the effect of CypB on the cell growth and proliferation in vitro. Cell cycle was analyzed with flow cytometry. The expression of VEGFR of BGC823-si and SGC7901-si was detected by Western blot. Gene silencing of CypB can inhibit gastric cancer cell growth, proliferation, cell cycle progress and tumorigenesis. CypB expression level was obviously higher in SGC7901 and BGC823 than MKN28 and GES. These two cell lines were infected with LV-si-con and LV-CypB-si respectively. MTT and cloney formation assays showed a significantly decreased rate of cell proliferation from the forth day or the fifth day in cells transfected with LV-CypB-si (PCypB resulted in slightly decreased percentage of S phase and increased percentage of G1 (PCypB could promote the G1-S transition of gastric cancer cell. In addition, the expression of VEGF of BGC823 and SGC7901 transfected with CypB siRNA was reduced in comparison with the implicit control group and the blank control group. Gene silencing of CypB decreases gastric cancer cells proliferation and in vivo tumorigenesis. These findings indiccate CypB could be a potential biomarker and therapeutic target for gastric cancer. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  2. Relative Expression of Vitamin D Hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and Heterogeneity of Human Colorectal Cancer in Relation to Age, Gender, Tumor Location, and Malignancy: Results from Factor and Cluster Analysis

    International Nuclear Information System (INIS)

    Brozek, Wolfgang; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S.

    2012-01-01

    Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH) 2 D 3 and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1α-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression

  3. Relative Expression of Vitamin D Hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and Heterogeneity of Human Colorectal Cancer in Relation to Age, Gender, Tumor Location, and Malignancy: Results from Factor and Cluster Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brozek, Wolfgang, E-mail: wolfgang.brozek@gmx.at; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S. [Department of Pathophysiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2012-07-26

    Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH){sub 2}D{sub 3} and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1α-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression.

  4. Role of aryl hydrocarbon receptor polymorphisms on TCDD-mediated CYP1B1 induction and IgM suppression by human B cells

    Energy Technology Data Exchange (ETDEWEB)

    Kovalova, Natalia, E-mail: kovalova@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Manzan, Maria, E-mail: ale.manzan@gmail.com [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Crawford, Robert, E-mail: crawfo28@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Kaminski, Norbert, E-mail: kamins11@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States)

    2016-10-15

    Previous studies have demonstrated that most of the intraspecies variation in sensitivity to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including suppression of antibody responses, in murine models is due to single nucleotide polymorphisms (SNPs) within the aryl hydrocarbon receptor (AhR) gene. The underlying reason for variation in sensitivity to TCDD-induced suppression of IgM responses among humans is not well understood, but is thought, in part, to be a result of different polymorphic forms of the AhR expressed by different individuals. In this study, the functional properties of six (P517S, R554K, V570I, V570I + P517S, R554K + V570I and P517S + R554K + V570I) human AhR variants were examined in the human B cell line, SKW 6.4. TCDD-induced Cyp1B1 and Cyp1A2 mRNA expression levels and Cyp1B1-regulated reporter gene activity, used for comparative purposes, were markedly lower in SKW cells containing the R554K SNP than in SKW-AHR{sup +} (control AhR) cells. Furthermore, all AhR variants were able to mediate TCDD-induced suppression of the IgM response; however, a combined P517S + R554K + V570I variant partially reduced sensitivity to TCDD-mediated suppression of IgM secretion. Collectively, our findings show that the R554K human AhR SNP alone altered sensitivity of human B cells to TCDD-mediated induction of Cyp1B1 and Cyp1A2. By contrast, attenuation of TCDD-induced IgM suppression required a combination of all three SNPs P517S, R554K, and V570I. - Highlights: • Mouse, rat and SKW-AHR{sup +} B cells have a similar window of sensitivity to TCDD. • R554K AhR SNP alters B cell sensitivity to TCDD-mediated Cyp1B1 and Cyp1A2 induction. • Combination of P517S, R554K, and V570I SNPs attenuates TCDD-induced IgM suppression.

  5. Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2

    DEFF Research Database (Denmark)

    Mikkelsen, M.D.; Fuller, V.L.; Hansen, Bjarne Gram

    2009-01-01

    Indole-3-acetaldoxime (IAOx) is a key branching point between primary and secondary metabolism. IAOx serves as an intermediate in the biosynthesis of indole glucosinolates (I-GLSs), camalexin and the plant hormone indole-3-acetic acid (IAA). The cytochrome P450s CYP79B2 and CYP79B3 catalyze......OH)-inducible CYP79B2 construct into double (cyp79b2 cyp79b3) or triple (cyp79b2 cyp79b3 cyp83b1) mutant lines. We show EtOH-dependent induction of camalexin and identify a number of candidate IAA homeostasis- or defense-related genes by clustered microarray analysis. The transgenic mutant lines are thus promising...

  6. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system.

    Science.gov (United States)

    Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I

    2001-06-01

    1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants.

  7. Isolation and characterization of cyp19a1a and cyp19a1b promoters in the protogynous hermaphrodite orange-spotted grouper (Epinephelus coioides).

    Science.gov (United States)

    Zhang, Weimin; Lu, Huijie; Jiang, Haiyan; Li, Mu; Zhang, Shen; Liu, Qiongyou; Zhang, Lihong

    2012-02-01

    Aromatase (CYP19A1) catalyzes the conversion of androgens to estrogens. In teleosts, duplicated copies of cyp19a1 genes, namely cyp19a1a and cyp19a1b, were identified, however, the transcriptional regulation of these two genes remains poorly understood. In the present study, the 5'-flanking regions of the orange-spotted grouper cyp19a1a (gcyp19a1a) and cyp19a1b (gcyp19a1b) genes were isolated and characterized. The proximal promoter regions of both genes were relatively conserved when compared to those of the other teleosts. Notably, a conserved FOXO transcriptional factor binding site was firstly reported in the proximal promoter of gcyp19a1a, and deletion of the region (-112 to -60) containing this site significantly decreased the promoter activities. The deletion of the region (-246 to -112) containing the two conserved FTZ-F1 sites also dramatically decreased the transcriptional activities of gcyp19a1a promoter, and both two FTZ-F1 sites were shown to be stimulatory cis-acting elements. A FTZ-F1 homologue isolated from ricefield eel (eFTZ-F1) up-regulated gcyp19a1a promoter activities possibly via the FTZ-F1 sites, however, a previously identified orange-spotted grouper FTZ-F1 homologue (gFTZ-F1) did not activate the transcription of gcyp19a1a promoter unexpectedly. As to gcyp19a1b promoter, all the deletion constructs did not show good promoter activities in either TM4 or U251-MG cells. Estradiol (100nM) up-regulated gcyp19a1b promoter activities by about 13- and 36-fold in TM4 and U251-MG cells, respectively, via the conserved ERE motif, but did not stimulate gcyp19a1a promoter activities. These results are helpful to further elucidate the regulatory mechanisms of cyp19a1a and cyp19a1b expression in the orange-spotted grouper as well as other teleosts. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis.

    Science.gov (United States)

    Chen, Sixue; Glawischnig, Erich; Jørgensen, Kirsten; Naur, Peter; Jørgensen, Bodil; Olsen, Carl-Erik; Hansen, Carsten H; Rasmussen, Hasse; Pickett, John A; Halkier, Barbara A

    2003-03-01

    Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance.

  9. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Larkin, Andrew [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Department of Statistics, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Krueger, Sharon K. [Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Tilton, Susan C.; Waters, Katrina M. [Superfund Research Center, Oregon State University (United States); Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Baird, William M. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States)

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions

  10. Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: Identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1

    International Nuclear Information System (INIS)

    Chang, Thomas K.H.; Chen Jie; Yeung, Eugene Y.H.

    2006-01-01

    In the present study, we investigated the effect of Ginkgo biloba extracts and some of its individual constituents on the catalytic activity of human cytochrome P450 enzymes CYP1B1, CYP1A1, and CYP1A2. G. biloba extract of known abundance of terpene trilactones and flavonol glycosides inhibited 7-ethoxyresorufin O-dealkylation catalyzed by human recombinant CYP1B1, CYP1A1, and CYP1A2, and human liver microsomes, with apparent K i values of 2 ± 0.3, 5 ± 0.5, 16 ± 1.4, and 39 ± 1.2 μg/ml (mean ± SE), respectively. In each case, the mode of inhibition was of the mixed type. Bilobalide, ginkgolides A, B, C, and J, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, and isorhamentin 3-O-rutinoside were not responsible for the inhibition of CYP1 enzymes by G. biloba extract, as determined by experiments with these individual chemicals at the levels present in the extract. In contrast, the aglycones of quercetin, kaempferol, and isorhamentin inhibited CYP1B1, CYP1A1, and CYP1A2. Among the three flavonol aglycones, isorhamentin was the most potent in inhibiting CYP1B1 (apparent K i = 3 ± 0.1 nM), whereas quercetin was the least potent in inhibiting CYP1A2 (apparent K i 418 ± 50 nM). The mode of inhibition was competitive, noncompetitive, or mixed, depending on the enzyme and the flavonol. G. biloba extract also reduced benzo[a]pyrene hydroxylation, and the effect was greater with CYP1B1 than with CYP1A1 as the catalyst. Overall, our novel findings indicate that G. biloba extract and the flavonol aglycones isorhamnetin, kaempferol, and quercetin preferentially inhibit the in vitro catalytic activity of human CYP1B1

  11. Polycyclic aromatic hydrocarbon-induced CYP1B1 activity is suppressed by perillyl alcohol in MCF-7 cells

    International Nuclear Information System (INIS)

    Chan, Nelson L.S.; Wang Huan; Wang Yun; Leung, H.Y.; Leung, Lai K.

    2006-01-01

    Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 μM of POH was effective in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis

  12. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2010-07-01

    Full Text Available Abstract Background Plant cytochrome P450 monooxygenases (CYP mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS in the upstream region and three candidate polyadenylation (PolyA sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression

  13. Insights into CYP2B6-mediated drug–drug interactions

    Directory of Open Access Journals (Sweden)

    William D. Hedrich

    2016-09-01

    Full Text Available Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR and pregnane X receptor (PXR in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.

  14. Genome-wide identification of 52 cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns.

    Science.gov (United States)

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Nelson, David R; Lee, Jae-Seong

    2017-09-01

    Cytochrome P450s (CYPs) are enzymes with a heme-binding domain that are found in all living organisms. CYP enzymes have important roles associated with detoxification of xenobiotics and endogenous compounds (e.g. steroids, fatty acids, and hormones). Although CYP enzymes have been reported in several invertebrates, including insects, little is known about copepod CYPs. Here, we identified the entire repertoire of CYP genes (n=52) from whole genome and transcriptome sequences of the benthic copepod Tigriopus japonicus, including a tandem duplication (CYP3026A3, CYP3026A4, CYP3026A5), and examined patterns of gene expression over various developmental stages and in response to benzo[α]pyrene (B[α]P) exposure. Through phylogenetic analysis, the 52 T. japonicus CYP genes were assigned to five distinct clans: CYP2 (22 genes), CYP3 (19 genes), CYP4 (two genes), CYP20 (one gene), and mitochondrial (eight genes). Developmental stage and gender-specific expression patterns of the 52 T. japonicus CYPs were analyzed. CYP3022A1 was constitutively expressed during all developmental stages. CYP genes in clans 2 and 3 were induced in response to B[α]P, suggesting that these differentially modulated CYP transcripts are likely involved in defense against exposure to B[α]P and other pollutants. This study enhances our understanding of the repertoire of CYP genes in copepods and of their potential role in development and detoxification in copepods. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus

    Energy Technology Data Exchange (ETDEWEB)

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon, E-mail: jeonghoon@skku.edu; Lee, Jae-Seong, E-mail: jslee2@skku.edu

    2017-03-15

    Highlights: • Impaired effects of UV-B on the copepod Tigriopus japonicus were examined. • Modulation of entire CYP genes were analyzed in response to UV-B. • CYP inhibitor (PBO) confirmed the role of CYP in UV-B induced mortality. • Low-dose UV-B found induce developmental delays, and higher doses cause reproductive impairments. • Study predicted the mechanistic effects of UV-B in copepods through the AhR-mediated up-regulation of CYP genes. - Abstract: To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P < 0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48 h LD10 and LD50 were 1.35 and 1.84 kJ/m{sup 2}, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5 kJ/m{sup 2}) induced developmental delays, and higher doses (6–18 kJ/m{sup 2}) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12 kJ/m{sup 2}) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  16. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus

    International Nuclear Information System (INIS)

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-01-01

    Highlights: • Impaired effects of UV-B on the copepod Tigriopus japonicus were examined. • Modulation of entire CYP genes were analyzed in response to UV-B. • CYP inhibitor (PBO) confirmed the role of CYP in UV-B induced mortality. • Low-dose UV-B found induce developmental delays, and higher doses cause reproductive impairments. • Study predicted the mechanistic effects of UV-B in copepods through the AhR-mediated up-regulation of CYP genes. - Abstract: To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P < 0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48 h LD10 and LD50 were 1.35 and 1.84 kJ/m"2, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5 kJ/m"2) induced developmental delays, and higher doses (6–18 kJ/m"2) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12 kJ/m"2) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  17. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    International Nuclear Information System (INIS)

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.; Gardiner, Catherine S.; Cao Yan; Rose, Randy L.; Wallace, Andrew D.

    2010-01-01

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 μM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 μM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 μM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 μM and 10 μM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.

  18. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor.

    Science.gov (United States)

    Casabar, Richard C T; Das, Parikshit C; Dekrey, Gregory K; Gardiner, Catherine S; Cao, Yan; Rose, Randy L; Wallace, Andrew D

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 microM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 microM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 microM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 microM and 10 microM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates. Copyright 2010 Elsevier Inc. All rights reserved.

  19. The expression of GPR109A, NF-kB and IL-1β in peripheral blood leukocytes from patients with type 2 diabetes.

    Science.gov (United States)

    Liu, Fengxiu; Fu, Yucai; Wei, Chiju; Chen, Yongru; Ma, Shuhua; Xu, Wencan

    2014-01-01

    This study was designed to explore the association between the G protein-coupled receptor 109A (GPR109A) expression in peripheral blood leukocytes (PBLs) and type 2 diabetes (T2DM) and to discuss the regulation of inflammatory factors by GPR109A signaling. GPR109A signaling has been confirmed to be associated with homeostasis of glucose/lipid metabolism, but the role of signaling in T2DM is still poorly understood. Peripheral blood samples and biochemical data were collected from healthy individuals (normal controls) and T2DM patients. Immunocytochemical staining was used to detect the expression of GPR109A in PBLs. Reverse transcription polymerase chain reaction (RT-PCR) was used to measure mRNA levels of GPR109A, NF-κB, and IL-1β in PBLs. Immunocytochemical staining showed that the GPR109A protein is localized in the nucleus and cytoplasm of granulocytes, monocytes, and lymphocytes. RT-PCR showed that mRNA levels of GPR109A, NF-κB, and IL-1β were higher in the T2DM group than in the control group (P<0.05). Correlation analysis showed a positive correlation both between GPR109A/NF-κB (r=0.376, P<0.05), and GPR109A/IL-1β (r=501, P<0.05) and between GPR109A and fasting plasma glucose (FPG) (r=0.179, P<0.05) and NF-κB /FPG (r=0.358, p<0.05). Our results suggest that GPR109A signaling is associated with T2DM, playing a role in regulation of the inflammatory cytokines. © 2014 by the Association of Clinical Scientists, Inc.

  20. Avian cytochrome P450 (CYP 1-3 family genes: isoforms, evolutionary relationships, and mRNA expression in chicken liver.

    Directory of Open Access Journals (Sweden)

    Kensuke P Watanabe

    Full Text Available Cytochrome P450 (CYP of chicken and other avian species have been studied primarily with microsomes or characterized by cloning and protein expression. However, the overall existing isoforms in avian CYP1-3 families or dominant isoforms in avian xenobiotic metabolism have not yet been elucidated. In this study, we aimed to clarify and classify all of the existing isoforms of CYP1-3 in avian species using available genome assemblies for chicken, zebra finch, and turkey. Furthermore, we performed qRT-PCR assay to identify dominant CYP genes in chicken liver. Our results suggested that avian xenobiotic-metabolizing CYP genes have undergone unique evolution such as CYP2C and CYP3A genes, which have undergone avian-specific gene duplications. qRT-PCR experiments showed that CYP2C45 was the most highly expressed isoform in chicken liver, while CYP2C23b was the most highly induced gene by phenobarbital. Considering together with the result of further enzymatic characterization, CYP2C45 may have a dominant role in chicken xenobiotic metabolism due to the constitutive high expression levels, while CYP2C23a and CYP2C23b can be greatly induced by chicken xenobiotic receptor (CXR activators. These findings will provide not only novel insights into avian xenobiotic metabolism, but also a basis for the further characterization of each CYP gene.

  1. Characterization of the Ala62Pro polymorphic variant of human cytochrome P450 1A1 using recombinant protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Heon; Kang, Sukmo [College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul (Korea, Republic of); Dong, Mi Sook [School of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Park, Jung-Duck [College of Medicine, Chung-Ang University, Seoul (Korea, Republic of); Park, Jinseo; Rhee, Sangkee [College of Agriculture of Life Science, Seoul National University, Seoul (Korea, Republic of); Ryu, Doug-Young, E-mail: dyryu@snu.ac.kr [College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul (Korea, Republic of)

    2015-06-15

    Cytochrome P450 (CYP) 1A1 is a heme-containing enzyme involved in detoxification of hydrophobic pollutants. Its Ala62Pro variant has been identified previously. Ala62 is located in α-helix A of CYP1A1. Residues such as Pro and Gly are α-helix breakers. In this study, the Ala62Pro variant was characterized using heterologous expression. E. coli expressing the Ala62Pro variant, and the purified variant protein, had lower CYP (i.e. holoenzyme) contents than their wild-type (WT) equivalents. The CYP variant from E. coli and mammalian cells exhibited lower 7-ethoxyresorufin O-dealkylation (EROD) and benzo[a]pyrene hydroxylation activities than the WT. Enhanced supplementation of a heme precursor during E. coli culture did not increase CYP content in E. coli expressing the variant, but did for the WT. As for Ala62Pro, E. coli expressing an Ala62Gly variant had a lower CYP content than the WT counterpart, but substitution of Ala62 with α-helix-compatible residues such as Ser and Val partially recovered the level of CYP produced. Microsomes from mammalian cells expressing Ala62Pro and Ala62Gly variants exhibited lower EROD activities than those expressing the WT or Ala62Val variant. A region harboring α-helix A has interactions with another region containing heme-interacting residues. Site-directed mutagenesis analyses suggest the importance of interactions between the two regions on holoenzyme expression. Together, these findings suggest that the Ala62Pro substitution leads to changes in protein characteristics and function of CYP1A1 via structural disturbance of the region where the residue is located. - Highlights: • Ala62 is located in α-helix A of the carcinogen-metabolizing enzyme CYP1A1. • Pro acts as an α-helix breaker. • A variant protein of CYP1A1, Ala62Pro, had lower heme content than the wild-type. • The variant of CYP1A1 had lower enzyme activities than the wild-type.

  2. The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth.

    Science.gov (United States)

    Son, Young-Jin; Phue, Je-Nie; Trinh, Loc B; Lee, Sang Jun; Shiloach, Joseph

    2011-06-30

    E. coli B (BL21), unlike E.coli K-12 (JM109) is insensitive to glucose concentration and, therefore, grows faster and produces less acetate than E. coli K-12, especially when growing to high cell densities at high glucose concentration. By performing genomic analysis, it was demonstrated that the cause of this difference in sensitivity to the glucose concentration is the result of the differences in the central carbon metabolism activity. We hypothesized that the global transcription regulator Cra (FruR) is constitutively expressed in E. coli B and may be responsible for the different behaviour of the two strains. To investigate this possibility and better understand the function of Cra in the two strains, cra - negative E. coli B (BL21) and E. coli K-12 (JM109) were prepared and their growth behaviour and gene expression at high glucose were evaluated using microarray and real-time PCR. The deletion of the cra gene in E. coli B (BL21) minimally affected the growth and maximal acetate accumulation, while the deletion of the same gene in E.coli K-12 (JM109) caused the cells to stop growing as soon as acetate concentration reached 6.6 g/L and the media conductivity reached 21 mS/cm. ppsA (gluconeogenesis gene), aceBA (the glyoxylate shunt genes) and poxB (the acetate producing gene) were down-regulated in both strains, while acs (acetate uptake gene) was down-regulated only in E.coli B (BL21). These transcriptional differences had little effect on acetate and pyruvate production. Additionally, it was found that the lower growth of E. coli K-12 (JM109) strain was the result of transcription inhibition of the osmoprotectant producing bet operon (betABT). The transcriptional changes caused by the deletion of cra gene did not affect the activity of the central carbon metabolism, suggesting that Cra does not act alone; rather it interacts with other pleiotropic regulators to create a network of metabolic effects. An unexpected outcome of this work is the finding that cra

  3. Furocoumarins from grapefruit juice and their effect on human CYP 3A4 and CYP 1B1 isoenzymes.

    Science.gov (United States)

    Girennavar, Basavaraj; Poulose, Shibu M; Jayaprakasha, Guddadarangavvanahally K; Bhat, Narayan G; Patil, Bhimanagouda S

    2006-04-15

    Bioactive compounds present in grapefruit juice are known to increase the bioavailability of certain medications by acting as potent CYP 3A4 inhibitors. An efficient technique has been developed for isolation and purification of three furocoumarins. The isolated compounds have been tested for the inhibition of human CYP 1B1 isoform using specific substrates. Grapefruit juice was extracted with ethyl acetate (EtOAc) and the dried extract was loaded onto silica gel column chromatography. Further, column fractions were subjected to preparative HPLC to obtain three compounds. The purity of these compounds was analyzed by HPLC and structures were determined by NMR studies. The identified compounds, bergamottin, 6',7'-dihydroxybergamottin (DHB), and paradisin-A, were tested for their inhibitory effects on hydroxylase and O-dealkylase activities of human cytochrome P450 isoenzymes CYP 3A4 and CYP 1B1. Paradisin-A was found to be a potent CYP 3A4 inhibitor with an IC50 of 1.2 microM followed by DHB and bergamottin. All three compounds showed a substantial inhibitory effect on CYP 3A4 below 10 microM. Inhibitory effects on CYP 1B1 exhibited a greater variation due to the specificity of substrates. Paradisin A showed an IC50 of 3.56+/-0.12 microM for the ethoxy resorufin O-dealkylase (EROD) activity and 33.56+/-0.72 microM for the benzyloxy resorufin (BROD). DHB and bergamottin showed considerable variations for EROD and BROD activities with an IC50 of 7.17 microM and 13.86 microM, respectively.

  4. Effect of diethyldithiocarbamate (DDC) and ticlopidine on CYP1A2 activity and caffeine metabolism: an in vitro comparative study with human cDNA-expressed CYP1A2 and liver microsomes.

    Science.gov (United States)

    Kot, Marta; Daniel, Władysława A

    2009-01-01

    The aim of the present study was to test the effect of diethyldithiocarbamate (DDC), which is regarded as a cytochrome P450 (CYP) CYP2A6 and CYP2E1 inhibitor, and ticlopidine, an efficient CYP2B6, CYP2C19 and CYP2D6 inhibitor, on the activity of human CYP1A2 and the metabolism of caffeine (1-N-, 3-N- and 7-N-demethylation, and C-8-hydroxylation). The experiment was carried out in vitro using human cDNA-expressed CYP1A2 (Supersomes) and human pooled liver microsomes. The effects of DDC and ticlopidine were compared to those of furafylline (a strong CYP1A2 inhibitor). A comparative in vitro study provides clear evidence that ticlopidine and DDC, applied at concentrations that inhibit the above-mentioned CYP isoforms, potently (as compared to furafylline) inhibit human CYP1A2 and caffeine metabolism, in particular 1-N- and 3-N-demethylation.

  5. Cloning, expression and characterisation of P450-Hal1 (CYP116B62) from Halomonas sp. NCIMB 172: A self-sufficient P450 with high expression and diverse substrate scope.

    Science.gov (United States)

    Porter, Joanne L; Sabatini, Selina; Manning, Jack; Tavanti, Michele; Galman, James L; Turner, Nicholas J; Flitsch, Sabine L

    2018-06-01

    Cytochrome P450 monooxygenases are able to catalyse a range of synthetically challenging reactions ranging from hydroxylation and demethylation to sulfoxidation and epoxidation. As such they have great potential for biocatalytic applications but are underutilised due to often-poor expression, stability and solubility in recombinant bacterial hosts. The use of self-sufficient P450 s with fused haem and reductase domains has already contributed heavily to improving catalytic efficiency and simplifying an otherwise more complex multi-component system of P450 and redox partners. Herein, we present a new addition to the class VII family with the cloning, sequencing and characterisation of the self-sufficient CYP116B62 Hal1 from Halomonas sp. NCIMB 172, the genome of which has not yet been sequenced. Hal1 exhibits high levels of expression in a recombinant E. coli host and can be utilised from cell lysate or used in purified form. Hal1 favours NADPH as electron donor and displays a diverse range of activities including hydroxylation, demethylation and sulfoxidation. These properties make Hal1 suitable for future biocatalytic applications or as a template for optimisation through engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Contribution of CYP1B1 mutations and founder effect to primary congenital glaucoma in Mexico.

    Science.gov (United States)

    Zenteno, Juan Carlos; Hernandez-Merino, Elena; Mejia-Lopez, Herlinda; Matías-Florentino, Margarita; Michel, Norma; Elizondo-Olascoaga, Celia; Korder-Ortega, Vincent; Casab-Rueda, Homero; Garcia-Ortiz, Jose Elias

    2008-01-01

    The frequency of primary congenital glaucoma (PCG)-causing CYP1B1 mutations varies importantly among distinct populations, ranging from 20% in Indonesians and Japanese to about 100% among the Saudi Arabians and Slovakian Gypsies. Thus, the molecular characterization of large groups of PCG from different ethnic backgrounds is important to establish the actual CYP1B1 contribution in specific populations. In this work, the molecular analysis of the CYP1B1 gene in a group of Mexican PCG patients is reported. Thirty unrelated Mexican patients fulfilling the clinical criteria for PCG were included. Two cases were familial and with proven consanguinity, originating from distinct regions of the country. Polymerase chain reaction amplification and direct automated sequencing of the CYP1B1 coding region was performed in each participating subject. An identical pathogenic CYP1B1 mutation was demonstrated in 2 unrelated PCG subjects. The mutation consisted of a homozygous G to A transition at nucleotide position 1505 in exon 3, which predicted a substitution of glutamic acid for lysine at residue 387 of the protein (E387K). In the remaining 28 PCG subjects, no deleterious mutations were identified. Both subjects with the E387K mutation shared a same haplotype for 5 CYP1B1 intragenic single nucleotide polymorphisms, indicating a common origin of the allele. Mexican patients with PCG are rarely (less than 10%) due to CYP1B1 mutations. Available data indicate that most of the non-Brazilian Latin American PCG patients investigated to date are not due to CYP1B1 defects. Populations with low incidence of CYP1B1 mutations are appropriate candidates for the identification of novel PCG-causing genes.

  7. Effect of TBT and PAHs on CYP1A, AhR and Vitellogenin Gene Expression in the Japanese Eel, Anguilla japonica.

    Science.gov (United States)

    Choi, Min Seop; Kwon, Se Ryun; Choi, Seong Hee; Kwon, Hyuk Chu

    2012-12-01

    Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10(-6)-10(-5) M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10(-9)-10(-5) M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10(-6)-10(-5) M), while having no effects at low concentrations (10(-9)-10(-7) M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β.

  8. Direct sequencing and comprehensive screening of genetic polymorphisms on CYP2 family genes (CYP2A6, CYP2B6, CYP2C8, and CYP2E1) in five ethnic populations.

    Science.gov (United States)

    Kim, Jeong-Hyun; Cheong, Hyun Sub; Park, Byung Lae; Kim, Lyoung Hyo; Shin, Hee Jung; Na, Han Sung; Chung, Myeon Woo; Shin, Hyoung Doo

    2015-01-01

    Recently, CYP2A6, CYP2B6, CYP2C8, and CYP2E1 have been reported to play a role in the metabolic effect of pharmacological and carcinogenic compounds. Moreover, genetic variations of drug metabolism genes have been implicated in the interindividual variation in drug disposition and pharmacological response. To define the distribution of single nucleotide polymorphisms (SNPs) in these four CYP2 family genes and to discover novel SNPs across ethnic groups, 288 DNAs composed of 48 African-Americans, 48 European-Americans, 48 Japanese, 48 Han Chinese, and 96 Koreans were resequenced. A total of 143 SNPs, 26 in CYP2A6, 45 in CYP2B6, 29 in CYP2C8, and 43 in CYP2E1, were identified, including 13 novel variants. Notably, two SNPs in the regulatory regions, a promoter SNP rs2054675 and a nonsynonymous rs3745274 (p.172Q>H) in CYP2B6, showed significantly different minor allele frequencies (MAFs) among ethnic groups (minimum P = 4.30 × 10(-12)). In addition, rs2031920 in the promoter region of CYP2E1 showed a wide range of MAF between different ethnic groups, and even among other various ethnic groups based on public reports. Among 13 newly discovered SNPs in this study, 5 SNPs were estimated to have potential functions in further in silico analyses. Some differences in genetic variations and haplotypes of CYP2A6, CYP2B6, CYP2C8, and CYP2E1 were observed among populations. Our findings could be useful in further researches, such as genetic associations with drug responses.

  9. The enhanced atorvastatin hepatotoxicity in diabetic rats was partly attributed to the upregulated hepatic Cyp3a and SLCO1B1

    Science.gov (United States)

    Shu, Nan; Hu, Mengyue; Ling, Zhaoli; Liu, Peihua; Wang, Fan; Xu, Ping; Zhong, Zeyu; Sun, Binbin; Zhang, Mian; Li, Feng; Xie, Qiushi; Liu, Xiaodong; Liu, Li

    2016-01-01

    Liver injury is a common adverse effect of atorvastatin. This study aimed to investigate atorvastatin-induced hepatotoxicity in diabetic rats induced by high-fat diet combined with streptozotocin. The results showed that 40 mg/kg atorvastatin was lethal to diabetic rats, whose mean survival time was 6.2 days. Severe liver injury also occurred in diabetic rats treated with 10 mg/kg and 20 mg/kg atorvastatin. The in vitro results indicated that atorvastatin cytotoxicity in hepatocytes of diabetic rats was more severe than normal and high-fat diet feeding rats. Expressions and activities of hepatic Cyp3a and SLCO1B1 were increased in diabetic rats, which were highly correlated with hepatotoxicity. Antioxidants (glutathione and N-Acetylcysteine), Cyp3a inhibitor ketoconazole and SLCO1B1 inhibitor gemfibrozil suppressed cytotoxicity and ROS formation in primary hepatocytes of diabetic rats. In HepG2 cells, up-regulations of CYP3A4 and SLCO1B1 potentiated hepatotoxicity and ROS generation, whereas knockdowns of CYP3A4 and SLCO1B1 as well as CYP3A4/SLCO1B1 inhibitions showed the opposite effects. Phenobarbital pretreatment was used to induce hepatic Cyp3a and SLCO1B1 in rats. Phenobarbital aggravated atorvastatin-induced hepatotoxicity, while decreased plasma exposure of atorvastatin. All these findings demonstrated that the upregulations of hepatic Cyp3a and SLCO1B1 in diabetic rats potentiated atorvastatin-induced hepatotoxicity via increasing ROS formation. PMID:27624558

  10. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1.

    Science.gov (United States)

    Ding, Zhiping; Wen, Yucong; Yang, Baojun; Zhang, Yixi; Liu, Shuhua; Liu, Zewen; Han, Zhaojun

    2013-11-01

    Imidacloprid is a key insecticide extensively used for control of Nilaparvata lugens, and its resistance had been reported both in the laboratory selected strains and field populations. A target site mutation Y151S in two nicotinic acetylcholine receptor subunits and enhanced oxidative detoxification have been identified in the laboratory resistant strain, contributing importantly to imidacloprid resistance in N. lugens. To date, however, imidacloprid resistance in field population is primarily attributable to enhanced oxidative detoxification by over-expressed P450 monooxygenases. A resistant strain (Res), originally collected from a field population and continuously selected in laboratory with imidacloprid for more than 40 generations, had 180.8-fold resistance to imidacloprid, compared to a susceptible strain (Sus). Expression of different putative P450 genes at mRNA levels was detected and compared between Res and Sus strains, and six genes were found expressed significantly higher in Res strain than in Sus strain. CYP6AY1 was found to be the most different expressed P450 gene and its mRNA level in Res strain was 17.9 times of that in Sus strain. By expressing in E. coli cells, CYP6AY1 was found to metabolize imidacloprid efficiently with initial velocity calculated of 0.851 ± 0.073 pmol/min/pmol P450. When CYP6AY1 mRNA levels in Res strain was reduced by RNA interference, imidacloprid susceptibility was recovered. In four field populations with different resistance levels, high levels of CYP6AY1 transcript were also found. In vitro and in vivo studies provided evidences that the over-expression of CYP6AY1 was one of the key factors contributing to imidacloprid resistance in the laboratory selected strain Res, which might also be the important mechanism for imidacloprid resistance in field populations, when the target site mutation was not prevalent at present. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Arabidopsis thaliana cyclophilin 38 (AtCyp38)

    International Nuclear Information System (INIS)

    Vasudevan, Dileep; Gopalan, Gayathri; He, Zengyong; Luan, Sheng; Swaminathan, Kunchithapadam

    2005-01-01

    Crystallization of Arabidopsis thaliana cyclophilin 38. The crystal diffracts X-rays to 2.5 Å resolution. AtCyp38 is one of the highly divergent multidomain cyclophilins from Arabidopsis thaliana. A recombinant form of AtCyp38 (residues 83–437) was expressed in Escherichia coli and purified to homogeneity. The protein was crystallized using the vapour-batch technique with PEG 6000 and t-butanol as precipitants. Crystals of recombinant AtCyp38 diffracted X-rays to better than 2.5 Å resolution at 95 K using a synchrotron-radiation source. The crystal belongs to the C-centred orthorhombic space group C222 1 , with unit-cell parameters a = 58.2, b = 95.9, c = 167.5 Å, and contains one molecule in the asymmetric unit. The selenomethionine derivative of the AtCyp38 protein was overexpressed, purified and crystallized in the same space group and data were collected to 3.5 Å at the NSLS synchrotron. The structure is being solved by the MAD method

  12. CYP1B1 and MYOC Mutations in Vietnamese Primary Congenital Glaucoma Patients.

    Science.gov (United States)

    Do, Tan; Shei, William; Chau, Pham Thi Minh; Trang, Doan Le; Yong, Victor H K; Ng, Xiao Yu; Chen, Yue Ming; Aung, Tin; Vithana, Eranga N

    2016-05-01

    Primary congenital glaucoma (PCG, OMIM 231300), the most common glaucoma in infancy, is caused by developmental defects in the anterior chamber angle. The 3 implicated genes are cytochrome P450 family I subfamily B polypeptide 1 (CYP1B1), latent transforming growth factor β-binding protein 2 (LTBP2), and myocilin (MYOC). In this study, we sought to determine CYP1B1 and MYOC sequence variations in a Vietnamese cohort of index cases with PCG and their families. Thirty Vietnamese subjects with PCG and 120 normal Vietnamese subjects were recruited. PCG was defined by the presence of at least 2 of the following clinical manifestations: increased corneal diameter (>10 mm at birth), corneal edema, Haab's striae, optic disc changes, and absence of other ocular or systemic diseases associated with childhood glaucoma. The coding exons, intron and exon boundaries, and untranslated regions of CYP1B1 and MYOC genes were PCR amplified and subjected to bidirectional sequencing in all subjects. We identified 2 homozygous and 3 heterozygous CYP1B1 sequence alterations in our study subjects. Among the 5 mutations identified, 2 (p.H279L and p.L283F) were novel mutations, whereas 3 (p.A121_S122insDRPAFA, p.L107V, and p.V320L) had been previously reported in PCG cases. None of these mutations was observed in any of the 120 controls. Haplotypes generated with 6 non-disease-causing intragenic single nucleotide polymorphisms detected in CYP1B1 indicated that the most common haplotype in Vietnamese population is similar to that found in Chinese and Japanese. The genotype-phenotype correlation showed no significant difference between mutation and no-mutation groups for quantitative clinical features (presenting intraocular pressure, corneal diameter, number of surgeries performed, the cup-to-disc ratio) as well as for qualitative factors (bilateral cases, phenotype severity, and the prognosis) (P>0.05). Five out of 30 families with PCG (16.7%) had disease attributable to CYP1B1 alterations

  13. Tiamulin inhibits human CYP3A4 activity in an NIH/3T3 cell line stably expressing CYP3A4 cDNA.

    Science.gov (United States)

    De Groene, E M; Nijmeijer, S M; Horbach, G J; Witkamp, R F

    1995-09-07

    Tiamulin is an antibiotic frequently used in veterinary medicine. The drug has been shown to produce clinically important interactions with other compounds that are administered simultaneously. An NIH/3T3 cell line, stably expressing human cytochrome P450 (EC 1.14.14.1) cDNA (CYP3A4), was used to study the effect of tiamulin on CYP3A4 activity. The 6 beta-hydroxylation activity of testosterone, which is increased in CYP3A4-expressing cells compared to vector-transfected cells, showed reduced activity after incubation with 1 microM tiamulin and was completely reduced to background level after incubation with 2, 5 and 10 microM tiamulin. The CYP3A4-expressing cell line was used in combination with a shuttle vector containing the bacterial lacZ' gene to study the effect of tiamulin on CYP3A4-mediated mutagenicity of aflatoxin B1. The mutation frequency of aflatoxin B1 could be completely inhibited by tiamulin in CYP3A4-expressing cells, but no effect was observed on the mutation frequency of the direct mutagen ethylmethanesulphonate. Western blotting of homogenates of the CYP3A4-expressing cell line showed stabilization of CYP3A4 protein after incubation with tiamulin, supporting the hypothesis that the mechanism of inhibition is by binding of tiamulin to the cytochrome.

  14. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    International Nuclear Information System (INIS)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-01-01

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1 C YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+) s evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  15. CYP1A1 expression in breast milk cells of Japanese population

    Energy Technology Data Exchange (ETDEWEB)

    Yonemoto, Junzo; Shiizaki, Kazuhiro; Sone, Hideko; Morita, Masatosi [National Institute for Environmental Studies, Tsukuba (Japan); Uechi, Hiroto [Uechi Obstetrics and Gynecology Clinic, Utsunomiya (Japan); Masuzaki, Yuko; Koizumi, Atsuko; Matzumura, Toru [Metocean Environment Inc., Ohigawa (Japan)

    2004-09-15

    Dioxins are persistent, lipophilic compounds that are ubiquitous in the environment. Concern over the reproductive and developmental toxicity of dioxins has been growing since they have endocrine-disrupting properties and have adversely affected the health of offspring in experimental and epidemiological studies. Monitoring of maternal body burdens of dioxins and their biological responses to dioxin exposure is needed to estimate the potential health risk to their offspring. Breast milk has been used for monitoring dioxins in humans for decades. Breast milk has some advantages in exposure monitoring. Sampling is non-invasive, and dioxin levels are relatively high because of the high lipid content. It is assumed that mammary glands are exposed to a higher level of dioxins than other tissues since mammary glands synthesize and store milk fat. Breast milk contains leukocytes and exfoliated ductal epithelial cells. If these cells responded to dioxins and expressed CYP enzymes, a sensitive biomarker for dioxin exposure, they would be useful as biomarkers for dioxin exposure. In the present study, the expression of CYP enzymes in intact milk cells or cells cultured with TCDD was investigated. In addition, breast milk samples were collected from mothers within one week of childbearing, and the expression of CYP1A1 mRNA in milk cells was determined. The relationship between CYP1A1 mRNA expression in milk cells and dioxin levels in the cream layer of breast milk was analyzed.

  16. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    International Nuclear Information System (INIS)

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-01-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  17. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  18. CYP1B1 Mutations in Individuals With Primary Congenital Glaucoma and Residing in Denmark

    DEFF Research Database (Denmark)

    Grønskov, Karen; Redó-Riveiro, Alba; Sandfeld, Lisbeth

    2016-01-01

    Primary congenital glaucoma (PCG OMIM 231300) can be caused by pathogenic sequence variations in cytochrome P450, subfamily 1, polypeptide 1 (CYP1B1). The purpose of this study was to investigate the contribution of sequence variations in CYP1B1 in a cohort of individuals with PCG residing...... mutations, 5 of which were novel. The frequency of CYP1B1 mutations in this cohort was comparable with other populations. We also detected an individual heterozygous for p.(Tyr81Asn) mutation, previously suggested to cause autosomal dominant primary open-angle glaucoma....

  19. Severity of murine collagen-induced arthritis correlates with increased CYP7B activity: enhancement of dehydroepiandrosterone metabolism by interleukin-1beta.

    Science.gov (United States)

    Dulos, John; Verbraak, Evert; Bagchus, Wilma M; Boots, Annemieke M H; Kaptein, Allard

    2004-10-01

    The endogenous steroid dehydroepiandrosterone (DHEA) has been reported to play a role in rheumatoid arthritis (RA). DHEA is metabolized by the P450 enzyme CYP7B into 7alpha-OH-DHEA, which has immunostimulating properties. This study was undertaken to investigate the putative role of CYP7B in arthritis using murine collagen-induced arthritis (CIA), an interleukin-1beta (IL-1beta)-dependent model. DBA/1J mice were immunized and administered a booster with type II collagen. The presence of 7alpha-OH-DHEA was determined in both arthritic and nonarthritic joints and the serum of CIA mice by radioimmunoassay. CYP7B messenger RNA (mRNA) expression was analyzed in synovial biopsy samples, and in fibroblast-like synoviocytes (FLS) isolated from these synovial biopsy samples, by reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, the regulatory role of IL-1beta on CYP7B activity in FLS was determined using RT-PCR, Western blotting, and high-performance liquid chromatography. In knee joint synovial biopsy samples from arthritic mice, 7alpha-OH-DHEA levels were 5-fold higher than in nonarthritic mice. Elevated levels of 7alpha-OH-DHEA were accompanied by an increase in CYP7B mRNA expression and were positively correlated with disease severity. In serum, no differences in 7alpha-OH-DHEA levels were observed between arthritic and nonarthritic mice. Incubation of FLS with IL-1beta resulted in a dose-dependent increase in 7alpha-OH-DHEA formation. In addition, IL-1beta enhanced CYP7B mRNA and CYP7B protein levels in FLS. Disease progression in CIA is correlated with enhanced CYP7B activity, which leads to locally enhanced 7alpha-OH-DHEA levels. Elevated IL-1beta levels within the arthritic joint may regulate this increase in CYP7B activity. Copyright 2004 American College of Rheumatology

  20. Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans.

    Science.gov (United States)

    Ghisari, Mandana; Long, Manhai; Bonefeld-Jørgensen, Eva C

    2013-01-01

    The Indigenous Arctic population is of Asian descent, and their genetic background is different from the Caucasian populations. Relatively little is known about the specific genetic polymorphisms in genes involved in the activation and detoxification mechanisms of environmental contaminants in Inuit and its relation to health risk. The Greenlandic Inuit are highly exposed to legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), and an elucidation of gene-environment interactions in relation to health risks is needed. The aim of this study was to determine and compare the genotype and allele frequencies of the cytochrome P450 CYP1A1 Ile462Val (rs1048943), CYP1B1 Leu432Val (rs1056836) and catechol-O-methyltransferase COMT Val158Met (rs4680) in Greenlandic Inuit (n=254) and Europeans (n=262) and explore the possible relation between the genotypes and serum levels of POPs. The genotype and allele frequency distributions of the three genetic polymorphisms differed significantly between the Inuit and Europeans. For Inuit, the genotype distribution was more similar to those reported for Asian populations. We observed a significant difference in serum polychlorinated biphenyl (CB-153) and the pesticide 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p'-DDE) levels between Inuit and Europeans, and for Inuit also associations between the POP levels and genotypes for CYP1A1, CYP1B1 and COMT. Our data provide new information on gene polymorphisms in Greenlandic Inuit that might support evaluation of susceptibility to environmental contaminants and warrant further studies.

  1. Expression of cyp1a protein in the freshwater clam Corbicula fluminea (Müller

    Directory of Open Access Journals (Sweden)

    Vranković Jelena

    2011-01-01

    Full Text Available We investigated the expression of CYP1A in the foot, gill and visceral mass of the freshwater clam Corbicula fluminea in relation to polychlorinated biphenyls (PCBs exposure. Different PCBs congeners were found in the foot and visceral mass, while the expression of CYP1A was observed only in the visceral mass. However the level of CYP1A expression in the visceral mass was not related to the level of PCBs present in the tissue. Our results indicate a higher rate of biotransformation and lower threshold of CYP1A induction in the visceral mass compared with other tissues.

  2. Nine co-localized cytochrome P450 genes of the CYP2N, CYP2AD, and CYP2P gene families in the mangrove killifish Kryptolebias marmoratus genome: Identification and expression in response to B[α]P, BPA, OP, and NP.

    Science.gov (United States)

    Puthumana, Jayesh; Kim, Bo-Mi; Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Jung, Jee-Hyun; Kim, Il-Chan; Hwang, Un-Ki; Lee, Jae-Seong

    2017-06-01

    The CYP2 genes are the largest and most diverse cytochrome P450 (CYP) subfamily in vertebrates. We have identified nine co-localized CYP2 genes (∼55kb) in a new cluster in the genome of the highly resilient ecotoxicological fish model Kryptolebias marmoratus. Molecular characterization, temporal and tissue-specific expression pattern, and response to xenobiotics of these genes were examined. The CYP2 gene clusters were characterized and designated CYP2N22-23, CYP2AD12, and CYP2P16-20. Gene synteny analysis confirmed that the cluster in K. marmoratus is similar to that found in other teleost fishes, including zebrafish. A gene duplication event with diverged catalytic function was observed in CYP2AD12. Moreover, a high level of divergence in expression was observed among the co-localized genes. Phylogeny of the cluster suggested an orthologous relationship with similar genes in zebrafish and Japanese medaka. Gene expression analysis showed that CYP2P19 and CYP2N20 were consecutively expressed throughout embryonic development, whereas CYP2P18 was expressed in all adult tissues, suggesting that members of each CYP2 gene family have different physiological roles even though they are located in the same cluster. Among endocrine-disrupting chemicals (EDCs), benzo[α]pyrene (B[α]P) induced expression of CYP2N23, bisphenol A (BPA) induced CYP2P18 and CYP2P19, and 4-octylphenol (OP) induced CYP2AD12, but there was no significant response to 4-nonylphenol (NP), implying differential catalytic roles of the enzyme. In this paper, we identify and characterize a CYP2 gene cluster in the mangrove killifish K. marmoratus with differing catalytic roles toward EDCs. Our findings provide insights on the roles of nine co-localized CYP2 genes and their catalytic functions for better understanding of chemical-biological interactions in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Circadian expression of steroidogenic cytochromes P450 in the mouse adrenal gland--involvement of cAMP-responsive element modulator in epigenetic regulation of Cyp17a1.

    Science.gov (United States)

    Košir, Rok; Zmrzljak, Ursula Prosenc; Bele, Tanja; Acimovic, Jure; Perse, Martina; Majdic, Gregor; Prehn, Cornelia; Adamski, Jerzy; Rozman, Damjana

    2012-05-01

    The cytochrome P450 (CYP) genes Cyp51, Cyp11a1, Cyp17a1, Cyb11b1, Cyp11b2 and Cyp21a1 are involved in the adrenal production of corticosteroids, whose circulating levels are circadian. cAMP signaling plays an important role in adrenal steroidogenesis. By using cAMP responsive element modulator (Crem) knockout mice, we show that CREM isoforms contribute to circadian expression of steroidogenic CYPs in the mouse adrenal gland. Most striking was the CREM-dependent hypomethylation of the Cyp17a1 promoter at zeitgeber time 12, which resulted in higher Cyp17a1 mRNA and protein expression in the knockout adrenal glands. The data indicate that products of the Crem gene control the epigenetic repression of Cyp17 in mouse adrenal glands. © 2011 The Authors Journal compilation © 2011 FEBS.

  4. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Han, Eun Hee [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  5. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    International Nuclear Information System (INIS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-01-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli

  6. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Woon, J. S. K., E-mail: jameswoon@siswa.ukm.edu.my; Murad, A. M. A., E-mail: munir@ukm.edu.my; Abu Bakar, F. D., E-mail: fabyff@ukm.edu.my [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  7. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    Science.gov (United States)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  8. Evaluation of CYP1A1 and CYP2B1/2 m-RNA induction in rat liver slices using the NanoString technology: a novel tool for drug discovery lead optimization.

    Science.gov (United States)

    Palamanda, Jairam R; Kumari, Pramila; Murgolo, Nicholas; Benbow, Larry; Lin, Xinjie; Nomeir, Amin A

    2009-08-01

    Cytochrome P450 (CYP) induction in rodents and humans is considered a liability for new chemical entities (NCEs) in drug discovery. In particular, CYP1A1 and CYP2B1/2 have been associated with the induction of liver tumors in oncogenicity studies during safety evaluation studies of potential drugs. In our laboratory, real time PCR (Taqman) has been used to quantify the induction of rat hepatic CYP1A1 and CYP2B1/2 in precision -cut rat liver slices. A novel technology that does not require m-RNA isolation or RT-PCR, (developed by NanoString Technologies) has been investigated to quantify CYP1A1 and CYP2B1/2 induction in rat liver slices. Seventeen commercially available compounds were evaluated using both Taqman and NanoString technologies. Precision-cut rat liver slices were incubated with individual compounds for 24 hr at 37 degrees C in a humidified CO(2) incubator and CYP1A1 and CYP2B1/2 m-RNA were quantified. The results from the NanoString technology were similar to those of the Taqman(R) with a high degree of correlation for both CYP isoforms (r(2)>0.85). Therefore, NanoString provides an additional new technology to evaluate the induction of CYP1A1 and 2B1/2, as well as potentially other enzymes or transporters in rat liver slices.

  9. Phenobarbital increases monkey in vivo nicotine disposition and induces liver and brain CYP2B6 protein

    Science.gov (United States)

    Lee, Anna M; Miksys, Sharon; Tyndale, Rachel F

    2006-01-01

    CYP2B6 is a drug-metabolizing enzyme expressed in the liver and brain that can metabolize bupropion (Zyban®, a smoking cessation drug), activate tobacco-smoke nitrosamines, and inactivate nicotine. Hepatic CYP2B6 is induced by phenobarbital and induction may affect in vivo nicotine disposition, while brain CYP2B6 induction may affect local levels of centrally acting substrates. We investigated the effect of chronic phenobarbital treatment on induction of in vivo nicotine disposition and CYP2B6 expression in the liver and brain of African Green (Vervet) monkeys. Monkeys were split into two groups (n=6 each) and given oral saccharin daily for 22 days; one group was supplemented with 20 mg kg−1 phenobarbital. Monkeys were given a 0.1 mg kg−1 nicotine dose subcutaneously before and after treatment. Phenobarbital treatment resulted in a significant, 56%, decrease (P=0.04) in the maximum nicotine plasma concentration and a 46% decrease (P=0.003) in the area under the concentration–time curve. Phenobarbital also increased hepatic CYP2B6 protein expression. In monkey brain, significant induction (Pphenobarbital treatment in monkeys resulted in increased in vivo nicotine disposition, and induced hepatic and brain CYP2B6 protein levels and cellular expression. This induction may alter the metabolism of CYP2B6 substrates including peripherally acting drugs such as cyclophosphamide and centrally acting drugs such as bupropion, ecstasy and phencyclidine. PMID:16751792

  10. Expression of CYP2E1 in human nasopharynx and its metabolic effect in vitro.

    Science.gov (United States)

    Hou, De-Fu; Wang, Shui-Liang; He, Zhi-Min; Yang, Fang; Chen, Zhu-Chu

    2007-04-01

    It was evident that nitrosamines can act directly on target tissue and result in carcinogenesis. As has been shown, the carcinogenic activity of nitrosamines relied on its bioactivation by Cytochrome P450 2E1 (CYP2E1). In this study, we investigated the expression of CYP2E1 in Nasopharyngeal carcinoma (NPC) cells, embryonic nasopharyngeal epithelial tissue (ENET) specimens, and NPC biopsies by RT-PCR analysis. CYP2E1 was expressed in all NPC cell lines (6/6, including 7429) and ENET (6/6), and 80% of NPC biopsie (8/10). The fact that Human nasopharynx expresses CYP2E1 suggests that CYP2E1 may play an important role in the course of NPC by indirect carcinogens nitrosamines. To further evaluate the function of CYP2E1, the CYP2E1 was stably expressed in the cell line NIH 3T3/rtTA under a tetracycline-controlled transactivator. The expression of CYP2E1 was tightly regulated in a dose-dependent manner by Doxycycline (Dox) When the catalytic activity of CYP2E1 was assayed, the result showed that the generation of 6-hydroxychlorzoxazone (6-OH-CZ) from chlorzoxazone (CZ) was dose- and time-dependent on Dox addition to the medium. In the presence of 1 microg/ml Dox, the CZ 6-hydroxylase activity of the cell line was found to be 0.986 +/- 0.034 nmol/10(6) cells/h. The metabolic activation of Tet/3T3/2E1-6 cells was also assayed by N,N'-dinitrosopiperazine (DNP) cytotoxicity, and the viability of Tet/3T3/2E1-6 cells treated with Dox was lower than that of untreated cells with a significant difference between them in 80 and 160 microg/ml DNP (P ( 0.05, t test. This cell line will be useful not only to assess the metabolic characteristics of CYP2E1, but also will be useful to investigate the role of CYP2E1 in metabolic activation of carcinogenic nitrosamines in vitro.

  11. Expression and cytoprotective activity of the small GTPase RhoB induced by the Escherichia coli cytotoxic necrotizing factor 1

    DEFF Research Database (Denmark)

    Huelsenbeck, Stefanie C; Roggenkamp, Dennis; May, Martin

    2013-01-01

    B expression, based on the inactivation of Rho/Ras proteins. In this study, we report on a long lasting expression of RhoB in cultured cells upon activation of Rho proteins by the cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. The observations of this study highlight a new pathway involving Rac1...... without any signs of cell death. In conclusion, the cytoprotective RhoB response is not only evoked by bacterial protein toxins inactivating Rho/Ras proteins but also by the Rac1-activating toxin CNF1....

  12. Survey of familial glaucoma shows a high incidence of cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1) mutations in non-consanguineous congenital forms in a Spanish population

    Science.gov (United States)

    Millá, Elena; Mañé, Begoña; Duch, Susana; Hernan, Imma; Borràs, Emma; Planas, Ester; Dias, Miguel de Sousa; Carballo, Miguel

    2013-01-01

    Purpose To identify myocilin (MYOC) and cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1) mutations in a Spanish population with different clinical forms of familial glaucoma or ocular hypertension (OHT). Methods Index patients from 226 families participated in this study. Patients were diagnosed with familial glaucoma or OHT by complete ophthalmologic examination. Screening for MYOC mutations was performed in 207 index patients: 96 with adult-onset primary open-angle glaucoma (POAG), 21 with primary congenital glaucoma (PCG), 18 with juvenile-onset open-angle glaucoma (JOAG), five with Axenfeld-Rieger syndrome (ARS), and 67 with other types of glaucoma. One hundred two of the families (including all those in whom a MYOC mutation was detected) were also screened for CYP1B1 mutations: 45 POAG, 25 PCG, 21 JOAG, four ARS, and seven others. Results We examined 292 individuals (patients and relatives) with a positive family history of glaucoma or OHT. We identified two novel MYOC variants, p.Lys39Arg and p.Glu218Lys, in two families with POAG, and six previously reported MYOC mutations in seven families with POAG (four), JOAG (one), PCG (one), and normotensive glaucoma (one). CYP1B1 mutations were found in 16 index patients with PCG (nine), POAG (three), JOAG (two), and ARS (two). Conclusions The high percentage (9/25=36%) of mutations in CYP1B1 found in non-consanguineous patients with congenital glaucoma mandates genetic testing. However, the percentage of mutations (9/207=4.4%) in MYOC associated with glaucoma is relatively low in our population. The variable phenotype expression of glaucoma, even in families, cannot be explained with a digenic mechanism between MYOC and CYP1B1. PMID:23922489

  13. A Family-Based Association Study of CYP11A1 and CYP11B1 Gene Polymorphisms With Autism in Chinese Trios.

    Science.gov (United States)

    Deng, Hong-Zhu; You, Cong; Xing, Yu; Chen, Kai-Yun; Zou, Xiao-Bing

    2016-05-01

    Autism spectrum disorder is a group of neurodevelopmental disorders with the higher prevalence in males. Our previous studies have indicated lower progesterone levels in the children with autism spectrum disorder, suggesting involvement of the cytochrome P-450scc gene (CYP11A1) and cytochrome P-45011beta gene (CYP11B1) as candidate genes in autism spectrum disorder. The aim of this study was to investigate the family-based genetic association between single-nucleotide polymorphisms, rs2279357 in the CYP11A1 gene and rs4534 and rs4541 in the CYP11B1 gene and autism spectrum disorder in Chinese children, which were selected according to the location in the coding region and 5' and 3' regions and minor allele frequencies of greater than 0.05 in the Chinese populations. The transmission disequilibrium test and case-control association analyses were performed in 100 Chinese Han autism spectrum disorder family trios. The genotype and allele frequency of the 3 single-nucleotide polymorphisms had no statistical difference between the children with autism spectrum disorder and their parents (P> .05). Transmission disequilibrium test analysis showed transmission disequilibrium of CYP11A1 gene rs2279357 single-nucleotide polymorphisms (χ(2)= 5.038,Pautism spectrum disorder exists within or near the CYP11A1 gene in the Han Chinese population. © The Author(s) 2015.

  14. Cyclophilin B enhances HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    DeBoer, Jason; Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln, NE (United States)

    2016-02-15

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.

  15. Cyclophilin B enhances HIV-1 infection

    International Nuclear Information System (INIS)

    DeBoer, Jason; Madson, Christian J.; Belshan, Michael

    2016-01-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.

  16. Promoter characteristics of two cyp19 genes differentially expressed in the brain and ovary of teleost fish.

    Science.gov (United States)

    Tchoudakova, A; Kishida, M; Wood, E; Callard, G V

    2001-11-01

    Teleost fish are characterized by exceptionally high levels of neural estrogen biosynthesis when compared with the brains of other vertebrates or to the ovaries of the same fish. Two P450arom mRNAs which derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (b>a) and ovary (a>b) and have a different developmental program (b>a) and estrogen upregulation (b only). A polymerase chain reaction (PCR)-based genomic walking strategy was used to isolate the 5'-flanking regions of the goldfish (Carassius auratus) cyp19 genes. Sequence analysis of the cyp19b gene approximately 1.8 kb upstream of the transcription start site revealed a TATA box at nucleotide (nt) -30, two estrogen responsive elements (EREs; nt -351 and -211) and a consensus binding site (NBRE) for nerve growth factor inducible-B protein (NGFI-B/Nur77) at -286, which includes another ERE half-site. Also present were a sequence at nt -399 (CCCTCCT) required for neural specificity of the zebrafish GATA-2 gene, and 16 copies of an SRY/SOX binding motif. The 5'-flanking region ( approximately 1.0 kb) of the cyp19a gene had TATA (nt -48) and CAAT (nt -71) boxes, a steroidogenic factor-1 (SF-1) binding site (nt -265), eight copies of the SRY/SOX motif, and two copies of a recognition site for binding the arylhydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) heterodimer. Both genes had elements previously identified in the brain specific exon I promoter of the mouse aromatase gene. Cyp19a- and -b/luciferase constructs showed basal promoter activity in aromatase-expressing rodent pituitary (GH3) cells, but differences (a>b) did not reflect expression in fish pituitary in vivo (b>a), implying a lack of appropriate cell factors. Consistent with the onset of cyp19b expression in zebrafish embryos, microinjection of a green fluorescent protein (GFP) reporter plasmid into fertilized eggs revealed labeling in neural tissues at 30-48 h post-fertilization (hpf), most

  17. Export of Cytochrome P450 105D1 to the Periplasmic Space of Escherichia coli

    OpenAIRE

    Kaderbhai, Mustak A.; Ugochukwu, Cynthia C.; Kelly, Steven L.; Lamb, David C.

    2001-01-01

    CYP105D1, a cytochrome P450 from Streptomyces griseus, was appended at its amino terminus to the secretory signal of Escherichia coli alkaline phosphatase and placed under the transcriptional control of the native phoA promoter. Heterologous expression in E. coli phosphate-limited medium resulted in abundant synthesis of recombinant CYP105D1 that was translocated across the bacterial inner membrane and processed to yield authentic, heme-incorporated P450 within the periplasmic space. Cell ext...

  18. An indole-deficient Escherichia coli strain improves screening of cytochromes P450 for biotechnological applications.

    Science.gov (United States)

    Brixius-Anderko, Simone; Hannemann, Frank; Ringle, Michael; Khatri, Yogan; Bernhardt, Rita

    2017-05-01

    Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 μM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  19. Soluble expression and purifiation of hepatitis B core antigen (HBcAg subgenotype B3 in Escherichia coli using thioredoxin fusion tag

    Directory of Open Access Journals (Sweden)

    Rahmah Waty

    2017-08-01

    Full Text Available Objective: To express HBcAg protein (hepatitis B virus subgenotype B3 in Escherichia coli in soluble form. Methods: HBcAg sequence of hepatitis B virus subgenotype B3 was cloned into plasmid pET32a and introduced to E. coli BL21 (DE3. The E. coli was grown in Luria-Bertani (LB medium supplemented with ampicillin with agitation. Protein expression was induced by adding isopropyl-β-D-thiogalactopyranoside (IPTG at concentrations of 0.1 mmol/L, 0.3 mmol/L, and 0.5 mmol/L at room temperature (28 °C. The bacteria were dissolved in lysis buffer and lysed by freeze-thawing method then sonication. The fusion protein [thioredoxin A-(His6tag-HBcAg] was purified using immobilized metal affinity chromatography. The protein expression was analyzed by SDS-PAGE, dot blot, and western blot. Results: This research showed that DNA sequence of HBcAg could be propagated in pET32a and soluble protein was successfully expressed in E. coli. Induction with 0.3 mmol/L IPTG and 4-hour incubation was the best condition to express the HBcAg protein. SDS-PAGE and dot blot analysis showed that HBcAg protein could be expressed in E. coli. Western blot analysis showed that molecular weight of HBcAg fusion protein was about 38.5 kDa. Conclusions: This study confirmed that HBcAg protein could be expressed in soluble form in E. coli.

  20. Expression study of CYP19A1 gene in a cohort of Iranian leiomyoma patients

    Directory of Open Access Journals (Sweden)

    Leila Emrahi

    2018-07-01

    Full Text Available Background: CYP19A1 gene encodes aromatase, a microsomal key enzyme that catalyzes the synthesis of estrogens from androgens. Accumulating evidence has revealed that aromatase plays an important role in the pathogenesis of leiomyoma through increasing local concentration of estrogens. In this study, we examined the levels of CYP19A1 mRNA to determine the impact of aromatase overexpression in uterine leiomyoma growth. Subjects and methods: Tissues were obtained via myomectomy or hysterectomy from 30 patients. Total RNA was extracted and cDNA was synthesized from each frozen sample. Using SYBR Green dye, Real-time PCR assay was performed by sequence-specific primers. Relative mRNA expression was normalized to the mean of the Ct values determined for HPRT1. Gene expression ratio in each sample was determined relative to the mean ΔCt value of tumor-free margin samples. Results: PCR efficiencies for amplification reactions of HPRT1, and CYP19A genes were calculated as 0.93 and 0.96, respectively. Regression coefficients (R for standard curves were above 0.90. The obtained data revealed that the mean fold increase of CYP19A1 gene expression in leiomyoma samples relative to normal samples was 3.551 (95% CI: 0.04–6.64, S.E., 0.29–5.35. Conclusions: Our results were in accordance with previous studies and imply that up-regulation of CYP19A1 is correlated with the pathogenesis of leiomyoma tumors. We also observed that expression level of CYP19A1 was not linked to the tumor size or localization. It can be concluded that; up-regulation of aromatase is a key factor in the initiation of tumor development as well as tumor growth. Keywords: Leiomyoma, CYP19A1, Real-time PCR, Gene expression study

  1. Cloning and tissue expression of cytochrome P450 1B1 and 1C1 ...

    African Journals Online (AJOL)

    Cytochrome P450 1 (CYP1) is widely used as an indicator of exposure to environmental contaminants. In the study, two full-length complementary DNAs encode for CYP1B1 and CYP1C1 were cloned from medaka liver exposed to 500 ppb β-naphthoflavone for 24 h. CYP1B1, having 1984 bp, contains an open reading ...

  2. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Akira [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Bainy, Afonso C.D. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Woodin, Bruce R.; Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  3. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    International Nuclear Information System (INIS)

    Kubota, Akira; Bainy, Afonso C.D.; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2013-01-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  4. Aberrant gonadotropin-releasing hormone receptor (GnRHR) expression and its regulation of CYP11B2 expression and aldosterone production in adrenal aldosterone-producing adenoma (APA).

    Science.gov (United States)

    Nakamura, Yasuhiro; Hattangady, Namita G; Ye, Ping; Satoh, Fumitoshi; Morimoto, Ryo; Ito-Saito, Takako; Sugawara, Akira; Ohba, Koji; Takahashi, Kazuhiro; Rainey, William E; Sasano, Hironobu

    2014-03-25

    Aberrant expression of gonadotropin-releasing hormone receptor (GnRHR) has been reported in human adrenal tissues including aldosterone-producing adenoma (APA). However, the details of its expression and functional role in adrenals are still not clear. In this study, quantitative RT-PCR analysis revealed the mean level of GnRHR mRNA was significantly higher in APAs than in human normal adrenal (NA) (P=0.004). GnRHR protein expression was detected in human NA and neoplastic adrenal tissues. In H295R cells transfected with GnRHR, treatment with GnRH resulted in a concentration-dependent increase in CYP11B2 reporter activity. Chronic activation of GnRHR with GnRH (100nM), in a cell line with doxycycline-inducible GnRHR (H295R-TR/GnRHR), increased CYP11B2 expression and aldosterone production. These agonistic effects were inhibited by blockers for the calcium signaling pathway, KN93 and calmidazolium. These results suggest GnRH, through heterotopic expression of its receptor, may be a potential regulator of CYP11B2 expression levels in some cases of APA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Expression of aryl hydrocarbon receptor 1 (AHR1), AHR1 nuclear translocator 1 (ARNT1) and CYP1 family monooxygenase mRNAs and their activity in chicken ovarian follicles following in vitro exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

    Science.gov (United States)

    Antos, Piotr A; Błachuta, Małgorzata; Hrabia, Anna; Grzegorzewska, Agnieszka K; Sechman, Andrzej

    2015-09-02

    The aim of this in vitro study was to determine the effect of TCDD and luteinizing hormone (LH) on mRNA expression of aryl hydrocarbon receptor 1 (AHR1), AHR1 nuclear translocator 1 (ARNT1), and the CYP1 family monooxygenases (CYP1A4, CYP1A5, CYP1B1), and to assess the basal and TCDD-induced activity of these enzymes in chicken ovarian follicles. White (WF) and yellowish (YF) prehierarchical follicles and fragments of the theca (TL) and granulosa (GL) layers of the 3 largest preovulatory follicles (F3-F1) were exposed to TCDD (10nM), ovine LH (oLH; 10ng/mL) or a combination of TCDD (10nM) and oLH (10ng/mL), and increasing doses of TCDD (0.01-100nM). AHR1 and ARNT1 mRNA transcripts were found in all examined follicles. The effect of TCDD and oLH on AHR1 and ARNT1 mRNA expression depended on the maturational state of the follicle. CYP1A4 was predominantly expressed in the GL of the F3-F1 follicles; in comparison with the WF, a higher level of CYP1A5 mRNA was found both in the GL and TL of F3-F1 follicles. Alternatively, the highest level of CYP1B1 mRNA was noticed in the WF follicles. In different developmental stages of the follicle TCDD and oLH induced a different CYP1 isoform. TCDD increased EROD and MROD activities in all the investigated ovarian follicles. In conclusion, AHR1 and ARNT1 mRNA expression indicate that the chicken ovary is a target tissue for dioxin and dioxin-like compounds. The expression of CYP1-family genes and TCDD-inducible EROD and MROD activities in ovarian follicles suggest the possibility of xenobiotic detoxification in the chicken ovary. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Clofibric acid induces hepatic CYP 2B1/2 via constitutive androstane receptor not via peroxisome proliferator activated receptor alpha in rat.

    Science.gov (United States)

    Ibrahim, Zein Shaban; Ahmed, Mohamed Mohamed; El-Shazly, Samir Ahmed; Ishizuka, Mayumi; Fujita, Shoichi

    2014-01-01

    Peroxisome proliferator activated receptor α (PPARα) ligands, fibrates used to control hyperlipidemia. We demonstrated CYP2B induction by clofibric acid (CFA) however, the mechanism was not clear. In this study, HepG2 cells transfected with expression plasmid of mouse constitutive androstane receptor (CAR) or PPARα were treated with CFA, phenobarbital (PB) or TCPOBOP. Luciferase assays showed that CFA increased CYP2B1 transcription to the same level as PB, or TCPOBOP in HepG2 transfected with mouse CAR But failed to induce it in PPARα transfected cells. CYP2B expressions were increased with PB or CFA in Wistar female rats (having normal levels of CAR) but not in Wistar Kyoto female rats (having low levels of CAR). The induction of CYP2B by PB or CFA was comparable to nuclear CAR levels. CAR nuclear translocation was induced by CFA in both rat strains. This indicates that fibrates can activate CAR and that fibrates-insulin sensitization effect may occur through CAR, while hypolipidemic effect may operate through PPARα.

  7. An impact of CYP3A4 *1B polymorphism on rifampicin metabolism

    Directory of Open Access Journals (Sweden)

    H. O. Poludenko

    2017-08-01

    Full Text Available Until now, the enzyme systems responsible for biotransformation of the antituberculous drug rifampicin remain unknown. The aim of research was an investigation of the candidate enzymes involved in the biotransformation of rifampicin using the computer system PASS and an experimental study concerning the effect of the polymorphism of the biotransformation gene CYP3A4 *1B on the level of rifampicin in the blood of patients with pulmonary tuberculosis (РTB. The probability (Pa of certain pharmacological activity and the effect on putative enzyme systems of the human body of rifampicin has been calculated by the PASS method. Polymerase chain reaction revealed the polymorphism of the CYP3A4 *1B gene among healthy volunteers as well as patients with РTB. With a high degree of probability, according to PASS calculations, it was predicted that rifampicin undergo metabolism with the CYP3A4 enzyme - probability (Ra were 0.891. According to the genotype CYP3A4 *1B, 95.3% of the healthy donors carried a homozygous wild-type gene (i.e., had high enzymatic activity - AA genotype; the rest 4.7% - were carriers of the heterozygous AG genotype (moderate enzyme activity.The polymorphism of CYP3A4 *1B genotypes and alleles in the south-west of Ukraine was close to the results obtained in European countries. 91.4% and 8.6% of the patients with РTB had AA and AG genotype, correspondently. Thus, among the patients with РTB, the AG genotype was more often observed than among healthy volunteers. There was no significant difference in rifampicin concentration among РTB-patients concerning CYP3A4 * 1B polymorphism.

  8. Polymorphisms of cytochrome P450 2B6 (CYP2B6) in cynomolgus and rhesus macaques.

    Science.gov (United States)

    Uno, Yasuhiro; Uehara, Shotaro; Yamazaki, Hiroshi

    2018-02-22

    Cytochrome P450 2B6 (CYP2B6) is an important drug-metabolizing enzyme and is expressed in liver. Although human CYP2B6 variants account for variable enzyme properties among individuals and populations, CYP2B6 genetic variants have not been investigated in cynomolgus macaques, widely used in drug metabolism studies. CYP2B6 was resequenced in 120 cynomolgus macaques and 23 rhesus macaques by direct sequencing. Twenty-three non-synonymous variants were found, of which 12 and 3 were unique to cynomolgus macaques and rhesus macaques, respectively. By functional characterization using the 14 variant proteins, 8 variants (V114I, R253C, M435I, V459M, L465P, C475S, R487C, and R487H) showed different rate (>1.5-fold) of testosterone 16β-hydroxylation to wild type. However, the four variants (M435I, L465P, C475S, and R487H) were analyzed in liver microsomes, and the catalytic rates were not substantially different from wild type. Macaque CYP2B6 was polymorphic, and the genotype could partly account for variable enzyme activities of macaque CYP2B6. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    International Nuclear Information System (INIS)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.; Yang, J.-J.; Chen, H.-W.

    2007-01-01

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation by n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 μM arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression

  10. Association of CYP2B6, CYP3A5, and CYP2C19 genetic polymorphisms with sibutramine pharmacokinetics in healthy Korean subjects.

    Science.gov (United States)

    Kim, K A; Song, W K; Park, J Y

    2009-11-01

    We assessed the association of CYP2B6, CYP3A5, and CYP2C19 polymorphisms with sibutramine pharmacokinetics. Forty six healthy male subjects were enrolled, and their CYP2B6 (*4 and *6), CYP3A5 (*3), and CYP2C19 (*2, and *3) genotypes were analyzed. After a single 15-mg dose of sibutramine was administered, plasma concentrations of sibutramine and its metabolites, M1 and M2, were measured. CYP2B6 and CYP3A5 polymorphisms did not affect the pharmacokinetics of sibutramine and its metabolites. However, the CYP2C19 genotype substantially influenced plasma levels of sibutramine and its metabolites. The mean area under the curve (AUC) of sibutramine in CYP2C19 intermediate metabolizers (IMs; *1/*2 or *1/*3) and poor metabolizers (PMs; *2/*2, *2/*3)) was 18.5 and 252.2% higher, respectively, than the AUC in extensive metabolizers (EMs, *1/*1) (P sibutramine.

  11. NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I

    Energy Technology Data Exchange (ETDEWEB)

    Levova, Katerina; Moserova, Michaela [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic); Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati (United States); Phillips, David H. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London (United Kingdom); Frei, Eva [Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schmeiser, Heinz H. [Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg (Germany); Arlt, Volker M. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London (United Kingdom); Stiborova, Marie, E-mail: stiborov@natur.cuni.cz [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic)

    2012-12-15

    Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)—the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1(−/−), Cyp1a2(−/−) and Cyp1a1/1a2(−/−) knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential. Highlights: ► NAD(P)H:quinone oxidoreductase expression in Cyp1a knockout and humanized CYP1A mice ► Reductive activation of the nephrotoxic and carcinogenic aristolochic acid I (AAI) ► NAD(P)H:quinone oxidoreductase is induced in mice treated with AAI. ► Induced hepatic enzyme activity resulted in elevated AAI-DNA adduct levels.

  12. NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I

    International Nuclear Information System (INIS)

    Levova, Katerina; Moserova, Michaela; Nebert, Daniel W.; Phillips, David H.; Frei, Eva; Schmeiser, Heinz H.; Arlt, Volker M.; Stiborova, Marie

    2012-01-01

    Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)—the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1(−/−), Cyp1a2(−/−) and Cyp1a1/1a2(−/−) knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential. Highlights: ► NAD(P)H:quinone oxidoreductase expression in Cyp1a knockout and humanized CYP1A mice ► Reductive activation of the nephrotoxic and carcinogenic aristolochic acid I (AAI) ► NAD(P)H:quinone oxidoreductase is induced in mice treated with AAI. ► Induced hepatic enzyme activity resulted in elevated AAI-DNA adduct levels.

  13. Cloning, expression and purification of d-tagatose 3-epimerase gene from Escherichia coli JM109.

    Science.gov (United States)

    He, Xiaoliang; Zhou, Xiaohui; Yang, Zi; Xu, Le; Yu, Yuxiu; Jia, Lingling; Li, Guoqing

    2015-10-01

    An unknown d-tagatose 3-epimerase (DTE) containing a IoIE domain was identified and cloned from Escherichia coli. This gene was subcloned into the prokaryotic expression vector pET-15b, and induced by IPTG in E. coli BL21 expression system. Through His-select gel column purification and fast-protein liquid chromatography, highly purified and stable DTE protein was produced. The molecular weight of the DTE protein was estimated to be 29.8kDa. The latest 83 DTE sequences from public database were selected and analyzed by molecular clustering, multi-sequence alignment. DTEs were roughly divided into five categories. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. CYP1B1 and myocilin gene mutations in Egyptian patients with ...

