WorldWideScience

Sample records for coli crystal structure

  1. Fortuitous structure determination of ‘as-isolated’ Escherichia coli bacterioferritin in a novel crystal form

    International Nuclear Information System (INIS)

    Eerde, André van; Wolterink-van Loo, Suzanne; Oost, John van der; Dijkstra, Bauke W.

    2006-01-01

    E. coli bacterioferritin was crystallized in a novel crystal form from different conditions and the structure was solved. The crystals belonged to space group P2 1 3 and diffracted to a resolution of 2.5 Å. Escherichia coli bacterioferritin was serendipitously crystallized in a novel cubic crystal form and its structure could be determined to 2.5 Å resolution despite a high degree of merohedral twinning. This is the first report of crystallographic data on ‘as-isolated’ E. coli bacterioferritin. The ferroxidase active site contains positive difference density consistent with two metal ions that had co-purified with the protein. X-ray fluorescence studies suggest that the metal composition is different from that of previous structures and is a mix of zinc and native iron ions. The ferroxidase-centre configuration displays a similar flexibility as previously noted for other bacterioferritins

  2. Purification, crystallization and structure determination of native GroEL from Escherichia coli lacking bound potassium ions

    International Nuclear Information System (INIS)

    Kiser, Philip D.; Lodowski, David T.; Palczewski, Krzysztof

    2007-01-01

    A 3.02 Å crystal structure of native GroEL from E. coli is presented. GroEL is a member of the ATP-dependent chaperonin family that promotes the proper folding of many cytosolic bacterial proteins. The structures of GroEL in a variety of different states have been determined using X-ray crystallography and cryo-electron microscopy. In this study, a 3.02 Å crystal structure of the native GroEL complex from Escherichia coli is presented. The complex was purified and crystallized in the absence of potassium ions, which allowed evaluation of the structural changes that may occur in response to cognate potassium-ion binding by comparison to the previously determined wild-type GroEL structure (PDB code http://www.rcsb.org/pdb/explore.do?structureId), in which potassium ions were observed in all 14 subunits. In general, the structure is similar to the previously determined wild-type GroEL crystal structure with some differences in regard to temperature-factor distribution

  3. Crystal Structure of Escherichia coli L-Arabinose Isomerase (ECAI), The Putative Target of Biological Tagatose Production

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty,B.; Chance, M.

    2006-01-01

    Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 Angstroms resolution. The subunit structure of ECAI is organized into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.

  4. The crystal structure of escherichia coli MoaB suggests a probable role in molybdenum cofactor synthesis

    International Nuclear Information System (INIS)

    Sanishvili, R.; Beasley, S.; Skarina, T; Glesne, D; Joachimiak, A; Edwards, A; Savchenko, A.; Univ. Health Network; Univ. of Toronto

    2004-01-01

    The crystal structure of Escherichia coli MoaB was determined by multiwavelength anomalous diffraction phasing and refined at 1.6 Angstrom resolution. The molecule displayed a modified Rossman fold. MoaB is assembled into a hexamer composed of two trimers. The monomers have high structural similarity with two proteins, MogA and MoeA, from the molybdenum cofactor synthesis pathway in E. Coli, as well as with domains of mammalian gephyrin and plant Cnx1, which are also involved in molybdopterin synthesis. Structural comparison between these proteins and the amino acid conservation patterns revealed a putative active site in MoaB. The structural analysis of this site allowed to advance several hypothesis which can be tested in further studies

  5. Triosephosphate isomerase is a common crystallization contaminant of soluble His-tagged proteins produced in Escherichia coli

    International Nuclear Information System (INIS)

    Kozlov, Guennadi; Vinaik, Roohi; Gehring, Kalle

    2013-01-01

    Crystals of E. coli triosephosphate isomerase were obtained as a contaminant and its structure was determined to 1.85 Å resolution. Attempts to crystallize several mammalian proteins overexpressed in Escherichia coli revealed a common contaminant, triosephosphate isomerase, a protein involved in glucose metabolism. Even with triosephosphate isomerase present in very small amounts, similarly shaped crystals appeared in the crystallization drops in a number of polyethylene glycol-containing conditions. All of the target proteins were His-tagged and their purification involved immobilized metal-affinity chromatography (IMAC), a step that was likely to lead to triosephosphate isomerase contamination. Analysis of the triosephosphate isomerase crystals led to the structure of E. coli triosephosphate isomerase at 1.85 Å resolution, which is a significant improvement over the previous structure

  6. Expression, purification and crystallization of the Cmi immunity protein from Escherichia coli

    International Nuclear Information System (INIS)

    Römer, Christin; Patzer, Silke I.; Albrecht, Reinhard; Zeth, Kornelius; Braun, Volkmar

    2011-01-01

    The colicin M immunity protein Cmi protects E. coli cells against killing by colicin M. The Cmi protein was produced for structure determination and crystals were obtained which diffracted to high resolution. Many bacteria kill related bacteria by secretion of bacteriocins. In Escherichia coli, the colicin M protein kills E. coli after uptake into the periplasm. Self-protection from destruction is provided by the co-expressed immunity protein. The colicin M immunity protein (Cmi) was cloned, overexpressed and purified to homogeneity. The correct fold of purified Cmi was analyzed by activity tests and circular-dichroism spectroscopy. Crystallization trials yielded crystals, one of which diffracted to a resolution of 1.9 Å in the orthorhombic space group C222 1 . The crystal packing, with unit-cell parameters a = 66.02, b = 83.47, c = 38.30 Å, indicated the presence of one monomer in the asymmetric unit with a solvent content of 53%

  7. Escherichia coli PII protein: purification, crystallization and oligomeric structure.

    Science.gov (United States)

    Vasudevan, S G; Gedye, C; Dixon, N E; Cheah, E; Carr, P D; Suffolk, P M; Jeffrey, P D; Ollis, D L

    1994-01-17

    The Escherichia coli signal transduction protein PII, product of the glnB gene, was overproduced and purified. The predicted molecular weight of the protein based on the correct nucleotide sequence is 12,427 and is very close to the value 12,435 obtained by matrix-assisted laser desorption mass spectrometry. Hexagonal crystals of the unuridylylated form of PII with dimensions 0.2 x 0.2 x 0.3 mm were grown and analysed by X-ray diffraction. The crystals belong to space group P6(3) with a = b = 61.6 A, c = 56.3 A and Vm of 2.5 for one subunit in the asymmetric unit. A low-resolution electron density map showed electron density concentrated around a three-fold axis, suggesting the molecule to be a trimer. A sedimentation equilibrium experiment of the meniscus depletion type was used to estimate a molecular weight of 35,000 +/- 1,000 for PII in solution. This result is consistent with the native protein being a homotrimer.

  8. Purification, crystallization and preliminary X-ray analysis of isocitrate dehydrogenase kinase/phosphatase from Escherichia coli

    International Nuclear Information System (INIS)

    Zheng, Jimin; Lee, Daniel C.; Jia, Zongchao

    2009-01-01

    Isocitrate dehydrogenase kinase/phosphatase has been crystallized in three different crystal forms. Data were collected from each crystal form for structure determination. The Escherichia coli aceK gene encodes isocitrate dehydrogenase kinase/phosphatase (EC 2.7.11.5), a bifunctional protein that phosphorylates and dephosphorylates isocitrate dehydrogenase (IDH), resulting in its inactivation and activation, respectively. This reversible (de)phosphorylation directs isocitrate, an intermediate of the citric acid cycle, to either go through the full cycle or to enter the glyoxylate bypass. In the present study, the AceK protein from E. coli has been purified and crystallized. Three crystal forms were obtained from very similar crystallization conditions. The crystals belong to space groups P4 1 2 1 2, P3 2 21 and P2 1 2 1 2 1 and diffracted X-rays to resolutions of 2.9, 3.0 and 2.7 Å, respectively

  9. Structures of the OmpF porin crystallized in the presence of foscholine-12.

    Science.gov (United States)

    Kefala, Georgia; Ahn, Chihoon; Krupa, Martin; Esquivies, Luis; Maslennikov, Innokentiy; Kwiatkowski, Witek; Choe, Senyon

    2010-05-01

    The endogenous Escherichia coli porin OmpF was crystallized as an accidental by-product of our efforts to express, purify, and crystallize the E. coli integral membrane protein KdpD in the presence of foscholine-12 (FC12). FC12 is widely used in membrane protein studies, but no crystal structure of a protein that was both purified and crystallized with this detergent has been reported in the Protein Data Bank. Crystallization screening for KdpD yielded two different crystals of contaminating protein OmpF. Here, we report two OmpF structures, the first membrane protein crystal structures for which extraction, purification, and crystallization were done exclusively with FC12. The first structure was refined in space group P21 with cell parameters a = 136.7 A, b = 210.5 A, c = 137 A, and beta = 100.5 degrees , and the resolution of 3.8 A. The second structure was solved at the resolution of 4.4 A and was refined in the P321 space group, with unit cell parameters a = 215.5 A, b = 215.5 A, c = 137.5 A, and gamma = 120 degrees . Both crystal forms show novel crystal packing, in which the building block is a tetrahedral arrangement of four trimers. Additionally, we discuss the use of FC12 for membrane protein crystallization and structure determination, as well as the problem of the OmpF contamination for membrane proteins overexpressed in E. coli.

  10. Cloning, purification, crystallization and preliminary crystallographic analysis of LsrR from Escherichia coli

    International Nuclear Information System (INIS)

    Liu, Xiaotian; Wu, Minhao; Sun, Demeng; Zang, Jianye

    2010-01-01

    The E. coli transcription repressor LsrR has been overexpressed, purified and crystallized. Diffraction data were collected to about 3 Å resolution. In Escherichia coli, the lsr operon is composed of six genes lsrACDBFG which regulate uptake and modification of the signalling molecule AI-2. LsrR is a repressor of the lsr operon and itself, which can bind phospho-AI-2 and be released from the promoter region of the operon and thus activate gene expression. LsrR fused with an HHHHHH sequence at the C-terminus was expressed, purified and crystallized in order to determine its structure and elucidate the molecular mechanism of repression. The crystal belonged to space group I222, with unit-cell parameters a = 79.84, b = 116.65, c = 186.04 Å, and was estimated to contain two protein molecules per asymmetric unit

  11. Structure of the Escherichia coli RNA polymerase α subunit C-terminal domain

    International Nuclear Information System (INIS)

    Lara-González, Samuel; Birktoft, Jens J.; Lawson, Catherine L.

    2010-01-01

    The crystal structure of the dimethyllysine derivative of the E. coli RNA polymerase α subunit C-terminal domain is reported at 2.0 Å resolution. The α subunit C-terminal domain (αCTD) of RNA polymerase (RNAP) is a key element in transcription activation in Escherichia coli, possessing determinants responsible for the interaction of RNAP with DNA and with transcription factors. Here, the crystal structure of E. coli αCTD (α subunit residues 245–329) determined to 2.0 Å resolution is reported. Crystals were obtained after reductive methylation of the recombinantly expressed domain. The crystals belonged to space group P2 1 and possessed both pseudo-translational symmetry and pseudo-merohedral twinning. The refined coordinate model (R factor = 0.193, R free = 0.236) has improved geometry compared with prior lower resolution determinations of the αCTD structure [Jeon et al. (1995 ▶), Science, 270, 1495–1497; Benoff et al. (2002 ▶), Science, 297, 1562–1566]. An extensive dimerization interface formed primarily by N- and C-terminal residues is also observed. The new coordinates will facilitate the improved modeling of αCTD-containing multi-component complexes visualized at lower resolution using X-ray crystallography and electron-microscopy reconstruction

  12. MraZ from Escherichia coli: cloning, purification, crystallization and preliminary X-ray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Melanie A.; Udell, Christian M.; Pal, Gour Pada; Jia, Zongchao, E-mail: jia@post.queensu.ca [Department of Biochemistry, Queen’s University, Kingston, Ontario K7L 3N6 (Canada)

    2005-04-01

    The crystallization and preliminary X-ray diffraction analysis of MraZ, formerly known as hypothetical protein YabB, from Escherichia coli K-12 is presented. The MraZ family of proteins, also referred to as the UPF0040 family, are highly conserved in bacteria and are thought to play a role in cell-wall biosynthesis and cell division. The murein region A (mra) gene cluster encodes MraZ proteins along with a number of other proteins involved in this complex process. To date, there has been no clear functional assignment provided for MraZ proteins and the structure of a homologue from Mycoplasma pneumoniae, MPN314, failed to suggest a molecular function. The b0081 gene from Escherichia coli that encodes the MraZ protein was cloned and the protein was overexpressed, purified and crystallized. This data is presented along with evidence that the E. coli homologue exists in a different oligomeric state to the MPN314 protein.

  13. MraZ from Escherichia coli: cloning, purification, crystallization and preliminary X-ray analysis

    International Nuclear Information System (INIS)

    Adams, Melanie A.; Udell, Christian M.; Pal, Gour Pada; Jia, Zongchao

    2005-01-01

    The crystallization and preliminary X-ray diffraction analysis of MraZ, formerly known as hypothetical protein YabB, from Escherichia coli K-12 is presented. The MraZ family of proteins, also referred to as the UPF0040 family, are highly conserved in bacteria and are thought to play a role in cell-wall biosynthesis and cell division. The murein region A (mra) gene cluster encodes MraZ proteins along with a number of other proteins involved in this complex process. To date, there has been no clear functional assignment provided for MraZ proteins and the structure of a homologue from Mycoplasma pneumoniae, MPN314, failed to suggest a molecular function. The b0081 gene from Escherichia coli that encodes the MraZ protein was cloned and the protein was overexpressed, purified and crystallized. This data is presented along with evidence that the E. coli homologue exists in a different oligomeric state to the MPN314 protein

  14. Crystallization and preliminary X-ray analysis of Escherichia coli RNase G

    International Nuclear Information System (INIS)

    Fang, Pengfei; Wang, Jing; Li, Xu; Guo, Min; Xing, Li; Cao, Xu; Zhu, Yi; Gao, Yan; Niu, Liwen; Teng, Maikun

    2009-01-01

    Full-length E. coli RNase G was overexpressed, purified and crystallized. Diffraction data were collected to a resolution of 3.4 Å. The homologous RNases RNase E and RNase G are widely distributed in bacteria and function in many important physiological processes, including mRNA degradation, rRNA maturation and so on. In this study, the crystallization and preliminary X-ray analysis of RNase G from Escherichia coli is described. Purified recombinant E. coli RNase G, which has 497 amino acids, was crystallized in the cubic space group F432, with unit-cell parameters a = b = c = 219.84 Å. X-ray diffraction data were collected to a resolution of 3.4 Å

  15. Systematic replacement of lysine with glutamine and alanine in Escherichia coli malate synthase G: effect on crystallization

    International Nuclear Information System (INIS)

    Anstrom, David M.; Colip, Leslie; Moshofsky, Brian; Hatcher, Eric; Remington, S. James

    2005-01-01

    Alanine and glutamine mutations were made to the same 15 lysine positions on the surface of E. coli malate synthase G and the impact on crystallization observed. The results support lysine replacement for improvement of crystallization and provide insight into site selection and type of amino-acid replacement. Two proposals recommend substitution of surface lysine residues as a means to improve the quality of protein crystals. In proposal I, substitution of lysine by alanine has been suggested to improve crystallization by reducing the entropic cost of ordering flexible side chains at crystal contacts. In proposal II, substitution of lysine by residues more commonly found in crystal contacts, such as glutamine, has been proposed to improve crystallization. 15 lysine residues on the surface of Escherichia coli malate synthase G, distributed over a variety of secondary structures, were individually mutated to both alanine and glutamine. For 28 variants, detailed studies of the effect on enzymatic activity and crystallization were conducted. This has permitted direct comparison of the relative effects of the two types of mutations. While none of the variants produced crystals suitable for X-ray structural determination, small crystals were obtained in a wide variety of conditions, in support of the general approach. Glutamine substitutions were found to be more effective than alanine in producing crystals, in support of proposal II. Secondary structure at the site of mutation does not appear to play a major role in determining the rate of success

  16. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  17. Crystallization and preliminary X-ray crystallographic studies of the alkanesulfonate FMN reductase from Escherichia coli

    International Nuclear Information System (INIS)

    Gao, Benlian; Bertrand, Adam; Boles, William H.; Ellis, Holly R.; Mallett, T. Conn

    2005-01-01

    Crystallization of the native and SeMet FMN reductase protein of the E. coli alkanesulfonate monooxygenase two-component enzyme system is reported. The alkanesulfonate FMN reductase (SsuE) from Escherichia coli catalyzes the reduction of FMN by NADPH to provide reduced flavin for the monooxygenase (SsuD) enzyme. The vapor-diffusion technique yielded single crystals that grow as hexagonal rods and diffract to 2.9 Å resolution using synchrotron X-ray radiation. The protein crystallizes in the primitive hexagonal space group P622. The SsuE protein lacks any cysteine or methionine residues owing to the role of the SsuE enzyme in the acquisition of sulfur during sulfate starvation. Therefore, substitution of two leucine residues (Leu114 and Leu165) to methionine was performed to obtain selenomethionine-containing SsuE for MAD phasing. The selenomethionine derivative of SsuE has been expressed and purified and crystals of the protein have been obtained with and without bound FMN. These preliminary studies should lead to the structure solution of SsuE. It is anticipated that this new protein structure will provide detailed structural information on specific active-site regions of the protein and insight into the mechanism of flavin reduction and transfer of reduced flavin

  18. Structure discrimination for the C-terminal domain of Escherichia coli trigger factor in solution

    International Nuclear Information System (INIS)

    Yao Yong; Bhabha, Gira; Kroon, Gerard; Landes, Mindy; Dyson, H. Jane

    2008-01-01

    NMR measurements can give important information on solution structure, without the necessity for a full-scale solution structure determination. The C-terminal protein binding domain of the ribosome-associated chaperone protein trigger factor is composed of non-contiguous parts of the polypeptide chain, with an interpolated prolyl isomerase domain. A construct of the C-terminal domain of Escherichia coli trigger factor containing residues 113-149 and 247-432, joined by a Gly-Ser-Gly-Ser linker, is well folded and gives excellent NMR spectra in solution. We have used NMR measurements on this construct, and on a longer construct that includes the prolyl isomerase domain, to distinguish between two possible structures for the C-terminal domain of trigger factor, and to assess the behavior of the trigger factor C-terminal domain in solution. Two X-ray crystal structures, of intact trigger factor from E. coli (Ferbitz et al., Nature 431:590-596, 2004), and of a truncated trigger factor from Vibrio cholerae (Ludlam et al., Proc Natl Acad Sci USA 101:13436-13441, 2004) showed significant differences in the structure of the C-terminal domain, such that the two structures could not be superimposed. We show using NMR chemical shifts and long range nuclear Overhauser effects that the secondary and tertiary structure of the E. coli C-terminal domain in solution is consistent with the crystal structure of the E. coli trigger factor and not with the V. cholerae protein. Given the similarity of the amino acid sequences of the E. coli and V. cholerae proteins, it appears likely that the structure of the V. cholerae protein has been distorted as a result of truncation of a 44-amino acid segment at the C-terminus. Analysis of residual dipolar coupling measurements shows that the overall topology of the solution structure is completely inconsistent with both structures. Dynamics analysis of the C-terminal domain using T 1 , T 2 and heteronuclear NOE parameters show that the protein is

  19. Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli

    International Nuclear Information System (INIS)

    Alexopoulos, Eftichia; Kanjee, Usheer; Snider, Jamie; Houry, Walid A.; Pai, Emil F.

    2008-01-01

    The structure of the decameric inducible lysine decarboxylase from E. coli was determined by SIRAS using a hexatantalum dodecabromide (Ta 6 Br 12 2+ ) derivative. Model building and refinement are under way. The decameric inducible lysine decarboxylase (LdcI) from Escherichia coli has been crystallized in space groups C2 and C222 1 ; the Ta 6 Br 12 2+ cluster was used to derivatize the C2 crystals. The method of single isomorphous replacement with anomalous scattering (SIRAS) as implemented in SHELXD was used to solve the Ta 6 Br 12 2+ -derivatized structure to 5 Å resolution. Many of the Ta 6 Br 12 2+ -binding sites had twofold and fivefold noncrystallographic symmetry. Taking advantage of this feature, phase modification was performed in DM. The electron-density map of LdcI displays many features in agreement with the low-resolution negative-stain electron-density map [Snider et al. (2006 ▶), J. Biol. Chem.281, 1532–1546

  20. The crystal and solution structure of YdiE from Escherichia coli.

    Science.gov (United States)

    Nishimura, Kaoru; Addy, Christine; Shrestha, Rojan; Voet, Arnout R D; Zhang, Kam Y J; Ito, Yutaka; Tame, Jeremy R H

    2015-07-01

    Iron-containing porphyrins are essential for all life as electron carriers. Since iron is poorly available in an oxidizing environment, bacterial growth may be restricted by iron limitation, and this has led to the evolution of a huge variety of iron-uptake systems. Among pathogens, iron scavenging from the haemoglobin of an animal host is a common means of acquiring sufficient iron for growth. The Isd system of Staphylococcus aureus is a well studied example; the bacterium devotes considerable resources to the construction of surface proteins that deftly remove haem from haemoglobin and pass it along a chain of related proteins, eventually delivering the haem to the cytoplasm, where it can be utilized or degraded. All organisms, however, must deal with haem and related molecules, which are by their nature hydrophobic and prone to precipitate, and which tend to promote the formation of reactive oxygen species. Chaperones are an obvious solution to the problem of maintaining a pool of haem for insertion into cytochromes without allowing naked haem to cause damage. YdiE is a very small protein from Escherichia coli of only 63 residues which may play a role in haem trafficking. Here, NMR analysis and the crystal structure of the protein to high resolution are reported.

  1. Expression, crystallization and preliminary X-ray analysis of the periplasmic stress sensory protein RseB from Escherichia coli

    International Nuclear Information System (INIS)

    Wollmann, Petra; Zeth, Kornelius

    2006-01-01

    The periplasmic stress protein RseB from E. coli was cloned, expressed and crystallized. Crystallographic data are presented and structure solution using the multiple isomorphous replacement approach (MIR) is in progress. Sensing external stress in the bacterial periplasm and signal transduction to the cytoplasm are important functions of the CpxAR, Bae and σ E signalling pathways. In Escherichia coli, the σ E pathway can be activated through degradation of the antisigma factor RseA by DegS and YaeL. The periplasmic protein RseB plays an important role in this pathway by exerting a direct or indirect negative effect on YaeL cleavage efficiency. RseB from E. coli, missing the periplasmic signal sequence (RseB ΔN ), was cloned, expressed, purified and crystallized. Crystals were obtained in two different forms belonging to space group P42 1 2 (form I) and C222 1 (form II) and diffracted to 2.8 and 2.4 Å resolution, respectively. In crystal form I two copies of the protein were located in the asymmetric unit according to heavy-atom analysis, while crystal form II contained three copies

  2. Improved crystallization of Escherichia coli ATP synthase catalytic complex (F1) by introducing a phosphomimetic mutation in subunit ∊

    International Nuclear Information System (INIS)

    Roy, Ankoor; Hutcheon, Marcus L.; Duncan, Thomas M.; Cingolani, Gino

    2012-01-01

    A phosphomimetic mutation in subunit ∊ dramatically increases reproducibility for crystallization of Escherichia coli ATP synthase catalytic complex (F 1 ) (subunit composition α 3 β 3 γ∊). Diffraction data were collected to ∼3.15 Å resolution using synchrotron radiation. The bacterial ATP synthase (F O F 1 ) of Escherichia coli has been the prominent model system for genetics, biochemical and more recently single-molecule studies on F-type ATP synthases. With 22 total polypeptide chains (total mass of ∼529 kDa), E. coli F O F 1 represents nature’s smallest rotary motor, composed of a membrane-embedded proton transporter (F O ) and a peripheral catalytic complex (F 1 ). The ATPase activity of isolated F 1 is fully expressed by the α 3 β 3 γ ‘core’, whereas single δ and ∊ subunits are required for structural and functional coupling of E. coli F 1 to F O . In contrast to mitochondrial F 1 -ATPases that have been determined to atomic resolution, the bacterial homologues have proven very difficult to crystallize. In this paper, we describe a biochemical strategy that led us to improve the crystallogenesis of the E. coli F 1 -ATPase catalytic core. Destabilizing the compact conformation of ∊’s C-terminal domain with a phosphomimetic mutation (∊S65D) dramatically increased crystallization success and reproducibility, yielding crystals of E. coli F 1 that diffract to ∼3.15 Å resolution

  3. The crystal structure of galactitol-1-phosphate 5-dehydrogenase from Escherichia coli K12 provides insights into its anomalous behavior on IMAC processes.

    Science.gov (United States)

    Esteban-Torres, María; Alvarez, Yanaisis; Acebrón, Iván; de las Rivas, Blanca; Muñoz, Rosario; Kohring, Gert-Wieland; Roa, Ana María; Sobrino, Mónica; Mancheño, José M

    2012-09-21

    Endogenous galactitol-1-phosphate 5-dehydrogenase (GPDH) (EC 1.1.1.251) from Escherichia coli spontaneously interacts with Ni(2+)-NTA matrices becoming a potential contaminant for recombinant, target His-tagged proteins. Purified recombinant, untagged GPDH (rGPDH) converted galactitol into tagatose, and d-tagatose-6-phosphate into galactitol-1-phosphate, in a Zn(2+)- and NAD(H)-dependent manner and readily crystallized what has permitted to solve its crystal structure. In contrast, N-terminally His-tagged GPDH was marginally stable and readily aggregated. The structure of rGPDH revealed metal-binding sites characteristic from the medium-chain dehydrogenase/reductase protein superfamily which may explain its ability to interact with immobilized metals. The structure also provides clues on the harmful effects of the N-terminal His-tag. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Crystallization of the FaeE chaperone of Escherichia coli F4 fimbriae

    International Nuclear Information System (INIS)

    Van Molle, Inge; Buts, Lieven; Coppens, Fanny; Qiang, Liu; Wyns, Lode; Loris, Remy; Bouckaert, Julie; De Greve, Henri

    2005-01-01

    The periplasmic chaperone FaeE of E. coli F4 fimbriae crystallizes in three crystal forms. F4 (formerly K88) fimbriae from enterotoxigenic Escherichia coli are assembled via the FaeE/FaeD chaperone/usher pathway. The chaperone FaeE crystallizes in three crystal forms, all belonging to space group C2. Crystals of form 1 diffract to 2.3 Å and have unit-cell parameters a = 195.7, b = 78.5, c = 184.6 Å, β = 102.2°. X-ray data for crystal form 2 were collected to 2.7 Å using an SeMet variant of FaeE. The crystals have unit-cell parameters a = 136.4, b = 75.7, c = 69.4 Å, β = 92.8°. Crystals of form 3 were formed in a solution containing the FaeE–FaeG complex and diffract to 2.8 Å. Unit-cell parameters are a = 109.7, b = 78.6, c = 87.8 Å, β = 96.4°

  5. Crystallization of the FaeE chaperone of Escherichia coli F4 fimbriae

    Energy Technology Data Exchange (ETDEWEB)

    Van Molle, Inge, E-mail: ivmolle@vub.ac.be; Buts, Lieven; Coppens, Fanny; Qiang, Liu; Wyns, Lode; Loris, Remy; Bouckaert, Julie; De Greve, Henri [Laboratorium voor Ultrastructuur, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium)

    2005-04-01

    The periplasmic chaperone FaeE of E. coli F4 fimbriae crystallizes in three crystal forms. F4 (formerly K88) fimbriae from enterotoxigenic Escherichia coli are assembled via the FaeE/FaeD chaperone/usher pathway. The chaperone FaeE crystallizes in three crystal forms, all belonging to space group C2. Crystals of form 1 diffract to 2.3 Å and have unit-cell parameters a = 195.7, b = 78.5, c = 184.6 Å, β = 102.2°. X-ray data for crystal form 2 were collected to 2.7 Å using an SeMet variant of FaeE. The crystals have unit-cell parameters a = 136.4, b = 75.7, c = 69.4 Å, β = 92.8°. Crystals of form 3 were formed in a solution containing the FaeE–FaeG complex and diffract to 2.8 Å. Unit-cell parameters are a = 109.7, b = 78.6, c = 87.8 Å, β = 96.4°.

  6. Confirming the Revised C-Terminal Domain of the MscL Crystal Structure

    OpenAIRE

    Maurer, Joshua A.; Elmore, Donald E.; Clayton, Daniel; Xiong, Li; Lester, Henry A.; Dougherty, Dennis A.

    2008-01-01

    The structure of the C-terminal domain of the mechanosensitive channel of large conductance (MscL) has generated significant controversy. As a result, several structures have been proposed for this region: the original crystal structure (1MSL) of the Mycobacterium tuberculosis homolog (Tb), a model of the Escherichia coli homolog, and, most recently, a revised crystal structure of Tb-MscL (2OAR). To understand which of these structures represents a physiological conformation, we measured the ...

  7. X-ray crystal structure of the passenger domain of plasmid encoded toxin(Pet), an autotransporter enterotoxin from enteroaggregative Escherichia coli (EAEC)

    Energy Technology Data Exchange (ETDEWEB)

    Domingo Meza-Aguilar, J. [Departamento de Salud Pública Facultad de Medicina UNAM, Ciudad Universitaria Coyoacán 04510, D.F. (Mexico); Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato Oncología e Investigación, Hospital Infantil de México Federico Gómez 06720, D.F. (Mexico); Fromme, Petra [Department of Chemistry and Biochemistry, Arizona State University, Physical Sciences BLDG D-102, Tempe, AZ 85287 (United States); Torres-Larios, Alfredo [Instituto de Fisiología Celular UNAM, Ciudad Universitaria Coyoacán 04510, D.F. (Mexico); Mendoza-Hernández, Guillermo [Instituto de Química UNAM, Ciudad Universitaria Coyoacán 04510, D.F (Mexico); Hernandez-Chiñas, Ulises [Departamento de Salud Pública Facultad de Medicina UNAM, Ciudad Universitaria Coyoacán 04510, D.F. (Mexico); Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato Oncología e Investigación, Hospital Infantil de México Federico Gómez 06720, D.F. (Mexico); Arreguin-Espinosa de los Monteros, Roberto A. [Instituto de Química UNAM, Ciudad Universitaria Coyoacán 04510, D.F (Mexico); and others

    2014-03-07

    Highlights: • X-ray crystal structure of the passenger domain of Plasmid encoded toxin at 2.3 Å. • Structural differences between Pet passenger domain and EspP protein are described. • High flexibility of the C-terminal beta helix is structurally assigned. - Abstract: Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause of acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50% compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181–190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135 and 143 compared to the structure of EspP.

  8. Three-dimensional structure of phosphoribosyl pyrophosphate synthetase from E. coli at 2.71 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru, E-mail: tostars@mail.ru, E-mail: ugama@yandex.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Abramchik, Yu. A. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Zhukhlistova, N. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Muravieva, T. I.; Esipov, R. S. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-01-15

    Phosphoribosyl pyrophosphate synthetase from Escherichia coli was cloned, purified, and crystallized. Single crystals of the enzyme were grown under microgravity. The X-ray diffraction data set was collected at the Spring-8 synchrotron facility and used to determine the three-dimensional structure of the enzyme by the molecular-replacement method at 2.71 Å resolution. The active and regulatory sites in the molecule of E. coli phosphoribosyl pyrophosphate synthetase were revealed by comparison with the homologous protein from Bacillus subtilis, the structure of which was determined in a complex with functional ligands. The conformations of polypeptide-chain fragments surrounding and composing the active and regulatory sites were shown to be identical in both proteins.