    African Journals Online (AJOL)

    Mahmoud R. Fassad

    2016-08-09

    Aug 9, 2016 ... Abstract Purpose: Primary congenital glaucoma (PCG) accounts for 26–29% of childhood ... Conclusion: The current study further endorses the role of CYP1B1 mutations in the etiology of ..... There is no conflict of interest.

  15. Detection and molecular cloning of CYP74Q1 gene: identification of Ranunculus acris leaf divinyl ether synthase.

    Science.gov (United States)

    Gorina, Svetlana S; Toporkova, Yana Y; Mukhtarova, Lucia S; Chechetkin, Ivan R; Khairutdinov, Bulat I; Gogolev, Yuri V; Grechkin, Alexander N

    2014-09-01

    Enzymes of the CYP74 family, including the divinyl ether synthase (DES), play important roles in plant cell signalling and defence. The potent DES activities have been detected before in the leaves of the meadow buttercup (Ranunculus acris L.) and few other Ranunculaceae species. The nature of these DESs and their genes remained unrevealed. The PCR with degenerate primers enabled to detect the transcript of unknown P450 gene assigned as CYP74Q1. Besides, two more CYP74Q1 isoforms with minimal sequence variations have been found. The full length recombinant CYP74Q1 protein was expressed in Escherichia coli. The preferred substrates of this enzyme are the 13-hydroperoxides of α-linolenic and linoleic acids, which are converted to the divinyl ether oxylipins (ω5Z)-etherolenic acid, (9Z,11E)-12-[(1'Z,3'Z)-hexadienyloxy]-9,11-dodecadienoic acid, and (ω5Z)-etheroleic acid, (9Z,11E)-12-[(1'Z)-hexenyloxy]-9,11-dodecadienoic acid, respectively, as revealed by the data of mass spectrometry, NMR and UV spectroscopy. Thus, CYP74Q1 protein was identified as the R. acris DES (RaDES), a novel DES type and the opening member of new CYP74Q subfamily. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes.

    Science.gov (United States)

    Davies, Benjamin J; Coller, Janet K; Somogyi, Andrew A; Milne, Robert W; Sallustio, Benedetta C

    2007-01-01

    The cytochrome P450 (P450)-mediated 4-monohydroxylations of the individual enantiomers of the racemic antianginal agent perhexiline (PHX) were investigated in human liver microsomes (HLMs) to identify stereoselective differences in metabolism and to determine the contribution of the polymorphic enzyme CYP2D6 and other P450s to the intrinsic clearance of each enantiomer. The cis-, trans1-, and trans2-4-monohydroxylation rates of (+)- and (-)-PHX by human liver microsomes from three extensive metabolizers (EMs), two intermediate metabolizers (IMs), and two poor metabolizers (PMs) of CYP2D6 were measured with a high-performance liquid chromatography assay. P450 isoform-specific inhibitors, monoclonal antibodies directed against P450 isoforms, and recombinantly expressed human P450 enzymes were used to define the P450 isoform profile of PHX 4-monohydroxylations. The total in vitro intrinsic clearance values (mean +/- S.D.) of (+)- and (-)-PHX were 1376 +/- 330 and 2475 +/- 321, 230 +/- 225 and 482 +/- 437, and 63.4 +/- 1.6 and 54.6 +/- 1.2 microl/min/mg for the EM, IM, and PM HLMs, respectively. CYP2D6 catalyzes the formation of cis-OH-(+)-PHX and trans1-OH-(+)-PHX from (+)-PHX and cis-OH-(-)-PHX from (-)-PHX with high affinity. CYP2B6 and CYP3A4 each catalyze the trans1- and trans2-4-monohydroxylation of both (+)- and (-)-PHX with low affinity. Both enantiomers of PHX are subject to significant polymorphic metabolism by CYP2D6, although this enzyme exhibits distinct stereoselectivity with respect to the conformation of metabolites and the rate at which they are formed. CYP2B6 and CYP3A4 are minor contributors to the intrinsic P450-mediated hepatic clearance of both enantiomers of PHX, except in CYP2D6 PMs.

  17. Induction of Cyp1a1 and Cyp1b1 and formation of DNA adducts in C57BL/6, Balb/c, and F1 mice following in utero exposure to 3-methylcholanthrene

    International Nuclear Information System (INIS)

    Xu Mian; Nelson, Garret B.; Moore, Joseph E.; McCoy, Thomas P.; Dai, Jian; Manderville, Richard A.; Ross, Jeffrey A.; Miller, Mark Steven

    2005-01-01

    Fetal mice are more sensitive to chemical carcinogens than are adults. Previous studies from our laboratory demonstrated differences in the mutational spectrum induced in the Ki-ras gene from lung tumors isolated from [D2 x B6D2F1]F2 mice and Balb/c mice treated in utero with 3-methylcholanthrene (MC). We thus determined if differences in metabolism, adduct formation, or adduct repair influence strain-specific responses to transplacental MC exposure in C57BL/6 (B6), Balb/c (BC), and reciprocal F1 crosses between these two strains of mice. The induction of Cyp1a1 and Cyp1b1 in fetal lung and liver tissue was determined by quantitative fluorescent real-time PCR. MC treatment caused maximal induction of Cyp1a1 and Cyp1b1 RNA 2-8 h after injection in both organs. RNA levels for both genes then declined in both fetal organs, but a small biphasic, secondary increase in Cyp1a1 was observed specifically in the fetal lung 24-48 h after MC exposure in all four strains. Cyp1a1 induction by MC at 4 h was 2-5 times greater in fetal liver (7000- to 16,000-fold) than fetal lung (2000- to 6000-fold). Cyp1b1 induction in both fetal lung and liver was similar and much lower than that observed for Cyp1a1, with induction ratios of 8- to 18-fold in fetal lung and 10- to 20-fold in fetal liver. The overall kinetics and patterns of induction were thus very similar across the four strains of mice. The only significant strain-specific effect appeared to be the relatively poor induction of Cyp1b1 in the parental strain of B6 mice, especially in fetal lung tissue. We also measured the levels of MC adducts and their disappearance from lung tissue by the P 32 post-labeling assay on gestation days 18 and 19 and postnatal days 1, 4, 11, and 18. Few differences were seen between the different strains of mice; the parental strain of B6 mice had nominally higher levels of DNA adducts 2 (gestation day 19) and 4 (postnatal day 1) days after injection, although this was not statistically significant

  18. Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Lin, Xiang-min; Yang, Man-jun; Li, Hui; Wang, Chao; Peng, Xuan-Xian

    2014-02-26

    We previously revealed a negative regulation of LamB in chlortetracycline-resistant Escherichia coli strain. In the present study, we first showed that the negative regulation, which was characterized by decreased abundance of LamB with elevated growth of its gene-deleted mutant in medium with antibiotics, was a general response in resistance to different classes of antibiotics using 2-DE based proteomics or/and genetically gene-deletion mutant of LamB. Then, we revealed the interaction of LamB and Odp1 which catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2, and found the decrease of the complex in antibiotic-resistant strains with a minimum inhibitory concentration dose-dependent manner. Further spectrofluorometry assay indicated that LamB served as a porin to influx an antibiotic. Finally, we showed that the decreased expression of LamB and Odp1 was detected in almost of all 34 multidrug-resistant strains, which suggested that LamB and Odp1 were biomarkers for identification of antibiotic-resistant E. coli. Our results indicated that the interaction of an outer membrane protein with an energy metabolic enzyme constructed an efficient pathway to resist antibiotics. These findings provide novel insights into the mechanisms of antibiotic resistance. Our data indicate that the negative regulation by LamB is widely detected in antibiotic-resistant E. coli. LamB serves as a porin to influx an antibiotic and is interacted with Odp1. The complex decreases in antibiotic-resistant strains with a MIC dose-dependent manner. Our findings indicate that interaction of outer membrane protein with energy metabolic enzyme constructs an efficient pathway to resist antibiotics and provides novel insights into the mechanisms of antibiotic resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Reconstitution of β-carotene hydroxylase activity of thermostable CYP175A1 monooxygenase

    International Nuclear Information System (INIS)

    Momoi, Kyoko; Hofmann, Ute; Schmid, Rolf D.; Urlacher, Vlada B.

    2006-01-01

    CYP175A1 is a thermostable P450 Monooxygenase from Thermus thermophilus HB27, demonstrating in vivo activity towards β-carotene. Activity of CYP175A1 was reconstituted in vitro using artificial electron transport proteins. First results were obtained in the mixture with a crude Escherichia coli cell extract at 37 o C. In this system, β-carotene was hydroxylated to β-cryptoxanthin. The result indicated the presence of electron transport enzymes among the E. coli proteins, which are suitable for CYP175A1. However, upon in vitro reconstitution of CYP175A1 activity with purified recombinant flavodoxin and flavodoxin reductase from E. coli, only very low β-cryptoxanthin production was observed. Remarkably, with another artificial electron transport system, putidaredoxin and putidaredoxin reductase from Pseudomonas putida, purified CYP175A1 enzyme hydroxylated β-carotene at 3- and also 3'-positions, resulting in β-cryptoxanthin and zeaxanthin. Under the optimal reaction conditions, the turnover rate of the enzyme reached 0.23 nmol β-cryptoxanthin produced per nmol P450 per min

  20. Occurrence of CYP1B1 Mutations in Juvenile Open-Angle Glaucoma With Advanced Visual Field Loss.

    Science.gov (United States)

    Souzeau, Emmanuelle; Hayes, Melanie; Zhou, Tiger; Siggs, Owen M; Ridge, Bronwyn; Awadalla, Mona S; Smith, James E H; Ruddle, Jonathan B; Elder, James E; Mackey, David A; Hewitt, Alex W; Healey, Paul R; Goldberg, Ivan; Morgan, William H; Landers, John; Dubowsky, Andrew; Burdon, Kathryn P; Craig, Jamie E

    2015-07-01

    Juvenile open-angle glaucoma (JOAG) is a severe neurodegenerative eye disorder in which most of the genetic contribution remains unexplained. To assess the prevalence of pathogenic CYP1B1 sequence variants in an Australian cohort of patients with JOAG and severe visual field loss. For this cohort study, we recruited 160 patients with JOAG classified as advanced (n = 118) and nonadvanced (n = 42) through the Australian and New Zealand Registry of Advanced Glaucoma from January 1, 2007, through April 1, 2014. Eighty individuals with no evidence of glaucoma served as a control group. We defined JOAG as diagnosis before age 40 years and advanced JOAG as visual field loss in 2 of the 4 central fixation squares on a reliable visual field test result. We performed direct sequencing of the entire coding region of CYP1B1. Data analysis was performed in October 2014. Identification and characterization of CYP1B1 sequence variants. We identified 7 different pathogenic variants among 8 of 118 patients with advanced JOAG (6.8%) but none among the patients with nonadvanced JOAG. Three patients were homozygous or compound heterozygous for CYP1B1 pathogenic variants, which provided a likely basis for their disease. Five patients were heterozygous. The allele frequency among the patients with advanced JOAG (11 in 236 [4.7%]) was higher than among our controls (1 in 160 [0.6%]; P = .02; odds ratio, 7.8 [95% CI, 0.02-1.0]) or among the control population from the Exome Aggregation Consortium database (2946 of 122 960 [2.4%]; P = .02; odds ratio, 2.0 [95% CI, 0.3-0.9]). Individuals with CYP1B1 pathogenic variants, whether heterozygous or homozygous, had worse mean (SD) deviation on visual fields (-24.5 [5.1] [95% CI, -31.8 to -17.2] vs -15.6 [10.0] [95% CI, -17.1 to -13.6] dB; F1,126 = 5.90; P = .02; partial ηp2 = 0.05) and were younger at diagnosis (mean [SD] age, 23.1 [8.4] [95% CI, 17.2-29.1] vs 31.5 [8.0] [95% CI, 30.1-33.0] years; F1,122 = 7

  1. High level expression and characterization of the cyclophilin B gene from the anaerobic fungus Orpinomyces sp. strain PC-2.

    Science.gov (United States)

    Chen, Huizhong; Li, Xin-Liang; Xu, Haiyan; Ljungdahl, Lars G; Cerniglia, Carl E

    2006-01-01

    Cyclophilins are an evolutionarily conserved family of peptidyl-prolyl cis-trans isomerases (PPIases). A cyclophilin B (cypB) gene from the anaerobic fungus Orpinomyces sp. strain PC-2 was cloned and overexpressed in Escherichia coli. It was expressed as an amino-terminal 6 x His-tagged recombinant protein to facilitate purification. Highly purified protein (26.5 kDa) was isolated by two chromatographic steps involving affinity and gel filtration for biochemical studies of the enzyme. The recombinant CypB displayed PPIase activity with a k(cat)/K(m) of 8.9 x 10(6) M(-1) s(-1) at 10 degrees C and pH 7.8. It was inhibited by cyclosporin A (CsA) with an IC(50) of 23.5 nM, similar to those of the native protein and other cyclophilin B enzymes from animals. Genomic DNA analysis of cypB revealed that it was present as a single copy in Orpinomyces PC-2 and contained two introns, indicating it has a eukaryotic origin. It is one of the most heavily interrupted genes with intron sequences found in anaerobic fungi. The three-dimensional model of Orpinomyces PC-2 CypB was predicted with a homology modeling approach using the Swiss-Model Protein Modeling Server and three dimensional structure of human CypB as a template. The overall architecture of the CypB molecule is very similar to that of human CypB.

  2. Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis

    International Nuclear Information System (INIS)

    Duggal, Ruchia; Liu, Yilin; Gregory, Michael C.; Denisov, Ilia G.; Kincaid, James R.; Sligar, Stephen G.

    2016-01-01

    Cytochrome P450 17A1 (CYP17A1) is an important drug target for castration resistant prostate cancer. It is a bi-functional enzyme, catalyzing production of glucocorticoid precursors by hydroxylation of pregnene-nucleus, and androgen biosynthesis by a second C−C lyase step, at the expense of glucocorticoid production. Cytochrome b 5 (cyt b 5 ) is known to be a key regulator of the androgen synthesis reaction in vivo, by a mechanism that is not well understood. Two hypotheses have been proposed for the mechanism by which cyt b 5 increases androgen biosynthesis. Cyt b 5 could act as an allosteric effector, binding to CYP17A1 and either changing its selective substrate affinity or altering the conformation of the P450 to increase the catalytic rate or decrease unproductive uncoupling channels. Alternatively, cyt b 5 could act as a redox donor for supply of the second electron in the P450 cycle, reducing the oxyferrous complex to form the reactive peroxo-intermediate. To understand the mechanism of lyase enhancement by cyt b 5 , we generated a redox-inactive form of cyt b 5 , in which the heme is replaced with a Manganese-protoporphyrin IX (Mn-b 5 ), and investigated enhancement of androgen producing lyase reaction by CYP17A1. Given the critical significance of a stable membrane anchor for all of the proteins involved and the need for controlled stoichiometric ratios, we employed the Nanodisc system for this study. The redox inactive form was observed to have no effect on the lyase reaction, while reactions with the normal heme-iron containing cyt b 5 were enhanced ∼5 fold as compared to reactions in the absence of cyt b 5 . We also performed resonance Raman measurements on ferric CYP17A1 bound to Mn-b 5 . Upon addition of Mn-b 5 to Nanodisc reconstituted CYP17A1, we observed clear evidence for the formation of a b 5 -CYP17A1 complex, as noted by changes in the porphyrin modes and alteration in the proximal Fe−S vibrational frequency. Thus, although Mn-b 5 binds

  3. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides.

    Science.gov (United States)

    Wang, Rui-Long; Zhu-Salzman, Keyan; Baerson, Scott R; Xin, Xiao-Wei; Li, Jun; Su, Yi-Juan; Zeng, Ren-Sen

    2017-04-01

    Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura, has developed resistance to a wide range of insecticides. In the present study, a novel P450 gene, CYP321B1, was cloned from S. litura. The function of CYP321B1 was assessed using RNA interference (RNAi) and monitoring resistance levels for three commonly used insecticides, including chlorpyrifos, β-cypermethrin and methomyl. The full-length complementary DNA sequence of CYP321B1 is 1814 bp long with an open reading frame of 1 488 bp encoding 495 amino acid residues. Quantitative reverse-transcriptase polymerase chain reaction analyses during larval and pupal development indicated that CYP321B1 expression was highest in the midgut of fifth-instar larvae, followed by fat body and cuticle. The expression of CYP321B1 in the midgut was up-regulated by chlorpyrifos, β-cypermethrin and methomyl with both lethal concentration at 15% (LC 15 ) (50, 100 and 150 μg/mL, respectively) and 50%(LC 50 ) dosages (100, 200 and 300 μg/mL, respectively). Addition of piperonyl butoxide (PBO) significantly increased the toxicity of chlorpyrifos, β-cypermethrin and methomyl to S. litura, suggesting a marked synergism of the three insecticides with PBO and P450-mediated detoxification. RNAi-mediated silencing of CYP321B1 further increased mortality by 25.6% and 38.9% when the fifth-instar larvae were exposed to chlorpyrifos and β-cypermethrin, respectively, at the LC 50 dose levels. The results demonstrate that CYP321B1 might play an important role in chlorpyrifos and β-cypermethrin detoxification in S. litura. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  4. Sex difference in induction of hepatic CYP2B and CYP3A subfamily enzymes by nicardipine and nifedipine in rats

    International Nuclear Information System (INIS)

    Konno, Yoshihiro; Sekimoto, Masashi; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-01-01

    Male and female of F344 rats were treated per os with nicardipine (Nic) and nifedipine (Nif), and changes in the levels of mRNA and protein of hepatic cytochrome P450 (P450) enzymes, CYP2B1, CYP2B2, CYP3A1, CYP3A2, CYP3A9, and CYP3A18 were examined. Furthermore, hepatic microsomal activities for pentoxyresorufin O-dealkylation (PROD) and nifedipine oxidation, which are mainly mediated by CYP2B and CYP3A subfamily enzymes, respectively, were measured. Analyses of RT-PCR and Western blotting revealed that Nic and Nif induced predominantly CYP3A and CYP2B enzymes, respectively. As for the gene activation of CYP2B enzymes, especially CYP2B1, Nif showed high capacity in both sexes of rats, whereas Nic did a definite capacity in the males but little in the females. Gene activations of CYP3A1, CYP3A2, and CYP3A18 by Nic occurred in both sexes of rats, although that of CYP3A9 did only in the male rats. Although gene activations of CYP3A1 and CYP3A2 by Nif were observed in both sexes of rats, a slight activation of the CYP3A9 gene occurred only in female rats, and the CYP3A18 gene activation, in neither male nor female rats. Thus, changes in levels of the mRNA or protein of CYP2B and CYP3A enzymes, especially CYP2B1 and CYP3A2, were closely correlated with those in hepatic PROD and nifedipine oxidation activities, respectively. The present findings demonstrate for the first time the sex difference in the Nic- and Nif-mediated induction of hepatic P450 enzymes in rats and further indicate that Nic and Nif show different specificities and sex dependencies in the induction of hepatic P450 enzymes

  5. Genetical and functional investigation of fliC genes encoding flagellar serotype H4 in wildtype strains of Escherichia coli and in a laboratory E. coli K-12 strain expressing flagellar antigen type H48

    Directory of Open Access Journals (Sweden)

    Schaudinn Christoph

    2005-01-01

    Full Text Available Abstract Background Serotyping of O-(lipopolysaccharide and H-(flagellar antigens is a wideley used method for identification of pathogenic strains and clones of Escherichia coli. At present, 176 O- and 53 H-antigens are described for E. coli which occur in different combinations in the strains. The flagellar antigen H4 is widely present in E. coli strains of different O-serotypes and pathotypes and we have investigated the genetic relationship between H4 encoding fliC genes by PCR, nucleotide sequencing and expression studies. Results The complete nucleotide sequence of fliC genes present in E. coli reference strains U9-41 (O2:K1:H4 and P12b (O15:H17 was determined and both were found 99.3% (1043 of 1050 nucleotides identical in their coding sequence. A PCR/RFLP protocol was developed for typing of fliC-H4 strains and 88 E. coli strains reacting with H4 antiserum were investigated. Nucleotide sequencing of complete fliC genes of six E. coli strains which were selected based on serum agglutination titers, fliC-PCR genotyping and reference data revealed 96.6 to 100% identity on the amino acid level. The functional expression of flagellin encoded by fliC-H4 from strain U9-41 and from our strain P12b which is an H4 expressing variant type was investigated in the E. coli K-12 strain JM109 which encodes flagellar type H48. The fliC recombinant plasmid carrying JM109 strains reacted with both H4 and H48 specific antisera whereas JM109 reacted only with the H48 antiserum. By immunoelectron microscopy, we could show that the flagella made by the fliC-H4 recombinant plasmid carrying strain are constituted of H48 and H4 flagellins which are co-assembled into functional flagella. Conclusion The flagellar serotype H4 is encoded by closely related fliC genes present in serologically different types of E. coli strainswhich were isolated at different time periods and geographical locations. Our expression studies show for the first time, that flagellins of

  6. Induced immune response of Escherichia coli BL21 expressing recombinant MSP1a and MSP1b proteins of Anaplasma marginale

    Directory of Open Access Journals (Sweden)

    Katia Tamekuni

    2009-11-01

    Full Text Available This work aims to evaluate the potential of immunization with E. coli BL21 expressing the recombinant rMSP1a and rMSP1b proteins of Anaplasma marginale. E. coli BL21 was transformed with recombinant plasmids pET102/msp1α and pET101/msp1β, and rMSP1a and rMSP1b were expressed after induction by IPTG. BALB/c mice were vaccinated with formolized BL21/rMSP1a and BL21/rMSP1b, and the production in mice sera of whole IgG was determined by ELISA. The mice immunized with BL21/rMSP1a showed a better humoral response for whole IgG when compared to the mice immunized with BL21/rMSP1b; these mice exhibited a small response after the second vaccination. Sera of mice immunized with BL21/rMSP1a reacted via western blot with BL21 and rMSP1a, with molecular masses varying from 70 to 105 kDa. Sera of mice immunized with BL21/rMSP1b reacted with BL21 and rMSP1b with a molecular mass of 100 kDa. These results demonstrate that BL21 containing rMSP1a and rMSP1b in the outer membrane were able to produce an immune response in mice, reinforcing its use in vaccine models against bovine anaplasmosis.Esse trabalho avaliou o potencial de imunização de Escherichia coli BL21 expressando as proteínas recombinantes rMSP1a e rMSP1b de Anaplasma marginale. A E. coli BL21 foi transformada com os plasmídios recombinantes pET102/msp1α e pET101/msp1β e as proteínas rMSP1a e rMSP1b foram expressas após indução com IPTG. Camundongos BALB/c foram vacinados com BL21/rMSP1a e BL21/rMSP1b formolisadas, e a produção de IgG total foi determinada pelo teste de ELISA nos soros dos camundongos imunizados. Os camundongos imunizados com a BL21/rMSP1a mostraram uma melhor resposta humoral para IgG total, comparada à resposta apresentada pelos camundongos imunizados com BL21/rMSP1b; estes camundongos exibiram uma menor resposta após a segunda vacinação. Soros de camundongos imunizados BL21/rMSP1a reagiram pelo western blot com BL21 e rMSP1a, com massa molecular variando de 70 a

  7. CYP1B1 and myocilin gene mutations in Egyptian patients with ...

    African Journals Online (AJOL)

    Purpose: Primary congenital glaucoma (PCG) accounts for 26–29% of childhood blindness in Egypt. The identification of disease causing mutations has not been extensively investigated. We aimed to examine the frequency of CYP1B1 and MYOC mutations in PCG Egyptian patients, and study a possible ...

  8. Additive effects of levonorgestrel and ethinylestradiol on brain aromatase (cyp19a1b) in zebrafish specific in vitro and in vivo bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Hinfray, N., E-mail: nathalie.hinfray@ineris.fr [INERIS, Unité d' écotoxicologie in vitro et in vivo , Verneuil-en-Halatte (France); Tebby, C. [INERIS, Unité Modèles pour l' Ecotoxicologie et la Toxicologie, Verneuil-en-Halatte (France); Garoche, C.; Piccini, B. [INERIS, Unité d' écotoxicologie in vitro et in vivo , Verneuil-en-Halatte (France); Bourgine, G. [IRSET, équipe NEED, Université de Rennes 1, Rennes (France); Aït-Aïssa, S. [INERIS, Unité d' écotoxicologie in vitro et in vivo , Verneuil-en-Halatte (France); Kah, O. [IRSET, équipe NEED, Université de Rennes 1, Rennes (France); Pakdel, F. [IRSET, Inserm U1085, équipe TREC, Université de Rennes 1, Rennes (France); Brion, F. [INERIS, Unité d' écotoxicologie in vitro et in vivo , Verneuil-en-Halatte (France)

    2016-09-15

    Estrogens and progestins are widely used in combination in human medicine and both are present in aquatic environment. Despite the joint exposure of aquatic wildlife to estrogens and progestins, very little information is available on their combined effects. In the present study we investigated the effect of ethinylestradiol (EE2) and Levonorgestrel (LNG), alone and in mixtures, on the expression of the brain specific ER-regulated cyp19a1b gene. For that purpose, recently established zebrafish-derived tools were used: (i) an in vitro transient reporter gene assay in a human glial cell line (U251-MG) co-transfected with zebrafish estrogen receptors (zfERs) and the luciferase gene under the control of the zebrafish cyp19a1b gene promoter and (ii) an in vivo bioassay using a transgenic zebrafish expressing GFP under the control of the zebrafish cyp19a1b gene promoter (cyp19a1b-GFP). Concentration-response relationships for single chemicals were modeled and used to design the mixture experiments following a ray design. The results from mixture experiments were analyzed to predict joint effects according to concentration addition and statistical approaches were used to characterize the potential interactions between the components of the mixtures (synergism/antagonism). We confirmed that some progestins could elicit estrogenic effects in fish brain. In mixtures, EE2 and LNG exerted additive estrogenic effects both in vitro and in vivo, suggesting that some environmental progestin could exert effects that will add to those of environmental (xeno-)estrogens. Moreover, our zebrafish specific assays are valuable tools that could be used in risk assessment for both single chemicals and their mixtures. - Highlights: • Combined effects of EE2 and LNG were assessed on ER-dependent cyp19a1b expression. • EE2 and LNG alone induced brain aromatase in zebrafish specific bioassays. • Experimental ray design allowed complete concentration-response surfaces modeling. • EE2 and

  9. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1.

    Science.gov (United States)

    Bakari, Sana; Lembrouk, Mehdi; Sourd, Laura; Ousalem, Fares; André, François; Orlowski, Stéphane; Delaforge, Marcel; Frelet-Barrand, Annie

    2016-04-01

    Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies.

  10. Evidence that cytochrome b{sub 5} acts as a redox donor in CYP17A1 mediated androgen synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Duggal, Ruchia [Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States); Liu, Yilin [Department of Chemistry, Marquette University, Milwaukee, WI (United States); Gregory, Michael C.; Denisov, Ilia G. [Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States); Kincaid, James R. [Department of Chemistry, Marquette University, Milwaukee, WI (United States); Sligar, Stephen G., E-mail: s-sligar@illinois.edu [Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States); Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States)

    2016-08-19

    Cytochrome P450 17A1 (CYP17A1) is an important drug target for castration resistant prostate cancer. It is a bi-functional enzyme, catalyzing production of glucocorticoid precursors by hydroxylation of pregnene-nucleus, and androgen biosynthesis by a second C−C lyase step, at the expense of glucocorticoid production. Cytochrome b{sub 5} (cyt b{sub 5}) is known to be a key regulator of the androgen synthesis reaction in vivo, by a mechanism that is not well understood. Two hypotheses have been proposed for the mechanism by which cyt b{sub 5} increases androgen biosynthesis. Cyt b{sub 5} could act as an allosteric effector, binding to CYP17A1 and either changing its selective substrate affinity or altering the conformation of the P450 to increase the catalytic rate or decrease unproductive uncoupling channels. Alternatively, cyt b{sub 5} could act as a redox donor for supply of the second electron in the P450 cycle, reducing the oxyferrous complex to form the reactive peroxo-intermediate. To understand the mechanism of lyase enhancement by cyt b{sub 5}, we generated a redox-inactive form of cyt b{sub 5}, in which the heme is replaced with a Manganese-protoporphyrin IX (Mn-b{sub 5}), and investigated enhancement of androgen producing lyase reaction by CYP17A1. Given the critical significance of a stable membrane anchor for all of the proteins involved and the need for controlled stoichiometric ratios, we employed the Nanodisc system for this study. The redox inactive form was observed to have no effect on the lyase reaction, while reactions with the normal heme-iron containing cyt b{sub 5} were enhanced ∼5 fold as compared to reactions in the absence of cyt b{sub 5}. We also performed resonance Raman measurements on ferric CYP17A1 bound to Mn-b{sub 5}. Upon addition of Mn-b{sub 5} to Nanodisc reconstituted CYP17A1, we observed clear evidence for the formation of a b{sub 5}-CYP17A1 complex, as noted by changes in the porphyrin modes and alteration in the proximal

  11. A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions

    Science.gov (United States)

    Shimizu, Kiminori; Paul, Sanjoy; Ohba, Ayumi; Gonoi, Tohru; Watanabe, Akira; Gomi, Katsuya

    2017-01-01

    Successful treatment of aspergillosis caused by Aspergillus fumigatus is threatened by an increasing incidence of drug resistance. This situation is further complicated by the finding that strains resistant to azoles, the major antifungal drugs for aspergillosis, have been widely disseminated across the globe. To elucidate mechanisms underlying azole resistance, we identified a novel transcription factor that is required for normal azole resistance in Aspergillus fungi including A. fumigatus, Aspergillus oryzae, and Aspergillus nidulans. This fungal-specific Zn2-Cys6 type transcription factor AtrR was found to regulate expression of the genes related to ergosterol biosynthesis, including cyp51A that encodes a target protein of azoles. The atrR deletion mutant showed impaired growth under hypoxic conditions and attenuation of virulence in murine infection model for aspergillosis. These results were similar to the phenotypes for a mutant strain lacking SrbA that is also a direct regulator for the cyp51A gene. Notably, AtrR was responsible for the expression of cdr1B that encodes an ABC transporter related to azole resistance, whereas SrbA was not involved in the regulation. Chromatin immunoprecipitation assays indicated that AtrR directly bound both the cyp51A and cdr1B promoters. In the clinically isolated itraconazole resistant strain that harbors a mutant Cyp51A (G54E), deletion of the atrR gene resulted in a hypersensitivity to the azole drugs. Together, our results revealed that AtrR plays a pivotal role in a novel azole resistance mechanism by co-regulating the drug target (Cyp51A) and putative drug efflux pump (Cdr1B). PMID:28052140

  12. Nongenomic effects of 1α,25-dihydroxyvitamin D3 on cartilage formation deduced from comparisons between Cyp27b1 and Vdr knockout mice

    International Nuclear Information System (INIS)

    Hirota, Yoshihisa; Nakagawa, Kimie; Mimatsu, Shino; Sawada, Natsumi; Sakaki, Toshiyuki; Kubodera, Noboru; Kamao, Maya; Tsugawa, Naoko; Suhara, Yoshitomo; Okano, Toshio

    2017-01-01

    The active form of vitamin D, 1α,25-dihydroxyvitamin D 3 (1α,25D 3 ), plays an important role in the maintenance of calcium (Ca) homeostasis, bone formation, and cell proliferation and differentiation via nuclear vitamin D receptor (VDR). It is formed by the hydroxylation of vitamin D at the 1α position by 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) in the kidney. However, Cyp27b1 −/− mice, deficient in CYP27B1, and VDR-deficient mice (Vdr −/− ) have not been extensively examined, particularly in a comparative framework. To clarify the physiological significance of 1α,25D 3 and VDR, we produced Cyp27b1 −/− mice and compared their phenotypes with those of Vdr −/− mice. Cyp27b1 −/− mice exhibited hypocalcemia, growth defects, and skeletogenesis dysfunction, similar to Vdr −/− mice. However, unlike Cyp27b1 −/− mice, Vdr −/− mice developed alopecia. Cyp27b1 −/− mice exhibited cartilage mass formation and had difficulty walking on hindlimbs. Furthermore, a phenotypic analysis was performed on Cyp27b1 −/− mice provided a high Ca diet to correct for the Ca metabolic abnormality. In addition, the effects of 1α,25D 3 that are not mediated by Ca metabolic regulatory activity were investigated. Even when the blood Ca concentration was corrected, abnormalities in growth and cartilage tissue formation did not improve in Cyp27b1 −/− mice. These results suggested that 1α,25D 3 directly controls chondrocyte proliferation and differentiation. Using Cyp27b1 −/− mice produced in this study, we can analyze the physiological effects of novel vitamin D derivatives in the absence of endogenous 1α,25D 3 . Accordingly, this study provides a useful animal model for the development of novel vitamin D formulations that are effective for the treatment and prevention of osteoporosis. - Highlights: • We produced Cyp27b1 −/− mice and analyzed their phenotypes. • Vdr −/− mice exhibited alopecia and Cyp27b1 −/− mice exhibited

  13. CYP1B1 genotype and risk of cardiovascular disease, pulmonary disease, and cancer in 50,000 individuals

    DEFF Research Database (Denmark)

    Kaur-Knudsen, D.; Nordestgaard, B.G.; Tybjaerg-Hansen, A.

    2009-01-01

    OBJECTIVE: Cytochrome P450 (CYP) 1B1 enzymes metabolize tobacco-smoke polycyclic aromatic hydrocarbons and 17beta-estradiol. CYP1B1*3 (rs1056836 = Leu432Val = 4326C>G) and CYP1B1*4 (rs1800440 = Asn453Ser = 4390A>G) influence this metabolism. We, therefore, hypothesized that these two polymorphisms...... associate with risk of myocardial infarction (MI), ischemic heart disease (IHD), ischemic cerebrovascular disease (ICVD), chronic obstructive pulmonary disease (COPD), cancer overall, tobacco-related cancer, and female cancer, possibly dependent on tobacco exposure. METHOD: We genotyped 10 391 adults from...... the Copenhagen City Heart Study, who had been followed prospectively for more than 30 years. Significant results were retested cross-sectionally in the Copenhagen General Population Study (CGPS) with 37 178 participants, and in the Copenhagen Ischemic Heart Disease Study with 2379 cases and 33 220 controls...

  14. Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    François Brion

    Full Text Available The tg(cyp19a1b-GFP transgenic zebrafish expresses GFP (green fluorescent protein under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i it is only expressed in radial glial progenitors in the brain of fish and (ii it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture, including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective.

  15. Effect of 3,3',5-triiodothyronine and 3,5-diiodothyronine on progesterone production, cAMP synthesis, and mRNA expression of STAR, CYP11A1, and HSD3B genes in granulosa layer of chicken preovulatory follicles.

    Science.gov (United States)

    Sechman, A; Pawlowska, K; Hrabia, A

    2011-10-01

    In vitro studies were performed to assess whether stimulatory effects of triiodothyronine (T3) on progesterone (P4) production in a granulosa layer (GL) of chicken preovulatory follicles are associated with 3',5'-cyclic adenosine monophosphate (cAMP) synthesis and mRNA expression of STAR protein, CYP11A1, and HSD3B. Effects of 3,5-diiodothyronine (3,5-T2) on steroidogenic function in these follicles were also investigated. The GL of F3 to F1 follicles was incubated in medium supplemented with T3 or 3,5-T2, LH, or forskolin (F), and a combination of each iodothyronine with LH or F. Levels of P4 and cAMP in culture media were determined by RIA. Expression of genes involved in P4 synthesis (ie, STAR protein, CYP11A1, and HSD3B) in the GL of F3 to F1 follicles incubated in medium with T3 or 3,5-T2 and their combination with LH was performed by real-time PCR. Triiodothyronine increased basal and LH- and F-stimulated P4 secretion by preovulatory follicles. The 3,5-T2 elevated P4 synthesis by F3, had no effect on F2 follicles, and diminished P4 production by the GL of F1 follicles. It had no effect on LH-stimulated P4 production; however, it augmented F-stimulated P4 production by F2 and F1 follicles. Although T3 did not affect basal and F-stimulated cAMP synthesis by the GL of preovulatory follicles, it increased LH-stimulated synthesis of this nucleotide. However, 3,5-T2 elevated F-stimulated cAMP synthesis in F3 and F2 follicles; it did not change basal and LH-stimulated cAMP production. Triiodothyronine decreased basal STAR and CYP11A1 mRNAs in F3 follicles, increased them in F1 follicles, and elevated HSD3B mRNA levels in F1 follicles. Triiodothyronine augmented LH-stimulated STAR, CYP11A1, and HSD3B mRNA levels in F2 and CYP11A1 in F1 follicles. However, T3 decreased LH-stimulated STAR and HSD3B mRNA levels in F1 follicles. The 3,5-T2 did not affect basal STAR and CYP11A1 mRNA expression in all investigated follicles; however, it decreased LH-stimulated STAR

  16. Comparison of CYP2C9, CYP2C19, CYP2D6, ABCB1, and SLCO1B1 gene-polymorphism frequency in Russian and Nanai populations

    Directory of Open Access Journals (Sweden)

    Sychev DA

    2017-03-01

    Full Text Available Dmitrij Alekseevitch Sychev,1 Grigorij Nikolaevich Shuev,1 Salavat Shejhovich Suleymanov,2 Kristina Anatol’evna Ryzhikova,3 Karin Badavievich Mirzaev,3 Elena Anatol’evna Grishina,3 Natalia Evgenievna Snalina,3 Zhannet Alimovna Sozaeva,3 Anton Mikhailovich Grabuzdov,4 Irina Andreevna Matsneva4 1Department of Internal Medicine and Clinical Pharmacology, Russian Medical Academy of Continuing Professional Education, Ministry of Healthcare, Moscow, 2Saiko Russian–Japanese Medical Center, Khabarovsk, 3Research Centre, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, 4Department of General Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation Background: The efficiency and safety of drug therapy depends on the peculiarities of functioning of the P450 cytochrome group and transporting proteins. There are significant differences for single-nucleotide polymorphism (SNP frequency. Materials and methods: We studied the peculiarities of P450 cytochrome polymorphisms, SLCO1B1 transporting protein, and P-glycoprotein carriage in healthy volunteers in the Nanai ethnic group living in Russia, and compared them to the carriage of SNPs in the Russian population according to literature data. Results: After performing the real-time polymerase chain reactions on the samples from 70 healthy volunteers from the Nanai group, for the CYP2C9*2C430T polymorphism we determined 70 CC-genotype carriers. As for the CYP2C9*3A1075C polymorphism, we found 62 AA-genotype carriers and eight AC-genotype carriers. For the CYP2C19*2G681A polymorphism, we determined 39 GG-genotype carriers and 28 GA-genotype carriers, for the CYP2C19*3G636A polymorphism 58 GG-genotype carriers and 12 GA-genotype carriers, and for the CYP2C19*17C806T polymorphism 67 CC-genotype carriers and three CT-genotype carriers. For the CYP2D6*4G1846A polymorphism, the GG genotype had 68 carriers, and the GA genotype two carriers. For the

  17. The Gymnosperm Cytochrome P450 CYP750B1 Catalyzes Stereospecific Monoterpene Hydroxylation of (+)-Sabinene in Thujone Biosynthesis in Western Redcedar1[OPEN

    Science.gov (United States)

    Blaukopf, Markus; Yuen, Macaire M.S.; Withers, Stephen G.; Mattsson, Jim; Russell, John H.; Bohlmann, Jörg

    2015-01-01

    Western redcedar (WRC; Thuja plicata) produces high amounts of oxygenated thujone monoterpenoids associated with resistance against herbivore feeding, particularly ungulate browsing. Thujones and other monoterpenoids accumulate in glandular structures in the foliage of WRC. Thujones are produced from (+)-sabinene by sabinol and sabinone. Using metabolite analysis, enzyme assays with WRC tissue extracts, cloning, and functional characterization of cytochrome P450 monooxygenases, we established that trans-sabin-3-ol but not cis-sabin-3-ol is the intermediate in thujone biosynthesis in WRC. Based on transcriptome analysis, full-length complementary DNA cloning, and characterization of expressed P450 proteins, we identified CYP750B1 and CYP76AA25 as the enzymes that catalyze the hydroxylation of (+)-sabinene to trans-sabin-3-ol. Gene-specific transcript analysis in contrasting WRC genotypes producing high and low amounts of monoterpenoids, including a glandless low-terpenoid clone, as well as assays for substrate specificity supported a biological role of CYP750B1 in α- and β-thujone biosynthesis. This P450 belongs to the apparently gymnosperm-specific CYP750 family and is, to our knowledge, the first member of this family to be functionally characterized. In contrast, CYP76AA25 has a broader substrate spectrum, also converting the sesquiterpene farnesene and the herbicide isoproturon, and its transcript profiles are not well correlated with thujone accumulation. PMID:25829465

  18. Haplotypes frequencies of CYP2B6 in Malaysia

    Directory of Open Access Journals (Sweden)

    N Musa

    2012-01-01

    Full Text Available Background: Drugs with complex pharmacology are used in the management of drug use disorder (DUD and HIV/AIDS in Malaysia and in parts of South-East Asia. Their multiethnic populations suggest complexity due to the genetic polymorphism, such as CYP2B6 that metabolizes methadone and anti-retroviral. Aims: Our aim was to explore the genetic polymorphism of CYP2B6 among Malays, Chinese, Indians, and opiate-dependent individuals in Malaysia. Settings and Design: The study utilized DNA from our previous studies on CYPs and new recruitments from opiate-dependent individuals. Materials and Methods: For the new recruitment, after obtaining consent and baseline demography, 5 ml blood was obtained from patients attending methadone maintenance therapy (MMT Clinics. Genomic DNA was extracted using standard methods. 10 nucleotide changes associated with CYP2B6FNx0110, CYP2B6FNx012, CYP2B6FNx0117, CYP2B6FNx0111, CYP2B6FNx018, CYP2B6FNx0114, CYP2B6FNx019, CYP2B6FNx014, CYP2B6FNx016, CYP2B6FNx0127, and CYP2B6FNx0120 were determined using multiplex nested allele-specific PCR. Statistical Analysis: Descriptive statistics were used to summarize demographic data. Differences in allele frequencies between populations were tested using Chi-squared test and were corrected using the Bonferroni test. Results: CYP2B6 polymorphism in Malaysia is variable with trends that suggest an ethnic difference. Reduced activity CYP2B6FNx016 occurred in 13% to 26% among Malays, Chinese, Indians and opiate-dependent individuals. Another ′reduced activity′, CYP2B6FNx012 allele, was found at much lower percentages in the groups. Conclusions: The relative commonness of reduced-activity CYP2B6 alleles in our study called for attention in terms of dosage requirements for MMT and ARV in Malaysia. It also implored follow-up association studies to determine its relevance and consequences in personalized medicine for drug use disorder and HIV/AIDS.

  19. UV-dependent production of 25-hydroxyvitamin D2 in the recombinant yeast cells expressing human CYP2R1

    International Nuclear Information System (INIS)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi; Kamakura, Masaki; Ohta, Miho; Sakaki, Toshiyuki

    2013-01-01

    Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D 3 or vitamin D 2 was added to the cell suspension of CYP2R1-expressing yeast cells in a buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D 2 was produced without additional vitamin D 2 . Endogenous ergosterol was likely converted into vitamin D 2 by UV irradiation and thermal isomerization, and then the resulting vitamin D 2 was converted to 25-hydroxyvitamin D 2 by CYP2R1. This novel method for producing 25-hydroxyvitamin D 2 without a substrate could be useful for practical purposes

  20. A PXR reporter gene assay in a stable cell culture system: CYP3A4 and CYP2B6 induction by pesticides.

    Science.gov (United States)

    Lemaire, Géraldine; de Sousa, Georges; Rahmani, Roger

    2004-12-15

    A stable hepatoma cell line expressing the human pregnane X receptor (hPXR) and the cytochrome P4503A4 (CYP3A4) distal and proximal promoters plus the luciferase reporter gene was developed to assess the ability of several xenobiotic agents to induce CYP3A4 and CYP2B6. After selection for neomycin resistance, one clone, displaying high luciferase activity in response to rifampicin (RIF), was isolated and the stable expression of hPXR was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Dose-response curves were generated by treating these cells with increasing concentrations of RIF, phenobarbital (PB), clotrimazole (CLOT) or 5beta-pregnane-3,20-dione (5beta-PREGN). The effective concentrations for half maximal response (EC50) were determined for each of these compounds. RIF was the most effective compound, with maximal luciferase activity induced at 10 microM. The agonist activities of PXR-specific inducers measured using our stable model were consistent with those measured in transient transfectants. The abilities of organochlorine (OC), organophosphate (OP) and pyrethroid pesticides (PY) to activate hPXR were also assessed and found to be consistent with the abilities of these compounds to induce CYP3A4 and CYP2B6 in primary culture of human hepatocytes. These results suggest that CYP3A4 and CYP2B6 regulation through PXR activation by persistent pesticides may have an impact on the metabolism of xenobiotic agents and endogenous steroid hormones. Our model provides a useful tool for studying hPXR activation and for identifying agents capable of inducing CYP3A4 and CYP2B6.

  1. Association of vdr, cyp27b1, cyp24a1 and mthfr gene polymorphisms with oral lichen planus risk.

    Science.gov (United States)

    Kujundzic, Bojan; Zeljic, Katarina; Supic, Gordana; Magic, Marko; Stanimirovic, Dragan; Ilic, Vesna; Jovanovic, Barbara; Magic, Zvonko

    2016-05-01

    The current study investigated the association between VDR EcoRV (rs4516035), FokI (rs2228570), ApaI (rs7975232) and TaqI (rs731236), CYP27B1 (rs4646536), CYP24A1 (rs2296241), and MTHFR (rs1801133) gene polymorphisms and risk of oral lichen planus (OLP) occurrence. The study group consisted of 65 oral lichen planus patients and 100 healthy blood donors in the control group. Single nucleotide polymorphisms were genotyped by real time PCR or PCR-restriction fragment length polymorphism (RFLP) method. Heterozygous as well as mutated genotype of vitamin D receptor (VDR) FokI (rs2228570) polymorphism was associated with increased oral lichen planus risk in comparison with wild type genotype (odds ratio (OR) = 3.877, p = 0.017, OR = 38.153, p = 0.001, respectively). A significantly decreased OLP risk was observed for heterozygous genotype of rs2296241 polymorphism in CYP24A1 gene compared with the wild type form (OR = 0.314, p = 0.012). VDR gene polymorphisms ApaI and TaqI were in linkage disequilibrium (D' = 0.71, r(2) = 0.22). Identified haplotype AT was associated with decreased OLP risk (OR = 0.592, p = 0.047). Our results highlight the possible important role of VDR FokI (rs2228570) and CYP24A1 rs2296241 gene polymorphisms for oral lichen planus susceptibility. Identification of new molecular biomarkers could potentially contribute to determination of individuals with OLP predisposition.

  2. CYP1B1 gene polymorphisms correlate with an increased risk of urinary bladder cancer in India.

    Science.gov (United States)

    Sankhwar, Monica; Sankhwar, Satya Narayan; Abhishek, Amar; Gupta, Nishi; Rajender, Singh

    2016-04-01

    The urinary bladder is the target of several toxic compounds, which makes the bladder more prone to cancer. Cytochrome P450 1B1 enzyme is present in tumor tissues and metabolizes the polyaromatic carcinogens and activates several procarcinogens that cause DNA damage. We examined the functional single-nucleotide polymorphisms in the CYP1B1 gene to study their association with the urinary bladder cancer. We recruited 234 cases of pure urothelial and 258 bladder cancer-free control samples from the individuals visiting the clinic for various investigations. We genotyped 4 CYP1B1 single-nucleotide polymorphisms using the polymerase chain reaction-restriction fragment length polymorphism analysis. The genotype data were analyzed by the Chi-square test. Haplotypes were constructed to evaluate the joint effect of the 4 polymorphisms. Overall, 3 polymorphisms-rs10012, rs150799650, and rs1056827 (odds ratio [OR] = 2.34, CI: 1.59-3.45, Pbladder cancer. Haplotype analysis suggested GTTC, GTTG, and ATGC to be the risk factors for bladder cancer. Overall, 3 polymorphisms, rs10012, rs1056827, and rs150799650 in the CYP1B1 gene correlate with urinary bladder cancer significantly in the Indo-European population of Uttar Pradesh, India. Further investigations in other populations are advised. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1, Src, EGFR and Ras signaling.

    Directory of Open Access Journals (Sweden)

    Mei-Chi Chang

    Full Text Available Chewing of betel quid (BQ increases the risk of oral cancer and oral submucous fibrosis (OSF, possibly by BQ-induced toxicity and induction of inflammatory response in oral mucosa.Primary gingival keratinocytes (GK cells were exposed to areca nut (AN components with/without inhibitors. Cytotoxicity was measured by 3-(4,5-dimethyl- thiazol- 2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay. mRNA and protein expression was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR and western blotting. PGE2/PGF2α production was measured by enzyme-linked immunosorbent assays.Areca nut extract (ANE stimulated PGE2/PGF2α production, and upregulated the expression of cyclooxygenase-2 (COX-2, cytochrome P450 1A1 (CYP1A1 and hemeoxygenase-1 (HO-1, but inhibited expression of keratin 5/14, cyclinB1 and cdc25C in GK cells. ANE also activated epidermal growth factor receptor (EGFR, Src and Ras signaling pathways. ANE-induced COX-2, keratin 5, keratin 14 and cdc25C expression as well as PGE2 production were differentially regulated by α-naphthoflavone (a CYP 1A1/1A2 inhibitor, PD153035 (EGFR inhibitor, pp2 (Src inhibitor, and manumycin A (a Ras inhibitor. ANE-induced PGE2 production was suppressed by piper betle leaf (PBL extract and hydroxychavicol (two major BQ components, dicoumarol (aQuinone Oxidoreductase--NQO1 inhibitor and curcumin. ANE-induced cytotoxicity was inhibited by catalase and enhanced by dicoumarol, suggesting that AN components may contribute to the pathogenesis of OSF and oral cancer via induction of aberrant differentiation, cytotoxicity, COX-2 expression, and PGE2/PGF2α production.CYP4501A1, reactive oxygen species (ROS, EGFR, Src and Ras signaling pathways could all play a role in ANE-induced pathogenesis of oral cancer. Addition of PBL into BQ and curcumin consumption could inhibit the ANE-induced inflammatory response.

  4. Porcine foetal and neonatal CYP3A liver expression

    DEFF Research Database (Denmark)

    Hermann-Bank, Marie Louise; Skaanild, Mette Tingleff

    2011-01-01

    enzyme in the foetal liver, whereas the expression of CYP3A4 is low. After parturition there is a shift in the expression, thus CYP3A7 is down regulated, while the level of CYP3A4 gradually increases and becomes the dominant metabolising CYP3A enzyme in the adult. The minipig is increasingly being used......3A4) in minipigs. This was elucidated by examining the hepatic mRNA expression of CYP3A7 and CYP3A29 in 39 foetuses and newborn Göttingen minipigs using quantitative real time polymerase chain reaction (qPCR). Furthermore the immunochemical level of CYP3A7-LE and CYP3A29 was measured in liver...

  5. Porcine foetal and neonatal CYP3A liver expression

    Directory of Open Access Journals (Sweden)

    Marie Louise Hiort Hermann

    2011-05-01

    Full Text Available Human cytochrome P450 3A7 (CYP3A7 and cytochrome P450 3A4 (CYP3A4 are hepatic metabolising enzymes which participates in the biotransformation of endo- and exogenous substances in foetuses and neonates respectively. These CYP3A enzymes display an inverse relationship: CYP3A7 is the dominant enzyme in the foetal liver, whereas the expression of CYP3A4 is low. After parturition there is a shift in the expression, thus CYP3A7 is down regulated, while the level of CYP3A4 gradually increases and becomes the dominant metabolising CYP3A enzyme in the adult. The minipig is increasingly being used as a model for humans in biomedical studies, because of its many similarities with the human physiology and anatomy. The aim of this study was to examine whether, as in humans, a shift is seen in the hepatic expression of a CYP3A7- like enzyme to cytochrome P450 3A29 (CYP3A29 (an orthologue to the human CYP3A4 in minipigs. This was elucidated by examining the hepatic mRNA expression of CYP3A7 and CYP3A29 in 39 foetuses and newborn Göttingen minipigs using quantitative real time polymerase chain reaction (qPCR. Furthermore the immunochemical level of CYP3A7-LE and CYP3A29 was measured in liver microsomes using western blotting. The expression of CYP3A29 was approximately 9- fold greater in neonates compared to foetuses, and a similar difference was reflected on the immunochemical level. It was not possible to detect a significant level of foetal CYP3A7 mRNA, but immunoblotting showed a visible difference depending on age. This study demonstrates an increase in the expression of CYP3A29, the CYP3A4 orthologue in perinatal minipigs as in humans, which suggests that the minipig could be a good model when testing for human foetal toxicity towards CYP3A4 substrates.

  6. Loss of Cyp8b1 Improves Glucose Homeostasis by Increasing GLP-1

    NARCIS (Netherlands)

    Kaur, Achint; Patankar, Jay V.; de Haan, Willeke; Ruddle, Piers; Wijesekara, Nadeeja; Groen, Albert K.; Verchere, C. Bruce; Singaraja, Roshni R.; Hayden, Michael R.

    Besides their role in facilitating lipid absorption, bile acids are increasingly being recognized as signaling molecules that activate cell-signaling receptors. Targeted disruption of the sterol 12-hydroxylase gene (Cyp8b1) results in complete absence of cholic acid (CA) and its derivatives. Here we

  7. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vorrink, Sabine U. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Severson, Paul L. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Kulak, Mikhail V. [Department of Surgery, The University of Iowa, Iowa City, IA (United States); Futscher, Bernard W. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Domann, Frederick E., E-mail: frederick-domann@uiowa.edu [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Department of Surgery, The University of Iowa, Iowa City, IA (United States)

    2014-02-01

    target gene expression. • PCB 126 mediated activation of AhR activity inhibits HIF-1α signaling. • AhR binding to CYP1A1 and CYP1B1 promoters is inhibited by hypoxia. • ARNT overexpression relieves hypoxic inhibition of AhR function.

  8. Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by Western diet containing benzo[a]pyrene in mice.

    Science.gov (United States)

    Uno, Shigeyuki; Nebert, Daniel W; Makishima, Makoto

    2018-03-01

    The Western diet contributes to nonalcoholic fatty liver disease (NAFLD) pathogenesis. Benzo[a]pyrene (BaP), a prototypical environmental pollutant produced by combustion processes, is present in charcoal-grilled meat. Cytochrome P450 1A1 (CYP1A1) metabolizes BaP, resulting in either detoxication or metabolic activation in a context-dependent manner. To elucidate a role of CYP1A1-BaP in NAFLD pathogenesis, we compared the effects of a Western diet, with or without oral BaP treatment, on the development of NAFLD in Cyp1a1(-/-) mice versus wild-type mice. A Western diet plus BaP induced lipid-droplet accumulation in liver of Cyp1a1(-/-) mice, but not wild-type mice. The hepatic steatosis observed in Cyp1a1(-/-) mice was associated with increased cholesterol, triglyceride and bile acid levels. Cyp1a1(-/-) mice fed Western diet plus BaP had changes in expression of genes involved in bile acid and lipid metabolism, and showed no increase in Cyp1a2 expression but did exhibit enhanced Cyp1b1 mRNA expression, as well as hepatic inflammation. Enhanced BaP metabolic activation, oxidative stress and inflammation may exacerbate metabolic dysfunction in liver of Cyp1a1(-/-) mice. Thus, Western diet plus BaP induces NAFLD and hepatic inflammation in Cyp1a1(-/-) mice in comparison to wild-type mice, indicating a protective role of CYP1A1 against NAFLD pathogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    Science.gov (United States)

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  10. Association of CYP1A1 gene polymorphism with chronic kidney disease: a case control study.

    Science.gov (United States)

    Siddarth, Manushi; Datta, Sudip K; Ahmed, Rafat S; Banerjee, Basu D; Kalra, Om P; Tripathi, Ashok K

    2013-07-01

    CYP1A1 is an important xenobiotic metabolizing enzyme, present in liver and kidney. Expression of CYP1A1 enzyme increases manifold when kidney cells are exposed to nephrotoxins/chemicals leading to oxidative stress-induced cell damage. To study the association of CYP1A1 gene polymorphism in patients of chronic kidney disease with unknown etiology (CKDU), we recruited 334 CKDU patients and 334 age and sex matched healthy controls. CYP1A1*2A and *2C polymorphisms were studied by PCR-RFLP and allele specific-PCR respectively. Subjects carrying at least one mutant allele of CYP1A1*2A (TC, CC) and *2C (AG, GG) were shown to be associated with 1.4-2-fold increased risk of CKDU. Also, genotypic combinations of hetero-/homozygous mutants of CYP1A1*2A (TC, CC) with hetero-/homozygous mutant genotypes of CYP1A1*2C (AG, GG) i.e. TC/AG (pCKDU with an odd ratio ranging 1.8-3.3 times approximately. This study demonstrates association of CYP1A1 polymorphisms with CKDU. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. STAT5A and STAT5B have opposite correlations with drug response gene expression

    International Nuclear Information System (INIS)

    Lamba, V.; Jia, B.; Liang, F.

    2016-01-01

    Introduction: STAT5A and STAT5B are important transcription factors that play a key role in regulation of several important physiological processes including proliferation, survival, mediation of responses to cytokines and in regulating gender differences in drug response genes such as the hepatic cytochrome P450s (CYPs) that are responsible for a large majority of drug metabolism reactions in the human body. STAT5A and STAT5b have a high degree of sequence homology and have been reported to have largely similar functions. Recent studies have, however, indicated that they can also often have distinct and unique roles in regulating gene expression. Objective: In this study, we evaluated the association of STAT5A and STAT5B mRNA expression levels with those of several key hepatic cytochrome P450s (CYPs) and hepatic transcription factors (TFs) and evaluated the potential roles of STAT5A and 5b in mediating gender differences in these CYPs and TFs. Methods: Expression profiling for major hepatic CYP isoforms and transcription factors was performed using RNA sequencing (RNA-seq) in 102 human liver samples (57 female, 45 male). Real time PCR gene expression data for selected CYPs and TFs was available on a subset of 50 human liver samples (25 female, 25 male) and was used to validate the RNA-seq findings. Results: While STAT5A demonstrated significant negative correlation with expression levels of multiple hepatic transcription factors (including NR1I2 and HNF4A) and DMEs such as CYP3A4 and CYP2C19, STAT5B expression was observed to demonstrate positive associations with several CYPs and TFs analyzed. As STAT5A and STAT5B have been shown to be important in regulation of gender differences in CYPs, we also analyzed STAT5A and 5b associations with CYPs and TFs separately in males and females and observed gender dependent differential associations of STATs with several CYPs and TFs. Results from the real time PCR validation largely supported our RNA-seq findings

  12. CYP2A6 and CYP2E1 polymorphisms in a Brazilian population living in Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    A. Rossini

    2006-02-01

    Full Text Available Cytochrome P450 (CYP is a superfamily of enzymes involved in the metabolism of endogenous compounds and xenobiotics. CYP2A6 catalyzes the oxidation of nicotine and the activation of carcinogens such as aflatoxin B1 and nitrosamines. CYP2E1 metabolizes ethanol and other low-molecular weight compounds and can also activate nitrosamines. The CYP2A6 and CYP2E1 genes are polymorphic, altering their catalytic activities and susceptibility to cancer and other diseases. A number of polymorphisms described are ethnic-dependent. In the present study, we determined the genotype and allele frequencies of the main CYP2A6 and CYP2E1 polymorphisms in a group of 289 volunteers recruited at the Central Laboratory of Hospital Universitário Pedro Ernesto. They had been residing in the city of Rio de Janeiro for at least 6 months and were divided into two groups according to skin color (white and non-white. The alleles were determined by allele specific PCR (CYP2A6 or by PCR-RFLP (CYP2E1. The frequencies of the CYP2A6*1B and CYP2A6*2 alleles were 0.29 and 0.02 for white individuals and 0.24 and 0.01 for non-white individuals, respectively. The CYP2A6*5 allele was not found in the population studied. Regarding the CYP2E1*5B allele, we found a frequency of 0.07 in white individuals, which was statistically different (P < 0.05 from that present in non-white individuals (0.03. CYP2E1*6 allele frequency was the same (0.08 in both groups. The frequencies of CYP2A6*1B, CYP2A6*2 and CYP2E1*6 alleles in Brazilians are similar to those found in Caucasians and African-Americans, but the frequency of the CYP2E1*5B allele is higher in Brazilians.

  13. CYP2A6 and CYP2E1 polymorphisms in a Brazilian population living in Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Rossini A.

    2006-01-01

    Full Text Available Cytochrome P450 (CYP is a superfamily of enzymes involved in the metabolism of endogenous compounds and xenobiotics. CYP2A6 catalyzes the oxidation of nicotine and the activation of carcinogens such as aflatoxin B1 and nitrosamines. CYP2E1 metabolizes ethanol and other low-molecular weight compounds and can also activate nitrosamines. The CYP2A6 and CYP2E1 genes are polymorphic, altering their catalytic activities and susceptibility to cancer and other diseases. A number of polymorphisms described are ethnic-dependent. In the present study, we determined the genotype and allele frequencies of the main CYP2A6 and CYP2E1 polymorphisms in a group of 289 volunteers recruited at the Central Laboratory of Hospital Universitário Pedro Ernesto. They had been residing in the city of Rio de Janeiro for at least 6 months and were divided into two groups according to skin color (white and non-white. The alleles were determined by allele specific PCR (CYP2A6 or by PCR-RFLP (CYP2E1. The frequencies of the CYP2A6*1B and CYP2A6*2 alleles were 0.29 and 0.02 for white individuals and 0.24 and 0.01 for non-white individuals, respectively. The CYP2A6*5 allele was not found in the population studied. Regarding the CYP2E1*5B allele, we found a frequency of 0.07 in white individuals, which was statistically different (P < 0.05 from that present in non-white individuals (0.03. CYP2E1*6 allele frequency was the same (0.08 in both groups. The frequencies of CYP2A6*1B, CYP2A6*2 and CYP2E1*6 alleles in Brazilians are similar to those found in Caucasians and African-Americans, but the frequency of the CYP2E1*5B allele is higher in Brazilians.

  14. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation.

    Science.gov (United States)

    Gagliardi, Rosa; Llambí, Silvia; Arruga, M Victoria

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations.

  15. Alteration in the Expression of Cytochrome P450s (CYP1A1, CYP2E1, and CYP3A11 in the Liver of Mouse Induced by Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Bangjun Zhang

    2015-03-01

    Full Text Available Microcystins (MCs are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to evaluate the effects of microcystin-LR (MCLR on cytochrome P450 isozymes (CYP1A1, CYP2E1, and CYP3A11 at mRNA level, protein content, and enzyme activity in the liver of mice the received daily, intraperitoneally, 2, 4, and 8 µg/kg body weight of MCLR for seven days. The result showed that MCLR significantly decreased ethoxyresorufin-O-deethylase (EROD (CYP1A1 and erythromycin N-demthylase (ERND (CYP3A11 activities and increased aniline hydroxylase (ANH activity (CYP2E1 in the liver of mice during the period of exposure. Our findings suggest that MCLR exposure may disrupt the function of CYPs in liver, which may be partly attributed to the toxicity of MCLR in mice.

  16. UV-dependent production of 25-hydroxyvitamin D{sub 2} in the recombinant yeast cells expressing human CYP2R1

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi; Kamakura, Masaki [Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan); Ohta, Miho [Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, 4-4-1 Nanko-naka, Suminoe-ku, Osaka 559-0033 (Japan); Sakaki, Toshiyuki, E-mail: tsakaki@pu-toyama.ac.jp [Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan)

    2013-05-03

    Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D{sub 3} or vitamin D{sub 2} was added to the cell suspension of CYP2R1-expressing yeast cells in a buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D{sub 2} was produced without additional vitamin D{sub 2}. Endogenous ergosterol was likely converted into vitamin D{sub 2} by UV irradiation and thermal isomerization, and then the resulting vitamin D{sub 2} was converted to 25-hydroxyvitamin D{sub 2} by CYP2R1. This novel method for producing 25-hydroxyvitamin D{sub 2} without a substrate could be useful for practical purposes.

  17. AHR and CYP1A expression link historical contamination events to modern day developmental effects in the American alligator.

    Science.gov (United States)

    Hale, Matthew D; Galligan, Thomas M; Rainwater, Thomas R; Moore, Brandon C; Wilkinson, Philip M; Guillette, Louis J; Parrott, Benjamin B

    2017-11-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that initiates a transcriptional pathway responsible for the expression of CYP1A subfamily members, key to the metabolism of xenobiotic compounds. Toxic planar halogenated aromatic hydrocarbons, including dioxin and PCBs, are capable of activating the AHR, and while dioxin and PCB inputs into the environment have been dramatically curbed following strict regulatory efforts in the United States, they persist in the environment and exposures remain relevant today. Little is known regarding the effects that long-term chronic exposures to dioxin or dioxin-like compounds might have on the development and subsequent health of offspring from exposed individuals, nor is much known regarding AHR expression in reptilians. Here, we characterize AHR and CYP1A gene expression in embryonic and juvenile specimen of a long-lived, apex predator, the American alligator (Alligator mississippiensis), and investigate variation in gene expression profiles in offspring collected from sites conveying differential exposures to environmental contaminants. Both age- and tissue-dependent patterning of AHR isoform expression are detected. We characterize two downstream transcriptional targets of the AHR, CYP1A1 and CYP1A2, and describe conserved elements of their genomic architecture. When comparisons across different sites are made, hepatic expression of CYP1A2, a direct target of the AHR, appears elevated in embryos from a site associated with a dioxin point source and previously characterized PCB contamination. Elevated CYP1A2 expression is not persistent, as site-specific variation was absent in juveniles originating from field-collected eggs but reared under lab conditions. Our results illustrate the patterning of AHR gene expression in a long-lived environmental model species, and indicate a potential contemporary influence of historical contamination. This research presents a novel opportunity to link

  18. Altered Protein Expression of Cardiac CYP2J and Hepatic CYP2C, CYP4A, and CYP4F in a Mouse Model of Type II Diabetes—A Link in the Onset and Development of Cardiovascular Disease?

    Directory of Open Access Journals (Sweden)

    Benoit Drolet

    2017-10-01

    Full Text Available Arachidonic acid can be metabolized by cytochrome P450 (CYP450 enzymes in a tissue- and cell-specific manner to generate vasoactive products such as epoxyeicosatrienoic acids (EETs-cardioprotective and hydroxyeicosatetraenoic acids (HETEs-cardiotoxic. Type II diabetes is a well-recognized risk factor for developing cardiovascular disease. A mouse model of Type II diabetes (C57BLKS/J-db/db was used. After sacrifice, livers and hearts were collected, washed, and snap frozen. Total proteins were extracted. Western blots were performed to assess cardiac CYP2J and hepatic CYP2C, CYP4A, and CYP4F protein expression, respectively. Significant decreases in relative protein expression of cardiac CYP2J and hepatic CYP2C were observed in Type II diabetes animals compared to controls (CYP2J: 0.80 ± 0.03 vs. 1.05 ± 0.06, n = 20, p < 0.001; (CYP2C: 1.56 ± 0.17 vs. 2.21 ± 0.19, n = 19, p < 0.01. In contrast, significant increases in relative protein expression of both hepatic CYP4A and CYP4F were noted in Type II diabetes mice compared to controls (CYP4A: 1.06 ± 0.09 vs. 0.18 ± 0.01, n = 19, p < 0.001; (CYP4F: 2.53 ± 0.22 vs. 1.10 ± 0.07, n = 19, p < 0.001. These alterations induced by Type II diabetes in the endogenous pathway (CYP450 of arachidonic acid metabolism may increase the risk for cardiovascular disease by disrupting the fine equilibrium between cardioprotective (CYP2J/CYP2C-generated and cardiotoxic (CYP4A/CYP4F-generated metabolites of arachidonic acid.

  19. Cyclophilin B expression in renal proximal tubules of hypertensive rats.

    Science.gov (United States)

    Kainer, D B; Doris, P A

    2000-04-01

    Rat cyclophilin-like protein (Cy-LP) is a candidate hypertension gene initially identified by differential hybridization and implicated in renal mechanisms of salt retention and high blood pressure. We report the molecular characterization of rat cyclophilin B (CypB) and demonstrate, through sequence analysis and an allele-specific polymerase chain reaction primer assay, that CypB but not Cy-LP is expressed in rat kidney. CypB is an endoplasmic reticulum-localized prolyl-isomerase that interacts with elongation initiation factor 2-beta, an important regulator of protein translation and a central component of the endoplasmic reticulum stress response to hypoxia or ATP depletion. Active renal transport of sodium is increased in the spontaneously hypertensive rat (SHR), and there is evidence that this coincides with hypoxia and ATP depletion in the renal cortex. In the present studies we have examined expression of CypB in rat proximal tubules, which contributes to the increased renal sodium reabsorption in this model of hypertension. We report that CypB transcript abundance is significantly elevated in proximal convoluted tubules from SHR compared with the control Wistar-Kyoto strain. This upregulation occurs in weanling animals and precedes the development of hypertension, indicating that it is not a simple response to hypertension in SHR. Further, CypB expression is also higher in a proximal tubule cell line derived from SHR compared with a similar line derived from Wistar-Kyoto rats, indicating that this difference is genetically determined. No sequence differences were observed in the CypB cDNA from these 2 strains. These observations suggest that a genetically determined alteration in proximal tubules from SHR occurs that leads to increased expression of CypB. In view of evidence linking CypB to the regulation of elongation initiation factor-2, the upregulation of CypB may result from metabolic stress.

  20. Genotype and allelic frequencies of CYP2E1*5B polymorphism in the southwest population of Iran

    Directory of Open Access Journals (Sweden)

    Fatemeh Zanganeh

    2014-10-01

    Full Text Available Background: Cytochrome P450 2E1 (CYP2E1 is a main enzyme which plays a major role in activating and detoxifying many xenobiotics, carcinogens and drugs. Available studies suggest that CYP2E1 single nucleotide polymorphisms (SNPs are involved in the risk of developing certain cancers after exposure to carcinogens. The purpose of the present study was to assess genotype and allele frequencies of polymorphic CYP2E1*5B in the Iranian population. Material and Methods: This study was performed on 200 healthy individuals (female: 100, male: 100 in medical laboratories of Ahvaz during 2011. The CYP2E1 *5B (rs3813867 G-1293C assessment was carried out using PCR-RFLP method. The data were analyzed with ĸ2 and hardy-Weinberg Equation statistically methods. Results: The frequency of *1A/*1A (c1/c1, *1A/*5B (c1/c2 and *5B/*5B (c2/c2 genotypes was computed 97, 3 and 0 percent, respectively. The frequency of *1A (c1 and *5B (c2 alleles was computed 98.5 and 1.5 percent, respectively. No statistically significant difference was between two genders (p>0.05. Conclusion: The genotype distribution and allele frequencies of CYP2E1*5B polymorphism were similar to Turkish and some of the European populations. However, there are significant interethnic differences when the Iranian population is compared with the Eastern Asian, American and some of the European populations. The allelic distribution of this polymorphism did not vary with gender.

  1. Release of overexpressed CypB activates ERK signaling through CD147 binding for hepatoma cell resistance to oxidative stress.

    Science.gov (United States)

    Kim, Kiyoon; Kim, Hunsung; Jeong, Kwon; Jung, Min Hyung; Hahn, Bum-Soo; Yoon, Kyung-Sik; Jin, Byung Kwan; Jahng, Geon-Ho; Kang, Insug; Ha, Joohun; Choe, Wonchae

    2012-08-01

    Cyclophilin, a cytosolic receptor for the immunosuppressive drug cyclosporin A, plays a role in diverse pathophysiologies along with its receptor, CD147. Although the interaction between cyclophilin A and CD147 is well established in inflammatory disease, that of cyclophilin B (CypB) with CD147 has not been fully explored, especially in cancer cell biology, and the exact molecular mechanism underlying such an association is poorly understood. In this study, we first identified high expression levels of CypB in 54 % of hepatocellular carcinoma patient tissues but in only 12.5 % of normal liver tissues. Then, we demonstrated that CypB overexpression protects human hepatoma cells against oxidative stress through its binding to CD147; this protective effect depends on the peptidyl prolyl isomerase activity of CypB. siRNA-mediated knockdown of CypB expression rendered hepatoma cells more vulnerable to ROS-mediated apoptosis. Furthermore, we also determined that a direct interaction between secreted CypB and CD147 regulates the extracellular signal-regulated kinase intracellular signaling pathway and is indispensible for the protective functions of CypB. For the first time, we demonstrated that CypB has an essential function in protecting hepatoma cells against oxidative stress through binding to CD147 and regulating the ERK pathway.

  2. Variant alleles of the CYP1B1 gene are associated with colorectal cancer susceptibility

    International Nuclear Information System (INIS)

    Trubicka, Joanna; Byrski, Tomasz; Gronwald, Jacek; Złowocka, Elżbieta; Kładny, Józef; Banaszkiewicz, Zbigniew; Wiśniowski, Rafał; Kowalska, Elżbieta; Lubinski, Jan; Scott, Rodney J; Grabowska-Kłujszo, Ewa; Suchy, Janina; Masojć, Bartłomiej; Serrano-Fernandez, Pablo; Kurzawski, Grzegorz; Cybulski, Cezary; Górski, Bohdan; Huzarski, Tomasz

    2010-01-01

    CYP1B1 is a P450 enzyme which is involved in the activation of pro-carcinogens to carcinogens as well as sex hormone metabolism. Because differences in the activity of the enzyme have been correlated with variant alleles of single nucleotide polymorphisms (SNPs), it represents an attractive candidate gene for studies into colorectal cancer susceptibility. We genotyped 597 cancer patients and 597controls for three CYP1B1 SNPs, which have previously been shown to be associated with altered enzymatic activity. Using the three SNPs, eight different haplotypes were constructed. The haplotype frequencies were estimated in cases and controls and then compared. The odds ratio for each tumour type, associated with each haplotype was estimated, with reference to the most common haplotype observed in the controls. The three SNPs rs10012, rs1056827 and rs1056836 alone did not provide any significant evidence of association with colorectal cancer risk. Haplotypes of rs1056827 and rs10012 or rs1056827 and rs1056836 revealed an association with colorectal cancer which was significantly stronger in the homozygous carriers. One haplotype was under represented in the colorectal cancer patient group compared to the control population suggesting a protective effect. Genetic variants within the CYP1B1 that are associated with altered function appear to influence susceptibility to a colorectal cancer in Poland. Three haplotypes were associated with altered cancer risk; one conferred protection and two were associated with an increased risk of disease. These observations should be confirmed in other populations

  3. Variant alleles of the CYP1B1 gene are associated with colorectal cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Trubicka Joanna

    2010-08-01

    Full Text Available Abstract Background CYP1B1 is a P450 enzyme which is involved in the activation of pro-carcinogens to carcinogens as well as sex hormone metabolism. Because differences in the activity of the enzyme have been correlated with variant alleles of single nucleotide polymorphisms (SNPs, it represents an attractive candidate gene for studies into colorectal cancer susceptibility. Methods We genotyped 597 cancer patients and 597controls for three CYP1B1 SNPs, which have previously been shown to be associated with altered enzymatic activity. Using the three SNPs, eight different haplotypes were constructed. The haplotype frequencies were estimated in cases and controls and then compared. The odds ratio for each tumour type, associated with each haplotype was estimated, with reference to the most common haplotype observed in the controls. Results The three SNPs rs10012, rs1056827 and rs1056836 alone did not provide any significant evidence of association with colorectal cancer risk. Haplotypes of rs1056827 and rs10012 or rs1056827 and rs1056836 revealed an association with colorectal cancer which was significantly stronger in the homozygous carriers. One haplotype was under represented in the colorectal cancer patient group compared to the control population suggesting a protective effect. Conclusion Genetic variants within the CYP1B1 that are associated with altered function appear to influence susceptibility to a colorectal cancer in Poland. Three haplotypes were associated with altered cancer risk; one conferred protection and two were associated with an increased risk of disease. These observations should be confirmed in other populations.