  9. Crystallization and preliminary X-ray diffraction analysis of the putative aldose 1-epimerase YeaD from Escherichia coli

    International Nuclear Information System (INIS)

    You, Weijie; Qiu, Xiaoting; Zhang, Yujie; Ma, Jinming; Gao, Yongxiang; Zhang, Xiao; Niu, Liwen; Teng, Maikun

    2010-01-01

    The putative aldose 1-epimerase YeaD from Escherichia coli was crystallized and diffraction data were collected to a resolution of 1.9 Å. Escherichia coli YeaD (ecYeaD) is suggested to be a member of the galactose mutarotase-like superfamily. Galactose mutarotase is an enzyme that converts α-galactose to β-galactose. The known structures of these galactose mutarotase-like proteins are similar to those of galactose mutarotases, with the catalytic residues being conserved, but there are some differences between them in the substrate-binding pocket. In order to reveal the specificity of ecYeaD, a three-dimensional structure is essential. Full-length ecYeaD with an additional 6×His tag at the C-terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 4000 as a precipitant at 283 K. An X-ray diffraction data set was collected to a resolution of 1.9 Å from a single flash-cooled crystal that belonged to space group P2 1 2 1 2 1

  10. Expression, crystallization and preliminary X-ray crystallographic studies of the outer membrane protein OmpW from Escherichia coli

    International Nuclear Information System (INIS)

    Albrecht, Reinhard; Zeth, Kornelius; Söding, Johannes; Lupas, Andrei; Linke, Dirk

    2006-01-01

    The outer membrane protein OmpW from E. coli was overexpressed in inclusion bodies and refolded with the help of detergent. The protein has been crystallized and the crystals diffract to 3.5 Å resolution. OmpW is an eight-stranded 21 kDa molecular-weight β-barrel protein from the outer membrane of Gram-negative bacteria. It is a major antigen in bacterial infections and has implications in antibiotic resistance and in the oxidative degradation of organic compounds. OmpW from Escherichia coli was cloned and the protein was expressed in inclusion bodies. A method for refolding and purification was developed which yields properly folded protein according to circular-dichroism measurements. The protein has been crystallized and crystals were obtained that diffracted to a resolution limit of 3.5 Å. The crystals belong to space group P422, with unit-cell parameters a = 122.5, c = 105.7 Å. A homology model of OmpW is presented based on known structures of eight-stranded β-barrels, intended for use in molecular-replacement trials

  11. Expression, purification, crystallization and preliminary diffraction studies of the mammalian DAG kinase homologue YegS from Escherichia coli

    International Nuclear Information System (INIS)

    Bakali H, M. Amin; Nordlund, Pär; Hallberg, B. Martin

    2006-01-01

    The overexpression, crystallization and preliminary diffraction analysis of E. coli YegS are reported. yegS is a gene encoding a 32 kDa cytosolic protein with unknown function but with strong sequence homology to a family of structurally uncharacterized eukaryotic non-protein kinases: diacylglycerol kinases, sphingosine kinases and ceramide kinases. Here, the overexpression, crystallization and preliminary diffraction analysis of Escherichia coli YegS are reported. The crystals belong to space group P2 1 , with unit-cell parameters a = 42.4, b = 166.1, c = 48.5 Å, β = 96.97°. The presence of a dimer in the asymmetric unit was estimated to give a Matthews coefficient (V M ) of 2.5 Å 3 Da −1 and a solvent content of 50.8%(v/v). Single-wavelength diffraction data were collected to a resolution of 1.9 Å using synchrotron radiation

  12. Crystallization and preliminary X-ray diffraction analysis of an Escherichia coli tRNAGly acceptor-stem microhelix

    International Nuclear Information System (INIS)

    Förster, Charlotte; Perbandt, Markus; Brauer, Arnd B. E.; Brode, Svenja; Fürste, Jens P.; Betzel, Christian; Erdmann, Volker A.

    2006-01-01

    In order to investigate the identity elements of the E. coli tRNA Gly /GlyRS class II system, a tRNA Gly acceptor-stem microhelix was crystallized and a data set was collected to 2.0 Å resolution using synchrotron radiation. The tRNA Gly and glycyl-tRNA synthetase (GlyRS) system is an evolutionary special case within the class II aminoacyl-tRNA synthetases because two divergent types of GlyRS exist: an archaebacterial/human type and an eubacterial type. The tRNA identity elements which determine the correct aminoacylation process are located in the aminoacyl domain of tRNA Gly . To obtain further insight concerning structural investigation of the identity elements, the Escherichia coli seven-base-pair tRNA Gly acceptor-stem helix was crystallized. Data were collected to 2.0 Å resolution using synchrotron radiation. Crystals belong to space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 35.35, c = 130.82 Å, α = β = 90, γ = 120° and two molecules in the asymmetric unit

  13. Crystal Structure of Mn2+-bound Escherichia coli L-arabinose Isomerase (ECAI) and Implications in Protein Catalytic Mechanism and Thermo-Stability

    International Nuclear Information System (INIS)

    Zhu, W.; Manjasetty, B.; Chance, M.

    2007-01-01

    The functional properties of proteins depend on their three-dimensional shapes. Protein structures can be determined by X-ray crystallography as a tool. The three-dimensional structure of the apo form of the Escherichia coli L-arabinose isomerase (ECAI) has recently been determined. ECAI is responsible for the initial stage of L-arabinose catabolism, converting arabinose into ribulose in vivo. This enzyme also plays a crucial role in catalyzing the conversion of galactose into tagatose (low calorie natural sugar) in vitro. ECAI utilizes Mn 2+ for its catalytic activity. Crystals of the ECAI + Mn 2+ complex helps to investigate the catalytic properties of the enzyme. Therefore, crystals of ECAI + Mn 2+ complex were grown using hanging drop vapor diffusion method at room temperature. Diffraction data were collected at X4C beamline, National Synchrotron Light Source, Brookhaven National Laboratory. The structure was solved by the molecular replacement technique and has been refined to Rwork of 0.23 at 2.8 (angstrom) resolution using X3A beamline computational facility. The structure was deposited to Protein Data Bank (PDB ID 2HXG). Mn 2+ ion was localized to the previously identified putative active site with octahedral coordination. Comparison of apo and holo form of ECAI structures permits the identification of structural features that are of importance to the intrinsic activity and heat stability of AI

  14. Function and X-ray crystal structure of Escherichia coli YfdE.

    Directory of Open Access Journals (Sweden)

    Elwood A Mullins

    Full Text Available Many food plants accumulate oxalate, which humans absorb but do not metabolize, leading to the formation of urinary stones. The commensal bacterium Oxalobacter formigenes consumes oxalate by converting it to oxalyl-CoA, which is decarboxylated by oxalyl-CoA decarboxylase (OXC. OXC and the class III CoA-transferase formyl-CoA:oxalate CoA-transferase (FCOCT are widespread among bacteria, including many that have no apparent ability to degrade or to resist external oxalate. The EvgA acid response regulator activates transcription of the Escherichia coli yfdXWUVE operon encoding YfdW (FCOCT, YfdU (OXC, and YfdE, a class III CoA-transferase that is ~30% identical to YfdW. YfdW and YfdU are necessary and sufficient for oxalate-induced protection against a subsequent acid challenge; neither of the other genes has a known function. We report the purification, in vitro characterization, 2.1-Å crystal structure, and functional assignment of YfdE. YfdE and UctC, an orthologue from the obligate aerobe Acetobacter aceti, perform the reversible conversion of acetyl-CoA and oxalate to oxalyl-CoA and acetate. The annotation of YfdE as acetyl-CoA:oxalate CoA-transferase (ACOCT expands the scope of metabolic pathways linked to oxalate catabolism and the oxalate-induced acid tolerance response. FCOCT and ACOCT active sites contain distinctive, conserved active site loops (the glycine-rich loop and the GNxH loop, respectively that appear to encode substrate specificity.

  15. Structural and functional analysis of the kid toxin protein from E. coli Plasmid R1

    NARCIS (Netherlands)

    Hargreaves, D.; Santos-Sierra, S.; Giraldo, R.; Sabariegos-Jareño, R.; de la Cueva-Méndez, G.; Boelens, R.|info:eu-repo/dai/nl/070151407; Díaz-Orejas, R.; Rafferty, J.B.

    2002-01-01

    We have determined the structure of Kid toxin protein from E. coli plasmid R1 involved in stable plasmid inheritance by postsegregational killing of plasmid-less daughter cells. Kid forms a two-component system with its antagonist, Kis antitoxin. Our 1.4 Å crystal structure of Kid reveals a 2-fold

  16. Crystallization and preliminary crystallographic studies of the YafN–YafO complex from Escherichia coli

    International Nuclear Information System (INIS)

    Zhang, Fan; Xing, Li; Teng, Maikun; Li, Xu

    2012-01-01

    The ribosome-dependent mRNA interferase YafO from Escherichia coli belongs to a type II toxin–antitoxin (TA) system and its cognate antitoxin YafN neutralizes cell toxicity by forming a stable YafN–YafO complex. Here, the YafN–YafO complex has been expressed and crystallized. The ribosome-dependent mRNA interferase YafO from Escherichia coli belongs to a type II toxin–antitoxin (TA) system and its cognate antitoxin YafN neutralizes cell toxicity by forming a stable YafN–YafO complex. The YafN–YafO TA system is upregulated by the SOS response (a global response to DNA damage in which the cell cycle is arrested and mutagenesis is induced) and may then inhibit protein synthesis by endoribonuclease activity of YafO with the 50S ribosome subunit. Structural information on the YafN–YafO complex and related complexes would be helpful in order to understand the structural basis of the mechanism of mRNA recognition and cleavage, and the assembly of these complexes. Here, the YafN–YafO complex was expressed and crystallized. Crystals grown by the hanging-drop vapour-diffusion method diffracted to 3.50 Å resolution and belonged to the hexagonal space group P622, with unit-cell parameters a = 86.14, b = 86.14, c = 173.11 Å, α = β = 90, γ = 120°. Both Matthews coefficient analysis and the self-rotation function suggested the presence of one molecule per asymmetric unit in the crystal, with a solvent content of 65.69% (V M = 3.58 Å 3 Da −1 )

  17. Preliminary structural investigations of the Eut-L shell protein of the ethanolamine ammonia-lyase metabolosome of Escherichia coli

    International Nuclear Information System (INIS)

    Nikolakakis, Kiel; Ohtaki, Akashi; Newton, Keith; Chworos, Arkadiusz; Sagermann, Martin

    2009-01-01

    Preliminary X-ray analysis of crystals of the bacterial microcompartment shell protein Eut-L from Escherichia coli is reported. The ethanolamine ammonia-lyase microcompartment is composed of five different shell proteins that have been proposed to assemble into symmetrically shaped polyhedral particles of varying sizes. Here, preliminary X-ray analysis of crystals of the bacterial microcompartment shell protein Eut-L from Escherichia coli is reported. Cloning, overexpression and purification resulted in highly pure protein that crystallized readily under many different conditions. In all cases the protein forms thin hexagonal plate-shaped crystals belonging to space group P3 that are of unusually high stability against different solvent conditions. The crystals diffracted to a resolution of 2.0 Å using synchrotron radiation but proved to be radiation-sensitive. Preparations of heavy-atom-derivatized crystals for use in determining the three-dimensional structure are under way

  18. Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8.

    Directory of Open Access Journals (Sweden)

    Sayaka Igari

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is one of the enzymes involved in homocysteine metabolism. Despite considerable genetic and clinical attention, the reaction mechanism and regulation of this enzyme are not fully understood because of difficult production and poor stability. While recombinant enzymes from thermophilic organisms are often stable and easy to prepare, properties of thermostable MTHFRs have not yet been reported.MTHFR from Thermus thermophilus HB8, a homologue of Escherichia coli MetF, has been expressed in E. coli and purified. The purified MTHFR was chiefly obtained as a heterodimer of apo- and holo-subunits, that is, one flavin adenine dinucleotide (FAD prosthetic group bound per dimer. The crystal structure of the holo-subunit was quite similar to the β(8α(8 barrel of E. coli MTHFR, while that of the apo-subunit was a previously unobserved closed form. In addition, the intersubunit interface of the dimer in the crystals was different from any of the subunit interfaces of the tetramer of E. coli MTHFR. Free FAD could be incorporated into the apo-subunit of the purified Thermus enzyme after purification, forming a homodimer of holo-subunits. Comparison of the crystal structures of the heterodimer and the homodimer revealed different intersubunit interfaces, indicating a large conformational change upon FAD binding. Most of the biochemical properties of the heterodimer and the homodimer were the same, except that the homodimer showed ≈50% activity per FAD-bound subunit in folate-dependent reactions.The different intersubunit interfaces and rearrangement of subunits of Thermus MTHFR may be related to human enzyme properties, such as the allosteric regulation by S-adenosylmethionine and the enhanced instability of the Ala222Val mutant upon loss of FAD. Whereas E. coli MTHFR was the only structural model for human MTHFR to date, our findings suggest that Thermus MTHFR will be another useful model for this important enzyme.

  19. Structure of active IspH enzyme from escherichia coli provides mechanistic insights into substrate reduction

    KAUST Repository

    Grä wert, Tobias; Rohdich, Felix; Span, Lngrid; Backer, Adelbert; Eisenreich, Wolfgang; Eppinger, Jö rg; Groll, Michael

    2009-01-01

    The terminal step of the non-mevalonate pathway of terpene biosynthesis is catalyzed by IspH (see scheme). In the crystal structure of IspH from E. coli, a bound inorganic diphosphate ligand occupies the position of the diphosphate residue

  20. Crystal structure and mechanism of the lytic transglycosylase MltA from Escherichia coli

    NARCIS (Netherlands)

    van Straaten, Karin

    2006-01-01

    This thesis describes the determination and analysis of the 3D-structure of the lytic transglycosylase MltA from Escherichia coli by X-ray crystallography. This work aims to further increase our knowledge of the molecular details of the cleaving mechanism and the typical 1,6- anhydromuropeptide

  1. Crystallization and preliminary X-ray diffraction analyses of several forms of the CfaB major subunit of enterotoxigenic Escherichia coli CFA/I fimbriae

    International Nuclear Information System (INIS)

    Li, Yong-Fu; Poole, Steven; Rasulova, Fatima; McVeigh, Annette L.; Savarino, Stephen J.; Xia, Di

    2009-01-01

    Three fusion proteins were generated in order to resolve the atomic structure of the CFA/I fimbriae of enterotoxigenic E. coli. CfaEB is a fusion of the minor and major CFA/I subunits, while CfaBB and CfaBBB are tandem fusions of two and three repeats, respectively, of the major subunit. Each protein was crystallized and the crystal structures of each of these fusions were determined successively by the molecular-replacement method using the CfaE crystal structure as an initial phasing model. Enterotoxigenic Escherichia coli (ETEC), a major global cause of diarrhea, initiates the pathogenic process via fimbriae-mediated attachment to the small intestinal epithelium. A common prototypic ETEC fimbria, colonization factor antigen I (CFA/I), consists of a tip-localized minor adhesive subunit CfaE and the stalk-forming major subunit CfaB, both of which are necessary for fimbrial assembly. To elucidate the structure of CFA/I at atomic resolution, three recombinant proteins were generated consisting of fusions of the minor and major subunits (CfaEB) and of two (CfaBB) and three (CfaBBB) repeats of the major subunit. Crystals of CfaEB diffracted X-rays to 2.1 Å resolution and displayed the symmetry of space group P2 1 . CfaBB exhibited a crystal diffraction limit of 2.3 Å resolution and had the symmetry of space group P2 1 2 1 2. CfaBBB crystallized in the monoclinic space group C2 and diffracted X-rays to 2.3 Å resolution. These structures were determined using the molecular-replacement method

  2. Crystallization and preliminary crystallographic analysis of the transcriptional regulator RfaH from Escherichia coli and its complex with ops DNA

    International Nuclear Information System (INIS)

    Vassylyeva, Marina N.; Svetlov, Vladimir; Klyuyev, Sergiy; Devedjiev, Yancho D.; Artsimovitch, Irina; Vassylyev, Dmitry G.

    2006-01-01

    The E. coli transcriptional regulator RfaH was cloned, expressed, purified and crystallized and the complex of RfaH with its target DNA oligonucleotide was cocrystallized. Complete diffraction data sets were collected for the apo protein and its nucleic acid complex at 2.4 and at 1.6 Å resolution, respectively. The bacterial transcriptional factor and virulence regulator RfaH binds to rapidly moving transcription elongation complexes through specific interactions with the exposed segment of the non-template DNA strand. To elucidate this unusual mechanism of recruitment, determination of the three-dimensional structure of RfaH and its complex with DNA was initiated. To this end, the Escherichia coli rfaH gene was cloned and expressed. The purified protein was crystallized by the sitting-drop vapor-diffusion technique. The space group was P6 1 22 or P6 5 22, with unit-cell parameters a = b = 45.46, c = 599.93 Å. A complex of RfaH and a nine-nucleotide oligodeoxyribonucleotide was crystallized by the same technique, but under different crystallization conditions, yielding crystals that belonged to space group P1 (unit-cell parameters a = 36.79, b = 44.01, c = 62.37 Å, α = 80.62, β = 75.37, γ = 75.41°). Complete diffraction data sets were collected for RfaH and its complex with DNA at 2.4 and 1.6 Å resolution, respectively. Crystals of selenomethionine-labeled proteins in both crystal forms were obtained by cross-microseeding using the native microcrystals. The structure determination of RfaH and its complex with DNA is in progress

  3. Crystal Structure of TDP-Fucosamine Acetyl Transferase (WECD) from Escherichia Coli, an Enzyme Required for Enterobacterial Common Antigen Synthesis

    International Nuclear Information System (INIS)

    Hung, M.; Rangarajan, E.; Munger, C.; Nadeau, G.; Sulea, T.; Matte, A.