  4. CYP264B1 from Sorangium cellulosum So ce56: a fascinating norisoprenoid and sesquiterpene hydroxylase.

    Science.gov (United States)

    Ly, Thuy T B; Khatri, Yogan; Zapp, Josef; Hutter, Michael C; Bernhardt, Rita

    2012-07-01

    Many terpenes and terpenoid compounds are known as bioactive substances with desirable fragrance and medicinal activities. Modification of such compounds to yield new derivatives with desired properties is particularly attractive. Cytochrome P450 monooxygenases are potential enzymes for these reactions due to their capability of performing different reactions on a variety of substrates. We report here the characterization of CYP264B1 from Sorangium cellulosum So ce56 as a novel sesquiterpene hydroxylase. CYP264B1 was able to convert various sesquiterpenes including nootkatone and norisoprenoids (α-ionone and β-ionone). Nootkatone, an important grapefruit aromatic sesquiterpenoid, was hydroxylated mainly at position C-13. The product has been shown to have the highest antiproliferative activity compared with other nootkatone derivatives. In addition, CYP264B1 was found to hydroxylate α- and β-ionone, important aroma compounds of floral scents, regioselectively at position C-3. The products, 3-hydroxy-β-ionone and 13-hydroxy-nootkatone, were confirmed by (1)H and (13)C NMR. The kinetics of the product formation was analyzed by high-performance liquid chromatography, and the K ( m ) and k (cat) values were calculated. The results of docking α-/β-ionone and nootkatone into a homology model of CYP264B1 revealed insights into the structural basis of these selective hydroxylations.

  5. New Sesquiterpene Oxidations with CYP260A1 and CYP264B1 from Sorangium cellulosum So ce56.

    Science.gov (United States)

    Schifrin, Alexander; Litzenburger, Martin; Ringle, Michael; Ly, Thuy T B; Bernhardt, Rita

    2015-12-01

    Sesquiterpenes are natural products derived from the common precursor farnesyl pyrophosphate (FPP) but are highly diverse in structure and function. Cytochrome P450 enzymes (P450s) exhibit the unique ability to introduce molecular oxygen into non-activated C-H bonds. In plant biosynthetic pathways, P450s commonly derivatize sesquiterpene hydrocarbons. However, the potential of bacterial P450s for terpene derivatization is still underinvestigated. This work compares the substrate specificities and regioselectivities of the sesquiterpene hydroxylases CYP260A1 and CYP264B1 from myxobacterium Sorangium cellulosum So ce56. Four tested substrate classes (eremophilanes, humulanes, caryophyllanes, and cedranes) were converted by both P450s. The achievable variety of oxidations is demonstrated on the model substrates (+)-nootkatone and zerumbone. Increasing the number of functionally investigated P450s, this study represents a step towards the selective derivatization of sesquiterpenes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Liver Receptor Homolog-1 Is Critical for Adequate Up-regulation of Cyp7a1 Gene Transcription and Bile Salt Synthesis During Bile Salt Sequestration

    NARCIS (Netherlands)

    Out, Carolien; Hageman, Jurre; Bloks, Vincent W.; Gerrits, Han; Gelpke, Maarten D. Sollewijn; Bos, Trijnie; Havinga, Rick; Smit, Martin J.; Kuipers, Folkert; Groen, Albert K.

    Liver receptor homolog-1 (LRH-1) is a nuclear receptor that controls a variety of metabolic pathways. In cultured cells, LRH-1 induces the expression of CYP7A1 and CYP8B1, key enzymes in bile salt synthesis. However, hepatic Cyp7a1 mRNA levels were not reduced upon hepatocyte-specific Lrh-1 deletion

  7. P450 reductase and cytochrome b5 interactions with cytochrome P450: Effects on house fly CYP6A1 catalysis

    OpenAIRE

    Murataliev, Marat B.; Guzov, Victor M.; Walker, F. Ann; Feyereisen, René

    2008-01-01

    The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylatio...

  8. Interindividual variability in the prevalence of OPRM1 and CYP2B6 gene variations may identify drug-susceptible populations.

    Science.gov (United States)

    Bunten, H; Liang, W J; Pounder, D J; Seneviratne, C; Osselton, D

    2011-09-01

    Methadone is used worldwide for the treatment of heroin addiction; however, fatal poisonings are increasingly reported. The prevalence of CYP2B6 and μ-opioid receptor (OPRM1) gene variations were examined between a postmortem population where the deaths were associated with methadone and a live nondrug-using control population using Taqman™ SNP Genotyping assays. The CYP2B6*6 allele was higher in the postmortem population, but the difference was not significant (P = 0.92). The CYP2B6 T750C promoter variation was similar in frequency for both populations. Linkage between T750C and CYP2B6*6 was identified for both populations (P < 0.01). The prevalence of the OPRM1 A118G variation was significantly higher in the control population (P = 0.0046), which might indicate a protective mechanism against opioid toxicity. Individual susceptibility to methadone may be determined by screening for CYP2B6*6.

  9. Three new shRNA expression vectors targeting the CYP3A4 coding sequence to inhibit its expression

    Directory of Open Access Journals (Sweden)

    Siyun Xu

    2014-10-01

    Full Text Available RNA interference (RNAi is useful for selective gene silencing. Cytochrome P450 3A4 (CYP3A4, which metabolizes approximately 50% of drugs in clinical use, plays an important role in drug metabolism. In this study, we aimed to develop a short hairpin RNA (shRNA to modulate CYP3A4 expression. Three new shRNAs (S1, S2 and S3 were designed to target the coding sequence (CDS of CYP3A4, cloned into a shRNA expression vector, and tested in different cells. The mixture of three shRNAs produced optimal reduction (55% in CYP3A4 CDS-luciferase activity in both CHL and HEK293 cells. Endogenous CYP3A4 expression in HepG2 cells was decreased about 50% at both mRNA and protein level after transfection of the mixture of three shRNAs. In contrast, CYP3A5 gene expression was not altered by the shRNAs, supporting the selectivity of CYP3A4 shRNAs. In addition, HepG2 cells transfected with CYP3A4 shRNAs were less sensitive to Ginkgolic acids, whose toxic metabolites are produced by CYP3A4. These results demonstrate that vector-based shRNAs could modulate CYP3A4 expression in cells through their actions on CYP3A4 CDS, and CYP3A4 shRNAs may be utilized to define the role of CYP3A4 in drug metabolism and toxicity.

  10. Ahr2-dependance of PCB126 effects on the swimbladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    Science.gov (United States)

    Jönsson, Maria E.; Kubota, Akira; Timme-Laragy, Alicia; Woodin, Bruce; Stegeman, John J.

    2012-01-01

    The teleost swimbladder is assumed a homolog of the tetrapod lung. Both swimbladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR1) agonists; in zebrafish (Danio rerio) the swimbladder fails to inflate with exposure to 3,3’,4,4’,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P4501 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swimbladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependance of the effect of PCB126 on swimbladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swimbladder inflation. The effects of PCB126 were concentration-dependent with EC50 values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swimbladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swimbladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos2 failed to inflate the swimbladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swimbladder. Our results indicate that PCB126 blocks swimbladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swimbladder cells. PMID:23036320

  11. Expression, crystallization and preliminary X-ray analysis of the periplasmic stress sensory protein RseB from Escherichia coli

    International Nuclear Information System (INIS)

    Wollmann, Petra; Zeth, Kornelius

    2006-01-01

    The periplasmic stress protein RseB from E. coli was cloned, expressed and crystallized. Crystallographic data are presented and structure solution using the multiple isomorphous replacement approach (MIR) is in progress. Sensing external stress in the bacterial periplasm and signal transduction to the cytoplasm are important functions of the CpxAR, Bae and σ E signalling pathways. In Escherichia coli, the σ E pathway can be activated through degradation of the antisigma factor RseA by DegS and YaeL. The periplasmic protein RseB plays an important role in this pathway by exerting a direct or indirect negative effect on YaeL cleavage efficiency. RseB from E. coli, missing the periplasmic signal sequence (RseB ΔN ), was cloned, expressed, purified and crystallized. Crystals were obtained in two different forms belonging to space group P42 1 2 (form I) and C222 1 (form II) and diffracted to 2.8 and 2.4 Å resolution, respectively. In crystal form I two copies of the protein were located in the asymmetric unit according to heavy-atom analysis, while crystal form II contained three copies

  12. Inhibition of CYP1 by berberine, palmatine, and jatrorrhizine: Selectivity, kinetic characterization, and molecular modeling

    International Nuclear Information System (INIS)

    Lo, Sheng-Nan; Chang, Yu-Ping; Tsai, Keng-Chang; Chang, Chia-Yu; Wu, Tian-Shung; Ueng, Yune-Fang

    2013-01-01

    Cytochrome P450 (P450, CYP) 1 family plays a primary role in the detoxification and bioactivation of polycyclic aromatic hydrocarbons. Human CYP1A1, CYP1A2, and CYP1B1 exhibit differential substrate specificity and tissue distribution. Berberine, palmatine, and jatrorrhizine are protoberberine alkaloids present in several medicinal herbs, such as Coptis chinensis (Huang-Lian) and goldenseal. These protoberberines inhibited CYP1A1.1- and CYP1B1.1-catalyzed 7-ethoxyresorufin O-deethylation (EROD) activities, whereas CYP1A2.1 activity was barely affected. Kinetic analysis revealed that berberine noncompetitively inhibited EROD activities of CYP1A1.1 and CYP1B1.1, whereas palmatine and jatrorrhizine caused either competitive or mixed type of inhibition. Among protoberberines, berberine caused the most potent and selective inhibitory effect on CYP1B1.1 with the least K i value of 44 ± 16 nM. Berberine also potently inhibited CYP1B1.1 activities toward 7-ethoxycoumarin and 7-methoxyresorufin, whereas the inhibition of benzo(a)pyrene hydroxylation activity was less pronounced. Berberine inhibited the polymorphic variants, CYP1B1.3 (V432L) and CYP1B1.4 (N453S), with IC 50 values comparable to that for CYP1B1.1 inhibition. Berberine-mediated inhibition was abolished by a mutation of Asn228 to Thr in CYP1B1.1, whereas the inhibition was enhanced by a reversal mutation of Thr223 to Asn in CYP1A2.1. This result in conjugation with the molecular modeling revealed the crucial role of hydrogen-bonding interaction of Asn228 on CYP1B1.1 with the methoxy moiety of berberine. These findings demonstrate that berberine causes a selective CYP1B1-inhibition, in which Asn228 appears to be crucial. The inhibitory effects of berberine on CYP1B1 activities toward structurally diverse substrates can be different. - Highlights: • Berberine preferentially inhibited CYP1B1 activity. • Berberine caused similar inhibitory effects on CYP1B1.1, CYP1B1.3 and CYP1B1.4. • Asn228 in CYP1B1 was an

  13. Inhibition of CYP1 by berberine, palmatine, and jatrorrhizine: Selectivity, kinetic characterization, and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Sheng-Nan [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC (China); Chang, Yu-Ping; Tsai, Keng-Chang [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Chang, Chia-Yu [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan, ROC (China); Wu, Tian-Shung [Department of Chemistry, National Chung-Kung University, Tainan 701, Taiwan, ROC (China); Ueng, Yune-Fang, E-mail: ueng@nricm.edu.tw [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC (China); Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan, ROC (China)

    2013-11-01

    Cytochrome P450 (P450, CYP) 1 family plays a primary role in the detoxification and bioactivation of polycyclic aromatic hydrocarbons. Human CYP1A1, CYP1A2, and CYP1B1 exhibit differential substrate specificity and tissue distribution. Berberine, palmatine, and jatrorrhizine are protoberberine alkaloids present in several medicinal herbs, such as Coptis chinensis (Huang-Lian) and goldenseal. These protoberberines inhibited CYP1A1.1- and CYP1B1.1-catalyzed 7-ethoxyresorufin O-deethylation (EROD) activities, whereas CYP1A2.1 activity was barely affected. Kinetic analysis revealed that berberine noncompetitively inhibited EROD activities of CYP1A1.1 and CYP1B1.1, whereas palmatine and jatrorrhizine caused either competitive or mixed type of inhibition. Among protoberberines, berberine caused the most potent and selective inhibitory effect on CYP1B1.1 with the least K{sub i} value of 44 ± 16 nM. Berberine also potently inhibited CYP1B1.1 activities toward 7-ethoxycoumarin and 7-methoxyresorufin, whereas the inhibition of benzo(a)pyrene hydroxylation activity was less pronounced. Berberine inhibited the polymorphic variants, CYP1B1.3 (V432L) and CYP1B1.4 (N453S), with IC{sub 50} values comparable to that for CYP1B1.1 inhibition. Berberine-mediated inhibition was abolished by a mutation of Asn228 to Thr in CYP1B1.1, whereas the inhibition was enhanced by a reversal mutation of Thr223 to Asn in CYP1A2.1. This result in conjugation with the molecular modeling revealed the crucial role of hydrogen-bonding interaction of Asn228 on CYP1B1.1 with the methoxy moiety of berberine. These findings demonstrate that berberine causes a selective CYP1B1-inhibition, in which Asn228 appears to be crucial. The inhibitory effects of berberine on CYP1B1 activities toward structurally diverse substrates can be different. - Highlights: • Berberine preferentially inhibited CYP1B1 activity. • Berberine caused similar inhibitory effects on CYP1B1.1, CYP1B1.3 and CYP1B1.4. • Asn228 in CYP

  14. Interactive effects of hypoxia and PCB co-exposure on expression of CYP1A and its potential regulators in Atlantic croaker liver.

    Science.gov (United States)

    Rahman, Md Saydur; Thomas, Peter

    2018-04-01

    Although marine and coastal environments which are contaminated with xenobiotic organic compounds often become hypoxic during the summer, the interactive effects of hypoxia and xenobiotic exposure on marine species such as teleost fishes remain poorly understood. The expression and activity of monooxygenase enzyme cytochrome P450-1A (CYP1A) in fishes are upregulated by exposure to polychlorinated biphenyls (PCBs), whereas they are down-regulated during hypoxia exposure. We investigated the interactive effects of hypoxia and PCB co-exposure on hepatic CYP1A expression in Atlantic croaker and on potential regulators of CYP1A. Croaker were exposed to hypoxia (1.7 mg/L dissolved oxygen), 3,3',4,4'-tetrachlorobiphenyl (PCB 77, dose: 2 and 8 µg/g body weight), and Aroclor 1254 (a common PCB mixture, dose: 0.5 and 1 µg/g body weight), alone and in combination for 4 weeks. PCB 77 exposure markedly increased hepatic CYP1A mRNA and protein expression, and ethoxyresorufin-O-deethylase (EROD, an indicator of CYP1A enzyme) activity and increased endothelial nitric oxide synthase (eNOS) protein expression. PCB 77 treatment also increased interleukin-1β (IL-1β, a cytokine) mRNA levels and protein carbonyl (PC, an indicator of reactive oxygen species, ROS) contents. These marked PCB 77- and Aroclor 1254-induced increases in CYP1A mRNA levels and EROD activity were significantly attenuated by co-exposure to hypoxia, whereas the increases in hepatic eNOS protein and IL-1β mRNA expression, and PC contents were augmented by hypoxia co-exposure. The results suggest that biotransformation of organic xenobiotics by CYP1A is reduced in fish during co-exposure to hypoxia and is accompanied by alterations in eNOS, ROS, and IL-1β levels. © 2018 Wiley Periodicals, Inc.

  15. CYP2R1 mutations causing vitamin D-deficiency rickets.

    Science.gov (United States)

    Thacher, Tom D; Levine, Michael A

    2017-10-01

    CYP2R1 is the principal hepatic 25-hydroxylase responsible for the hydroxylation of parent vitamin D to 25-hydroxyvitamin D [25(OH)D]. Serum concentrations of 25(OH)D reflect vitamin D status, because 25(OH)D is the major circulating metabolite of vitamin D. The 1α-hydroxylation of 25(OH)D in the kidney by CYP27B1 generates the fully active vitamin D metabolite, 1,25-dihydroxyvitamin D (1,25(OH) 2 D). The human CYP2R1 gene, located at 11p15.2, has five exons, coding for an enzyme with 501 amino acids. In Cyp2r1-/- knockout mice, serum 25(OH)D levels were reduced by more than 50% compared wild-type mice. Genetic polymorphisms of CYP2R1 account for some of the individual variability of circulating 25(OH)D values in the population. We review the evidence that inactivating mutations in CYP2R1 can lead to a novel form of vitamin D-deficiency rickets resulting from impaired 25-hydroxylation of vitamin D. We sequenced the promoter, exons and intron-exon flanking regions of the CYP2R1 gene in members of 12 Nigerian families with rickets in more than one family member. We found missense mutations (L99P and K242N) in affected members of 2 of 12 families. The L99P mutation had previously been reported as a homozygous defect in an unrelated child of Nigerian origin with rickets. In silico analyses predicted impaired CYP2R1 folding or reduced interaction with substrate vitamin D by L99P and K242N mutations, respectively. In vitro studies of the mutant CYP2R1 proteins in HEK293 cells confirmed normal expression levels but completely absent or markedly reduced 25-hydroxylase activity by the L99P and K242N mutations, respectively. Heterozygous subjects had more moderate biochemical and clinical features of vitamin D deficiency than homozygous subjects. After an oral bolus dose of 50,000 IU of vitamin D 2 or vitamin D 3 , heterozygous subjects had lower increases in serum 25(OH)D than control subjects, and homozygous subjects had minimal increases, supporting a semidominant

  16. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    International Nuclear Information System (INIS)

    Jönsson, Maria E.; Kubota, Akira; Timme-Laragy, Alicia R.; Woodin, Bruce; Stegeman, John J.

    2012-01-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC 50 values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1 or cox-2.

  17. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Jönsson, Maria E., E-mail: maria.jonsson@ebc.uu.se [Dept. of Environmental Toxicology, Evolutionary Biology, Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala (Sweden); Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Kubota, Akira, E-mail: akubota@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Timme-Laragy, Alicia R., E-mail: atimmelaragy@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Division of Environmental Health, Department of Public Health, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003 (United States); Woodin, Bruce, E-mail: bwoodin@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States)

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC{sub 50} values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1 or cox

  18. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM.

    Science.gov (United States)

    Amin, N; Byrne, E; Johnson, J; Chenevix-Trench, G; Walter, S; Nolte, I M; Vink, J M; Rawal, R; Mangino, M; Teumer, A; Keers, J C; Verwoert, G; Baumeister, S; Biffar, R; Petersmann, A; Dahmen, N; Doering, A; Isaacs, A; Broer, L; Wray, N R; Montgomery, G W; Levy, D; Psaty, B M; Gudnason, V; Chakravarti, A; Sulem, P; Gudbjartsson, D F; Kiemeney, L A; Thorsteinsdottir, U; Stefansson, K; van Rooij, F J A; Aulchenko, Y S; Hottenga, J J; Rivadeneira, F R; Hofman, A; Uitterlinden, A G; Hammond, C J; Shin, S-Y; Ikram, A; Witteman, J C M; Janssens, A C J W; Snieder, H; Tiemeier, H; Wolfenbuttel, B H R; Oostra, B A; Heath, A C; Wichmann, E; Spector, T D; Grabe, H J; Boomsma, D I; Martin, N G; van Duijn, C M

    2012-11-01

    Coffee consumption is a model for addictive behavior. We performed a meta-analysis of genome-wide association studies (GWASs) on coffee intake from 8 Caucasian cohorts (N=18 176) and sought replication of our top findings in a further 7929 individuals. We also performed a gene expression analysis treating different cell lines with caffeine. Genome-wide significant association was observed for two single-nucleotide polymorphisms (SNPs) in the 15q24 region. The two SNPs rs2470893 and rs2472297 (P-values=1.6 × 10(-11) and 2.7 × 10(-11)), which were also in strong linkage disequilibrium (r(2)=0.7) with each other, lie in the 23-kb long commonly shared 5' flanking region between CYP1A1 and CYP1A2 genes. CYP1A1 was found to be downregulated in lymphoblastoid cell lines treated with caffeine. CYP1A1 is known to metabolize polycyclic aromatic hydrocarbons, which are important constituents of coffee, whereas CYP1A2 is involved in the primary metabolism of caffeine. Significant evidence of association was also detected at rs382140 (P-value=3.9 × 10(-09)) near NRCAM-a gene implicated in vulnerability to addiction, and at another independent hit rs6495122 (P-value=7.1 × 10(-09))-an SNP associated with blood pressure-in the 15q24 region near the gene ULK3, in the meta-analysis of discovery and replication cohorts. Our results from GWASs and expression analysis also strongly implicate CAB39L in coffee drinking. Pathway analysis of differentially expressed genes revealed significantly enriched ubiquitin proteasome (P-value=2.2 × 10(-05)) and Parkinson's disease pathways (P-value=3.6 × 10(-05)).

  19. Cyclophilin B enhances HIV-1 infection.

    Science.gov (United States)

    DeBoer, Jason; Madson, Christian J; Belshan, Michael

    2016-02-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Bioconversion of deoxypodophyllotoxin into epipodophyllotoxin in E-coli using human cytochrome P450 3A4

    NARCIS (Netherlands)

    Vasilev, Nikolay P.; Julsing, Mattijs K.; Koulman, Albert; Clarkson, Cailean; Woerdenbag, Herman J.; Ionkova, Iliana; Bos, Rein; Jaroszewski, Jerzy W.; Kayser, Oliver; Quax, Wim J.

    2006-01-01

    Biotransformation of deoxypodophyllotoxin to epipodophyllotoxin by three major human hepatic enzymes, CYP1A2, CYP2C9 and CYP3A4, heterologously expressed in E coli DH5 alpha, was investigated. It was shown that CYP3A4 catalysed the hydroxylation of deoxypodophyllotoxin into epipodophyllotoxin in

  1. CYP2W1 is highly expressed in adrenal glands and is positively associated with the response to mitotane in adrenocortical carcinoma.

    Directory of Open Access Journals (Sweden)

    Cristina L Ronchi

    Full Text Available Adrenocortical tumors comprise frequent adenomas (ACA and rare carcinomas (ACC. Human cytochrome P450 2W1 (CYP2W1 is highly expressed in some cancers holding the potential to activate certain drugs into tumor cytotoxins.To investigate the CYP2W1 expression in adrenal samples and its relationship with clinical outcome in ACC.CYP2W1 expression was investigated by qRT-PCR in 13 normal adrenal glands, 32 ACA, 25 ACC, and 9 different non-adrenal normal tissue samples and by immunohistochemistry in 352 specimens (23 normal adrenal glands, 33 ACA, 239 ACC, 67 non-adrenal normal or neoplastic samples.CYP2W1 mRNA expression was absent/low in normal non-adrenal tissues, but high in normal and neoplastic adrenal glands (all P<0.01 vs non-adrenal normal tissues. Accordingly, CYP2W1 immunoreactivity was absent/low (H-score 0-1 in 72% of non-adrenal normal tissues, but high (H-score 2-3 in 44% of non-adrenal cancers, in 65% of normal adrenal glands, in 62% of ACAs and in 50% of ACCs (all P<0.001 vs non-adrenal normal tissues, being significantly increased in steroid-secreting compared to non-secreting tumors. In ACC patients treated with mitotane only, high CYP2W1 immunoreactivity adjusted for ENSAT stage was associated with longer overall survival and time to progression (P<0.05 and P<0.01, respectively, and with a better response to therapy both as palliative (response/stable disease in 42% vs 6%, P<0.01 or adjuvant option (absence of disease recurrence in 69% vs 45%, P<0.01.CYP2W1 is highly expressed in both normal and neoplastic adrenal glands making it a promising tool for targeted therapy in ACC. Furthermore, CYP2W1 may represent a new predictive marker for the response to mitotane treatment.

  2. CYP24A1 exacerbated activity during diabetes contributes to kidney tubular apoptosis via caspase-3 increased expression and activation.

    Directory of Open Access Journals (Sweden)

    Alexandre Tourigny

    Full Text Available Decreases in circulating 25,hydroxyl-vitamin D3 (25 OH D3 and 1,25,dihydroxyl-vitamin D3 (1,25 (OH2 D3 have been extensively documented in patients with type 2 diabetes. Nevertheless, the molecular reasons behind this drop, and whether it is a cause or an effect of disease progression is still poorly understood. With the skin and the liver, the kidney is one of the most important sites for vitamin D metabolism. Previous studies have also shown that CYP24A1 (an enzyme implicated in vitamin D metabolism, might play an important role in furthering the progression of kidney lesions during diabetic nephropathy. In this study we show a link between CYP24A1 increase and senescence followed by apoptosis induction in the renal proximal tubules of diabetic kidneys. We show that CYP24A1 expression was increased during diabetic nephropathy progression. This increase derived from protein kinase C activation and increased H(2O(2 cellular production. CYP24A1 increase had a major impact on cellular phenotype, by pushing cells into senescence, and later into apoptosis. Our data suggest that control of CYP24A1 increase during diabetes has a beneficial effect on senescence induction and caspase-3 increased expression. We concluded that diabetes induces an increase in CYP24A1 expression, destabilizing vitamin D metabolism in the renal proximal tubules, leading to cellular instability and apoptosis, and thereby accelerating tubular injury progression during diabetic nephropathy.

  3. Camel Milk Modulates the Expression of Aryl Hydrocarbon Receptor-Regulated Genes, Cyp1a1, Nqo1, and Gsta1, in Murine hepatoma Hepa 1c1c7 Cells

    Directory of Open Access Journals (Sweden)

    Hesham M. Korashy

    2012-01-01

    Full Text Available There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1, and cancer-protective genes, NAD(PH:quinone oxidoreductase 1 (Nqo1 and glutathione S-transferase a1 (Gsta1, in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels.

  4. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells

    International Nuclear Information System (INIS)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Glisic, Branka; Kaisarevic, Sonja; Kovacevic, Radmila; Andric, Nebojsa

    2013-01-01

    Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA. Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine

  5. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Glisic, Branka; Kaisarevic, Sonja; Kovacevic, Radmila; Andric, Nebojsa, E-mail: nebojsa.andric@dbe.uns.ac.rs

    2013-07-01

    Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA. Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine

  6. Expression of the vitamin D receptor, 25-hydroxylases, 1alpha-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Andersen, Claus B.; Nielsen, John E

    2010-01-01

    The vitamin D receptor (VDR), CYP27B1 and CYP24A1 are expressed in the human kidney, but the segmental expression of the 25-hydroxylases is unknown. A comprehensive analysis of CYP2R1, CYP27A1, CYP27B1, VDR and CYP24A1 expression in normal kidney and renal clear cell cancer (CCc) would reveal...

  7. Retinoids repress Ah receptor CYP1A1 induction pathway through the SMRT corepressor

    International Nuclear Information System (INIS)

    Fallone, Frederique; Villard, Pierre-Henri; Seree, Eric; Rimet, Odile; Nguyen, Quock Binh; Bourgarel-Rey, Veronique; Fouchier, Francis; Barra, Yves; Durand, Alain; Lacarelle, Bruno

    2004-01-01

    CYP1A1 isoform is mainly regulated by the transcription factor AhR and to a lesser extent by the nuclear receptor RAR. The effect of a coexposure with 3MC, a AhR ligand, and RA, a RAR ligand, which are, respectively, strong and weak CYP1A1 inducers, is poorly known. We showed in Caco-2 cells that addition of RA significantly decreased 3MC-induced CYP1A1 expression by -55% for mRNA level and -30% for promoter and enzymatic activities. We further showed that RA decreased AhR protein level. Moreover, a physical interaction between AhR and the RAR-corepressor SMRT has been described in vitro. Using the corepressor inhibitor TSA, transfected-cells with SMRT cDNA, and coimmunoprecipitation experiments, we demonstrated that RA addition repressed AhR function through a marked AhR/SMRT physical interaction. This interaction explains the decrease of 3MC-induced CYP1A1 expression. This new mechanism involving the repression of AhR-induced CYP1A1 expression by retinoids allows better knowledge of the CYP1A1 regulation

  8. The Effect of CYP2B6, CYP2D6, and CYP3A4 Alleles on Methadone Binding: A Molecular Docking Study

    Directory of Open Access Journals (Sweden)

    Nik Nur Syazana Bt Nik Mohamed Kamal

    2013-01-01

    Full Text Available Current methadone maintenance therapy (MMT is yet to ensure 100% successful treatment as the optimum dosage has yet to be determined. Overdose leads to death while lower dose causes the opioid withdrawal effect. Single-nucleotide polymorphisms (SNP in cytochrome P450s (CYPs, the methadone metabolizers, have been showen to be the main factor for the interindividual variability of methadone clinical effects. In this study, we investigated the effect of SNPs in three major methadone metabolizers (CYP2B6, CYP2D6, and CYP3A4 on methadone binding affinity. Results showed that CYP2B6*11, CYP2B6*12, CYP2B6*18, and CYP3A4*12 have significantly higher binding affinity to R-methadone compared to wild type. S-methadone has higher binding affinity in CYP3A4*3, CYP3A4*11, and CYP3A4*12 compared to wild type. R-methadone was shown to be the active form of methadone; thus individuals with CYP alleles that binds better to R-methadone will have higher methadone metabolism rate. Therefore, a higher dosage of methadone is necessary to obtain the opiate effect compared to a normal individual and vice versa. These results provide an initial prediction on methadone metabolism rate for individuals with mutant type CYP which enables prescription of optimum methadone dosage for individuals with CYP alleles.

  9. MDR1 haplotypes conferring an increased expression of intestinal CYP3A4 rather than MDR1 in female living-donor liver transplant patients.

    Science.gov (United States)

    Hosohata, Keiko; Masuda, Satohiro; Yonezawa, Atsushi; Katsura, Toshiya; Oike, Fumitaka; Ogura, Yasuhiro; Takada, Yasutsugu; Egawa, Hiroto; Uemoto, Shinji; Inui, Ken-Ichi

    2009-07-01

    This study investigated whether haplotypes in the multidrug resistance 1 (MDR1) gene had effects on mRNA expression levels of MDR1 and cytochrome P450 (CYP) 3A4, and on the pharmacokinetics of tacrolimus in living-donor liver transplant (LDLT) patients, considering the gender difference. Haplotype analysis of MDR1 with G2677T/A and C3435T was performed in 63 de novo Japanese LDLT patients (17 to 55 years; 44.4% women). The expression levels of MDR1 and CYP3A4 mRNAs in jejunal biopsy specimens were quantified by real-time PCR. Intestinal CYP3A4 mRNA expression levels (amol/microg total RNA) showed significantly higher values in women carrying the 2677TT-3435TT haplotype (median, 10.7; range, 5.92-15.2) than those with 2677GG-3435CC (3.03; range 1.38-4.68) and 2677GT-3435CT (median, 4.31; range, 0.07-9.42) (P = 0.022), but not in men (P = 0.81). However, MDR1 haplotype did not influence mRNA expression levels of MDR1 nor the concentration/dose ratio [(ng/mL)/(mg/day)] of oral tacrolimus for the postoperative 7 days, irrespective of gender. MDR1 haplotype may have a minor association with the tacrolimus pharmacokinetics after LDLT, but could be a good predictor of the inter-individual variation of intestinal expression of CYP3A4 in women.

  10. Increased CYP1A1 expression in human exfoliated urothelial cells of cigarette smokers compared to non-smokers

    Energy Technology Data Exchange (ETDEWEB)

    Doerrenhaus, Angelika; Roos, Peter H. [Institute for Occupational Physiology at the University Dortmund, Dortmund (Germany); Mueller, Tina [Institute for Occupational Physiology at the University Dortmund, Dortmund (Germany); University Dortmund, Department of Statistics, Mathematical Statistics with Applications in Biometrics, Dortmund (Germany)

    2007-01-15

    Polycyclic aromatic hydrocarbons, arylamines and nitrosamines, constituents of cigarette smoke, are known inducers of bladder cancer. The biochemical response of the target tissue, the bladder urothelium, following inhalation of cigarette smoke has not been studied so far. We used exfoliated transitional urothelial cells from human urine samples to analyze effects of smoking on induction of the cytochrome P450 enzyme CYP1A1. Samples of 40 subjects, including male and female smokers and non-smokers, were examined. A prerequisite for the immunofluorescence microscopic analysis of the cells was the enrichment of the urothelial cell population. This was achieved by a new method which is based on magnetic cell sorting exploiting specific binding of immobilized Griffonia simplicifolia lectin to the surface of urothelial cells. Immunostaining of the final cell preparation with a monoclonal antibody to CYP1A1 showed that about 6% of the urothelial cells of non-smokers stained positive for CYP1A1. However, this fraction of positive cells was more than 44% of the urothelial cells in samples from cigarette smokers. In spite of the individual variation, the difference was statistically significant. There were no gender-related differences in the portion of CYP1A1 expressing urothelial cells of smokers and non-smokers. In essence, we show for the first time that human urothelial cells respond to cigarette smoking by induction of CYP1A1. The approach opens new fields of mechanistic and biomarker research with respect to the pathogenetic processes of cancer development in the human bladder. (orig.)

  11. The CYP2E1 inhibitor DDC up-regulates MMP-1 expression in hepatic stellate cells via an ERK1/2- and Akt-dependent mechanism.

    Science.gov (United States)

    Liu, Tianhui; Wang, Ping; Cong, Min; Xu, Youqing; Jia, Jidong; You, Hong

    2013-06-05

    DDC (diethyldithiocarbamate) could block collagen synthesis in HSC (hepatic stellate cells) through the inhibition of ROS (reactive oxygen species) derived from hepatocyte CYP2E1 (cytochrome P450 2E1). However, the effect of DDC on MMP-1 (matrix metalloproteinase-1), which is the main collagen degrading matrix metalloproteinase, has not been reported. In co-culture experiments, we found that DDC significantly enhanced MMP-1 expression in human HSC (LX-2) that were cultured with hepatocyte C3A cells either expressing or not expressing CYP2E1. The levels of both proenzyme and active MMP-1 enzyme were up-regulated in LX-2 cells, accompanied by elevated enzyme activity of MMP-1 and decreased collagen I, in both LX-2 cells and the culture medium. H2O2 treatment abrogated DDC-induced MMP-1 up-regulation and collagen I decrease, while catalase treatment slightly up-regulated MMP-1 expression. These data suggested that the decrease in ROS by DDC was partially responsible for the MMP-1 up-regulation. ERK1/2 (extracellular signal-regulated kinase 1/2), Akt (protein kinase B) and p38 were significantly activated by DDC. The ERK1/2 inhibitor (U0126) and Akt inhibitor (T3830) abrogated the DDC-induced MMP-1 up-regulation. In addition, a p38 inhibitor (SB203580) improved MMP-1 up-regulation through the stimulation of ERK1/2. Our data indicate that DDC significantly up-regulates the expression of MMP-1 in LX-2 cells which results in greater MMP-1 enzyme activity and decreased collagen I. The enhancement of MMP-1 expression by DDC was associated with H2O2 inhibition and coordinated regulation by the ERK1/2 and Akt pathways. These data provide some new insights into treatment strategies for hepatic fibrosis.

  12. Association of CYP1B1 Polymorphisms with Breast Cancer: A Case-Control Study in the Han Population in Ningxia Hui Autonomous Region, P. R. China

    Science.gov (United States)

    Jiao, Haiyan; Liu, Chunlian; Guo, Weidong; Peng, Liang; Chen, Yintao; Martin, Francis L.

    2010-01-01

    Studies investigating possible associations between cytochrome P4501B1 (CYP1B1) polymorphisms and breast cancer risk have been inconsistent. We set out to ascertain whether there might be an association between polymorphisms in exon 2 (codon 119, G→T) and exon 3 (codon 432, G→C) of CYP1B1 and breast cancer in a Chinese Han population in the rural region of Ningxia. Using an allele-specific polymerase chain reaction method and direct DNA sequencing, the presence or absence of the two CYP1B1 polymorphisms was investigated. Genotype and allele frequencies were analyzed in breast cancer cases (n = 152) and healthy age-matched controls (n = 156). The odds ratio (OR) of 119G→T or 432G→C in breast cancer cases and controls was 3.3 (95% CI: 1.28 to 8.28) and 2.8 (95% CI: 1.04 to 7.51), respectively. In addition, the OR for people with both polymorphisms (119T and 432C) was 4.69 (95% CI: 1.97 to 11.19). Our results suggest that certain polymorphisms in the CYP1B1 gene might increase risk for breast cancer among Han Chinese, perhaps because they influence the efficiency of CYP1B1 bio-transformation of oestrogens or pro-carcinogens into DNA-reactive electrophiles that may act as cancer-initiating agents. PMID:20212917

  13. Co-regulation of the DAF-16 target gene, cyp-35B1/dod-13, by HSF-1 in C. elegans dauer larvae and daf-2 insulin pathway mutants.

    Directory of Open Access Journals (Sweden)

    Wendy B Iser

    2011-03-01

    Full Text Available Insulin/IGF-I-like signaling (IIS has both cell autonomous and non-autonomous functions. In some cases, targets through which IIS regulates cell-autonomous functions, such as cell growth and metabolism, have been identified. In contrast, targets for many non-autonomous IIS functions, such as C. elegans dauer morphogenesis, remain elusive. Here, we report the use of genomic and genetic approaches to identify potential non-autonomous targets of C. elegans IIS. First, we used transcriptional microarrays to identify target genes regulated non-autonomously by IIS in the intestine or in neurons. C. elegans IIS controls expression of a number of stress response genes, which were differentially regulated by tissue-restricted IIS. In particular, expression of sod-3, a MnSOD enzyme, was not regulated by tissue-restricted IIS on the microarrays, while expression of hsp-16 genes was rescued back to wildtype by tissue restricted IIS. One IIS target regulated non-autonomously by age-1 was cyp-35B1/dod-13, encoding a cytochrome P450. Genetic analysis of the cyp-35B1 promoter showed both DAF-16 and HSF-1 are direct regulators. Based on these findings, we propose that hsf-1 may participate in the pathways mediating non-autonomous activities of age-1 in C. elegans.

  14. Co-regulation of the DAF-16 target gene, cyp-35B1/dod-13, by HSF-1 in C. elegans dauer larvae and daf-2 insulin pathway mutants.

    Science.gov (United States)

    Iser, Wendy B; Wilson, Mark A; Wood, William H; Becker, Kevin; Wolkow, Catherine A

    2011-03-09

    Insulin/IGF-I-like signaling (IIS) has both cell autonomous and non-autonomous functions. In some cases, targets through which IIS regulates cell-autonomous functions, such as cell growth and metabolism, have been identified. In contrast, targets for many non-autonomous IIS functions, such as C. elegans dauer morphogenesis, remain elusive. Here, we report the use of genomic and genetic approaches to identify potential non-autonomous targets of C. elegans IIS. First, we used transcriptional microarrays to identify target genes regulated non-autonomously by IIS in the intestine or in neurons. C. elegans IIS controls expression of a number of stress response genes, which were differentially regulated by tissue-restricted IIS. In particular, expression of sod-3, a MnSOD enzyme, was not regulated by tissue-restricted IIS on the microarrays, while expression of hsp-16 genes was rescued back to wildtype by tissue restricted IIS. One IIS target regulated non-autonomously by age-1 was cyp-35B1/dod-13, encoding a cytochrome P450. Genetic analysis of the cyp-35B1 promoter showed both DAF-16 and HSF-1 are direct regulators. Based on these findings, we propose that hsf-1 may participate in the pathways mediating non-autonomous activities of age-1 in C. elegans.

  15. Bile acid flux through portal but not peripheral veins inhibits CYP7A1 expression without involvement of ileal FGF19 in rabbits.

    Science.gov (United States)

    Shang, Quan; Guo, Grace L; Honda, Akira; Shi, Daniel; Saumoy, Monica; Salen, Gerald; Xu, Guorong

    2014-08-15

    It was proposed that CYP7A1 expression is suppressed through the gut-hepatic signaling pathway fibroblast growth factor (FGF) 15/19-fibroblast growth factor receptor 4, which is initiated by activation of farnesoid X receptor in the intestine rather than in the liver. The present study tested whether portal bile acid flux alone without ileal FGF19 could downregulate CYP7A1 expression in rabbits. A rabbit model was developed by infusing glycodeoxycholic acid (GDCA) through the splenic vein to bypass ileal FGF19. Study was conducted in four groups of rabbits: control; bile fistula + bovine serum albumin solution perfusion (BF); BF + GDCA (by portal perfusion); and BF + GDCA-f (by femoral perfusion). Compared with only BF, BF + GDCA (6 h portal perfusion) suppressed CYP7A1 mRNA, whereas BF + GDCA-f (via femoral vein) with the same perfusion rate of GDCA did not show inhibitory effects. Meanwhile, there was a decrease in ileal FGF19 expression and portal FGF19 protein levels, but an equivalent increase in biliary bile acid outputs in both GDCA perfusion groups. This study demonstrated that portal bile acid flux alone downregulated CYP7A1 expression with diminished FGF19 expression and protein levels, whereas the same bile acid flux reaching the liver through the hepatic artery via femoral vein had no inhibitory effect on CYP7A1. We propose that bile acid flux through the portal venous system may be a kind of "intestinal factor" that suppresses CYP7A1 expression. Copyright © 2014 the American Physiological Society.

  16. CypA, a gene downstream of HIF-1α, promotes the development of PDAC.

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    Full Text Available Hypoxia-inducible factor-1α (HIF-1α is a highly important transcription factor involved in cell metabolism. HIF-1α promotes glycolysis and inhibits of mitochondrial respiration in pancreatic ductal adenocarcinoma (PDAC. In response to tumor hypoxia, cyclophilin A (CypA is over-expressed in various cancer types, and is associated with cell apoptosis, tumor invasion, metastasis, and chemoresistance in PDAC. In this study, we showed that both HIF-1α and CypA expression were significantly associated with lymph node metastasis and tumor stage. The expression of CypA was correlated with HIF-1α. Moreover, the mRNA and protein expression of CypA markedly decreased or increased following the suppression or over-expression of HIF-1α in vitro. Chromatin immunoprecipitation analysis showed that HIF-1α could directly bind to the hypoxia response element (HRE in the CypA promoter regions and regulated CypA expression. Consistent with other studies, HIF-1α and CypA promoted PDAC cell proliferation and invasion, and suppressed apoptosis in vitro. Furthermore, we proved the combination effect of 2-methoxyestradiol and cyclosporin A both in vitro and in vivo. These results suggested that,CypA, a gene downstream of HIF-1α, could promote the development of PDAC. Thus, CypA might serve as a potential therapeutic target for PDAC.

  17. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract

    DEFF Research Database (Denmark)

    Connell, Hugh; Agace, William; Klemm, Per

    1996-01-01

    of Escherichia coli for the urinary tract by promoting bacterial persistence and enhancing the inflammatory responce to infection. In a clinical study, we observed that disease severity was greater in children infected with E. coli O1:K1:H7 isolates expressing type 1 fimbriae than in those infected with type 1...... negative isolates of the same serotype. The E. coli O1:K1:H7 isolates had the same electrophoretic type, were hemolysin-negative, expressed P fimbriae, and carried the fim DNA sequences. When tested in a mouse urinary tract infection model, the type 1-positive E. coli O1:K1:H7 isolates survived inhigher...... urinary tract infection model. E. coli CN1016 reconstituted with type 1 fimbriae had restored virulence similar to that of the wild-type parent strain. These results show that type 1 fimbriae in the genetic background of a uropathogenic strain contribute to the pathogenesis of E. coli in the urinary tract....

  18. Genetic heterogeneity and minor CYP1B1 involvement in the molecular basis of primary congenital glaucoma in Gypsies.

    Science.gov (United States)

    Sivadorai, P; Cherninkova, S; Bouwer, S; Kamenarova, K; Angelicheva, D; Seeman, P; Hollingsworth, K; Mihaylova, V; Oscar, A; Dimitrova, G; Kaneva, R; Tournev, I; Kalaydjieva, L

    2008-07-01

    Primary congenital glaucoma (PCG) is a genetically heterogeneous disorder of autosomal recessive inheritance, with mutations in the cytochrome P450 1B1 (CYP1B1) gene detected in an average of approximately 50% of cases worldwide. The Roma/Gypsies are considered to be a rare example of a single founder CYP1B1 mutation, E387K (identified in the Slovak Roma), accounting for 100% of disease alleles. Contrary to this concept, unusual genetic heterogeneity was revealed in this study of 21 Gypsy PCG patients from Bulgaria and 715 controls from the general Gypsy population. In our small sample of affected subjects, we identified five different CYP1B1 mutations - four known (E229K, R368H, E387K and R390C) and one novel and potentially pathogenic (F445I), which together accounted for approximately 30% of disease alleles. E387K was rare in both the patient and the control group, indicating that its high frequency in the Slovak Roma is the product of local founder effect not representative of the overall molecular pattern of PCG in the Gypsy population. Data on other Mendelian disorders and on the population genetics of the Gypsies suggest that a true founder mutation is likely to exist and has remained undetected. Our analysis of another candidate gene, MYOC, and the GLC3B and GLC3C loci did not provide support for their involvement. The molecular basis of PCG in the Gypsies is thus unresolved, and diagnostic analyses should be extended beyond the E387K mutation.

  19. Women with Recurrent Miscarriage Have Decreased Expression of 25-Hydroxyvitamin D3-1α-Hydroxylase by the Fetal-Maternal Interface.

    Directory of Open Access Journals (Sweden)

    Li-Qin Wang

    Full Text Available Effects of vitamin D deficiency in pregnancy have been associated with some adverse pregnancy outcomes. The 25-hydroxyvitamin D3-1α-hydroxylase (CYP27B1 is integral to the vitamin D metabolic pathway. The enzyme catalyzes localized conversion of pro-hormone 25-hydroxyvitamin D3 to active 1,25-dihydroxyvitamin D3. Our aim was to investigate the expression of CYP27B1 at the fetal-maternal interface in the first trimester pregnancy and to determine whether CYP27B1 was associated with recurrent miscarriage (RM.Expressions of CYP27B1 mRNA and protein in villi and decidua from 20 women undergoing primary miscarriage, 20 women with RM and 20 women with normal pregnancy were evaluated by western blot, and quantitative real-time PCR. The co-localization of CYP27B1 and certain cytokines including IL-10, IFN-γ, TNF-α, and IL-2 expression were examined using immunohistochemistry and confocal microscopy.Women with RM had a significantly lower expression of CYP27B1 mRNA and protein in villous and decidual tissues compared with the normal pregnant women (P = 0.000 in villus, P = 0.002 in decidua for mRNA; P = 0.036 in villus, P = 0.007 in decidua for protein.. Compared with the normal pregnancy, immunostaining for CYP27B1 was significantly decreased in villous trophoblasts and decidual glandular epithelial cells in RM women. No significant differences in the localization of CYP27B1, IL-10, IFN-γ, TNF-α, and IL-2 expression were identified between the normal pregnant and RM women.Women with RM have a lower level of CYP27B1 expression in chorionic villi and decidua compared with normal pregnant women, suggesting that reduced CYP27B1 expression may be associated with RM. The consistent localization of CYP27B1 and IL-10, IFN-γ, TNF-α, and IL-2 expression in villous and decidual tissues suggests the importance of the local production of 1,25(OH2D3 at the fetal-maternal interface to regulate cytokine responses.

  20. CYP19A1 fine-mapping and Mendelian randomization: estradiol is causal for endometrial cancer

    Science.gov (United States)

    Thompson, Deborah J; O'Mara, Tracy A; Glubb, Dylan M; Painter, Jodie N; Cheng, Timothy; Folkerd, Elizabeth; Doody, Deborah; Dennis, Joe; Webb, Penelope M; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Michailidou, Kyriaki; Tyrer, Jonathan P; Maranian, Mel J; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif B; Dörk, Thilo; Hillemanns, Peter; Dürst, Matthias; Runnebaum, Ingo; Zhao, Hui; Depreeuw, Jeroen; Schrauwen, Stefanie; Amant, Frederic; Goode, Ellen L; Fridley, Brooke L; Dowdy, Sean C; Winham, Stacey J; Salvesen, Helga B; Trovik, Jone; Njolstad, Tormund S; Werner, Henrica M J; Ashton, Katie; Proietto, Tony; Otton, Geoffrey; Carvajal-Carmona, Luis; Tham, Emma; Liu, Tao; Mints, Miriam; Scott, Rodney J; McEvoy, Mark; Attia, John; Holliday, Elizabeth G; Montgomery, Grant W; Martin, Nicholas G; Nyholt, Dale R; Henders, Anjali K; Hopper, John L; Traficante, Nadia; Ruebner, Matthias; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Lambrechts, Diether; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Bolla, Manjeet K; Wang, Qin; Bojesen, Stig E; Shah, Mitul; Luben, Robert; Khaw, Kay-Tee; Pharoah, Paul D P; Dunning, Alison M; Tomlinson, Ian; Dowsett, Mitch; Easton, Douglas F; Spurdle, Amanda B

    2016-01-01

    Candidate gene studies have reported CYP19A1 variants to be associated with endometrial cancer and with estradiol (E2) concentrations. We analyzed 2937 single nucleotide polymorphisms (SNPs) in 6608 endometrial cancer cases and 37 925 controls and report the first genome wide-significant association between endometrial cancer and a CYP19A1 SNP (rs727479 in intron 2, P=4.8×10−11). SNP rs727479 was also among those most strongly associated with circulating E2 concentrations in 2767 post-menopausal controls (P=7.4×10−8). The observed endometrial cancer odds ratio per rs727479 A-allele (1.15, CI=1.11–1.21) is compatible with that predicted by the observed effect on E2 concentrations (1.09, CI=1.03–1.21), consistent with the hypothesis that endometrial cancer risk is driven by E2. From 28 candidate-causal SNPs, 12 co-located with three putative gene-regulatory elements and their risk alleles associated with higher CYP19A1 expression in bioinformatical analyses. For both phenotypes, the associations with rs727479 were stronger among women with a higher BMI (Pinteraction=0.034 and 0.066 respectively), suggesting a biologically plausible gene-environment interaction. PMID:26574572

  1. Effects of CYP3A5, CYP2C19, and CYP2B6 on the clinical efficacy and adverse outcomes of sibutramine therapy: a crucial role for the CYP2B6*6 allele.

    Science.gov (United States)

    Hwang, In Cheol; Park, Ji Young; Ahn, Hong Yup; Kim, Kyoung Kon; Suh, Heuy Sun; Ko, Ki Dong; Kim, Kyoung-Ah

    2014-01-20

    Various cytochrome P450 isoforms modulate sibutramine activity and influence sibutramine plasma levels and pharmacokinetics. However, there are no available data to demonstrate the association of these polymorphisms with the clinical outcomes of sibutramine administration. This study was a sub-investigation of a 12-week, double-blind, placebo-controlled trial examining the additive effect of orlistat on sibutramine. The final analysis was restricted to 101 women who had fulfilled the protocol. We evaluated the effects of genetic polymorphisms of CYP3A5, CYP2C19 and CYP2B6 on the % weight loss and the occurrence of adverse events. The change of pulse rate from baseline value was affected by both CYP2B6 and CYP3A5 genetic polymorphisms (Psibutramine treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Phenotype-genotype variability in the human CYP3A locus as assessed by the probe drug quinine and analyses of variant CYP3A4 alleles

    International Nuclear Information System (INIS)

    Rodriguez-Antona, Cristina; Sayi, Jane G.; Gustafsson, Lars L.; Bertilsson, Leif; Ingelman-Sundberg, Magnus

    2005-01-01

    The human cytochrome P450 3A (CYP3A) enzymes, which metabolize 50% of currently used therapeutic drugs, exhibit great interindividual differences in activity that have a major impact on drug treatment outcome, but hitherto no genetic background importantly contributing to this variation has been identified. In this study we show that CYP3A4 mRNA and hnRNA contents with a few exceptions vary in parallel in human liver, suggesting that mechanisms affecting CYP3A4 transcription, such as promoter polymorphisms, are relevant for interindividual differences in CYP3A4 expression. Tanzanian (n = 143) healthy volunteers were phenotyped using quinine as a CYP3A probe and the results were used for association studies with CYP3A4 genotypes. Carriers of CYP3A4*1B had a significantly lower activity than those with CYP3A4*1 whereas no differences were seen for five other SNPs investigated. Nuclear proteins from the B16A2 hepatoma cells were found to bind with less affinity to the CYP3A4*1B element around -392 bp as compared to CYP3A4*1. The data indicate the existence of a genetic CYP3A4 polymorphism with functional importance for interindividual differences in enzyme expression

  3. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Directory of Open Access Journals (Sweden)

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  4. Epidermal CYP2 family cytochromes P450

    International Nuclear Information System (INIS)

    Du Liping; Hoffman, Susan M.G.; Keeney, Diane S.

    2004-01-01

    Skin is the largest and most accessible drug-metabolizing organ. In mammals, it is the competent barrier that protects against exposure to harmful stimuli in the environment and in the systemic circulation. Skin expresses many cytochromes P450 that have critical roles in exogenous and endogenous substrate metabolism. Here, we review evidence for epidermal expression of genes from the large CYP2 gene family, many of which are expressed preferentially in extrahepatic tissues or specifically in epithelia at the environmental interface. At least 13 CYP2 genes (CYP2A6, 2A7, 2B6, 2C9, 2C18, 2C19, 2D6, 2E1, 2J2, 2R1, 2S1, 2U1, and 2W1) are expressed in skin from at least some human individuals, and the majority of these genes are expressed in epidermis or cultured keratinocytes. Where epidermal expression has been localized in situ by hybridization or immunocytochemistry, CYP2 transcripts and proteins are most often expressed in differentiated keratinocytes comprising the outer (suprabasal) cell layers of the epidermis and skin appendages. The tissue-specific transcriptional regulation of CYP2 genes in the epidermis, and in other epithelia that interface with the environment, suggests important roles for at least some CYP2 gene products in the production and disposition of molecules affecting competency of the epidermal barrier

  5. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  6. Characterization of CYP264B1 and a terpene cyclase of a terpene biosynthesis gene cluster from the myxobacterium Sorangium cellulosum So ce56

    OpenAIRE

    Ly, Thuy Thi Bich

    2011-01-01

    In the work presented here, CYP264B1 and the terpene cyclase GeoA of Sorangium cellulosum So ce56 have been characterized. CYP264B1 is able to convert norisoprenoids (a-ionone and b-ionone) and diverse sesquiterpene compounds, including nootkatone. Three products, 3-hydroxy-a-ionone, 3-hydroxy-b-ionone and 13-hydroxy-nootkatone were characterized using HPLC and 1H and 13C NMR. CYP264B1 is the first enzyme reported to be capable to hydroxylate regioselectively both norisoprenoids at the positi...

  7. Effect-directed analysis for estrogenic compounds in a fluvial sediment sample using transgenic cyp19a1b-GFP zebrafish embryos.

    Science.gov (United States)

    Fetter, Eva; Krauss, Martin; Brion, François; Kah, Olivier; Scholz, Stefan; Brack, Werner

    2014-09-01

    Xenoestrogens may persist in the environment by binding to sediments or suspended particulate matter serving as long-term reservoir and source of exposure, particularly for organisms living in or in contact with sediments. In this study, we present for the first time an effect-directed analysis (EDA) for identifying estrogenic compounds in a sediment sample using embryos of a transgenic reporter fish strain. In the tg(cyp19a1b-GFP) transgenic zebrafish strain, the expression of GFP (green fluorescent protein) in the brain is driven by an oestrogen responsive element in the promoter of the cyp19a1b (aromatase) gene. The selected sediment sample of the Czech river Bilina had already been analysed in a previous EDA using the yeast oestrogen screening assay and had revealed fractions containing estrogenic compounds. When normal phase HPLC (high performance liquid chromatography) fractionation was used for the separation of the sediment sample, the biotest with transgenic fish embryos revealed two estrogenic fractions. Chemical analysis of candidate compounds in these sediment fractions suggested alkylphenols and estrone as candidate compounds responsible for the observed estrogenic effect. Alkylphenol concentrations could partially explain the estrogenicity of the fractions. However, xenoestrogens below the analytical detection limit or non-targeted estrogenic compounds have probably also contributed to the sample's estrogenic potency. The results indicated the suitability of the tg(cyp19a1b-GFP) fish embryo for an integrated chemical-biological analysis of estrogenic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Cloning and expression of SgCYP450-4 from Siraitia grosvenorii

    Directory of Open Access Journals (Sweden)

    Dongping Tu

    2016-10-01

    Full Text Available CYP450 plays an essential role in the development and growth of the fruits of Siraitia grosvenorii. However, little is known about the SgCYP450-4 gene in S. grosvenorii. Here, based on transcriptome data, a full-length cDNA sequence of SgCYP450-4 was cloned by reverse transcriptase-polymerase chain reaction (RT-PCR and rapid-amplification of cDNA ends (RACE strategies. SgCYP450-4 is 1677 bp in length (GenBank accession No. AEM42985.1 and contains a complete open reading frame (ORF of 1422 bp. The deduced protein was composed of 473 amino acids, the molecular weight is 54.01 kDa, the theoretical isoelectric point (PI is 8.8, and the protein was predicted to possess cytochrome P450 domains. SgCYP450-4 gene was highly expressed in root, diploid fruit and fruit treated with hormone and pollination. At 10 days after treatment with pollination and hormones, the expression of SgCYP450-4 had the highest level and then decreased over time, which was consistent with the development of fruits of S. Grosvenorii. Hormonal treatment could significantly induce the expression of SgCYP450-4. These results provide a reference for regulation of fruit development and the use of parthenocarpy to generate seedless fruit, and provide a scientific basis for the production of growth regulator application agents.

  9. Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice.

    Science.gov (United States)

    Li, Lei; Bao, Xiaochen; Zhang, Qing-Yu; Negishi, Masahiko; Ding, Xinxin

    2017-08-01

    Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital for PB-induced hepatocellular proliferation. This hypothesis was tested here by using a Cyp2a(4/5)bgs -null (null) mouse model in which all Cyp2b genes are deleted. Adult male and female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg once daily for 5 successive days and tested on day 6. The liver-to-body weight ratio, an indicator of liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male Cyp2a(4/5)bgs -null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also significantly lower in PB-treated male null mice compared with PB-treated male WT mice. However, whereas few proliferating hepatocytes were detected in saline-treated mice, many proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, and PB-treated female WT and PB-treated female null mice did not show significant difference in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice. U.S. Government work not protected by U.S. copyright.

  10. CYP1A1, CYP3A5 and CYP3A7 polymorphisms and testicular cancer susceptibility.

    Science.gov (United States)

    Kristiansen, W; Haugen, T B; Witczak, O; Andersen, J M; Fosså, S D; Aschim, E L

    2011-02-01

    Testicular cancer (TC) incidence is increasing worldwide, but the aetiology remains largely unknown. An unbalanced level of oestrogens and androgens in utero is hypothesized to influence TC risk. Polymorphisms in genes encoding cytochrome P450 (CYP) enzymes involved in metabolism of reproductive hormones, such as CYP1A1, CYP3A5 and CYP3A7, may contribute to variability of an individual's susceptibility to TC. The aim of this case-control study was to investigate possible associations between different CYP genotypes and TC, as well as histological type of TC. The study comprised 652 TC cases and 199 controls of Norwegian Caucasian origin. Genotyping of the CYP1A1*2A (MspI), CYP1A1*2C (I462V), CYP1A1*4 (T461N), CYP3A5*3C (A6986G) and CYP3A7*2 (T409R) polymorphisms was performed using TaqMan allelic discrimination or sequencing. The CYP1A1*2A allele was associated with 44% reduced risk of TC with each polymorphic allele [odds ratio (OR) = 0.56, 95% confidence interval (CI) = 0.40-0.78, p(trend) = 0.001], whereas the CYP1A1*2C allele was associated with 56% reduced risk of TC with each polymorphic allele (OR = 0.44, 95% CI = 0.25-0.75, p(trend) = 0.003). The decreased risk per allele was significant for seminomas (OR = 0.46, 95% CI, 0.31-0.70, p(trend) < 0.001 and OR = 0.31, 95% CI = 0.14-0.66, p(trend) = 0.002, respectively), but only borderline significant for non-seminomas (OR = 0.65, 95% CI = 0.45-0.95, p(trend) = 0.027 and OR = 0.55, 95% CI = 0.30-1.01, p(trend) = 0.052, respectively). There were no statistically significant differences in the distribution of the CYP3A5*3C and CYP3A7*2 polymorphic alleles between TC cases and controls. This study suggests that polymorphisms in the CYP1A1 gene may contribute to variability of individual susceptibility to TC. © 2010 The Authors. International Journal of Andrology © 2010 European Academy of Andrology.

  11. E. coli infection modulates the pharmacokinetics of oral enrofloxacin by targeting P-glycoprotein in small intestine and CYP450 3A in liver and kidney of broilers.

    Science.gov (United States)

    Guo, Mengjie; Sun, Yong; Zhang, Yu; Bughio, Shamsuddin; Dai, Xiaohua; Ren, Weilong; Wang, Liping

    2014-01-01

    P-glycoprotein (P-gp) expression determines the absorption, distribution, metabolism and excretion of many drugs in the body. Also, up-regulation of P-gp acts as a defense mechanism against acute inflammation. This study examined expression levels of abcb1 mRNA and localization of P-gp protein in the liver, kidney, duodenum, jejunum and ileum in healthy and E. coli infected broilers by real time RT-PCR and immunohistochemistry. Meanwhile, pharmacokinetics of orally administered enrofloxacin was also investigated in healthy and infected broilers by HPLC. The results indicated that E. coli infection up-regulated expression of abcb1 mRNA levels significantly in the kidney, jejunum and ileum (P0.05). However, the expression level of CYP 3A37 mRNA were observed significantly decreased only in liver and kidney of E. coli infected broilers (Penrofloxacin, significantly decreased Cmax (0.34 vs 0.98 µg mL(-1), P = 0.000) and AUC0-12h (4.37 vs 8.88 µg mL(-1) h, P = 0.042) of enrofloxacin, but increased Tmax (8.32 vs 3.28 h, P = 0.040), T1/2a(2.66 vs 1.64 h(-1), P = 0.050) and V/F (26.7 vs 5.2 L, P = 0.040). Treatment with verapamil, an inhibitor of P-gp, significantly improved the absorption of enrofloxacin in both healthy and infected broilers. The results suggest that the E. coli infection induces intestine P-gp expression, altering the absorption of orally administered enrofloxacin in broilers.

  12. CYP1A2*1C, CYP2E1*5B, and GSTM1 polymorphisms are predictors of risk and poor outcome in head and neck squamous cell carcinoma patients

    DEFF Research Database (Denmark)

    Olivieri, Eloisa Helena Ribeiro; da Silva, Sabrina Daniela; Mendonça, Fernando Fernandes

    2009-01-01

    is performed by glutathione S-transferases (GSTs). It has been suggested that genetic alterations, such as polymorphisms, play an important role in tumorigenesis and HNSCC progression. The aim of this study was to investigate CYP1A1, CYP1A2, CYP2E1, GSTM1, and GSTT1 polymorphisms as risk factors in HNSCC...... and their association with clinicopathologic data. The patients comprised 153 individuals with HNSCC (cases) and 145 with no current or previous diagnosis of cancer (controls). Genotyping of the single nucleotide polymorphisms (SNPs) of the CYP1A1, CYP1A2, and CYP2E1 genes was performed by PCR-RFLP and the GSTM1...... for determining the parameters associated with tumor progression and poor outcomes in HNSCC....

  13. PPARalpha-dependent modulation of hepatic CYP1A by clofibric acid in rats.

    Science.gov (United States)

    Shaban, Zein; El-Shazly, Samir; Ishizuka, Mayumi; Kimura, Kazuhiro; Kazusaka, Akio; Fujita, Shoichi

    2004-09-01

    Fibrates, hypolipidemic drugs, have been reported to suppress the metabolic activities of cytochrome P450 1A1 and 1A2 in rats but the mechanism has not been elucidated. In the present study we tested the hypothesis that the inhibitory effect of fibrates on arylhydrocarbon receptor (AhR) function may be due to their stimulatory effects on PPARalpha. Sudan III (S.III) treatment induced CYP 1A1 and CYP 1A2 protein expression, mRNA and their metabolic activities, methoxyresorufin-O-demethylase (MROD) and ethoxyresorufin-O-deethylase (EROD), in Wistar rats higher than those in the control. Co-treatment of rats with S.III and clofibric acid (CA) caused a 40-50% decrease in the induced levels of CYP1A1 and CYP1A2 protein, mRNA expression and their metabolic activities and reduced AhR protein expression. When we treated HepG2 cells with S.III and/or CA, no suppressive effect on S.III-induced CYP1A1 protein expression due to CA was found. HepG2 cells were transiently transfected with increasing concentrations of PPARalpha mammalian expression vector and exposed to the same treatment. CA co-treatment with S.III decreased AhR protein and S.III-induced CYP1A1 protein expression with increasing dose of PPARalpha transfected into HepG2 cells. Our results demonstrate that the suppressive effect of fibrates on CYP1A is PPARalpha-dependent and suggest that PPARalpha has an inhibitory effect on AhR function.

  14. Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells.

    Science.gov (United States)

    Fang, Feng; Zheng, Jiamao; Galbaugh, Traci L; Fiorillo, Alyson A; Hjort, Elizabeth E; Zeng, Xianke; Clevenger, Charles V

    2010-06-01

    The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB knockdown with two independent siRNAs was shown to impair PRL-induced reporter expression in breast cancer cell line. cDNA microarray analysis was performed on these cells to assess the effect of CypB reduction, and revealed a significant decrease in PRL-induced endogenous gene expression in two breast cancer cell lines. Parallel functional assays revealed corresponding alterations of both anchorage-independent cell growth and cell motility of breast cancer cells. Our results demonstrate that CypB expression levels significantly modulate PRL-induced function in breast cancer cells ultimately resulting in enhanced levels of PRL-responsive gene expression, cell growth, and migration. Given the increasingly appreciated role of PRL in the pathogenesis of breast cancer, the actions of CypB detailed here are of biological significance.

  15. Expression of tung tree diacylglycerol acyltransferase 1 in E. coli

    Directory of Open Access Journals (Sweden)

    Klasson K Thomas

    2011-07-01

    Full Text Available Abstract Background Diacylglycerol acyltransferases (DGATs catalyze the final and rate-limiting step of triacylglycerol (TAG biosynthesis in eukaryotic organisms. Database search has identified at least 59 DGAT1 sequences from 48 organisms, but the expression of any DGAT1 as a full-length protein in E. coli had not been reported because DGAT1s are integral membrane proteins and difficult to express and purify. The objective of this study was to establish a procedure for expressing full-length DGAT1 in E. coli. Results An expression plasmid containing the open reading frame for tung tree (Vernicia fordii DGAT1 fused to maltose binding protein and poly-histidine affinity tags was constructed and expressed in E. coli BL21(DE3. Immunoblotting showed that the recombinant DGAT1 (rDGAT1 was expressed, but mostly targeted to the membranes and insoluble fractions. Extensive degradation also occurred. Nonetheless, the fusion protein was partially purified from the soluble fraction by Ni-NTA and amylose resin affinity chromatography. Multiple proteins co-purified with DGAT1 fusion protein. These fractions appeared yellow in color and contained fatty acids. The rDGAT1 was solubilized from the insoluble fraction by seven detergents and urea, with SDS and Triton X-100 being the most effective detergents. The solubilized rDGAT1 was partially purified by Ni-NTA affinity chromatography. PreScission protease digestion confirmed the identity of rDGAT1 and showed extensive precipitation following Ni-NTA affinity purification. Conclusions This study reports the first procedure for expressing full-length DGAT1 from any species using a bacterial expression system. The results suggest that recombinant DGAT1 is degraded extensively from the carboxyl terminus and associated with other proteins, lipids, and membranes.

  16. Harman induces CYP1A1 enzyme through an aryl hydrocarbon receptor mechanism

    International Nuclear Information System (INIS)

    El Gendy, Mohamed A.M.; El-Kadi, Ayman O.S.

    2010-01-01

    Harman is a common compound in several foods, plants and beverages. Numerous studies have demonstrated its mutagenic, co-mutagenic and carcinogenic effects; however, the exact mechanism has not been fully identified. Aryl hydrocarbon receptor (AhR) is a transcription factor regulating the expression of the carcinogen-activating enzyme; cytochrome P450 1A1 (CYP1A1). In the present study, we examined the ability of harman to induce AhR-mediated signal transduction in human and rat hepatoma cells; HepG2 and H4IIE cells. Our results showed that harman significantly induced CYP1A1 mRNA in a time- and concentration-dependent manner. Similarly, harman significantly induced CYP1A1 at protein and activity levels in a concentration-dependent manner. Moreover, the AhR antagonist, resveratrol, inhibited the increase in CYP1A1 activity by harman. The RNA polymerase inhibitor, actinomycin D, completely abolished the CYP1A1 mRNA induction by harman, indicating a transcriptional activation. The role of AhR in CYP1A1 induction by harman was confirmed by using siRNA specific for human AhR. The ability of harman to induce CYP1A1 was strongly correlated with its ability to stimulate AhR-dependent luciferase activity and electrophoretic mobility shift assay. At post-transcriptional and post-translational levels, harman did not affect the stability of CYP1A1 at the mRNA and the protein levels, excluding other mechanisms participating in the obtained effects. We concluded that harman can directly induce CYP1A1 gene expression in an AhR-dependent manner and may represent a novel mechanism by which harman promotes mutagenicity, co-mutagenicity and carcinogenicity.

  17. Adipose tissue PCB levels and CYP1B1 and COMT genotypes in relation to breast cancer risk in postmenopausal Danish women

    DEFF Research Database (Denmark)

    Bräuner, Elvira V; Loft, Steffen; Wellejus, Anja

    2014-01-01

    these enzymes control efficiency. Our objective was to assess whether CYP1B1 and COMT gene polymorphisms modulate the effect of PCBs in breast cancer risk, among postmenopausal Danish women. Neither CYP1B1 Leu432Val polymorphisms nor adipose tissue PCBs were independently associated with breast cancer risk....... When assessing the independent effect of the COMT Val158Met polymorphism, we observed reduced risk for breast cancer amongst hormone replacement therapy using women who were homozygous carriers of the variant allele compared with those carrying the wild-type variant (RR = 0.41; 95% CI: 0.29-0.89). We...

  18. Epigenetic Regulation of Vitamin D 24-Hydroxylase/CYP24A1 in Human Prostate Cancer

    Science.gov (United States)

    Luo, Wei; Karpf, Adam R.; Deeb, Kristin K.; Muindi, Josephia R.; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.

    2010-01-01

    Calcitriol, a regulator of calcium homeostasis with antitumor properties, is degraded by the product of the CYP24A1 gene which is downregulated in human prostate cancer by unknown mechanisms. We found that CYP24A1 expression is inversely correlated with promoter DNA methylation in prostate cancer cell lines. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) activates CYP24A1 expression in prostate cancer cells. In vitro methylation of the CYP24A1 promoter represses its promoter activity. Furthermore, inhibition of histone deacetylases by trichostatin A (TSA) enhances the expression of CYP24A1 in prostate cancer cells. ChIP-qPCR reveals that specific histone modifications are associated with the CYP24A1 promoter region. Treatment with TSA increases H3K9ac and H3K4me2 and simultaneously decreases H3K9me2 at the CYP24A1 promoter. ChIP-qPCR assay reveals that treatment with DAC and TSA increases the recruitment of VDR to the CYP24A1 promoter. RT-PCR analysis of paired human prostate samples reveals that CYP24A1 expression is down-regulated in prostate malignant lesions compared to adjacent histologically benign lesions. Bisulfite pyrosequencing shows that CYP24A1 gene is hypermethylated in malignant lesions compared to matched benign lesions. Our findings indicate that repression of CYP24A1 gene expression in human prostate cancer cells is mediated in part by promoter DNA methylation and repressive histone modifications. PMID:20587525

  19. Expression of the vitamin D metabolizing enzyme CYP24A1 at the annulus of human spermatozoa may serve as a novel marker of semen quality

    DEFF Research Database (Denmark)

    Jensen, Martin Blomberg; Jørgensen, A; Nielsen, J E

    2012-01-01

    Vitamin D (VD) is important for male reproduction in mammals and the VD receptor (VDR) and VD-metabolizing enzymes are expressed in human spermatozoa. The VD-inactivating enzyme CYP24A1 titrates the cellular responsiveness to VD, is transcriptionally regulated by VD, and has a distinct expression...... at the sperm annulus. Here, we investigated if CYP24A1 expression serves as a marker for VD metabolism in spermatozoa, and whether CYP24A1 expression was associated with semen quality. We included 130 men (53 healthy young volunteers and 77 subfertile men) for semen analysis and immunocytochemical (ICC.......3%. Functional studies revealed that 1,25(OH)(2) D(3) increased [Ca(2+) ](i) and sperm motility in young healthy men, while 1,25(OH)(2) D(3) was unable to increase motility in subfertile patients. In conclusion, we suggest that CYP24A1 expression at the annulus may serve as a novel marker of semen quality...

  20. Prognostic role of the CDNK1B V109G polymorphism in multiple endocrine neoplasia type 1.

    Science.gov (United States)

    Circelli, Luisa; Ramundo, Valeria; Marotta, Vincenzo; Sciammarella, Concetta; Marciello, Francesca; Del Prete, Michela; Sabatino, Lina; Pasquali, Daniela; Izzo, Francesco; Scala, Stefania; Colao, Annamaria; Faggiano, Antongiulio; Colantuoni, Vittorio

    2015-07-01

    CDKN1B encodes the cyclin-dependent kinase inhibitor p27/Kip1. CDKN1B mutations and polymorphisms are involved in tumorigenesis; specifically, the V109G single nucleotide polymorphism has been linked to different tumours with controversial results. Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant syndrome, characterized by the development of different types of neuroendocrine tumours and increased incidence of other malignancies. A clear genotype-phenotype correlation in MEN1 has not been established yet. In this study, we assessed whether the CDKN1B V109G polymorphism was associated with the development of aggressive tumours in 55 consecutive patients affected by MEN1. The polymorphism was investigated by PCR amplification of germline DNA followed by direct sequencing. Baseline and follow-up data of tumour types and their severity were collected and associated with the genetic data. MEN1-related aggressive and other malignant tumours of any origin were detected in 16.1% of wild-type and 33.3% of polymorphism allele-bearing patients (P = NS). The time interval between birth and the first aggressive tumour was significantly shorter in patients with the CDKN1B V109G polymorphism (median 46 years) than in those without (median not reached; P = 0.03). Similarly, shorter was the time interval between MEN1 diagnosis and age of the first aggressive tumour (P = 0.02). Overall survival could not be estimated as 96% patients were still alive at the time of the study. In conclusion, CDKN1B V109G polymorphism seems to play a role in the development of aggressive tumours in MEN1. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in Pejerrey, Odontesthes bonariensis

    Science.gov (United States)

    Karube, M.; Fernandino, J.I.; Strobl-Mazzulla, P.; Strussmann, C.A.; Yoshizaki, G.; Somoza, G.M.; Patino, R.

    2007-01-01

    Cytochrome P450 aromatase (cyp19) is an enzyme that catalyzes the conversion of androgens to estrogens and may play a role in temperature- dependent sex determination (TSD) of reptiles, amphibians, and fishes. In this study, the ovarian P450 aromatase form (cyp19A1) of pejerrey Odontesthes bonariensis, a teleost with marked TSD, was cloned and its expression profile evaluated during gonadal differentiation at feminizing (17??C, 100% females), mixed-sex producing (24 and 25??C, 73.3 and 26.7% females, respectively), and masculinizing (29??C, 0% females) temperatures. The deduced cyp19A1 amino acid sequence shared high identity (>77.8%) with that from other teleosts but had low identity (<61.8%) with brain forms (cyp19A2), including that of pejerrey itself. The tissue distribution analysis of cyp19A1 mRNA in adult fish revealed high expression in the ovary. Semi-quantitative reverse transcription polymerase chain reaction analysis of the bodies of larvae revealed that cyp19A1 expression increased before the appearance of the first histological signs of ovarian differentiation at the feminizing temperature but remained low at the masculinizing temperature. The expression levels at mixed-sex producing temperatures were bimodal rather than intermediate, showing low and high modal values similar to those at the feminizing and masculinizing temperatures, respectively. The population percentages of high and low expression levels at intermediate temperatures were proportional to the percentage of females and males, respectively, and high levels were first observed at about the time of sex differentiation of females. These results suggest that cyp19A1 is involved in the process of ovarian formation and possibly also in the TSD of pejerrey. ?? 2007 Wiley-Liss, Inc.