    2006-01-01

    Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-D-glucosamine, N-acetyl-D-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-D-galactose, organized into trisaccharide repeating units having the sequence →(3)-α-D-Fuc4NAc-(1→4)-β-D-ManNAcA-(1→4)-α-D-GlcNAc-(1→). While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-D-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structure of WecD in apo form at a 1.95-Angstroms resolution and bound to acetyl-CoA at a 1.66-Angstroms resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.

  4. Crystal structure of the homocysteine methyltransferase MmuM from Escherichia coli.

    Science.gov (United States)

    Li, Kunhua; Li, Gengnan; Bradbury, Louis M T; Hanson, Andrew D; Bruner, Steven D

    2016-02-01

    Homocysteine S-methyltransferases (HMTs, EC 2.1.1.0) catalyse the conversion of homocysteine to methionine using S-methylmethionine or S-adenosylmethionine as the methyl donor. HMTs play an important role in methionine biosynthesis and are widely distributed among micro-organisms, plants and animals. Additionally, HMTs play a role in metabolite repair of S-adenosylmethionine by removing an inactive diastereomer from the pool. The mmuM gene product from Escherichia coli is an archetypal HMT family protein and contains a predicted zinc-binding motif in the enzyme active site. In the present study, we demonstrate X-ray structures for MmuM in oxidized, apo and metallated forms, representing the first such structures for any member of the HMT family. The structures reveal a metal/substrate-binding pocket distinct from those in related enzymes. The presented structure analysis and modelling of co-substrate interactions provide valuable insight into the function of MmuM in both methionine biosynthesis and cofactor repair. © 2016 Authors; published by Portland Press Limited.

  5. Crystallization and preliminary X-ray diffraction analysis of the lytic transglycosylase MltE from Escherichia coli

    International Nuclear Information System (INIS)

    Artola-Recolons, Cecilia; Llarrull, Leticia I.; Lastochkin, Elena; Mobashery, Shahriar; Hermoso, Juan A.

    2010-01-01

    Crystals of the lytic transglycosylase MltE from E. coli were grown using the microbatch method and diffracted to a resolution of 2.1 Å. MltE from Escherichia coli (193 amino acids, 21 380 Da) is a lytic transglycosylase that initiates the first step of cell-wall recycling. This enzyme is responsible for the cleavage of the cell-wall peptidoglycan at the β-1,4-glycosidic bond between the N-acetylglucosamine and N-acetylmuramic acid units. At the end this reaction generates a disaccharide that is internalized and initiates the recycling process. To obtain insights into the biological functions of MltE, crystallization trials were performed and crystals of MltE protein that were suitable for X-ray diffraction analysis were obtained. The MltE protein of E. coli was crystallized using the hanging-drop vapour-diffusion method at 291 K. Crystals grew from a mixture consisting of 28% polyethylene glycol 4000, 0.1 M Tris pH 8.4 and 0.2 M magnesium chloride. Further optimization was performed using the microbatch technique. Single crystals were obtained that belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 123.32, b = 183.93, c = 35.29 Å, and diffracted to a resolution of 2.1 Å

  6. Crystal Structure of AGR_C_4470p from Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev,S.; Neely, H.; Seetharaman, J.; Ma, L.; Xiao, R.; Acton, T.; Montelione, G.; Tong, L.

    2007-01-01

    We report here the crystal structure at 2.0 {angstrom} resolution of the AGR{_}C{_}4470p protein from the Gram-negative bacterium Agrobacterium tumefaciens. The protein is a tightly associated dimer, each subunit of which bears strong structural homology with the two domains of the heme utilization protein ChuS from Escherichia coli and HemS from Yersinia enterocolitica. Remarkably, the organization of the AGR{_}C{_}4470p dimer is the same as that of the two domains in ChuS and HemS, providing structural evidence that these two proteins evolved by gene duplication. However, the binding site for heme, while conserved in HemS and ChuS, is not conserved in AGR{_}C{_}4470p, suggesting that it probably has a different function. This is supported by the presence of two homologs of AGR{_}C{_}4470p in E. coli, in addition to the ChuS protein.

  7. Crystallization and preliminary X-ray diffraction analysis of diaminopimelate epimerase from Escherichia coli

    International Nuclear Information System (INIS)

    Hor, Lilian; Dobson, Renwick C. J.; Dogovski, Con; Hutton, Craig A.; Perugini, Matthew A.

    2009-01-01

    Diaminopimelate (DAP) epimerase, an enzyme in the lysine-biosynthetic pathway, is a promising target for antibiotic development against pathogenic bacteria. Here, the cloning, expression, purification, crystallization and preliminary diffraction analysis of DAP epimerase from E. coli are reported. Diaminopimelate (DAP) epimerase (EC 5.1.1.7) catalyzes the penultimate step of lysine biosynthesis in bacteria and plants, converting l,l-diaminopimelate to meso-diaminopimelate. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DAP epimerase from Escherichia coli are presented. Crystals were obtained in space group P4 1 2 1 2 and diffracted to 2.0 Å resolution, with unit-cell parameters a = b = 89.4, c = 179.6 Å. Molecular replacement was conducted using Bacillus anthracis DAP epimerase as a search model and showed the presence of two molecules in the asymmetric unit, with an initial R free of 0.456 and R work of 0.416

  8. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the regulator AcrR from Escherichia coli

    International Nuclear Information System (INIS)

    Li, Ming; Qiu, Xi; Su, Chih-Chia; Long, Feng; Gu, Ruoyu; McDermott, Gerry; Yu, Edward W.

    2006-01-01

    The transcriptional regulator AcrR from Escherichia coli has been cloned, overexpressed, purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.5 Å. This paper describes the cloning, expression, purification and preliminary X-ray data analysis of the AcrR regulatory protein. The Escherichia coli AcrR is a member of the TetR family of transcriptional regulators. It regulates the expression of the AcrAB multidrug transporter. Recombinant AcrR with a 6×His tag at the C-terminus was expressed in E. coli and purified by metal-affinity chromatography. The protein was crystallized using hanging-drop vapor diffusion. X-ray diffraction data were collected from cryocooled crystals at a synchrotron light source. The best crystal diffracted to 2.5 Å. The space group was determined to be P3 2 , with unit-cell parameters a = b = 46.61, c = 166.16 Å

  9. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  10. Three-dimensional structure of E. Coli purine nucleoside phosphorylase at 0.99 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, V. I., E-mail: tostars@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Abramchik, Yu. A., E-mail: ugama@yandex.ru [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Zhukhlistova, N. E., E-mail: inna@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Muravieva, T. I.; Esipov, R. S. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-03-15

    Purine nucleoside phosphorylases (PNPs) catalyze the reversible phosphorolysis of nucleosides and are key enzymes involved in nucleotide metabolism. They are essential for normal cell function and can catalyze the transglycosylation. Crystals of E. coli PNP were grown in microgravity by the capillary counterdiffusion method through a gel layer. The three-dimensional structure of the enzyme was determined by the molecular-replacement method at 0.99 Å resolution. The structural features are considered, and the structure of E. coli PNP is compared with the structures of the free enzyme and its complexes with purine base derivatives established earlier. A comparison of the environment of the purine base in the complex of PNP with formycin A and of the pyrimidine base in the complex of uridine phosphorylase with thymidine revealed the main structural features of the base-binding sites. Coordinates of the atomic model determined with high accuracy were deposited in the Protein Data Bank (PDB-ID: 4RJ2).

  11. Crystal structure and self-interaction of the type VI secretion tail-tube protein from enteroaggregative Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Badreddine Douzi

    Full Text Available The type VI secretion system (T6SS is a widespread machine used by bacteria to control their environment and kill or disable bacterial species or eukaryotes through toxin injection. The T6SS comprises a central tube formed of stacked hexamers of hemolysin co-regulated proteins (Hcp and terminated by a trimeric valine-glycine repeat protein G (VgrG component, the cell puncturing device. A contractile tail sheath, formed by the TssB and TssC proteins, surrounds this tube. This syringe-like machine has been compared to an inverted phage, as both Hcp and VgrG share structural homology with tail components of Caudovirales. Here we solved the crystal structure of a tryptophan-substituted double mutant of Hcp1 from enteroaggregative Escherichia coli and compared it to the structures of other Hcps. Interestingly, we observed that the purified Hcp native protein is unable to form tubes in vitro. To better understand the rationale for observation, we measured the affinity of Hcp1 hexamers with themselves by surface plasmon resonance. The intra-hexamer interaction is weak, with a KD value of 7.2 µM. However, by engineering double cysteine mutants at defined positions, tubes of Hcp1 gathering up to 15 stacked hexamers formed in oxidative conditions. These results, together with those available in the literature regarding TssB and TssC, suggest that assembly of the T6SS tube differs significantly from that of Sipho- or Myoviridae.

  12. Cloning, purification, crystallization and preliminary X-ray diffraction studies of Escherichia coli PapD-like protein (EcpD)

    International Nuclear Information System (INIS)

    Pandey, Nishant Kumar; Pal, Ravi Kant; Kashyap, Maruthi; Bhavesh, Neel Sarovar

    2012-01-01

    The Escherichia coli PapD-like protein (EcpD), from uropathogenic Escherichia coli (UPEC), which is a periplasmic chaperon of Yad fimbriae was cloned, overexpressed, purified and crystallized. The crystals obtained diffracted X-rays to 1.67 Å resolution and belonged to space group C222 1 . Many Gram-negative bacteria are characterized by hair-like proteinaceous appendages on their surface known as fimbriae. In uropathogenic strains of Escherichia coli, fimbriae mediate attachment by binding to receptors on the host cell, often contributing to virulence and disease. E. coli PapD-like protein (EcpD) is a periplasmic chaperone that plays an important role in the proper folding and guiding of Yad fimbrial proteins to the outer membrane usher protein in a process known as pilus biogenesis. EcpD is essential for pilus biogenesis in uropathogenic E. coli and plays an important role in virulence. In the present study, EcpD was cloned, overexpressed, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to 1.67 Å resolution and belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 100.3, b = 127.6, c = 45.9 Å. There was a single molecule in the asymmetric unit and the corresponding Matthews coefficient was calculated to be 3.02 Å 3 Da −1 , with 59% solvent content. Initial phases were determined by molecular replacement

  13. Crystallization, preliminary X-ray diffraction and structure solution of MosA, a dihydrodipicolinate synthase from Sinorhizobium meliloti L5-30

    International Nuclear Information System (INIS)

    Leduc, Yvonne A.; Phenix, Christopher P.; Puttick, Jennifer; Nienaber, Kurt; Palmer, David R. J.; Delbaere, Louis T. J.

    2005-01-01

    MosA from S. meliloti L5-30 has been crystallized in solution with pyruvate and the 2.3 Å resolution structure has been solved by molecular replacement using E. coli dihydrodipicolinate synthase as the model. The structure of MosA, a dihydrodipicolinate synthase and reported methyltransferase from Sinorhizobium meliloti, has been solved using molecular replacement with Escherichia coli dihydrodipicolinate synthase as the model. A crystal grown in the presence of pyruvate diffracted X-rays to 2.3 Å resolution using synchrotron radiation and belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 69.14, b = 138.87, c = 124.13 Å

  14. Crystallization and preliminary X-ray analysis of the flagellar motor `brake' molecule YcgR with c-di-GMP from Escherichia coli.

    Science.gov (United States)

    Hou, Yanjie; Li, De Feng; Wang, Da Cheng

    2013-06-01

    In Escherichia coli and Salmonella enterica, bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a ubiquitous bacterial second-messenger molecule that participates in many cellular processes, can regulate flagellar motor speed and reduce cell swimming velocity by binding to the PilZ-containing protein YcgR. Here, the crystallization and preliminary X-ray crystallographic analysis of YcgR with c-di-GMP are reported. The crystals diffracted to 2.3 Å resolution and belonged to space group R3:H, with unit-cell parameters a = b = 93.96, c = 109.61 Å. The asymmetric unit appeared to contain one subunit with a Matthews coefficient of 3.21 Å(3) Da(-1). The results reported here provide a sound basis for solving the crystal structure of YcgR with c-di-GMP and revealing its structure-function relationship based on the three-dimensional structure.

  15. Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    Science.gov (United States)

    Deva, Taru; Baker, Edward N; Squire, Christopher J; Smith, Clyde A

    2006-12-01

    The bacterial cell wall provides essential protection from the external environment and confers strength and rigidity to counteract internal osmotic pressure. Without this layer the cell would be easily ruptured and it is for this reason that biosynthetic pathways leading to the formation of peptidoglycan have for many years been a prime target for effective antibiotics. Central to this pathway are four similar ligase enzymes which add peptide groups to glycan moieties. As part of a program to better understand the structure-function relationships in these four enzymes, the crystal structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC) has been determined to 2.6 A resolution. The structure was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and refined to a crystallographic R factor of 0.212 (R(free) = 0.259). The enzyme has a modular multi-domain structure very similar to those of other members of the mur family of ATP-dependent amide-bond ligases. Detailed comparison of these four enzymes shows that considerable conformational changes are possible. These changes, together with the recruitment of two different N-terminal domains, allow this family of enzymes to bind a substrate which is identical at one end and at the other has the growing peptide tail which will ultimately become part of the rigid bacterial cell wall. Comparison of the E. coli and Haemophilus influenzae structures and analysis of the sequences of known MurC enzymes indicate the presence of a ;dimerization' motif in almost 50% of the MurC enzymes and points to a highly conserved loop in domain 3 that may play a key role in amino-acid ligand specificity.

  16. Crystallization and preliminary crystallographic analysis of tRNA (m7G46) methyltransferase from Escherichia coli

    International Nuclear Information System (INIS)

    Liu, Qi; Gao, Yang; Yang, Weili; Zhou, Huihao; Gao, Yongxiang; Zhang, Xiao; Teng, Maikun; Niu, Liwen

    2008-01-01

    tRNA (m 7 G46) methyltransferase from E. coli was overexpressed, purified and crystallized. Diffraction data were collected to 2.04 Å resolution. Transfer RNA (tRNA) (m 7 G46) methyltransferase (TrmB) belongs to the Rossmann-fold methyltransferase (RFM) family and uses S-adenosyl-l-methionine (SAM) as the methyl-group donor to catalyze the formation of N 7 -methylguanosine (m 7 G) at position 46 in the variable loop of tRNAs. After attempts to crystallize full-length Escherichia coli TrmB (EcTrmB) failed, a truncated protein lacking the first 32 residues of the N-terminus but with an additional His 6 tag at the C-terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 (PEG 3350) as precipitant at 283 K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group P2 1

  17. Crystal structure analysis, overexpression and refolding behaviour of a DING protein with single mutation

    International Nuclear Information System (INIS)

    Gai, Zuoqi; Nakamura, Akiyoshi; Tanaka, Yoshikazu; Hirano, Nagisa; Tanaka, Isao; Yao, Min

    2013-01-01

    Crystals of a member of the DING protein family (HPBP) were obtained accidentally, and the structure was determined at 1.35 Å resolution. For further analysis, a system for preparation of HPBP was constructed and the structure of a prepared sample was confirmed by X-ray crystal structure analysis at 1.03 Å resolution. After crystallization of a certain protein–RNA complex, well diffracting crystals were obtained. However, the asymmetric unit of the crystal was too small to locate any components. Mass spectrometry and X-ray crystal structure analysis showed that it was a member of the DING protein family (HPBP). Surprisingly, the structure of HPBP reported previously was also determined accidentally as a contaminant, suggesting that HPBP has a strong tendency to crystallize. Furthermore, DING proteins were reported to relate in disease. These observations suggest that DING has potential for application in a wide range of research fields. To enable further analyses, a system for preparation of HPBP was constructed. As HPBP was expressed in insoluble form in Escherichia coli, it was unfolded chemically and refolded. Finally, a very high yield preparation method was constructed, in which 43 mg of HPBP was obtained from 1 L of culture. Furthermore, to evaluate the validity of refolding, its crystal structure was determined at 1.03 Å resolution. The determined structure was identical to the native structure, in which two disulfide bonds were recovered correctly and a phosphate ion was captured. Based on these results, it was concluded that the refolded HPBP recovers its structure correctly

  18. Crystal structure analysis, overexpression and refolding behaviour of a DING protein with single mutation

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Zuoqi; Nakamura, Akiyoshi [Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Yoshikazu, E-mail: tanaka@sci.hokudai.ac.jp [Hokkaido University, Sapporo 060-0810 (Japan); Hokkaido University, Sapporo 060-0810 (Japan); Hirano, Nagisa [Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Isao; Yao, Min [Hokkaido University, Sapporo 060-0810 (Japan); Hokkaido University, Sapporo 060-0810 (Japan)

    2013-11-01

    Crystals of a member of the DING protein family (HPBP) were obtained accidentally, and the structure was determined at 1.35 Å resolution. For further analysis, a system for preparation of HPBP was constructed and the structure of a prepared sample was confirmed by X-ray crystal structure analysis at 1.03 Å resolution. After crystallization of a certain protein–RNA complex, well diffracting crystals were obtained. However, the asymmetric unit of the crystal was too small to locate any components. Mass spectrometry and X-ray crystal structure analysis showed that it was a member of the DING protein family (HPBP). Surprisingly, the structure of HPBP reported previously was also determined accidentally as a contaminant, suggesting that HPBP has a strong tendency to crystallize. Furthermore, DING proteins were reported to relate in disease. These observations suggest that DING has potential for application in a wide range of research fields. To enable further analyses, a system for preparation of HPBP was constructed. As HPBP was expressed in insoluble form in Escherichia coli, it was unfolded chemically and refolded. Finally, a very high yield preparation method was constructed, in which 43 mg of HPBP was obtained from 1 L of culture. Furthermore, to evaluate the validity of refolding, its crystal structure was determined at 1.03 Å resolution. The determined structure was identical to the native structure, in which two disulfide bonds were recovered correctly and a phosphate ion was captured. Based on these results, it was concluded that the refolded HPBP recovers its structure correctly.