  2. A novel CYP27B1 mutation causes a feline vitamin D-dependent rickets type IA.

    Science.gov (United States)

    Grahn, Robert A; Ellis, Melanie R; Grahn, Jennifer C; Lyons, Leslie A

    2012-08-01

    A 12-week-old domestic cat presented at a local veterinary clinic with hypocalcemia and skeletal abnormalities suggestive of rickets. Osteomalacia (rickets) is a disease caused by impaired bone mineralization leading to an increased prevalence of fractures and deformity. Described in a variety of species, rickets is most commonly caused by vitamin D or calcium deficiencies owing to both environmental and or genetic abnormalities. Vitamin D-dependent rickets type 1A (VDDR-1A) is a result of the enzymatic pathway defect caused by mutations in the 25-hydroxyvitamin D(3)-1-alpha-hydroxylase gene [cytochrome P27 B1 (CYP27B1)]. Calcitriol, the active form of vitamin D(3), regulates calcium homeostasis, which requires sufficient dietary calcium availability and correct hormonal function for proper bone growth and maintenance. Patient calcitriol concentrations were low while calcidiol levels were normal suggestive of VDDR-1A. The entire DNA coding sequencing of CYP27B1 was evaluated. The affected cat was wild type for previously identified VDDR-1A causative mutations. However, six novel mutations were identified, one of which was a nonsense mutation at G637T in exon 4. The exon 4 G637T nonsense mutation results in a premature protein truncation, changing a glutamic acid to a stop codon, E213X, likely causing the clinical presentation of rickets. The previously documented genetic mutation resulting in feline VDDR-1A rickets, as well as the case presented in this research, result from novel exon 4 CYP27B1 mutations, thus exon 4 should be the initial focus of future sequencing efforts.

  3. 7,12-Dimethylbenzanthracene induces apoptosis in RL95-2 human endometrial cancer cells: Ligand-selective activation of cytochrome P450 1B1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Lee, Seung Gee [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Chung, Jin-Yong [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Yoon-Jae [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Park, Ji-Eun [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Oh, Seunghoon [Department of Physiology, College of Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Lee, Se Yong [Department of Obstetrics and Gynecology, Busan Medical Center, Busan 611-072 (Korea, Republic of); Choi, Hong Jo [Department of General Surgery, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Yoo, Young Hyun, E-mail: yhyoo@dau.ac.kr [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); and others

    2012-04-15

    7,12-Dimethylbenzanthracene (DMBA), a polycyclic aromatic hydrocarbon, exhibits mutagenic, carcinogenic, immunosuppressive, and apoptogenic properties in various cell types. To achieve these functions effectively, DMBA is modified to its active form by cytochrome P450 1 (CYP1). Exposure to DMBA causes cytotoxicity-mediated apoptosis in bone marrow B cells and ovarian cells. Although uterine endometrium constitutively expresses CYP1A1 and CYP1B1, their apoptotic role after exposure to DMBA remains to be elucidated. Therefore, we chose RL95-2 endometrial cancer cells as a model system for studying DMBA-induced cytotoxicity and cell death and hypothesized that exposure to DMBA causes apoptosis in this cell type following CYP1A1 and/or CYP1B1 activation. We showed that DMBA-induced apoptosis in RL95-2 cells is associated with activation of caspases. In addition, mitochondrial changes, including decrease in mitochondrial potential and release of mitochondrial cytochrome c into the cytosol, support the hypothesis that a mitochondrial pathway is involved in DMBA-induced apoptosis. Exposure to DMBA upregulated the expression of AhR, Arnt, CYP1A1, and CYP1B1 significantly; this may be necessary for the conversion of DMBA to DMBA-3,4-diol-1,2-epoxide (DMBA-DE). Although both CYP1A1 and CYP1B1 were significantly upregulated by DMBA, only CYP1B1 exhibited activity. Moreover, knockdown of CYP1B1 abolished DMBA-induced apoptosis in RL95-2 cells. Our data show that RL95-2 cells are susceptible to apoptosis by exposure to DMBA and that CYP1B1 plays a pivotal role in DMBA-induced apoptosis in this system. -- Highlights: ► Cytotoxicity-mediated apoptogenic action of DMBA in human endometrial cancer cells. ► Mitochondrial pathway in DMBA-induced apoptosis of RL95-2 endometrial cancer cells. ► Requirement of ligand-selective activation of CYP1B1 in DMBA-induced apoptosis.

  4. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens.

    Science.gov (United States)

    Pang, Rui; Chen, Meng; Liang, Zhikun; Yue, Xiangzhao; Ge, Hu; Zhang, Wenqing

    2016-10-10

    The cytochrome P450 CYP6ER1 has been reported to play an important role in imidacloprid resistance of the brown planthopper (BPH), Nilaparvata lugens, and is overexpressed in most resistant populations. In the present study, we confirmed that CYP6ER1 expression can be induced by certain levels of imidacloprid. Developmental expression analysis revealed that CYP6ER1 was expressed highly in the adult stage, and tissue distribution analysis showed that CYP6ER1 was expressed mainly in the fat body and midgut. RNA interference (RNAi) of CYP6ER1 and transgenic expression of CYP6ER1 in Drosophila melanogaster both suggested that the expression of CYP6ER1 is sufficient to confer imidacloprid resistance. Furthermore, we analyzed the interaction of imidacloprid and CYP6ER1 monooxygenase by using dynamic simulations and molecular docking. We found that Nitrogen atoms in the heterocycle of the imidacloprid molecule may bind to iron atoms in the center of the homology model of CYP6ER1 via 4,5-dihedro-1H-imidazole. This finding contributes to a better understanding of how CYP6ER1 takes part in the insecticide metabolism.

  5. Bioactivation and Regioselectivity of Pig Cytochrome P450 3A29 towards Aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2016-09-01

    Full Text Available Due to unavoidable contaminations in feedstuff, pigs are easily exposed to aflatoxin B1 (AFB1 and suffer from poisoning, thus the poisoned products potentially affect human health. Heretofore, the metabolic process of AFB1 in pigs remains to be clarified, especially the principal cytochrome P450 oxidases responsible for its activation. In this study, we cloned CYP3A29 from pig liver and expressed it in Escherichia coli, and its activity has been confirmed with the typical P450 CO-reduced spectral characteristic and nifedipine-oxidizing activity. The reconstituted membrane incubation proved that the recombinant CYP3A29 was able to oxidize AFB1 to form AFB1-exo-8,9-epoxide in vitro. The structural basis for the regioselective epoxidation of AFB1 by CYP3A29 was further addressed. The T309A mutation significantly decreased the production of AFBO, whereas F304A exhibited an enhanced activation towards AFB1. In agreement with the mutagenesis study, the molecular docking simulation suggested that Thr309 played a significant role in stabilization of AFB1 binding in the active center through a hydrogen bond. In addition, the bulk phenyl group of Phe304 potentially imposed steric hindrance on the binding of AFB1. Our study demonstrates the bioactivation of pig CYP3A29 towards AFB1 in vitro, and provides the insight for understanding regioselectivity of CYP3A29 to AFB1.

  6. Pharmacophore modeling and in silico / in vitro screening for human cytochrome P450 11B1 & cytochrome P450 11B2 inhibitors

    Science.gov (United States)

    Akram, Muhammad; Waratchareeyakul, Watcharee; Haupenthal, Joerg; Hartmann, Rolf W.; Schuster, Daniela

    2017-12-01

    Cortisol synthase (CYP11B1) is the main enzyme for the endogenous synthesis of cortisol and its inhibition is a potential way for the treatment of diseases associated with increased cortisol levels, such as Cushing’s syndrome, metabolic diseases, and delayed wound healing. Aldosterone synthase (CYP11B2) is the key enzyme for aldosterone biosynthesis and its inhibition is a promising approach for the treatment of congestive heart failure, cardiac fibrosis, and certain forms of hypertension. Both CYP11B1 and CYP11B2 are structurally very similar and expressed in the adrenal cortex. To facilitate the identification of novel inhibitors of these enzymes, ligand-based pharmacophore models of CYP11B1 and CYP11B2 inhibition were developed. A virtual screening of the SPECS database was performed with our pharmacophore queries. Biological evaluation of the selected hits lead to the discovery of three potent novel inhibitors of both CYP11B1 and CYP11B2 in the submicromolar range (compounds 8-10), one selective CYP11B1 inhibitor (Compound 11, IC50 = 2.5 µM), and one selective CYP11B2 inhibitor (compound 12, IC50 = 1.1 µM), respectively. The overall success rate of this prospective virtual screening experiment is 20.8% indicating good predictive power of the pharmacophore models.

  7. Endosulfan-alpha Induces CYP26 and CYP3A4 by Activating the Pregnane X Receptor But Not the Constitutive Androstane Receptor

    Science.gov (United States)

    2006-01-01

    CYP3A4 gene expression by organochlorine pesticides . Biochem Pharmacol 64:1513-1519. Dinham B (1993) The Pesticide Hazard. A Global Health and...Coumoul X, Diry M and Barouki R (2002) PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides . Biochem Pharmacol 64:1513...system: CYP3A4 and CYP2B6 induction by pesticides . Biochem Pharmacol 68:2347-2358. 71 Nelson D (2003) Cytochrome P450 Homepage (http

  8. Changes in the expression of Hepatic Cytochrome P450 Isoenzymes 2E1, 2B1/2, 4A, and 2C6 in mice infected with different levels of Schistosoma Mansoni Cercariae

    International Nuclear Information System (INIS)

    Sheweita, Salah A.

    2005-01-01

    Most xenobiotic agents are metabolized by cytochrome P450 system. In the present study, Western blotting was used to investigate the effect of different levels of Schistosoma Mansoni infection on the expression of somr cytochrome P450 isozymes (CYP 2E1, 2B1/2, 2C6, 4A) and to enzyme assay their related metabolic functions in mouse liver microsomes. Male mice were infected with 60, 120, 180, 300 and 600 Schistosoma Mansoni cercariae per mouse for 33 days and 60, 120, 180 and 300 cercariae/mouse with no change at the last level of Schistosoma Mansoni infection. Also the expression of CYP 4A was potentially induced at all levels of Schistosoma Mansoni infection. A significant induction of CYP 2B1/2 expression was observed at all levels of Schistosoma Mansoni infection with loss of signal at 180 cercariaea/mouse. In contrast, CYP 2C6 expression was induced at the first two levels and such expression was decreased at the last three levels. In addition, the infection of the mouse with 60, 120 and 180 cercariae/mouse decreased; [1] 7-methoxycoumarin O-demethylase activity by 36, 54 and 58% respectively; [2] 7-ethoxycoumarin O-deethylase activity by 33, 40 and 57% respectively; [3] coumarin hydroxlase activity by 33, 45 and 55% respectively. However, 300 and 600 cercariae/mouse induced: [1] 7-methoxycoumarin O-demethylase activity by 45 and 97% respectively: [2] 7-ethoxycoumarin O-deethylase activity by 26 and 90% respectively; [3] coumarin hydroxylase activity by 100 and 200% respectively. In addition, all levels of Schistosoma Mansoni infection decreased the sleeping time caused by hexobarital. It is concluded that different levels of Schistosoma Mansoni infection change the expression of different CYPisozymes and that these alterations could enhance the carcinogenicity of N-nitrosamines which is mainly dependent on CYP 2E1. The alterations in the expression of CYP 2E1, 4A and 2B1/2 isozymes as a result of Schistosoma Mansoni infection may change the therapeutic actions

  9. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice.

    Science.gov (United States)

    Jourová, L; Anzenbacher, P; Lišková, B; Matušková, Z; Hermanová, P; Hudcovic, T; Kozáková, H; Hrnčířová, L; Anzenbacherová, E

    2017-11-01

    Gut microbiota provides a wide range of beneficial function for the host and has an immense effect on the host's health state. It has also been shown that gut microbiome is often involved in the biotransformation of xenobiotics; however, the molecular mechanisms of the interaction between the gut bacteria and the metabolism of drugs by the host are still unclear. To investigate the effect of microbial colonization on messenger RNA (mRNA) expression of liver cytochromes P450 (CYPs), the main drug-metabolizing enzymes, we used germ-free (GF) mice, lacking the intestinal flora and mice monocolonized by non-pathogenic bacteria Lactobacillus plantarum NIZO2877 or probiotic bacteria Escherichia coli Nissle 1917 compared to specific pathogen-free (SPF) mice. Our results show that the mRNA expression of Cyp1a2 and Cyp2e1 was significantly increased, while the expression of Cyp3a11 mRNA was decreased under GF conditions compared to the SPF mice. The both bacteria L. plantarum NIZO2877 and E. coli Nissle 1917 given to the GF mice decreased the level of Cyp1a2 mRNA and normalized it to the control level. On the other hand, the colonization by these bacteria had no effect on the expression of Cyp3a11 mRNA in the liver of the GF mice (which remained decreased). Surprisingly, monocolonization with chosen bacterial strains has shown a different effect on the expression of Cyp2e1 mRNA in GF mice. Increased level of Cyp2e1 expression observed in the GF mice was found also in mice colonized by L. plantarum NIZO2877 ; however, the colonization with probiotic E. coli Nissle 1917 caused a decrease in Cyp2e1 expression and partially restored the SPF mice conditions.

  10. Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds

    International Nuclear Information System (INIS)

    Zhang Xiaowei; Moore, Jeremy N.; Newsted, John L.; Hecker, Markus; Zwiernik, Matthew J.; Jones, Paul D.; Bursian, Steven J.

    2009-01-01

    As part of an ongoing effort to understand aryl hydrocarbon receptor (AhR) mediated toxicity in mink, cDNAs encoding for CYP1A1 and the CYP1A2 mixed function monooxygenases were cloned and characterized. In addition, the effects of selected dibenzofurans on the expression of these genes and the presence of their respective proteins (P4501A) were investigated, and then correlated with the catalytic activities of these proteins as measured by ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) activities. The predicted protein sequences for CYP1A1 and CYP1A2 comprise 517 and 512 amino acid residues, respectively. The phylogenetic analysis of the mink CYP1As with protein sequences of other mammals revealed high sequence homology with sea otter, seals and the dog, with amino acid identities ranging from 89 to 95% for CYP1A1 and 81 to 93% for CYP1A2. Since exposure to both 2,3,7,8-Tetrachlorodibenzofuran (TCDF) and 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) resulted in dose-dependent increases of CYP1A1 mRNA, CYP1A2 mRNA and CYP1A protein levels an underlying AhR-mediated mechanism is suggested. The up-regulation of CYP1A mRNA in liver was more consistent to the sum adipose TEQ concentration than to the liver TEQ concentration in minks treated with TCDF or PeCDF. The result suggested that the hepatic-sequestered fraction of PeCDF was biologically inactive to the induction of CYP1A1 and CYP1A2

  11. Pharmacophore Modeling and in Silico/in Vitro Screening for Human Cytochrome P450 11B1 and Cytochrome P450 11B2 Inhibitors.

    Science.gov (United States)

    Akram, Muhammad; Waratchareeyakul, Watcharee; Haupenthal, Joerg; Hartmann, Rolf W; Schuster, Daniela

    2017-01-01

    Cortisol synthase (CYP11B1) is the main enzyme for the endogenous synthesis of cortisol and its inhibition is a potential way for the treatment of diseases associated with increased cortisol levels, such as Cushing's syndrome, metabolic diseases, and delayed wound healing. Aldosterone synthase (CYP11B2) is the key enzyme for aldosterone biosynthesis and its inhibition is a promising approach for the treatment of congestive heart failure, cardiac fibrosis, and certain forms of hypertension. Both CYP11B1 and CYP11B2 are structurally very similar and expressed in the adrenal cortex. To facilitate the identification of novel inhibitors of these enzymes, ligand-based pharmacophore models of CYP11B1 and CYP11B2 inhibition were developed. A virtual screening of the SPECS database was performed with our pharmacophore queries. Biological evaluation of the selected hits lead to the discovery of three potent novel inhibitors of both CYP11B1 and CYP11B2 in the submicromolar range (compounds 8 - 10 ), one selective CYP11B1 inhibitor (Compound 11 , IC 50 = 2.5 μM), and one selective CYP11B2 inhibitor (compound 12 , IC 50 = 1.1 μM), respectively. The overall success rate of this prospective virtual screening experiment is 20.8% indicating good predictive power of the pharmacophore models.

  12. Pharmacophore Modeling and in Silico/in Vitro Screening for Human Cytochrome P450 11B1 and Cytochrome P450 11B2 Inhibitors

    Directory of Open Access Journals (Sweden)

    Muhammad Akram

    2017-12-01

    Full Text Available Cortisol synthase (CYP11B1 is the main enzyme for the endogenous synthesis of cortisol and its inhibition is a potential way for the treatment of diseases associated with increased cortisol levels, such as Cushing's syndrome, metabolic diseases, and delayed wound healing. Aldosterone synthase (CYP11B2 is the key enzyme for aldosterone biosynthesis and its inhibition is a promising approach for the treatment of congestive heart failure, cardiac fibrosis, and certain forms of hypertension. Both CYP11B1 and CYP11B2 are structurally very similar and expressed in the adrenal cortex. To facilitate the identification of novel inhibitors of these enzymes, ligand-based pharmacophore models of CYP11B1 and CYP11B2 inhibition were developed. A virtual screening of the SPECS database was performed with our pharmacophore queries. Biological evaluation of the selected hits lead to the discovery of three potent novel inhibitors of both CYP11B1 and CYP11B2 in the submicromolar range (compounds 8–10, one selective CYP11B1 inhibitor (Compound 11, IC50 = 2.5 μM, and one selective CYP11B2 inhibitor (compound 12, IC50 = 1.1 μM, respectively. The overall success rate of this prospective virtual screening experiment is 20.8% indicating good predictive power of the pharmacophore models.

  13. Genetic variation in the CYP1A1 gene is related to circulating PCB118 levels in a population-based sample

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Lars [Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala (Sweden); Penell, Johanna [Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala (Sweden); Syvänen, Anne-Christine; Axelsson, Tomas [Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala (Sweden); Ingelsson, Erik [Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala (Sweden); Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford (United Kingdom); Morris, Andrew P.; Lindgren, Cecilia [Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford (United Kingdom); Salihovic, Samira; Bavel, Bert van [MTM Research Centre, School of Science and Technology, Örebro University, Örebro (Sweden); Lind, P. Monica, E-mail: monica.lind@medsci.uu.se [Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala (Sweden)

    2014-08-15

    Several of the polychlorinated biphenyls (PCBs), i.e. the dioxin-like PCBs, are known to induce the P450 enzymes CYP1A1, CYP1A2 and CYP1B1 by activating the aryl hydrocarbon receptor (Ah)-receptor. We evaluated if circulating levels of PCBs in a population sample were related to genetic variation in the genes encoding these CYPs. In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (1016 subjects all aged 70), 21 SNPs in the CYP1A1, CYP1A2 and CYP1B1 genes were genotyped. Sixteen PCB congeners were analysed by high-resolution chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS). Of the investigated relationships between SNPs in the CYP1A1, CYP1A2 and CYP1B1 and six PCBs (congeners 118, 126, 156, 169, 170 and 206) that captures >80% of the variation of all PCBs measured, only the relationship between CYP1A1 rs2470893 was significantly related to PCB118 levels following strict adjustment for multiple testing (p=0.00011). However, there were several additional SNPs in the CYP1A2 and CYP1B1 that showed nominally significant associations with PCB118 levels (p-values in the 0.003–0.05 range). Further, several SNPs in the CYP1B1 gene were related to both PCB156 and PCB206 with p-values in the 0.005–0.05 range. Very few associations with p<0.05 were seen for PCB126, PCB169 or PCB170. Genetic variation in the CYP1A1 was related to circulating PCB118 levels in the general elderly population. Genetic variation in CYP1A2 and CYP1B1 might also be associated with other PCBs. - Highlights: • We studied the relationship between PCBs and the genetic variation in the CYP genes. • Cross sectional data from a cohort of elderly were analysed. • The PCB levels were evaluated versus 21 SNPs in three CYP genes. • PCB 118 was related to variation in the CYP1A1 gene.

  14. A CYP21A2 based whole-cell system in Escherichia coli for the biotechnological production of premedrol.

    Science.gov (United States)

    Brixius-Anderko, Simone; Schiffer, Lina; Hannemann, Frank; Janocha, Bernd; Bernhardt, Rita

    2015-09-15

    Synthetic glucocorticoids like methylprednisolone (medrol) are of high pharmaceutical interest and represent powerful drugs due to their anti-inflammatory and immunosuppressive effects. Since the chemical hydroxylation of carbon atom 21, a crucial step in the synthesis of the medrol precursor premedrol, exhibits a low overall yield because of a poor stereo- and regioselectivity, there is high interest in a more sustainable and efficient biocatalytic process. One promising candidate is the mammalian cytochrome P450 CYP21A2 which is involved in steroid hormone biosynthesis and performs a selective oxyfunctionalization of C21 to provide the precursors of aldosterone, the main mineralocorticoid, and cortisol, the most important glucocorticoid. In this work, we demonstrate the high potential of CYP21A2 for a biotechnological production of premedrol, an important precursor of medrol. We successfully developed a CYP21A2-based whole-cell system in Escherichia coli by coexpressing the cDNAs of bovine CYP21A2 and its redox partner, the NADPH-dependent cytochrome P450 reductase (CPR), via a bicistronic vector. The synthetic substrate medrane was selectively 21-hydroxylated to premedrol with a max. yield of 90 mg L(-1) d(-1). To further improve the biocatalytic activity of the system by a more effective electron supply, we exchanged the CPR with constructs containing five alternative redox systems. A comparison of the constructs revealed that the redox system with the highest endpoint yield converted 70 % of the substrate within the first 2 h showing a doubled initial reaction rate compared with the other constructs. Using the best system we could increase the overall yield of premedrol to a maximum of 320 mg L(-1) d(-1) in shaking flasks. Optimization of the biotransformation in a bioreactor could further improve the premedrol gain to a maximum of 0.65 g L(-1) d(-1). We successfully established a CYP21-based whole-cell system for the biotechnological production of premedrol

  15. CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells

    Science.gov (United States)

    Kósa, János P; Horváth, Péter; Wölfling, János; Kovács, Dóra; Balla, Bernadett; Mátyus, Péter; Horváth, Evelin; Speer, Gábor; Takács, István; Nagy, Zsolt; Horváth, Henrik; Lakatos, Péter

    2013-01-01

    AIM: The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 (1,25-D3), is considered to be the main enzyme determining the biological half-life of 1,25-D3. During colorectal carcinogenesis, the expression and concentration of CYP24A1 increases significantly, suggesting that this phenomenon could be responsible for the proposed efficacy of 1,25-D3 in the treatment of CRC. The aim of this study was to investigate the anti-tumor effects of vitamin D3 on the human CRC cell line Caco-2 after inhibition of the cytochrome P450 component of CYP24A1 activity. METHODS: We examined the expression of CYP24A1 mRNA and the effects of 1,25-D3 on the cell line Caco-2 after inhibition of CYP24A1. Cell viability and proliferation were determined by means of sulforhodamine-B staining and bromodeoxyuridine incorporation, respectively, while cytotoxicity was estimated via the lactate dehydrogenase content of the cell culture supernatant. CYP24A1 expression was measured by real-time reverse transcription polymerase chain reaction. A number of tetralone compounds were synthesized to investigate their CP24A1 inhibitory activity. RESULTS: In response to 1,25-D3, CYP24A1 mRNA expression was enhanced significantly, in a time- and dose-dependent manner. Caco-2 cell viability and proliferation were not influenced by the administration of 1,25-D3 alone, but were markedly reduced by co-administration of 1,25-D3 and KD-35, a CYP24A1-inhibiting tetralone. Our data suggest that the mechanism of action of co-administered KD-35 and 1,25-D3 does not involve a direct cytotoxic effect, but rather the inhibition of cell proliferation. CONCLUSION: These findings demonstrate that the selective inhibition of CYP24A1 by compounds such as KD-35 may be a new approach for enhancement of the anti-tumor effect of 1,25-D3 on CRC. PMID

  16. Epigenetic Determinants of CYP1A1 Induction by the Aryl Hydrocarbon Receptor Agonist 3,3',4,4',5-Pentachlorobiphenyl (PCB 126

    Directory of Open Access Journals (Sweden)

    Sabine U. Vorrink

    2014-08-01

    Full Text Available Many enzymes involved in xenobiotic metabolism, including cytochrome P450 (CYP 1A1, are regulated by the aryl hydrocarbon receptor (AhR. 3,3',4,4',5-Penta chlorobiphenyl (PCB 126 is a potent ligand for AhR and can thus induce the expression of CYP1A1. Interestingly, we observed that human carcinoma cell lines derived from different types of epithelial cells displayed divergent degrees of CYP1A1 induction after exposure to PCB 126. Since epigenetic mechanisms are known to be involved in cell type-specific gene expression, we sought to assess the epigenetic determinants of CYP1A1 induction in these carcinoma cell lines. In contrast to HepG2 hepatocarcinoma cells, HeLa cervical carcinoma cells showed significantly lower levels of CYP1A1 mRNA expression following PCB 126 exposure. Our results show that the two cell lines maintained differences in the chromatin architecture along the CYP1A1 promoter region. Furthermore, treatment with the epigenetic modifiers, trichostatin A (TSA and 5-aza-2'-deoxycytidine (5-Aza-dC, significantly increased the expression of CYP1A1 after PCB 126 treatment in HeLa cells. However, we did not observe apparent differences in methylation levels or specific location of CpG DNA methylation between the two cell lines in the analyzed CYP1A1 promoter region. Taken together, our findings suggest that the differences in CYP1A1 expression between HepG2 and HeLa cells are due to differences in the chromatin architecture of the CYP1A1 promoter and thus establish a role of epigenetic regulation in cell-specific CYP1A1 expression.

  17. Bioactivation of the citrus flavonoid nobiletin by CYP1 enzymes in MCF7 breast adenocarcinoma cells.

    Science.gov (United States)

    Surichan, Somchaiya; Androutsopoulos, Vasilis P; Sifakis, Stavros; Koutala, Eleni; Tsatsakis, Aristidis; Arroo, Randolph R J; Boarder, Michael R

    2012-09-01

    Recent studies have demonstrated cytochrome P450 CYP1-mediated metabolism and CYP1-enzyme induction by naturally occurring flavonoids in cancer cell line models. The arising metabolites often exhibit higher activity than the parent compound. In the present study we investigated the CYP1-mediated metabolism of the citrus polymethoxyflavone nobiletin by recombinant CYP1 enzymes and MCF7 breast adenocarcinoma cells. Incubation of nobiletin in MCF7 cells produced one main metabolite (NM1) resulting from O-demethylation in either A or B rings of the flavone moiety. Among the three CYP1 isoforms, CYP1A1 exhibited the highest rate of metabolism of nobiletin in recombinant CYP microsomal enzymes. The intracellular CYP1-mediated bioconversion of the flavone was reduced in the presence of the CYP1A1 and CYP1B1-selective inhibitors α-napthoflavone and acacetin. In addition nobiletin induced CYP1 enzyme activity, CYP1A1 protein and CYP1B1 mRNA levels in MCF7 cells at a concentration dependent manner. MTT assays in MCF7 cells further revealed that nobiletin exhibited significantly lower IC50 (44 μM) compared to cells treated with nobiletin and CYP1A1 inhibitor (69 μM). FACS analysis demonstrated cell a cycle block at G1 phase that was attenuated in the presence of CYP1A1 inhibitor. Taken together the data suggests that the dietary flavonoid nobiletin induces its own metabolism and in turn enhances its cytostatic effect in MCF7 breast adenocarcinoma cells, via CYP1A1 and CYP1B1 upregulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Hexachlorobenzene stimulates uroporphyria in low affinity AHR mice without increasing CYP1A2

    International Nuclear Information System (INIS)

    Gorman, Nadia; Trask, Heidi S.; Robinson, Susan W.; Sinclair, Jacqueline F.; Gerhard, Glenn S.; Smith, Andrew G.; Sinclair, Peter R.

    2007-01-01

    Hexachlorobenzene (HCB), a weak ligand of the aryl hydrocarbon receptor (AHR), causes hepatic uroporphyrin (URO) accumulation (uroporphyria) in humans and animals. CYP1A2 has been shown to be necessary in the development of uroporphyria in mice. Using mice expressing the low affinity form of the AH receptor (AHRd), we investigated whether the enhancement of uroporphyria by HCB involves an obligatory increase in CYP1A2 as measured by specific enzyme assays and immunoblotting. We compared the ability of HCB, in combination with iron dextran and the porphyrin precursor, 5-aminolevulinate (ALA), to cause uroporphyria in a strain of mice (C57BL/6) which expresses the high affinity form of the receptor (AHRb 1 ), with three strains of mice (SWR and two 129 sublines) expressing the low affinity AHRd. In C57BL/6 mice, HCB-enhanced uroporphyria was associated with a doubling of CYP1A2. HCB treatment produced uroporphyria in iron-loaded mice expressing AHRd, even though there was little or no increase in CYP1A2. Cyp1a2(-/-) mice in a 129 background were completely resistant to HCB-induced uroporphyria, and female Hfe(-/-) 129 mice, in which the levels of hepatic CYP1A2 were half of those of the male levels, responded poorly. The effect of exogenous iron, administered in the form of iron dextran, on HCB enhancement of uroporphryia could be replicated utilizing the endogenous hepatic iron accumulated in 129 Hfe(-/-) mice. In conclusion, some minimal basal expression of CYP1A2 is essential for HCB-mediated enhancement of uroporphyria, but increases in CYP1A2 above that level are not essential

  19. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450.

    Science.gov (United States)

    Domanski, T L; Finta, C; Halpert, J R; Zaphiropoulos, P G

    2001-02-01

    The RACE amplification technology was used on a novel CYP3A-like exon 1 sequence detected during the reverse transcriptase/polymerase chain reaction analysis of human CYP3A gene expression. This resulted in the identification of cDNAs encompassing the complete coding sequence of a new member of the CYP3A gene subfamily, CYP3A43. Interestingly, the majority of the cDNAs identified were characterized by alternative splicing events such as exon skipping and complete or partial intron inclusion. CYP3A43 expression was detected in liver, kidney, pancreas, and prostate. The amino acid sequence is 75% identical to that of CYP3A4 and CYP3A5 and 71% identical to CYP3A7. CYP3A43 differs from CYP3A4 at six amino acid residues, found within the putative substrate recognition sites of CYP3A4, that are known to be determinants of substrate selectivity. The N terminus of CYP3A43 was modified for efficient expression of the protein in Escherichia coli, and a 6X histidine tag was added at the C terminus to facilitate purification. CYP3A43 gave a reduced carbon monoxide difference spectra with an absorbance maximum at 450 nm. The level of heterologous expression was significantly lower than that observed for CYP3A4 and CYP3A5. Immunoblot analyses revealed that CYP3A43 comigrates with CYP3A4 in polyacrylamide gel electrophoresis but does separate from CYP3A5. Monooxygenase assays were performed under a variety of conditions, several of which yielded reproducible, albeit low, testosterone hydroxylase activity. The findings from this study demonstrate that there is a novel CYP3A member expressed in human tissues, although its relative contribution to drug metabolism has yet to be ascertained.

  20. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    Science.gov (United States)

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  1. [Lactobacillus rhamnosus GG conditioned medium prevents E. coli meningitis by inhibiting nuclear factor-κB pathway].

    Science.gov (United States)

    Zeng, Qing; He, Xiao-Long; Xiao, Han-Sheng; DU, Lei; Li, Yu-Jing; Chen, Le-Cheng; Tian, Hui-Wen; Huang, Sheng-He; Cao, Hong

    2017-01-20

    To investigate whether Lactobacillus rhamnosus GG conditioned medium(LGG-CM)has preventive effect against E. coli K1-induced neuropathogenicity in vitro by inhibiting nuclear factor-κB (NF-κB) signaling pathway. An in vitro blood-brain barrier (BBB) model was constructed using human brain microvascular endothelial cells (HBMECs). The effect of LGG-CM on E. coli-actived NF-κB signaling pathway was assayed using Western blotting. Invasion assay and polymorphonuclear leukocyte (PMN) transmigration assay were performed to explore whether LGG-CM could inhibit E. coli invasion and PMN transmigration across the BBB in vitro. The expressions of ZO-1 and CD44 were detected using Western blotting and immunofluorescence. The changes of trans-epithelial electric resistance (TEER) and bacterial translocation were determined to evaluate the BBB permeability. Pre-treament with LGG-CM inhibited E. coli-activated NF-κB signaling pathway in HBMECs and decreased the invasion of E. coli K1 and transmigration of PMN. Western blotting showed that LGG-CM could alleviate E. coli-induced up-regulation of CD44 and down-regulation of ZO-1 expressions in HBMECs. In addition, pre-treatment with LGG-CM alleviated E. coli K1-induced reduction of TEER and suppressed bacterial translocation across the BBB in vitro. LGG-CM can block E. coli-induced activation of NF-κB signaling pathway and thereby prevents E. coli K1-induced neuropathogenicity by decreasing E. coli K1 invasion rates and PMN transmigration.

  2. Transgenic plants of Petunia hybrida harboring the CYP2E1 gene efficiently remove benzene and toluene pollutants and improve resistance to formaldehyde

    Directory of Open Access Journals (Sweden)

    Daoxiang Zhang

    2011-01-01

    Full Text Available The CYP2E1 protein belongs to the P450 enzymes family and plays an important role in the metabolism of small molecular and organic pollutants. In this study we generated CYP2E1 transgenic plants of Petunia using Agrobacterium rhizogenes K599. PCR analysis confirmed that the regenerated plants contained the CYP2E1 transgene and the rolB gene of the Ri plasmid. Southern blotting revealed the presence of multiple copies of CYP2E1 in the genome of transgenic plants. Fluorescent quantitative PCR revealed exogenous CYP2E1 gene expression in CYP2E1 transgenic plants at various levels, whereas no like expression was detected in either GUS transgenic plants or wild-types. The absorption of benzene and toluene by transgenic plants was analyzed through quantitative gas chromatography. Transgenic plants with high CYP2E1 expression showed a significant increase in absorption capacity of environmental benzene and toluene, compared to control GUS transgenic and wild type plants. Furthermore, these plants also presented obvious improved resistance to formaldehyde. This study, besides being the first to reveal that the CYP2E1 gene enhances plant resistance to formaldehyde, also furnishes a new method for reducing pollutants, such as benzene, toluene and formaldehyde, by using transgenic flowering horticultural plants.

  3. Upregulation of microRNA-320 decreases the risk of developing steroid-induced avascular necrosis of femoral head by inhibiting CYP1A2 both in vivo and in vitro.

    Science.gov (United States)

    Wei, Ji-Hua; Luo, Qun-Qiang; Tang, Yu-Jin; Chen, Ji-Xia; Huang, Chun-Lan; Lu, Ding-Gui; Tang, Qian-Li

    2018-06-20

    Steroid-induced avascular necrosis of femoral head (SANFH) occurs frequently in patients receiving high-dose steroid treatment for these underlying diseases. The target of this study is to investigate the effect of microRNA-320 (miR-320) on SANFH by targeting CYP1A2. CYP1A2 expression was detected using immunohistochemistry. Specimens were collected from patients with SANFH and femoral neck fracture. Seventy rats were assigned into seven groups. The targeting relationship between miR-320 and CYP1A2 was verified by bioinformatics website and dual luciferase reporter gene assay. RT-qPCR and Western blot analysis were used to detect miR-320 and CYP1A2 expressions. The enzymatic activity of CYP1A2 was detected by fluorescence spectrophotometry. Hemorheology and microcirculation were measured in rats. MiR-320 expression decreased and CYP1A2 expression and enzymatic activity increased in SANFH patients compared to those with femoral neck fracture. CYP1A2 was the target gene of miR-320. Hemorheology and microcirculation results showed that up-regulated expression of CYP1A2 promoted the development of SANFH while increased expression of miR-320 inhibited the development of SANFH. Compared with the SANFH group, the SANFH + miR-320 mimic group showed increased miRNA-320 expression, and decreased CYP1A2 expression and enzymatic activity. Opposite results were found in the SANFH + miR-320 inhibitor group. The SANFH + miR-320 inhibitor + pCR-CYP1A2_KO group showed decreased miRNA-320 expression and the SANFH + pCR-CYP1A2_KO group showed decreased CYP1A2 expression and enzymatic activity. Our findings provide evidences that miR-320 might inhibit the development of SANFH by targeting CYP1A2. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effects of clopidogrel and clarithromycin on the disposition of sibutramine and its active metabolites M1 and M2 in relation to CYP2B6*6 polymorphism.

    Science.gov (United States)

    Pan, Wei; Bae, Soo-Kyung; Shim, Eon-Jeong; Park, Sung-Eun; Lee, Sang-Seop; Park, Soo-Jin; Yeo, Chang-Woo; Zhou, Hong-Hao; Shon, Ji-Hong; Shin, Jae-Gook

    2013-02-01

    Plasma concentrations of sibutramine and its two active metabolites after single oral dose of sibutramine were determined in Korean healthy male subjects with different CYP2B6 genotypes (CYP2B6*1/*1, *1/*6 and *6/*6), either alone or after four-day pretreatment with clopidogrel or clarithromycin. The pretreatment with clopidogrel and clarithromycin raised the mean area under the concentration-time curve (AUC) of sibutramine by 163% and 255%, respectively. Co-administration of clarithromycin, combined with CYP2B6*6/*6 genotype, led to highest concentration of sibutramine. The molar sum AUC (M1 + M2) was raised by 35% in the clopidogrel phase but not significantly affected by clarithromycin or CYP2B6 genotype. The CYP2B6*6/*6 subjects in the clopidogrel phase showed the highest molar AUC (M1 + M2) among three genotype groups throughout the three phases. The exposure of sibutramine and its metabolites seemed to be associated with the CYP2B6 genotype. The treatment of clopidogrel significantly altered the disposition of active metabolites as well as sibutramine, but clarithromycin only affects the disposition of sibutramine. These results suggest that the perturbation of CYP2B6 activity may contribute to the inter-individual variation of sibutramine drug responses although the clinical relevance is remained to be established.

  5. Polymorphism in the retinoic acid metabolizing enzyme CYP26B1 and the development of Crohn's Disease.

    Directory of Open Access Journals (Sweden)

    Karin Fransén

    Full Text Available Several studies suggest that Vitamin A may be involved in the pathogenesis of inflammatory bowel disease (IBD, but the mechanism is still unknown. Cytochrome P450 26 B1 (CYP26B1 is involved in the degradation of retinoic acid and the polymorphism rs2241057 has an elevated catabolic function of retinoic acid, why we hypothesized that the rs2241057 polymorphism may affect the risk of Crohn's disease (CD and Ulcerative Colitis (UC. DNA from 1378 IBD patients, divided into 871 patients with CD and 507 with UC, and 1205 healthy controls collected at Örebro University Hospital and Karolinska University Hospital were analyzed for the CYP26B1 rs2241057 polymorphism with TaqMan® SNP Genotyping Assay followed by allelic discrimination analysis. A higher frequency of patients homozygous for the major (T allele was associated with CD but not UC compared to the frequency found in healthy controls. A significant association between the major allele and non-stricturing, non-penetrating phenotype was evident for CD. However, the observed associations reached borderline significance only, after correcting for multiple testing. We suggest that homozygous carriers of the major (T allele, relative to homozygous carriers of the minor (C allele, of the CYP26B1 polymorphism rs2241057 may have an increased risk for the development of CD, which possibly may be due to elevated levels of retinoic acid. Our data may support the role of Vitamin A in the pathophysiology of CD, but the exact mechanisms remain to be elucidated.

  6. Genome-wide identification of 31 cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and analysis of their benzo[α]pyrene-induced expression patterns.

    Science.gov (United States)

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Kim, Hee-Jin; Declerck, Steven A J; Hagiwara, Atsushi; Lee, Jae-Seong

    2018-03-01

    While marine invertebrate cytochrome P450 (CYP) genes and their roles in detoxification mechanisms have been studied, little information is available regarding freshwater rotifer CYPs and their functions. Here, we used genomic sequences and RNA-seq databases to identify 31 CYP genes in the freshwater rotifer Brachionus calyciflorus. The 31 Bc-CYP genes with a few tandem duplications were clustered into CYP 2, 3, 4, mitochondrial, and 46 clans with two marine rotifers Brachionus plicatilis and Brachionus koreanus. To understand the molecular responses of these 31 Bc-CYP genes, we also examined their expression patterns in response to benzo[α]pyrene (B[α]P). Three Bc-CYP genes (Bc-CYP3044B3, Bc-CYP3049B4, Bc-CYP3049B6) were significantly upregulated (P<0.05) in response to B[α]P, suggesting that these CYP genes can be involved in detoxification in response to B[α]P exposure. These genes might be useful as biomarkers of B[α]P exposure in B. calyciflorus. Overall, our findings expand the repertoire of known CYPs and shed light on their potential roles in xenobiotic detoxification in rotifers. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. CYP2E1-dependent and leptin-mediated hepatic CD57 expression on CD8 + T cells aid progression of environment-linked nonalcoholic steatohepatitis

    International Nuclear Information System (INIS)

    Seth, Ratanesh Kumar; Das, Suvarthi; Kumar, Ashutosh; Chanda, Anindya; Kadiiska, Maria B.; Michelotti, Gregory; Manautou, Jose; Diehl, Anna Mae; Chatterjee, Saurabh

    2014-01-01

    Environmental toxins induce a novel CYP2E1/leptin signaling axis in liver. This in turn activates a poorly characterized innate immune response that contributes to nonalcoholic steatohepatitis (NASH) progression. To identify the relevant subsets of T-lymphocytes in CYP2E1-dependent, environment-linked NASH, we utilized a model of diet induced obese (DIO) mice that are chronically exposed to bromodichloromethane. Mice deficient in CYP2E1, leptin (ob/ob mice), or both T and B cells (Pfp/Rag2 double knockout (KO) mice) were used to delineate the role of each of these factors in metabolic oxidative stress-induced T cell activation. Results revealed that elevated levels of lipid peroxidation, tyrosyl radical formation, mitochondrial tyrosine nitration and hepatic leptin as a consequence of metabolic oxidative stress caused increased levels of hepatic CD57, a marker of peripheral blood lymphocytes including NKT cells. CD8 + CD57 + cytotoxic T cells but not CD4 + CD57 + cells were significantly decreased in mice lacking CYP2E1 and leptin. There was a significant increase in the levels of T cell cytokines IL-2, IL-1β, and IFN-γ in bromodichloromethane exposed DIO mice but not in mice that lacked CYP2E1, leptin or T and B cells. Apoptosis as evidenced by TUNEL assay and levels of cleaved caspase-3 was significantly lower in leptin and Pfp/Rag2 KO mice and highly correlated with protection from NASH. The results described above suggest that higher levels of oxidative stress-induced leptin mediated CD8 + CD57 + T cells play an important role in the development of NASH. It also provides a novel insight of immune dysregulation and may be a key biomarker in NASH. - Highlights: • Metabolic oxidative stress caused increased levels of hepatic CD57 expression. • CD8+ CD57+ cytotoxic T cells were decreased in mice lacking CYP2E1 and leptin. • There was a significant increase in T cell cytokines in toxin-treated mice. • Apoptosis was significantly lower in leptin and Pfp

  8. CYP2E1-dependent and leptin-mediated hepatic CD57 expression on CD8 + T cells aid progression of environment-linked nonalcoholic steatohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Seth, Ratanesh Kumar; Das, Suvarthi [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States); Kumar, Ashutosh [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Chanda, Anindya [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States); Kadiiska, Maria B. [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Michelotti, Gregory [Division of Gastroenterology, Duke University, Durham, NC 27707 (United States); Manautou, Jose [Dept. of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States); Diehl, Anna Mae [Division of Gastroenterology, Duke University, Durham, NC 27707 (United States); Chatterjee, Saurabh, E-mail: schatt@mailbox.sc.edu [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States)

    2014-01-01

    Environmental toxins induce a novel CYP2E1/leptin signaling axis in liver. This in turn activates a poorly characterized innate immune response that contributes to nonalcoholic steatohepatitis (NASH) progression. To identify the relevant subsets of T-lymphocytes in CYP2E1-dependent, environment-linked NASH, we utilized a model of diet induced obese (DIO) mice that are chronically exposed to bromodichloromethane. Mice deficient in CYP2E1, leptin (ob/ob mice), or both T and B cells (Pfp/Rag2 double knockout (KO) mice) were used to delineate the role of each of these factors in metabolic oxidative stress-induced T cell activation. Results revealed that elevated levels of lipid peroxidation, tyrosyl radical formation, mitochondrial tyrosine nitration and hepatic leptin as a consequence of metabolic oxidative stress caused increased levels of hepatic CD57, a marker of peripheral blood lymphocytes including NKT cells. CD8 + CD57 + cytotoxic T cells but not CD4 + CD57 + cells were significantly decreased in mice lacking CYP2E1 and leptin. There was a significant increase in the levels of T cell cytokines IL-2, IL-1β, and IFN-γ in bromodichloromethane exposed DIO mice but not in mice that lacked CYP2E1, leptin or T and B cells. Apoptosis as evidenced by TUNEL assay and levels of cleaved caspase-3 was significantly lower in leptin and Pfp/Rag2 KO mice and highly correlated with protection from NASH. The results described above suggest that higher levels of oxidative stress-induced leptin mediated CD8 + CD57 + T cells play an important role in the development of NASH. It also provides a novel insight of immune dysregulation and may be a key biomarker in NASH. - Highlights: • Metabolic oxidative stress caused increased levels of hepatic CD57 expression. • CD8+ CD57+ cytotoxic T cells were decreased in mice lacking CYP2E1 and leptin. • There was a significant increase in T cell cytokines in toxin-treated mice. • Apoptosis was significantly lower in leptin and Pfp

  9. Effects on DHEA levels by estrogen in rat astrocytes and CNS co-cultures via the regulation of CYP7B1-mediated metabolism

    DEFF Research Database (Denmark)

    Fex Svenningsen, Åsa; Wicher, Grzegorz; Lundqvist, Johan

    2011-01-01

    The neurosteroid dehydroepiandrosterone (DHEA) is formed locally in the CNS and has been implicated in several processes essential for CNS function, including control of neuronal survival. An important metabolic pathway for DHEA in the CNS involves the steroid hydroxylase CYP7B1. In previous...... studies, CYP7B1 was identified as a target for estrogen regulation in cells of kidney and liver. In the current study, we examined effects of estrogens on CYP7B1-mediated metabolism of DHEA in primary cultures of rat astrocytes and co-cultures of rat CNS cells. Astrocytes, which interact with neurons...... whereby estrogen can exert protective effects in the CNS may involve increase of the levels of DHEA by suppression of its metabolism....

  10. Elevated expression of steroidogenesis pathway genes; CYP17, GATA6 and StAR in prenatally androgenized rats.

    Science.gov (United States)

    Jahromi, Marziyeh Salehi; Tehrani, Fahimeh Ramezani; Noroozzadeh, Mahsa; Zarkesh, Maryam; Ghasemi, Asghar; Zadeh-Vakili, Azita

    2016-11-15

    It is believed that excess androgen exposure of the fetus, via altered gene expression, causes hyperandrogenism a key feature of polycystic ovary syndrome (PCOS). The aim of this study was to evaluate expression of Cytochrome P450-17 (CYP17), GATA-binding protein (GAGT6) and Steroidogenic acute regulatory protein (StAR), genes of adult female rats prenatally exposed to androgen excess, closely reflect endocrine and ovarian disturbances of PCOS in women, by comparing them during different phases of estrus cycle with those of non-treated rats. Both the adult prenatally testosterone exposed and control rats (n=23, each) were divided into four groups based on their observed vaginal smear (proestrus, estrus, metestrus and diestrus) and the relative expression of CYP17, GATA6 and StAR genes was measured in ovarian theca cells using Cyber-green Real-Time PCR. Serum sex steroid hormones and gonadotropins levels were measured using the ELISA method; a comparison of these two groups showed that there was an overall increase in the studied genes (CYP17; 2.39 fold change, 95% CI: 1.23-3.55; PPCOS. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. 25-Hydroxyvitamin D3 1-Alpha-Hydroxylase-Dependent Stimulation of Renal Klotho Expression by Spironolactone

    Directory of Open Access Journals (Sweden)

    Ioana Alesutan

    2013-11-01

    Full Text Available Background: Klotho, a transmembrane protein, protease and hormone mainly expressed in kidney, is required for the suppression of 1,25(OH2D3-generating 25-hydroxyvitamin D3 1-alpha-hydroxylase (Cyp27b1 by FGF23. Conversely, 1,25(OH2D3 stimulates, by activating the vitamin D3 receptor (Vdr, the expression of klotho, thus establishing a negative feedback loop. Klotho protects against renal and vascular injury. Klotho deficiency accelerates aging and early death, effects at least partially due to excessive formation of 1,25(OH2D3 and subsequent hyperphosphatemia. Klotho expression is inhibited by aldosterone. The present study explored the interaction of aldosterone and DOCA as well as the moderately selective mineralocorticoid receptor antagonist spironolactone on klotho expression. Methods: mRNA levels were determined utilizing quantitative RT-PCR in human embryonic kidney cells (HEK293 or in renal tissues from mice without or with prior mineralocorticoid (aldosterone or DOCA and/or spironolactone treatment. In HEK293 cells, protein levels were determined by western blotting. The experiments in HEK293 cells were performed without or with silencing of CYP27B1, of vitamin D3 receptor (VDR or of mineralocorticoid receptor (NR3C2. Results: In HEK293 cells aldosterone and in mice DOCA significantly decreased KLOTHO gene expression, effects opposed by spironolactone treatment. Spironolactone treatment alone significantly increased KLOTHO and CYP27B1 transcript levels in HEK293 cells (24 hours and mice (8 hours or 5 days. Moreover, spironolactone significantly increased klotho and CYP27B1 protein levels in HEK293 cells (48 hours. Reduced NR3C2 expression following silencing did not significantly affect KLOTHO and CYP27B1 transcript levels in presence or absence of spironolactone. Silencing of CYP27B1 and VDR significantly blunted the stimulating effect of spironolactone on KLOTHO mRNA levels in HEK293 cells. Conclusion: Besides blocking the effects of

  12. AhR Activation Underlies the CYP1A Autoinduction by A-998679 in Rats

    Directory of Open Access Journals (Sweden)

    Michael J. Liguori

    2012-10-01

    Full Text Available Xenobiotic-mediated induction of cytochrome P450 (CYP drug metabolizing enzymes (DMEs is frequently encountered in drug discovery and can influence disposition, pharmacokinetic, and toxicity profiles. The CYP1A subfamily of DMEs plays a central role in the biotransformation of several drugs and environmental chemicals. Autoinduction of drugs through CYP3A enzymes is a common mechanism for their enhanced clearance. However, autoinduction via CYP1A is encountered less frequently. In this report, an experimental compound, A-998679 (3-(5-pyridin-3-yl-1,2,4-oxadiazol-3-yl benzonitrile, was shown to enhance its own clearance via induction of CYP1A1 and CYP1A2. Rats were dosed for 5 days with 30, 100, and 200 mg/kg/day A-998679. During the dosing period, the compound’s plasma AUC decreased at 30 mg/kg (95% and 100 mg/kg (80%. Gene expression analysis and immunohistochemistry of the livers showed a large increase in the mRNA and protein levels of CYP1A, which was involved in the biotransformation of A-998679. Induction of CYP1A was confirmed in primary rat, human, and dog hepatocytes. The compound also weakly inhibited CYP1A2 in human liver microsomes. A-998679 activated the aryl hydrocarbon receptor (AhR in a luciferase gene reporter assay in HepG2 cells, upregulated expression of genes associated with AhR activation in rat liver, and enhanced nuclear migration of AhR in HepG2 cells. Collectively these results demonstrate that A-998679 is an AhR activator that induces CYP1A1 and CYP1A2 expression, resulting in an autoinduction phenomenon. The unique properties of A-998679, along with its novel structure distinct from classical polycyclic aromatic hydrocarbons, may warrant its further evaluation as a tool compound for use in studies involving AhR biology and CYP1A related mechanisms of drug metabolism and toxicity.

  13. High risk of adrenal toxicity of N1-desoxy quinoxaline 1,4-dioxide derivatives and the protection of oligomeric proanthocyanidins (OPC) in the inhibition of the expression of aldosterone synthetase in H295R cells

    International Nuclear Information System (INIS)

    Wang, Xu; Yang, Chunhui; Ihsan, Awais; Luo, Xun; Guo, Pu; Cheng, Guyue; Dai, Menghong; Chen, Dongmei; Liu, Zhenli; Yuan, Zonghui

    2016-01-01

    Highlights: • N1-QCT, N1-MEQ and N1-CYA showed more adrenal toxicity than other metabolites. • N1-desoxy QdNOs reduced expression of CYP11B1, CYP11B2 and transcription factors. • OPC increased expression of transcription factors, including CYP11B1 and CYP11B2. • OPC reduced adrenal toxicity induced by N1-desoxy QdNOs. • The results provided a mechanism of adrenal damage caused by QdNO metabolites. - Abstract: Quinoxaline 1,4-dioxide derivatives (QdNOs) with a wide range of biological activities are used in animal husbandry worldwide. It was found that QdNOs significantly inhibited the gene expression of CYP11B1 and CYP11B2, the key aldosterone synthases, and thus reduced aldosterone levels. However, whether the metabolites of QdNOs have potential adrenal toxicity and the role of oxidative stress in the adrenal toxicity of QdNOs remains unclear. The relatively new QdNOs, cyadox (CYA), mequindox (MEQ), quinocetone (QCT) and their metabolites, were selected for elucidation of their toxic mechanisms in H295R cells. Interestingly, the results showed that the main toxic metabolites of QCT, MEQ, and CYA were their N1-desoxy metabolites, which were more harmful than other metabolites and evoked dose and time-dependent cell damage on adrenal cells and inhibited aldosterone production. Gene and protein expression of CYP11B1 and CYP11B2 and mRNA expression of transcription factors, such as NURR1, NGFIB, CREB, SF-1, and ATF-1, were down regulated by N1-desoxy QdNOs. The natural inhibitors of oxidant stress, oligomeric proanthocyanidins (OPC), could upregulate the expression of diverse transcription factors, including CYP11B1 and CYP11B2, and elevated aldosterone levels to reduce adrenal toxicity. This study demonstrated for the first time that N1-desoxy QdNOs have the potential to be the major toxic metabolites in adrenal toxicity, which may shed new light on the adrenal toxicity of these fascinating compounds and help to provide a basic foundation for the

  14. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens

    OpenAIRE

    Pang, Rui; Chen, Meng; Liang, Zhikun; Yue, Xiangzhao; Ge, Hu; Zhang, Wenqing

    2016-01-01

    The cytochrome P450 CYP6ER1 has been reported to play an important role in imidacloprid resistance of the brown planthopper (BPH), Nilaparvata lugens, and is overexpressed in most resistant populations. In the present study, we confirmed that CYP6ER1 expression can be induced by certain levels of imidacloprid. Developmental expression analysis revealed that CYP6ER1 was expressed highly in the adult stage, and tissue distribution analysis showed that CYP6ER1 was expressed mainly in the fat bod...

  15. Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells

    OpenAIRE

    Fang, Feng; Zheng, Jiamao; Galbaugh, Traci L; Fiorillo, Alyson A; Hjort, Elizabeth E; Zeng, Xianke; Clevenger, Charles V

    2010-01-01

    The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB...

  16. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    International Nuclear Information System (INIS)

    Wilderman, P. Ross; Jang, Hyun-Hee; Malenke, Jael R.; Salib, Mariam; Angermeier, Elisabeth; Lamime, Sonia; Dearing, M. Denise; Halpert, James R.

    2014-01-01

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in Escherichia coli each of the woodrat proteins gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system. - Highlights: • Three CYP2B enzymes from Neotoma lepida were cloned, engineered, and expressed. • A mix of catalytic and binding assays yields unique results for each enzyme. • Mutational analysis indicates CYP 2 B substrate recognition remains to be clarified. • Reported N. lepida gene

  17. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    Energy Technology Data Exchange (ETDEWEB)

    Wilderman, P. Ross, E-mail: pwilderman@ucsd.edu [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States); Jang, Hyun-Hee [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States); Malenke, Jael R. [Department of Biology, University of Utah, Salt Lake City, UT (United States); Salib, Mariam; Angermeier, Elisabeth; Lamime, Sonia [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States); Dearing, M. Denise [Department of Biology, University of Utah, Salt Lake City, UT (United States); Halpert, James R. [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States)

    2014-02-01

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in Escherichia coli each of the woodrat proteins gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system. - Highlights: • Three CYP2B enzymes from Neotoma lepida were cloned, engineered, and expressed. • A mix of catalytic and binding assays yields unique results for each enzyme. • Mutational analysis indicates CYP{sub 2}B substrate recognition remains to be clarified. • Reported N. lepida gene

  18. Altitudinal and thermal gradients of hepatic Cyp1A gene expression in natural populations of Salmo trutta from high mountain lakes and their correlation with organohalogen loads

    Energy Technology Data Exchange (ETDEWEB)

    Jarque, Sergio; Gallego, Eva [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034-Barcelona, Catalonia (Spain); Bartrons, Mireia; Catalan, Jordi [Center for Advanced Studies of Blanes (CEAB-CSIC), Acces Cala St. Francesc 14, 17300-Blanes, Catalonia (Spain); Grimalt, Joan O. [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034-Barcelona, Catalonia (Spain); Pina, Benjamin, E-mail: bpcbmc@cid.csic.e [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034-Barcelona, Catalonia (Spain)

    2010-05-15

    The biomarker of xenobiotic exposure cytochrome p450A1 (Cyp1A) was used to analyze the biological response to chemical pollution in Salmo trutta (brown trout) from nine high mountain European lakes in Norway, Tatras, Tyrol, and central Pyrenees. Hepatic Cyp1A mRNA levels correlated both with the reciprocal of absolute annual average air temperatures of the sampled lakes and with muscle concentrations of several hydrophobic organohalogen compounds (OC), including chlorinated polychlorobiphenyls (PCB), DDE, and DDT. The correlation between Cyp1A expression and OC content was observed across the whole temperature range (between -0.7 deg. C and +6.2 deg. C), but also in the absence of any thermal gradient. We concluded that airborne pollutants accumulate in high mountain lake fish at concentrations high enough to increase Cyp1A expression, among other possible effects. As geographical distribution of semi-volatile OC is strongly influenced by air temperatures, future climate modifications will potentially enhance their physiological effects in lake ecosystems. - Altitudinal gradients of hepatic Cyp1A gene expression in mountain trout correlate with geographic and individual organohalogen distribution.

  19. Secretory expression of nattokinase from Bacillus subtilis YF38 in Escherichia coli.

    Science.gov (United States)

    Liang, Xiaobo; Jia, Shifang; Sun, Yufang; Chen, Meiling; Chen, Xiuzhu; Zhong, Jin; Huan, Liandong

    2007-11-01

    Nattokinase producing bacterium, B. subtilis YF38, was isolated from douchi, using the fibrin plate method. The gene encoding this enzyme was cloned by polymerase chain reaction (PCR). Cytoplasmic expression of this enzyme in E. coli resulted in inactive inclusion bodies. But with the help of two different signal peptides, the native signal peptide of nattokinase and the signal peptide of PelB, active nattokinase was successfully expressed in E. coli with periplasmic secretion, and the nattokinase in culture medium displayed high fibrinolytic activity. The fibrinolytic activity of the expressed enzyme in the culture was determined to reach 260 urokinase units per micro-liter when the recombinant strain was induced by 0.7 mmol l(-1) isopropyl-beta-D- thiogalactopyranoside (IPTG) at 20 degrees C for 20 h, resulting 49.3 mg active enzyme per liter culture. The characteristic of this recombinant nattokinase is comparable to the native nattokinase from B. subtilis YF38. Secretory expression of nattokinase in E. coli would facilitate the development of this enzyme into a therapeutic product for the control and prevention of thrombosis diseases.

  20. Expression of human mag-1 gene in E. coli and preparation of its antibody

    International Nuclear Information System (INIS)

    Lin Huiyun; Xu Yuanji; Wang Yan; Chen Huihua; Du Zhiyan; Tan Xiaogang; Lu Yinglin

    2006-01-01

    Objective: To further investigate the new metastasis associated gene, mag-1 expressed in E. coli and its anti-body was prepared in rabbit. Methods: mag-1 was amplified by PCR from pcDNA3-mag-1 and directly cloned into pET-28a vector. The fusion protein was expressed in BL21 and identified by Western blot using anti-His monoclonal antibody. Rabbit was immunized with partially purified fusion protein subcutaneously. Results: Sequence analysis revealed identity of the sequence obtained to the previous report. The recombinant His-mag-1 could be expressed in E. coli as a fusion protein of 18 x 10 3 . The recombinant protein was mostly expressed in the inclusion bodies on the induction by 0.1 mmol/L IPTG at 37 degree C for 6 hours. Western blot analysis showed that the recombinant protein could be recognized by His monoclonal anti-body. The titer of polyclonal antibody against mag-1 was 1:160000. Conclusion: The mag-1 gene is expressed in E. coli highly and its antibody is prepared successfully. (authors)

  1. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-07-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy.

  2. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    International Nuclear Information System (INIS)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2007-01-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy

  3. BjuB.CYP79F1 Regulates Synthesis of Propyl Fraction of Aliphatic Glucosinolates in Oilseed Mustard Brassica juncea: Functional Validation through Genetic and Transgenic Approaches.

    Directory of Open Access Journals (Sweden)

    Manisha Sharma

    Full Text Available Among the different types of methionine-derived aliphatic glucosinolates (GS, sinigrin (2-propenyl, the final product in 3C GS biosynthetic pathway is considered very important as it has many pharmacological and therapeutic properties. In Brassica species, the candidate gene regulating synthesis of 3C GS remains ambiguous. Earlier reports of GSL-PRO, an ortholog of Arabidopsis thaliana gene At1g18500 as a probable candidate gene responsible for 3C GS biosynthesis in B. napus and B. oleracea could not be validated in B. juncea through genetic analysis. In this communication, we report the isolation and characterization of the gene CYP79F1, an ortholog of A. thaliana gene At1g16410 that is involved in the first step of core GS biosynthesis. The gene CYP79F1 in B. juncea showed presence-absence polymorphism between lines Varuna that synthesizes sinigrin and Heera virtually free from sinigrin. Using this presence-absence polymorphism, CYP79F1 was mapped to the previously mapped 3C GS QTL region (J16Gsl4 in the LG B4 of B. juncea. In Heera, the gene was observed to be truncated due to an insertion of a ~4.7 kb TE like element leading to the loss of function of the gene. Functional validation of the gene was carried out through both genetic and transgenic approaches. An F2 population segregating only for the gene CYP79F1 and the sinigrin phenotype showed perfect co-segregation. Finally, genetic transformation of a B. juncea line (QTL-NIL J16Gsl4 having high seed GS but lacking sinigrin with the wild type CYP79F1 showed the synthesis of sinigrin validating the role of CYP79F1 in regulating the synthesis of 3C GS in B. juncea.

  4. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-03-01

    To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (Pcopepods through the predicted AhR-mediated up-regulation of CYP genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effects of Cinnamon extract on biochemical enzymes, TNF-α and NF-κB gene expression levels in liver of broiler chickens inoculated with Escherichia coli

    Directory of Open Access Journals (Sweden)

    Seyed Mahmoud Tabatabaei

    2015-09-01

    Full Text Available Abstract: Infection with Escherichia coli (E. coli is a common disease in poultry industry. The use of antibiotics to treat diseases is facing serious criticism and concerns. The medicinal plants may be effective alternatives because of their multiplex activities. The aim of this study was to investigate the effects of cinnamon extract on the levels of liver enzymes, tumor necrosis factor-alpha (TNF-α and nuclear factor-kappa B (NF-κB gene expressions in liver of broiler chickens infected with E. coli. Ninety Ross-308 broilers were divided into healthy or E. coli-infected groups, receiving normal or cinnamon extract (in concentrations of 100 or 200mg/kg of food supplemented diets. E. coli suspension (108cfu was injected subcutaneously after 12 days cinnamon administration. Seventy-two hours after E. coli injection, the blood samples were taken for biochemical analysis of liver enzymes in serum (spectrophotometrically, and liver tissue samples were obtained for detection of gene expression of inflammatory markers TNF-α and NF-κB, using real-time PCR. Infection with E. coli significantly increased the levels of TNF-α and NF-κB gene expressions as well as some liver enzymes including creatine-kinase (CK, lactate-dehydrogenase (LDH, alanine-transferase (ALT and aspartate-transferase (AST as compared with control group (P<0.05. Pre-administration of cinnamon extract in broilers diet (in both concentrations significantly reduced the tissue levels of TNF-α and NF-κB gene expressions and enzymes CK and ALT in serum of broiler chickens inoculated with E. coli in comparison with E. coli group (P<0.05 and P<0.01. The levels of LDH and AST were significantly decreased only by 200mg/kg cinnamon extract in infected broilers. The level of alkaline-phosphatase (ALP was not affected in any groups. Pre-administration of cinnamon extract in diets of broiler chickens inoculated with E. coli could significantly reduce the gene expression levels of pro

  6. Transcriptome of E. coli K1 bound to human brain microvascular endothelial cells

    OpenAIRE

    Xie, Yi; Parthasarathy, Geetha; Di Cello, Francescopaolo; Teng, Ching-Hao; Paul-Satyaseela, Maneesh; Kim, Kwang Sik

    2007-01-01

    Escherichia coli K1 is the most common Gram-negative organism causing neonatal meningitis. Binding to human brain microvascdular endothelial cells (HBMEC) is an essential step for E. coli K1 traversal of the blood-brain barrier. In this study, we examined expression profiles of E. coli K1 strain RS218 during its binding to HBMEC. Comparison of HBMEC-bound E. coli K1 with collagen-bound E. coli revealed more than one hundred genes whose expression patterns were significantly changed in HBMEC-b...

  7. Regional specificity in deltamethrin induced cytochrome P450 expression in rat brain

    International Nuclear Information System (INIS)

    Yadav, Sanjay; Johri, Ashu; Dhawan, Alok; Seth, Prahlad K.; Parmar, Devendra

    2006-01-01

    Oral administration of deltamethrin (5 mg/kg x 7 or 15 or 21 days) was found to produce a time-dependent increase in the mRNA expression of xenobiotic metabolizing cytochrome P450 1A1 (CYP1A1), 1A2 and CYP2B1, 2B2 isoenzymes in rat brain. RT-PCR studies further showed that increase in the mRNA expression of these CYP isoenzymes observed after 21 days of exposure was region specific. Hippocampus exhibited maximum increase in the mRNA expression of CYP1A1, which was followed by pons-medulla, cerebellum and hypothalamus. The mRNA expression of CYP2B1 also exhibited maximum increase in the hypothalamus and hippocampus followed by almost similar increase in midbrain and cerebellum. In contrast, mRNA expression of CYP1A2 and CYP2B2, the constitutive isoenzymes exhibited relatively higher increase in pons-medulla, cerebellum and frontal cortex. Immunoblotting studies carried out with polyclonal antibody raised against rat liver CYP1A1/1A2 or CYP2B1/2B2 isoenzymes also showed increase in immunoreactivity comigrating with CYP1A1/1A2 or 2B1/2B2 in the microsomal fractions isolated from hippocampus, hypothalamus and cerebellum of rat treated with deltamethrin. Though the exact relationship of the xenobiotic metabolizing CYPs with the physiological function of the brain is yet to be clearly understood, the increase in the mRNA expression of the CYPs in the brain regions that regulate specific brain functions affected by deltamethrin have further indicated that modulation of these CYPs could be associated with the various endogenous functions of the brain

  8. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR target gene Cyp2b10 in the liver of B6C3F1 mice.

    Directory of Open Access Journals (Sweden)

    Harri Lempiäinen

    2011-03-01

    Full Text Available Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  9. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

    Science.gov (United States)

    Lempiäinen, Harri; Müller, Arne; Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-03-24

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  10. Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice

    Science.gov (United States)

    Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-01-01

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis. PMID:21455306

  11. The guinea-pig expresses functional CYP2C and P-glycoprotein: further validation of its usefulness in drug biotransformation/transport studies.

    Science.gov (United States)

    Hasibu, Ibrahim; Patoine, Dany; Pilote, Sylvie; Drolet, Benoit; Simard, Chantale

    2015-04-01

    The guinea-pig is an excellent animal model for studying cardiopulmonary physiology/pharmacology. Interestingly, it also possesses a number of drug-metabolizing enzymes found in humans, such as CYP1A, CYP2D and CYP3A. To evaluate the hypothesis that the guinea-pig also expresses a functional CYP2C drug-metabolizing enzyme and the P-glycoprotein (P-gp) drug transporter in various tissues. cDNAs encoding CYP2C and P-gp were obtained from guinea-pig liver or small intestine and sequenced. Western blotting was performed to confirm the expression of CYP2C and P-gp. The functional enzymatic activity of guinea-pig CYP2C was evaluated with microsomal preparations using diclofenac and tolbutamide as specific drug substrates in HPLC analyses. To further study both P-gp and CYP2C functional activities, the guinea-pig ABCB1/MDR1 and CYP2C genes were cloned. The recombinant plasmids were then transfected in HEK293 (human embryonic kidney) cells and either calcein-acetoxymethyl ester (AM) accumulation assays or 14,15-EET/DHET formation experiments were performed to evaluate either P-gp transport activity or CYP2C epoxygenase activity, respectively. The guinea-pig tissue distribution of P-gp was studied by Western blotting. Functional expression of CYP2C was demonstrated in guinea-pig liver microsomal preparations. CYP2C-mediated biotransformation of diclofenac and tolbutamide were shown. Expression of P-gp protein was detected in guinea-pig liver and small intestine. Functional activity of guinea-pig P-gp was demonstrated in ABCB1/MDR1-transfected cells. GP-CYP2C-transfected cells also showed functional epoxygenase activity. The guinea-pig expresses functional CYP2C and P-gp, thus suggesting its usefulness for further validating data obtained with other animal models in drug biotransformation/transport studies. Copyright © 2015 John Wiley & Sons, Ltd.

  12. All-trans retinoic acid inhibits the recruitment of ARNT to DNA, resulting in the decrease of CYP1A1 mRNA expression in HepG2 cells

    International Nuclear Information System (INIS)

    Ohno, Marumi; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2012-01-01

    Highlights: ► AHR and ARNT transcriptionally regulate genes related to metabolisms such as CYP1A1. ► We investigated the effect of retinoic acid (RA) on the function of AHR/ARNT. ► RA inhibited the recruitment of ARNT, not AHR, to the regulatory region of CYP1A1. ► It resulted in a reduction of constitutive expression of CYP1A1 to less than half. -- Abstract: Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) are well-conserved transcription factors among species. However, there are a very limited number of reports on the physiological function of AHR, particularly on the regulation of AHR by endogenous compounds. We hence investigated the effects of all-trans retinoic acid (atRA) on cytochrome P450 (CYP) 1A1 gene transcription as a model of AHR-regulated transcription mechanisms in HepG2 cells, a human hepatoma cell line. Treatment with atRA significantly reduced transactivation and expression of CYP1A1 mRNA to less than half of its control value, and this inhibitory effect was mediated by RARα. The result of chromatin immunoprecipitation assay indicated that treatment with atRA at 1–100 nM drastically inhibited the recruitment of ARNT to DNA regions containing xenobiotic responsive elements. In conclusion, atRA at physiological concentrations could reduce AHR-mediated gene transcription via the inhibition of recruitment of ARNT to relevant DNA regions.

  13. Distinctiveness of the Roma population within CYP2B6 worldwide variation.

    Science.gov (United States)

    Tomas, Željka; Kuhanec, Antonija; Škarić-Jurić, Tatjana; Petranović, Matea Zajc; Narančić, Nina Smolej; Janićijević, Branka; Salihović, Marijana Peričić

    2017-11-01

    To determine variation of CYP2B6 gene within the genetically specific Croatian Roma (Gypsy) population originating from India and to examine it in the worldwide perspective. Seven SNP loci (rs12721655, rs2279343, rs28399499, rs34097093, rs3745274, rs7260329 and rs8192709) were genotyped in 439 subjects using Kompetitive Allele Specific PCR (KASP) method. The Croatian Roma took an outlying position in CYP2B6 variation from the worldwide perspective mainly due to their exceptionally high minor allele frequency (MAF) for rs8192709 (12.8%), and lower for rs2279343 (21.1%) compared with south Asian populations. This study provides the first data of several CYP2B6 polymorphisms in Roma population and indicates the need for systematic investigation of the most important pharmacogenes' variants in this large, transnationally isolated population worldwide.

  14. Expression of cyclophilin B is associated with malignant progression and regulation of genes implicated in the pathogenesis of breast cancer.

    Science.gov (United States)

    Fang, Feng; Flegler, Ayanna J; Du, Pan; Lin, Simon; Clevenger, Charles V

    2009-01-01

    Cyclophilin B (CypB) is a 21-kDa protein with peptidyl-prolyl cis-trans isomerase activity that functions as a transcriptional inducer for Stat5 and as a ligand for CD147. To better understand the global function of CypB in breast cancer, T47D cells with a small interfering RNA-mediated knockdown of CypB were generated. Subsequent expression profiling analysis showed that 663 transcripts were regulated by CypB knockdown, and that many of these gene products contributed to cell proliferation, cell motility, and tumorigenesis. Real-time PCR confirmed that STMN3, S100A4, S100A6, c-Myb, estrogen receptor alpha, growth hormone receptor, and progesterone receptor were all down-regulated in si-CypB cells. A linkage analysis of these array data to protein networks resulted in the identification of 27 different protein networks that were impacted by CypB knockdown. Functional assays demonstrated that CypB knockdown also decreased cell growth, proliferation, and motility. Immunohistochemical and immunofluorescent analyses of a matched breast cancer progression tissue microarray that was labeled with an anti-CypB antibody demonstrated a highly significant increase in CypB protein levels as a function of breast cancer progression. Taken together, these results suggest that the enhanced expression of CypB in malignant breast epithelium may contribute to the pathogenesis of this disease through its regulation of the expression of hormone receptors and gene products that are involved in cell proliferation and motility.

  15. Mapping of gene expression reveals CYP27A1 as a susceptibility gene for sporadic ALS.

    Directory of Open Access Journals (Sweden)

    Frank P Diekstra

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive, neurodegenerative disease characterized by loss of upper and lower motor neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS have implicated a few susceptibility loci. However, many more causal loci remain to be discovered. Since it has been shown that genetic variants associated with complex traits are more likely to be eQTLs than frequency-matched variants from GWAS platforms, we conducted a two-stage genome-wide screening for eQTLs associated with ALS. In addition, we applied an eQTL analysis to finemap association loci. Expression profiles using peripheral blood of 323 sporadic ALS patients and 413 controls were mapped to genome-wide genotyping data. Subsequently, data from a two-stage GWAS (3,568 patients and 10,163 controls were used to prioritize eQTLs identified in the first stage (162 ALS, 207 controls. These prioritized eQTLs were carried forward to the second sample with both gene-expression and genotyping data (161 ALS, 206 controls. Replicated eQTL SNPs were then tested for association in the second-stage GWAS data to find SNPs associated with disease, that survived correction for multiple testing. We thus identified twelve cis eQTLs with nominally significant associations in the second-stage GWAS data. Eight SNP-transcript pairs of highest significance (lowest p = 1.27 × 10(-51 withstood multiple-testing correction in the second stage and modulated CYP27A1 gene expression. Additionally, we show that C9orf72 appears to be the only gene in the 9p21.2 locus that is regulated in cis, showing the potential of this approach in identifying causative genes in association loci in ALS. This study has identified candidate genes for sporadic ALS, most notably CYP27A1. Mutations in CYP27A1 are causal to cerebrotendinous xanthomatosis which can present as a clinical mimic of ALS with progressive upper motor neuron loss, making it a plausible

  16. Human CYP2E1 mediates the formation of glycidamide from acrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Settels, Eva; Appel, Klaus E. [Federal Institute for Risk Assessment, Center for Experimental Toxicology, Berlin (Germany); Bernauer, Ulrike; Gundert-Remy, Ursula [Federal Institute for Risk Assessment, Department of Safety of Substances and Preparations, Berlin (Germany); Palavinskas, Richard; Klaffke, Horst S. [Federal Institute for Risk Assessment, Center for Analytical Chemistry, Berlin (Germany)

    2008-10-15

    Regarding the cancer risk assessment of acrylamide (AA) it is of basic interest to know, as to what amount of the absorbed AA is metabolized to glycidamide (GA) in humans, compared to what has been observed in laboratory animals. GA is suspected of being the ultimate carcinogenic metabolite of AA. From experiments with CYP2E1-deficient mice it can be concluded that AA is metabolized to GA primarily by CYP2E1. We therefore examined whether CYP2E1 is involved in GA formation in non-rodent species with the focus on humans by using human CYP2E1 supersomes trademark, marmoset and human liver microsomes and in addition, genetically engineered V79 cells expressing human CYP2E1 (V79h2E1 cells). Special emphasis was placed on the analytical detection of GA, which was performed by gas chromatography/mass spectrometry. The results show that AA is metabolized to GA in human CYP2E1 supersomes trademark, in marmoset and human liver microsomes as well as in V79h2E1 cells. The activity of GA formation is highest in supersomes trademark; in human liver it is somewhat higher than in marmoset liver. A monoclonal CYP2E1 human selective antibody (MAB-2E1) and diethyldithiocarbamate (DDC) were used as specific inhibitors of CYP2E1. The generation of GA could be inhibited by MAB-2E1 to about 80% in V79h2E1 cells and to about 90% in human and marmoset liver microsomes. Also DDC led to an inhibition of about 95%. In conclusion, AA is metabolized to GA by human CYP2E1. Overall, the present work describes (1) the application and refinement of a sensitive methodology in order to determine low amounts of GA, (2) the applicability of genetically modified V79 cell lines in order to investigate specific questions concerning metabolism and (3) the involvement, for the first time, of human CYP2E1 in the formation of GA from AA. Further studies will compare the activities of GA formation in genetically engineered V79 cells expressing CYP2E1 from different species. (orig.)