  19. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism.

    Science.gov (United States)

    Stenmark, Pål; Moche, Martin; Gurmu, Daniel; Nordlund, Pär

    2007-10-12

    We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast.

  20. Revelation of endogenously bound Fe{sup 2+} ions in the crystal structure of ferritin from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Thiruselvam, Viswanathan [Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025 (India); Sivaraman, Padavattan [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Kumarevel, Thirumananseri, E-mail: kumarevel.thirumananseri@riken.jp [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Structural Biology Laboratory, RIKEN Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Ponnuswamy, Mondikalipudur Nanjappagounder, E-mail: mnpsy2004@yahoo.com [Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2014-10-24

    Highlights: • Crystal structure of ferritin was determined. • Endogenously expressed iron’s were identified. • Binuclear iron sites were observed at A and B active sites. - Abstract: Ferritin is an iron regulatory protein. It is responsible for storage and detoxification of excess iron thereby it regulates iron level in the body. Here we report the crystal structure of ferritin with two endogenously expressed Fe atoms binding in both the sites. The protein was purified and characterized by MALDI-TOF and N-terminal amino acid sequencing. The crystal belongs to I4 space group and it diffracted up to 2.5 Å. The structural analysis suggested that it crystallizes as hexamer and confirmed that it happened to be the first report of endogenously expressed Fe ions incorporated in both the A and B sites, situated in between the helices.

  1. Crystallization and preliminary crystallographic analysis of hygromycin B phosphotransferase from Escherichia coli

    International Nuclear Information System (INIS)

    Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika; Kawakami, Ryouta; Sasaki, Yasuyuki; Hoshino, Takayuki; Ohsawa, Kanju; Nakamura, Akira; Yajima, Shunsuke

    2007-01-01

    The crystallization and preliminary X-ray studies of the aminoglycoside antibiotic-modifying enzyme hygromycin B phosphotransferase from E. coli are reported. Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7′′-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 Å and belongs to space group P3 2 21, with unit-cell parameters a = b = 71.0, c = 125.0 Å. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein

  2. Crystallization and preliminary X-ray studies of native and mutant intimin from enterohaemorrhagic Escherichia coli

    International Nuclear Information System (INIS)

    Yi, Yong; Gao, Feng; Mao, Xuhu; Xiao, Ming; Luo, Ping; Qi, Jianxun; Guo, Gang; Jing, Hua; Cui, Yan; Zou, Quanming

    2010-01-01

    Crystals of native intimin and its N916Y mutant from enterohaemorrhagic E. coli O157:H7 diffracted to 2.8 and 2.6 Å resolution, respectively. Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is a primarily food-borne bacterial pathogen that is capable of causing life-threatening human infections and poses a serious challenge to public health worldwide. The bacterial outer-membrane protein intimin plays a key role in the initiation process of EHEC infection. In this study, intimin from EHEC O157:H7 (Int188) and its N916Y mutant (IntN916Y) were purified and crystals of both were obtained using the hanging-drop vapour-diffusion method at 291 K. Data were collected from Int188 and IntN916Y crystals to 2.8 and 2.6 Å resolution, respectively. The crystal of Int188 belonged to the orthorhombic space group C2, with unit-cell parameters a = 235.16, b = 44.81, c = 129.12 Å, α = γ = 90, β = 97.53°. The crystal of IntN916Y belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 43.78, b = 92.49, c = 100.05 Å, α = β = γ = 90°

  3. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA

    DEFF Research Database (Denmark)

    Link, Todd M; Valentin-Hansen, Poul; Brennan, Richard G

    2009-01-01

    (A) RNA, A(15). The structure reveals a unique RNA binding mechanism. Unlike uridine-containing sequences, which bind to the "proximal" face, the poly(A) tract binds to the "distal" face of Hfq using 6 tripartite binding motifs. Each motif consists of an adenosine specificity site (A site), which......Hfq is a small, highly abundant hexameric protein that is found in many bacteria and plays a critical role in mRNA expression and RNA stability. As an "RNA chaperone," Hfq binds AU-rich sequences and facilitates the trans annealing of small RNAs (sRNAs) to their target mRNAs, typically resulting...... in the down-regulation of gene expression. Hfq also plays a key role in bacterial RNA decay by binding tightly to polyadenylate [poly(A)] tracts. The structural mechanism by which Hfq recognizes and binds poly(A) is unknown. Here, we report the crystal structure of Escherichia coli Hfq bound to the poly...

  4. Structural basis for the inhibition of M1 family aminopeptidases by the natural product actinonin: Crystal structure in complex with E. coli aminopeptidase N.

    Science.gov (United States)

    Ganji, Roopa Jones; Reddi, Ravikumar; Gumpena, Rajesh; Marapaka, Anil Kumar; Arya, Tarun; Sankoju, Priyanka; Bhukya, Supriya; Addlagatta, Anthony

    2015-05-01

    Actinonin is a pseudotripeptide that displays a high affinity towards metalloproteases including peptide deformylases (PDFs) and M1 family aminopeptidases. PDF and M1 family aminopeptidases belong to thermolysin-metzincin superfamily. One of the major differences in terms of substrate binding pockets between these families is presence (in M1 aminopeptidases) or absence (in PDFs) of an S1 substrate pocket. The binding mode of actinonin to PDFs has been established previously; however, it is not clear how the actinonin, without a P1 residue, would bind to the M1 aminopeptidases. Here we describe the crystal structure of Escherichia coli aminopeptidase N (ePepN), a model protein of the M1 family aminopeptidases in complex with actinonin. For comparison we have also determined the structure of ePepN in complex with a well-known tetrapeptide inhibitor, amastatin. From the comparison of the actinonin and amastatin ePepN complexes, it is clear that the P1 residue is not critical as long as strong metal chelating head groups, like hydroxamic acid or α-hydroxy ketone, are present. Results from this study will be useful for the design of selective and efficient hydroxamate inhibitors against M1 family aminopeptidases. © 2015 The Protein Society.

  5. Crystallization and preliminary crystallographic analysis of tRNA (m{sup 7}G46) methyltransferase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Gao, Yang; Yang, Weili; Zhou, Huihao; Gao, Yongxiang; Zhang, Xiao; Teng, Maikun, E-mail: mkteng@ustc.edu.cn; Niu, Liwen, E-mail: mkteng@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027 (China); Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230027 (China)

    2008-08-01

    tRNA (m{sup 7}G46) methyltransferase from E. coli was overexpressed, purified and crystallized. Diffraction data were collected to 2.04 Å resolution. Transfer RNA (tRNA) (m{sup 7}G46) methyltransferase (TrmB) belongs to the Rossmann-fold methyltransferase (RFM) family and uses S-adenosyl-l-methionine (SAM) as the methyl-group donor to catalyze the formation of N{sup 7}-methylguanosine (m{sup 7}G) at position 46 in the variable loop of tRNAs. After attempts to crystallize full-length Escherichia coli TrmB (EcTrmB) failed, a truncated protein lacking the first 32 residues of the N-terminus but with an additional His{sub 6} tag at the C-terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 (PEG 3350) as precipitant at 283 K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group P2{sub 1}.

  6. Crystallization and preliminary X-ray data collection of the Escherichia coli lipoproteins BamC, BamD and BamE

    International Nuclear Information System (INIS)

    Albrecht, Reinhard; Zeth, Kornelius

    2010-01-01

    The cloning, purification and crystallization of the E. coli lipoproteins BamC, BamD and BamE is reported. X-ray diffraction data at high resolution were obtained for each of the proteins or protein domains. In Escherichia coli, the β-barrel assembly machinery (or BAM complex) mediates the recognition, insertion and assembly of outer membrane proteins. The complex consists of the integral membrane protein BamA (an Omp85-family member) and the lipoproteins BamB, BamC, BamD and BamE. The purification and crystallization of BamC, BamD and BamE, each lacking the N-terminal membrane anchor, is described. While the smallest protein BamE yielded crystals under conventional conditions, BamD only crystallized after stabilization with urea. Full-length BamC did not crystallize, but was cleaved by subtilisin into two domains which were subsequently crystallized independently. High-resolution data were acquired from all proteins

  7. Purification, crystallization and preliminary X-ray diffraction analysis of the Escherichia coli common pilus chaperone EcpB

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, James A.; Diallo, Mamou; Matthews, Steve J., E-mail: s.j.matthews@imperial.ac.uk [Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)

    2015-05-20

    In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher pathway that plays a major role in both early biofilm formation and host-cell adhesion. Initial attempts at crystallizing the chaperone EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. This is the first time that this refolding strategy has been used to purify CU chaperones. Pili are key cell-surface components that allow the attachment of bacteria to both biological and abiotic solid surfaces, whilst also mediating interactions between themselves. In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher (CU) pathway that plays a major role in both early biofilm formation and host-cell adhesion. The chaperone EcpB is involved in the biogenesis of the filament, which is composed of EcpA and EcpD. Initial attempts at crystallizing EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.4 Å resolution. These crystals belonged to the trigonal space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 62.65, c = 121.14 Å and one monomer in the asymmetric unit. Molecular replacement was unsuccessful, but selenomethionine-substituted protein and heavy-atom derivatives are being prepared for phasing. The three-dimensional structure of EcpB will provide invaluable information on the subtle mechanistic differences in biogenesis between the alternative and classical CU pathways. Furthermore, this is the first time that this refolding strategy has been used to purify CU chaperones, and it

  8. Purification, crystallization and preliminary X-ray diffraction analysis of the Escherichia coli common pilus chaperone EcpB

    International Nuclear Information System (INIS)

    Garnett, James A.; Diallo, Mamou; Matthews, Steve J.

    2015-01-01

    In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher pathway that plays a major role in both early biofilm formation and host-cell adhesion. Initial attempts at crystallizing the chaperone EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. This is the first time that this refolding strategy has been used to purify CU chaperones. Pili are key cell-surface components that allow the attachment of bacteria to both biological and abiotic solid surfaces, whilst also mediating interactions between themselves. In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher (CU) pathway that plays a major role in both early biofilm formation and host-cell adhesion. The chaperone EcpB is involved in the biogenesis of the filament, which is composed of EcpA and EcpD. Initial attempts at crystallizing EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.4 Å resolution. These crystals belonged to the trigonal space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 62.65, c = 121.14 Å and one monomer in the asymmetric unit. Molecular replacement was unsuccessful, but selenomethionine-substituted protein and heavy-atom derivatives are being prepared for phasing. The three-dimensional structure of EcpB will provide invaluable information on the subtle mechanistic differences in biogenesis between the alternative and classical CU pathways. Furthermore, this is the first time that this refolding strategy has been used to purify CU chaperones, and it could be

  9. Atomic resolution structure of the E. coli YajR transporter YAM domain

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Daohua [National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (China); School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao, Yan [National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (China); School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Fan, Junping; Liu, Xuehui; Wu, Yan; Feng, Wei [National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (China); Zhang, Xuejun C., E-mail: zhangc@ibp.ac.cn [National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (China)

    2014-07-25

    Highlights: • We report the crystal structure of the YAM domain of YajR transporter at 1.07 Å. • The YAM dimerization is related to the halogen-dependent high thermal stability. • A belt of poly-pentagonal water molecules was observed in the dimer interface. - Abstract: YajR is an Escherichia coli transporter that belongs to the major facilitator superfamily. Unlike most MFS transporters, YajR contains a carboxyl terminal, cytosolic domain of 67 amino acid residues termed YAM domain. Although it is speculated that the function of this small soluble domain is to regulate the conformational change of the 12-helix transmembrane domain, its precise regulatory role remains unclear. Here, we report the crystal structure of the YAM domain at 1.07-Å resolution, along with its structure determined using nuclear magnetic resonance. Detailed analysis of the high resolution structure revealed a symmetrical dimer in which a belt of well-ordered poly-pentagonal water molecules is embedded. A mutagenesis experiment and a thermal stability assay were used to analyze the putative role of this dimerization in response to changes in halogen concentration.

  10. Crystal Structure of the Minor Pilin CofB, the Initiator of CFA/III Pilus Assembly in Enterotoxigenic Escherichia coli*

    Science.gov (United States)

    Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa

    2015-01-01

    Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. PMID:26324721

  11. Crystal Structure of the Minor Pilin CofB, the Initiator of CFA/III Pilus Assembly in Enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa

    2015-10-23

    Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Overexpression, purification, crystallization and preliminary structural studies of catabolic ornithine transcarbamylase from Lactobacillus hilgardii

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, Blanca de las; Rodríguez, Héctor [Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Angulo, Iván [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Muñoz, Rosario [Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Mancheño, José M., E-mail: xjosemi@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)

    2007-07-01

    The catabolic ornithine transcarbamylase (cOTC) from L. hilgardii has been overexpressed in E. coli, purified and crystallized under two different experimental conditions. The structure has been solved by the molecular-replacement method using the atomic coordinates of catabolic ornithine transcarbamylase from P. aeruginosa as the search model. The catabolic ornithine transcarbamylase (cOTC; EC 2.1.3.3) from the lactic acid bacteria Lactobacillus hilgardii is a key protein involved in the degradation of arginine during malolactic fermentation. cOTC containing an N-terminal His{sub 6} tag has been overexpressed in Escherichia coli, purified and crystallized under two different experimental conditions using the hanging-drop vapour-diffusion method. Crystals obtained from a solution containing 8%(w/v) PEG 4000, 75 mM sodium acetate pH 4.6 belong to the trigonal space group P321 and have unit-cell parameters a = b = 157.04, c = 79.28 Å. Conversely, crystals grown in 20%(v/v) 2-methyl-2,4-pentanediol, 7.5%(w/v) PEG 4000, 100 mM HEPES pH 7.8 belong to the monoclinic space group C2 and have unit-cell parameters a = 80.06, b = 148.90, c = 91.67 Å, β = 100.25°. Diffraction data were collected in-house to 3.00 and 2.91 Å resolution for trigonal and monoclinic crystals, respectively. The estimated Matthews coefficient for the crystal forms were 2.36 and 2.24 Å{sup 3} Da{sup −1}, respectively, corresponding to 48% and 45% solvent content. In both cases, the results are consistent with the presence of three protein subunits in the asymmetric unit. The structure of cOTC has been determined by the molecular-replacement method using the atomic coordinates of cOTC from Pseudomonas aeruginosa (PDB code) as the search model.