  17. Expression of Mycobacterium tuberculosis Ku and Ligase D in Escherichia coli results in RecA and RecB-independent DNA end-joining at regions of microhomology.

    Science.gov (United States)

    Malyarchuk, Svitlana; Wright, Douglas; Castore, Reneau; Klepper, Emily; Weiss, Bernard; Doherty, Aidan J; Harrison, Lynn

    2007-10-01

    Unlike Escherichia coli, Mycobacterium tuberculosis (Mt) expresses a Ku-like protein and an ATP-dependent DNA ligase that can perform non-homologous end-joining (NHEJ). We have expressed the Mt-Ku and Mt-Ligase D in E. coli using an arabinose-inducible promoter and expression vectors that integrate into specific sites in the E. coli chromosome. E. coli strains have been generated that express the Mt-Ku and Mt-Ligase D on a genetic background that is wild-type for repair, or deficient in either the RecA or RecB protein. Transformation of these strains with linearized plasmid DNA containing a 2bp overhang has demonstrated that expression of both the Mt-Ku and Mt-Ligase D is required for DNA end-joining and that loss of RecA does not prevent this double-strand break repair. Analysis of the re-joined plasmid has shown that repair is predominantly inaccurate and results in the deletion of sequences. Loss of RecB did not prevent the formation of large deletions, but did increase the amount of end-joining. Sequencing the junctions has revealed that the majority of the ligations occurred at regions of microhomology (1-4bps), eliminating one copy of the homologous sequence at the junction. The Mt-Ku and Mt-Ligase D can therefore function in E. coli to re-circularize linear plasmid.

  18. Monocrotophos Induces the Expression of Xenobiotic Metabolizing Cytochrome P450s (CYP2C8 and CYP3A4) and Neurotoxicity in Human Brain Cells.

    Science.gov (United States)

    Tripathi, Vinay Kumar; Kumar, Vivek; Pandey, Ankita; Vatsa, Pankhi; Dhasmana, Anupam; Singh, Rajat Pratap; Appikonda, Sri Hari Chandan; Hwang, Inho; Lohani, Mohtashim

    2017-07-01

    Expression of various cytochrome P450s (CYPs) in mammalian brain cells is well documented. However, such studies are hampered in neural/glial cells of human origin due to nonavailability of human brain cells. To address this issue, we investigated the expression and inducibility of CYP2C8 and CYP3A4 and their responsiveness against cyclophosphamide (CPA) and organophosphorus pesticide monocrotophos (MCP), a known developmental neurotoxicant in human neural (SH-SY5Y) and glial (U373-MG) cell lines. CPA induced significant expression of CYP2C8 and CYP3A4 in both types of cells in a time-dependent manner. Neural cell line exhibited relatively higher constitutive and inducible expression of CYPs than the glial cell line. MCP exposure alone could not induce the significant expression of CYPs, whereas the cells preexposed to CPA showed a significant response to MCP. Similar to the case of CPA induced expressions, neural cells were found to be more vulnerable than glial cells. Our data indicate differential expressions of CYPs in cultured human neural and glial cell lines. The findings were synchronized with protein ligand docking studies, which showed a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR and PXR. Similarly, the known CYP inducer CPA has also shown significant high docking scores with the two studied CYP regulators. We also observed a significant induction in reactive oxygen species (ROS), lipid peroxides (LPO), micronucleus (MN), chromosomal aberration (CA), and reduction in reduced glutathione (GSH) and catalase following the exposure of MCP. Moreover, the expressions of apoptotic markers such as caspase-3, caspase-9, Bax, and p53 were significantly upregulated, whereas the levels of antiapoptotic marker, Bcl2, was downregulated after the exposure of MCP in both cell lines. These findings confirm the involvement of ROS-mediated oxidative stress, which subsequently triggers apoptosis pathways in both human neural (SH-SY5Y

  19. Enhancement of solubility in Escherichia coli and purification of an aminotransferase from Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B1

    Directory of Open Access Journals (Sweden)

    Hartinger Doris

    2010-08-01

    Full Text Available Abstract Background Fumonisin B1 is a cancerogenic mycotoxin produced by Fusarium verticillioides and other fungi. Sphingopyxis sp. MTA144 can degrade fumonisin B1, and a key enzyme in the catabolic pathway is an aminotransferase which removes the C2-amino group from hydrolyzed fumonisin B1. In order to study this aminotransferase with respect to a possible future application in enzymatic fumonisin detoxification, we attempted expression of the corresponding fumI gene in E. coli and purification of the enzyme. Since the aminotransferase initially accumulated in inclusion bodies, we compared the effects of induction level, host strain, expression temperature, solubility enhancers and a fusion partner on enzyme solubility and activity. Results When expressed from a T7 promoter at 30°C, the aminotransferase accumulated invariably in inclusion bodies in DE3 lysogens of the E. coli strains BL21, HMS174, Rosetta 2, Origami 2, or Rosetta-gami. Omission of the isopropyl-beta-D-thiogalactopyranoside (IPTG used for induction caused a reduction of expression level, but no enhancement of solubility. Likewise, protein production but not solubility correlated with the IPTG concentration in E. coli Tuner(DE3. Addition of the solubility enhancers betaine and sorbitol or the co-enzyme pyridoxal phosphate showed no effect. Maltose-binding protein, used as an N-terminal fusion partner, promoted solubility at 30°C or less, but not at 37°C. Low enzyme activity and subsequent aggregation in the course of purification and cleavage indicated that the soluble fusion protein contained incorrectly folded aminotransferase. Expression in E. coli ArcticExpress(DE3, which co-expresses two cold-adapted chaperonins, at 11°C finally resulted in production of appreciable amounts of active enzyme. Since His tag-mediated affinity purification from this strain was hindered by co-elution of chaperonin, two steps of chromatography with optimized imidazole concentration in the

  20. Regulation of mouse hepatic CYP2D9 mRNA expression by growth and adrenal hormones.

    Science.gov (United States)

    Jarukamjorn, Kanokwan; Sakuma, Tsutomu; Jaruchotikamol, Atika; Oguro, Miki; Nemoto, Nobuo

    2006-02-01

    The constitutive expression of CYP2D9 is sexually dimorphic, namely, strong in males, but diminutive in females. Repetition of mimic growth hormone (GH) secretion pattern impressively returned the mRNA expression level to that in intact mice: the GH secretion pattern's regulation of CYP2D9 mRNA expression has been predominantly disrupted by exogenous GH-administration. The extensive decline of CYP2D9 mRNA expression becoming a sexually non-specific P450 in 9-week-old male mice exposed as neonates to monosodium L-glutamate (MSG) suggested that the male GH secretion pattern is a key to the regulation of male-specific CYP2D9 mRNA expression in adult mice. Dexamethasone (Dex) showed possibility to induce CYP2D9 mRNA expression in adult MSG-neonatally treated mice of either sex. However, the antagonism was observed by co-administration of Dex and GH in the males. Dex-administration in adrenalectomized mice significantly elevated CYP2D9 mRNA expression levels. These findings suggest that an adrenal hormone participates in the regulatory mechanism of CYP2D9 mRNA expression in association with GH.

  1. Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells.

    Science.gov (United States)

    Savary, Camille C; Jossé, Rozenn; Bruyère, Arnaud; Guillet, Fabrice; Robin, Marie-Anne; Guillouzo, André

    2014-08-01

    Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  2. CYP2B6*6 allele and age substantially reduce steady-state ketamine clearance in chronic pain patients: impact on adverse effects.

    Science.gov (United States)

    Li, Yibai; Jackson, Kate A; Slon, Barry; Hardy, Janet R; Franco, Michael; William, Leeroy; Poon, Peter; Coller, Janet K; Hutchinson, Mark R; Currow, David C; Somogyi, Andrew A

    2015-08-01

    Ketamine analgesia is limited by low intrinsic efficacy compounded by large interindividual variability in drug responses, possibly due to the heterogeneity in drug concentration. The CYP2B6*6 allele is associated with substantially reduced ketamine metabolism in vitro and, therefore, may affect ketamine clearance. Our aims were to examine the impact of the CYP2B6*6 allele on ketamine plasma clearance and on adverse effects in chronic pain patients. CYP2B6 genotypes were identified in 49 chronic pain patients who received 24 h continuous subcutaneous infusions of ketamine. Steady-state plasma concentrations of ketamine (Css,k ) and norketamine (Css,nk ) were determined using HPLC. The median plasma clearance of ketamine after 100 mg 24 h(-1) dose was significantly lower in patients with the CYP2B6*6/*6 (21.6 l h(-1) ) and CYP2B6*1/*6 (40.6 l h(-1) ) genotypes compared with patients with the CYP2B6*1/*1 genotype (68.1 l h(-1) , P ketamine : norketamine plasma metabolic ratio was significantly higher in patients with the CYP2B6*6/*6 genotype than in those with the CYP2B6*1/*6 and the CYP2B6*1/*1 genotypes (P ketamine plasma clearance in chronic pain patients. The decreased clearance and resultant higher plasma concentrations may be associated with a higher incidence of ketamine adverse effects. © 2015 The British Pharmacological Society.

  3. Inflammatory conditions induce IRES-dependent translation of cyp24a1.

    Directory of Open Access Journals (Sweden)

    Daniela Rübsamen

    Full Text Available Rapid alterations in protein expression are commonly regulated by adjusting translation. In addition to cap-dependent translation, which is e.g. induced by pro-proliferative signaling via the mammalian target of rapamycin (mTOR-kinase, alternative modes of translation, such as internal ribosome entry site (IRES-dependent translation, are often enhanced under stress conditions, even if cap-dependent translation is attenuated. Common stress stimuli comprise nutrient deprivation, hypoxia, but also inflammatory signals supplied by infiltrating immune cells. Yet, the impact of inflammatory microenvironments on translation in tumor cells still remains largely elusive. In the present study, we aimed at identifying translationally deregulated targets in tumor cells under inflammatory conditions. Using polysome profiling and microarray analysis, we identified cyp24a1 (1,25-dihydroxyvitamin D3 24-hydroxylase to be translationally upregulated in breast tumor cells co-cultured with conditioned medium of activated monocyte-derived macrophages (CM. Using bicistronic reporter assays, we identified and validated an IRES within the 5' untranslated region (5'UTR of cyp24a1, which enhances translation of cyp24a1 upon CM treatment. Furthermore, IRES-dependent translation of cyp24a1 by CM was sensitive to phosphatidyl-inositol-3-kinase (PI3K inhibition, while constitutive activation of Akt sufficed to induce its IRES activity. Our data provide evidence that cyp24a1 expression is translationally regulated via an IRES element, which is responsive to an inflammatory environment. Considering the negative feedback impact of cyp24a1 on the vitamin D responses, the identification of a novel, translational mechanism of cyp24a1 regulation might open new possibilities to overcome the current limitations of vitamin D as tumor therapeutic option.

  4. Prodrug-activating Gene Therapy with Rabbit Cytochrome P450 4B1/4-Ipomeanol or 2-Aminoanthracene System in Glioma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Lee, Tae Sup; Kim, Sung Joo; Kim, Kwang Il; Lee, Yong Jin; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)

    2010-09-15

    We determined the cytotoxic properties of cytochrome P450 4B1 (CYP4B1) activated 4-ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) in rat glioma to verify the CYP4B1/4-ipo or 2-AA system for prodrug-activating gene therapy. The cyp4B1 cDNA was cloned into pcDNA3.1/ Hygro from rabbit lung total RNA (pcDAN-cyp4B1). Lentiviral vector encoding firefly luciferase (fLuc) was infected into C6 (rat glioma), and the fLuc-expressing cell was selected (C6-L). After transfection with pcDNA-cyp4B1 vector into C6-L, the single clone expressing cyp4B1 gene was selected (C6-CL). Prodrug for various concentrations of 4-ipo or 2-AA was treated for 72 h and 96 h. The cell survival rate of C6-CL was determined using MTT assay and trypan-blue dye exclusion methods. By RT-PCR analysis, fLuc and CYP4B1 expression was detected in C6-CL, but not in C6. MTT assay and trypan-blue dye exclusion showed that IC'5'0 of C6-CL was 0.3 mM and <0.01 mM after 4-ipo or 2-AA treatment at 96 h or 72 h exposure, respectively. Cell survivals of C6-CL were more rapidly reduced after treatment with 4-ipo or 2-AA than those of C6-L cells. The cell survival rate with MTT and trypan-blue dye exclusion assay was well correlated with fLuc activity in C6-CL cells. Conclusions CYP4B1-based prodrug-activating gene therapy may have the potential to treat glioma and the cytotoxic effects of CYP4B1 enzyme activated 4-ipo or 2-AA in C6, and could be clearly determined by bioluminescent activity in C6-CL.

  5. Cyp1a reporter zebrafish reveals target tissues for dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun-Hee [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Park, Hye-Jeong [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Kim, Jin Hee [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Kim, Suhyun [Graduate School of Medicine, Korea University, Ansan (Korea, Republic of); Williams, Darren R. [New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kim, Myeong-Kyu [Department of Neurology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Jung, Young Do [Department of Biochemistry, Chonnam National University Medical School, Gwangju (Korea, Republic of); Teraoka, Hiroki [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Park, Hae-Chul [Graduate School of Medicine, Korea University, Ansan (Korea, Republic of); Choy, Hyon E., E-mail: hyonchoy@chonnam.ac.kr [Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Shin, Boo Ahn, E-mail: bashin@chonnam.ac.kr [Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Choi, Seok-Yong, E-mail: zebrafish@chonnam.ac.kr [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); School of Biological Sciences and Technology, Chonnam National University, Gwangju (Korea, Republic of)

    2013-06-15

    Highlights: •2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic anthropogenic substance ever identified. •Transgenic cyp1a reporter zebrafish reveals target tissues for TCDD. •The retinal bipolar cells, otic vesicle, lateral line, pancreas, cloaca and pectoral fin bud are novel targets in zebrafish for TCDD. •Our findings will further understanding of human health risks by TCDD. -- Abstract: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the unintentional byproduct of various industrial processes, is classified as human carcinogen and could disrupt reproductive, developmental and endocrine systems. Induction of cyp1a1 is used as an indicator of TCDD exposure. We sought to determine tissues that are vulnerable to TCDD toxicity using a transgenic zebrafish (Danio rerio) model. We inserted a nuclear enhanced green fluorescent protein gene (EGFP) into the start codon of a zebrafish cyp1a gene in a fosmid clone using DNA recombineering. The resulting recombineered fosmid was then used to generate cyp1a reporter zebrafish, embryos of which were exposed to TCDD. Expression pattern of EGFP in the reporter zebrafish mirrored that of endogenous cyp1a mRNA. In addition, exposure of the embryos to TCDD at as low as 10 pM for 72 h, which does not elicit morphological abnormalities of embryos, markedly increased GFP expression. Furthermore, the reporter embryos responded to other AhR ligands as well. Exposure of the embryos to TCDD revealed previously reported (the cardiovascular system, liver, pancreas, kidney, swim bladder and skin) and unreported target tissues (retinal bipolar cells, otic vesicle, lateral line, cloaca and pectoral fin bud) for TCDD. Transgenic cyp1a reporter zebrafish we have developed can further understanding of ecotoxicological relevance and human health risks by TCDD. In addition, they could be used to identify agonists of AhR and antidotes to TCDD toxicity.

  6. Dysregulated microRNA clusters in response to retinoic acid and CYP26B1 inhibitor induced testicular function in dogs.

    Directory of Open Access Journals (Sweden)

    Vanmathy R Kasimanickam

    Full Text Available Spermatogenesis is a multistep synchronized process. Diploid spermatogonia differentiate into haploid spermatozoa following mitosis, meiosis and spermiogenesis. Division and differentiation of male germ cells is achieved through the sequential expression of several genes. Numerous mRNAs in the differentiating germ cells undergo post-transcriptional and translational regulation. MiRNAs are powerful negative regulators of mRNA transcription, stability, and translation and recognize their mRNA targets through base-pairing. Retinoic acid (RA signaling is essential for spermatogenesis and testicular function. Testicular RA level is critical for RA signal transduction. This study investigated the miRNAs modulation in an RA- induced testicular environment following the administration of all-trans RA (2 µM and CYP26B1- inhibitor (1 µM compared to control. Eighty four canine mature miRNAs were analyzed and their expression signatures were distinguished using real-time PCR based array technology. Of the miRNAs analyzed, miRNA families such as miR-200 (cfa-miR-200a, cfa-miR-200b and cfa-miR-200c, Mirlet-7 (cfa-let-7a, cfa-let-7b, cfa-let-7c, cfa-let-7g and cfa-let-7f, miR-125 (cfa-miR-125a and cfa-miR-125b, miR-146 (cfa-miR-146a and cfa-miR-146b, miR-34 (cfa-miR-34a, cfa-miR-34b and cfa-miR-34c, miR-23 (cfa-miR-23a and cfa-miR-23b, cfa-miR-184, cfa-miR-214 and cfa-miR-141 were significantly up-regulated with testicular RA intervention via administration of CYP26B1 inhibitor and all-trans-RA and species of miRNA such as cfa-miR-19a, cfa-miR-29b, cfa-miR-29c, cfa-miR-101 and cfa-miR-137 were significantly down-regulated. This study explored information regarding chromosome distribution, human orthologous sequences and the interaction of target genes of miRNA families significantly distinguished in this study using prediction algorithms. This study importantly identified dysregulated miRNA species resulting from RA-induced spermatogenesis. The present

  7. Cytochromes P450 are Expressed in Proliferating Cells in Barrett's Metaplasia

    Directory of Open Access Journals (Sweden)

    Steven J. Hughes

    1999-06-01

    Full Text Available The expression of cytochromes P450 (CYP in Barrett's esophagus and esophageal squamous mucosa was investigated. Esophagectomy specimens from 23 patients were examined for CYP expression of CYP1A2, CYP3A4, CYP2C9/10, and CYP2E1 by immunohistochemical analysis, and the expression of CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 in these tissues was further confirmed by reverse transcription polymerase chain reaction. Immunohistochemical analysis of esophageal squamous mucosa (n = 12 showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 proteins, but it was noted that cells within the basal proliferative zone did not express CYPs. Immunohistochemical analysis of Barrett's esophagus (n = 13 showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 that was prominent in the basal glandular regions, which are areas containing a high percentage of actively proliferating cells. Immunohistochemical staining for both proliferating cell nuclear antigen and the CYPs further supported the colocalization of CYP expression to areas of active cell proliferation in Barrett's esophagus, whereas in the esophageal squamous epithelium, CYP expression is limited to cells that are not proliferating. RT-PCR with amplification product sequence analysis confirmed CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 mRNA expression in Barrett's esophagus. These data suggest that the potential ability of cells in Barrett's esophagus to both activate carcinogens and proliferate may be important risk factors affecting carcinogenesis in this metaplastic tissue.

  8. All-trans retinoic acid inhibits the recruitment of ARNT to DNA, resulting in the decrease of CYP1A1 mRNA expression in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Marumi; Ikenaka, Yoshinori [Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818 (Japan); Ishizuka, Mayumi, E-mail: ishizum@vetmed.hokudai.ac.jp [Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer AHR and ARNT transcriptionally regulate genes related to metabolisms such as CYP1A1. Black-Right-Pointing-Pointer We investigated the effect of retinoic acid (RA) on the function of AHR/ARNT. Black-Right-Pointing-Pointer RA inhibited the recruitment of ARNT, not AHR, to the regulatory region of CYP1A1. Black-Right-Pointing-Pointer It resulted in a reduction of constitutive expression of CYP1A1 to less than half. -- Abstract: Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) are well-conserved transcription factors among species. However, there are a very limited number of reports on the physiological function of AHR, particularly on the regulation of AHR by endogenous compounds. We hence investigated the effects of all-trans retinoic acid (atRA) on cytochrome P450 (CYP) 1A1 gene transcription as a model of AHR-regulated transcription mechanisms in HepG2 cells, a human hepatoma cell line. Treatment with atRA significantly reduced transactivation and expression of CYP1A1 mRNA to less than half of its control value, and this inhibitory effect was mediated by RAR{alpha}. The result of chromatin immunoprecipitation assay indicated that treatment with atRA at 1-100 nM drastically inhibited the recruitment of ARNT to DNA regions containing xenobiotic responsive elements. In conclusion, atRA at physiological concentrations could reduce AHR-mediated gene transcription via the inhibition of recruitment of ARNT to relevant DNA regions.

  9. In vivo effects of chronic contamination with depleted uranium on CYP3A and associated nuclear receptors PXR and CAR in the rat

    International Nuclear Information System (INIS)

    Souidi, M.; Gueguen, Y.; Linard, C.; Dudoignon, N.; Grison, S.; Baudelin, C.; Marquette, C.; Gourmelon, P.; Aigueperse, J.; Dublineau, I.

    2005-01-01

    In addition to its natural presence at high concentrations in some areas, uranium has several civilian and military applications that could cause contamination of human populations, mainly through chronic ingestion. Reports describe the accumulation of this radionuclide in some organs (including the bone, kidney, and liver) after acute or chronic contamination and show that it produces chemical or radiological toxicity or both. The literature is essentially devoid of information about uranium-related cellular and molecular effects on metabolic functions such as xenobiotic detoxification. The present study thus evaluated rats chronically exposed to depleted uranium in their drinking water (1 mg/(rat day)) for 9 months. Our specific aim was to evaluate the hepatic and extrahepatic mRNA expression of CYP3A1/A2, CYP2B1, and CYP1A1 as well as of the nuclear receptors PXR, CAR, and RXR in these rats. CYP3A1 mRNA expression was significantly higher in the brain (200%), liver (300%), and kidneys (900%) of exposed rats compared with control rats, while CYP3A2 mRNA levels were higher in the lungs (300%) and liver (200%), and CYP2B1 mRNA expression in the kidneys (300%). Expression of CYP1A1 mRNA did not change significantly during this study. PXR mRNA levels increased in the brain (200%), liver (150%), and kidneys (200%). Uranium caused CAR mRNA expression in the lungs to double. Expression of RXR mRNA did not change significantly in the course of this study, nor did the hepatic activity of CYP2C, CYP3A, CYP2A, or CYP2B. Uranium probably affects the expression of drug-metabolizing CYP enzymes through the PXR and CAR nuclear receptors. These results suggest that the stimulating effect of uranium on these enzymes might lead to hepatic or extrahepatic toxicity (or both) during drug treatment and then affect the entire organism

  10. Mode of action analysis for the synthetic pyrethroid metofluthrin-induced rat liver tumors: evidence for hepatic CYP2B induction and hepatocyte proliferation.

    Science.gov (United States)

    Deguchi, Yoshihito; Yamada, Tomoya; Hirose, Yukihiro; Nagahori, Hirohisa; Kushida, Masahiko; Sumida, Kayo; Sukata, Tokuo; Tomigahara, Yoshitaka; Nishioka, Kazuhiko; Uwagawa, Satoshi; Kawamura, Satoshi; Okuno, Yasuyoshi

    2009-03-01

    Two-year treatment with high doses of Metofluthrin produced hepatocellular tumors in both sexes of Wistar rats. To understand the mode of action (MOA) by which the tumors are produced, a series of studies examined the effects of Metofluthrin on hepatic microsomal cytochrome P450 (CYP) content, hepatocellular proliferation, hepatic gap junctional intercellular communication (GJIC), oxidative stress and apoptosis was conducted after one or two weeks of treatment. The global gene expression profile indicated that most genes with upregulated expression with Metofluthrin were metabolic enzymes that were also upregulated with phenobarbital. Metofluthrin induced CYP2B and increased liver weights associated with centrilobular hepatocyte hypertrophy (increased smooth endoplasmic reticulum [SER]), and induction of increased hepatocellular DNA replication. CYP2B1 mRNA induction by Metofluthrin was not observed in CAR knockdown rat hepatocytes using the RNA interference technique, demonstrating that Metofluthrin induces CYP2B1 through CAR activation. Metofluthrin also suppressed hepatic GJIC and induced oxidative stress and increased antioxidant enzymes, but showed no alteration in apoptosis. The above parameters related to the key events in Metofluthrin-induced liver tumors were observed at or below tumorigenic dose levels. All of these effects were reversible upon cessation of treatment. Metofluthrin did not cause cytotoxicity or peroxisome proliferation. Thus, it is highly likely that the MOA for Metofluthrin-induced liver tumors in rats is through CYP induction and increased hepatocyte proliferation, similar to that seen for phenobarbital. Based on analysis with the International Life Sciences Institute/Risk Science Institute MOA framework, it is reasonable to conclude that Metofluthrin will not have any hepatocarcinogenic activity in humans, at least at expected levels of exposure.

  11. Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish.

    Science.gov (United States)

    Callard, G V; Tchoudakova, A V; Kishida, M; Wood, E

    2001-12-01

    Teleost fish are characterized by exceptionally high levels of brain estrogen biosynthesis when compared to the brains of other vertebrates or to the ovaries of the same fish. Goldfish (Carassius auratus) and zebrafish (Danio rerio) have utility as complementary models for understanding the molecular basis and functional significance of exaggerated neural estrogen biosynthesis. Multiple cytochrome P450 aromatase (P450arom) cDNAs that derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (P450aromB>A) and ovary (P450aromA>B) and have a different developmental program (B>A) and response to estrogen upregulation (B only). As measured by increased P450aromB mRNA, a functional estrogen response system is first detected 24-48 h post-fertilization (hpf), consistent with the onset of estrogen receptor (ER) expression (alpha, beta, and gamma). The 5'-flanking region of the cyp19b gene has a TATA box, two estrogen response elements (EREs), an ERE half-site (ERE1/2), a nerve growth factor inducible-B protein (NGFI-B)/Nur77 responsive element (NBRE) binding site, and a sequence identical to the zebrafish GATA-2 gene neural specific enhancer. The cyp19a promoter region has TATA and CAAT boxes, a steroidogenic factor-1 (SF-1) binding site, and two aryl hydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) binding motifs. Both genes have multiple potential SRY/SOX binding sites (16 and 8 in cyp19b and cyp19a, respectively). Luciferase reporters have basal promoter activity in GH3 cells, but differences (a>b) are opposite to fish pituitary (b>a). When microinjected into fertilized zebrafish eggs, a cyp19b promoter-driven green fluorescent protein (GFP) reporter (but not cyp19a) is expressed in neurons of 30-48 hpf embryos, most prominently in retinal ganglion cells (RGCs) and their projections to optic tectum. Further studies are required to identify functionally relevant cis-elements and cellular factors, and to determine the

  12. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.

    Science.gov (United States)

    Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

    2010-08-01

    Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.

  13. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xuejiao [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Jiaojiang District Center for Disease Control and Prevention, 518 Jingdong Rd., Taizhou 318000 (China); Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Wang, Shou-Lin, E-mail: wangshl@njmu.edu.cn [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China)

    2013-07-15

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  14. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    International Nuclear Information System (INIS)

    Yang, Xuejiao; Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan; Wang, Shou-Lin

    2013-01-01

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  15. Selection of Co-Substrate and Aeration Conditions for Vanillin Production by Escherichia coli JM109/pBB1

    Directory of Open Access Journals (Sweden)

    Paolo Torre

    2004-01-01

    Full Text Available Yeast extract, Luria-Bertani medium and tryptone were tested as co-substrates for vanillin production from ferulic acid by resting cells of Escherichia coli JM109/pBB1. Yeast extract proved to be the best component for sustaining such a bioconversion, which is not self-sustained from the bioenergetic point of view. Tests were also performed under variable aeration conditions by simultaneously varying the ratio of medium to vessel volume and the agitation speed. The results of these tests suggest that, under excess aeration, a non-specific oxidase activity was very likely responsible for the oxidation of a significant portion of vanillin to vanillic acid, thus reducing the vanillin yield.

  16. PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides.

    Science.gov (United States)

    Coumoul, Xavier; Diry, Monique; Barouki, Robert

    2002-11-15

    OCP are xenobiotics which display various toxic effects on animal and human health. One of their effects is to bind and activate estrogen receptor alpha (ERalpha). We have previously studied the down-regulation of induced CYP1A1 (cytochrome P450) expression by this class of molecules in mammary carcinoma cells and shown the importance of ERalpha in this process. However, an alternative mechanism was suggested by those experiments in hepatoma cells. In this study, we have performed Northern blot and transient transfection assays in various cell lines and shown that OCP activate human pregnane X receptor (PXR) and subsequent CYP3A4 mRNA expression. This effect is mediated by the distal xenobiotic responsive element modulator of the promoter. The induction of CYP3A4 by OCP was dose-dependent within the 1-10 microM range. The data suggest that chronic exposure to OCP could alter a major metabolite pathway in human liver and putatively modify the pharmacokinetics of drugs and pollutants.

  17. Effect of Genetic Variability in the CYP4F2, CYP4F11, and CYP4F12 Genes on Liver mRNA Levels and Warfarin Response

    Directory of Open Access Journals (Sweden)

    J. E. Zhang

    2017-05-01

    Full Text Available Genetic polymorphisms in the gene encoding cytochrome P450 (CYP 4F2, a vitamin K oxidase, affect stable warfarin dose requirements and time to therapeutic INR. CYP4F2 is part of the CYP4F gene cluster, which is highly polymorphic and exhibits a high degree of linkage disequilibrium, making it difficult to define causal variants. Our objective was to examine the effect of genetic variability in the CYP4F gene cluster on expression of the individual CYP4F genes and warfarin response. mRNA levels of the CYP4F gene cluster were quantified in human liver samples (n = 149 obtained from a well-characterized liver bank and fine mapping of the CYP4F gene cluster encompassing CYP4F2, CYP4F11, and CYP4F12 was performed. Genome-wide association study (GWAS data from a prospective cohort of warfarin-treated patients (n = 711 was also analyzed for genetic variations across the CYP4F gene cluster. In addition, SNP-gene expression in human liver tissues and interactions between CYP4F genes were explored in silico using publicly available data repositories. We found that SNPs in CYP4F2, CYP4F11, and CYP4F12 were associated with mRNA expression in the CYP4F gene cluster. In particular, CYP4F2 rs2108622 was associated with increased CYP4F2 expression while CYP4F11 rs1060467 was associated with decreased CYP4F2 expression. Interestingly, these CYP4F2 and CYP4F11 SNPs showed similar effects with warfarin stable dose where CYP4F11 rs1060467 was associated with a reduction in daily warfarin dose requirement (∼1 mg/day, Pc = 0.017, an effect opposite to that previously reported with CYP4F2 (rs2108622. However, inclusion of either or both of these SNPs in a pharmacogenetic algorithm consisting of age, body mass index (BMI, gender, baseline clotting factor II level, CYP2C9∗2 rs1799853, CYP2C9∗3 rs1057910, and VKORC1 rs9923231 improved warfarin dose variability only by 0.5–0.7% with an improvement in dose prediction accuracy of ∼1–2%. Although there is complex

  18. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan.

    Science.gov (United States)

    Rasool, Akhtar; Joußen, Nicole; Lorenz, Sybille; Ellinger, Renate; Schneider, Bernd; Khan, Sher Afzal; Ashfaq, Muhammad; Heckel, David G

    2014-10-01

    The increasing resistance level of insect pest species is a major concern to agriculture worldwide. The cotton bollworm, Helicoverpa armigera, is one of the most important pest species due to being highly polyphagous, geographically widespread, and resistant towards many chemical classes of insecticides. We previously described the mechanism of fenvalerate resistance in Australian populations conferred by the chimeric cytochrome P450 monooxygenase CYP337B3, which arose by unequal crossing-over between CYP337B1 and CYP337B2. Here, we show that this mechanism is also present in the cypermethrin-resistant FSD strain from Pakistan. The Pakistani and the Australian CYP337B3 alleles differ by 18 synonymous and three nonsynonymous SNPs and additionally in the length and sequence of the intron. Nevertheless, the activity of both CYP337B3 proteins is comparable. We demonstrate that CYP337B3 is capable of metabolizing cypermethrin (trans- and especially cis-isomers) to the main metabolite 4'-hydroxycypermethrin, which exhibits no intrinsic toxicity towards susceptible larvae. In a bioassay, CYP337B3 confers a 7-fold resistance towards cypermethrin in FSD larvae compared to susceptible larvae from the Australian TWB strain lacking CYP337B3. Linkage analysis shows that presence of CYP337B3 accounts for most of the cypermethrin resistance in the FSD strain; up-regulation of other P450s in FSD plays no detectable role in resistance. The presence or absence of CYP337B3 can be easily detected by a simple PCR screen, providing a powerful tool to rapidly distinguish resistant from susceptible individuals in the field and to determine the geographical distribution of this resistance gene. Our results suggest that CYP337B3 evolved twice independently by unequal crossing-over between CYP337B2 and two different CYP337B1 alleles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Pregnane X receptor-dependent induction of the CYP3A4 gene by o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane.

    Science.gov (United States)

    Medina-Díaz, Irma M; Arteaga-Illán, Georgina; de León, Mario Bermudez; Cisneros, Bulmaro; Sierra-Santoyo, Adolfo; Vega, Libia; Gonzalez, Frank J; Elizondo, Guillermo

    2007-01-01

    CYP3A4, the predominant cytochrome P450 (P450) expressed in human liver and intestine, contributes to the metabolism of approximately half the drugs in clinical use today. CYP3A4 catalyzes the 6beta-hydroxylation of a number of steroid hormones and is involved in the bioactivation of environmental procarcinogens. The expression of CYP3A4 is affected by several stimuli, including environmental factors such as insecticides and pesticides. The o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane (DDT) isomer of DDT comprises approximately 20% of technical grade DDT, which is an organochloride pesticide. We have recently shown that o,p'-DDT exposure increases CYP3A4 mRNA levels in HepG2 cells. To determine the mechanism by which o,p'-DDT induces CYP3A4 expression, transactivation and electrophoretic mobility shift assays were carried out, revealing that o,p'-DDT activates the CYP3A4 gene promoter through the pregnane X receptor (PXR). CYP3A4 gene promoter activation resulted in both an increase in CYP3A4 mRNA levels and an increase in the total CYP3A4 activity in HepG2 cells. We also observed induction of CYP3A4 and mouse Cyp3a11 mRNA in the intestine of CYP3A4-transgenic mice after exposure to 1 mg/kg o,p'-DDT. At higher doses, a decrease of CYP3A4 inducibility was observed together with an increase in levels of interleukin 6 mRNA, a proinflammatory cytokine that strongly represses CYP3A4 transcription. The present study indicates that regulation of other genes under PXR control may be altered by o,p'-DDT exposure.

  20. A Novel Mutation in the CYP11B1 Gene Causes Steroid 11β-Hydroxylase Deficient Congenital Adrenal Hyperplasia with Reversible Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mohammad A. Alqahtani

    2015-01-01

    Full Text Available Congenital adrenal hyperplasia (CAH due to steroid 11β-hydroxylase deficiency is the second most common form of CAH, resulting from a mutation in the CYP11B1 gene. Steroid 11β-hydroxylase deficiency results in excessive mineralcorticoids and androgen production leading to hypertension, precocious puberty with acne, enlarged penis, and hyperpigmentation of scrotum of genetically male infants. In the present study, we reported 3 male cases from a Saudi family who presented with penile enlargement, progressive darkness of skin, hypertension, and cardiomyopathy. The elder patient died due to heart failure and his younger brothers were treated with hydrocortisone and antihypertensive medications. Six months following treatment, cardiomyopathy disappeared with normal blood pressure and improvement in the skin pigmentation. The underlying molecular defect was investigated by PCR-sequencing analysis of all coding exons and intron-exon boundary of the CYP11B1 gene. A novel biallelic mutation c.780 G>A in exon 4 of the CYP11B1 gene was found in the patients. The mutation created a premature stop codon at amino acid 260 (p.W260∗, resulting in a truncated protein devoid of 11β-hydroxylase activity. Interestingly, a somatic mutation at the same codon (c.779 G>A, p.W260∗ was reported in a patient with papillary thyroid cancer (COSMIC database. In conclusion, we have identified a novel nonsense mutation in the CYP11B1 gene that causes classic steroid 11β-hydroxylase deficient CAH. Cardiomyopathy and cardiac failure can be reversed by early diagnosis and treatment.

  1. Equine cytochrome P450 2B6 — Genomic identification, expression and functional characterization with ketamine

    International Nuclear Information System (INIS)

    Peters, L.M.; Demmel, S.; Pusch, G.; Buters, J.T.M.; Thormann, W.; Zielinski, J.; Leeb, T.; Mevissen, M.; Schmitz, A.

    2013-01-01

    Ketamine is an anesthetic and analgesic regularly used in veterinary patients. As ketamine is almost always administered in combination with other drugs, interactions between ketamine and other drugs bear the risk of either adverse effects or diminished efficacy. Since cytochrome P450 enzymes (CYPs) play a pivotal role in the phase I metabolism of the majority of all marketed drugs, drug–drug interactions often occur at the active site of these enzymes. CYPs have been thoroughly examined in humans and laboratory animals, but little is known about equine CYPs. The characterization of equine CYPs is essential for a better understanding of drug metabolism in horses. We report annotation, cloning and heterologous expression of the equine CYP2B6 in V79 Chinese hamster fibroblasts. After computational annotation of all CYP2B genes, the coding sequence (CDS) of equine CYP2B6 was amplified by RT-PCR from horse liver total RNA and revealed an amino acid sequence identity of 77% and a similarity of 93.7% to its human ortholog. A non-synonymous variant c.226G>A in exon 2 of the equine CYP2B6 was detected in 97 horses. The mutant A-allele showed an allele frequency of 82%. Two further variants in exon 3 were detected in one and two horses of this group, respectively. Transfected V79 cells were incubated with racemic ketamine and norketamine as probe substrates to determine metabolic activity. The recombinant equine CYP2B6 N-demethylated ketamine to norketamine and produced metabolites of norketamine, such as hydroxylated norketamines and 5,6-dehydronorketamine. V max for S-/and R-norketamine formation was 0.49 and 0.45 nmol/h/mg cellular protein and K m was 3.41 and 2.66 μM, respectively. The N-demethylation of S-/R-ketamine was inhibited concentration-dependently with clopidogrel showing an IC 50 of 5.63 and 6.26 μM, respectively. The functional importance of the recorded genetic variants remains to be explored. Equine CYP2B6 was determined to be a CYP enzyme involved in

  2. Equine cytochrome P450 2B6 — Genomic identification, expression and functional characterization with ketamine

    Energy Technology Data Exchange (ETDEWEB)

    Peters, L.M.; Demmel, S. [Division Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University Bern, Laenggassstr. 124, 3012 Bern (Switzerland); Pusch, G.; Buters, J.T.M. [ZAUM — Center of Allergy and Environment, Helmholtz Zentrum München/Technische Universität München, Biedersteiner Str. 29, 80802 München (Germany); Thormann, W. [Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Murtenstrasse 35, 3010 Bern (Switzerland); Zielinski, J. [Division Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University Bern, Laenggassstr. 124, 3012 Bern (Switzerland); Leeb, T. [Institute of Genetics, Vetsuisse Faculty, University Bern, Bremgartenstr. 109, 3012 Bern (Switzerland); Mevissen, M. [Division Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University Bern, Laenggassstr. 124, 3012 Bern (Switzerland); Schmitz, A., E-mail: andrea.schmitz@vetsuisse.unibe.ch [Division Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University Bern, Laenggassstr. 124, 3012 Bern (Switzerland)

    2013-01-01

    Ketamine is an anesthetic and analgesic regularly used in veterinary patients. As ketamine is almost always administered in combination with other drugs, interactions between ketamine and other drugs bear the risk of either adverse effects or diminished efficacy. Since cytochrome P450 enzymes (CYPs) play a pivotal role in the phase I metabolism of the majority of all marketed drugs, drug–drug interactions often occur at the active site of these enzymes. CYPs have been thoroughly examined in humans and laboratory animals, but little is known about equine CYPs. The characterization of equine CYPs is essential for a better understanding of drug metabolism in horses. We report annotation, cloning and heterologous expression of the equine CYP2B6 in V79 Chinese hamster fibroblasts. After computational annotation of all CYP2B genes, the coding sequence (CDS) of equine CYP2B6 was amplified by RT-PCR from horse liver total RNA and revealed an amino acid sequence identity of 77% and a similarity of 93.7% to its human ortholog. A non-synonymous variant c.226G>A in exon 2 of the equine CYP2B6 was detected in 97 horses. The mutant A-allele showed an allele frequency of 82%. Two further variants in exon 3 were detected in one and two horses of this group, respectively. Transfected V79 cells were incubated with racemic ketamine and norketamine as probe substrates to determine metabolic activity. The recombinant equine CYP2B6 N-demethylated ketamine to norketamine and produced metabolites of norketamine, such as hydroxylated norketamines and 5,6-dehydronorketamine. V{sub max} for S-/and R-norketamine formation was 0.49 and 0.45 nmol/h/mg cellular protein and K{sub m} was 3.41 and 2.66 μM, respectively. The N-demethylation of S-/R-ketamine was inhibited concentration-dependently with clopidogrel showing an IC{sub 50} of 5.63 and 6.26 μM, respectively. The functional importance of the recorded genetic variants remains to be explored. Equine CYP2B6 was determined to be a CYP

  3. Differential protein expression and localization of CYP450 enzymes in three species of earthworm; is this a reflection of environmental adaptation?

    Science.gov (United States)

    Lu, Xiaoxu; Li, Yinsheng; Thunders, Michelle; Cavanagh, Jo; Matthew, Cory; Wang, Xiuhong; Zhou, Xinchu; Qiu, Jiangping

    2017-03-01

    Cytochrome P450 (CYP450) is a hemoprotein superfamily, among which CYP1, CYP2 and CYP3 play a major role in the metabolism of vast array of xenobiotics and endobiotics. This paper reports on three CYP enzyme variants (CYP1A2, CYP2E1 and CYP3A4) in three species of earthworm (Eisenia fetida, Metaphire guillelmi and Amynthas carnosus). The relative expression levels and localization of the three associated proteins were investigated at three life-cycle points (juvenile, sub-adult and adult), through comparison of anterior and posterior body tissue and between specific organs (body wall, intestine and reproductive tissues) using western blot analysis. This study confirmed the presence of CYP3A4, CYP1A2 and CYP2E1 in all three species of earthworm tested. The levels of expression varied with earthworm species, age, and body location. These differences in occurrence of the three CYP enzymes appeared to reflect the ecological niche (the spatial and temporal location and functional relationship of each individual or population in populations or communities), and the likelihood of contact with soil contaminants of the respective species. These results may help to explain why earthworms are capable of adapting to very different and extensively polluted soil environments and provide important data for subsequent ecotoxicology and ecological adaptability studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    International Nuclear Information System (INIS)

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind

    2011-01-01

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR–RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 ± 2.15 vs. 6.24 ± 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: ► Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. ► Workers exposed to some OPs demonstrated increased DNA damage. ► CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. ► Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.

  5. Newly identified CYP2C93 is a functional enzyme in rhesus monkey, but not in cynomolgus monkey.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Uno

    Full Text Available Cynomolgus monkey and rhesus monkey are used in drug metabolism studies due to their evolutionary closeness and physiological resemblance to human. In cynomolgus monkey, we previously identified cytochrome P450 (P450 or CYP 2C76 that does not have a human ortholog and is partly responsible for species differences in drug metabolism between cynomolgus monkey and human. In this study, we report characterization of CYP2C93 cDNA newly identified in cynomolgus monkey and rhesus monkey. The CYP2C93 cDNA contained an open reading frame of 490 amino acids approximately 84-86% identical to human CYP2Cs. CYP2C93 was located in the genomic region, which corresponded to the intergenic region in the human genome, indicating that CYP2C93 does not correspond to any human genes. CYP2C93 mRNA was expressed predominantly in the liver among 10 tissues analyzed. The CYP2C93 proteins heterologously expressed in Escherichia coli metabolized human CYP2C substrates, diclofenac, flurbiprofen, paclitaxel, S-mephenytoin, and tolbutamide. In addition to a normal transcript (SV1, an aberrantly spliced transcript (SV2 lacking exon 2 was identified, which did not give rise to a functional protein due to frameshift and a premature termination codon. Mini gene assay revealed that the genetic variant IVS2-1G>T at the splice site of intron 1, at least partly, accounted for the exon-2 skipping; therefore, this genotype would influence CYP2C93-mediated drug metabolism. SV1 was expressed in 6 of 11 rhesus monkeys and 1 of 8 cynomolgus monkeys, but the SV1 in the cynomolgus monkey was nonfunctional due to a rare null genotype (c.102T>del. These results suggest that CYP2C93 can play roles as a drug-metabolizing enzyme in rhesus monkeys (not in cynomolgus monkeys, although its relative contribution to drug metabolism has yet to be validated.

  6. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    International Nuclear Information System (INIS)

    Zhang, Yuanyuan; Liu, Junhong

    2011-01-01

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  7. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China); Liu, Junhong, E-mail: liujh@qust.edu.cn [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China)

    2011-05-15

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  8. Molecular cloning and expression analysis of fushi tarazu factor 1 in the brain of air-breathing catfish, Clarias gariepinus.

    Directory of Open Access Journals (Sweden)

    Parikipandla Sridevi

    Full Text Available BACKGROUND: Fushi tarazu factor 1 (FTZ-F1 encodes an orphan nuclear receptor belonging to the nuclear receptor family 5A (NR5A which includes adrenal 4-binding protein or steroidogenic factor-1 (Ad4BP/SF-1 and liver receptor homologue 1 (LRH-1 and plays a pivotal role in the regulation of aromatases. METHODOLOGY/PRINCIPAL FINDINGS: Present study was aimed to understand the importance of FTZ-F1 in relation to brain aromatase (cyp19a1b during development, recrudescence and after human chorionic gonadotropin (hCG induction. Initially, we cloned FTZ-F1 from the brain of air-breathing catfish, Clarias gariepinus through degenerate primer RT-PCR and RACE. Its sequence analysis revealed high homology with other NR5A1 group members Ad4BP/SF-1 and LRH-1, and also analogous to the spatial expression pattern of the latter. In order to draw functional correlation of cyp19a1b and FTZ-F1, we analyzed the expression pattern of the latter in brain during gonadal ontogeny, which revealed early expression during gonadal differentiation. The tissue distribution both at transcript and protein levels revealed its prominent expression in brain along with liver, kidney and testis. The expression pattern of brain FTZ-F1 during reproductive cycle and after hCG induction, in vivo was analogous to that of cyp19a1b shown in our earlier study indicating its involvement in recrudescence. CONCLUSIONS/SIGNIFICANCE: Based on our previous results on cyp19a1b and the present data, it is plausible to implicate potential roles for brain FTZ-F1 in ovarian differentiation and recrudescence process probably through regulation of cyp19a1b in teleosts. Nevertheless, these interactions would require primary coordinated response from ovarian aromatase and its related transcription factors.

  9. Inhibition of urethane-induced genotoxicity and cell proliferation in CYP2E1-null mice

    International Nuclear Information System (INIS)

    Hoffler, Undi; Dixon, Darlene; Peddada, Shyamal; Ghanayem, Burhan I.

    2005-01-01

    Urethane is a multi-site animal carcinogen and was classified as 'reasonably anticipated to be a human carcinogen.' Urethane is a fermentation by-product and found at appreciable levels in alcoholic beverages and foods such as bread and cheese. Recent work in this laboratory demonstrated for the first time that CYP2E1 is the principal enzyme responsible for urethane metabolism. The current studies were undertaken to assess the relationships between CYP2E1-mediated metabolism and urethane-induced genotoxicity and cell proliferation as determined by induction of micronucleated erythrocytes (MN) and expression of Ki-67, respectively, using CYP2E1-null and wild-type mice. Urethane was administered at 0 (vehicle), 1, 10, or 100 mg/kg/day (p.o.), 5 days/week for 6 weeks. A significant dose-dependent increase in MN was observed in wild-type mice; however, a slight increase was measured in the MN-polychromatic erythrocytes in CYP2E1-null mice treated with 100 mg/kg. A significant increase in the expression of Ki-67 was detected in the livers and the lungs (terminal bronchioles, alveoli, and bronchi) of wild-type mice administered 100 mg urethane/kg in comparison to controls. In contrast, CYP2E1-null mice administered this dose exhibited negligible alterations in Ki-67 expression in the livers and lungs compared to controls. Interestingly, while Ki-67 expression in the forestomach decreased in wild-type mice, it increased in CYP2E1-null mice. Subsequent comparative metabolism studies demonstrated that total urethane-derived radioactivity in the plasma, liver, and lung was significantly higher in CYP2E1-null versus wild-type mice and un-metabolized urethane constituted greater than 83% of the radioactivity in CYP2E1-null mice. Un-metabolized urethane was not detectable in the plasma, liver, and lung of wild-type mice. In conclusion, these data demonstrated that CYP2E1-mediated metabolism of urethane, presumably via epoxide formation, is necessary for the induction of

  10. A search for new CYP3A4 variants as determinants of tacrolimus dose requirements in renal-transplanted patients.

    Science.gov (United States)

    Tavira, Beatriz; Coto, Eliecer; Diaz-Corte, Carmen; Alvarez, Victoria; López-Larrea, Carlos; Ortega, Francisco

    2013-08-01

    The CYP3A5*3 and CYP3A4*1B alleles have been related with tacrolimus (Tac) dose requirements. The rare CYP3A4*22 variant has also been associated with a significantly lower Tac dose. We genotyped the three single-nucleotide polymorphisms in 206 kidney-transplanted patients who received Tac as the primary immunosuppressor. CYP3A5*1 and CYP3A4*1B allele carriers received a significantly higher Tac dose (PCYP3A4*22 genotypes, either nominally or according to the CYP3A5 genotype (expressers vs. nonexpressers). Sequencing of CYP3A4 coding exons in a total of 15 patients revealed only one nonreported missense change (p.P227>T) in one patient. We concluded that CYP3A5*3 and CYP3A4*1B were the main determinants of the Tac dose-adjusted blood concentration in our cohort of renal-transplanted patients.

  11. Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide in human liver microsomes.

    Science.gov (United States)

    Granvil, C P; Madan, A; Sharkawi, M; Parkinson, A; Wainer, I W

    1999-04-01

    The central nervous system toxicity of ifosfamide (IFF), a chiral antineoplastic agent, is thought to be dependent on its N-dechloroethylation by hepatic cytochrome P-450 (CYP) enzymes. The purpose of this study was to identify the human CYPs responsible for IFF-N-dechloroethylation and their corresponding regio- and enantioselectivities. IFF exists in two enantiomeric forms, (R) - and (S)-IFF, which can be dechloroethylated at either the N2 or N3 positions, producing the corresponding (R,S)-2-dechloroethyl-IFF [(R, S)-2-DCE-IFF] and (R,S)-3-dechloroethyl-IFF [(R,S)-3-DCE-IFF]. The results of the present study suggest that the production of (R)-2-DCE-IFF and (S)-3-DCE-IFF from (R)-IFF is catalyzed by different CYPs as is the production of (S)-2-DCE-IFF and (R)-3-DCE-IFF from (S)-IFF. In vitro studies with a bank of human liver microsomes revealed that the sample-to-sample variation in the production of (S)-3-DCE-IFF from (R)-IFF and (S)-2-DCE-IFF from (S)-IFF was highly correlated with the levels of (S)-mephenytoin N-demethylation (CYP2B6), whereas (R)-2-DCE-IFF production from (R)-IFF and (R)-3-DCE-IFF production from (S)-IFF were both correlated with the activity of testosterone 6beta-hydroxylation (CYP3A4/5). Experiments with cDNA-expressed P-450 and antibody and chemical inhibition studies supported the conclusion that the formation of (S)-3-DCE-IFF and (S)-2-DCE-IFF is catalyzed primarily by CYP2B6, whereas (R)-2-DCE-IFF and (R)-3-DCE-IFF are primarily the result of CYP3A4/5 activity.

  12. Flagellar region 3b supports strong expression of integrated DNA and the highest chromosomal integration efficiency of the Escherichia coli flagellar regions.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2015-07-01

    The Gram-negative bacterium Escherichia coli is routinely used as the chassis for a variety of biotechnology and synthetic biology applications. Identification and analysis of reliable chromosomal integration and expression target loci is crucial for E. coli engineering. Chromosomal loci differ significantly in their ability to support integration and expression of the integrated genetic circuits. In this study, we investigate E. coli K12 MG1655 flagellar regions 2 and 3b. Integration of the genetic circuit into seven and nine highly conserved genes of the flagellar regions 2 (motA, motB, flhD, flhE, cheW, cheY and cheZ) and 3b (fliE, F, G, J, K, L, M, P, R), respectively, showed significant variation in their ability to support chromosomal integration and expression of the integrated genetic circuit. While not reducing the growth of the engineered strains, the integrations into all 16 target sites led to the loss of motility. In addition to high expression, the flagellar region 3b supports the highest efficiency of integration of all E. coli K12 MG1655 flagellar regions and is therefore potentially the most suitable for the integration of synthetic genetic circuits. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Mutation of foxl2 or cyp19a1a Results in Female to Male Sex Reversal in XX Nile Tilapia.

    Science.gov (United States)

    Zhang, Xianbo; Li, Mengru; Ma, He; Liu, Xingyong; Shi, Hongjuan; Li, Minghui; Wang, Deshou

    2017-08-01

    It is well accepted that Forkhead box protein L2 (Foxl2) and aromatase (Cyp19a1; the enzyme responsible for estrogen synthesis) are critical for ovarian development in vertebrates. Knockouts of Foxl2 and Cyp19a1 in goat, mouse, and zebrafish have revealed similar but not identical functions across species. Functional analyses of these two genes in other animals are needed to elucidate their conserved roles in vertebrate sexual development. In this study, we established foxl2 and cyp19a1a mutant lines in Nile tilapia. Both foxl2-/- and cyp19a1a-/- XX fish displayed female-to-male sex reversal. Sf1, Dmrt1, and Gsdf were upregulated in the foxl2-/- and the cyp19a1a-/- XX gonads. Downregulation of Cyp19a1a and serum estradiol-17β level, and upregulation of Cyp11b2 and serum 11-ketotestosterone level were observed in foxl2-/- XX fish. The mutant phenotype of foxl2-/- XX individuals could be rescued by 17β-estradiol treatment from 5 to 30 days after hatching (dah). Upregulation of Star1, the enzyme involved in androgen production in tilapia, was also observed in the foxl2-/- XX gonad at 30 and 90 dah. In vitro promoter analyses consistently demonstrated that Foxl2 could suppress the transcription of star1 in a dose-dependent manner. In addition, compared with the control XX gonad, fewer germ cells were detected in the foxl2-/- XX, cyp19a1a-/- XX, and control XY gonads 10 dah. These results demonstrate that Foxl2 promotes ovarian development by upregulating Cyp19a1a expression and repressing male pathway gene expression. These results extend the study of Foxl2 and Cyp19a1a loss of function to a commercially important fish species. Copyright © 2017 Endocrine Society.

  14. Generation of a human iPSC line from a patient with congenital glaucoma caused by mutation in CYP1B1 gene

    Directory of Open Access Journals (Sweden)

    Arantxa Bolinches-Amorós

    2018-04-01

    Full Text Available The human iPSC cell line, GLC-FiPS4F1 (ESi047-A, derived from dermal fibroblast from the patient with congenital glaucoma caused by the mutation of the gene CYP1B1, was generated by non-integrative reprogramming technology using OCT3/4, SOX2, CMYC and KLF4 reprogramming factors.

  15. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46's role in a nicotine-mediated antipredator herbivore defense.

    Science.gov (United States)

    Kumar, Pavan; Pandit, Sagar S; Steppuhn, Anke; Baldwin, Ian T

    2014-01-28

    Manduca sexta (Ms) larvae are known to efficiently excrete ingested nicotine when feeding on their nicotine-producing native hostplant, Nicotiana attenuata. Here we describe how ingested nicotine is co-opted for larval defense by a unique mechanism. Plant-mediated RNAi was used to silence a midgut-expressed, nicotine-induced cytochrome P450 6B46 (CYP6B46) in larvae consuming transgenic N. attenuata plants producing MsCYP6B46 dsRNA. These and transgenic nicotine-deficient plants were planted into native habitats to study the phenotypes of larvae feeding on these plants and the behavior of their predators. The attack-behavior of a native wolf spider (Camptocosa parallela), a major nocturnal predator, provided the key to understanding MsCYP6B46's function: spiders clearly preferred CYP6B46-silenced larvae, just as they had preferred larvae fed nicotine-deficient plants. MsCYP6B46 redirects a small amount (0.65%) of ingested nicotine from the midgut into hemolymph, from which nicotine is exhaled through the spiracles as an antispider signal. CYP6B46-silenced larvae were more susceptible to spider-attack because they exhaled less nicotine because of lower hemolymph nicotine concentrations. CYP6B46-silenced larvae were impaired in distributing ingested nicotine from midgut to hemolymph, but not in the clearing of hemolymph nicotine or in the exhalation of nicotine from hemolymph. MsCYP6B46 could be a component of a previously hypothesized pump that converts nicotine to a short-lived, transportable, metabolite. Other predators, big-eyed bugs, and antlion larvae were insensitive to this defense. Thus, chemical defenses, too toxic to sequester, can be repurposed for defensive functions through respiration as a form of defensive halitosis, and predators can assist the functional elucidation of herbivore genes.

  16. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satyender [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Kumar, Vivek [Environmental Biochemistry and Molecular Biology laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi-110095 (India); Vashisht, Kapil; Singh, Priyanka [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Banerjee, Basu Dev, E-mail: banerjeebd@hotmail.com [Environmental Biochemistry and Molecular Biology laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi-110095 (India); Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Jain, Sudhir Kumar [Centre for Epidemiology and Parasitic Diseases, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Rai, Arvind [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India)

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.

  17. The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b.

    Science.gov (United States)

    Kong, Guanghui; Zhao, Yao; Jing, Maofeng; Huang, Jie; Yang, Jin; Xia, Yeqiang; Kong, Liang; Ye, Wenwu; Xiong, Qin; Qiao, Yongli; Dong, Suomeng; Ma, Wenbo; Wang, Yuanchao

    2015-08-01

    Plant pathogens secrete an arsenal of effector proteins to impair host immunity. Some effectors possess enzymatic activities that can modify their host targets. Previously, we demonstrated that a Phytophthora sojae RXLR effector Avr3b acts as a Nudix hydrolase when expressed in planta; and this enzymatic activity is required for full virulence of P. sojae strain P6497 in soybean (Glycine max). Interestingly, recombinant Avr3b produced by E. coli does not have the hydrolase activity unless it was incubated with plant protein extracts. Here, we report the activation of Avr3b by a prolyl-peptidyl isomerase (PPIase), cyclophilin, in plant cells. Avr3b directly interacts with soybean cyclophilin GmCYP1, which activates the hydrolase activity of Avr3b in a PPIase activity-dependent manner. Avr3b contains a putative Glycine-Proline (GP) motif; which is known to confer cyclophilin-binding in other protein substrates. Substitution of the Proline (P132) in the putative GP motif impaired the interaction of Avr3b with GmCYP1; as a result, the mutant Avr3bP132A can no longer be activated by GmCYP1, and is also unable to promote Phytophthora infection. Avr3b elicits hypersensitive response (HR) in soybean cultivars producing the resistance protein Rps3b, but Avr3bP132A lost its ability to trigger HR. Furthermore, silencing of GmCYP1 rendered reduced cell death triggered by Avr3b, suggesting that GmCYP1-mediated Avr3b maturation is also required for Rps3b recognition. Finally, cyclophilins of Nicotiana benthamiana can also interact with Avr3b and activate its enzymatic activity. Overall, our results demonstrate that cyclophilin is a "helper" that activates the enzymatic activity of Avr3b after it is delivered into plant cells; as such, cyclophilin is required for the avirulence and virulence functions of Avr3b.

  18. Analysis of cellular responses to aflatoxin B1 in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    International Nuclear Information System (INIS)

    Guo Yingying; Breeden, Linda L.; Fan, Wenhong; Zhao Lueping; Eaton, David L.; Zarbl, Helmut

    2006-01-01

    Aflatoxin B1 (AFB 1 ) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB 1 is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N 7 -guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB 1 , a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB 1 that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB 1 treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB 1 -treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific transcripts cannot be explained by

  19. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention

    International Nuclear Information System (INIS)

    Androutsopoulos, Vasilis P; Tsatsakis, Aristidis M; Spandidos, Demetrios A

    2009-01-01

    CYP1A1 is one of the main cytochrome P450 enzymes, examined extensively for its capacity to activate compounds with carcinogenic properties. Continuous exposure to inhalation chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor (AhR). Although the latter has long been recognized as a ligand-induced transcription factor, which is responsible for the xenobiotic activating pathway of several phase I and phase II metabolizing enzymes, recent evidence suggests that the AhR is involved in various cell signaling pathways critical to cell cycle regulation and normal homeostasis. Disregulation of these pathways is implicated in tumor progression. In addition, it is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity. Ultimately the contribution of CYP1A1 to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxication and dietary natural product extrahepatic metabolism

  20. Acetaldehyde and parkinsonism: role of CYP450 2E1

    Directory of Open Access Journals (Sweden)

    Francesca eVaglini

    2013-06-01

    Full Text Available The present review update the relationship between acetaldehyde and parkinsonism with a specific focus on the role of P450 system and CYP 2E1 isozyme particularly.We have indicated that acetaldehyde is able to enhance the parkinsonism induced in mice by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin able to damage the nigrostriatal dopaminergic pathway. Similarly diethyldithiocarbamate, the main metabolite of disulfiram, a drug widely used to control alcoholism, diallylsulfide and phenylisothiocyanate also markedly enhance the toxin-related parkinsonism. All these compounds are substrate/inhibitors of CYP450 2E1 isozyme. The presence of CYP 2E1 has been detected in the dopamine neurons of rodent Substantia Nigra, but a precise function of the enzyme has not been elucidated yet. By treating CYP 2E1 knockout mice with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the Substantia Nigra induced lesion was significantly reduced when compared with the lesion observed in wild-type animals. Several in vivo and in vitro studies led to the conclusion that CYP 2E1 may enhance the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice by increasing free radical production inside the dopaminergic neurons. Acetaldehyde is a good substrate for CYP 2E1 enzyme as the other substrate-inhibitors and by this way may facilitate the susceptibility of dopaminergic neurons to toxic events. The literature suggests that ethanol and/or disulfiram may be responsible for toxic parkinsonism in human and it indicates that basal ganglia are the major targets of disulfiram toxicity. A very recent study reports that there are a decreased methylation of the CYP 2E1 gene and increased expression of CYP 2E1 mRNA in Parkinson’s Disease patient brains. This study suggests that epigenetic variants of this cytochrome contribute to the susceptibility, thus confirming multiples lines of evidence which indicate a link between environmental toxins and

  1. Possible involvement of pregnane X receptor–enhanced CYP24 expression in drug-induced osteomalacia

    Science.gov (United States)

    Pascussi, Jean Marc; Robert, Agnes; Nguyen, Minh; Walrant-Debray, Odile; Garabedian, Michèle; Martin, Pascal; Pineau, Thierry; Saric, Jean; Navarro, Fréderic; Maurel, Patrick; Vilarem, Marie Josè

    2005-01-01

    Vitamin D controls calcium homeostasis and the development and maintenance of bones through vitamin D receptor activation. Prolonged therapy with rifampicin or phenobarbital has been shown to cause vitamin D deficiency or osteomalacia, particularly in patients with marginal vitamin D stores. However, the molecular mechanism of this process is unknown. Here we show that these drugs lead to the upregulation of 25-hydroxyvitamin D3-24-hydroxylase (CYP24) gene expression through the activation of the nuclear receptor pregnane X receptor (PXR; NR1I2). CYP24 is a mitochondrial enzyme responsible for inactivating vitamin D metabolites. CYP24 mRNA is upregulated in vivo in mice by pregnenolone 16α-carbonitrile and dexamethasone, 2 murine PXR agonists, and in vitro in human hepatocytes by rifampicin and hyperforin, 2 human PXR agonists. Moreover, rifampicin increased 24-hydroxylase activity in these cells, while, in vivo in mice, pregnenolone 16α-carbonitrile increased the plasma concentration of 24,25-dihydroxyvitamin D3. Transfection of PXR in human embryonic kidney cells resulted in rifampicin-mediated induction of CYP24 mRNA. Analysis of the human CYP24 promoter showed that PXR transactivates the sequence between –326 and –142. We demonstrated that PXR binds to and transactivates the 2 proximal vitamin D–responsive elements of the human CYP24 promoter. These data suggest that xenobiotics and drugs can modulate CYP24 gene expression and alter vitamin D3 hormonal activity and calcium homeostasis through the activation of PXR. PMID:15630458

  2. Lentiviral transgenic microRNA-based shRNA suppressed mouse cytochromosome P450 3A (CYP3A expression in a dose-dependent and inheritable manner.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available Cytochomosome P450 enzymes (CYP are heme-containing monooxygenases responsible for oxidative metabolism of many exogenous and endogenous compounds including drugs. The species difference of CYP limits the extent to which data obtained from animals can be translated to humans in pharmacodynamics or pharmacokinetics studies. Transgenic expression of human CYP in animals lacking or with largely reduced endogenous CYP counterparts is recognized as an ideal strategy to correct CYP species difference. CYP3A is the most abundant CYP subfamily both in human and mammals. In this study, we designed a microRNA-based shRNA (miR-shRNA simultaneously targeting four members of mouse CYP3A subfamily (CYP3A11, CYP3A16, CYP3A41 and CYP3A44, and transgenic mice expressing the designed miR-shRNA were generated by lentiviral transgenesis. Results showed that the CYP3A expression level in transgenic mice was markedly reduced compared to that in wild type or unrelated miR-shRNA transgenic mice, and was inversely correlated to the miR-shRNA expression level. The CYP3A expression levels in transgenic offspring of different generations were also remarkably lower compared to those of controls, and moreover the inhibition rate of CYP3A expression remained comparable over generations. The ratio of the targeted CYP3A transcriptional levels was comparable between knockdown and control mice of the same gender as detected by RT-PCR DGGE analysis. These data suggested that transgenic miR-shRNA suppressed CYP3A expression in a dose-dependent and inheritable manner, and transcriptional levels of the targeted CYP3As were suppressed to a similar extent. The observed knockdown efficacy was further confirmed by enzymatic activity analysis, and data showed that CYP3A activities in transgenic mice were markedly reduced compared to those in wild-type or unrelated miR-shRNA transgenic controls (1.11±0.71 vs 5.85±1.74, 5.9±2.4; P<0.01. This work laid down a foundation to further knock

  3. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    International Nuclear Information System (INIS)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2010-01-01

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  4. The genes of all seven CYP3A isoenzymes identified in the equine genome are expressed in the airways of horses.

    Science.gov (United States)

    Tydén, E; Löfgren, M; Hakhverdyan, M; Tjälve, H; Larsson, P

    2013-08-01

    In the present study, we examined the gene expression of cytochrome P450 3A (CYP3A) isoenzymes in the tracheal and bronchial mucosa and in the lung of equines using TaqMan probes. The results show that all seven CYP3A isoforms identified in the equine genome, that is, CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP3A129, are expressed in the airways of the investigated horses. Though in previous studies, CYP3A129 was found to be absent in equine intestinal mucosa and liver, this CYP3A isoform is expressed in the airways of horses. The gene expression of the CYP3A isoenzymes varied considerably between the individual horses studied. However, in most of the horses CYP3A89, CYP3A93, CYP3A96, CYP3A97 and CYP3A129 were expressed to a high extent, while CYP3A94 and CYP3A95 were expressed to a low extent in the different parts of the airways. The CYP3A isoenzymes present in the airways may play a role in the metabolic degradation of inhaled xenobiotics. In some instances, the metabolism may, however, result in bioactivation of the xenobiotics and subsequent tissue injury. © 2012 John Wiley & Sons Ltd.

  5. Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.

    Science.gov (United States)

    Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise

    2015-08-01

    We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Pharmacokinetic interactions between glimepiride and rosuvastatin in healthy Korean subjects: does the SLCO1B1 or CYP2C9 genetic polymorphism affect these drug interactions?

    Directory of Open Access Journals (Sweden)

    Kim CO

    2017-02-01

    Full Text Available Choon Ok Kim,1 Eun Sil Oh,2 Hohyun Kim,3 Min Soo Park1,4 1Department of Clinical Pharmacology, Severance Hospital, Yonsei University College of Medicine, Seoul, 2Department of Pharmaceutical Medicine and Regulatory Sciences, College of Medicine and Pharmacy, Yonsei University, Incheon, 3Korea Medicine Research Institute, Inc., Seongnam, 4Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea Abstract: To improve cardiovascular outcomes, dyslipidemia in patients with diabetes needs to be treated. Thus, these patients are likely to take glimepiride and rosuvastatin concomitantly. Therefore, this study aimed to evaluate the pharmacokinetic (PK interactions between these two drugs in healthy males and to explore the effect of SLCO1B1 and CYP2C9 polymorphisms on their interactions in two randomized, open-label crossover studies. Glimepiride was studied in part 1 and rosuvastatin in part 2. Twenty-four participants were randomly assigned to each part. All subjects (n=24 completed part 1, and 22 subjects completed part 2. A total of 38 subjects among the participants of the PK interaction studies were enrolled in the genotype study to analyze their SLCO1B1 and CYP2C9 polymorphisms retrospectively (n=22 in part 1, n=16 in part 2. Comparison of the PK and safety of each drug alone with those of the drugs in combination showed that both glimepiride and rosuvastatin did not interact with each other and had tolerable safety profiles in all subjects. However, with regard to glimepiride PK, the SLCO1B1 521TC group had a significantly higher maximum plasma concentration (Cmax,ss and area under the plasma concentration–time curve during the dose interval at steady state (AUCt,ss for glimepiride in combination with rosuvastatin than those for glimepiride alone. However, other significant effects of the SLCO1B1 or CYP2C9 polymorphism on the interaction between the two drugs were not observed. In conclusion, there were no significant PK

  7. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling

    International Nuclear Information System (INIS)

    Yang, Chao; Li, Changyuan; Li, Minle; Tong, Xuemei; Hu, Xiaowen; Yang, Xuhan; Yan, Xiaomei; He, Lin; Wan, Chunling

    2015-01-01

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show that CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. - Highlights: • Knockdown of CYP2S1 expression improve HCT116 cell proliferation in vitro and in vivo. • Elevate PGE2 production in CYP2S1 knockdown cell is associated with its proliferation. • Elevate PGE2 level in CYP2S1 knockdown cells enhance β-catenin accumulation. • β-catenin activate TCF/LEF and target gene expression thus promote cell proliferation

  8. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China); College of Life Science, Anhui Normal University, Wuhu 241000, Anhui (China); Li, Changyuan [College of Life Science, Anhui Normal University, Wuhu 241000, Anhui (China); Li, Minle; Tong, Xuemei [Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Hu, Xiaowen; Yang, Xuhan [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China); Yan, Xiaomei [School of Life Sciences & Biotechnology, Shanghai JiaoTong University, Shanghai 200240 (China); He, Lin, E-mail: helinhelin@gmail.com [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China); Wan, Chunling, E-mail: clwan@sjtu.edu.cn [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China)

    2015-02-15

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show that CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. - Highlights: • Knockdown of CYP2S1 expression improve HCT116 cell proliferation in vitro and in vivo. • Elevate PGE2 production in CYP2S1 knockdown cell is associated with its proliferation. • Elevate PGE2 level in CYP2S1 knockdown cells enhance β-catenin accumulation. • β-catenin activate TCF/LEF and target gene expression thus promote cell proliferation.

  9. Exposure to p,p'-DDE or dieldrin during the reproductive season alters hepatic CYP expression in largemouth bass (Micropterus salmoides).

    Science.gov (United States)

    Barber, David S; McNally, Alex J; Garcia-Reyero, Natàlia; Denslow, Nancy D

    2007-02-15

    Largemouth bass (LMB) in Central Florida living on sites with high levels of organochlorine pesticides (OCPs) have exhibited poor reproductive success and altered steroid profiles. The mechanism underlying these changes is unknown, however changes in the rate of steroid metabolism could alter steroid homeostasis. Members of the CYP2 and CYP3A families play a significant role in the metabolism of many xenobiotics and endogenous compounds, including sex steroids. Therefore, the goal of this study was to identify members of the CYP2 and CYP3A families in LMB and characterize the effects of OCP exposure on their expression. Full-length clones of two CYP3A isoforms were obtained from LMB liver, CYP3A68 and 3A69, which exhibited significant sequence divergence. Full-length clones for CYP2N14 and CYP2P11 were also obtained from LMB liver. Steady-state mRNA levels of each of these CYPs increased in both sexes between early reproductive phase (December) and peak reproductive phase (March). Expression of CYP3A68 and CYP2P11 was sexually dimorphic during peak reproductive phase with 2-fold higher expression in females and males, respectively. Foodborne exposure to 46 ppm p,p'-DDE or 0.8 ppm dieldrin for 30 days did not have a significant effect on expression of CYPs. However, 4 months exposure to p,p'-DDE induced CYP3A68 and 3A69 expression in both sexes, while dieldrin produced weak induction of CYP3A68 and suppressed CYP3A69 expression in females, but had no effect on males. Neither p,p'-DDE nor dieldrin significantly altered the expression of CYP2P11 or CYP2N14. This work demonstrates that there are significant changes in CYP expression that occur during LMB reproduction which can be modified by exposure to OCPs.

  10. Exposure to p,p′-DDE or dieldrin during the reproductive season alters hepatic CYP expression in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Barber, David S.; McNally, Alex J.; Garcia-Reyero, Natàlia; Denslow, Nancy D.