  13. Overexpression, purification, crystallization and preliminary structural studies of catabolic ornithine transcarbamylase from Lactobacillus hilgardii

    International Nuclear Information System (INIS)

    Rivas, Blanca de las; Rodríguez, Héctor; Angulo, Iván; Muñoz, Rosario; Mancheño, José M.

    2007-01-01

    The catabolic ornithine transcarbamylase (cOTC) from L. hilgardii has been overexpressed in E. coli, purified and crystallized under two different experimental conditions. The structure has been solved by the molecular-replacement method using the atomic coordinates of catabolic ornithine transcarbamylase from P. aeruginosa as the search model. The catabolic ornithine transcarbamylase (cOTC; EC 2.1.3.3) from the lactic acid bacteria Lactobacillus hilgardii is a key protein involved in the degradation of arginine during malolactic fermentation. cOTC containing an N-terminal His 6 tag has been overexpressed in Escherichia coli, purified and crystallized under two different experimental conditions using the hanging-drop vapour-diffusion method. Crystals obtained from a solution containing 8%(w/v) PEG 4000, 75 mM sodium acetate pH 4.6 belong to the trigonal space group P321 and have unit-cell parameters a = b = 157.04, c = 79.28 Å. Conversely, crystals grown in 20%(v/v) 2-methyl-2,4-pentanediol, 7.5%(w/v) PEG 4000, 100 mM HEPES pH 7.8 belong to the monoclinic space group C2 and have unit-cell parameters a = 80.06, b = 148.90, c = 91.67 Å, β = 100.25°. Diffraction data were collected in-house to 3.00 and 2.91 Å resolution for trigonal and monoclinic crystals, respectively. The estimated Matthews coefficient for the crystal forms were 2.36 and 2.24 Å 3 Da −1 , respectively, corresponding to 48% and 45% solvent content. In both cases, the results are consistent with the presence of three protein subunits in the asymmetric unit. The structure of cOTC has been determined by the molecular-replacement method using the atomic coordinates of cOTC from Pseudomonas aeruginosa (PDB code) as the search model

  14. Structure of active IspH enzyme from escherichia coli provides mechanistic insights into substrate reduction

    KAUST Repository

    Gräwert, Tobias

    2009-07-20

    The terminal step of the non-mevalonate pathway of terpene biosynthesis is catalyzed by IspH (see scheme). In the crystal structure of IspH from E. coli, a bound inorganic diphosphate ligand occupies the position of the diphosphate residue of the substrate. Together with mutation studies and theoretical calculations, these data support a mechanism which is analogous to the Birch reduction of allylic alcohols. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Cloning, purification, crystallization and preliminary structural studies of penicillin V acylase from Bacillus subtilis

    International Nuclear Information System (INIS)

    Rathinaswamy, Priya; Pundle, Archana V.; Prabhune, Asmita A.; SivaRaman, Hepzibah; Brannigan, James A.; Dodson, Guy G.; Suresh, C. G.

    2005-01-01

    An unannotated protein reported from B. subtilis has been expressed in E. coli and identified as possessing penicillin V acylase activity. The crystallization and preliminary crystallographic analysis of this penicillin V acylase is presented. Penicillin acylase proteins are amidohydrolase enzymes that cleave penicillins at the amide bond connecting the side chain to their β-lactam nucleus. An unannotated protein from Bacillus subtilis has been expressed in Escherichia coli, purified and confirmed to possess penicillin V acylase activity. The protein was crystallized using the hanging-drop vapour-diffusion method from a solution containing 4 M sodium formate in 100 mM Tris–HCl buffer pH 8.2. Diffraction data were collected under cryogenic conditions to a spacing of 2.5 Å. The crystals belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 111.0, b = 308.0, c = 56.0 Å. The estimated Matthews coefficient was 3.23 Å 3 Da −1 , corresponding to 62% solvent content. The structure has been solved using molecular-replacement methods with B. sphaericus penicillin V acylase (PDB code 2pva) as the search model

  16. Crystallization and preliminary diffraction analysis of Wzi, a member of the capsule export and assembly pathway in Escherichia coli

    International Nuclear Information System (INIS)

    Bushell, Simon R.; Lou, Hubing; Wallat, Gregor D.; Beis, Konstantinos; Whitfield, Chris; Naismith, James H.

    2010-01-01

    Wzi is a membrane protein from E. coli thought to be involved in the attachment of capsular polysaccharides to the bacterial surface. This reports describes recombinant Wzi’s purification, crystallization and the results of initial diffraction studies. External polysaccharide capsules provide a physical barrier that is employed by many species of bacteria for the purposes of host evasion and persistence. Wzi is a 53 kDa outer membrane β-barrel protein that is thought to play a role in the attachment of group 1 capsular polysaccharides to the cell surface. The purification and crystallization of an Escherichia coli homologue of Wzi is reported and diffraction data from native and selenomethionine-incorporated protein crystals are presented. Crystals of C-terminally His 6 -tagged Wzi diffracted to 2.8 Å resolution. Data processing showed that the crystals belonged to the orthorhombic space group C222, with unit-cell parameters a = 128.8, b = 152.8, c = 94.4 Å, α = β = γ = 90°. A His-tagged selenomethionine-containing variant of Wzi has also been crystallized in the same space group and diffraction data have been recorded to 3.8 Å resolution. Data processing shows that the variant crystal has similar unit-cell parameters to the native crystal

  17. Protein disulfide bond generation in Escherichia coli DsbB–DsbA

    International Nuclear Information System (INIS)

    Inaba, Kenji

    2008-01-01

    The crystal structure of the DsbB–DsbA–ubiquinone ternary complex has revealed a mechanism of protein disulfide bond generation in Escherichia coli. Protein disulfide bond formation is catalyzed by a series of Dsb enzymes present in the periplasm of Escherichia coli. The crystal structure of the DsbB–DsbA–ubiquinone ternary complex provided important insights into mechanisms of the de novo disulfide bond generation cooperated by DsbB and ubiquinone and of the disulfide bond shuttle from DsbB to DsbA. The structural basis for prevention of the crosstalk between the DsbA–DsbB oxidative and the DsbC–DsbD reductive pathways has also been proposed

  18. Crystallization and preliminary crystallographic studies of the C-terminal domain of outer membrane protein A from enterohaemorrhagic Escherichia coli

    International Nuclear Information System (INIS)

    Gu, Jiang; Ji, Xiaowei; Qi, Jianxun; Ma, Ying; Mao, Xuhu; Zou, Quanming

    2010-01-01

    In this study, recombinant OmpAC from EHEC was purified and crystallized and a diffraction data set was collected to 2.7 Å resolution. Outer membrane protein A (OmpA) of enterohaemorrhagic Escherichia coli (EHEC) plays multiple roles in bacterial physiology and pathogenesis, such as mediation of bacterial conjunction, maintenance of cell shape, induction of adhesion of EHEC to host cells etc. Better understanding of the functions of OmpA will help in the control of EHEC infections. OmpA is composed of two domains: the N-terminal domain and the C-terminal domain. The N-terminal domain is a β-barrel structure and embeds in the outer membrane of the bacterium. The structure and function of the C-terminal domain of OmpA (OmpAC) remain elusive. In this study, recombinant OmpAC from EHEC was purified and crystallized and a diffraction data set was collected to 2.7 Å resolution. The crystals belonged to space group I4 1 32, with unit-cell parameter a = 158.99 Å. The Matthews coefficient and solvent content were calculated to be 2.55 Å 3 Da −1 and 51.77%, respectively, for two molecules in the asymmetric unit

  19. Escherichia coli tRNAArg acceptor-stem isoacceptors: comparative crystallization and preliminary X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Eichert, André; Schreiber, Angela; Fürste, Jens P.; Perbandt, Markus; Betzel, Christian; Erdmann, Volker A.; Förster, Charlotte

    2009-01-01

    Various E. coli tRNA Arg acceptor-stem microhelix isoacceptors have been crystallized and investigated by high-resolution X-ray diffraction analysis. The aminoacylation of tRNA is a crucial step in cellular protein biosynthesis. Recognition of the cognate tRNA by the correct aminoacyl-tRNA synthetase is ensured by tRNA identity elements. In tRNA Arg , the identity elements consist of the anticodon, parts of the D-loop and the discriminator base. The minor groove of the aminoacyl stem interacts with the arginyl-tRNA synthetase. As a consequence of the redundancy of the genetic code, six tRNA Arg isoacceptors exist. In the present work, three different Escherichia coli tRNA Arg acceptor-stem helices were crystallized. Two of them, the tRNA Arg microhelices RR-1660 and RR-1662, were examined by X-ray diffraction analysis and diffracted to 1.7 and 1.8 Å resolution, respectively. The tRNA Arg RR-1660 helix crystallized in space group P1, with unit-cell parameters a = 26.28, b = 28.92, c = 29.00 Å, α = 105.74, β = 99.01, γ = 97.44°, whereas the tRNA Arg RR-1662 helix crystallized in space group C2, with unit-cell parameters a = 33.18, b = 46.16, c = 26.04 Å, β = 101.50°

  20. Structural Insight inot the low Affinity Between Thermotoga maritima CheA and CheB Compared to their Escherichia coli/Salmonella typhimurium Counterparts

    Energy Technology Data Exchange (ETDEWEB)

    S Park; B Crane

    2011-12-31

    CheA-mediated CheB phosphorylation and the subsequent CheB-mediated demethylation of the chemoreceptors are important steps required for the bacterial chemotactic adaptation response. Although Escherichia coli CheB has been reported to interact with CheA competitively against CheY, we have observed that Thermotoga maritima CheB has no detectable CheA-binding. By determining the CheY-like domain crystal structure of T. maritima CheB, and comparing against the T. maritima CheY and Salmonella typhimurium CheB structures, we propose that the two consecutive glutamates in the {beta}4/{alpha}4 loop of T. maritima CheB that is absent in T. maritima CheY and in E. coli/S. typhimurium CheB may be one factor contributing to the low CheA affinity.

  1. Crystallization and preliminary X-ray diffraction analysis of ybfF, a new esterase from Escherichia coli K12

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suk-Youl; Lee, Sang-Hak; Lee, Jieun; Jung, Che-Hun; Kim, Jeong-Sun, E-mail: jsunkim@chonnam.ac.kr [Department of Chemistry and Institute of Basic Sciences, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2007-12-01

    The crystallization of ybfF, a new esterase from E. coli, and the collection of diffraction data to 1.1 Å resolution are reported. The product of the recently discovered ybfF gene, which belongs to the esterase family, does not show high sequence similarity to other esterases. To provide the molecular background to the enzymatic mechanism of the ybfF esterase, the ybfF protein from Escherichia coli K12 (Ec-ybfF) was cloned, expressed and purified. The Ec-ybfF protein was crystallized from 60% Tacsimate and 0.1 M bis-Tris propane buffer pH 7.0. Diffraction data were collected to 1.10 Å resolution using synchrotron radiation. The crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 66.09, b = 90.71, c = 92.88 Å. With two Ec-ybfF molecules in the asymmetric unit, the crystal volume per unit protein weight is 2.17 Å{sup 3} Da{sup −1}, corresponding to a solvent content of 42%.

  2. Crystal structures of E. coli laccase CueO at different copper concentrations

    International Nuclear Information System (INIS)

    Li Xu; Wei Zhiyi; Zhang Min; Peng Xiaohui; Yu Guangzhe; Teng Maikun; Gong Weimin

    2007-01-01

    CueO protein is a hypothetical bacterial laccase and a good laccase candidate for large scale industrial application. Four CueO crystal structures were determined at different copper concentrations. Low copper occupancy in apo-CueO and slow copper reconstitution process in CueO with exogenous copper were demonstrated. These observations well explain the copper dependence of CueO oxidase activity. Structural comparison between CueO and other three fungal laccase proteins indicates that Glu106 in CueO constitutes the primary counter-work for reconstitution of the trinuclear copper site. Mutation of Glu106 to a Phe enhanced CueO oxidation activity and supported this hypothesis. In addition, an extra α-helix from Leu351 to Gly378 covers substrate biding pocket of CueO and might compromises the electron transfer from substrate to type I copper

  3. Overproduction, crystallization and preliminary X-ray analysis of the putative l-ascorbate-6-phosphate lactonase UlaG from Escherichia coli

    International Nuclear Information System (INIS)

    Garces, Fernando; Fernández, Francisco J.; Pérez-Luque, Rosa; Aguilar, Juan; Baldomà, Laura; Coll, Miquel; Badía, Josefa; Vega, M. Cristina

    2007-01-01

    UlaG, the putative l-ascorbate-6-phosphate lactonase encoded by the ulaG gene from the utilization of l-ascorbate regulon in E. coli, has been cloned, overexpressed, purified using standard chromatographic techniques and crystallized in a monoclinic space group. Crystals were obtained by the sitting-drop vapour-diffusion method at 293 K. A data set diffracting to 3 Å resolution was collected from a single crystal at 100 K. UlaG, the putative l-ascorbate-6-phosphate lactonase encoded by the ulaG gene from the utilization of l-ascorbate regulon in Escherichia coli, has been cloned, overexpressed, purified using standard chromatographic techniques and crystallized. Crystals were obtained by sitting-drop vapour diffusion at 293 K. Preliminary X-ray diffraction analysis revealed that the UlaG crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 104.52, b = 180.69, c = 112.88 Å, β = 103.26°. The asymmetric unit is expected to contain six copies of UlaG, with a corresponding volume per protein weight of 2.16 Å 3 Da −1 and a solvent content of 43%

  4. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of CofB, the minor pilin subunit of CFA/III from human enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Kawahara, Kazuki; Oki, Hiroya; Fukakusa, Shunsuke; Maruno, Takahiro; Kobayashi, Yuji; Motooka, Daisuke; Taniguchi, Tooru; Honda, Takeshi; Iida, Tetsuya; Nakamura, Shota; Ohkubo, Tadayasu

    2015-06-01

    Colonization factor antigen III (CFA/III) is one of the virulence factors of human enterotoxigenic Escherichia coli (ETEC) that forms the long, thin, proteinaceous fibres of type IV pili through assembly of its major and minor subunits CofA and CofB, respectively. The crystal structure of CofA has recently been reported; however, the lack of structural information for CofB, the largest among the known type IV pilin subunits, hampers a comprehensive understanding of CFA/III pili. In this study, constructs of wild-type CofB with an N-terminal truncation and the corresponding SeMet derivative were cloned, expressed, purified and crystallized. The crystals belonged to the rhombohedral space group R32, with unit-cell parameters a = b = 103.97, c = 364.57 Å for the wild-type construct and a = b = 103.47, c = 362.08 Å for the SeMet-derivatized form. Although the diffraction quality of these crystals was initially very poor, dehydration of the crystals substantially improved the resolution limit from ∼ 4.0 to ∼ 2.0 Å. The initial phase was solved by the single-wavelength anomalous dispersion (SAD) method using a dehydrated SeMet CofB crystal, which resulted in an interpretable electron-density map.

  5. Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Svintradze, David V. [Virginia Commonwealth University, Richmond, VA 23298-0566 (United States); Virginia Commonwealth University, Richmond, VA 23219-1540 (United States); Peterson, Darrell L. [Virginia Commonwealth University, Richmond, VA 23219-1540 (United States); Virginia Commonwealth University, Richmond, VA 23298-0614 (United States); Collazo-Santiago, Evys A.; Lewis, Janina P. [Virginia Commonwealth University, Richmond, VA 23298-0566 (United States); Wright, H. Tonie, E-mail: xrdproc@vcu.edu [Virginia Commonwealth University, Richmond, VA 23219-1540 (United States); Virginia Commonwealth University, Richmond, VA 23298-0614 (United States); Virginia Commonwealth University, Richmond, VA 23298-0566 (United States)

    2013-10-01

    Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces, which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each.

  6. Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis

    International Nuclear Information System (INIS)

    Svintradze, David V.; Peterson, Darrell L.; Collazo-Santiago, Evys A.; Lewis, Janina P.; Wright, H. Tonie

    2013-01-01

    Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces, which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each

  7. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron-sulfur cluster in an Escherichia coli thioredoxin mutant.

    Science.gov (United States)

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C A; Xu, Zhaohui

    2005-07-01

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Angstroms for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended alpha-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.

  8. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron-sulfur cluster in an Escherichia coli thioredoxin mutant

    Energy Technology Data Exchange (ETDEWEB)

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C.A.; Xu, Zhaohui [Michigan

    2010-07-13

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 {angstrom} for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended {alpha}-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.