    2007-01-01

    Largemouth bass (LMB) in Central Florida living on sites with high levels of organochlorine pesticides (OCPs) have exhibited poor reproductive success and altered steroid profiles. The mechanism underlying these changes is unknown, however changes in the rate of steroid metabolism could alter steroid homeostasis. Members of the CYP2 and CYP3A families play a significant role in the metabolism of many xenobiotics and endogenous compounds, including sex steroids. Therefore, the goal of this study was to identify members of the CYP2 and CYP3A families in LMB and characterize the effects of OCP exposure on their expression. Full-length clones of two CYP3A isoforms were obtained from LMB liver, CYP3A68 and 3A69, which exhibited significant sequence divergence. Full-length clones for CYP2N14 and CYP2P11 were also obtained from LMB liver. Steady-state mRNA levels of each of these CYPs increased in both sexes between early reproductive phase (December) and peak reproductive phase (March). Expression of CYP3A68 and CYP2P11 was sexually dimorphic during peak reproductive phase with 2-fold higher expression in females and males, respectively. Foodborne exposure to 46 ppm p,p′-DDE or 0.8 ppm dieldrin for 30 days did not have a significant effect on expression of CYPs. However, 4 months exposure to p,p′-DDE induced CYP3A68 and 3A69 expression in both sexes, while dieldrin produced weak induction of CYP3A68 and suppressed CYP3A69 expression in females, but had no effect on males. Neither p,p′-DDE nor dieldrin significantly altered the expression of CYP2P11 or CYP2N14. This work demonstrates that there are significant changes in CYP expression that occur during LMB reproduction which can be modified by exposure to OCPs. PMID:17145087

  11. Cytochrome P450 1B1 mRNA levels in peripheral blood cells and exposure to polycyclic aromatic hydrocarbons in Chinese coke oven workers

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Tomoyuki; Tsugane, Shoichiro [Epidemiology and Biostatistics Division, National Cancer Center Research Institute East, 6-5-1 Kashiwanoha, Kashiwa-shi, 277-8577 Chiba (Japan); Yamano, Yuko; Kagawa, Jun [Tokyo Womens' Medical University, 8-1 Kawadacho, Shinjuku-ku, 162-8666 Tokyo (Japan); Pan, Guowei; Zhang, Shujuan [Liaoning Provincial Center for Disease Prevention and Control, 42-1 Jixian Street, 110005 Shenyang (China); Hara, Kunio [Institute for Science of Labour, 2-8-14 Miyamae-ku, 216-8501 Kawasaki (Japan); Ichiba, Masayoshi; Zhang, Jiusong [Saga Medical School, 5-1 Nabeshima, Saga-shi, 849-8501 Saga (Japan); Liu, Tiefu; Li, Landi [Angang Public Health and Anti-epidemic Station Lishan District, 23 Shengoushi Yutian Street, 114034 Anshan (China); Takahashi, Ken [University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555 Kitakyushu (Japan)

    2002-09-16

    Cytochrome P450 1B1 (CYP1B1) is induced through the Ah receptor and is involved in the activation of polycyclic aromatic hydrocarbons (PAHs). To determine the validity of a quantitative analysis of CYP1B1 mRNA in peripheral human blood cells for the estimation of PAH exposure, a real-time quantitative polymerase chain reaction method was used to measure the relative levels of CYP1B1 mRNA in 37 Chinese coke oven workers and 13 control workers. A large inter-individual difference in the levels was observed. The average level of the CYP1B1 mRNA in workers at the top work site, where the PAH exposure level from the coke ovens was highest, was significantly higher than in workers at the middle site (P<0.01) or the controls (P=0.02). A non-significant positive correlation was found between the CYP1B1 mRNA levels and urinary 1-hydroxypyrene (R=0.22, P=0.13), and a significant correlation between these mRNA levels and urinary cotinine (R=0.33, P=0.02). It was interesting that a significant positive correlation between CYP1B1 mRNA and 1-hydroxypyrene was observed in subjects with the Leu/Leu type of CYP1B1 Leu432Val polymorphism (R=0.33, P=0.02, n=38) and a non-significant correlation in subjects with the Leu/Val and Val/Val types (R=-0.36, P=0.25, n=12), although the number of subjects in this strata analysis was small. Our preliminary study suggests that PAH exposure in coke ovens and smoking maybe associated with CYP1B1 mRNA levels in peripheral blood cells although mRNA is generally unstable and could be expressed following exposure to other agents.

  12. Arsenite and its metabolites, MMAIII and DMAIII, modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice

    International Nuclear Information System (INIS)

    Medina-Diaz, I.M.; Estrada-Muniz, E.; Reyes-Hernandez, O.D.; Ramirez, P.; Vega, L.; Elizondo, G.

    2009-01-01

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA III ) and dimethylarsinous acid (DMA III ) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA III induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA III increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA III induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.

  13. Increased maternal and fetal cholesterol efflux capacity and placental CYP27A1 expression in preeclampsia.

    Science.gov (United States)

    Mistry, Hiten D; Kurlak, Lesia O; Mansour, Yosef T; Zurkinden, Line; Mohaupt, Markus G; Escher, Geneviève

    2017-06-01

    Preeclampsia is a pregnancy-specific condition that leads to increased cardiovascular risk in later life. A decrease in cholesterol efflux capacity is linked to CVD. We hypothesized that in preeclampsia there would be a disruption of maternal/fetal plasma to efflux cholesterol, as well as differences in the concentrations of both placental sterol 27-hydroxylase (CYP27A1) and apoA1 binding protein (AIBP). Total, HDL-, and ABCA1-mediated cholesterol effluxes were performed with maternal and fetal plasma from women with preeclampsia and normotensive controls (both n = 17). apoA1 and apoE were quantified by chemiluminescence, and 27-hydroxycholesterol (27-OHC) by GC-MS. Immunohistochemistry was used to determine placental expression/localization of CYP27A1, AIBP, apoA1, apoE, and SRB1. Maternal and fetal total and HDL-mediated cholesterol efflux capacities were increased in preeclampsia (by 10-20%), but ABCA1-mediated efflux was decreased (by 20-35%; P preeclampsia. Fetal plasma 27-OHC levels were decreased in preeclamptic samples ( P preeclampsia ( P = 0.04). Placental 27-OHC concentrations were also raised in preeclampsia ( P preeclampsia, to remove cholesterol from cells to limit lipid peroxidation and increase placental angiogenesis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Analysis of cellular responses to aflatoxin B{sub 1} in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yingying [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Breeden, Linda L. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Fan, Wenhong [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zhao Lueping [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Eaton, David L. [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zarbl, Helmut [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States) and Fred Hutchinson Cancer Research Center, Seattle, WA (United States)]. E-mail: hzarbl@fhcrc.org

    2006-01-29

    Aflatoxin B1 (AFB{sub 1}) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB{sub 1} is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N{sup 7}-guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB{sub 1}, a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB{sub 1} that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB{sub 1} treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB{sub 1}-treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific

  15. Metabolism of six CYP probe substrates in fetal hepatocytes

    Directory of Open Access Journals (Sweden)

    Abdul Naveed Shaik

    2016-06-01

    Full Text Available Cytochrome P-450 (CYP are the most common drug metabolizing enzymes and are abundantly expressed in liver apart from kidney, lungs, intestine, brain etc. Their expression levels change with physiological conditions and disease states. The expression of these CYPs is less in human foetus and neonates compared to adults, which results in lower clearance of xenobiotics in infants and neonates compared to adults. Hepatocytes are the cells which are largely used to study these CYPs. We have isolated hepatocytes from aborted foetus to study the metabolism of six probe substrates: phenacetin, diclofenac, S-mephenytoin, dextromethorphan, nifedipine and testosterone. The results obtained show the expression of various CYPs (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 in human foetus and their involvement in metabolism of CYP probe substrates.

  16. CYP1-mediated antiproliferative activity of dietary flavonoids in MDA-MB-468 breast cancer cells

    International Nuclear Information System (INIS)

    Androutsopoulos, Vasilis P.; Ruparelia, Ketan; Arroo, Randolph R.J.; Tsatsakis, Aristidis M.; Spandidos, Demetrios A.

    2009-01-01

    Among the different mechanisms proposed to explain the cancer-protecting effect of dietary flavonoids, substrate-like interactions with cytochrome P450 CYP1 enzymes have recently been explored. In the present study, the metabolism of the flavonoids chrysin, baicalein, scutellarein, sinensetin and genkwanin by recombinant CYP1A1, CYP1B1 and CYP1A2 enzymes, as well as their antiproliferative activity in MDA-MB-468 human breast adenocarcinoma and MCF-10A normal breast cell lines, were investigated. Baicalein and 6-hydroxyluteolin were the only conversion products of chrysin and scutellarein metabolism by CYP1 family enzymes, respectively, while baicalein itself was not metabolized further. Sinensetin and genkwanin produced a greater number of metabolites and were shown to inhibit strongly in vitro proliferation of MDA-MB-468 cells at submicromolar and micromolar concentrations, respectively, without essentially affecting the viability of MCF-10A cells. Cotreatment of the CYP1 family inhibitor acacetin reversed the antiproliferative activity noticed for the two flavones in MDA-MB-468 cells to 13 and 14 μM respectively. In contrast chrysin, baicalein and scutellarein inhibited proliferation of MDA-MB-468 cells to a lesser extent than sinensetin and genkwanin. The metabolism of genkwanin to apigenin and of chrysin to baicalein was favored by CYP1B1 and CYP1A1, respectively. Taken together the data suggests that CYP1 family enzymes enhance the antiproliferative activity of dietary flavonoids in breast cancer cells, through bioconversion to more active products.

  17. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kim Jaoon YH

    2010-07-01

    Full Text Available Abstract Background Hydrogenases catalyze reversible reaction between hydrogen (H2 and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological function of [NiFe]-hydrogenase 1 is still ambiguous. We herein investigated the H2 production potential of [NiFe]-hydrogenase 1 of Escherichia coli in vivo and in vitro. The hyaA and hyaB genes corresponding to the small and large subunits of [NiFe]-hydrogenase 1 core enzyme, respectively, were expressed in BL21, an E. coli strain without H2 producing ability. Results Recombinant BL21 expressing [NiFe]-hydrogenase 1 actively produced H2 (12.5 mL H2/(h·L in 400 mL glucose minimal medium under micro-aerobic condition, whereas the wild type BL21 did not produce H2 even when formate was added as substrate for formate hydrogenlyase (FHL pathway. The majority of recombinant protein was produced as an insoluble form, with translocation of a small fraction to the membrane. However, the membrane fraction displayed high activity (~65% of total cell fraction, based on unit protein mass. Supplement of nickel and iron to media showed these metals contribute essentially to the function of [NiFe]-hydrogenase 1 as components of catalytic site. In addition, purified E. coli [NiFe]-hydrogenase 1 using his6-tag displayed oxygen-tolerant activity of ~12 nmol H2/(min·mg protein under a normal aeration environment, compared to [FeFe]-hydrogenase, which remains inactive under this condition. Conclusions This is the first report on physiological function of E. coli [NiFe]-hydrogenase 1 for H2 production. We found that [NiFe]-hydrogenase 1 has H2 production ability even under the existence of oxygen. This oxygen-tolerant property is a significant advantage because it is

  18. Modelling of three-dimensional structures of cytochromes P450 11B1 and 11B2.

    Science.gov (United States)

    Belkina, N V; Lisurek, M; Ivanov, A S; Bernhardt, R

    2001-12-15

    The final steps of the biosynthesis of glucocorticoids and mineralocorticoids in the adrenal cortex require the action of two different cytochromes P450--CYP11B1 and CYP11B2. Homology modelling of the three-dimensional structures of these cytochromes was performed based on crystallographic coordinates of two bacterial P450s, CYP102 (P450BM-3) and CYP108 (P450terp). Principal attention was given to the modelling of the active sites and a comparison of the active site structures of CYP11B1 and CYP11B2 was performed. It can be demonstrated that key residue contacts within the active site appear to depend on the orientation of the heme. The obtained 3D structures of CYP11B1 and CYP11B2 were used for investigation of structure-function relationships of these enzymes. Previously obtained results on naturally occurring mutants and on mutants obtained by site-directed mutagenesis are discussed.

  19. Inhibition of expression in Escherichia coli of a virulence regulator MglB of Francisella tularensis using external guide sequence technology.

    Directory of Open Access Journals (Sweden)

    Gaoping Xiao

    Full Text Available External guide sequences (EGSs have successfully been used to inhibit expression of target genes at the post-transcriptional level in both prokaryotes and eukaryotes. We previously reported that EGS accessible and cleavable sites in the target RNAs can rapidly be identified by screening random EGS (rEGS libraries. Here the method of screening rEGS libraries and a partial RNase T1 digestion assay were used to identify sites accessible to EGSs in the mRNA of a global virulence regulator MglB from Francisella tularensis, a Gram-negative pathogenic bacterium. Specific EGSs were subsequently designed and their activities in terms of the cleavage of mglB mRNA by RNase P were tested in vitro and in vivo. EGS73, EGS148, and EGS155 in both stem and M1 EGS constructs induced mglB mRNA cleavage in vitro. Expression of stem EGS73 and EGS155 in Escherichia coli resulted in significant reduction of the mglB mRNA level coded for the F. tularensis mglB gene inserted in those cells.

  20. Differential expression of CART in ewes with differing ovulation rates.

    Science.gov (United States)

    Juengel, Jennifer L; French, Michelle C; Quirke, Laurel D; Kauff, Alexia; Smith, George W; Johnstone, Peter D

    2017-04-01

    We hypothesised that cocaine- and amphetamine-regulated transcript ( CARTPT ) would be differentially expressed in ewes with differing ovulation rates. Expression of mRNA for CARTPT , as well as LHCGR , FSHR , CYP19A1 and CYP17A1 was determined in antral follicles ≥1 mm in diameter collected during the follicular phase in ewes heterozygous for the Booroola and Inverdale genes (I+B+; average ovulation rate 4) and ++ contemporaries (++; average ovulation rate 1.8). In ++ ewes ( n  = 6), CARTPT was expressed in small follicles (1 to ewes. In I+B+ ewes, 5/6 ewes did not have any follicles that expressed CARTPT , and no CART peptide was detected in any follicle examined. Expression pattern of CYP19A1 differed between I+B+ and ++ ewes with an increased percentage of small and medium follicles (3 to ewes. Many of the large follicles from the I+B+ ewes appeared non-functional and expression of LHCGR , FSHR , CYP17A1 and CYP19A1 was less than that observed in ++ ewes. Expression of FSHR and CYP17A1 was not different between groups in small and medium follicles, but LHCGR expression was approximately double in I+B+ ewes compared to that in ++ ewes. Thus, ewes with high ovulation rates had a distinct pattern of expression of CARTPT mRNA and protein compared to ewes with normal ovulation rates, providing evidence for CART being important in the regulation of ovulation rate. © 2017 Society for Reproduction and Fertility.

  1. The B isozyme creatine kinase is active as a fusion protein in Escherichia coli

    International Nuclear Information System (INIS)

    Koretsky, A.P.; Traxler, B.A.

    1989-01-01

    A cDNA encoding the B isozyme of creatine kinase CK B has been expressed in Escherichia coli from a fusion with lacZ carried by λgtll. Western blots indicate that a stable polypeptide with the appropriate mobility for the Β-galactosidase-creatine kinase Β-gal-CK B ) fusion protein cross-reacts with both Β-gal and CK B antiserum. No significant CK activity is detected in control E. coli; however, extracts from cells containing the λgtll-CK B construct have a CK activity of 1.54j0.07 μmol/min per mg protein. The fusion protein appears to provide this activity bacause immunoprecipitation of protein with Β-gal antiserum leads to a loss of CK activity from extracts. That the enzyme is active in vivo was demonstrated by detection of a phosphocreatine (PCr) peak in the 31 P NMR spectrum from E. coli grown on medium supplemented with creatine. As in mammalian brain and muscle, the PCr peak detected was sensitive to the energy status of the E. coli. (author). 17 refs.; 3 figs.; 1 tab

  2. Effects of ethanol on CYP2E1 levels and related oxidative stress using a standard balanced diet.

    Science.gov (United States)

    Azzalis, Ligia A; Fonseca, Fernando L A; Simon, Karin A; Schindler, Fernanda; Giavarotti, Leandro; Monteiro, Hugo P; Videla, Luis A; Junqueira, Virgínia B C

    2012-07-01

    Expression of cytochrome P4502E1 (CYP2E1) is very much influenced by nutritional factors, especially carbohydrate consumption, and various results concerning the expression of CYP2E1 were obtained with a low-carbohydrate diet. This study describes the effects of ethanol treatment on CYP2E1 levels and its relationship with oxidative stress using a balanced standard diet to avoid low or high carbohydrate consumption. Rats were fed for 1, 2, 3, or 4 weeks a commercial diet plus an ethanol-sucrose solution. The results have shown that ethanol administration was associated with CYP2E1 induction and stabilization without related oxidative stress. Our findings suggest that experimental models with a low-carbohydrate/high-fat diet produce some undesirable CYP2E1 changes that are not present when a balanced standard diet is given.

  3. Hepatic CYP1A involved in metabolism and sequestration of PCDD, PCDF and coplanar PCB congeners in common cormorants

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, A.; Iwata, H.; Tanabe, S. [Ehime Univ., Matsuyama (Japan); Yoneda, K.; Tobata, S. [Japan Wildlife Research Center, Tokyo (Japan)

    2004-09-15

    Wildlife is chronically exposed to complex mixtures of dioxin-like compounds via the gastrointestinal tract, whereas laboratory animals, in most cases, are administered with single or repeated dose of a defined congener through various routes for a short period. The validity of such experimental approach for their toxicokinetics is completely unproven, and many questions still remain to be resolved. Exposure to dioxin-like compounds activates the aryl hydrocarbon receptor (AHR) and regulates the transcription of cytochrome P450 (CYP) 1A and other target genes. Altered expression of CYP1A is linked with production of reactive oxygen species and metabolic activation of PHAHs. Therefore, measurement of CYP expression levels is considered as a useful approach to assess the environmental exposure to dioxin-like compounds and their effects. Common cormorants (Phalacrocorax carbo) contained considerable amount of persistent organochlorines such as dioxin-like compounds, PCBs and DDTs. Our recent study verified contamination status of PCDD/DFs and Co-PCBs and immunochemically detected CYP1A-like protein in hepatic microsomal fraction using an anti-rat CYP1A1 polyclonal antibody. However, no comprehensive data is available on whether CYP protein expressions are influenced by PCDD/DFs and Co-PCBs, and are involved in their toxicokinetics. This study therefore investigates the effects of PCDD/DFs and Co-PCBs on CYP protein expressions in Lake Biwa populations of common cormorants. The role of CYP proteins related to congener profiles of residue concentration and tissue distribution will also be discussed.

  4. The effect of lycopene on the total cytochrome P450, CYP1A2 and CYP2E1

    Directory of Open Access Journals (Sweden)

    Melva Louisa

    2009-12-01

    Full Text Available Aim: Some carotenoids such as canthaxantin, astaxanthin and beta apo-8’-carotenal were reported to have modulatoryeffect on the cytochrome P450. The present study was conducted to investigate the effects of lycopene, a nonprovitamin A carotenoid, on microsomal cytochrome P450, CYP1A2 and CYP2E1.Methods: Total cytochrome P450 levels, CYP1A2 and CYP2E1-catalyzed reactions (acetanilide 4-hydroxylation and p-nitrophenol hydroxylation were studied in the liver microsomes of male Sprague Dawley rats. Microsomes were prepared using differential centrifugation combined with calcium aggregation method. Lycopene was orally administered in the dosages of 0, 25, 50 or 100 mg/kgBW/day for 14 days in a repeated fashion. Data were analyzed using ANOVA test.Results: Total cytochrome P450 level and acetanilide 4-hydroxylase activity were unaffected by any of the treatments. The CYP2E1 probe enzyme (p-nitrophenol hydroxylase was significantly reduced by repeated administration of 100mg/ kgBW/day lycopene (7.88 + 2.04 vs 12.26 + 2.77 n mol/min/mg prot.Conclusion: The present results suggest that lycopene does not affect the total cytochrome P450 or CYP1A2 activity but it inhibits the activity of CYP2E1 (p-nitrophenol hydroxylase in the rat. (Med J Indones 2009; 18: 233-8Keywords: lycopene, cytochrome P450, CYP1A2, CYP2E1

  5. Vinclozolin, a widely used fungizide, enhanced BaP-induced micronucleus formation in human derived hepatoma cells by increasing CYP1A1 expression.

    Science.gov (United States)

    Wu, Xin-Jiang; Lu, Wen-qing; Roos, Peter H; Mersch-Sundermann, Volker

    2005-10-15

    Vinclozolin, a widely used fungicide, can be identified as a residue in numerous vegetable and fruit samples. To get insight in its genetic toxicity, we investigated the genotoxic effect of vinclozolin in the human derived hepatoma cell line HepG2 using the micronucleus (MN) assay. Additionally, to evaluate the co- or anti-mutagenic potency of vinclozolin, we treated HepG2 cells with different concentrations of vinclozolin for 24 h. Subsequently, the cells were exposed to benzo[a]pyrene (BaP) for 1h. Exposure of HepG2 cells to 50-400 microM vinclozolin alone did not cause any induction of micronuclei. However, a pronounced co-mutagenic effect was observed. MN frequencies caused by BaP increased by 30.6%, 52.8% and 65.3% after pretreatment of the cell cultures with 50, 100 and 200 microM vinclozolin, respectively. The highest concentration (400 microM) of vinclozolin tested caused cytotoxicity. Therefore, micronuclei were not considered for that concentration. To clarify the mechanism of cogenotoxicity, we assayed cytochrome P450 1A1 (CYP1A1), which plays a pivotal role in activation of BaP. Cells exposed to vinclozolin led to significant increase of CYP1A1 expression in Western blot. The result suggested that induction of CYP1A1 by vinclozolin account for its enhancing effect on genotoxicity caused by BaP.

  6. Dual-color fluorescence imaging to monitor CYP3A4 and CYP3A7 expression in human hepatic carcinoma HepG2 and HepaRG cells.

    Directory of Open Access Journals (Sweden)

    Saori Tsuji

    Full Text Available Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.

  7. Expression of Cyclophilin B is Associated with Malignant Progression and Regulation of Genes Implicated in the Pathogenesis of Breast Cancer

    OpenAIRE

    Fang, Feng; Flegler, Ayanna J.; Du, Pan; Lin, Simon; Clevenger, Charles V.

    2009-01-01

    Cyclophilin B (CypB) is a 21-kDa protein with peptidyl-prolyl cis-trans isomerase activity that functions as a transcriptional inducer for Stat5 and as a ligand for CD147. To better understand the global function of CypB in breast cancer, T47D cells with a small interfering RNA-mediated knockdown of CypB were generated. Subsequent expression profiling analysis showed that 663 transcripts were regulated by CypB knockdown, and that many of these gene products contributed to cell proliferation, ...

  8. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2010-10-15

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  9. Effects of dietary probiotic supplementation on LXRα and CYP1 gene expression, liver enzyme activities and fat metabolism in ducks.

    Science.gov (United States)

    Huang, Z; Mu, C; Chen, Y; Zhu, Z; Chen, C; Lan, L; Xu, Q; Zhao, W; Chen, G

    2015-04-01

    1. The objective of this study was to investigate the effects of dietary probiotic supplementation on liver X receptor alpha (LXRα) and cholesterol 7α-hydroxylase (CYP1) mRNA levels, protein enzymatic activities and fat metabolism in Cherry Valley Pekin ducks. 2. A total of 750 one-day-old Cherry Valley Pekin ducks were randomly divided into 5 groups with three replicates of 50 ducks each in a completely randomised experiment. Each group was fed on a basal diet supplemented with 0, 500, 1000, 1500 or 2000 mg probiotics/kg. 3. Body rate and feed conversion ratio were highest and abdominal subcutaneous fat % was lowest at 1000 mg probiotic/kg. 4. The mRNA levels of LXRα and CYP1 in liver tissue was estimated by RT-PCR; serum triglyceride (TG) and total cholesterol (TC) concentrations were measured by ELISA. 5. The expression levels and enzyme activity of LXRα and CYP1 increased in conjunction with decreases in TG and TC concentrations following probiotic supplementation to a maximum at 1000 mg probiotics/kg and decreased thereafter. 6. It is concluded that dietary probiotics can enhance LXRα and CYP1 enzyme activities in the liver and reduce lipid concentrations and fat deposition in ducks.

  10. Differential Expression of Cytochrome P450 Enzymes in Normal and Tumor Tissues from Childhood Rhabdomyosarcoma

    Science.gov (United States)

    Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli

    2014-01-01

    Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs. PMID:24699256

  11. CYP3A5* 1 is an Inhibitory Factor for Lung Cancer in Taiwanese

    Directory of Open Access Journals (Sweden)

    Kun-Tu Yeh

    2003-05-01

    Full Text Available The expression of the cytochrome P450 CYP3A5 enzymes shows a wide variation across the general population and ethnic groups. This wide disparity implies interracial differences in drug clearance and susceptibility to diseases such as cancer. CYP3A5 polymorphisms were rapidly determined using polymerase chain reaction-restriction fragment length polymorphism analysis in 113 Taiwanese patients with hepatoma, 70 with cervical cancer, 92 with breast cancer, 82 with oral cancer, 90 with thyroid cancer, 133 with lung cancer, and 270 healthy controls. The allelic frequencies of CYP3A5*1 were 25% in hepatoma patients, 33% in cervical cancer patients, 31% in breast cancer patients, 22% in oral cancer patients, 23% in thyroid cancer patients, 20% in lung cancer patients, and 27% in healthy subjects. Lung cancer patients had a significantly lower frequency (20% of CYP3A5*1 expression than healthy controls (p = 0.028, odds ratio = 1.49, 95% confidence interval = 1.04-2.13, but there was no statistically significant difference between healthy controls and other cancers. We suggest that CYP3A5*1 may play an important role in individual predisposition to lung cancer in Taiwan.

  12. Influence of aflatoxin B/sub 1/ on DNA repair in E-coli

    Energy Technology Data Exchange (ETDEWEB)

    Stehlik, G; Delac, M; Kohlwein, E

    1974-10-01

    The thymidine requiring mutant E. coli B/r T/sup -/ was incubated for 160 minutes with aflatoxin B/sub 1/ in the concentration range between 0.001 and 1.0 ..mu..g/ml. After gamma irradiation (30 krad /sup 60/Co) DNA repair was observed during 20 to 60 minutes at 37/sup 0/C. DNA was separated by means of a modified kind of gradient ultracentrifugation (the alkaline sucrose gradient contained acrylamide). By this modification better results could be obtained even with little differences in the sedimentation profile. After several repair times DNA of cells treated with 0.1 to 1.0 ..mu..g/ml aflatoxin showed no shift in its sedimentation profile as compared with the irradiated sample. This substance caused an increase in radioresistance of E. coli B/r T/sup -/ which may be due to a protection effect on DNA. This assumption is also supported by irradiation survival curves. (auth)

  13. Prevalence of Virulent Escherichia coli Belonging B1 Phylogroup in Municipal Water Supply in Dhaka, Bangladesh

    DEFF Research Database (Denmark)

    Ferdous, Jannataul; Rashid, Ridwan Bin; Tulsiani, Suhella

    isolated from drinking water in Arichpur, a low income area of Dhaka, Bangladesh. The distribution of the phylogroups and virulence genes were investigated in 200 isolates among them 110 isolates were from municipal water supply system and 90 were from household drinking water. Gene profile of virulence.......001. Therefore, it can be inferred municipal water supply was a greater contributor of pathogenic E. coli from the B1 phylogroup. Usually commensals fall in the Phylogroups A and B1. The presence of greater number of virulent B1 phylogroup isolates originating from municipal water supply indicates......Escherichia coli is a commensal organism of the digestive tracts of many vertebrates, including humans. Contamination of drinking water with pathogenic E. coli is a serious public health concern. This study focused on the distribution of phylogenetic groups and virulence gene profile of E. coli...

  14. Influence of genetic variants of CYP2D6, CYP2C9, CYP2C19 and CYP3A4 on antiepileptic drug metabolism in pediatric patients with refractory epilepsy.

    Science.gov (United States)

    López-García, Miguel A; Feria-Romero, Iris A; Serrano, Héctor; Rayo-Mares, Darío; Fagiolino, Pietro; Vázquez, Marta; Escamilla-Núñez, Consuelo; Grijalva, Israel; Escalante-Santiago, David; Orozco-Suarez, Sandra

    2017-06-01

    Identified the polymorphisms of CYP2D6, CYP2C9, CYP2C19 and CYP3A4, within a rigorously selected population of pediatric patients with drug-resistant epilepsy. The genomic DNA of 23 drug-resistant epilepsy patients and 7 patients with good responses were analyzed. Ten exons in these four genes were genotyped, and the drug concentrations in saliva and plasma were determined. The relevant SNPs with pharmacogenomics relations were CYP2D6*2 (rs16947) decreased your activity and CYP2D6*4 (rs1065852), CYP2C19*2 (rs4244285) and CYP3A4*1B (rs2740574) by association with poor metabolizer. The strongest risk factors were found in the AA genotype and allele of SNP rs3892097 from the CYP2D6 gene, followed by the alleles A and T of SNPs rs2740574 and rs2687116, respectively from CYP3A4. The most important concomitance was between homozygous genotype AA of rs3892097 and genotype AA of rs2740574 with 78.3% in drug-resistant epilepsy patients as compared to 14.3% in control patients. The results demonstrated the important role of the CYP 3A4*1B allelic variant as risk factor for developing drug resistance and CYP2D6, CYP2C19 SNPs and haplotypes may affect the response to antiepileptic drugs. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  15. Sensitivity and repair of DNA-membrane complex of E.coli B/r and E.coli B/sub(S-1) irradiated with gamma-quanta

    International Nuclear Information System (INIS)

    Morozov, I.I.; Sulimova, T.V.; Ryabchenko, N.I.; Myasnik, M.N.

    1977-01-01

    Irradiation of E. coli B/r and E. coli Bsub(S-1) with gamma-quanta (14 to 42 krad) in Tris buffer at 0 deg C causes a 85% release of DNA molecules from a DNA: membrane complex which is partly repaired on incubation of cells in Tris buffer, pH 8.1, at 37 deg C. A short-term (2 min) addition of nutrient medium to irradiated cells also rises the radioresistance of DNA: membrane complex while further treatment of bacteria under similar conditions causes no additional rejoining of DNA with membranes

  16. Expression of phosphorylated cAMP response element binding protein (p-CREB) in bladder afferent pathways in VIP-/- mice with cyclophosphamide (CYP)-induced cystitis

    DEFF Research Database (Denmark)

    Jensen, Dorthe G; Studeny, Simon; May, Victor

    2008-01-01

    The expression of phosphorylated cAMP response element binding protein (p-CREB) in dorsal root ganglia (DRG) with and without cyclophosphamide (CYP)-induced cystitis (150 mg/kg, i.p; 48 h) was determined in VIP(-/-) and wild-type (WT) mice. p-CREB immunoreactivity (IR) was determined in bladder...... (Fast blue) afferent cells. Nerve growth factor (NGF) bladder content was determined by enzyme-linked immunosorbent assays. Basal expression of p-CREB-IR in DRG of VIP(-/-) mice was (p DRG compared to WT mice. CYP treatment in WT mice increased (p ...-CREB-IR in L1, L2, L5-S1 DRG. CYP treatment in VIP(-/-) mice (p DRG compared to WT with CYP. In WT mice, bladder afferent cells (20-38%) in DRG expressed p-CREB-IR under basal conditions. With CYP, p-CREB-IR increased in bladder afferent cells (60...

  17. Expression of Caenorhabditis elegans antimicrobial peptide NLP-31 in Escherichia coli

    Science.gov (United States)

    Lim, Mei-Perng; Nathan, Sheila

    2014-09-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a fulminant disease endemic in Southeast Asia and Northern Australia. The standardized form of therapy is antibiotics treatment; however, the bacterium has become increasingly resistant to these antibiotics. This has spurred the need to search for alternative therapeutic agents. Antimicrobial peptides (AMPs) are small proteins that possess broad-spectrum antimicrobial activity. In a previous study, the nematode Caenorhabditis elegans was infected by B. pseudomallei and a whole animal transcriptome analysis identified a number of AMP-encoded genes which were induced significantly in the infected worms. One of the AMPs identified is NLP-31 and to date, there are no reports of anti-B. pseudomallei activity demonstrated by NLP-31. To produce NLP-31 protein for future studies, the gene encoding for NLP-31 was cloned into the pET32b expression vector and transformed into Escherichia coli BL21(DE3). Protein expression was induced with 1 mM IPTG for 20 hours at 20°C and recombinant NLP-31 was detected in the soluble fraction. Taken together, a simple optimized heterologous production of AMPs in an E. coli expression system has been successfully developed.

  18. Over-Expression of CYP2E1 mRNA and Protein: Implications of Xenobiotic Induced Damage in Patients with De Novo Acute Myeloid Leukemia with inv(16(p13.1q22; CBFβ-MYH11

    Directory of Open Access Journals (Sweden)

    Carlos E. Bueso-Ramos

    2012-08-01

    Full Text Available Environmental exposure to benzene occurs through cigarette smoke, unleaded gasoline and certain types of plastic. Benzene is converted to hematotoxic metabolites by the hepatic phase-I enzyme CYP2E1, and these metabolites are detoxified by the phase-II enzyme NQO1. The genes encoding these enzymes are highly polymorphic and studies of these polymorphisms have shown different pathogenic and prognostic features in various hematological malignancies. The potential role of different cytochrome p450 metabolizing enzymes in the pathogenesis of acute myeloid leukemia (AML in an area of active interest. In this study, we demonstrate aberrant CYP2E1 mRNA over-expression by quantitative real-time polymerase chain reaction in 11 cases of de novo AML with inv(16; CBFβ-MYH11. CYP2E1 mRNA levels correlated with CBFβ-MYH11 transcript levels and with bone marrow blast counts in all cases. CYP2E1 over-expression correlated positively with NQO1 mRNA levels (R2 = 0.934, n = 7. By immunohistochemistry, CYP2E1 protein was more frequently expressed in AML with inv(16 compared with other types of AML (p < 0.001. We obtained serial bone marrow samples from two patients with AML with inv(16 before and after treatment. CYP2E1 mRNA expression levels decreased in parallel with CBFβ-MYH11 transcript levels and blast counts following chemotherapy. In contrast, CYP1A2 transcript levels did not change in either patient. This is the first study to demonstrate concurrent over-expression of CYP2E1 and NQO1 mRNA in AML with inv(16. These findings also suggest that a balance between CYP2E1 and NQO1 may be important in the pathogenesis of AML with inv(16.

  19. Involvement of CYP 2E1 enzyme in ovotoxicity caused by 4-vinylcyclohexene and its metabolites

    International Nuclear Information System (INIS)

    Rajapaksa, Kathila S.; Cannady, Ellen A.; Sipes, I. Glenn; Hoyer, Patricia B.

    2007-01-01

    4-Vinylcyclohexene (VCH) is bioactivated by hepatic CYP 2A and 2B to a monoepoxide (VCM) and subsequently to an ovotoxic diepoxide metabolite (VCD). Studies suggest that the ovary can directly bioactivate VCH via CYP 2E1. The current study was designed to evaluate the role of ovarian CYP 2E1 in VCM-induced ovotoxicity. Postnatal day 4 B6C3F 1 and CYP 2E1 wild-type (+/+) and null (-/-) mouse ovaries were cultured (15 days) with VCD (30 μM), 1,2-VCM (125-1000 μM), or vehicle. Twenty-eight days female CYP 2E1 +/+ and -/- mice were dosed daily (15 days; ip) with VCH, 1,2-VCM, VCD or vehicle. Following culture or in vivo dosing, ovaries were histologically evaluated. In culture, VCD decreased (p 1 and CYP 2E1 +/+ ovaries, but not in CYP 2E1 -/- ovaries in culture. 1,2-VCM did not affect primary follicles in any group of mouse ovaries. Conversely, following in vivo dosing, primordial and primary follicles were reduced (p < 0.05) by VCD and VCM in CYP2E1 +/+ and -/-, and by VCH in +/+ mice. The data demonstrate that, whereas in vitro ovarian bioactivation of VCM requires CYP 2E1 enzyme, in vivo CYP 2E1 plays a minimal role. Thus, the findings support that hepatic metabolism dominates the contribution made by the ovary in bioactivation of VCM to its ovotoxic metabolite, VCD. This study also demonstrates the use of a novel ovarian culture system to evaluate ovary-specific metabolism of xenobiotics

  20. CAR/PXR provide directives for Cyp3a41 gene regulation differently from Cyp3a11.

    Science.gov (United States)

    Anakk, S; Kalsotra, A; Kikuta, Y; Huang, W; Zhang, J; Staudinger, J L; Moore, D D; Strobel, H W

    2004-01-01

    This study reports that Cyp3a41 gene contains 13 exons and is localized on the chromosome 5. CYP3A41 is a female-specific isoform that is predominantly expressed in the liver. Estrogen signaling is not responsible for its female specificity. CYP3A41 expression in kidney and brain is observed only in 50% of mice examined. PXR mediates dexamethasone-dependent suppression of CYP3A41. In contrast to CYP3A11, CYP3A41 expression is not induced by pregnenolone-16alpha-carbonitrile (PCN) in wild-type mice, but is significantly suppressed by PCN in PXR(-/-) mice. Phenobarbital and TCPOBOP induce CYP3A11 expression only in the presence of CAR, but have no effect on CYP3A41 expression. Immunoblot and erythromycin demethylase activity analysis reveal robust CYP3A induction after PCN treatment, which is poorly correlated to CYP3A41. These findings suggest a differential role for CAR/PXR in regulating individual CYP3A isoforms by previously characterized CYP3A inducers.

  1. Tumoral vitamin D synthesis by CYP27B1 1-alpha-hydroxylase delays mammary tumor progression in the PyMT-MMTV mouse model and its action involves NF-kappaB modulation

    Science.gov (United States)

    Biologically-active vitamin D (1,25(OH)2D) is synthetized from inactive prohormone 25(OH)D by the enzyme CYP27B1 1-a-hydroxylase in kidney and several extra-renal tissues including breast. While the development of breast cancer has been linked to inadequate vitamin D status, the importance of bioac...

  2. Expression and purification of recombinant Shiga toxin 2B from ...

    African Journals Online (AJOL)

    Expression and purification of recombinant Shiga toxin 2B from Escherichia coli O157:H7. ... (SDS-PAGE) and StxB2 yield was 450 μg ml-1 confirmed by Bradford assay. Recombinant Stx2B protein was produced in highly pure yield using ...

  3. Metabolism of methoxychlor by the P450-monooxygenase CYP6G1 involved in insecticide resistance of Drosophila melanogaster after expression in cell cultures of Nicotiana tabacum.

    Science.gov (United States)

    Joussen, Nicole; Schuphan, Ingolf; Schmidt, Burkhard

    2010-03-01

    Cytochrome P450 monooxygenase CYP6G1 of Drosophila melanogaster was heterologously expressed in a cell suspension culture of Nicotiana tabacum. This in vitro system was used to study the capability of CYP6G1 to metabolize the insecticide methoxychlor (=1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane, 1) against the background of endogenous enzymes of the corresponding non-transgenic culture. The Cyp6g1-transgenic cell culture metabolized 96% of applied methoxychlor (45.8 microg per assay) within 24 h by demethylation and hydroxylation mainly to trishydroxy and catechol methoxychlor (16 and 17%, resp.). About 34% of the metabolism and the distinct formation of trishydroxy and catechol methoxychlor were due to foreign enzyme CYP6G1. Furthermore, methoxychlor metabolism was inhibited by 43% after simultaneous addition of piperonyl butoxide (458 microg), whereas inhibition in the non-transgenic culture amounted to 92%. Additionally, the rate of glycosylation was reduced in both cultures. These results were supported by the inhibition of the metabolism of the insecticide imidacloprid (6; 20 microg, 24 h) in the Cyp6g1-transgenic culture by 82% in the presence of piperonyl butoxide (200 microg). Due to CYP6G1 being responsible for imidacloprid resistance of Drosophila or being involved in DDT resistance, it is likely that CYP6G1 conveys resistance to methoxychlor (1). Furthermore, treating Drosophila with piperonyl butoxide could weaken the observed resistance phenomena.

  4. Evolutionary changes in gene expression, coding sequence and copy-number at the Cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila.

    Directory of Open Access Journals (Sweden)

    Thomas W R Harrop

    Full Text Available Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster-D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.

  5. [Construction and expression of fusion protein TRX-hJagged1 in E.coli BL21].

    Science.gov (United States)

    Li, Guo-Hui; Fan, Yu-Zhen; Huang, Si-Yong; Liu, Qiang; Yin, Dan-Dan; Liu, Li; Chen, Ren-An; Hao, Miao-Wang; Liang, Ying-Min

    2014-06-01

    This study was purposed to construct prokaryotic expression vector and to investigate the expression of Notch ligand Jagged1 in E.coli. An expression vector pET-hJagged1 was constructed, which can be inserted in Jagged1 with different lengths, but the DSL domain of human Jagged1 should be contained. Then the recombinant plasmids were transformed into the competent cell of E.coli BL21, and the expression of the fusion protein was induced by IPTG. Fusion protein was purified from the supernatant of cell lysates via the Nickel affinity chromatography. The results showed that prokaryotic expression vectors pET-hJagged1 (Bgl II), pET-hJagged1 (Hind I) and pET-hJagged1 (Stu I) were successfully constructed, but only pET-hJagged1 (Stu I) could express the soluble TRX-hJagged1. The purified TRX-Jagged1 protein could be obtained via the Nickel affinity chromatography, and then confirmed by Western Blot. It is concluded that prokaryotic expression vector pET-hJagged1 is successfully constructed, but only pET-hJagged1 (Stu I) can express the soluble TRX-hJagged1 and the TRX-Jagged1 fusion protein is obtained through the prokaryotic expression system, which laid a solid foundation for further to explore the effects of Jagged1 in hematopoietic and lymphoid system.

  6. Identification and Characterization of the Gene CYP340W1 from Plutella xylostella and Its Possible Involvement in Resistance to Abamectin.

    Science.gov (United States)

    Gao, Xue; Yang, Jiaqiang; Xu, Baoyun; Xie, Wen; Wang, Shaoli; Zhang, Youjun; Yang, Fengshan; Wu, Qingjun

    2016-03-18

    Abamectin has been used to control the diamondback moth, Plutella xylostella (P. xylostella), which is a major agricultural pest that can rapidly develop resistance against insecticides including abamectin. Although cytochrome P450 has been confirmed to play an important role in resistance in P. xylostella, the specific P450 genes associated with the resistance are unclear. The full-length cDNA of the cytochrome P450 gene CYP340W1 was cloned and characterized in the present study. The cDNA assembly yielded a sequence of 1929 bp, containing the open reading frame (ORF) 1491 bp and encodes a 496-amino acid peptide. CYP340W1 was expressed in all P. xylostella developmental stages but its expression level was highest in larvae and especially in the heads of larvae. The expression of CYP340W1 was significantly higher in an abamectin-resistant strain (ABM-R) than in its susceptible counterpart (ABM-S). In addition, expression of CYP340W1 was increased when the ABM-R strain was exposed to abamectin. When injected into third-stage ABM-R larvae, CYP340W1 dsRNA significantly reduced CYP340W1 expression at 6 h and reduced expression by 83% at 12 h. As a consequence of RNAi, the mortality of the injected abamectin-resistant larvae increased after a 48-h exposure to abamectin. The results indicate that the overexpression of CYP340W1 plays an important role in abamectin resistance in P. xylostella.

  7. The steroid metabolite 16(β)-OH-androstenedione generated by CYP21A2 serves as a substrate for CYP19A1.

    Science.gov (United States)

    Neunzig, J; Milhim, M; Schiffer, L; Khatri, Y; Zapp, J; Sánchez-Guijo, A; Hartmann, M F; Wudy, S A; Bernhardt, R

    2017-03-01

    The 21-hydroxylase (CYP21A2) is a steroidogenic enzyme crucial for the synthesis of mineralo- and glucocorticoids. It is described to convert progesterone as well as 17-OH-progesterone, through a hydroxylation at position C21, into 11-deoxycorticosterone (DOC) and 11-deoxycortisol (RSS), respectively. In this study we unraveled CYP21A2 to have a broader steroid substrate spectrum than assumed. Utilizing a reconstituted in vitro system, consisting of purified human CYP21A2 and human cytochrome P450 reductase (CPR) we demonstrated that CYP21A2 is capable to metabolize DOC, RSS, androstenedione (A4) and testosterone (T). In addition, the conversion of A4 rendered a product whose structure was elucidated through NMR spectroscopy, showing a hydroxylation at position C16-beta. The androgenic properties of this steroid metabolite, 16(β)-OH-androstenedione (16bOHA4), were investigated and compared with A4. Both steroid metabolites were shown to be weak agonists for the human androgen receptor. Moreover, the interaction of 16bOHA4 with the aromatase (CYP19A1) was compared to that of A4, indicating that the C16 hydroxyl group does not influence the binding with CYP19A1. In contrast, the elucidation of the kinetic parameters showed an increased K m and decreased k cat value resulting in a 2-fold decreased catalytic efficiency compared to A4. These findings were in accordance with our docking studies, revealing a similar binding conformation and distance to the heme iron of both steroids. Furthermore, the product of 16bOHA4, presumably 16-hydroxy-estrone (16bOHE1), was investigated with regard to its estrogenic activity, which was negligible compared to estradiol and estrone. Finally, 16bOHA4 was found to be present in a patient with 11-hydroxylase deficiency and in a patient with an endocrine tumor. Taken together, this study provides novel information on the steroid hormone biosynthesis and presents a new method to detect further potential relevant novel steroid metabolites

  8. Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles

    International Nuclear Information System (INIS)

    Peretz, Jackye; Flaws, Jodi A.

    2013-01-01

    Bisphenol A (BPA) is the backbone of polycarbonate plastic products and the epoxy resin lining of aluminum cans. Previous studies have shown that exposure to BPA decreases sex steroid hormone production in mouse antral follicles. The current study tests the hypothesis that BPA first decreases the expression levels of the steroidogenic enzyme cytochrome P450 side-chain cleavage (Cyp11a1) and steroidogenic acute regulatory protein (StAR) in mouse antral follicles, leading to a decrease in sex steroid hormone production in vitro. Further, the current study tests the hypothesis that these effects are acute and reversible after removal of BPA. Exposure to BPA (10 μg/mL and 100 μg/mL) significantly decreased expression of Cyp11a1 and StAR beginning at 18 h and 72 h, respectively, compared to controls. Exposure to BPA (10 μg/mL and 100 μg/mL) significantly decreased progesterone levels beginning at 24 h and decreased androstenedione, testosterone, and estradiol levels at 72 h and 96 h compared to controls. Further, after removing BPA from the culture media at 20 h, expression of Cyp11a1 and progesterone levels were restored to control levels by 48 h and 72 h, respectively. Additionally, expression of StAR and levels of androstenedione, testosterone, and estradiol never decreased compared to controls. These data suggest that BPA acutely decreases expression of Cyp11a1 as early as 18 h and this reduction in Cyp11a1 may lead to a decrease in progesterone production by 24 h, followed by a decrease in androstenedione, testosterone, and estradiol production and expression of StAR at 72 h. Therefore, BPA exposure likely targets Cyp11a1 and steroidogenesis, but these effects are reversible with removal of BPA exposure. - Highlights: • BPA may target Cyp11a1 to inhibit steroidogenesis in antral follicles. • BPA may decrease the expression of Cyp11a1 prior to inhibiting steroidogenesis. • The adverse effects of BPA on steroidogenesis in antral follicles are reversible

  9. Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles

    Energy Technology Data Exchange (ETDEWEB)

    Peretz, Jackye, E-mail: peretz@illinois.edu [2001 South Lincoln Ave, 3211 VMBSB, University of Illinois, Urbana, IL 61802 (United States); Flaws, Jodi A., E-mail: jflaws@illinois.edu [2001 South Lincoln Ave, 3223 VMBSB, University of Illinois, Urbana, IL 61802 (United States)

    2013-09-01

    Bisphenol A (BPA) is the backbone of polycarbonate plastic products and the epoxy resin lining of aluminum cans. Previous studies have shown that exposure to BPA decreases sex steroid hormone production in mouse antral follicles. The current study tests the hypothesis that BPA first decreases the expression levels of the steroidogenic enzyme cytochrome P450 side-chain cleavage (Cyp11a1) and steroidogenic acute regulatory protein (StAR) in mouse antral follicles, leading to a decrease in sex steroid hormone production in vitro. Further, the current study tests the hypothesis that these effects are acute and reversible after removal of BPA. Exposure to BPA (10 μg/mL and 100 μg/mL) significantly decreased expression of Cyp11a1 and StAR beginning at 18 h and 72 h, respectively, compared to controls. Exposure to BPA (10 μg/mL and 100 μg/mL) significantly decreased progesterone levels beginning at 24 h and decreased androstenedione, testosterone, and estradiol levels at 72 h and 96 h compared to controls. Further, after removing BPA from the culture media at 20 h, expression of Cyp11a1 and progesterone levels were restored to control levels by 48 h and 72 h, respectively. Additionally, expression of StAR and levels of androstenedione, testosterone, and estradiol never decreased compared to controls. These data suggest that BPA acutely decreases expression of Cyp11a1 as early as 18 h and this reduction in Cyp11a1 may lead to a decrease in progesterone production by 24 h, followed by a decrease in androstenedione, testosterone, and estradiol production and expression of StAR at 72 h. Therefore, BPA exposure likely targets Cyp11a1 and steroidogenesis, but these effects are reversible with removal of BPA exposure. - Highlights: • BPA may target Cyp11a1 to inhibit steroidogenesis in antral follicles. • BPA may decrease the expression of Cyp11a1 prior to inhibiting steroidogenesis. • The adverse effects of BPA on steroidogenesis in antral follicles are reversible.

  10. Coactivator PGC-1α regulates the fasting inducible xenobiotic-metabolizing enzyme CYP2A5 in mouse primary hepatocytes

    International Nuclear Information System (INIS)

    Arpiainen, Satu; Jaervenpaeae, Sanna-Mari; Manninen, Aki; Viitala, Pirkko; Lang, Matti A.; Pelkonen, Olavi; Hakkola, Jukka

    2008-01-01

    The nutritional state of organisms and energy balance related diseases such as diabetes regulate the metabolism of xenobiotics such as drugs, toxins and carcinogens. However, the mechanisms behind this regulation are mostly unknown. The xenobiotic-metabolizing cytochrome P450 (CYP) 2A5 enzyme has been shown to be induced by fasting and by glucagon and cyclic AMP (cAMP), which mediate numerous fasting responses. Peroxisome proliferator-activated receptor γ coactivator (PGC)-1α triggers many of the important hepatic fasting effects in response to elevated cAMP levels. In the present study, we were able to show that cAMP causes a coordinated induction of PGC-1α and CYP2A5 mRNAs in murine primary hepatocytes. Furthermore, the elevation of the PGC-1α expression level by adenovirus mediated gene transfer increased CYP2A5 transcription. Co-transfection of Cyp2a5 5' promoter constructs with the PGC-1α expression vector demonstrated that PGC-1α is able to activate Cyp2a5 transcription through the hepatocyte nuclear factor (HNF)-4α response element in the proximal promoter of the Cyp2a5 gene. Chromatin immunoprecipitation assays showed that PGC-1α binds, together with HNF-4α, to the same region at the Cyp2a5 proximal promoter. In conclusion, PGC-1α mediates the expression of CYP2A5 induced by cAMP in mouse hepatocytes through coactivation of transcription factor HNF-4α. This strongly suggests that PGC-1α is the major factor mediating the fasting response of CYP2A5

  11. Human Interleukine-1 receptor antagonist:Cloning, Expression and Optimization in E.coli Host

    Directory of Open Access Journals (Sweden)

    Gh. Barati

    2014-07-01

    Full Text Available Introduction & Objective: Interleukine-1 receptor antagonist (IL-1RA is a powerful anti-inflammatory cytokine which limits the biological effects of IL-1. Due to structural similarity between IL-1 and its antagonist, IL-1RA competitively binds to IL-1 receptor which leads to no signal transduction. Therefore , it is applied in the treatment of patients with inflammatory diseases such as Rheumatoid Arthritis. The aim of this study is cloning, expression and op-timization of IL-1RA in E. coli. Materials & Methods: In this experimental study synthetically prepared cDNA was amplified by PCR. After double digestion with NdeI and XhoI restriction enzymes, this gene was cloned in pET28a expression vector. Expression of desired gene was analyzed at RNA level by RT-PCR and at protein level by SDS-PAGE and followed by western blot to confirm SDS-PAGE results. Optimization of recombinant protein expression was performed in dif-ferent IPTG concentrations and harvesting times after induction. Results: The presence of gene in pET28a was determined by colony-PCR and confirmed by restriction digestion. Transcription of cloned gene and expression of high yield recombinant protein were shown by RT-PCR and SDS-PAGE, respectively. The result of SDS-PAGE was confirmed by western blot. Expression was optimized in different induction time and IPTG concentrations Conclusion: The result of this study demonstrated expression of this recombinant protein at high level in E.coli system by pET28a expression vector. This study also showed a direct as-sociation between the increased level of expression and time of induction . Therefore, an overnight induction time with 0.1 mM IPTG concentration is recommended for a high level expression. (Sci J Hamadan Univ Med Sci 2014; 21 (2:145-151

  12. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    International Nuclear Information System (INIS)

    Kubota, Akira; Stegeman, John J.; Woodin, Bruce R.; Iwanaga, Toshihiko; Harano, Ryo; Peterson, Richard E.; Hiraga, Takeo; Teraoka, Hiroki

    2011-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced via AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by β-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: → We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. → TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. → Knockdown of each

  13. CD25+ B-1a Cells Express Aicda

    Directory of Open Access Journals (Sweden)

    Hiroaki Kaku

    2017-06-01

    Full Text Available B-1a cells are innate-like B-lymphocytes producing natural antibodies. Activation-induced cytidine deaminase (AID, a product of the Aicda gene, plays a central role in class-switch recombination and somatic hypermutation in B cells. Although a role for Aicda in B-1a cells has been suggested on the basis of experiments with knock out (KO mice, whether B-1a cells express Aicda, and if so, which B-1a cell subpopulation expresses Aicda, remains unknown. Here, we demonstrate that B-1 cells express Aicda, but at a level below that expressed by germinal center (GC B cells. We previously reported that B-1a cells can be subdivided based on CD25 expression. We show here that B-1a cell Aicda expression is concentrated in the CD25+ B-1a cell subpopulation. These results suggest the possibility that previous studies of memory B cells identified on the basis of Aicda expression may have inadvertently included an unknown number of CD25+ B-1a cells. Although B-1a cells develop normally in the absence of Aicda, a competitive reconstitution assay reveals enhanced vigor for AID KO B-1a cell bone marrow (BM progenitors, as compared with wild-type BM B-1 cell progenitors. These results suggest that AID inhibits the development of B-1a cells from BM B-1 cell progenitors in a competitive environment.

  14. Comparative Study on Different Expression Hosts for Alkaline Phytase Engineered in Escherichia coli.

    Science.gov (United States)

    Chen, Weiwei; Yu, Hongwei; Ye, Lidan

    2016-07-01

    The application of alkaline phytase as a feed additive is restricted by the poor specific activity. Escherichia coli is a frequently used host for directed evolution of proteins including alkaline phytase towards improved activity. However, it is not suitable for production of food-grade products due to potential pathogenicity. To combine the advantages of different expression systems, mutants of the alkaline phytase originated from Bacillus subtilis 168 (phy168) were first generated via directed evolution in E. coli and then transformed to food-grade hosts B. subtilis and Pichia pastoris for secretory expression. In order to investigate the suitability of different expression systems, the phy168 mutants expressed in different hosts were characterized and compared in terms of specific activity, pH profile, pH stability, temperature profile, and thermostability. The specific activity of B. subtilis-expressed D24G/K70R/K111E/N121S mutant at pH 7.0 and 60 °C was 30.4 U/mg, obviously higher than those in P. pastoris (22.7 U/mg) and E. coli (19.7 U/mg). Moreover, after 10 min incubation at 80 °C, the B. subtilis-expressed D24G/K70R/K111E/N121S retained about 70 % of the activity at pH 7.0 and 37 °C, whereas the values were only about 25 and 50 % when expressed in P. pastoris and E. coli, respectively. These results suggested B. subtilis as an appropriate host for expression of phy168 mutants and that the strategy of creating mutants in one host and expressing them in another might be a new solution to industrial production of proteins with desired properties.

  15. Contrasting exome constancy and regulatory region variation in the gene encoding CYP3A4: an examination of the extent and potential implications.

    Science.gov (United States)

    Creemer, Olivia J; Ansari-Pour, Naser; Ekong, Rosemary; Tarekegn, Ayele; Plaster, Christopher; Bains, Ripudaman K; Itan, Yuval; Bekele, Endashaw; Bradman, Neil

    2016-06-01

    CYP3A4 expression varies up to 100-fold among individuals, and, to date, genetic causes remain elusive. As a major drug-metabolizing enzyme, elucidation of such genetic causes would increase the potential for introducing personalized dose adjustment of therapies involving CYP3A4 drug substrates. The foetal CYP3A isoform, CYP3A7, is reported to be expressed in ∼10% of European adults and may thus contribute towards the metabolism of endogenous substances and CYP3A drug substrates. However, little is known about the distribution of the variant expressed in the adult. We resequenced the exons, flanking introns, regulatory elements and 3'UTR of CYP3A4 in five Ethiopian populations and incorporated data from the 1000 Genomes Project. Using bioinformatic analysis, we assessed likely consequences of observed CYP3A4 genomic variation. We also conducted the first extensive geographic survey of alleles associated with adult expression of CYP3A7 - that is, CYP3A7*1B and CYP3A7*1C. Ethiopia contained 60 CYP3A4 variants (26 novel) and more variants (>1%) than all non-African populations combined. No nonsynonymous mutation was found in the homozygous form or at more than 2.8% in any population. Seventy-nine per cent of haplotypes contained 3'UTR and/or regulatory region variation with striking pairwise population differentiation, highlighting the potential for interethnic variation in CYP3A4 expression. Conversely, coding region variation showed that significant interethnic variation is unlikely at the protein level. CYP3A7*1C was found at up to 17.5% in North African populations and in significant linkage disequilibrium with CYP3A5*3, indicating that adult expression of the foetal isoform is likely to be accompanied by reduced or null expression of CYP3A5.

  16. Gene expression profiling in the liver of CD-1 mice to characterize the hepatotoxicity of triazole fungicides

    International Nuclear Information System (INIS)

    Goetz, Amber K.; Bao, Wenjun; Ren, Hongzu; Schmid, Judith E.; Tully, Douglas B.; Wood, Carmen; Rockett, John C.; Narotsky, Michael G.; Sun, Guobin; Lambert, Guy R.; Thai, S.-F.; Wolf, Douglas C.; Nesnow, Stephen; Dix, David J.

    2006-01-01

    Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and hypotheses on potential mechanisms of action for this class of chemicals. Adult male CD-1 mice were exposed daily for 14 days to fluconazole, myclobutanil, propiconazole, or triadimefon at three dose levels by oral gavage. Doses were based on previous studies that resulted in liver hypertrophy or hepatotoxicity. All four triazoles caused hepatocyte hypertrophy, and all except triadimefon increased relative liver/body weight ratios at the middle and high dose levels. CYP enzyme activities were also induced by all four triazoles at the middle and high doses as measured by the dealkylations of four alkoxyresorufins, although some differences in substrate specificity were observed. Consistent with this common histopathology and biochemistry, several CYP and xenobiotic metabolizing enzyme (XME) genes were differentially expressed in response to all four (Cyp2d26 and Cyp3a11), or three of the four (Cyp2c40, Cyp2c55, Ces2, Slco1a4) triazoles. Differential expression of numerous other CYP and XME genes discriminated between the various triazoles, consistent with differences in CYP enzyme activities, and indicative of possible differences in mechanisms of hepatotoxicity or dose response. Multiple isoforms of Cyp1a, 2b, 2c, 3a, and other CYP and XME genes regulated by the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) were differentially expressed following triazole exposure. Based on these results, we expanded on our original hypothesis that triazole hepatotoxicity was mediated by CYP induction, to include additional XME genes, many of which are modulated by CAR and PXR

  17. Source-Related Effects of Wastewater on Transcription Factor (AhR, CAR and PXR-Mediated Induction of Gene Expression in Cultured Rat Hepatocytes and Their Association with the Prevalence of Antimicrobial-Resistant Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Keerthi S Guruge

    Full Text Available Extracts of wastewater collected from 4 sewage treatment plants (STPs receiving effluents from different sources in South India were investigated for their levels of transcription factor-mediated gene induction in primary cultured rat hepatocytes. In addition, the relation between gene induction levels and the prevalence of antimicrobial-resistant Escherichia coli (E. coli in wastewater was examined. STP-3, which treats only hospital wastewater, exhibited significantly greater induction potency of all 6 drug metabolizing cytochrome P450 (CYP genes examined, CYP1A1, 1A2, 1B1, 2B15, 3A1, and 3A2, whereas the wastewater at STP-1, which exclusively receives domestic sewage, showed significantly diminished levels of induction of 3 CYP genes when compared to the levels of CYP induction at STP-2, which receives mixed wastewater. Samples collected during the monsoon season showed a significantly altered gene induction capacity compared to that of samples from the pre-monsoon period. The data suggest that the toxicity of wastewater in STPs was not significantly diminished during the treatment process. The chemical-gene interaction data predicted that a vast number of chemicals present in the wastewater would stimulate the genes studied in the rat hepatocytes. The multivariable logistic regression analysis demonstrated that the prevalence of isolates resistant to cefotaxime, imipenem and streptomycin was significantly correlated with the levels of induction of at least three CYP-isozymes in STP wastewater. In addition, the resistance of isolates in treatment plants was not altered by the treatment steps, whereas the sampling season did have an impact on the resistance to specific antimicrobials. The identification of receptor-mediated gene regulation capacities offers important data not limited to the (synergistic physiological role of chemicals in biological systems but may provide new insight into the link between the effects of known/unknown drugs and

  18. Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem

    International Nuclear Information System (INIS)

    Zhong, Yanjun; Dong, Guicheng; Luo, Haiguang; Cao, Jie; Wang, Chang; Wu, Jianyuan; Feng, Yu-Qi; Yue, Jiang

    2012-01-01

    Ethanol is one of the most commonly abused substances, and oxidative stress is an important causative factor in ethanol-induced neurotoxicity. Cytochrome P450 2E1 (CYP2E1) is involved in ethanol metabolism in the brain. This study investigates the role of brain CYP2E1 in the susceptibility of certain brain regions to ethanol neurotoxicity. Male Wistar rats were intragastrically treated with ethanol (3.0 g/kg, 30 days). CYP2E1 protein, mRNA expression, and catalytic activity in various brain regions were respectively assessed by immunoblotting, quantitative quantum dot immunohistochemistry, real-time RT-PCR, and LC–MS. The generation of reactive oxygen species (ROS) was analyzed using a laser confocal scanning microscope. The hippocampus, cerebellum, and brainstem were selectively damaged after ethanol treatment, indicated by both lactate dehydrogenase (LDH) activity and histopathological analysis. Ethanol markedly increased the levels of CYP2E1 protein, mRNA expression, and activity in the hippocampus and cerebellum. CYP2E1 protein and activity were significantly increased by ethanol in the brainstem, with no change in mRNA expression. ROS levels induced by ethanol paralleled the enhanced CYP2E1 proteins in the hippocampus, granular layer and white matter of cerebellum as well as brainstem. Brain CYP2E1 activity was positively correlated with the damage to the hippocampus, cerebellum, and brainstem. These results suggest that the selective sensitivity of brain regions to ethanol neurodegeneration may be attributed to the regional and cellular-specific induction of CYP2E1 by ethanol. The inhibition of CYP2E1 levels may attenuate ethanol-induced oxidative stress via ROS generation.

  19. Cloning, expression, purification, crystallization and preliminary X-ray analysis of the human RuvBL1–RuvBL2 complex

    International Nuclear Information System (INIS)

    Gorynia, Sabine; Matias, Pedro M.; Bandeiras, Tiago M.; Donner, Peter; Carrondo, Maria Arménia

    2008-01-01

    A truncated variant of the human RuvBL1–RuvBL2 complex was cloned, expressed, purified and crystallised. Synchrotron diffraction data to 4 Å resolution were used to carry out a preliminary crystallographic analysis of the complex. The complex of RuvBL1 and its homologue RuvBL2, two evolutionarily highly conserved eukaryotic proteins belonging to the AAA + (ATPase associated with diverse cellular activities) family of ATPases, was co-expressed in Escherichia coli. For crystallization purposes, the flexible domains II of RuvBL1 and RuvBL2 were truncated. The truncated RuvBL1–RuvBL2 complex was crystallized using the hanging-drop vapour-diffusion method at 293 K. The crystals were hexagonal-shaped plates and belonged to either the orthorhombic space group C222 1 , with unit-cell parameters a = 111.4, b = 188.0, c = 243.4 Å and six monomers in the asymmetric unit, or the monoclinic space group P2 1 , with unit-cell parameters a = 109.2, b = 243.4, c = 109.3 Å, β = 118.7° and 12 monomers in the asymmetric unit. The crystal structure could be solved by molecular replacement in both possible space groups and the solutions obtained showed that the complex forms a dodecamer

  20. Comparison of two recombinant systems for expression of cholera toxin B subunit from Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    M Boustanshenas

    2013-01-01

    Full Text Available Purpose: The aim of this study was to assess the production of recombinant cholera toxin B subunit (rCTB protein in two different expression systems (pAE_ctxB and pQE_ctxB constructs in Escherichia coli BL21 (DE3. Materials and Methods: The ctxB fragment was amplified from Vibrio cholerae O 1 ATCC14035 and cloned in pGETM-T easy vector after which it was transformed to E. coli Top 10F′ and grown on LB-ampicillin agar medium. Sequence analysis confirmed the complete ctxB gene sequence in the construct which was further subcloned to pQE-30 vector. The construct was subsequently transformed to E. coli M15 (pREP4. The recombinant pAE_ctxB and pQE_ctxB were transformed to competent E. coli BL21 (DE3 cells to express CTB protein. Result: Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE analysis showed the maximum expression of rCTB in both systems at 5 h after induction and western blot analysis confirmed the presence of recombinant CTB in blotting membranes. Conclusion: Expression of rCTB in pAE_ctxB construct was more efficient (15-fold than pQE_ctxB, and it seems that Lac UV5 in E. coli BL21 (DE3 is more compatible with the former construct. This expression system can be used to produce recombinant CTB in high yield which may enable us to study the oral tolerance or mucosal adjuvant properties of rCTB using animal models.

  1. Expression of Mycobacterium tuberculosis Protein Tyrosine Phosphatase B in Escherichia coli and Its Recovery from Inclusion Body

    Directory of Open Access Journals (Sweden)

    Lalu Rudyat Telly Savalas

    2017-12-01

    Full Text Available The present study aims at expressing and partially purifying PtpB in active form. To achieve this, Mtb PtpB gene has been cloned into pET30a vector and overexpressed in Escherichia coli BL 21(DE3 under IPTG induction in the form of an inclusion body. Following resolubilization by urea and dialysis, the resulted PtpB has been shown to be active against para-Nitrophenyl phosphate.  It is concluded that the resulted PtpB has had been recovered from inclusion body to give the active form of the enzyme, and thus the success in overexpressing PtpB provides the required material to investigate the biochemical properties of the pathogen virulence factor further. 

  2. Identification of the Full 46 Cytochrome P450 (CYP) Complement and Modulation of CYP Expression in Response to Water-Accommodated Fractions of Crude Oil in the Cyclopoid Copepod Paracyclopina nana.

    Science.gov (United States)

    Han, Jeonghoon; Won, Eun-Ji; Kim, Hui-Su; Nelson, David R; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-06-02

    The 46 cytochrome P450 (CYP) gene superfamily was identified in the marine copepod Paracyclopina nana after searching an RNA-seq database and comparing it with other copepod CYP gene families. To annotate the 46 Pn-CYP genes, a phylogenetic analysis of CYP genes was performed using a Bayesian method. Pn-CYP genes were separated into five different clans: CYP2, CYP3, CYP20, CYP26, and mitochondrial. Among these, the principal Pn-CYP genes involved in detoxification were identified by comparing them with those of the copepod Tigriopus japonicus and were examined with respect to their responses to exposure to a water-accommodated fraction (WAF) of crude oil and to the alkylated forms of two polycyclic aromatic hydrocarbons (PAHs; phenanthrene and fluorene). The expression of two Pn-CYP3027 genes (CYP3027F1 and CYP3027F2) was increased in response to WAF exposure and also was upregulated in response to the two alkylated PAHs. In particular, Pn-CYP3027F2 showed the most notable increase in response to 80% WAF exposure. These two responsive CYP genes (Pn-CYP3027F1 and CYP3027F2) were also phylogenetically clustered into the same clade of the WAF- and alkylated PAH-specific CYP genes of the copepod T. japonicus, suggesting that these CYP genes would be those chiefly involved in detoxification in response to WAF exposure in copepods. In this paper, we provide information on the copepod P. nana CYP gene superfamily and also speculate on its potential role in the detoxification of PAHs in marine copepods. Despite the nonlethality of WAF, Pn-CYP3027F2 was rapidly and significantly upregulated in response to WAF that may serve as a useful biomarker of 40% or higher concentration of WAF exposure. This paper will be helpful to better understand the molecular mechanistic events underlying the metabolism of environmental toxicants in copepods.

  3. In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli

    Directory of Open Access Journals (Sweden)

    Wu Xiangping

    2012-09-01

    Full Text Available Abstract Background Microbial lipases particularly Pseudomonas lipases are widely used for biotechnological applications. It is a meaningful work to design experiments to obtain high-level active lipase. There is a limiting factor for functional overexpression of the Pseudomonas lipase that a chaperone is necessary for effective folding. As previously reported, several methods had been used to resolve the problem. In this work, the lipase (LipA and its chaperone (LipB from a screened strain named AB which belongs to Pseudomonas aeruginosa were overexpressed in E. coli with two dual expression plasmid systems to enhance the production of the active lipase LipA without in vitro refolding process. Results In this work, we screened a lipase-produced strain named AB through the screening procedure, which was identified as P. aeruginosa on the basis of 16S rDNA. Genomic DNA obtained from the strain was used to isolate the gene lipA (936 bp and lipase specific foldase gene lipB (1023 bp. One single expression plasmid system E. coli BL21/pET28a-lipAB and two dual expression plasmid systems E. coli BL21/pETDuet-lipA-lipB and E. coli BL21/pACYCDuet-lipA-lipB were successfully constructed. The lipase activities of the three expression systems were compared to choose the optimal expression method. Under the same cultured condition, the activities of the lipases expressed by E. coli BL21/pET28a-lipAB and E. coli BL21/pETDuet-lipA-lipB were 1300 U/L and 3200 U/L, respectively, while the activity of the lipase expressed by E. coli BL21/pACYCDuet-lipA-lipB was up to 8500 U/L. The lipase LipA had an optimal temperature of 30°C and an optimal pH of 9 with a strong pH tolerance. The active LipA could catalyze the reaction between fatty alcohols and fatty acids to generate fatty acid alkyl esters, which meant that LipA was able to catalyze esterification reaction. The most suitable fatty acid and alcohol substrates for esterification were octylic acid and hexanol

  4. Silencing of Tumor Necrosis Factor Receptor 1 by siRNA in EC109 Cells Affects Cell Proliferation and Apoptosis

    Directory of Open Access Journals (Sweden)

    Ma Changhui

    2009-01-01

    Full Text Available Tumor necrosis factor receptor 1 (TNFR1 is a membrane receptor able to bind TNF-α or TNF-β. TNFR1 can suppress apoptosis by activating the NF-κB or JNK/SAPK signal transduction pathway, or it can induce apoptosis through a series of caspase cascade reactions; the particular effect may depend on the cell line. In the present study, we first showed that TNFR1 is expressed at both the gene and protein levels in the esophageal carcinoma cell line EC109. Then, by applying a specific siRNA, we silenced the expression of TNFR1; this resulted in a significant time-dependent promotion of cell proliferation and downregulation of the apoptotic rate. These results suggest that TNFR1 is strongly expressed in the EC109 cell line and that it may play an apoptosis-mediating role, which may be suppressed by highly activated NF-κB.

  5. Impact of the CYP3A5*1 Allele on the Pharmacokinetics of Tacrolimus in Japanese Heart Transplant Patients.

    Science.gov (United States)

    Uno, Takaya; Wada, Kyoichi; Matsuda, Sachi; Terada, Yuka; Oita, Akira; Kawase, Atsushi; Takada, Mitsutaka

    2018-04-24

    Tacrolimus, a major immunosuppressant used after transplantation, is associated with large interindividual variation involving genetic polymorphisms in metabolic processes. A common variant of the cytochrome P450 (CYP) 3A5 gene, CYP3A5*3, affects blood concentrations of tacrolimus. However, tacrolimus pharmacokinetics at the early stage of transplantation have not been adequately studied in heart transplantation. We retrospectively examined the impact of the CYP3A5 genotype on tacrolimus pharmacokinetics at the early stage of heart transplantation. The tacrolimus pharmacokinetic profile was obtained from 65 patients during the first 5 weeks after heart transplantation. Differences in the patients' characteristics and tacrolimus pharmacokinetic parameters between the CYP3A5 expresser (*1/*1 or *1/*3 genotypes) and non-expresser (*3/*3 genotype) groups were assessed by the Chi-square test, Student's t test, or Mann-Whitney U test. The CYP3A5 *1/*1, *1/*3, and *3/*3 genotypes were detected in 5, 22, and 38 patients, respectively. All patients started clotrimazole therapy approximately 1 week after starting tacrolimus. Apparent clearance and dose/weight to reach the target trough concentration (C 0 ) were significantly higher in the expresser group than in the non-expresser group (0.32 vs. 0.19 L/h/kg, p = 0.0003; 0.052 vs. 0.034 mg/kg/day, p = 0.0002); there were no significant differences in the area under the concentration-time curve from 0 to 12 h (AUC 0-12 ) and concentrations at any sampling time point between the two groups. Similar concentration-time curves for tacrolimus were obtained in the expresser and non-expresser groups by dose adjustment based on therapeutic drug monitoring. These results demonstrate the importance of the CYP3A5 genotype in tacrolimus dose optimization based on therapeutic drug monitoring after heart transplantation.

  6. IFNγ Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer.

    Science.gov (United States)

    Bardhan, Kankana; Paschall, Amy V; Yang, Dafeng; Chen, May R; Simon, Priscilla S; Bhutia, Yangzom D; Martin, Pamela M; Thangaraju, Muthusamy; Browning, Darren D; Ganapathy, Vadivel; Heaton, Christopher M; Gu, Keni; Lee, Jeffrey R; Liu, Kebin

    2015-07-01

    Short-chain fatty acids, metabolites produced by colonic microbiota from fermentation of dietary fiber, act as anti-inflammatory agents in the intestinal tract to suppress proinflammatory diseases. GPR109A is the receptor for short-chain fatty acids. The functions of GPR109A have been the subject of extensive studies; however, the molecular mechanisms underlying GPR109A expression is largely unknown. We show that GPR109A is highly expressed in normal human colon tissues, but is silenced in human colon carcinoma cells. The GPR109A promoter DNA is methylated in human colon carcinoma. Strikingly, we observed that IFNγ, a cytokine secreted by activated T cells, activates GPR109A transcription without altering its promoter DNA methylation. Colon carcinoma grows significantly faster in IFNγ-deficient mice than in wild-type mice in an orthotopic colon cancer mouse model. A positive correlation was observed between GPR109A protein level and tumor-infiltrating T cells in human colon carcinoma specimens, and IFNγ expression level is higher in human colon carcinoma tissues than in normal colon tissues. We further demonstrated that IFNγ rapidly activates pSTAT1 that binds to the promoter of p300 to activate its transcription. p300 then binds to the GPR109A promoter to induce H3K18 hyperacetylation, resulting in chromatin remodeling in the methylated GPR109A promoter. The IFNγ-activated pSTAT1 then directly binds to the methylated but hyperacetylated GPR109 promoter to activate its transcription. Overall, our data indicate that GPR109A acts as a tumor suppressor in colon cancer, and the host immune system might use IFNγ to counteract DNA methylation-mediated GPR109A silencing as a mechanism to suppress tumor development. ©2015 American Association for Cancer Research.