  9. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron–sulfur cluster in an Escherichia coli thioredoxin mutant

    Science.gov (United States)

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C.A.; Xu, Zhaohui

    2005-01-01

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron–sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron–sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Å for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron–sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended α-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron–sulfur cofactor at its active site, and thus a new activity and mechanism of action. PMID:15987909

  10. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  11. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  12. Prediction of molecular crystal structures

    International Nuclear Information System (INIS)

    Beyer, Theresa

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol -1 of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  13. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  14. Crystal structure of the starch-binding domain of glucoamylase from Aspergillus niger.

    Science.gov (United States)

    Suyama, Yousuke; Muraki, Norifumi; Kusunoki, Masami; Miyake, Hideo

    2017-10-01

    Glucoamylases are widely used commercially to produce glucose syrup from starch. The starch-binding domain (SBD) of glucoamylase from Aspergillus niger is a small globular protein containing a disulfide bond. The structure of A. niger SBD has been determined by NMR, but the conformation surrounding the disulfide bond was unclear. Therefore, X-ray crystal structural analysis was used to attempt to clarify the conformation of this region. The SBD was purified from an Escherichia coli-based expression system and crystallized at 293 K. The initial phase was determined by the molecular-replacement method, and the asymmetric unit of the crystal contained four protomers, two of which were related by a noncrystallographic twofold axis. Finally, the structure was solved at 2.0 Å resolution. The SBD consisted of seven β-strands and eight loops, and the conformation surrounding the disulfide bond was determined from a clear electron-density map. Comparison of X-ray- and NMR-determined structures of the free SBD showed no significant difference in the conformation of each β-strand, but the conformations of the loops containing the disulfide bond and the L5 loop were different. In particular, the difference in the position of the C α atom of Cys509 between the X-ray- and NMR-determined structures was 13.3 Å. In addition, the B factors of the amino-acid residues surrounding the disulfide bond are higher than those of other residues. Therefore, the conformation surrounding the disulfide bond is suggested to be highly flexible.

  15. Crystal structure of the CRISPR RNA–guided surveillance complex from Escherichia coli

    NARCIS (Netherlands)

    Jackson, R.N.; Golden, S.M.; Erp, P.B.; Carter, J.; Westra, E.R.; Brouns, S.J.J.; Oost, van der J.; Terwilliger, T.C.; Read, R.J.; Wiedenheft, B.

    2014-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) are essential components of RNA-guided adaptive immune systems that protect bacteria and archaea from viruses and plasmids. In Escherichia coli, short CRISPR-derived RNAs (crRNAs) assemble into a 405-kilodalton multisubunit

  16. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    International Nuclear Information System (INIS)

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario; Mancheño, José M.

    2007-01-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His 6 -tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belonged to the tetragonal space group P4 3 , with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å 3 Da −1 , corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism

  17. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario [Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Mancheño, José M., E-mail: xjosemi@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)

    2007-04-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His{sub 6}-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belonged to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å{sup 3} Da{sup −1}, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.

  18. Expression, purification and crystallization of Helicobacter pyloril-asparaginase

    Energy Technology Data Exchange (ETDEWEB)

    Dhavala, Prathusha [Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku 20521 (Finland); Krasotkina, Julya [Institute for Biomedical Sciences, Russian Academy of Medical Sciences, Moscow (Russian Federation); Dubreuil, Christine; Papageorgiou, Anastassios C., E-mail: tassos.papageorgiou@btk.fi [Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku 20521 (Finland)

    2008-08-01

    l-Asparaginase from H. pylori was overexpressed in E. coli, purified and crystallized. The crystals belonged to space group I222, with unit-cell parameters a = 63.6, b = 94.9, c = 100.2 Å and one molecule in the asymmetric unit. A complete data set to 1.6 Å resolution was collected using synchrotron radiation. The l-asparaginases from Escherichia coli and Erwinia chrysanthemi are effective drugs that have been used in the treatment of acute childhood lymphoblastic leukaemia for over 30 years. However, despite their therapeutic potential, they can cause serious side effects as a consequence of their intrinsic glutaminase activity, which leads to l-glutamine depletion in the blood. Consequently, new asparaginases with low glutaminase activity, fewer side effects and high activity towards l-asparagine are highly desirable as better alternatives in cancer therapy. l-Asparaginase from Helicobacter pylori was overexpressed in E. coli and purified for structural studies. The enzyme was crystallized at pH 7.0 in the presence of 16–19%(w/v) PEG 4000 and 0.1 M magnesium formate. Data were collected to 1.6 Å resolution at 100 K from a single crystal at a synchrotron-radiation source. The crystals belong to space group I222, with unit-cell parameters a = 63.6, b = 94.9, c = 100.2 Å and one molecule of l-asparaginase in the asymmetric unit. Elucidation of the crystal structure will provide insight into the active site of the enzyme and a better understanding of the structure–activity relationship in l-asparaginases.

  19. Amine free crystal structure: The crystal structure of d(CGCGCG)2 and methylamine complex crystal

    International Nuclear Information System (INIS)

    Ohishi, Hirofumi; Tsukamoto, Koji; Hiyama, Yoichi; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Ishida, Toshimasa

    2006-01-01

    We succeeded in the crystallization of d(CGCGCG) 2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2F o - F c map was much clear and easily traced. It is First time monoamine co-crystallizes with d(CGCGCG) 2 . However, methylamine was not found from the complex crystal of d(CGCGCG) 2 and methylamine. Five Mg ions were found around d(CGCGCG) 2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg 2+ . DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG) 2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this

  20. Crystallization, X-ray diffraction analysis and preliminary structure determination of the polygalacturonase PehA from Agrobacterium vitis

    International Nuclear Information System (INIS)

    Vordtriede, Paul B.; Yoder, Marilyn D.

    2008-01-01

    The acidic polygalacturonase PehA from A. vitis has been crystallized. A molecular-replacement solution indicated a right-handed parallel β-helix fold. Polygalacturonases are pectate-degrading enzymes that belong to glycoside hydrolase family 28 and hydrolyze the α-1,4 glycosidic bond between neighboring galacturonasyl residues of the homogalacturonan substrate. The acidic polygalacturonase PehA from Agrobacterium vitis was overexpressed in Escherichia coli, where it accumulated in the periplasmic fraction. It was purified to homogeneity via a two-step chromatography procedure and crystallized using the hanging-drop vapour-diffusion technique. PehA crystals belonged to space group P2 1 , with unit-cell parameters a = 52.387, b = 62.738, c = 149.165 Å, β = 89.98°. Crystals diffracted to 1.59 Å resolution and contained two molecules per asymmetric unit. An initial structure determination by molecular replacement indicated a right-handed parallel β-helix fold

  1. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  2. Crystal structure determination of Efavirenz

    International Nuclear Information System (INIS)

    Popeneciu, Horea; Dumitru, Ristoiu; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria

    2015-01-01

    Needle-shaped single crystals of the title compound, C 14 H 9 ClF 3 NO 2 , were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring

  3. Structure of Vibrio cholerae ribosome hibernation promoting factor

    International Nuclear Information System (INIS)

    De Bari, Heather; Berry, Edward A.

    2013-01-01

    The X-ray crystal structure of ribosome hibernation promoting factor from V. cholerae has been determined at 2.0 Å resolution. The crystal was phased by two-wavelength MAD using cocrystallized cobalt. The X-ray crystal structure of ribosome hibernation promoting factor (HPF) from Vibrio cholerae is presented at 2.0 Å resolution. The crystal was phased by two-wavelength MAD using cocrystallized cobalt. The asymmetric unit contained two molecules of HPF linked by four Co atoms. The metal-binding sites observed in the crystal are probably not related to biological function. The structure of HPF has a typical β–α–β–β–β–α fold consistent with previous structures of YfiA and HPF from Escherichia coli. Comparison of the new structure with that of HPF from E. coli bound to the Thermus thermophilus ribosome [Polikanov et al. (2012 ▶), Science, 336, 915–918] shows that no significant structural changes are induced in HPF by binding

  4. Crystallization and preliminary X-ray analysis of a complex formed between the antibiotic simocyclinone D8 and the DNA breakage–reunion domain of Escherichia coli DNA gyrase

    International Nuclear Information System (INIS)

    Edwards, Marcus J.; Flatman, Ruth H.; Mitchenall, Lesley A.; Stevenson, Clare E. M.; Maxwell, Anthony; Lawson, David M.

    2009-01-01

    Crystals of a complex formed between the 59 kDa N-terminal fragment of the E. coli DNA gyrase A subunit and the antibiotic simocyclinone D8 were obtained and X-ray data were recorded to a resolution of 2.75 Å. Crystals of a complex formed between the 59 kDa N-terminal fragment of the Escherichia coli DNA gyrase A subunit (also known as the breakage–reunion domain) and the antibiotic simocyclinone D8 were grown by vapour diffusion. The complex crystallized with I-centred orthorhombic symmetry and X-ray data were recorded to a resolution of 2.75 Å from a single crystal at the synchrotron. DNA gyrase is an essential bacterial enzyme and thus represents an attractive target for drug development

  5. Structural Data on the Periplasmic Aldehyde Oxidoreductase PaoABC from Escherichia coli: SAXS and Preliminary X-ray Crystallography Analysis

    Directory of Open Access Journals (Sweden)

    Ana Rita Otrelo-Cardoso

    2014-01-01

    Full Text Available The periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli is a molybdenum enzyme involved in detoxification of aldehydes in the cell. It is an example of an αβγ heterotrimeric enzyme of the xanthine oxidase family of enzymes which does not dimerize via its molybdenum cofactor binding domain. In order to structurally characterize PaoABC, X-ray crystallography and small angle X-ray scattering (SAXS have been carried out. The protein crystallizes in the presence of 20% (w/v polyethylene glycol 3350 using the hanging-drop vapour diffusion method. Although crystals were initially twinned, several experiments were done to overcome twinning and lowering the crystallization temperature (293 K to 277 K was the solution to the problem. The non-twinned crystals used to solve the structure diffract X-rays to beyond 1.80 Å and belong to the C2 space group, with cell parameters a = 109.42 Å, b = 78.08 Å, c = 151.77 Å, β = 99.77°, and one molecule in the asymmetric unit. A molecular replacement solution was found for each subunit separately, using several proteins as search models. SAXS data of PaoABC were also collected showing that, in solution, the protein is also an αβγ heterotrimer.

  6. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N., E-mail: ichi@oist.jp [Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495 (Japan)

    2014-08-27

    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  7. Method of fabricating patterned crystal structures

    KAUST Repository

    Yu, Liyang

    2016-12-15

    A method of manufacturing a patterned crystal structure for includes depositing an amorphous material. The amorphous material is modified such that a first portion of the amorphous thin-film layer has a first height/volume and a second portion of the amorphous thin-film layer has a second height/volume greater than the first portion. The amorphous material is annealed to induce crystallization, wherein crystallization is induced in the second portion first due to the greater height/volume of the second portion relative to the first portion to form patterned crystal structures.

  8. Crystal Structure of a CRISPR RNA-guided Surveillance Complex Bound to a ssDNA Target

    Energy Technology Data Exchange (ETDEWEB)

    Mulepati, Sabin [Johns Hopkins Univ., Baltimore, MD (United States); Heroux, Annie; Bailey, Scott [Johns Hopkins Univ., Baltimore, MD (United States)

    2014-09-19

    In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kilodalton complex is called Cascade. We report the crystal structure of Cascade bound to a single-stranded DNA (ssDNA) target at a resolution of 3.03 angstroms. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This noncanonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of protein subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding.

  9. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate.

    Science.gov (United States)

    Nandakumar, Jayakrishnan; Nair, Pravin A; Shuman, Stewart

    2007-04-27

    NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria and essential for growth. Their distinctive substrate specificity and domain organization vis-a-vis human ATP-dependent ligases make them outstanding targets for anti-infective drug discovery. We report here the 2.3 A crystal structure of Escherichia coli LigA bound to an adenylylated nick, which captures LigA in a state poised for strand closure and reveals the basis for nick recognition. LigA envelopes the DNA within a protein clamp. Large protein domain movements and remodeling of the active site orchestrate progression through the three chemical steps of the ligation reaction. The structure inspires a strategy for inhibitor design.

  10. Escherichia coli MltA : MAD phasing and refinement of a tetartohedrally twinned protein crystal structure (vol D61, pg 613, 2005)

    NARCIS (Netherlands)

    Barends, Thomas R.M.; Jong, René M. de; Straaten, Karin E. van; Thunnissen, Andy-Mark W.H.; Dijkstra, Bauke W.

    Crystals were grown of a mutant form of the bacterial cell-wall maintenance protein MltA that diffracted to 2.15 Å resolution. When phasing with molecular replacement using the native structure failed, selenium MAD was used to obtain initial phases. However, after MAD phasing the crystals were found

  11. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus: Purification, Crystallization and Structure Determination

    International Nuclear Information System (INIS)

    Clemons, William M. Jr.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2001-01-01

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 (angstrom) resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 (angstrom) resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  12. The purification, crystallization and preliminary structural characterization of human MAWDBP, a member of the phenazine biosynthesis-like protein family

    International Nuclear Information System (INIS)

    Herde, Petra; Blankenfeldt, Wulf

    2006-01-01

    The purification, crystallization and preliminary structural characterization of human MAWD-binding protein (MAWDBP) are described. MAWDBP is the only representative of the phenazine biosynthesis-like protein family in the human genome. Its expression is elevated in several disease processes, including insulin resistance, folate deficiency and hypotension, and it may also be involved in carcinogenesis. The exact molecular function of MAWDBP is unknown. Native and seleno-l-methionine-labelled MAWDBP were expressed in Escherichia coli and crystallized at room temperature from precipitants containing 10 mM KF, 14%(w/v) PEG 3350 and 0.1 M sodium citrate pH 5.4. Crystals belong to space group H32, with unit-cell parameters a = b = 187, c = 241 Å, indicative of three to five monomers per asymmetric unit. Crystals were cryoprotected with 15%(v/v) glycerol and data have been collected to 2.7 Å resolution

  13. The purification, crystallization and preliminary structural characterization of human MAWDBP, a member of the phenazine biosynthesis-like protein family

    Energy Technology Data Exchange (ETDEWEB)

    Herde, Petra; Blankenfeldt, Wulf, E-mail: wulf.blankenfeldt@mpi-dortmund.mpg.de [Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)

    2006-06-01

    The purification, crystallization and preliminary structural characterization of human MAWD-binding protein (MAWDBP) are described. MAWDBP is the only representative of the phenazine biosynthesis-like protein family in the human genome. Its expression is elevated in several disease processes, including insulin resistance, folate deficiency and hypotension, and it may also be involved in carcinogenesis. The exact molecular function of MAWDBP is unknown. Native and seleno-l-methionine-labelled MAWDBP were expressed in Escherichia coli and crystallized at room temperature from precipitants containing 10 mM KF, 14%(w/v) PEG 3350 and 0.1 M sodium citrate pH 5.4. Crystals belong to space group H32, with unit-cell parameters a = b = 187, c = 241 Å, indicative of three to five monomers per asymmetric unit. Crystals were cryoprotected with 15%(v/v) glycerol and data have been collected to 2.7 Å resolution.

  14. The crystal structure and twinning of neodymium gallium perovskite single crystals

    International Nuclear Information System (INIS)

    Ubizskii, S.B.; Vasylechko, L.O.; Savytskii, D.I.; Matkovskii, A.O.; Syvorotka, I.M.