  7. IFNγ induces DNA methylation-silenced GPR109A expression via pSTAT1/p300 and H3K18 acetylation in colon cancer

    Science.gov (United States)

    Bardhan, Kankana; Paschall, Amy V.; Yang, Dafeng; Chen, May R.; Simon, Priscilla S.; Bhutia, Yangzom; Martin, Pamela M.; Thangaraju, Muthusamy; Browning, Darren D.; Ganapathy, Vadivel; Heaton, Christopher M.; Gu, Keni; Lee, Jeffrey R.; Liu, Kebin

    2015-01-01

    Short-chain fatty acids, metabolites produced by colonic microbiota from fermentation of dietary fiber, act as anti-inflammatory agents in the intestinal tract to suppress proinflammatory diseases. GPR109A is the receptor for short-chain fatty acids. The functions of GPR109A has been the subject of extensive studies, however, the molecular mechanisms underlying GPR109A expression is largely unknown. We show that GPR109A is highly expressed in normal human colon tissues, but is silenced in human colon carcinoma cells. The GPR109A promoter DNA is methylated in human colon carcinoma. Strikingly, we observed that IFNγ, a cytokine secreted by activated T cells, activates GPR109A transcription without altering its promoter DNA methylation. Colon carcinoma grows significantly faster in IFNγ-deficient mice than in wildtype mice in an orthotopic colon cancer mouse model. A positive correlation was observed between GPR109A protein level and tumor-infiltrating T cells in human colon carcinoma specimens, and IFNγ expression level is higher in human colon carcinoma tissues than in normal colon tissues. We further demonstrated that IFNγ rapidly activates pSTAT1 that binds to the promoter of p300 to activate its transcription. p300 then binds to the GPR109A promoters to induce H3K18 hyperacetylation, resulting in chromatin remodeling in the methylated GPR109A promoter. The IFNγ-activated pSTAT1 then directly binds to the methylated but hyperacetylated GPR109 promoters to activate its transcription. Overall, our data indicate that GPR109A acts as a tumor suppressor in colon cancer and the host immune system might use IFNγ to counteract DNA methylation-mediated GPR109A silencing as a mechanism to suppress tumor development. PMID:25735954

  8. Fluorescence in situ hybridization techniques (FISH) to detect changes in CYP19a gene expression of Japanese medaka (Oryzias latipes)

    International Nuclear Information System (INIS)

    Park, June-Woo; Tompsett, Amber; Zhang, Xiaowei; Newsted, John L.; Jones, Paul D.; Au, Doris; Kong, Richard; Wu, Rudolf S.S.; Giesy, John P.; Hecker, Markus

    2008-01-01

    The aim of this study was to develop a sensitive in situ hybridization methodology using fluorescence-labeled riboprobes (FISH) that allows for the evaluation of gene expression profiles simultaneously in multiple target tissues of whole fish sections of Japanese medaka (Oryzias latipes). To date FISH methods have been limited in their application due to autofluorescence of tissues, fixatives or other components of the hybridization procedure. An optimized FISH method, based on confocal fluorescence microscopy was developed to reduce the autofluorescence signal. Because of its tissue- and gender-specific expression and relevance in studies of endocrine disruption, gonadal aromatase (CYP19a) was used as a model gene. The in situ hybridization (ISH) system was validated in a test exposure with the aromatase inhibitor fadrozole. The optimized FISH method revealed tissue-specific expression of the CYP19a gene. Furthermore, the assay could differentiate the abundance of CYP19a mRNA among cell types. Expression of CYP19a was primarily associated with early stage oocytes, and expression gradually decreased with increasing maturation. No expression of CYP19a mRNA was observed in other tissues such as brain, liver, or testes. Fadrozole (100 μg/L) caused up-regulation of CYP19a expression, a trend that was confirmed by RT-PCR analysis on excised tissues. In a combination approach with gonad histology, it could be shown that the increase in CYP19a expression as measured by RT-PCR on a whole tissue basis was due to a combination of both increases in numbers of CYP19a-containing cells and an increase in the amount of CYP19a mRNA present in the cells

  9. MB109 as bioactive human bone morphogenetic protein-9 refolded and purified from E. coli inclusion bodies

    Science.gov (United States)

    2014-01-01

    Background The development of chemical refolding of transforming growth factor-beta (TGF-β) superfamily ligands has been instrumental to produce the recombinant proteins for biochemical studies and exploring the potential of protein therapeutics. The osteogenic human bone morphogenetic protein-2 (hBMP-2) and its Drosophila DPP homolog were the early successful cases of refolding into functional form. Despite the similarity in their three dimensional structure and amino acid sequences, several other TGF-β superfamily ligands could not be refolded readily by the same methods. Results Here, we report a comprehensive study on the variables of a rapid-dilution refolding method, including the concentrations of protein, salt, detergent and redox agents, pH, refolding duration and the presence of aggregation suppressors and host-cell contaminants, in order to identify the optimal condition to refold human BMP-9 (hBMP-9). To produce a recombinant form of hBMP-9 in E. coli cells, a synthetic codon-optimized gene was designed to encode the mature domain of hBMP-9 (Ser320 – Arg429) directly behind the first methionine, which we herein referred to as MB109. An effective purification scheme was also developed to purify the refolded MB109 to homogeneity with a final yield of 7.8 mg from 100 mg of chromatography-purified inclusion bodies as a starting material. The chemically refolded MB109 binds to ALK1, ActRIIb and BMPRII receptors with relatively high affinity as compared to other Type I and Type II receptors based on surface plasmon resonance analysis. Smad1-dependent luciferase assay in C2C12 cells shows that the MB109 has an EC50 of 0.61 ng/mL (25 pM), which is nearly the same as hBMP-9. Conclusion MB109 is prone to be refolded as non-functional dimer and higher order multimers in most of the conditions tested, but bioactive MB109 dimer can be refolded with high efficiency in a narrow window, which is strongly dependent on the pH, refolding duration, the presence of

  10. Up-regulatation of CYP3A expression through pregnent X receptor by praeruptorin D isolated from Peucedanum praeruptorum Dunn.

    Science.gov (United States)

    Huang, Ling; Huang, Min; Li, Yu-Hua; Li, Rui-Ming; Zeng, Yu; Kuang, Shao-Yi; Zhang, Li; Wang, Yi-Tao; Bi, Hui-Chang

    2013-07-09

    Qianhu, the dried roots of Peucedanum praeruptorum DUNN (Umbelliferae), is a well-known traditional Chinese medicinal herb which was officially listed in the Chinese Pharmacopoeia. Praeruptorin D (PD) is one of the major active constituents of Peucedanum praeruptorum Dunn (Qianhu). The Pregnane X receptor (PXR) is an orphan nuclear receptor and plays a pivotal role in the activation of human cytochrome P450 3A4 (CYP3A4) gene. The purpose of this study was to investigate the effect of PD on the PXR-mediated transactivation of CYP3A4, and thus to predict potential herb-drug interactions between PD, Qianhu, and the other co-administered drugs that metabolized by CYP3A4. The effect of PD on the Cyp3a11, mPXR mRNA expression in mice primary hepatocytes was measured using real-time PCR. The gene expression, protein expression, and catalytic activity of CYP3A4 in the LS174T cells after transfected with PXR expression plasmids were determined by real-time PCR, Western blot analysis, and LC-MS/MS based CYP3A4 substrate assay. The results revealed that the level of Cyp3a11 gene expression in mice primary hepatocytes was significantly increased by PD, but PD cannot induce the mPXR gene expression. On the other hand, CYP3A4 mRNA, protein expression and functional activity in PXR-over-expression LS174T cells were significantly increased by PD through PXR-mediated pathway; conversely, no significant change was found in the untransfected cells. These findings suggest that PD can significantly up-regulate CYP3A4 expression and activity via the PXR-mediated pathway and this should be taken into consideration to predict any potential herb-drug interactions when PD and Peucedanum praeruptorum Dunn are co-administered with other drugs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Yongke Lu

    2015-10-01

    Full Text Available Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current report was to extend the previous in vitro and acute in vivo experiments to a chronic ethanol model to evaluate whether autophagy is also protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. Wild type (WT, CYP2E1 knockout (KO or CYP2E1 humanized transgenic knockin (KI, mice were fed an ethanol liquid diet or control dextrose diet for four weeks. In the last week, some mice received either saline or 3-methyladenine (3-MA, an inhibitor of autophagy, or rapamycin, which stimulates autophagy. Inhibition of autophagy by 3-MA potentiated the ethanol-induced increases in serum transaminase and triglyceride levels in the WT and KI mice but not KO mice, while rapamycin prevented the ethanol liver injury. Treatment with 3-MA enhanced the ethanol-induced fat accumulation in WT mice and caused necrosis in the KI mice; little or no effect was found in the ethanol-fed KO mice or any of the dextrose-fed mice. 3-MA treatment further lowered the ethanol-decrease in hepatic GSH levels and further increased formation of TBARS in WT and KI mice, whereas rapamycin blunted these effects of ethanol. Neither 3-MA nor rapamycin treatment affected CYP2E1 catalytic activity or content or the induction CYP2E1 by ethanol. The 3-MA treatment decreased levels of Beclin-1 and Atg 7 but increased levels of p62 in the ethanol-fed WT and KI mice whereas rapamycin had the opposite effects, validating inhibition and stimulation of autophagy, respectively. These

  12. Characterization CYP1A2, CYP2C9, CYP2C19 and CYP2D6 polymorphisms using HRMA in Psychiatry patients with schizophrenia and bipolar disease for personalized medicine.

    Science.gov (United States)

    Yenilmez, Ebru Dundar; Tamam, Lut; Karaytug, Onur; Tuli, Abdullah

    2018-06-19

    The interindividual genetic variations in drug metabolizing enzymes effects the impact and toxicity in plenty of drugs. The CYP1A2, CYP2C9, CYP2C19 and CYP2D6 gene polymorphisms characterized using high resolution melting analysis (HRMA) in follow-up patients in psychiatry clinic as a preliminary preparation for personalized medicine. Genotyping of CYP1A2*1F, CYP2C9 *2, *3, CYP2C19 *2, *3 and *17 and CYP2D6 *3, *4 was conducted in 101 patients using HRMA. Genotype and allele frequencies of the CYP variants were found to be in equilibrium with the Hardy-Weinberg equation. The frequency of the CYP1A2*1F allele in schizophrenia and bipolar disease was 0.694 and 0.255, respectively. The CYP2C9 allele frequencies were 0.087 (CYP2C9*2), and 0.549 (CYP2C9*3) for bipolar; 0.278 (CYP2C9*2) and 0.648 (CYP2C9*3) in schizophrenias. The CYP2C19*2 and *17 allele frequencies was 0.111 and 0.185 in schizophrenia and variant *2 was 0.117 and variant *17 was 0.255 in bipolar group. The frequency of the CYP2D6*3 allele was 0.027 in schizophrenias. The frequencies for the CYP2D6*4 variant was 0.092 and 0.096 in schizophrenia and bipolar groups, respectively. The knowledge in pharmacogenomics and also the developments in molecular genetics are growing rapidly. In the future this can be expected to provide new methodologies in the prediction of the activity in drug metabolizing enzymes. The HRMA is a rapid and useful technique to identify the genotypes for drug dosage adjustment before therapy in psychiatry patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles.

    Science.gov (United States)

    Peretz, Jackye; Flaws, Jodi A

    2013-09-01

    Bisphenol A (BPA) is the backbone of polycarbonate plastic products and the epoxy resin lining of aluminum cans. Previous studies have shown that exposure to BPA decreases sex steroid hormone production in mouse antral follicles. The current study tests the hypothesis that BPA first decreases the expression levels of the steroidogenic enzyme cytochrome P450 side-chain cleavage (Cyp11a1) and steroidogenic acute regulatory protein (StAR) in mouse antral follicles, leading to a decrease in sex steroid hormone production in vitro. Further, the current study tests the hypothesis that these effects are acute and reversible after removal of BPA. Exposure to BPA (10μg/mL and 100μg/mL) significantly decreased expression of Cyp11a1 and StAR beginning at 18h and 72h, respectively, compared to controls. Exposure to BPA (10μg/mL and 100μg/mL) significantly decreased progesterone levels beginning at 24h and decreased androstenedione, testosterone, and estradiol levels at 72h and 96h compared to controls. Further, after removing BPA from the culture media at 20h, expression of Cyp11a1 and progesterone levels were restored to control levels by 48h and 72h, respectively. Additionally, expression of StAR and levels of androstenedione, testosterone, and estradiol never decreased compared to controls. These data suggest that BPA acutely decreases expression of Cyp11a1 as early as 18h and this reduction in Cyp11a1 may lead to a decrease in progesterone production by 24h, followed by a decrease in androstenedione, testosterone, and estradiol production and expression of StAR at 72h. Therefore, BPA exposure likely targets Cyp11a1 and steroidogenesis, but these effects are reversible with removal of BPA exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Effect of Flavonoids on Glutathione Level, Lipid Peroxidation and Cytochrome P450 CYP1A1 Expression in Human Laryngeal Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Lidija Vuković

    2007-01-01

    Full Text Available Flavonoids are phytochemicals exhibiting a wide range of biological activities, among which are antioxidant activity, the ability to modulate activity of several enzymes or cell receptors and possibility to interfere with essential biochemical pathways. Using human laryngeal carcinoma HEp2 cells and their drug-resistant CK2 subline, we examined the effect of five flavonoids, three structurally related flavons (quercetin, fisetin, and myricetin, one flavonol (luteolin and one glycosilated flavanone (naringin for: (i their ability to inhibit mitochondrial dehydrogenases as an indicator of cytotoxic effect, (ii their influence on glutathione level, (iii antioxidant/prooxidant effects and influence on cell membrane permeability, and (iv effect on expression of cytochrome CYP1A1. Cytotoxic action of the investigated flavonoids after 72 hours of treatment follows this order: luteolin>quercetin>fisetin>naringin>myricetin. Our results show that CK2 were more resistant to toxic concentrations of flavonoids as compared to parental cells. Quercetin increased the total GSH level in both cell lines. CK2 cells are less perceptible to lipid peroxidation and damage caused by free radicals. Quercetin showed prooxidant effect in both cell lines, luteolin only in HEp2 cells, whereas other tested flavonoids did not cause lipid peroxidation in the tested cell lines. These data suggest that the same compound, quercetin, can act as a prooxidant, but also, it may prevent damage in cells caused by free radicals, due to the induction of GSH, by forming less harmful complex. Quercetin treatment damaged cell membranes in both cell lines. Fisetin caused higher cell membrane permeability only in HEp2 cells. However, these two compounds did not enhance the damage caused by hydrogen peroxide. Quercetin, naringin, myricetin and fisetin increased the expression of CYP1A1 in both cell lines, while luteolin decreased basal level of CYP1A1 only in HEp2 cells. In conclusion, small

  15. Investigating the CYP2E1 Potential Role in the Mechanisms Behind INH/LPS-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hozeifa M. Hassan

    2018-03-01

    Full Text Available Tuberculosis (TB is one of the oldest infectious diseases that affected humankind and remains one of the world’s deadliest communicable diseases that could be considered as global emergency, but the discovery and development of isoniazid (INH in the 1950s paved the way to an effective single and/or combined first-line anti-TB therapy. However, administration of INH induces severe hepatic toxicity in some patients. Previously, we establish a rat model of INH hepatotoxicity utilizing the inflammatory stress theory, in which bacterial lipopolysaccharide (LPS potentially enhanced INH toxicity. These enhancing activities ranged between augmenting the inflammatory stress, oxidative stress, alteration of bile acid homeostasis, and CYP2E1 over-expression. Although pre-treatment with dexamethasone (DEX helped overcome both inflammatory and oxidative stress which ended-up in alleviation of LPS augmenting effects, but still minor toxicities were being detected, alongside with CYP2E1 over expression. This finding positively indicated the corner-stone role played by CYP2E1 in the pathogenesis of INH/LPS-induced liver damage. Therefore, we examined whether INH/LPS co-treatment with CYP2E1 inhibitor diallyl sulfide (DAS and DEX can protect against the INH/LPS-induced hepatotoxicity. Our results showed that pre-administration of both DAS and DEX caused significant reduction in serum TBA, TBil, and gamma-glutamyl transferase levels. Furthermore, the histopathological analysis showed that DAS and DEX could effectively reverse the liver lesions seen following INH/LPS treatment and protect against hepatic steatosis as indicated by absence of lipid accumulation. Pre-treatment with DAS alone could not completely block the CYP2E1 protein expression following INH/LPS treatment, as appeared in the immunoblotting and immunohistochemistry results. This is probably due to the fact that the combined enhancement activities of both INH and LPS on CYP2E1 protein expression

  16. Improving the expression of recombinant proteins in E. coli BL21 (DE3) under acetate stress: an alkaline pH shift approach.

    Science.gov (United States)

    Wang, Hengwei; Wang, Fengqing; Wang, Wei; Yao, Xueling; Wei, Dongzhi; Cheng, Hairong; Deng, Zixin

    2014-01-01

    Excess acetate has long been an issue for the production of recombinant proteins in E. coli cells. Recently, improvements in acetate tolerance have been achieved through the use of genetic strategies and medium supplementation with certain amino acids and pyrimidines. The aim of our study was to evaluate an alternative to improve the acetate tolerance of E. coli BL21 (DE3), a popular strain used to express recombinant proteins. In this work we reported the cultivation of BL21 (DE3) in complex media containing acetate at high concentrations. In the presence of 300 mM acetate, compared with pH 6.5, pH 7.5 improved cell growth by approximately 71%, reduced intracellular acetate by approximately 50%, and restored the expression of glutathione S-transferase (GST), green fluorescent protein (GFP) and cytochrome P450 monooxygenase (CYP). Further experiments showed that alkaline pHs up to 8.5 had little inhibition in the expression of GST, GFP and CYP. In addition, the detrimental effect of acetate on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) by the cell membrane, an index of cellular metabolic capacity, was substantially alleviated by a shift to alkaline pH values of 7.5-8.0. Thus, we suggest an approach of cultivating E. coli BL21 (DE3) at pH 8.0 ± 0.5 to minimize the effects caused by acetate stress. The proposed strategy of an alkaline pH shift is a simple approach to solving similar bioprocessing problems in the production of biofuels and biochemicals from sugars.

  17. CYP Suppression in Human Hepatocytes by Monomethyl Auristatin E, the Payload in Brentuximab Vedotin (Adcetris®), is Associated with Microtubule Disruption.

    Science.gov (United States)

    Wolenski, Francis S; Xia, Cindy Q; Ma, Bingli; Han, Tae H; Shyu, Wen C; Balani, Suresh K

    2018-06-01

    Monomethyl auristatin E (MMAE), the toxin linked to CD30-specific monoclonal antibody of Adcetris ® (brentuximab vedotin), is a potent anti-microtubule agent. Brentuximab vedotin has been approved for the treatment of relapsed or refractory Hodgkin lymphoma and anaplastic large cell lymphoma. Cytochrome P450 (CYP) induction assessment of MMAE was conducted in human hepatocytes to assess DDI potentials and its translation to clinic. MMAE was incubated at 1-1000 nM with cultured primary human hepatocytes for 72 h, and CYP1A2, CYP2B6, and CYP3A4 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction and CYP-specific probe substrate by liquid chromatography coupled with mass spectrometry, along with microtubule disruption by immunofluorescence staining using anti-β-tubulin antibody and imaging. MMAE up to 10 nM had no significant effect on CYP1A2, CYP2B6, and CYP3A4 mRNA expression and activity, whereas at higher concentrations of 100- and 1000-nM MMAE, the CYP mRNA expression and activity were diminished substantially. Further investigation showed that the degree of CYP suppression was paralleled by that of microtubule disruption by MMAE, as measured by increase in the number of β-tubulin-positive aggregates. At the clinical dose, the concentration of MMAE was 7 nM which did not show any significant CYP suppression or microtubule disruption in hepatocytes. MMAE was not a CYP inducer in human hepatocytes. However, it caused a concentration-dependent CYP mRNA suppression and activity. The CYP suppression was associated with microtubule disruption, supporting the reports that intact microtubule architecture is required for CYP regulations. The absence of CYP suppression and microtubule disruption in vitro at the clinical plasma concentrations of MMAE (< 10 nM) explains the lack of pharmacokinetic drug interaction between brentuximab vedotin and midazolam, a sensitive CYP3A substrate, reported in patients.

  18. Effect of PCB 126 on aryl hydrocarbon receptor 1 (AHR1) and AHR1 nuclear translocator 1 (ARNT1) mRNA expression and CYP1 monooxygenase activity in chicken (Gallus domesticus) ovarian follicles.

    Science.gov (United States)

    Wójcik, Dagmara; Antos, Piotr A; Katarzyńska, Dorota; Hrabia, Anna; Sechman, Andrzej

    2015-12-03

    The aim of the experiment was to study the in vitro effect of 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) on aryl hydrocarbon receptor (AHR1) and AHR1 nuclear translocator (ARNT1) mRNA expression and the activity of CYP1 family monooxygenases in chicken ovarian follicles. White (1-4 mm) and yellowish (4-8 mm) prehierarchical follicles as well as fragments of the theca and granulosa layers of the 3 largest preovulatory follicles (F3-F1) were incubated in a medium supplemented with 0 (control group), 1, 10 or 100 nM PCB 126. The incubation was carried out for 6 h or 24 h for determination of mRNA expression of AHR1 and ARNT1 genes (real-time qPCR) and CYP1 monooxygenase activity (EROD and MROD fluorometric assays), respectively. It was found that chicken ovarian follicles express mRNA of AHR1 and ARNT1 genes. A modulatory effect of PCB 126 on AHR1 and ARNT1 expression depended not only on the biphenyl concentration but also on the follicular layer and the maturational state of the follicle. EROD and MROD activities appeared predominantly in the granulosa layer of the yellow preovulatory follicles. PCB 126 induced these activities in a dose-dependent manner in all ovarian follicles. The obtained results suggest that ovarian follicles, especially the granulosa layer, are involved in the detoxification process of PCBs in the laying hen. Taking this finding into consideration it can be suggested that the granulosa layer of the yellow hierarchical follicles plays a key role in the protective mechanism which reduces the amount of transferred dioxin-like compounds into the yolk of the oocyte. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Level of CYP4G19 Expression Is Associated with Pyrethroid Resistance in Blattella germanica

    Directory of Open Access Journals (Sweden)

    Guang-zhou Guo

    2010-01-01

    Full Text Available German cockroaches have become a large problem in the Shenzhen area because of their pesticide resistance, especially to pyrethroid. A pyrethroid called “Jia Chong Qing” to prevent pests for a long time were found to be resistant to “Jia Chong Qing” with resistance index of 3.88 measured using RT-PCR and immunohistochemistry analysis showed that both CYP4G19 mRNA and CYP4G19 protein expression levels in the wild strain were substantially higher than that of a sensitive strain. dsRNA segments derived from the target gene CYP4G19 were prepared using in vitro transcription and were microinjected into abdomens of the wild strain. Two to eight days after injection, the result showed that CYP4G19 mRNA expressions were significantly reduced in the groups injected with dsRNAs.

  20. IGF-1 attenuates LPS induced pro-inflammatory cytokines expression in buffalo (Bubalus bubalis) granulosa cells.

    Science.gov (United States)

    Onnureddy, K; Ravinder; Onteru, Suneel Kumar; Singh, Dheer

    2015-03-01

    Interaction between immune and endocrine system is a diverse process influencing cellular function and homeostasis in animals. Negative energy balance (NEB) during postpartum period in dairy animals usually suppresses these systems resulting in reproductive tract infection and infertility. These negative effects could be due to competition among endocrine and immune signaling pathways for common signaling molecules. The present work studied the effect of IGF-1 (50 ng/ml) on LPS (1 μg/ml) mediated pro-inflammatory cytokine expression (IL-1β, TNF-α, IL-6) and aromatase (CYP19A1) genes' expressions as well as proliferation of buffalo granulosa cells. The crosstalk between LPS and IGF-1 was also demonstrated through studying the activities of downstream signaling molecules (ERK1/2, Akt, NF-κB) by western blot and immunostaining. Gene expression analysis showed that IGF-1 significantly reduced the LPS induced expression of IL-1β, TNF-α and IL-6. LPS alone inhibited the CYP19A1 expression. However, co-treatment with IGF-1 reversed the inhibitory effect of LPS on CYP19A1 expression. LPS alone did not affect granulosa cell proliferation, but co-treatment with IGF-1, and IGF-1 alone enhanced the proliferation. Western blot results demonstrated that LPS caused the nuclear translocation of the NF-κB and increased the phosphorylation of ERK1/2 and Akt maximum at 15 min and 60 min, respectively. Nonetheless, co-treatment with IGF-1 delayed LPS induced phosphorylation of ERK1/2 (peak at 120 min), while promoting early Akt phosphorylation (peak at 5 min) with no effect on NF-κB translocation. Overall, IGF-1 delayed and reversed the effects of LPS, suggesting that high IGF-1 levels may combat infection during critical periods like NEB in postpartum dairy animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [Expression of enterotoxigenic Bacteroides fragilis and polyketide synthase gene-expressing Escherichia coli in colorectal adenoma patients].

    Science.gov (United States)

    Xie, L L; Wu, N; Zhu, Y M; Qiu, X Y; Chen, G D; Zhang, L M; Liu, Y L

    2016-03-29

    To investigate the distribution of various bacteria in adenoma tissue of colorectal adenoma (T/CRA), normal colonic mucosa tissue adjacent to the adenoma (N/CRA), and healthy colonic mucosa tissue (N/H) by comparing the number of total bacteria, Bacteroides fragilis (BF), enterotoxigenic Bacteroides fragilis (ETBF), polyketide synthase (pks) gene-expressing Escherichia coli(E.coli)(pks(+) E. coli)among the above 3 types of tissues. A total of 36 patients diagnosed with colorectal adenoma by colonoscopy and pathology in Department of Gastroenterology, Peking University People's Hospital from September 2011 to September 2013 were selected into this study. T/CRA and N/CRA tissues from the 36 patients and N/H tissues from 18 healthy controls were collected for DNA extraction. The number of total bacteria, BF, ETBF, pks(+) E. coli was detected by quantitative real time PCR, and their correlation with colorectal adenoma was analyzed. (1) The number of total bacteria decreased gradually from N/H, N/CRA, to T/CRA, with the median values being 3.18×10(8,) 1.57×10(8,) and 7.91×10(7) copies/g, respectively, and with significant difference among the three groups and between each two groups (all PCRA, to T/CRA, the median values being 6.03×10(5,) 4.28×10(4,) and 5.48×10(3) copies/g, respectively, and with significant difference among the three groups and between each two groups (all PCRA, to T/CRA, the relative expression being 1.73±0.30, 6.15±1.52, and 8.54±1.80, respectively. Significant difference was found between the T/CRA and N/H tissue (P=0.003), but not between any other two groups. (4) The expression of clbB in pks(+) E.coli was highest in T/CRA colonic tissue (2.96±0.28), followed by the N/CRA (2.79±0.19) and N/H tissue (1.06±0.08). Significant difference was found between T/CRA and N/H tissues, as well as between N/CRA and N/H tissues (both PCRA and N/CRA tissues. The number of total bacteria is markedly reduced in the colonic mucosa of CRA patients

  2. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population

    Directory of Open Access Journals (Sweden)

    Jun Hyun Han

    2015-04-01

    Full Text Available In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese in the HapMap database. Only 21 polymorphisms of CYP17A1, CYP3A4, and CYP3A43 were selected based on linkage disequilibrium in Asians (r2 = 1, locations (SNPs in exons were preferred, and amino acid changes and were assessed. In addition, we performed haplotype analysis for the 21 SNPs in CYP17A1, CYP3A4, and CYP3A43 genes. To determine the association between genotype and haplotype distributions of patients and controls, logistic analyses were carried out, controlling for age. Twelve sequence variants and five major haplotypes were identified in CYP17A1. Five sequence variants and two major haplotypes were identified in CYP3A4. Four sequence variants and four major haplotypes were observed in CYP3A43. CYP17A1 haplotype-2 (Ht-2 (odds ratio [OR], 1.51; 95% confidence interval [CI], 1.04-2.18 was associated with PCa susceptibility. CYP3A4 Ht-2 (OR: 1.87; 95% CI: 1.02-3.43 was associated with PCa metastatic potential according to tumor stage. rs17115149 (OR: 1.96; 95% CI: 1.04-3.68 and CYP17A1 Ht-4 (OR: 2.01; 95% CI: 1.07-4.11 showed a significant association with histologic aggressiveness according to Gleason score. Genetic variants of CYP17A1 and CYP3A4 may play a role in the development of PCa in Korean men.

  3. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population.

    Science.gov (United States)

    Han, Jun Hyun; Lee, Yong Seong; Kim, Hae Jong; Lee, Shin Young; Myung, Soon Chul

    2015-01-01

    In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa) in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP) database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese) in the HapMap database. Only 21 polymorphisms of CYP17A1, CYP3A4, and CYP3A43 were selected based on linkage disequilibrium in Asians (r2 = 1), locations (SNPs in exons were preferred), and amino acid changes and were assessed. In addition, we performed haplotype analysis for the 21 SNPs in CYP17A1, CYP3A4, and CYP3A43 genes. To determine the association between genotype and haplotype distributions of patients and controls, logistic analyses were carried out, controlling for age. Twelve sequence variants and five major haplotypes were identified in CYP17A1. Five sequence variants and two major haplotypes were identified in CYP3A4. Four sequence variants and four major haplotypes were observed in CYP3A43. CYP17A1 haplotype-2 (Ht-2) (odds ratio [OR], 1.51; 95% confidence interval [CI], 1.04-2.18) was associated with PCa susceptibility. CYP3A4 Ht-2 (OR: 1.87; 95% CI: 1.02-3.43) was associated with PCa metastatic potential according to tumor stage. rs17115149 (OR: 1.96; 95% CI: 1.04-3.68) and CYP17A1 Ht-4 (OR: 2.01; 95% CI: 1.07-4.11) showed a significant association with histologic aggressiveness according to Gleason score. Genetic variants of CYP17A1 and CYP3A4 may play a role in the development of PCa in Korean men.

  4. Effects of Melatonin on Early Pregnancy in Mouse: Involving the Regulation of StAR, Cyp11a1, and Ihh Expression.

    Science.gov (United States)

    Guan, Shengyu; Xie, Lu; Ma, Teng; Lv, Dongying; Jing, Wang; Tian, Xiuzhi; Song, Yukun; Liu, Zhiping; Xiao, Xianghong; Liu, Guoshi

    2017-07-27

    To test whether melatonin plays an important role in the process of early pregnancy, melatonin was given in drinking water to pregnant mice at different gestation stages. These included mice who were given melatonin 14 days prior to their successful mating (confirmed by vaginal plug) (Group A), after successful mating (Group B), and 14 days prior to and until after successful mating (Group C). Melatonin administration significantly enhanced serum as well as ovarian melatonin levels in the mice. It was observed that melatonin did not affect the natural estrous of mice. On day 0.5 of gestation (D0.5), melatonin not only elevated progesterone (P) secretion, but also upregulated expressions of StAR and Cyp11a1 , the two marker genes of corpus luteum in ovaries ( p Ihh expression in endometrium of D7.5 gestation. Melatonin treatment after successful mating improved the progesterone (P) secretion at D7.5 of gestation ( p Ihh expression in uterine endometrium. The mechanisms of melatonin to improve embryo implantation related to their actions on promoting the development of corpus luteum before gestation and helping to specify uterine receptivity in early pregnant mice.

  5. Application of SGT1-Hsp90 chaperone complex for soluble expression of NOD1 LRR domain in E. coli

    International Nuclear Information System (INIS)

    Hong, Tae-Joon; Hahn, Ji-Sook

    2016-01-01

    NOD1 is an intracellular sensor of innate immunity which is related to a number of inflammatory diseases. NOD1 is known to be difficult to express and purify for structural and biochemical studies. Based on the fact that Hsp90 and its cochaperone SGT1 are necessary for the stabilization and activation of NOD1 in mammals, SGT1 was chosen as a fusion partner of the leucine-rich repeat (LRR) domain of NOD1 for its soluble expression in Escherichia coli. Fusion of human SGT1 (hSGT1) to NOD1 LRR significantly enhanced the solubility, and the fusion protein was stabilized by coexpression of mouse Hsp90α. The expression level of hSGT1-NOD1 LRR was further enhanced by supplementation of rare codon tRNAs and exchange of antibiotic marker genes. - Highlights: • The NOD1 LRR domain was solubilized by SGT1 fusion in E. coli. • The coexpression of HSP90 stabilized the SGT1-NOD1 LRR fusion protein. • Several optimizations could enhance the expression level of the fusion protein.

  6. Expression and functional analysis of citrus carotene hydroxylases: unravelling the xanthophyll biosynthesis in citrus fruits.

    Science.gov (United States)

    Ma, Gang; Zhang, Lancui; Yungyuen, Witchulada; Tsukamoto, Issei; Iijima, Natsumi; Oikawa, Michiru; Yamawaki, Kazuki; Yahata, Masaki; Kato, Masaya

    2016-06-29

    Xanthophylls are oxygenated carotenoids and fulfill critical roles in plant growth and development. In plants, two different types of carotene hydroxylases, non-heme di-iron and heme-containing cytochrome P450, were reported to be involved in the biosynthesis of xanthophyll. Citrus fruits accumulate a high amount of xanthophylls, especially β,β-xanthophylls. To date, however, the roles of carotene hydroxylases in regulating xanthophyll content and composition have not been elucidated. In the present study, the roles of four carotene hydroxylase genes (CitHYb, CitCYP97A, CitCYP97B, and CitCYP97C) in the biosynthesis of xanthophyll in citrus fruits were investigated. Phylogenetic analysis showed that the four citrus carotene hydroxylases presented in four distinct clusters which have been identified in higher plants. CitHYb was a non-heme di-iron carotene hydroxylase, while CitCYP97A, CitCYP97B, and CitCYP97C were heme-containing cytochrome P450-type carotene hydroxylases. Gene expression results showed that the expression of CitHYb increased in the flavedo and juice sacs during the ripening process, which was well consistent with the accumulation of β,β-xanthophyll in citrus fruits. The expression of CitCYP97A and CitCYP97C increased with a peak in November, which might lead to an increase of lutein in the juice sacs during the ripening process. The expression level of CitCYP97B was much lower than that of CitHYb, CitCYP97A, and CitCYP97C in the juice sacs during the ripening process. Functional analysis showed that the CitHYb was able to catalyze the hydroxylation of the β-rings of β-carotene and α-carotene in Escherichia coli BL21 (DE3) cells. Meanwhile, when CitHYb was co-expressed with CitCYP97C, α-carotene was hydroxylated on the β-ring and ε-ring sequentially to produce lutein. CitHYb was a key gene for β,β-xanthophyll biosynthesis in citrus fruits. CitCYP97C functioned as an ε-ring hydroxylase to produce lutein using zeinoxanthin as a substrate

  7. Expression in E. coli systems

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Kristiansen, Karsten; Nøhr, Jane

    2003-01-01

    intracellularly in soluble form. In E. coli, proteins containing disulfide bonds are best produced by secretion because the disulfide forming foldases reside in the periplasm. Likewise, a correct N-terminus is more likely to be obtained upon secretion. Moreover, potentially toxic proteins are more likely......Owing to cost advantage, speed of production, and often high product yield (up to 50% of total cell protein), expression in Escherichia coli is generally the first choice when attempting to express a recombinant protein. Expression systems exist to produce recombinant protein intracellularly...

  8. Expression and Hydroxylamine Cleavage of Thymosin Alpha 1 Concatemer

    Directory of Open Access Journals (Sweden)

    Liang Zhou

    2008-01-01

    Full Text Available Human thymosin alpha 1 (Tα1 is an important peptide in the development and senescence of immunological competence in human, and many studies have reported the expression of this peptide. In this study, we designed and synthesized the Tα1 gene according to the E. coli codon usage preference and constructed a 6×Tα1 concatemer. The latter was inserted into an E. coli expression vector pET-22b (+, and transformed into E. coli BL21 (DE3. After induction with IPTG, the concatemer protein was successfully expressed in E. coli then cleaved by hydroxylamine to release the Tα1 monomer. Gly-SDS-PAGE and mass spectrometry confirmed that the recombinant protein was cleaved as intended. The bioactivity of the Tα1 monomer was analyzed by lymphocyte proliferation and by mitochondrial activity in two different tumor cell lines. This study provides a description of the preparation of a bioactive Tα1, which may prove useful in future biomedical research.

  9. A new CYP21A1P/CYP21A2 chimeric gene identified in an Italian woman suffering from classical congenital adrenal hyperplasia form

    Science.gov (United States)

    Concolino, Paola; Mello, Enrica; Minucci, Angelo; Giardina, Emiliano; Zuppi, Cecilia; Toscano, Vincenzo; Capoluongo, Ettore

    2009-01-01

    Background More than 90% of Congenital Adrenal Hyperplasia (CAH) cases are associated with mutations in the 21-hydroxylase gene (CYP21A2) in the HLA class III area on the short arm of chromosome 6p21.3. In this region, a 30 kb deletion produces a non functional chimeric gene with its 5' and 3' ends corresponding to CYP21A1P pseudogene and CYP21A2, respectively. To date, five different CYP21A1P/CYP21A2 chimeric genes have been found and characterized in recent studies. In this paper, we describe a new CYP21A1P/CYP21A2 chimera (CH-6) found in an Italian CAH patient. Methods Southern blot analysis and CYP21A2 sequencing were performed on the patient. In addition, in order to isolate the new CH-6 chimeric gene, two different strategies were used. Results The CYP21A2 sequencing analysis showed that the patient was homozygote for the g.655C/A>G mutation and heterozygote for the p.P30L missense mutation. In addition, the promoter sequence revealed the presence, in heterozygosis, of 13 SNPs generally produced by microconversion events between gene and pseudogene. Southern blot analysis showed that the woman was heterozygote for the classic 30-kb deletion producing a new CYP21A1P/CYP21A2 chimeric gene (CH-6). The hybrid junction site was located between the end of intron 2 pseudogene, after the g.656C/A>G mutation, and the beginning of exon 3, before the 8 bp deletion. Consequently, CH-6 carries three mutations: the weak pseudogene promoter region, the p.P30L and the g.655C/A>G splice mutation. Conclusion We describe a new CYP21A1P/CYP21A2 chimera (CH-6), associated with the HLA-B15, DR13 haplotype, in a young Italian CAH patient. PMID:19624807

  10. Nicotine Component of Cigarette Smoke Extract (CSE) Decreases the Cytotoxicity of CSE in BEAS-2B Cells Stably Expressing Human Cytochrome P450 2A13.

    Science.gov (United States)

    Ji, Minghui; Zhang, Yudong; Li, Na; Wang, Chao; Xia, Rong; Zhang, Zhan; Wang, Shou-Lin

    2017-10-13

    Cytochrome P450 2A13 (CYP2A13), an extrahepatic enzyme mainly expressed in the human respiratory system, has been reported to mediate the metabolism and toxicity of cigarette smoke. We previously found that nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism by CYP2A13, but its influence on other components of cigarette smoke remains unclear. The nicotine component of cigarette smoke extract (CSE) was separated, purified, and identified using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), splitting CSE into a nicotine section (CSE-N) and nicotine-free section (CSE-O). Cell viability and apoptosis by Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted on immortalized human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13) or vector (B-V), respectively. Interestingly, CSE and CSE-O were toxic to BEAS-2B cells whereas CSE-N showed less cytotoxicity. CSE-O was more toxic to B-2A13 cells than to B-V cells (IC 50 of 2.49% vs. 7.06%), which was flatted by 8-methoxypsoralen (8-MOP), a CYP inhibitor. CSE-O rather than CSE or CSE-N increased apoptosis of B-2A13 cells rather than B-V cells. Accordingly, compared to CSE-N and CSE, CSE-O significantly changed the expression of three pairs of pro- and anti-apoptotic proteins, Bcl-2 Associated X Protein/B cell lymphoma-2 (Bax/Bcl-2), Cleaved Poly (Adenosine Diphosphate-Ribose) Polymerase/Poly (Adenosine Diphosphate-Ribose) Polymerase (C-PARP/PARP), and C-caspase-3/caspase-3, in B-2A13 cells. In addition, recombination of CSE-N and CSE-O (CSE-O/N) showed similar cytotoxicity and apoptosis to the original CSE. These results demonstrate that the nicotine component decreases the metabolic activation of CYP2A13 to CSE and aids in understanding the critical role of CYP2A13 in human respiratory diseases caused by cigarette smoking.

  11. The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3.

    Science.gov (United States)

    Nikodinovic-Runic, Jasmina; Coulombel, Lydie; Francuski, Djordje; Sharma, Narain D; Boyd, Derek R; Ferrall, Rory Moore O; O'Connor, Kevin E

    2013-06-01

    Nine different sulfur-containing compounds were biotransformed to the corresponding sulfoxides by Escherichia coli Bl21(DE3) cells expressing styrene monooxygenase (SMO) from Pseudomonas putida CA-3. Thioanisole was consumed at 83.3 μmoles min(-1) g cell dry weight(-1) resulting mainly in the formation of R-thioanisole sulfoxide with an enantiomeric excess (ee) value of 45 %. The rate of 2-methyl-, 2-chloro- and 2-bromo-thioanisole consumption was 2-fold lower than that of thioanisole. Surprisingly, the 2-methylthioanisole sulfoxide product had the opposite (S) configuration to that of the other 2-substituted thioanisole derivatives and had a higher ee value (84 %). The rate of oxidation of 4-substituted thioanisoles was higher than the corresponding 2-substituted substrates but the ee values of the products were consistently lower (10-23 %). The rate of benzo[b]thiophene and 2-methylbenzo[b]thiophene sulfoxidation was approximately 10-fold lower than that of thioanisole. The ee value of the benzo[b]thiophene sulfoxide could not be determined as the product racemized rapidly. E. coli cells expressing an engineered SMO (SMOeng R3-11) oxidised 2-substituted thioanisoles between 1.8- and 2.8-fold faster compared to cells expressing the wild-type enzyme. SMOeng R3-11 oxidised benzo[b]thiophene and 2-methylbenzo[b]thiophene 10.1 and 5.6 times faster that the wild-type enzyme. The stereospecificity of the reaction catalysed by SMOeng was unchanged from that of the wild type. Using the X-ray crystal structure of the P. putida S12 SMO, it was evident that the entrance of substrates into the SMO active site is limited by the binding pocket bottleneck formed by the side chains of Val-211 and Asn-46 carboxyamide group.

  12. Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli.

    Science.gov (United States)

    Yue, Chang-Wu; Zhang, Yi-Zheng

    2009-03-01

    A novel antifreeze protein cDNA was cloned by RT-PCR from the larva of the yellow mealworm Tenebrio molitor. The coding fragment of 339 bp encodes a protein of 112 amino acid residues and was fused to the expression vectors pET32a and pTWIN1. The resulted expression plasmids were transformed into Escherischia coli strains BL21 (DE3), ER2566, and Origami B (DE3), respectively. Several strategies were used for expression of the highly disulfide-bonded beta-helix-contained protein with the activity of antifreeze in different expression systems. A protocol for production of refolded and active T. molitor antifreeze protein in bacteria was obtained.

  13. Vital role for cyclophilin B (CypB) in asexual development, dimorphic transition and virulence of Beauveria bassiana.

    Science.gov (United States)

    Chu, Zhen-Jian; Sun, Huan-Huan; Ying, Sheng-Hua; Feng, Ming-Guang

    2017-08-01

    Cyclophilin B (CypB) was previously revealed as one of many putative secretory proteins in the transcriptome of Beauveria bassiana infection to a lepidopteran pest. Here we show a main localization of CypB in hyphal cell walls and septa and its essential role in the in vitro and in vivo asexual cycles of the fungal insect pathogen. Deletion of cypB reduced colony growth by 16-42% on two rich media and 30 scant media with different carbon or nitrogen sources. The deletion mutant suffered a delayed conidiation on a standard medium and a final 47% reduction in conidial yield, accompanied with drastic transcript depression of several key genes required for conidiation and conidial maturation. The mutant conidia required 10h longer to germinate 50% at optimal 25°C than wild-type conidia. Intriguingly, cultivation of the mutant conidia in a trehalose-peptone broth mimic to insect hemolymph resulted in 83% reduction in blastospore yield but only slight decrease in biomass level, indicating severe defects in transition of hyphae to blastospores. LT 50 for the deletion mutant against Galleria mellonella larvae through normal cuticle infection was prolonged to 7.4d from a wild-type estimate of 4.7d. During colony growth, additionally, the deletion mutant displayed hypersensitivity to Congo red, menadione, H 2 O 2 and heat shock but increased tolerance to cyclosporine A and rapamycin. All of changes were restored by targeted gene complementation. Altogether, CypB takes part in sustaining normal growth, aerial conidiation, conidial germination, dimorphic transition, stress tolerance and pathogenicity in B. bassiana. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. CYP1A1, CYP2E1 Y RIESGO A CÁNCER GÁSTRICO EN UNA POBLACIÓN COLOMBIANA DE ALTA INCIDENCIA

    Directory of Open Access Journals (Sweden)

    Eduardo Castaño

    2009-09-01

    Full Text Available El objetivo fue probar la hipótesis de que en casos y controles, de una población colombiana con alta incidencia de cáncer gástrico, muestran diferencias significativas entre las frecuencias de los polimorfismos genéticos CYP1A1-m2 y CYP2E1-c2; y a la vez, probar si hay diferencias entre el hábito del tabaquismo, el consumo de licor y el estrato socioeconómico; así como también sus posibles interacciones. Ochenta y siete pacientes afectados por cáncer gástrico e igual número de controles, del mismo grupo poblacional, genéticamente aislado, pertenecientes a la comunidad “paisa” del departamento de Caldas, fueron genotipíficados por medio de PCR-RFLPs para los polimorfismos CYP1A1-m2 y CYP2E1-c2. Además, se tuvo en cuenta las variables socioeconómicas y el estilo de vida, con respecto al tabaquismo y al consumo de alcohol. Los resultados encontrados sugieren que los portadores del polimorfismo CYP2E1-c2, asociado con mayor actividad metabólica, tienen mayor riesgo a desarrollar cáncer gástrico (OR=3.6, CI95% 1.6-8.1/p=0,002. En contraste, la frecuencia del polimorfismo CYP1A1*2A (MspI, también asociado con mayor actividad enzimática, mostró similar frecuencia entre los dos grupos. El tabaquismo y el estrato socioeconómico bajo, también mostraron diferencias significativas. En conclusión, se evidencia interacción significativa entre gen-ambiente, particularmente entre el tabaquismo y los alelos bioactiavantes CYP2E1- c2 y CYP1A1-m2, que pueden alterar la susceptibilidad a cáncer de estómago en esta región Andina del noroeste de Sur América.

  15. CYP2E1 Metabolism of Styrene Involves Allostery

    Science.gov (United States)

    Hartman, Jessica H.; Boysen, Gunnar

    2012-01-01

    We are the first to report allosterism during styrene oxidation by recombinant CYP2E1 and human liver microsomes. At low styrene concentrations, oxidation is inefficient because of weak binding to CYP2E1 (Ks = 830 μM). A second styrene molecule then binds CYP2E1 with higher affinity (Kss = 110 μM) and significantly improves oxidation to achieve a kcat of 6.3 nmol · min−1 · nmol CYP2E11. The transition between these metabolic cycles coincides with reported styrene concentrations in blood from exposed workers; thus, this CYP2E1 mechanism may be relevant in vivo. Scaled modeling of the in vitro-positive allosteric mechanism for styrene metabolism to its in vivo clearance led to significant deviations from the traditional model based on Michaelis-Menten kinetics. Low styrene levels were notably much less toxic than generally assumed. We interrogated the allosteric mechanism using the CYP2E1-specific inhibitor and drug 4-methylpyrazole, which we have shown binds two CYP2E1 sites. From the current studies, styrene was a positive allosteric effector on 4-methylpyrazole binding, based on a 10-fold increase in 4-methylpyrazole binding affinity from Ki 0.51 to Ksi 0.043 μM. The inhibitor was a negative allosteric effector on styrene oxidation, because kcat decreased 6-fold to 0.98 nmol · min−1 · nmol CYP2E11. Consequently, mixtures of styrene and other molecules can induce allosteric effects on binding and metabolism by CYP2E1 and thus mitigate the efficiency of their metabolism and corresponding effects on human health. Taken together, our elucidation of mechanisms for these allosteric reactions provides a powerful tool for further investigating the complexities of CYP2E1 metabolism of drugs and pollutants. PMID:22807108

  16. Hepatic Cyp1a2 Expression Reduction during Inflammation Elicited in a Rat Model of Intermittent Hypoxia

    Directory of Open Access Journals (Sweden)

    Li-Xia Shi

    2017-01-01

    Conclusions: These results indicate a decrease in expression of hepatic CYPs and their regulator GR in rats exposed to IH. Therefore, this should be noted for patients on medication, especially those on drugs metabolized via the hepatic system, and close attention should be paid to the liver function of patients with OSA-associated IH.

  17. Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system

    OpenAIRE

    Schmid Rolf D; Itoh Masashi; Machida Kazuhiro; Girhard Marco; Arisawa Akira; Urlacher Vlada B

    2009-01-01

    Abstract Background (+)-Nootkatone (4) is a high added-value compound found in grapefruit juice. Allylic oxidation of the sesquiterpene (+)-valencene (1) provides an attractive route to this sought-after flavoring. So far, chemical methods to produce (+)-nootkatone (4) from (+)-valencene (1) involve unsafe toxic compounds, whereas several biotechnological approaches applied yield large amounts of undesirable byproducts. In the present work 125 cytochrome P450 enzymes from bacteria were tested...

  18. CYP1A1, CYP1A2, SULT1A1 AND SULT1E1 ALLELIC POLYMORPHISM IN CASE OF GENITAL ENDOMETRIOSIS

    Directory of Open Access Journals (Sweden)

    Konstantin Sergeevich Kublinskiy

    2016-02-01

    Up-to-date molecular and genetic analyses reveal that women predisposed to genital endometriosis possess Allele G and Genotypes AG and GG of the polymorphic option A-4889G of the CYP1A1 gene and Allele A and Genotypes CA and AA of the polymorphic option C-734A of the CYP1A2 gene. The polymorphism of the promoter regions of the SULT1A1 (G-638A and SULT1E1 (C-174T genes is not associated with genital endometriosis in women.

  19. ANTIBODIES TO BENZO[A]PYRENE AND POLYMORPHISMS OF CYP1A1*2A, CYP1A2*1F, GSTT1, AND GSTM1 GENES IN HEALTHY MEN AND LUNG CANCER PATIENTS

    Directory of Open Access Journals (Sweden)

    A. N. Glushkov

    2016-01-01

    Full Text Available Some genetic polymorphisms of CYP and GST enzymes metabolizing low-molecular weight xenobiotics may represent endogenous risk factors for carcinogenesis. However, possible relationships between the enzyme activities, amounts of carcinogen adducts and synthesis of anticarcinogen antibodies in humans (including cancer patients are still poorly studied. The purpose of this study was to identify possible associations between occurrence of antibodies against benzo[a]pyrene, and frequency of genetic polymorphisms of CYP1A1*2A, CYP1A2*1F, GSTT1, GSTM1 in healthy men and in lung cancer patients. Materials and methods. We have examined 203 men with non-small cell lung cancer and 267 apparently healthy donors without respiratory diseases. A non-competitive solid phase immunoassay of antibodies to benzo[a]pyrene was performed. Analysis of polymorphic loci within CYP1A1 (rs4646903, CYP1A2 (rs762551, GSTP1 (rs1695, rs1138272 was performed by means of real-time PCR using TaqMan technology. Null-alleles of GSTM1 (del, GSTT1 (del genes were detected by multiplex PCR with real-time fluorescent assay. Results. Among the lung cancer patients, the proportion of cases with a high level of IgG antibodies to benzo[a]pyrene in carriers of GSTT1+ and GSTM1+ in conjunction with the CYP1A2*1F C allele was significantly greater than in AA homozygotes CYP1A2*1F. The risk of lung cancer was increased to 5.5 in carriers of CYP1A2*1F C allele combined with GSTT1+ and GSTM1+ at high levels of IgG antibodies to benzo [a] pyrene. In healthy male donors, we have not found differences between the incidence of low and high levels of IgG anti-benzo[a]pyrene antibodies in the carriers of certain CYP1A1*2A, CYP1A2*1F, GSTT1 and GSTM1 genotypes. Conclusions. We have first reported a relationship between CYP1 and GST gene polymorphisms and specific immune response to chemical carcinogens in lung cancer patients. Immunoassays of IgG antibodies to benzo[a]pyrene combined with molecular

  20. [Expression and functions of adaptive response genes in Escherichia coli treated with mono- and bifunctional alkylating agents. Interference with SOS response].

    Science.gov (United States)

    Vasil'eva, S V; Makhova, E V; Moshkovskaia, E Iu

    1999-04-01

    The expression of genes belonging to the Ada regulon of Escherichia coli under the action of mono- and bifunctional alkylating agents--high-efficiency antitumor HMM, ACNU, and BCNU preparations--was studied. The functional specificity of the alkA, alkB, and aidB1 genes concerning both the structure and volume of DNA alkylation and the specificity of cell preadaptation was revealed. Additional experimental evidence for the role of the aidB1 gene as a unique "hazard gene", a component of the E. coli ada operon, was obtained. A phenomenon of positive interference between alternative SOS and Ada responses was observed for the first time upon gene expression.

  1. Kinin B1 receptors mediate depression-like behavior response in stressed mice treated with systemic E. coli lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Campos Maria M

    2010-12-01

    Full Text Available Abstract Background Kinin B1 receptors are inducible molecules up-regulated after inflammatory stimuli. This study evaluated the relevance of kinin B1 receptors in a mouse depression behavior model. Methods Mice were exposed to a 5-min swimming session, and 30 min later they were injected with E. coli lipopolysaccharide (LPS. Depression-like behavior was assessed by determining immobility time in a tail suspension test. Different brain structures were collected for molecular and immunohistochemical studies. Anhedonia was assessed by means of a sucrose intake test. Results Our protocol elicited an increase in depression-like behavior in CF1 mice, as assessed by the tail-suspension test, at 24 h. This behavior was significantly reduced by treatment with the selective B1 receptor antagonists R-715 and SSR240612. Administration of SSR240612 also prevented an increase in number of activated microglial cells in mouse hippocampus, but did not affect a reduction in expression of mRNA for brain-derived neurotrophic factor. The increased immobility time following LPS treatment was preceded by an enhancement of hippocampal and cortical B1 receptor mRNA expression (which were maximal at 1 h, and a marked production of TNFα in serum, brain and cerebrospinal fluid (between 1 and 6 h. The depression-like behavior was virtually abolished in TNFα p55 receptor-knockout mice, and increased B1 receptor mRNA expression was completely absent in this mouse strain. Furthermore, treatment with SSR240612 was also effective in preventing anhedonia in LPS-treated mice, as assessed using a sucrose preference test. Conclusion Our data show, for the first time, involvement of kinin B1 receptors in depressive behavioral responses, in a process likely associated with microglial activation and TNFα production. Thus, selective and orally active B1 receptor antagonists might well represent promising pharmacological tools for depression therapy.

  2. Cyp1a1(-/-) male mice: protection against high-dose TCDD-induced lethality and wasting syndrome, and resistance to intrahepatocyte lipid accumulation and uroporphyria

    International Nuclear Information System (INIS)

    Uno, Shigeyuki; Dalton, Timothy P.; Sinclair, Peter R.; Gorman, Nadia; Wang, Bin; Smith, Andrew G.; Miller, Marian L.; Shertzer, Howard G.; Nebert, Daniel W.

    2004-01-01

    To study liver toxicity and uroporphyrin (URO) accumulation and urinary excretion, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent ligand for the aryl hydrocarbon receptor (AHR), is often used as the prototype. In this study, we asked the question how important is the role of CYP1A1 in causing TCDD toxicity. Using a single large intraperitoneal dose of TCDD (200 μg/kg) and following the response over an 8-week period, we found this dose: (a) was lethal in less than 4 weeks to Cyp1a1(+/+) males but not to Cyp1a1(-/-) males or to females of either genotype; (b) caused a wasting syndrome in Cyp1a1(+/+) but not Cyp1a1(-/-) mice; (c) resulted in thymic atrophy, regardless of gender or genotype; (d) decreased spleen size and caused leukocytopenia in males but not females of either genotype; (e) caused hepatocyte hypertrophy in Cyp1a1(+/+) more so than in Cyp1a1(-/-) mice; (f) increased intrahepatocyte lipids and total liver fat content in Cyp1a1(+/+) more than Cyp1a1(-/-) males and females; and (g) caused uroporphyria in Cyp1a1(+/+) males much more than Cyp1a1(+/+) females, or in Cyp1a1(-/-) mice. Contrary to Cyp1a2(-/-) knockout mice that exhibited 15 times less accumulation of TCDD in liver than Cyp1a1/1a2(+/+) wild-type mice, Cyp1a1(-/-) mice did not show this altered TCDD distribution - indicating that CYP1A2 but not CYP1A1 is the major hepatic TCDD-binding 'sink'. Our data demonstrate that CYP1A1 contributes to high-dose TCDD-induced toxicity, uroporphyria, and lethality

  3. Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene-DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions

    International Nuclear Information System (INIS)

    Stiborová, Marie; Moserová, Michaela; Černá, Věra; Indra, Radek; Dračínský, Martin; Šulc, Miroslav; Henderson, Colin J.; Wolf, C. Roland; Schmeiser, Heinz H.; Phillips, David H.; Frei, Eva; Arlt, Volker M.

    2014-01-01

    In previous studies we had administered benzo[a]pyrene (BaP) to genetically engineered mice (HRN) which do not express NADPH:cytochrome P450 oxidoreductase (POR) in hepatocytes and observed higher DNA adduct levels in livers of these mice than in wild-type mice. To elucidate the reason for this unexpected finding we have used two different settings for in vitro incubations; hepatic microsomes from control and BaP-pretreated HRN mice and reconstituted systems with cytochrome P450 1A1 (CYP1A1), POR, cytochrome b 5 , and epoxide hydrolase (mEH) in different ratios. In microsomes from BaP-pretreated mice, in which Cyp1a1 was induced, higher levels of BaP metabolites were formed, mainly of BaP-7,8-dihydrodiol. At a low POR:CYP1A1 ratio of 0.05:1 in the reconstituted system, the amounts of BaP diones and BaP-9-ol formed were essentially the same as at an equimolar ratio, but formation of BaP-3-ol was ∼1.6-fold higher. Only after addition of mEH were BaP dihydrodiols found. Two BaP-DNA adducts were formed in the presence of mEH, but only one when CYP1A1 and POR were present alone. At a ratio of POR:CYP1A1 of 0.05:1, addition of cytochrome b 5 increased CYP1A1-mediated BaP oxidation to most of its metabolites indicating that cytochrome b 5 participates in the electron transfer from NADPH to CYP1A1 required for enzyme activity of this CYP. BaP-9-ol was formed even by CYP1A1 reconstituted with cytochrome b 5 without POR. Our results suggest that in livers of HRN mice Cyp1a1, cytochrome b 5 and mEH can effectively activate BaP to DNA binding species, even in the presence of very low amounts of POR

  4. Effects of Pristane on Cytochrome P450 Isozyme Expression in Rat Tissues

    Directory of Open Access Journals (Sweden)

    Marvin A. Cuchens

    2005-04-01

    Full Text Available Chemical carcinogenesis studies are powerful tools to obtain information on potential mechanisms of chemical factors for malignancies. In this study Western blot analyses, using monoclonal antibodies specific for three different cytochrome P450 (CYP isozymes (CYP1A1, CYP1A2 and CYP2B, were employed to examine the effect(s of 3-methylcholanthrene and/or pristane (2,6,10,14-tetramethylpentadecane on the basal and inducible levels of expression of CYP proteins within Copenhagen rat tissues. Pristane exposure led to tissue specific differences in the CYP isozymes expressed and elicited increased CYP protein expression over 3-methylcholanthrene induced levels in microsomes isolated from liver, Peyer's Patches, and thymus. Within the context of the chemical carcinogenesis model employed in this study, these observations correlated with the induction of B-cell malignancies by low doses of 3-methylcholanthrene and of thymic lymphomas by a high 3-methylcholanthrene dose. The data suggest that pristane treatment affects CYP isozyme expression. This pristane-mediated effect clearly could be a contributing factor in the chemical carcinogenesis of the previously observed lymphoid malignancies, and a possible basis for the tumor enhancing effects of pristane.

  5. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract.

    OpenAIRE

    Connell, I; Agace, W; Klemm, P; Schembri, M; Mărild, S; Svanborg, C

    1996-01-01

    Type 1 fimbriae are adhesion organelles expressed by many Gram-negative bacteria. They facilitate adherence to mucosal surfaces and inflammatory cells in vitro, but their contribution to virulence has not been defined. This study presents evidence that type 1 fimbriae increase the virulence of Escherichia coli for the urinary tract by promoting bacterial persistence and enhancing the inflammatory response to infection. In a clinical study, we observed that disease severity was greater in chil...

  6. Analysis of CYP1A1 and COMT polymorphisms in women with cervical cancer.

    Science.gov (United States)

    Kleine, J P; Camargo-Kosugi, C M; Carvalho, C V; Silva, F C; Silva, I D C G

    2015-12-29

    The aim of this case-control study was to obtain a comprehensive panel of genetic polymorphisms present only in genes (cytochrome P-450 1A1--CYP1A1 and catechol-O-methyl transferase--COMT) within the metabolic pathway of sex steroids and determine their possible associations with the presence or absence of cervical cancer. Genotypes of 222 women were analyzed: a) 81 with cancer of the cervix treated at the Cancer Hospital Alfredo Abram, between June 2012 and May 2013, with diagnosis confirmed surgically and/or through histomorphological examination; and b) 141 healthy women who assisted at the Endocrine Gynecology and Climacteric Ambulatory, Department of Gynecology, UNIFESP-EPM. These polymorphisms were detected by polymerase chain reaction amplification-restriction fragment length polymorphism analysis and visualized on 3% agarose gels stained with ethidium bromide. We found a significant association between the frequency of the CYP1A1 polymorphism and the development of cervical cancer. A statistical difference was observed between patient and control groups for CYP1A1 polymorphism genotype distributions (P 0.05) or between other risk variables analyzed. The CYP1A1 gene involved in the metabolic pathway of sex steroids might influence the emergence of pathological conditions such as cervical cancer in women who carry a mutated allele, and result in 1.80 and 13.46 times increased risk for women with heterozygous or homozygous mutated genotypes, respectively.

  7. Intestinal cellular localization of PCNA protein and CYP1A mRNA in Atlantic salmon Salmo salar L. exposed to a model toxicant

    Directory of Open Access Journals (Sweden)

    Olsvik Pål A

    2009-03-01

    Full Text Available Abstract Background The aim of the study was to examine the intestinal cellular localization of proliferating cell nuclear antigen (PCNA and cytochrome P450 A1 (CYP1A expression in Atlantic salmon Salmo salar L. exposed to a model toxicant. The stress response was induced by intraperitoneal injection of four salmon with a single dose (50 mg/kg of the CYP1A inducer β-naphthoflavone (BNF and intestinal tissue (mid and distal intestine; MI and DI was sampled seven days later. Samples for histology and gene transcription analysis were collected from four exposed fish and four control fish. PCNA was assessed by immunohistochemistry, CYP1A mRNA was studied by in situ hybridization (ISH and finally the transcription of five genes was quantified by real-time quantitative RT-PCR (real-time RT-PCR; two detoxifying genes (CYP1A and glutathione S-transferase; GST, a stress marker gene (heat shock protein 70; HSP70, PCNA and a gene marker of apoptosis (caspase 6A. Results PCNA protein and CYP1A mRNA were successfully localized in the intestinal cells (MI of both experimental groups. At the cellular level, BNF significantly lowered intestinal cell proliferation and increased the CYP1A mRNA levels compared to the control group. The real-time RT-PCR data, which showed an increased mRNA expression both in the MI and DI of 139- and 62-fold, respectively, confirmed the increased cellular CYP1A mRNA levels detected using ISH. HSP70 expression was also up-regulated in the exposed fish. The other examined genes did not show any differential regulation in the experimental fish group. Conclusion This study showed that CYP1A mRNA had a specific intestinal cellular transcription pattern in Atlantic salmon exposed to BNF. At the cellular level CYP1A mRNA expression was always observed at or around the cell nucleus close to the basolateral cell membrane and at the tissue level CYP1A mRNA expression was most frequently observed in the basal and apex area of the intestinal

  8. Mycobacterium tuberculosis HspX/EsxS Fusion Protein: Gene Cloning, Protein Expression, and Purification in Escherichia coli.

    Science.gov (United States)

    Khademi, Farzad; Yousefi-Avarvand, Arshid; Derakhshan, Mohammad; Meshkat, Zahra; Tafaghodi, Mohsen; Ghazvini, Kiarash; Aryan, Ehsan; Sankian, Mojtaba

    2017-10-01

    The purpose of this study was to clone, express, and purify a novel multidomain fusion protein of Micobacterium tuberculosis (Mtb) in a prokaryotic system. An hspX/esxS gene construct was synthesized and ligated into a pGH plasmid, E. coli TOP10 cells were transformed, and the vector was purified. The vector containing the construct and pET-21b (+) plasmid were digested with the same enzymes and the construct was ligated into pET-21b (+). The accuracy of cloning was confirmed by colony PCR and sequencing. E. coli BL21 cells were transformed with the pET-21b (+)/hspX/esxS expression vector and protein expression was evaluated. Finally, the expressed fusion protein was purified on a Ni-IDA column and verified by SDS-PAGE and western blotting. The hspX/esxS gene construct was inserted into pET-21b (+) and recombinant protein expression was induced with IPTG in E. coli BL21 cells. Various concentrations of IPTG were tested to determine the optimum concentration for expression induction. The recombinant protein was expressed in insoluble inclusion bodies. Three molar guanidine HCl was used to solubilize the insoluble protein. An HspX/EsxS Mtb fusion protein was expressed in E. coli and the recombinant protein was purified. After immunological analysis, the HspX/EsxS fusion protein might be an anti-tuberculosis vaccine candidate in future clinical trial studies.

  9. The effect of lidocaine on neutrophil CD11b/CD18 and endothelial ICAM-1 expression and IL-1beta concentrations induced by hypoxia-reoxygenation.

    LENUS (Irish Health Repository)

    Lan, W

    2012-02-03

    BACKGROUND: Lidocaine has actions potentially of benefit during ischaemia-reperfusion. Neutrophils and endothelial cells have an important role in ischaemia-reperfusion injury. METHODS: Isolated human neutrophil CD11b and CD18, and human umbilical vein endothelial cell (HUVEC) ICAM-1 expression and supernatant IL-1beta concentrations in response to hypoxia-reoxygenation were studied in the presence or absence of different concentrations of lidocaine (0.005, 0.05 and 0.5 mg mL(-1)). Adhesion molecule expression was quantified by flow cytometry and IL- 1beta concentrations by ELISA. Differences were assessed with analysis of variance and Student-Newman-Keuls as appropriate. Data are presented as mean+\\/-SD. RESULTS: Exposure to hypoxia-reoxygenation increased neutrophil CD11b (94.33+\\/-40.65 vs. 34.32+\\/-6.83 mean channel fluorescence (MCF), P = 0.02), CD18 (109.84+\\/-35.44 vs. 59.05+\\/-6.71 MCF, P = 0.03) and endothelial ICAM-1 (146.62+\\/-16.78 vs. 47.29+\\/-9.85 MCF, P < 0.001) expression compared to normoxia. Neutrophil CD18 expression on exposure to hypoxia-reoxygenation was less in lidocaine (0.005 mg mL(-1)) treated cells compared to control (71.07+\\/-10.14 vs. 109.84+\\/-35.44 MCF, P = 0.03). Endothelial ICAM-1 expression on exposure to hypoxia-reoxygenation was less in lidocaine (0.005 mg mL(-1)) treated cells compared to control (133.25+\\/-16.05 vs. 146.62+\\/-16.78 MCF, P = 0.03). Hypoxia-reoxygenation increased HUVEC supernatant IL-1beta concentrations compared to normoxia (3.41+\\/-0.36 vs. 2.65+\\/-0.21 pg mL(-1), P = 0.02). Endothelial supernatant IL-1beta concentrations in lidocaine-treated HUVECs were similar to controls. CONCLUSIONS: Lidocaine at clinically relevant concentrations decreased neutrophil CD18 and endothelial ICAM-1 expression but not endothelial IL-1beta concentrations.

  10. Expression and purification of PprI protein from D.radiodurans R1 in escherichia coli

    International Nuclear Information System (INIS)

    Zhang Yongqin; Zhou Hui; Chen Jie; Yang Zhanshan

    2011-01-01

    In order to express and purify PprI protein from D.radiodurans R1 in E. coli, the full length of pprI gene was gained by PCR amplification using pCMV-HA-pprI as a template. The gene segment was inserted into vector pET-28a after digested by two restriction endonucleases Nco I and EcoR I. Then the recombinant vector pET-28a-His-pprI was transfected into E. coli BL21(DE3) RP. The PprI protein expression was induced by IPTG and the fusion protein was confirmed by SDS-PAGE and Western blotting. The expressive conditions of the protein such as E. coli' A 600 , concentration of IPTG, time and temperature of culture, were optimized. Finally the fusion protein was purified by Ni-NTA His Bind Resins and molecule boult. The experimental results show the fusion protein confirmed by Western blotting is 6 x His-PprI and its molecular weight is 37 kDa. The ladders of PprI protein at molecular weight 37 kDa were different due to difference of the PprI protein expression conditions if E. coli. The PprI protein exists both in supernatant and precipitation. The concentration of purified protein is about 0.15 mg/mL which was measured by BCA method. It is concluded that the recombinant plasmid pET-28a-His-pprI is constructed and the PprI fusion protein is expressed and purified. The results lay a solid foundation for studying the radio-resistance and immunity of PprI protein. (authors)

  11. Effect of cyclophilin A on gene expression in human pancreatic cancer cells.

    Science.gov (United States)

    Li, Min; Wang, Hao; Li, Fei; Fisher, William E; Chen, Changyi; Yao, Qizhi

    2005-11-01

    We previously found that cyclophilin A (CypA) is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. In this study, we further investigated the effect of CypA on gene expression of several key molecules that are involved in pancreatic cancer cell proliferation. Human pancreatic cancer cell lines (Panc-1, MIA PaCa-2, and BxPC-3) and human pancreatic ductal epithelial (HPDE) cells were used. The messenger RNA (mRNA) levels of CypA, CypB, CD147, neuropilins (NRPs), vascular endothelial growth factor (VEGF), and VEGF receptors upon the treatment of exogenous recombinant human CypA were determined by real-time reverse-transcription polymerase chain reaction. Exogenous human recombinant CypA reduced the mRNA levels of NRP-1 and VEGF, but not endogenous CypA, CypB, and CD147, in Panc-1, MIA PaCa-2, and BxPC-3 cells. In contrast, HPDE cells showed a decrease of endogenous CypA and CD147 mRNA, but not detectable changes of CypB, NRPs, and VEGF mRNA levels upon exogenous CypA treatment. These data show that exogenous CypA downregulates NRP-1 and VEGF expression in pancreatic cancer cells. This effect is different in normal HPDE cells. Thus, soluble CypA may affect cell growth of pancreatic cancer.

  12. Metabolic activity and mRNA levels of human cardiac CYP450s involved in drug metabolism.

    Directory of Open Access Journals (Sweden)

    Veronique Michaud

    2010-12-01

    Full Text Available Tissue-specific expression of CYP450s can regulate the intracellular concentration of drugs and explain inter-subject variability in drug action. The overall objective of our study was to determine in a large cohort of samples, mRNA levels and CYP450 activity expressed in the human heart.CYP450 mRNA levels were determined by RTPCR in left ventricular samples (n = 68 of explanted hearts from patients with end-stage heart failure. Samples were obtained from ischemic and non-ischemic hearts. In some instances (n = 7, samples were available from both the left and right ventricles. A technique for the preparation of microsomes from human heart tissue was developed and CYP450-dependent activity was determined using verapamil enantiomers as probe-drug substrates.Our results show that CYP2J2 mRNA was the most abundant isoform in all human heart left ventricular samples tested. Other CYP450 mRNAs of importance were CYP4A11, CYP2E1, CYP1A1 and CYP2C8 mRNAs while CYP2B6 and CYP2C9 mRNAs were present at low levels in only some of the hearts analyzed. CYP450 mRNAs did not differ between ischemic and non-ischemic hearts and appeared to be present at similar levels in the left and right ventricles. Incubation of verapamil with heart microsomes led to the formation of nine CYP450-dependent metabolites: a major finding was the observation that stereoselectivity was reversed compared to human liver microsomes, in which the R-enantiomer is metabolized to a greater extent.This study determined cardiac mRNA levels of various CYP450 isozymes involved in drug metabolism and demonstrated the prevalent expression of CYP2J2 mRNA. It revealed that cardiomyocytes can efficiently metabolize drugs and that cardiac CYP450s are highly relevant with regard to clearance of drugs in the heart. Our results support the claim that drug metabolism in the vicinity of a drug effector site can modulate drug effects.

  13. Impairment of Akt activity by CYP2E1 mediated oxidative stress is involved in chronic ethanol-induced fatty liver

    Directory of Open Access Journals (Sweden)

    Tao Zeng

    2018-04-01

    Full Text Available Protein kinase B (PKB/Akt plays important roles in the regulation of lipid homeostasis, and impairment of Akt activity has been demonstrated to be involved in the development of non-alcoholic fatty liver disease (NAFLD. Previous studies suggest that cytochrome P4502E1 (CYP2E1 plays causal roles in the pathogenesis of alcoholic fatty liver (AFL. We hypothesized that Akt activity might be impaired due to CYP2E1-induced oxidative stress in chronic ethanol-induced hepatic steatosis. In this study, we found that chronic ethanol-induced hepatic steatosis was accompanied with reduced phosphorylation of Akt at Thr308 in mice liver. Chronic ethanol exposure had no effects on the protein levels of phosphatidylinositol 3 kinase (PI3K and phosphatase and tensin homologue deleted on chromosome ten (PTEN, and led to a slight decrease of phosphoinositide-dependent protein kinase 1 (PDK-1 protein level. Ethanol exposure resulted in increased levels of malondialdehyde (MDA and 4-hydroxynonenal (4-HNE-Akt adducts, which was significantly inhibited by chlormethiazole (CMZ, an efficient CYP2E1 inhibitor. Interestingly, N-acetyl-L-cysteine (NAC significantly attenuated chronic ethanol-induced hepatic fat accumulation and the decline of Akt phosphorylation at Thr308. In the in vitro studies, Akt phosphorylation was suppressed in CYP2E1-expressing HepG2 (CYP2E1-HepG2 cells compared with the negative control HepG2 (NC-HepG2 cells, and 4-HNE treatment led to significant decrease of Akt phosphorylation at Thr308 in wild type HepG2 cells. Lastly, pharmacological activation of Akt by insulin-like growth factor-1 (IGF-1 significantly alleviated chronic ethanol-induced fatty liver in mice. Collectively, these results indicate that CYP2E1-induced oxidative stress may be responsible for ethanol-induced suppression of Akt phosphorylation and pharmacological modulation of Akt in liver may be an effective strategy for the treatment of ethanol-induced fatty liver. Keywords

  14. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine

    DEFF Research Database (Denmark)

    Jeppesen, U; Gram, L F; Vistisen, K

    1996-01-01

    OBJECTIVE: The purpose of this pharmacokinetic study was to investigate the dose-dependent inhibition of model substrates for CYP2D6, CYP2C19 and CYP1A2 by four marketed selective serotonin reuptake inhibitors (SSRIs): citalopram, fluoxetine, fluvoxamine and paroxetine. METHODS: The study...

  15. CYP1A1 induction and CYP3A4 inhibition by the fungicide imazalil in the human intestinal Caco-2 cells-comparison with other conazole pesticides.

    Science.gov (United States)

    Sergent, Thérèse; Dupont, Isabelle; Jassogne, Coralie; Ribonnet, Laurence; van der Heiden, Edwige; Scippo, Marie-Louise; Muller, Marc; McAlister, Dan; Pussemier, Luc; Larondelle, Yvan; Schneider, Yves-Jacques

    2009-02-10

    Imazalil (IMA) is a widely used imidazole-antifungal pesticide and, therefore, a food contaminant. This compound is also used as a drug (enilconazole). As intestine is the first site of exposure to ingested drugs and pollutants, we have investigated the effects of IMA, at realistic intestinal concentrations, on xenobiotic-metabolizing enzymes and efflux pumps by using Caco-2 cells, as a validated in vitro model of the human intestinal absorptive epithelium. For comparison, other conazole fungicides, i.e. ketoconazole, propiconazole and tebuconazole, were also studied. IMA induced cytochrome P450 (CYP) 1A1 activity to the same extent as benzo(a)pyrene (B(a)P) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), in a dose- and time-dependent manner. Cell-free aryl hydrocarbon receptor (AhR) binding assay and reporter gene assay suggested that IMA is not an AhR-ligand, implying that IMA-mediated induction should involve an AhR-independent pathway. Moreover, IMA strongly inhibited the CYP3A4 activity in 1,25-vitamin D(3)-induced Caco-2 cells. The other fungicides had weak or nil effects on CYP activities. Study of the apical efflux pump activities revealed that ketoconazole inhibited both P-glycoprotein (Pgp) and multidrug resistance-associated protein 2 (MRP-2) or breast cancer resistance protein (BCRP), whereas IMA and other fungicides did not. Our results imply that coingestion of IMA-contaminated food and CYP3A4- or CYP1A1-metabolizable drugs or chemicals could lead to drug bioavailability modulation or toxicological interactions, with possible adverse effects for human health.

  16. Pharmacogenetic evaluation of ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase polymorphisms in teratogenicity of anti-epileptic drugs in women with epilepsy

    Directory of Open Access Journals (Sweden)

    Manna Jose

    2014-01-01

    Full Text Available Aim: Pregnancy in women with epilepsy (WWE who are on anti-epileptic drugs (AEDs has two- to three-fold increased risk of fetal malformations. AEDs are mostly metabolized by Cyp2C9, Cyp2C19 and Cyp3A4 and transported by ABCB1. Patients on AED therapy can have folate deficiency. We hypothesize that the polymorphisms in ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase (MTHFR might result in differential expression resulting in differential drug transport, drug metabolism and folate metabolism, which in turn may contribute to the teratogenic impact of AEDs. Materials and Methods: The ABCB1, Cyp2C9, Cyp2C19 and MTHFR polymorphisms were genotyped for their role in teratogenic potential and the nature of teratogenecity in response to AED treatment in WWE. The allelic, genotypic associations were tested in 266 WWE comprising of 143 WWE who had given birth to babies with WWE-malformation (WWE-M and 123 WWE who had normal offsprings (WWE-N. Results: In WWE-M, CC genotype of Ex07 + 139C/T was overrepresented (P = 0.0032 whereas the poor metabolizer allele FNx012 and FNx012 FNx012 genotype of CYP2C219 was significantly higher in comparison to WWE-N group (P = 0.007 and P = 0.005, respectively. All these observations were independent of the nature of malformation (cardiac vs. non cardiac malformations. Conclusion: Our study indicates the possibility that ABCB1 and Cyp2C19 may play a pivotal role in the AED induced teratogenesis, which is independent of nature of malformation. This is one of the first reports indicating the pharmacogenetic role of Cyp2C19 and ABCB1 in teratogenesis of AED in pregnant WWE.

  17. Changes in persistent contaminant concentration and CYP1A1 protein expression in biopsy samples from northern bottlenose whales, Hyperoodon ampullatus, following the onset of nearby oil and gas development

    International Nuclear Information System (INIS)

    Hooker, Sascha K.; Metcalfe, Tracy L.; Metcalfe, Chris D.; Angell, Carolyn M.; Wilson, Joanna Y.; Moore, Michael J.; Whitehead, Hal

    2008-01-01

    A small population of endangered northern bottlenose whales (Hyperoodon ampullatus) inhabits 'The Gully' a Marine Protected Area on the Scotian Shelf, eastern Canada. Amid concerns regarding nearby oil and gas development, we took 36 skin and blubber biopsy samples in 1996-1997 (prior to major development) and 2002-2003 (five years after development began), and three samples from a population in the Davis Strait, Labrador in 2003. These were analysed for cytochrome P4501A1 (CYP1A1) protein expression (n = 36), and for persistent contaminants (n = 23). CYP1A1 showed generally low expression in whales from The Gully, but higher levels during 2003, potentially coincident with recorded oil spills, and higher levels in Davis Strait whales. A range of PCB congeners and organochlorine compounds were detected, with concentrations similar to other North Atlantic odontocetes. Concentrations were higher in whales from The Gully than from the Davis Strait, with significant increases in 4,4'-DDE and trans-nonachlor in 2002-2003 relative to 1996-1997. - Whale contaminants highlight concerns from oil and gas development near a marine protected area

  18. Genetic polymorphisms of cytochrome P450-1A2 (CYP1A2 among Emiratis.

    Directory of Open Access Journals (Sweden)

    Mohammad M Al-Ahmad

    Full Text Available Cytochrome P450 1A2 (CYP1A2 is one of the CYP450 mixed-function oxidase system that is of clinical importance due to the large number of drug interactions associated with its induction and inhibition. In addition, significant inter-individual differences in the elimination of drugs metabolized by CYP1A2 enzyme have been observed which are largely due to the highly polymorphic nature of CYP1A2 gene. However, there are limited studies on CYP1A2 phenotypes and CYP1A2 genotypes among Emiratis and thus this study was carried out to fill this gap. Five hundred and seventy six non-smoker Emirati subjects were asked to consume a soft drink containing caffeine (a non-toxic and reliable probe for predicting CYP1A2 phenotype and then provide a buccal swab along with a spot urine sample. Taq-Man Real Time PCR was used to determine the CYP1A2 genotype of each individual. Phenotyping was carried out by analyzing the caffeine metabolites using High Performance Liquid Chromatography (HPLC analysis. We found that 1.4%, 16.3% and 82.3% of the Emirati subjects were slow, intermediate and rapid CYP1A2 metabolizers, respectively. In addition, we found that 1.4% of the subjects were homozygote for derived alleles while 16.1% were heterozygote and 82.5% were homozygote for the ancestral allele. The genotype frequency of the ancestral allele, CYP1A2*1A/*1A, is the highest in this population, followed by CYP1A2 *1A/*1C and CYP1A2 *1A/*1K genotypes, with frequencies of 0.825, 0.102 and 0.058, respectively. The degree of phenotype/genotype concordance was equal to 81.6%. The CYP1A2*1C/*1C and CYP1A2*3/*3 genotypes showed significantly the lowest enzyme phenotypic activity. The frequency of slow activity CYP1A2 enzyme alleles is very low among Emiratis which correlates with the presence of low frequencies of derived alleles in CYP1A2 gene.

  19. Passive smoking, Cyp1A1 gene polymorphism and dysmenorrhea

    Science.gov (United States)

    Liu, Hong; Yang, Fan; Li, Zhiping; Chen, Changzhong; Fang, Zhian; Wang, Lihua; Hu, Yonghua; Chen, Dafang

    2007-01-01

    Objective This study investigated whether the association between passive smoking exposure and dysmenorrhea is modified by two susceptibility genes, CYP1A1MspI and CYP1A1HincII. Methods This report includes 1645 (1124 no dysmenorrhea, 521 dysmenorrhea) nonsmoking and nondrinking newly wed female workers at Anqing, China between June 1997 and June 2000. Multiple logistic regression models were used to estimate the associations of passive smoking exposure and genetic susceptibility with dysmenorrhea, adjusting for perceived stress. Results When stratified by women genotype, the adjusted OR of dysmenorrhea was 1.6 (95%CI=1.3-2.1) for passive smoking group with Ile/Ile462 genotype, and 1.5 (95%CI=1.1-2.1) with C/C6235 genotype, compared to non passive smoking group, respectively. The data further showed that there was a significant combined effect between passive smoking and the CYP1A1 Msp1 C/C6235 and HincII Ile/Ile462 genotype (OR=2.6, 95%CI=1.3-5.2). Conclusion CYP1A1 MspI and HincII genotypes modified the association between passive smoking and dysmenorrhea. PMID:17566695

  20. Buprofezin Is Metabolized by CYP353D1v2, a Cytochrome P450 Associated with Imidacloprid Resistance in Laodelphax striatellus

    OpenAIRE

    Mohammed Esmail Abdalla Elzaki; Mohammad Asaduzzaman Miah; Zhaojun Han

    2017-01-01

    CYP353D1v2 is a cytochrome P450 related to imidacloprid resistance in Laodelphax striatellus. This work was conducted to examine the ability of CYP353D1v2 to metabolize other insecticides. Carbon monoxide difference spectra analysis indicates that CYP353D1v2 was successfully expressed in insect cell Sf9. The catalytic activity of CYP353D1v2 relating to degrading buprofezin, chlorpyrifos, and deltamethrin was tested by measuring substrate depletion and analyzing the formation of metabolites. T...

  1. Production of recombinant Bombyx mori nucleopolyhedrovirus in silkworm by intrahaemocoelic injection with invasive diaminopimelate auxotrophic Escherichia coli containing BmNPV-Bacmid.

    Science.gov (United States)

    Sun, Jingchen; Yao, Lunguang; Yao, Ning; Xu, Hua; Jin, Pengfei; Kan, Yunchao

    2010-12-01

    The present study elaborates a cost-effective and transfectant-free method for generating recombinant Bombyx mori (silkworm) nucleopolyhedrovirus in silkworm larvae and pupae by injecting invasive Escherichia coli carrying BmBacmid [BmNPV (B. mori nucleopolyhedrovirus)-Bacmid] into larval haemocoel. Up to 109 PFU (plaque-forming units)/ml of infective recombinant baculovirus was generated in the silkworm by intrahaemocoelic injection with 106 DAP (diaminopimelic acid) auxotrophic and BmBacmid containing E. coli cells expressing both invasin and listeriolysin. Thus 1 ml of overnight culture of E. coli is sufficient to inject more than 2000 larvae, while DAP costing up to $1 is enough to inject about 4000 larvae. Recombinant proteins can be controlled to be expressed mainly in pupae by adjusting the injection dose, too. In this new method, many original manipulations have been eliminated, including BmBacmid preparation and the subsequent complex transfection procedures. Hence it is a time- and cost-saving means for large-scale injection of B. mori for recombinant baculovirus production in comparison with the traditional transfection methods, which may play an important role in the industrial development of the BmNPV-silkworm bioreactor.

  2. Co-expression and characterization of enterocin CRL35 and its mutant in Escherichia coli Rosetta

    Directory of Open Access Journals (Sweden)

    Masías Emilse

    2014-01-01

    Full Text Available Even though many sequences and structures of bacteriocins from lactic acid bacteria have been fully characterized so far, little information is currently available about bacteriocins heterologously produced by Escherichia coli. For this purpose, the structural gene of enterocin CRL35, munA, was PCR-amplified using specific primers and cloned downstream of PelB sequence in the pET22b (+ expression vector. E. coli Rosetta (DE3 pLysS was chosen as the host for production and enterocin was purified by an easy two-step protocol. The bacteriocin was correctly expressed with the expected intramolecular disulfide bond. Nevertheless, it was found that a variant of the enterocin, differing by 12 Da from the native polypeptide, was co-expressed by E. coli Rosetta in comparable amount. Indeed, the mutant bacteriocin contained two amino acid substitutions that were characterized by matrix assisted laser desorption ionization-time of flight (MALDI-TOF and HPLCelectrospray (ESI-Q-TOF tandem mass spectrometry (MS/ MS sequencing. This is the first report regarding the production of mutants of pediocin-like bacteriocins in the E. coli expression system.

  3. Genetic variation in genes for the xenobiotic-metabolizing enzymes CYP1A1, EPHX1, GSTM1, GSTT1 and GSTP1 and susceptibility to colorectal cancer in Lynch syndrome

    Science.gov (United States)

    Pande, Mala; Amos, Christopher I.; Osterwisch, Daniel R.; Chen, Jinyun; Lynch, Patrick M.; Broaddus, Russell; Frazier, Marsha L.

    2011-01-01

    Individuals with Lynch syndrome are predisposed to cancer due to an inherited DNA mismatch repair gene mutation. However, there is significant variability observed in disease expression, likely due to the influence of other environmental, lifestyle, or genetic factors. Polymorphisms in genes encoding xenobiotic-metabolizing enzymes may modify cancer risk by influencing the metabolism and clearance of potential carcinogens from the body. In this retrospective analysis, we examined key candidate gene polymorphisms in CYP1A1, EPHX1, GSTT1, GSTM1, and GSTP1 as modifiers of age at onset of colorectal cancer among 257 individuals with Lynch syndrome. We found that subjects heterozygous for CYP1A1 I462V (c.1384A>G) developed colorectal cancer 4 years earlier than those with the homozygous wild-type genotype (median ages 39 and 43 years, respectively; log-rank test P = 0.018). Furthermore, being heterozygous for the CYP1A1 polymorphisms, I462V and Msp1 (g.6235T>C), was associated with an increased risk for developing colorectal cancer [adjusted hazard ratio for AG relative to AA = 1.78, 95% CI = 1.16–2.74, P = 0.008; and hazard ratio for TC relative to TT = 1.53, 95% CI = 1.06–2.22, P = 0.02]. Since homozygous variants for both CYP1A1 polymorphisms were rare, risk estimates were imprecise. None of the other gene polymorphisms examined were associated with an earlier onset age for colorectal cancer. Our results suggest that the I462V and Msp1 polymorphisms in CYP1A1 may be an additional susceptibility factor for disease expression in Lynch syndrome since they modify the age of colorectal cancer onset by up to 4 years. PMID:18768509

  4. Identification of CYP1A inducing compounds in crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Khan, C.W.; Hodson, P.V. [Queen' s Univ., Kingston, ON (Canada). Dept. of Biology; Hollebone, B.P.; Wang, Z. [Environment Canada, Ottawa, ON (Canada). Environmental Technology Advancement Directorate; Brown, R.S. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2004-07-01

    One of the major sources of polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystems is crude oil. PAHs are responsible for developmental malformations in the early life stages of fish. The induction of CYP1A enzyme is characteristic of developmental toxicity caused by crude oil. As such, it is an effective biomarker of PAH uptake. It is not known which PAHs cause toxicity because of the complex chemical composition of crude oil. In this study, an approach called Toxicity Identification and Evaluation (TIE) was used with different crude oils to separate bioavailable PAHs into petroleum sub-fractions. The extent of CYP1A induction in rainbow trout was measured after 48 hour exposures to each fraction. Low temperature vacuum distillation was used to create white gas, kerosene, coal tar/bitumen and wax fractions. Hepatic CYP1A activity was induced by whole oil and some fractions. The highest PAH concentration was found in the coal tar/bitumen fraction which accounted for most CYP1A induction in whole oil. The wax fraction also caused moderate CYP1A induction, but the white gas fraction did not cause any CYP1A induction. The hypothesis that alkyl PAH may be the most significant source of CYP1A inducers in the coal tar/bitumen fraction was supported by chemical analysis of CYP1A induction potency. Results showed that benzo[a]pyrene accounts for nearly all of the CYP1A induction caused by the wax fraction.

  5. Recombinant cholera toxin B subunit in Escherichia coli: high-level secretion, purification, and characterization

    NARCIS (Netherlands)

    Slos, P.; Speck, D.; Accart, N.; Kolbe, H.V.; Schubnel, D.; Bouchon, B.; Bischoff, Rainer; Kieny, M.P.

    1994-01-01

    The gene coding for cholera toxin subunit B (CT-B) was fused to a modified ompA signal sequence and subsequently cloned into a high expression vector based on the regulatory signals of the arabinose operon of Salmonella typhimurium. Upon induction of gene expression in Escherichia coli, a product of

  6. Expression of maize prolamins in Escherichia Coli

    International Nuclear Information System (INIS)

    Wang, Szu-zhen; Esen, Asim

    1985-01-01

    We have constructed a cDNA expression library of developing corn (Zea manys L.) endosperm using plasmid pUC8 as vector and Escherichia coli strain DH1 as host. The expression library was screened with non-radioactive immunological probes to detect the expression of gamma-zein and alpha-zein. When anti-gamma-zein antibody was used as the probe, 23 colonies gave positive reactions. The lengths of cDNA inserts of the 23 colonies were found to be 250-900 base pairs. When anti-alpha zein antibody was used, however, fewer colonies gave positive reactions. The library was also screened by colony-hybridization with 32 P-labeled DNA probes. Based on immunological and hybridization screening of the library and other evidence, we conclude that alpha-zein was either toxic to E. coli cells or rapidly degraded whereas gamma-zein and its fragments were readily expressed. (author)

  7. High-level expression of Bacillus naganoensis pullulanase from recombinant Escherichia coli with auto-induction: effect of lac operator.

    Directory of Open Access Journals (Sweden)

    Yao Nie

    Full Text Available Pullulanase plays an important role in specific hydrolysis of branch points in amylopectin and is generally employed as an important enzyme in starch-processing industry. So far, however, the production level of pullulanase is still somewhat low from wide-type strains and even heterologous expression systems. Here the gene encoding Bacillus naganoensis pullulanase was amplified and cloned. For expression of the protein, two recombinant systems, Escherichia coli BL21(DE3/pET-20b(+-pul and E. coli BL21(DE3/pET-22b(+-pul, were constructed, both bearing T7 promoter and signal peptide sequence, but different in the existance of lac operator and lacI gene encoding lac repressor. Recombinant pullulanase was initially expressed with the activity of up to 14 U/mL by E. coli BL21(DE3/pET-20b(+-pul with IPTG induction in LB medium, but its expression level reduced continually with the extension of cryopreservation time and basal expression was observed. However, E. coli BL21(DE3/pET-22b(+-pul , involving lac operator downstream of T7 promoter to regulate foreign gene transcription, exhibited pullulanase activity consistently without detected basal expression. By investigating the effect of lac operator, basal expression of foreign protein was found to cause expression instability and negative effect on production of target protein. Thus double-repression strategy was proposed that lac operators in both chromosome and plasmid were bound with lac repressor to repress T7 RNA polymerase synthesis and target protein expression before induction. Consequently, the total activity of pullulanase was remarkably increased to 580 U/mL with auto-induction by lac operator-involved E. coli BL21(DE3/pET-22b(+-pul. When adding 0.6% glycine in culture, the extracellular production of pullulanase was significantly improved with the extracellular activity of 502 U/mL, which is a relatively higher level achieved to date for extracellular production of pullulanase. The

  8. Effect of rat ovary irradiation or OVX on the expression of COLI and TGF-β1 mRNA in the rat bone

    International Nuclear Information System (INIS)

    Gao Yanhong; Gao Jianjun; Jin Weifang; Wang Hongfu

    2003-01-01

    To observe the effects of exposure of rat ovary to radiation or OVX on the expression of TGF-β 1 and COLI in the rat bone. The mRNA levels of TGF-β 1 and COLI in rat tibiae were measured with RT-PCR after the rat ovaries were irradiated by 50 Gy of 137 Cs γ-rays or OVX. For both the radiation group and the OVX group, the COLI mRNA level in the rat bone increased, whereas the TGF-β 1 decreased. Irradiation of ovary and OVX affect the expression of COLI and TGF-β 1 mRNA in bone probably in a similar way which is related to estrogen decrease

  9. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes.

    Science.gov (United States)

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Dae-Sik; Shin, Kyung-Hoon; Lee, Yong Sung; Leung, Kenneth Mei-Yee; Lee, Su-Jae; Lee, Jae-Seong

    2014-07-01

    In this study, we investigated the effects of the water-accommodated fraction (WAF) of crude oil on the development and reproduction of the intertidal copepod Tigriopus japonicus through life-cycle experiments. Furthermore, we investigated the mechanisms underlying the toxic effects of WAF on this benthic organism by studying expression patterns of cytochrome P450 (CYP) genes. Development of T. japonicus was delayed and molting was interrupted in response to WAF exposure. Hatching rate was also significantly reduced in response to WAF exposure. Activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), and catalase (CAT) were increased by WAF exposure in a concentration-dependent manner. These results indicated that WAF exposure resulted in oxidative stress, which in turn was associated with dysfunctional development and reproduction. To evaluate the involvement of cytochrome P450 (CYP) genes, we cloned the entire repertoire of CYP genes in T. japonicus (n=52) and found that the CYP genes belonged to five different clans (i.e., Clans 2, 3, 4, mitochondrial, and 20). We then examined expression patterns of these 52 CYP genes in response to WAF exposure. Three TJ-CYP genes (CYP3024A2, CYP3024A3, and CYP3027C2) belonging to CYP clan 3 were significantly induced by WAF exposure in a time- and concentration-dependent manner. We identified aryl hydrocarbon responsive elements (AhRE), xenobiotic responsive elements (XREs), and metal response elements (MRE) in the promoter regions of these three CYP genes, suggesting that these genes are involved in detoxification of toxicants. Overall, our results indicate that WAF can trigger oxidative stress and thus induce dysfunctional development and reproduction in the copepod T. japonicus. Furthermore, we identified three TJ-CYP genes that represent potential biomarkers of oil pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis.

    Science.gov (United States)

    Zhong, Shilong; Han, Weichao; Hou, Chuqi; Liu, Junjin; Wu, Lili; Liu, Menghua; Liang, Zhi; Lin, Haoming; Zhou, Lili; Liu, Shuwen; Tang, Lan

    2017-01-01

    Cytochrome P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) play important roles in the metabolism of exogenous and endogenous compounds. The gene transcription of CYPs and UGTs can be enhanced or reduced by transcription factors (TFs). This study aims to explore novel TFs involved in the regulatory network of human hepatic UGTs/CYPs. Correlations between the transcription levels of 683 key TFs and CYPs/UGTs in three different human liver expression profiles (n = 640) were calculated first. Supervised weighted correlation network analysis (sWGCNA) was employed to define hub genes among the selected TFs. The relationship among 17 defined TFs, CYPs/UGTs expression, and activity were evaluated in 30 liver samples from Chinese patients. The positive controls (e.g., PPARA, NR1I2, NR1I3) and hub TFs (NFIA, NR3C2, and AR) in the Grey sWGCNA Module were significantly and positively associated with CYPs/UGTs expression. And the cancer- or inflammation-related TFs (TEAD4, NFKB2, and NFKB1) were negatively associated with mRNA expression of CYP2C9/CYP2E1/UGT1A9. Furthermore, the effect of NR1I2, NR1I3, AR, TEAD4, and NFKB2 on CYP450/UGT1A gene transcription translated into moderate influences on enzyme activities. To our knowledge, this is the first study to integrate Gene Expression Omnibus (GEO) datasets and supervised weighted correlation network analysis (sWGCNA) for defining TFs potentially related to CYPs/UGTs. We detected several novel TFs involved in the regulatory network of hepatic CYPs and UGTs in humans. Further validation and investigation may reveal their exact mechanism of CYPs/UGTs regulation.

  11. Bioremediation of trace cobalt from simulated spent decontamination solutions of nuclear power reactors using E. coli expressing NiCoT genes

    International Nuclear Information System (INIS)

    Raghu, G.; Maruthi Mohan, P.; Balaji, V.; Venkateswaran, G.; Rodrigue, A.; Lyon 1 Univ., 69

    2008-01-01

    Removal of radioactive cobalt at trace levels (∼nM) in the presence of large excess (10 6 -fold) of corrosion product ions of complexed Fe, Cr, and Ni in spent chemical decontamination formulations (simulated effluent) of nuclear reactors is currently done by using synthetic organic ion exchangers. A large volume of solid waste is generated due to the nonspecific nature of ion sorption. Our earlier work using various fungi and bacteria, with the aim of nuclear waste volume reduction, realized up to 30% of Co removal with specific capacities calculated up to 1 μg/g in 6-24 h. In the present study using engineered Escherichia coli expressing NiCoT genes from Rhodopseudomonas palustris CGA009 (RP) and Novosphingobium aromaticivorans F-199 (NA), we report a significant increase in the specific capacity for Co removal (12 μg/g) in 1-h exposure to simulated effluent. About 85% of Co removal was achieved in a two-cycle treatment with the cloned bacteria. Expression of NiCoT genes in the E. coli knockout mutant of NiCoT efflux gene (rcnA) was more efficient as compared to expression in wild-type E. coli MC4100, JM109 and BL21 (DE3) hosts. The viability of the E. coli strains in the formulation as well as at different doses of gamma rays exposure and the effect of gamma dose on their cobalt removal capacity are determined. The potential application scheme of the above process of bioremediation of cobalt from nuclear power reactor chemical decontamination effluents is discussed. (orig.)

  12. CYP2B6 genotype-based efavirenz dose recommendations during rifampicin-based antituberculosis cotreatment for a sub-Saharan Africa population.

    Science.gov (United States)

    Mukonzo, Jackson K; Bisaso, Ronald K; Ogwal-Okeng, Jasper; Gustafsson, Lars L; Owen, Joel S; Aklillu, Eleni

    2016-04-01

    To assess genotype effect on efavirenz (EFV) pharmacokinetics, treatment outcomes and provide genotype-based EFV doses recommendations during for tuberculosis (TB)-HIV-1 cotreatment. EFV concentrations from 158 HIV-TB co-infected patients treated with EFV/lamivudine/zidovidine and rifampicin were analyzed. Genotype and CD4 and viral load data were analyzed using a population PK model. Simulated AUCs for 600 mg EFV dose were 1.2- and 2.4-times greater than the product label for Ugandans in general and CYP2B6*6/*6 genotypes respectively. EFV daily doses of 450 and 250 mg for Ugandans and CYP2B6*6/*6 genotypes, respectively, yielded simulated exposures comparable to the product label. Around 450 and 250 mg daily doses might meet EFV dosing needs of HIV-TB infected Ugandans in general and CYP2B6*6/*6 genotypes, respectively.

  13. Importance of ethnicity, CYP2B6 and ABCB1 genotype for efavirenz pharmacokinetics and treatment outcomes: a parallel-group prospective cohort study in two sub-Saharan Africa populations.

    Directory of Open Access Journals (Sweden)

    Eliford Ngaimisi

    Full Text Available We evaluated the importance of ethnicity and pharmacogenetic variations in determining efavirenz pharmacokinetics, auto-induction and immunological outcomes in two African populations.ART naïve HIV patients from Ethiopia (n = 285 and Tanzania (n = 209 were prospectively enrolled in parallel to start efavirenz based HAART. CD4+ cell counts were determined at baseline, 12, 24 and 48 weeks. Plasma and intracellular efavirenz and 8-hydroxyefvairenz concentrations were determined at week 4 and 16. Genotyping for common functional CYP2B6, CYP3A5, ABCB1, UGT2B7 and SLCO1B1 variant alleles were done.Patient country, CYP2B6*6 and ABCB1 c.4036A>G (rs3842A>G genotype were significant predictors of plasma and intracellular efavirenz concentration. CYP2B6*6 and ABCB1 c.4036A>G (rs3842 genotype were significantly associated with higher plasma efavirenz concentration and their allele frequencies were significantly higher in Tanzanians than Ethiopians. Tanzanians displayed significantly higher efavirenz plasma concentration at week 4 (pG genotype. Within country analyses indicated a significant decrease in the mean plasma efavirenz concentration by week 16 compared to week 4 in Tanzanians (p = 0.006, whereas no significant differences in plasma concentration over time was observed in Ethiopians (p = 0.84. Intracellular efavirenz concentration and patient country were significant predictors of CD4 gain during HAART.We report substantial differences in efavirenz pharmacokinetics, extent of auto-induction and immunologic recovery between Ethiopian and Tanzanian HIV patients, partly but not solely, due to pharmacogenetic variations. The observed inter-ethnic variations in efavirenz plasma exposure may possibly result in varying clinical treatment outcome or adverse event profiles between populations.

  14. Cytochrome P450 CYP4DE1 and CYP6CW3v2 contribute to ethiprole resistance in Laodelphax striatellus (Fallén).

    Science.gov (United States)

    Elzaki, M E A; Zhang, W; Han, Z

    2015-06-01

    Laodelphax striatellus Fallén (Hemiptera: Delphacidae), a destructive pest of rice, has developed high resistance to multiple insecticides, threatening the success of pest management programmes. The present study investigated ethiprole resistance mechanisms in a field population that is highly resistant to ethiprole. That population was used to establish a laboratory population that was subjected to further selection to produce a resistant strain. Target genes were cloned and compared between the resistant and the susceptible strains, the role of detoxification enzymes was examined, and the relative expression levels of 71 detoxification enzyme genes were tested using quantitative real time (RT)-PCR. The laboratory selection enhanced the resistance from 107-fold to 180-fold. The Rdl-type target site mutation seldom occurred in the resistant strain and is unlikely to represent the major mechanism underlying the observed resistance. Of the three important detoxification enzymes, only P450 monooxygenase was found to be associated with ethiprole resistance. Moreover, two genes, CYP4DE1 and CYP6CW3v2, were found to be overexpressed in the resistant strain. Furthermore, gene-silencing via a double-stranded RNA feeding test was carried out, and the results showed that the mRNA levels of CYP4DE1 and CYP6CW3v2 were reduced in the resistant strain, whereas ethiprole susceptibility was increased. These results suggest that CYP4DE1 and CYP6CW3v2 play an important role in ethiprole resistance in L. striatellus. © 2015 The Royal Entomological Society.

  15. Molecular characterization of cytochrome P450 1B1 and effect of ...

    African Journals Online (AJOL)

    CYP1B which belongs to the cytochrome P450 superfamily of genes, is involved in the oxidation of endogenous and exogenous compounds, and could potentially be a useful biomarker in fish for exposure to arylhydrocarbon receptors (AhR) ligands. In this study, a new complementary DNA (cDNA) of the CYP1B subfamily ...

  16. Expression, purification and crystallization of the Cmi immunity protein from Escherichia coli

    International Nuclear Information System (INIS)

    Römer, Christin; Patzer, Silke I.; Albrecht, Reinhard; Zeth, Kornelius; Braun, Volkmar

    2011-01-01

    The colicin M immunity protein Cmi protects E. coli cells against killing by colicin M. The Cmi protein was produced for structure determination and crystals were obtained which diffracted to high resolution. Many bacteria kill related bacteria by secretion of bacteriocins. In Escherichia coli, the colicin M protein kills E. coli after uptake into the periplasm. Self-protection from destruction is provided by the co-expressed immunity protein. The colicin M immunity protein (Cmi) was cloned, overexpressed and purified to homogeneity. The correct fold of purified Cmi was analyzed by activity tests and circular-dichroism spectroscopy. Crystallization trials yielded crystals, one of which diffracted to a resolution of 1.9 Å in the orthorhombic space group C222 1 . The crystal packing, with unit-cell parameters a = 66.02, b = 83.47, c = 38.30 Å, indicated the presence of one monomer in the asymmetric unit with a solvent content of 53%

  17. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Edi, Constant V; Djogbénou, Luc; Jenkins, Adam M; Regna, Kimberly; Muskavitch, Marc A T; Poupardin, Rodolphe; Jones, Christopher M; Essandoh, John; Kétoh, Guillaume K; Paine, Mark J I; Koudou, Benjamin G; Donnelly, Martin J; Ranson, Hilary; Weetman, David

    2014-03-01

    Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with

  18. An RNAi construct of the P450 gene CYP82D109 leads to increased resistance to Fusarium oxysporum f. sp. vasinfectum (Fov11) and increased feeding by Helicoverpa Zea larvae

    Science.gov (United States)

    The P450 CYP82D109 gene codes for an early step enzyme in the gossypol pathway in Gossypium. The terminal leaves of RNAi plants had a 90% reduction in hemigossypolone and heliocides levels, and a 70% reduction in gossypol levels compared to wild-type (WT) plants. Previous studies comparing glanded...

  19. Cytochrome P450 1B1 and 2C9 genotypes and risk of ischemic vascular disease, cancer, and chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Kaur-Knudsen, Diljit; Bojesen, Stig E; Nordestgaard, Børge G

    2012-01-01

    The aim of this review is to summarize present knowledge of genetic variation in cytochrome P450 1B1 (CYP1B1) and 2C9 (CYP2C9) genes and risk of tobacco-related cancer, female cancer, chronic obstructive pulmonary disease and ischemic vascular disease. The CYP1B1 and CYP2C9 enzymes metabolize pol...

  20. A novel homozygous mutation IVS6+5G>T in CYP11B1 gene in a Vietnamese patient with 11β-hydroxylase deficiency.

    Science.gov (United States)

    Nguyen, Thi Phuong Mai; Nguyen, Thu Hien; Ngo, Diem Ngoc; Vu, Chi Dung; Nguyen, Thi Kim Lien; Nong, Van Hai; Nguyen, Huy Hoang

    2015-07-10

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease which is characterized by a deficiency of one of the enzymes involved in the synthesis of cortisol from cholesterol by the adrenal cortex. CAH cases arising from impaired 11β-hydroxylase are the second most common form. Mutations in the CYP11B1 gene are the cause of 11β-hydroxylase deficiency. This study was performed on a patient with congenital adrenal hyperplasia and with premature development such as enlarged penis, muscle development, high blood pressure, and bone age equivalent of 5 years old at 2 years of chronological age. Biochemical tests for steroids confirmed the diagnosis of CAH. We used PCR and sequencing to screen for mutations in CYP11B1 gene. Results showed that the patient has a novel homozygous mutation of guanine (G) to thymine (T) in intron 6 (IVS6+5G>T). The analysis of this mutation by MaxEntScan boundary software indicated that this mutant could affect the gene splicing during transcription. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells.

    Science.gov (United States)

    Gray, Joshua P; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A

    2016-11-16

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H 2 O 2 . Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. De-bugging and maximizing plant cytochrome P450 production in Escherichia coli with C-terminal GFP fusions

    DEFF Research Database (Denmark)

    Christensen, Ulla; Vazquez Albacete, Dario; Søgaard, Karina Marie

    2017-01-01

    Cytochromes P450 (CYP) are attractive enzyme targets in biotechnology as they catalyze stereospecific C-hydroxylations of complex core skeletons at positions that typically are difficult to access by chemical synthesis. Membrane bound CYPs are involved in nearly all plant pathways leading......-type E. coli strains using standard growth media. Furthermore, sequences encoding a small synthetic peptide and a small bacterial membrane anchor markedly enhance the expression of all six genes. For one of the CYPs, the length of the linker region between the predicted N-terminal transmembrane segment...

  3. Heterologous expression of mannanase and developing a new Reporter gene system in Lactobacillus casei and Escherichia coli

    DEFF Research Database (Denmark)

    Lin, Jinzhong; Zou, Yexia; Ma, Chengjie

    2015-01-01

    Reporter gene systems are useful for studying bacterial molecular biology, including the regulation of gene expression and the histochemical analysis of protein products. Here, two genes, β-1,4-mannanase (manB) from Bacillus pumilus and β-glucuronidase (gusA) from Escherichia coli K12, were clone....... casei and E.coli....

  4. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response

    Directory of Open Access Journals (Sweden)

    Wei Jian-Chao

    2011-07-01

    Full Text Available Abstract Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV. Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865 and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716, were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine than that of mono-epitope peptide(rE2-a or rE2-b. Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  5. 细粒棘球绦虫AgB8/1-AgB8/2重组嵌合抗原表达系统的构建%Establishment of Echinococcus granulosus AgB8/1-AgB8/2 chimeric recombinant protein expression system

    Institute of Scientific and Technical Information of China (English)

    古力帕丽·麦曼提依明; 马海梅; 吾拉木·马木提; 陈洁; 陈璐; 丁剑冰; 马秀敏; 温浩

    2011-01-01

    目的 构建pET32a-AgB8/1-AgB8/2原核表达载体,并对其重组蛋白进行原核细胞表达.方法 从细粒棘球绦虫原头蚴中提取总RNA,反转录生成cDNA,以此cDNA为模板,用基因特异性引物分别扩增EgAgB8/1和EgAgB8/2基因编码其分泌型多肽的片段,经测序后,以此两条基因片段为依据,人工合成EgAgB8/1-EgAgB8/2嵌合抗原编码核酸序列,将其克隆至pUCm-T载体,测序鉴定其正确性.通过对pUCm-T/AgB8/1-AgB8/2重组质粒进行双酶切,将获得的AgB8/1-AgB8/2嵌合抗原编码核酸序列用定向克隆技术克隆至原核表达质粒pET32a上,测序鉴定插入片段正确后,转化至E.coli BL21(DE3)Lys S,IPTG初步诱导表达pET32a-AgB8/1-AgB8/2重组嵌合蛋白.用SDS-PAGE电泳分析鉴定重组蛋白的表达水平.结果 测序表明,AgB8/1-AgB8/2嵌合抗原编码核酸序列正方向插入至pET32a质粒.SDS-PAGE电泳分析显示,IPTG诱导后重组嵌合蛋白得到成功表达,在相对分子量约38 kD处有表达条带.结论 成功构建了pET32a-AgB8/1-AgB8/2原核表达质粒,并初步诱导表达出AgB8/1-AgB8/2嵌合重组蛋白,为进一步研究其免疫学特性奠定了基础.%In order to construct the pET32a-AgB8/1-AgB8/2 chimeric antigen prokaryotic expression recombinant plasmid and the expression of its recombinant protein, the total RNA was extracted from protoscoleces of Echinococcus granulosus,and reverse transcribed into cDNA, the cDNA encoding mature form of EgAgB8/land EgAgB8/2 antigen were amplified by PCR using gene specific primers.Based on the both gene fragments, a nucleotide sequence encoding EgAgB8/1-EgAgB8/2 chimeric antigen were artificially synthesized after sequence confirmation.The synthesized nucleotide sequence encoding EgAgB8/1-EgAgB8/2 chimeric antigen were conformed by sequencing after cloning into pUCm-T vector, then the target sequence was directionally ligated into pET32a plasmid after double digestion with restriction enzymes for prokaryotic

  6. The human TRPV6 channel protein is associated with cyclophilin B in human placenta.

    Science.gov (United States)

    Stumpf, Tobias; Zhang, Qi; Hirnet, Daniela; Lewandrowski, Urs; Sickmann, Albert; Wissenbach, Ulrich; Dörr, Janka; Lohr, Christian; Deitmer, Joachim W; Fecher-Trost, Claudia

    2008-06-27

    Transcellular calcium transport in the kidney, pancreas, small intestine, and placenta is partly mediated by transient receptor potential (TRP) channels. The highly selective TRPV6 calcium channel protein is most likely important for the calcium transfer in different specialized epithelial cells. In the human placenta the protein is expressed in trophoblast tissue, where it is implicated in the transepithelial calcium transfer from mother to the fetus. We enriched the TRPV6 channel protein endogenously expressed in placenta together with annexin A2 and cyclophilin B (CypB), which is a member of the huge immunophilin family. In the human placenta TRPV6 and CypB are mainly located intracellularly in the syncytiotrophoblast layer, but a small amount of the mature glycosylated TRPV6 channel protein and CypB is also expressed in microvilli apical membranes, the fetomaternal barrier. To understand the role of CypB on the TRPV6 channel function, we evaluated the effect of CypB co-expression on TRPV6-mediated calcium uptake into Xenopus laevis oocytes expressing TRPV6. A significant increase of TRPV6-mediated calcium uptake was observed after CypB/TRPV6 co-expression. This stimulatory effect of CypB was reversed by the immunosuppressive drug cyclosporin A, which inhibits the enzymatic activity of CypB. Cyclosporin A had no significant effect on TRPV6 and CypB protein expression levels in the oocytes. In summary, our results establish CypB as a new TRPV6 accessory protein with potential involvement in TRPV6 channel activation through its peptidyl-prolyl cis/trans isomerase activity.

  7. Regulation of zebrafish CYP3A65 transcription by AHR2

    International Nuclear Information System (INIS)

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting; Tseng, Hua-Pin; Tzou, Wen-Shyong; Hu, Chin-Hwa

    2013-01-01

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5′ flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenic lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. - Highlights: • Tg(CYP3A65:EGFP) and CYP3A65 exhibits identical expression pattern. • CYP3A65 can be significantly induced by TCDD or kynurenine. • The AHRE elements are required to mediate CYP3A65 transcription. • The AHR2 DNA and ligand-binding domains are required for CYP3A65 transcription. • AHRE elements are present in many teleost CYP3 genes, but not in

  8. Regulation of zebrafish CYP3A65 transcription by AHR2

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting; Tseng, Hua-Pin [Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Tzou, Wen-Shyong [Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Hu, Chin-Hwa, E-mail: chhu@mail.ntou.edu.tw [Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China)

    2013-07-15

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5′ flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenic lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. - Highlights: • Tg(CYP3A65:EGFP) and CYP3A65 exhibits identical expression pattern. • CYP3A65 can be significantly induced by TCDD or kynurenine. • The AHRE elements are required to mediate CYP3A65 transcription. • The AHR2 DNA and ligand-binding domains are required for CYP3A65 transcription. • AHRE elements are present in many teleost CYP3 genes, but not in

  9. Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jin Ye

    2009-04-01

    Full Text Available Abstract Background The low pH environment of the human stomach is lethal for most microorganisms; but not Escherichia coli, which can tolerate extreme acid stress. Acid resistance in E. coli is hierarchically controlled by numerous regulators among which are small noncoding RNAs (sncRNA. Results In this study, we individually deleted seventy-nine sncRNA genes from the E. coli K12-MG1655 chromosome, and established a single-sncRNA gene knockout library. By systematically screening the sncRNA mutant library, we show that the sncRNA GcvB is a novel regulator of acid resistance in E. coli. We demonstrate that GcvB enhances the ability of E. coli to survive low pH by upregulating the levels of the alternate sigma factor RpoS. Conclusion GcvB positively regulates acid resistance by affecting RpoS expression. These data advance our understanding of the sncRNA regulatory network involved in modulating acid resistance in E. coli.

  10. Epistatic Interaction of CYP1A1 and COMT Polymorphisms in Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Andreia Matos

    2016-01-01

    Full Text Available There is a clear association between the excessive and cumulative exposure to estrogens and the development of cancer in hormone-sensitive tissues, such as the cervix. We studied the association of CYP1A1 M1 (rs4646903 and COMT (rs4680 polymorphisms in 130 cervical cancer cases (c-cancer and 179 controls. The CYP1A1 TT genotype was associated with a lower risk for c-cancer (OR = 0.39, p=0.002. The allele C of CYP1A1 was a risk for c-cancer (OR = 2.29, p=0.002. Women with COMT LL genotype had a higher risk of developing c-cancer (OR = 4.83, p<0.001. For the interaction of the CYP1A1&COMT, we observed that TC&HL genotypes had a greater risk for c-cancer (OR = 6.07, p=0.006 and TT&HL genotypes had a protection effect (OR = 0.24, p<0.001. The CYP1A1 TT and COMT LL genotypes had higher estradiol levels in c-cancer (p<0.001 and p=0.037, resp.. C-cancer is associated with less production of 2-methoxy-estradiol resultant of functional polymorphisms of CYP1A1 and COMT, separately. CYP1A1 and COMT work in a metabolic sequence and their interaction could lead to an alternative pathway of estrogen metabolism with production of 16-OH-estrone that is more proliferative.

  11. Intestinal CYP2E1: A mediator of alcohol-induced gut leakiness

    Directory of Open Access Journals (Sweden)

    Christopher B. Forsyth

    2014-01-01

    Full Text Available Chronic alcohol use can result in many pathological effects including alcoholic liver disease (ALD. While alcohol is necessary for the development of ALD, only 20–30% of alcoholics develop alcoholic steatohepatitis (ASH with progressive liver disease leading to cirrhosis and liver failure (ALD. This suggests that while chronic alcohol consumption is necessary it is not sufficient to induce clinically relevant liver damage in the absence of a secondary risk factor. Studies in rodent models and alcoholic patients show that increased intestinal permeability to microbial products like endotoxin play a critical role in promoting liver inflammation in ALD pathogenesis. Therefore identifying mechanisms of alcohol-induced intestinal permeability is important in identifying mechanisms of ALD and for designing new avenues for therapy. Cyp2e1 is a cytochrome P450 enzyme that metabolizes alcohol has been shown to be upregulated by chronic alcohol use and to be a major source of oxidative stress and liver injury in alcoholics and in animal and in vitro models of chronic alcohol use. Because Cyp2e1 is also expressed in the intestine and is upregulated by chronic alcohol use, we hypothesized it could play a role in alcohol-induced intestinal hyperpermeability. Our in vitro studies with intestinal Caco-2 cells and in mice fed alcohol showed that circadian clock proteins CLOCK and PER2 are required for alcohol-induced permeability. We also showed that alcohol increases Cyp2e1 protein and activity but not mRNA in Caco-2 cells and that an inhibitor of oxidative stress or siRNA knockdown of Cyp2e1 prevents the increase in CLOCK or PER2 proteins and prevents alcohol-induced hyperpermeability. With our collaborators we have also shown that Cyp2e1 knockout mice are resistant to alcohol-induced gut leakiness and liver inflammation. Taken together our data support a novel Cyp2e1-circadian clock protein mechanism for alcohol-induced gut leakiness that could provide new

  12. The Pai-associated leuX specific tRNA5(Leu) affects type 1fimbriation in pathogenic Escherichia coli by control of FimB recombinase expression

    DEFF Research Database (Denmark)

    Ritter, A.; Gally, D.; Olsen, Peter Bjarke

    1997-01-01

    The uropathogenic Escherichia coli strain 536 (06:K15:H31) carries two large chromosomalpathogenicity islands (Pais). Both Pais are flanked by tRNA genes. Spontaneous deletion of Pai IIresults in truncation of the leuX tRNA5Leu gene. This tRNA is required for the expression of type 1fimbriae (Fim...

  13. Bioaugmentation on decolorization of C.I. Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR)

    International Nuclear Information System (INIS)

    Jin Ruofei; Yang Hua; Zhang Aili; Wang Jing; Liu Guangfei

    2009-01-01

    The study showed that Escherichia coli JM109 (pGEX-AZR), the genetically engineered microorganism (GEM) with higher ability to decolorize azo dyes, bioaugmented successfully the dye wastewater bio-treatment systems to enhance C.I. Direct Blue 71 (DB 71) decolorization. The control and bioaugmented reactors failed at a around pH 5.0. However, the bioaugmented one succeeded at around pH 9.0, the influent DB 71 concentration was 150 mg/L, DB 71 concentration was decreased to 27.4 mg/L in 12 h. The 1-3% NaCl concentration of bioaugmented reactors had no definite influence on decolorization, DB 71 concentration was decreased to 12.6 mg/L in 12 h. GEM was added into anaerobic sequencing batch reactors (AnSBRs) to enhance DB 71 decolorization. Continuous operations of the control and bioaugmented AnSBRs showed that E. coli JM109 (pGEX-AZR) could bioaugment decolorization. The concentrations of activated sludge and GEM were still more than 2.80 g/L and 1.5 x 10 6 cells/mL, respectively, in the bioaugmented AnSBR. All the microbial communities changed indistinctively with time. The microbial community structures of the control AnSBR were similar to those of the bioaugmented one

  14. Bioaugmentation on decolorization of C.I. Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR)

    Energy Technology Data Exchange (ETDEWEB)

    Jin Ruofei; Yang Hua; Zhang Aili; Wang Jing [School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023 (China); Liu Guangfei [School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023 (China)], E-mail: guangfeiliu@yahoo.com.cn

    2009-04-30

    The study showed that Escherichia coli JM109 (pGEX-AZR), the genetically engineered microorganism (GEM) with higher ability to decolorize azo dyes, bioaugmented successfully the dye wastewater bio-treatment systems to enhance C.I. Direct Blue 71 (DB 71) decolorization. The control and bioaugmented reactors failed at a around pH 5.0. However, the bioaugmented one succeeded at around pH 9.0, the influent DB 71 concentration was 150 mg/L, DB 71 concentration was decreased to 27.4 mg/L in 12 h. The 1-3% NaCl concentration of bioaugmented reactors had no definite influence on decolorization, DB 71 concentration was decreased to 12.6 mg/L in 12 h. GEM was added into anaerobic sequencing batch reactors (AnSBRs) to enhance DB 71 decolorization. Continuous operations of the control and bioaugmented AnSBRs showed that E. coli JM109 (pGEX-AZR) could bioaugment decolorization. The concentrations of activated sludge and GEM were still more than 2.80 g/L and 1.5 x 10{sup 6} cells/mL, respectively, in the bioaugmented AnSBR. All the microbial communities changed indistinctively with time. The microbial community structures of the control AnSBR were similar to those of the bioaugmented one.

  15. Engineering and Validation of a Vector for Concomitant Expression of Rare Transfer RNA (tRNA and HIV-1 nef Genes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Mualif

    Full Text Available Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef, HIV-1 p24 (ca, and HIV-1 vif in NiCo21(DE3 E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.

  16. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    Directory of Open Access Journals (Sweden)

    You Bang-Jau

    2011-07-01

    Full Text Available Abstract Background Chicken anemia virus (CAV, the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay. Conclusions Purified recombinant VP1 protein with the gene's codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.

  17. Correlation between spermatogenesis disorders and rat testes CYP2E1 mRNA contents under experimental alcoholism or type I diabetes.

    Science.gov (United States)

    Shayakhmetova, Ganna M; Bondarenko, Larysa B; Matvienko, Anatoliy V; Kovalenko, Valentina M

    2014-09-01

    The aim of the study was to investigate the correlation between spermatogenesis disorders and CYP2E1 mRNA contents in testes of rats with experimental alcoholism or type I diabetes. Two pathological states characterized by CYP2E1 induction were simulated on Wistar male rats: experimental alcoholism and type I diabetes. As controls for each state, equal number of animals (of the same age and weight) were used. Morphological evaluation of rat testes was carried out. The spermatogenic epithelium state was estimated by four points system. CYP2E1 mRNA expression was rated by method of reverse transcriptase polymerase chain reaction. Pearson correlation coefficients were used for describing relationships between variables. The presence of alcoholism and diabetes-mediated quantitative and qualitative changes in male rat spermatogenic epithelium in comparison with norm has been demonstrated. The increased levels of testes CYP2E1 have been fixed simultaneously. CYP2E1 mRNA content negatively strongly correlated with spermatogenic index value (r=-0.99; Palcoholism. The strong correlation between CYP2E1 mRNA content and number of spermatogonia (r=0.99; P<0.001) and "windows" occurrence (r=0.96; P<0.001) has been fixed in diabetic rats testes. Present investigation has demonstrated that the testicular failure following chronic ethanol consumption and diabetes type I in male rats accompanied CYP2E1 mRNA over-expression in testes. The correlation between the levels of CYP2E1 mRNA in testes and spermatogenesis disorders allow supposing the involvement of CYP2E1 into the non-specific pathogenetic mechanisms of male infertility under above-mentioned pathologies. Copyright © 2014 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Resistance irrelevant CYP417A2v2 was found degrading insecticide in Laodelphax striatellus.

    Science.gov (United States)

    Miah, Mohammad Asaduzzaman; Elzaki, Mohammed Esmail Abdalla; Han, Zhaojun

    2017-07-01

    Cytochrome P450 monooxygenases (CYPs) usually overexpressed in resistant strain were found involved in oxidative detoxification of insecticides. In this study, an investigation was conducted to confirm if resistance irrelevant CYPs which were not overexpressed in resistant strain before, were capable of degrading insecticides. Three resistance irrelevant CYPs viz. CYP417A2v2, CYP425A1v2, and CYP4DJ1 from CYP4 family of Laodelphax striatellus were randomly selected for experiments. CYP417A2v2 and CYP425A1v2 were found expressed successfully in Sf9 cell line while CYP4DJ1 was not expressed successfully and out of two expressed CYPs, only CYP417A2v2 showed its efficient catalytic activity. For catalytic activity, three traditional model probe substrates and five insecticides were assayed. For the probe substrates screened, p -nitroanisole and ethoxycoumarin were preferentially metabolized by CYP417A2v2 (specific activity 3.76 ± 1.22 and 1.63 ± 0.37 nmol min -1  mg protein -1 , respectively) and they may be potential diagnostic probes for this enzyme. Among insecticides, only imidacloprid was efficiently degraded by CYP417A2v2. Incubation of imidacloprid with CYP417A2v2 of L. striatellus and subsequent HPLC, LC-MS, and MS/MS analysis revealed the formation of imidacloprid metabolites, that is, 4' or 5'hydroxy-imidacloprid by hydroxylation. This result implies the exemption of CYPs character that it is not always, all the CYPs degrading insecticides being selected and overexpressed in resistant strains and the degrading CYPs without mutations to upregulate could be candidates during insecticide resistance evolution. This characterization of individual insect CYPs in insecticide degradation can provide insight for better understand of insecticide resistance development.

  19. Cytochrome P450 CYP3A in marsupials: cloning and identification of the first CYP3A subfamily member, isoform 3A70 from Eastern gray kangaroo (Macropus giganteus).

    Science.gov (United States)

    El-Merhibi, Adaweyah; Ngo, Suong N T; Marchant, Ceilidh L; Height, Tamara A; Stupans, Ieva; McKinnon, Ross A

    2012-09-15

    Australian marsupials are unique fauna that have evolved and adapted to unique environments and thus it is likely that their detoxification systems differ considerably from those of well-studied eutherian mammals. Knowledge of these processes in marsupials is therefore vital to understanding the consequences of exposure to xenobiotics. Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of both xenobiotics and endogenous substrates. In this study we have cloned and characterized CYP3A70, the first identified member of the CYP3A gene subfamily from Eastern gray kangaroo (Macropus giganteus). A 1665 base pair kangaroo hepatic CYP3A complete cDNA, designated CYP3A70, was cloned by reverse transcription-polymerase chain reaction approaches, which encodes a protein of 506 amino acids. The CYP3A70 cDNA shares approximately 71% nucleotide and 65% amino acid sequence homology to human CYP3A4 and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Transfection of the CYP3A70 cDNAs into 293T cells resulted in stable cell lines expressing a CYP3A immuno-reactive protein that was recognized by a goat anti-human CYP3A4 polyclonal antibody. The anti-human CYP3A4 antibody also detected immunoreactive proteins in liver microsomes from all test marsupials, including the kangaroo, koala, wallaby, and wombat, with multiple CYP3A immunoreactive bands observed in kangaroo and wallaby tissues. Relatively, very low CYP catalytic activity was detected for the kangaroo CYP3A70 cDNA-expressed proteins (19.6 relative luminescent units/μg protein), which may be due to low protein expression levels. Collectively, this study provides primary molecular data regarding the Eastern kangaroo hepatic CYP3A70 gene and enables further functional analyses of CYP3A enzymes in marsupials. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Evaluation of the precision-cut liver and lung slice systems for the study of induction of CYP1, epoxide hydrolase and glutathione S-transferase activities.

    Science.gov (United States)

    Pushparajah, Daphnee S; Umachandran, Meera; Plant, Kathryn E; Plant, Nick; Ioannides, Costas

    2007-02-28

    The principal objective was to ascertain whether precision-cut tissue slices can be used to evaluate the potential of chemicals to induce CYP1, epoxide hydrolase and glutathione S-transferase activities, all being important enzymes involved in the metabolism of polycyclic aromatic hydrocarbons. Precision-cut rat liver and lung slices were incubated with a range of benzo[a]pyrene concentrations for various time periods. A rise in the O-deethylation of ethoxyresorufin was seen in both liver and lung slices exposed to benzo[a]pyrene, which was accompanied by increased CYP1A apoprotein levels. Pulmonary CYP1B1 apoprotein levels and hepatic mRNA levels were similarly enhanced. Elevated epoxide hydrolase and glutathione S-transferase activities were also observed in liver slices following incubation for 24h; similarly, a rise in apoprotein levels of both enzymes was evident, peak levels occurring at the same time point. When mRNA levels were monitored, a rise in the levels of both enzymes was seen as early as 4h after incubation, but maximum levels were attained at 24 h. In lung slices, induction of epoxide hydrolase by benzo[a]pyrene was observed after a 24-h incubation, and at a concentration of 1 microM; a rise in apoprotein levels was seen at this time point. Glutathione S-transferase activity was not inducible in lung slices by benzo[a]pyrene but a modest increase was observed in hepatic slices. Collectively, these studies confirmed CYP1A induction in rat liver slices and established that CYP1B1 expression, and epoxide hydrolase and glutathione S-transferase activities are inducible in precision-cut tissue slices.

  1. 41 CFR 105-1.109 - Numbering.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Numbering. 105-1.109 Section 105-1.109 Public Contracts and Property Management Federal Property Management Regulations System (Continued) GENERAL SERVICES ADMINISTRATION 1-INTRODUCTION 1.1-Regulations System § 105-1.109 Numbering. ...

  2. CROSS-REACTIVITY OF MONOCLONAL ANTIBODIES AGAINST PEPTIDE 277-294 OF RAINBOW TROUT CYP1A1 WITH HEPATIC CYP1A AMONG FISH. (R823881)

    Science.gov (United States)

    AbstractExposure to a variety of xenobiotics, including polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), results in the induction of CYP1A and related biological activity. Historically, antibodies against purified CYP1A have been raised...

  3. Changes in persistent contaminant concentration and CYP1A1 protein expression in biopsy samples from northern bottlenose whales, Hyperoodon ampullatus, following the onset of nearby oil and gas development

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, Sascha K. [Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1 (Canada); Sea Mammal Research Unit, University of St Andrews, FIFE KY16 8YG (United Kingdom)], E-mail: s.hooker@st-andrews.ac.uk; Metcalfe, Tracy L.; Metcalfe, Chris D. [Environmental and Resource Studies, Trent University, Peterborough, Ontario K9J 7B8 (Canada); Angell, Carolyn M.; Wilson, Joanna Y.; Moore, Michael J. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Whitehead, Hal [Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1 (Canada)

    2008-03-15

    A small population of endangered northern bottlenose whales (Hyperoodon ampullatus) inhabits 'The Gully' a Marine Protected Area on the Scotian Shelf, eastern Canada. Amid concerns regarding nearby oil and gas development, we took 36 skin and blubber biopsy samples in 1996-1997 (prior to major development) and 2002-2003 (five years after development began), and three samples from a population in the Davis Strait, Labrador in 2003. These were analysed for cytochrome P4501A1 (CYP1A1) protein expression (n = 36), and for persistent contaminants (n = 23). CYP1A1 showed generally low expression in whales from The Gully, but higher levels during 2003, potentially coincident with recorded oil spills, and higher levels in Davis Strait whales. A range of PCB congeners and organochlorine compounds were detected, with concentrations similar to other North Atlantic odontocetes. Concentrations were higher in whales from The Gully than from the Davis Strait, with significant increases in 4,4'-DDE and trans-nonachlor in 2002-2003 relative to 1996-1997. - Whale contaminants highlight concerns from oil and gas development near a marine protected area.

  4. Validation of reference genes for RT-qPCR analysis of CYP4T expression in crucian carp

    Directory of Open Access Journals (Sweden)

    Fei Mo

    2014-09-01

    Full Text Available Reference genes are commonly used for normalization of target gene expression during RT-qPCR analysis. However, no housekeeping genes or reference genes have been identified to be stable across different tissue types or under different experimental conditions. To identify the most suitable reference genes for RT-qPCR analysis of target gene expression in the hepatopancreas of crucian carp (Carassius auratus under various conditions (sex, age, water temperature, and drug treatments, seven reference genes, including beta actin (ACTB, beta-2 microglobulin (B2M, embryonic elongation factor-1 alpha (EEF1A, glyceraldehyde phosphate dehydrogenase (GAPDH, alpha tubulin (TUBA, ribosomal protein l8 (RPL8 and glucose-6-phosphate dehydrogenase (G6PDH, were evaluated in this study. The stability and ranking of gene expression were analyzed using three different statistical programs: GeNorm, Normfinder and Bestkeeper. The expression errors associated with selection of the genes were assessed by the relative quantity of CYP4T. The results indicated that all the seven genes exhibited variability under the experimental conditions of this research, and the combination of ACTB/TUBA/EEF1A or of ACTB/EEF1A was the best candidate that raised the accuracy of quantitative analysis of gene expression. The findings highlighted the importance of validation of housekeeping genes for research on gene expression under different conditions of experiment and species.

  5. Expression of nattokinase in Escherichia coli and renaturation of its inclusion body.

    Science.gov (United States)

    Ni, He; Guo, Peng-Cheng; Jiang, Wei-Ling; Fan, Xiao-Min; Luo, Xiang-Yu; Li, Hai-Hang

    2016-08-10

    Nattokinase is an important fibrinolytic enzyme with therapeutic applications for cardiovascular diseases. The full-length and mature nattokinase genes were cloned from Bacillus subtilis var. natto and expressed in pQE30 vector in Escherichia coli. The full-length gene expressed low nattokinase activity in the intracellular soluble and the medium fractions. The mature gene expressed low soluble nattokinase activity and large amount insoluble protein in inclusion bodies without enzyme activity. Large amount of refolding solutions (RSs) at different pH values were screening and RS-10 and RS-11 at pH 9 were selected to refold nattokinase inclusion bodies. The recombinant cells were lysed with 0.1mg/mL lysozyme and ultrasonic treatment. After centrifugation, the pellete was washed twice with 20mM Tris-HCl buffer (pH 7.5) containing 1% Triton X-100 to purify the inclusion bodies. The inclusion bodies were dissolved in water at pH 12.0 and refolded with RS-10. The refolded proteins showed 42.8IU/mg and 79.3IU/mg fibrinolytic activity by the traditional dilution method (20-fold dilution into RS-10) and the directly mixing the protein solution with equal volume RS-10, respectively, compared to the 52.0IU/mg of total water-soluble proteins from B. subtilis var. natto. This work demonstrated that the inclusion body of recombinant nattokinase expressed in E. coli could be simply refolded to the natural enzyme activity level by directly mixing the protein solution with equal volume refolding solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The P450 CYP6Z1 confers carbamate/pyrethroid cross-resistance in a major African malaria vector beside a novel carbamate-insensitive N485I acetylcholinesterase-1 mutation.

    Science.gov (United States)

    Ibrahim, Sulaiman S; Ndula, Miranda; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2016-07-01

    Carbamates are increasingly used for vector control notably in areas with pyrethroid resistance. However, a cross-resistance between these insecticides in major malaria vectors such as Anopheles funestus could severely limit available resistance management options. Unfortunately, the molecular basis of such cross-resistance remains uncharacterized in An. funestus, preventing effective resistance management. Here, using a genomewide transcription profiling, we revealed that metabolic resistance through upregulation of cytochrome P450 genes is driving carbamate resistance. The P450s CYP6P9a, CYP6P9b and CYP6Z1 were the most upregulated detoxification genes in the multiple resistant mosquitoes. However, in silico docking simulations predicted CYP6Z1 to metabolize both pyrethroids and carbamates, whereas CYP6P9a and CYP6P9b were predicted to metabolize only the pyrethroids. Using recombinant enzyme metabolism and inhibition assays, we demonstrated that CYP6Z1 metabolizes bendiocarb and pyrethroids, whereas CYP6P9a and CYP6P9b metabolize only the pyrethroids. Other upregulated gene families in resistant mosquitoes included several cuticular protein genes suggesting a possible reduced penetration resistance mechanism. Investigation of the target-site resistance in acetylcholinesterase 1 (ace-1) gene detected and established the association between the new N485I mutation and bendiocarb resistance (odds ratio 7.3; P resistance and improve the design of effective resistance management strategies to control this malaria vector. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  7. Functional characterization of CYP52G3 from Aspergillus oryzae and its application for bioconversion and synthesis of hydroxyl flavanone and steroids.

    Science.gov (United States)

    Uno, Tomohide; Yanase, Takeshi; Imaishi, Hiromasa

    2017-05-01

    Aspergillus oryzae is a fungus widely used in traditional Japanese fermentation industries. Cytochrome P450 (CYP) proteins are ubiquitously distributed in nature and display a broad range of enzymatic activities. A novel CYP52 (CYP52G3) gene was found in A. oryzae. In this study, we report the functional characterization of CYP52G3. The recombinant protein was expressed heterologously in Escherichia coli, and its membrane fraction isolated. CYP52G3 showed activities for 7-ethoxycoumarin and α-naphtoflavone. Furthermore, CYP52G3 hydroxylated flavanone at the 4' and 6 position and metabolized some hydroxyl-flavanones and steroids. Bioconversion experiments indicated that CYP52G3 could convert flavanone and testosterone in a synthetic medium. The conversion rates of flavanone and testosterone at 24 H were 50% and 70%, respectively. These results support that CYP52G3 could prove a useful enzyme for the efficient production of new compounds from flavonoids and steroids. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  8. Polymorphisms in CYP1A1 and CYP3A5 Genes Contribute to the Variability in Granisetron Clearance and Exposure in Pregnant Women with Nausea and Vomiting.

    Science.gov (United States)

    Bustos, Martha L; Zhao, Yang; Chen, Huijun; Caritis, Steve N; Venkataramanan, Raman

    2016-12-01

    Nausea and vomiting affect up to 90% of pregnant women. Granisetron is a potent and highly selective serotonin receptor antagonist and is an effective antiemetic. Findings from a prior study in pregnant women demonstrated a large interindividual variability in granisetron exposure. Granisetron is primarily metabolized by the cytochrome P450 (CYP) enzymes CYP1A1 and CYP3A and is likely a substrate of the ABCB1 transporter. Single-nucleotide polymorphisms (SNPs) in CYP3A, CYP1A1, and ABCB1 can alter drug metabolism. This study evaluated the influence of polymorphisms in CYP3A4, CYP3A5, CYP1A1, and ABCB1 on the pharmacokinetic properties of granisetron in pregnant women. The study enrolled 16 pregnant women (gestational age of 12-19 wks). All patients had nausea and vomiting and were treated with granisetron 1 mg. Granisetron plasma concentrations were determined using liquid chromatography tandem-mass spectrometry. The patients' genotype was determined using TaqMan SNP Genotyping Assays. The Hardy-Weinberg equilibrium was assessed by comparing observed and expected genotype frequencies, using the exact test. Intravenous granisetron clearance was used as the dependent variable for analysis of associations. Of 16 patients, 25% were homozygous for the allele variant CYP3A5*3 and had a significantly lower granisetron clearance and increased area under the plasma concentration-versus-time curve (AUC) compared with nonhomozygous patients. Approximately one-third of patients (n=5) were carriers for the allele variant CYP1A1*2A and had a significantly higher granisetron clearance and decreased AUC. We did not find significant differences in the AUC or clearance for any SNPs in CYP3A4 and ABCB1 genes. Polymorphisms in CYP3A5 and CYP1A1 account for some of the variability in systemic clearance and exposure of granisetron in pregnant women. © 2016 Pharmacotherapy Publications, Inc.

  9. CYP4F18-Deficient Neutrophils Exhibit Increased Chemotaxis to Complement Component C5a

    Directory of Open Access Journals (Sweden)

    Rachel Vaivoda

    2015-01-01

    Full Text Available CYP4Fs were first identified as enzymes that catalyze hydroxylation of leukotriene B4 (LTB4. CYP4F18 has an unusual expression in neutrophils and was predicted to play a role in regulating LTB4-dependent inflammation. We compared chemotaxis of wild-type and Cyp4f18 knockout neutrophils using an in vitro assay. There was no significant difference in the chemotactic response to LTB4, but the response to complement component C5a increased 1.9–2.25-fold in knockout cells compared to wild-type (P < 0.01. This increase was still observed when neutrophils were treated with inhibitors of eicosanoid synthesis. There were no changes in expression of other CYP4 enzymes in knockout neutrophils that might compensate for loss of CYP4F18 or lead to differences in activity. A mouse model of dextran sodium sulfate colitis was used to investigate the consequences of increased C5a-dependent chemotaxis in vivo, but there was no significant difference in weight loss, disease activity, or colonic tissue myeloperoxidase between wild-type and Cyp4f18 knockout mice. This study demonstrates the limitations of inferring CYP4F function based on an ability to use LTB4 as a substrate, points to expanding roles for CYP4F enzymes in immune regulation, and underscores the in vivo challenges of CYP knockout studies.

  10. The order of expression is a key factor in the production of active transglutaminase in Escherichia coli by co-expression with its pro-peptide

    Directory of Open Access Journals (Sweden)

    Liu Song

    2011-12-01

    Full Text Available Abstract Background Streptomyces transglutaminase (TGase is naturally synthesized as zymogen (pro-TGase, which is then processed to produce active enzyme by the removal of its N-terminal pro-peptide. This pro-peptide is found to be essential for overexpression of soluble TGase in E. coli. However, expression of pro-TGase by E. coli requires protease-mediated activation in vitro. In this study, we developed a novel co- expression method for the direct production of active TGase in E. coli. Results A TGase from S. hygroscopicus was expressed in E. coli only after fusing with the pelB signal peptide, but fusion with the signal peptide induced insoluble enzyme. Therefore, alternative protocol was designed by co-expressing the TGase and its pro-peptide as independent polypeptides under a single T7 promoter using vector pET-22b(+. Although the pro-peptide was co-expressed, the TGase fused without the signal peptide was undetectable in both soluble and insoluble fractions of the recombinant cells. Similarly, when both genes were expressed in the order of the TGase and the pro-peptide, the solubility of TGase fused with the signal peptide was not improved by the co-expression with its pro-peptide. Interestingly, active TGase was only produced by the cells in which the pro-peptide and the TGase were fused with the signal peptide and sequentially expressed. The purified recombinant and native TGase shared the similar catalytic properties. Conclusions Our results indicated that the pro-peptide can assist correct folding of the TGase inter-molecularly in E. coli, and expression of pro-peptide prior to that of TGase was essential for the production of active TGase. The co-expression strategy based on optimizing the order of gene expression could be useful for the expression of other functional proteins that are synthesized as a precursor.

  11. Modification of radiation effects on E. coli B/r and a radiosensitive mutant Bsub(s-1) by membrane-binding drugs

    International Nuclear Information System (INIS)

    Yonei, S.

    1979-01-01

    In this study, the effects of chlorpromazine, procaine and quinidine on the X-radiation effects on Escherichia coli B/r and its radiosensitive mutant Bsub(s-1) (which is genetically unable to repair radiation damage to DNA) were examined. At chlorpromazine concentrations > = 25 mM, there was loss of colony-forming ability in both strains. Chlorpromazine (0.1 mM) markedly sensitized E. coli B/r under hypoxic conditions of irradiation but not under oxic conditions. There was no significant radiosensitization by chlorpromazine (0.1-1.0mM) in E. coli Bsub(s-1) under either oxic or hypoxic conditions. Similar results were obtained when procaine and quinidine were used as 'membrane-binding radiosensitizers'. Thus these results suggested that radiosensitization by such drugs in E. coli B/r was the result of inhibition of post-irradiation DNA repair in cells. It was concluded that the inhibition of DNA repair could be a secondary consequence of cell membrane alterations or damage caused by the membrane-binding of these drugs. (UK)

  12. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice

    Science.gov (United States)

    Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we ...

  13. Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli

    International Nuclear Information System (INIS)

    Chaurasia, Neha; Mishra, Yogesh; Rai, Lal Chand

    2008-01-01

    Phytochelatin synthase (PCS) is involved in the synthesis of phytochelatins (PCs), plays role in heavy metal detoxification. The present study describes for first time the functional expression and characterization of pcs gene of Anabaena sp. PCC 7120 in Escherichia coli in terms of offering protection against heat, salt, carbofuron (pesticide), cadmium, copper, and UV-B stress. The involvement of pcs gene in tolerance to above abiotic stresses was investigated by cloning of pcs gene in expression vector pGEX-5X-2 and its transformation in E. coli BL21 (DE3). The E. coli cells transformed with pGEX-5X-pcs showed better growth than control cells (pGEX-5X-2) under temperature (47 deg. C), NaCl (6% w/v), carbofuron (0.025 mg ml -1 ), CdCl 2 (4 mM), CuCl 2 (1 mM), and UV-B (10 min) exposure. The enhanced expression of pcs gene revealed by RT-PCR analysis under above stresses at different time intervals further advocates its role in tolerance against above abiotic stresses

  14. Soluble polymorphic bank vole prion proteins induced by co-expression of quiescin sulfhydryl oxidase in E. coli and their aggregation behaviors.

    Science.gov (United States)

    Abskharon, Romany; Dang, Johnny; Elfarash, Ameer; Wang, Zerui; Shen, Pingping; Zou, Lewis S; Hassan, Sedky; Wang, Fei; Fujioka, Hisashi; Steyaert, Jan; Mulaj, Mentor; Surewicz, Witold K; Castilla, Joaquín; Wohlkonig, Alexandre; Zou, Wen-Quan

    2017-10-04

    The infectious prion protein (PrP Sc or prion) is derived from its cellular form (PrP C ) through a conformational transition in animal and human prion diseases. Studies have shown that the interspecies conversion of PrP C to PrP Sc is largely swayed by species barriers, which is mainly deciphered by the sequence and conformation of the proteins among species. However, the bank vole PrP C (BVPrP) is highly susceptible to PrP Sc from different species. Transgenic mice expressing BVPrP with the polymorphic isoleucine (109I) but methionine (109M) at residue 109 spontaneously develop prion disease. To explore the mechanism underlying the unique susceptibility and convertibility, we generated soluble BVPrP by co-expression of BVPrP with Quiescin sulfhydryl oxidase (QSOX) in Escherichia coli. Interestingly, rBVPrP-109M and rBVPrP-109I exhibited distinct seeded aggregation pathways and aggregate morphologies upon seeding of mouse recombinant PrP fibrils, as monitored by thioflavin T fluorescence and electron microscopy. Moreover, they displayed different aggregation behaviors induced by seeding of hamster and mouse prion strains under real-time quaking-induced conversion. Our results suggest that QSOX facilitates the formation of soluble prion protein and provide further evidence that the polymorphism at residue 109 of QSOX-induced BVPrP may be a determinant in mediating its distinct convertibility and susceptibility.

  15. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    Science.gov (United States)

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  16. CTX-M-1 β-lactamase expression in Escherichia coli is dependent on cefotaxime concentration, growth phase and gene location

    DEFF Research Database (Denmark)

    Kjeldsen, Thea S. B.; Overgaard, Martin; Nielsen, Søren S.

    2015-01-01

    blaCTX-M-1 mRNA expression and CTX-M-1 protein levels were dependent on cefotaxime concentration, growth phase and gene location. These results provide insight into the expression of cephalosporin resistance in CTX-M-1-producing E. coli, improving our understanding of the relationship between ant...

  17. Feedback regulation of bile acid synthesis in human liver: Importance of HNF-4α for regulation of CYP7A1

    International Nuclear Information System (INIS)

    Abrahamsson, Anna; Gustafsson, Ulf; Ellis, Ewa; Nilsson, Lisa-Mari; Sahlin, Staffan; Bjoerkhem, Ingemar; Einarsson, Curt

    2005-01-01

    A great number of nuclear factors are involved in the negative feedback mechanism regulating bile acid synthesis. There are two major ways for the negative feedback to effect the synthesis; the SHP-dependent, involving FXR, and the SHP-independent way, affecting HNF-4α. We studied 23 patients with gallstone disease. Eight patients were treated with chenodeoxycholic acid, 7 with cholestyramine prior to operation, and 8 served as controls. Liver biopsies were analyzed with Real-time-PCR. In the cholestyramine-treated group mRNA levels of CYP7A1 were increased about 10-fold. Treatment with CDCA decreased the mRNA levels of CYP7A1 by about 70%. The mRNA levels of CYP8B1, CYP27A1, and CYP7B1 were not significantly altered in the treated groups. The analysis of mRNA levels for HNF-4α showed 64% higher levels in the cholestyramine-treated group compared to the controls. These levels showed positive and highly significant correlation to the levels of mRNA of CYP7A1 when studied in all three groups together. FXR, SHP, and LRH-1/FTF were not significantly affected by the different treatments. Our results indicate that when bile acid synthesis is upregulated by cholestyramine treatment the SHP-independent pathway for controlling CYP7A1 transcription dominates over the SHP-dependent pathway

  18. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance.

    Science.gov (United States)

    Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping

    2015-07-01

    Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1-4) encoding 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Cambrian origin of the CYP27C1-mediated vitamin A1-to-A2 switch, a key mechanism of vertebrate sensory plasticity

    Science.gov (United States)

    Morshedian, Ala; Toomery, Matthew B.; Pollock, Gabriel E.; Frederiksen, Rikard; Enright, Jennifer; McCormick, Stephen; Cornwall, M. Carter; Fain, Gordon L.; Corbo, Joseph C.

    2017-01-01

    The spectral composition of ambient light varies across both space and time. Many species of jawed vertebrates adapt to this variation by tuning the sensitivity of their photoreceptors via the expression of CYP27C1, an enzyme that converts vitamin A1 into vitamin A2, thereby shifting the ratio of vitamin A1-based rhodopsin to red-shifted vitamin A2-based porphyropsin in the eye. Here, we show that the sea lamprey (Petromyzon marinus), a jawless vertebrate that diverged from jawed vertebrates during the Cambrian period (approx. 500 Ma), dynamically shifts its photoreceptor spectral sensitivity via vitamin A1-to-A2 chromophore exchange as it transitions between photically divergent aquatic habitats. We further show that this shift correlates with high-level expression of the lamprey orthologue of CYP27C1, specifically in the retinal pigment epithelium as in jawed vertebrates. Our results suggest that the CYP27C1-mediated vitamin A1-to-A2 switch is an evolutionarily ancient mechanism of sensory plasticity that appeared not long after the origin of vertebrates.

  20. Identification and quantification of N alpha-acetylated Y. pestis fusion protein F1-V expressed in Escherichia coli using LCMS E.

    Science.gov (United States)

    Bariola, Pauline A; Russell, Brett A; Monahan, Steven J; Stroop, Steven D

    2007-05-31

    N-terminal acetylation in E coli is a rare event catalyzed by three known N-acetyl-transferases (NATs), each having a specific ribosomal protein substrate. Multiple, gram-scale lots of recombinant F1-V, a fusion protein constructed from Y. Pestis antigens, were expressed and purified from a single stably transformed E. coli cell bank. A variant form of F1-V with mass increased by 42-43 Da was detected in all purified lots by electrospray orthogonal acceleration time-of-flight mass spectrometry (MS). Peptide mapping LCMS localized the increased mass to an N-terminal Lys-C peptide, residues 1-24, and defined it as +42.0308+/-0.0231 Da using a LockSpray exact mass feature and a leucine enkaphalin mass standard. Sequencing of the variant 1-24 peptide by LCMS and high-energy collision induced dissociation (LCMS(E)) further localized the modification to the amino terminal tri-peptide ADL and identified the modification as N(alpha)-acetylation. The average content of N(alpha)-acetylated F1-V in five lots was 24.7+/-2.6% indicating that a stable acetylation activity for F1-V was established in the E. coli expression system. Alignment of the F1-V N-terminal sequence with those of other known N(alpha)-acetylated ectopic proteins expressed in E. coli reveals a substrate motif analogous to the eukaryote NatA' acetylation pathway and distinct from endogenous E. coli NAT substrates.