    1994-01-01

    By means of X-ray structure analysis, the crystal structure of neodymium gallium perovskite (NGP) single crystals (NdGaO 3 ) being used as a substrate for HTSC film epitaxy has been refined and the position of atoms has been determined. The possibility of YBa 2 Cu 3 O 7-x film epitaxy on the plane (110) of NGP crystal as well as its advantages and pitfalls are analysed from structural data. The twinning types in the NGP crystal were established. The twinning structure of NGP substrates is found to be stable up to a temperature of 1173 K, as differentiated from the LaGaO 3 and LaAlO 3 substrates. It is intimated that the twinning in the NGP substrates oriented as (001) can result in creation of 90 degrees twin bonds in a film, and in the case of (110)-oriented plates it is possible to ignore the twinning presence in substrate completely. (author)

  15. Structural studies on some capsular antigens from Escherichia Coli and Klebsiella

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A N

    1987-12-01

    A review of the structural studies of bacterial capsular polysaccharides (K-antigens) from Escherichia coli (E.coli) and Klebsiella is presented. There is a general trend in the structural elucidation of polysaccharides towards the analysis of higher oligosaccharides. This trend has been facilitated by advances in modern instrumental techniques for the analysis of oligosaccharides, for example, high-performance liquid chromatography, mass spectometry and nuclear magnetic resonance spectroscopy. The structural elucidations of the capsular polysaccharides from E. Coli K37 and K55, and Klebsiella K39 are reported. This elucidation of K-antigens provides an insight into the response of mammalian immune systems to antigenic stimuli. The usefulness of bacteriophage degradation as a technique for the structural elucidation of polysaccharides containing repeating unit structures is emphasized. The bacteriophage degradation of E. coli K55 polysaccharide illustrates that bacteriophage-borne enzymes may be used to degrade chemically related carbohydrate materials. The bacteriophage technique for the structural elucidation of the Klebsiella K39 polysaccharide also illustrates the advantages of this technique where the polysaccharide contains labile glycosidic bonds which are readily cleaved during standard chemical analysis. The enzymatic degradation of polysaccharides allows high yields of specific oligosaccharides to be recovered. The feasibility of analysing small amounts of carbohydrate material has become realistic due to improved instrumental capabilities. At the same time, more detailed information concerning the fine structure of known carbohydrate materials can be elucidated. 421 refs., 56 figs., 16 tabs.

  16. Structure of the bifunctional methyltransferase YcbY (RlmKL) that adds the m7G2069 and m2G2445 modifications in Escherichia coli 23S rRNA

    DEFF Research Database (Denmark)

    Wang, Kai-Tuo; Desmolaize, Benoit; Nan, Jie

    2012-01-01

    to be fusions from two separate proteins found in Gram-positives. The crystal structures described here show that both the N- and C-terminal halves of E. coli YcbY have a methyltransferase active site and their folding patterns respectively resemble the Streptococcus mutans proteins Smu472 and Smu776. Mass...

  17. Crystallization and preliminary X-ray diffraction analysis of CfaE, the adhesive subunit of the CFA/I fimbriae from human enterotoxigenic Escherichia coli

    International Nuclear Information System (INIS)

    Li, Yong-Fu; Poole, Steven; Rasulova, Fatima; Esser, Lothar; Savarino, Stephen J.; Xia, Di

    2006-01-01

    The adhesin CfaE of the CFA/I fimbriae from human enterotoxigenic E. coli has been crystallized. CfaE crystals diffracted X-rays to better than 2.4 Å and phasing was solved by the SIRAS method. Enterotoxigenic Escherichia coli (ETEC) represents a formidable food and waterborne diarrheal disease threat of global importance. The first step in ETEC pathogenesis is bacterial attachment to small-intestine epithelial cells via adhesive fimbriae, many of which are genetically related to the prototype colonization factor antigen I (CFA/I). The minor fimbrial subunit CfaE is required for initiation of CFA/I fimbrial assembly and mediates bacterial attachment to host cell-surface receptors. A donor-strand complemented variant of CfaE (dscCfaE) was expressed with a hexahistidine tag, purified to homogeneity and crystallized using the hanging-drop vapor-diffusion method. X-ray diffraction data sets were collected to 2.4 Å resolution for both native and derivatized crystals and showed the symmetry of space group P6 2 22, with unit-cell parameters a = b = 142.9, c = 231.9 Å. Initial phases were derived from the SIRAS approach and electron density showed two molecules in the crystallographic asymmetric unit. Sequence assignments were aided by anomalous signals from the selenium of an SeMet-derivatized crystal and from S atoms of a native crystal

  18. Alignment structures in ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N.U

    1998-07-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S{sub C} phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes

  19. Alignment structures in ferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Islam, N.U.

    1998-01-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S C phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes an

  20. Escherichia coli DNA polymerase I can disrupt G-quadruplex structures during DNA replication.

    Science.gov (United States)

    Teng, Fang-Yuan; Hou, Xi-Miao; Fan, San-Hong; Rety, Stephane; Dou, Shuo-Xing; Xi, Xu-Guang

    2017-12-01

    Non-canonical four-stranded G-quadruplex (G4) DNA structures can form in G-rich sequences that are widely distributed throughout the genome. The presence of G4 structures can impair DNA replication by hindering the progress of replicative polymerases (Pols), and failure to resolve these structures can lead to genetic instability. In the present study, we combined different approaches to address the question of whether and how Escherichia coli Pol I resolves G4 obstacles during DNA replication and/or repair. We found that E. coli Pol I-catalyzed DNA synthesis could be arrested by G4 structures at low protein concentrations and the degree of inhibition was strongly dependent on the stability of the G4 structures. Interestingly, at high protein concentrations, E. coli Pol I was able to overcome some kinds of G4 obstacles without the involvement of other molecules and could achieve complete replication of G4 DNA. Mechanistic studies suggested that multiple Pol I proteins might be implicated in G4 unfolding, and the disruption of G4 structures requires energy derived from dNTP hydrolysis. The present work not only reveals an unrealized function of E. coli Pol I, but also presents a possible mechanism by which G4 structures can be resolved during DNA replication and/or repair in E. coli. © 2017 Federation of European Biochemical Societies.

  1. A structural role for the PHP domain in E. coli DNA polymerase III.

    Science.gov (United States)

    Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H

    2013-05-14

    In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.

  2. Structure and mechanisms of Escherichia coli aspartate transcarbamoylase.

    Science.gov (United States)

    Lipscomb, William N; Kantrowitz, Evan R

    2012-03-20

    Enzymes catalyze a particular reaction in cells, but only a few control the rate of this reaction and the metabolic pathway that follows. One specific mechanism for such enzymatic control of a metabolic pathway involves molecular feedback, whereby a metabolite further down the pathway acts at a unique site on the control enzyme to alter its activity allosterically. This regulation may be positive or negative (or both), depending upon the particular system. Another method of enzymatic control involves the cooperative binding of the substrate, which allows a large change in enzyme activity to emanate from only a small change in substrate concentration. Allosteric regulation and homotropic cooperativity are often known to involve significant conformational changes in the structure of the protein. Escherichia coli aspartate transcarbamoylase (ATCase) is the textbook example of an enzyme that regulates a metabolic pathway, namely, pyrimidine nucleotide biosynthesis, by feedback control and by the cooperative binding of the substrate, L-aspartate. The catalytic and regulatory mechanisms of this enzyme have been extensively studied. A series of X-ray crystal structures of the enzyme in the presence and absence of substrates, products, and analogues have provided details, at the molecular level, of the conformational changes that the enzyme undergoes as it shifts between its low-activity, low-affinity form (T state) to its high-activity, high-affinity form (R state). These structural data provide insights into not only how this enzyme catalyzes the reaction between l-aspartate and carbamoyl phosphate to form N-carbamoyl-L-aspartate and inorganic phosphate, but also how the allosteric effectors modulate this activity. In this Account, we summarize studies on the structure of the enzyme and describe how these structural data provide insights into the catalytic and regulatory mechanisms of the enzyme. The ATCase-catalyzed reaction is regulated by nucleotide binding some 60

  3. Screening of E. coli β-clamp Inhibitors Revealed that Few Inhibit Helicobacter pylori More Effectively: Structural and Functional Characterization

    Directory of Open Access Journals (Sweden)

    Preeti Pandey

    2018-01-01

    Full Text Available The characteristic of interaction with various enzymes and processivity-promoting nature during DNA replication makes β-clamp an important drug target. Helicobacter pylori (H. pylori have several unique features in DNA replication machinery that makes it different from other microorganisms. To find out whether difference in DNA replication proteins behavior accounts for any difference in drug response when compared to E. coli, in the present study, we have tested E. coli β-clamp inhibitor molecules against H. pylori β-clamp. Various approaches were used to test the binding of inhibitors to H. pylori β-clamp including docking, surface competition assay, complex structure determination, as well as antimicrobial assay. Out of five shortlisted inhibitor molecules on the basis of docking score, three molecules, 5-chloroisatin, carprofen, and 3,4-difluorobenzamide were co-crystallized with H. pylori β-clamp and the structures show that they bind at the protein-protein interaction site as expected. In vivo studies showed only two molecules, 5-chloroisatin, and 3,4-difluorobenzamide inhibited the growth of the pylori with MIC values in micro molar range, which is better than the inhibitory effect of the same drugs on E. coli. Therefore, the evaluation of such drugs against H. pylori may explore the possibility to use to generate species-specific pharmacophore for development of new drugs against H. pylori.

  4. Screening of E. coli β-clamp Inhibitors Revealed that Few Inhibit Helicobacter pylori More Effectively: Structural and Functional Characterization.

    Science.gov (United States)

    Pandey, Preeti; Verma, Vijay; Dhar, Suman Kumar; Gourinath, Samudrala

    2018-01-11

    The characteristic of interaction with various enzymes and processivity-promoting nature during DNA replication makes β-clamp an important drug target. Helicobacter pylori ( H. pylori ) have several unique features in DNA replication machinery that makes it different from other microorganisms. To find out whether difference in DNA replication proteins behavior accounts for any difference in drug response when compared to E. coli , in the present study, we have tested E. coli β-clamp inhibitor molecules against H. pylori β-clamp. Various approaches were used to test the binding of inhibitors to H. pylori β-clamp including docking, surface competition assay, complex structure determination, as well as antimicrobial assay. Out of five shortlisted inhibitor molecules on the basis of docking score, three molecules, 5-chloroisatin, carprofen, and 3,4-difluorobenzamide were co-crystallized with H. pylori β-clamp and the structures show that they bind at the protein-protein interaction site as expected. In vivo studies showed only two molecules, 5-chloroisatin, and 3,4-difluorobenzamide inhibited the growth of the pylori with MIC values in micro molar range, which is better than the inhibitory effect of the same drugs on E. coli . Therefore, the evaluation of such drugs against H. pylori may explore the possibility to use to generate species-specific pharmacophore for development of new drugs against H. pylori .

  5. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs.

    Directory of Open Access Journals (Sweden)

    Nikita Abraham

    Full Text Available Nicotinic acetylcholine receptors (nAChR are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP. AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.

  6. Comparison of the solution and crystal structures of staphylococcal nuclease with 13C and 15N chemical shifts used as structural fingerprints

    International Nuclear Information System (INIS)

    Cole, H.B.R.; Sparks, S.W.; Torchia, D.A.

    1988-01-01

    The authors report high-resolution 13 C and 15 N NMR spectra of crystalline staphylococcal nuclease (Nase) complexed to thymidine 3',5'-diphosphate and Ca 2+ . High sensitivity and resolution are obtained by applying solid-state NMR techniques-high power proton decoupling and cross-polarization magic angle sample spinning (CPMASS)-to protein samples that have been efficiently synthesized and labeled by an overproducing strain of Escherichia coli. A comparison of CPMASS and solution spectra of Nase labeled with either [methyl- 13 C]methionine or [ 15 ]valine shows that the chemical shifts in the crystalline and solution states are virtually identical. This result is strong evidence that the protein conformations in the solution and crystalline states are nearly the same. Because of the close correspondence of the crystal and solution chemical shifts, sequential assignments obtained in solution apply to the crystal spectra. It should therefore be possible to study the molecular structure and dynamics of many sequentially assigned atomic sites in Nase crystals. Similar experiments are applicable to the growing number of proteins that can be obtained from efficient expression systems

  7. Crystallization and preliminary crystallographic analysis of the bacterial capsule assembly-regulating tyrosine phosphatases Wzb of Escherichia coli and Cps4B of Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Huang, Hexian; Hagelueken, Gregor; Whitfield, Chris; Naismith, James H.

    2009-01-01

    The crystallization is reported of two bacterial tyrosine phosphatases which belong to different enzyme families despite their ability to catalyse identical reactions. Bacterial tyrosine kinases and their cognate phosphatases are key players in the regulation of capsule assembly and thus are important virulence determinants of these bacteria. Examples of the kinase/phosphatase pairing are found in Gram-negative bacteria such as Escherichia coli (Wzc and Wzb) and in Gram-positive bacteria such as Streptococcus pneumoniae (CpsCD and CpsB). Although Wzb and Cps4B are both predicted to dephosphorylate the C-terminal tyrosine cluster of their cognate tyrosine kinase, they appear on the basis of protein sequence to belong to quite different enzyme classes. Recombinant purified proteins Cps4B of S. pneumoniae TIGR4 and Wzb of E. coli K-30 have been crystallized. Wzb crystals belonged to space-group family P3 x 21 and diffracted to 2.7 Å resolution. Crystal form I of Cps4B belonged to space-group family P4 x 2 1 2 and diffracted to 2.8 Å resolution; crystal form II belonged to space group P2 1 2 1 2 1 and diffracted to 1.9 Å resolution

  8. Preliminary X-ray diffraction analysis of YcdB from Escherichia coli: a novel haem-containing and Tat-secreted periplasmic protein with a potential role in iron transport

    International Nuclear Information System (INIS)

    Cartron, Michaël L.; Mitchell, Sue A.; Woodhall, Mark R.; Andrews, Simon C.; Watson, Kimberly A.

    2006-01-01

    The crystallization and structure determination of the apo form of a novel haem-containing Tat substrate, YcdB from E. coli, has been solved to 2.0 Å resolution. The preliminary structure shows similarity to other haem-dependent peroxidases, despite low sequence homology. YcdB is a periplasmic haem-containing protein from Escherichia coli that has a potential role in iron transport. It is currently the only reported haem-containing Tat-secreted substrate. Here, the overexpression, purification, crystallization and structure determination at 2.0 Å resolution are reported for the apo form of the protein. The apo-YcdB structure resembles those of members of the haem-dependent peroxidase family and thus confirms that YcdB is also a member of this family. Haem-soaking experiments with preformed apo-YcdB crystals have been optimized to successfully generate haem-containing YcdB crystals that diffract to 2.9 Å. Completion of model building and structure refinement are under way

  9. Crystallization and preliminary X-ray analysis of the mRNA-binding domain of elongation factor SelB from Escherichia coli in complex with RNA

    International Nuclear Information System (INIS)

    Soler, Nicolas; Fourmy, Dominique; Yoshizawa, Satoko

    2007-01-01

    The mRNA-binding domain of E. coli selenocysteine-specific elongation factor SelB (residues 478–614; SelB-WH3/4) was overproduced in E. coli and its cognate mRNA ligand, 23 nucleotides of the SECIS RNA hairpin, was prepared by in vitro transcription. The purified SelB-WH3/4–SECIS RNA complex crystallized in space group C2 and diffracted to 2.3 Å. In bacteria, selenocysteine (the 21st amino acid) is incorporated into proteins via machinery that includes SelB, a specific translational elongation factor. SelB binds to an mRNA hairpin called the selenocysteine-insertion sequence (SECIS) and delivers selenocysteyl-tRNA Sec to the ribosomal A site. The minimum C-terminal fragment (residues 478–614) of Escherichia coli SelB (SelB-WH3/4) required for SECIS binding has been overexpressed and purified. This protein was crystallized in complex with 23 nucleotides of the SECIS hairpin at 294 K using the hanging-drop vapour-diffusion method. A data set was collected to 2.3 Å resolution from a single crystal at 100 K using ESRF beamline BM-30. The crystal belongs to space group C2, with unit-cell parameters a = 103.50, b = 56.51, c = 48.41 Å. The asymmetric unit contains one WH3/4-domain–RNA complex. The Matthews coefficient was calculated to be 3.37 Å 3 Da −1 and the solvent content was estimated to be 67.4%

  10. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.

    Science.gov (United States)

    Sun, Linfeng; Zeng, Xin; Yan, Chuangye; Sun, Xiuyun; Gong, Xinqi; Rao, Yu; Yan, Nieng

    2012-10-18

    Glucose transporters are essential for metabolism of glucose in cells of diverse organisms from microbes to humans, exemplified by the disease-related human proteins GLUT1, 2, 3 and 4. Despite rigorous efforts, the structural information for GLUT1-4 or their homologues remains largely unknown. Here we report three related crystal structures of XylE, an Escherichia coli homologue of GLUT1-4, in complex with d-xylose, d-glucose and 6-bromo-6-deoxy-D-glucose, at resolutions of 2.8, 2.9 and 2.6 Å, respectively. The structure consists of a typical major facilitator superfamily fold of 12 transmembrane segments and a unique intracellular four-helix domain. XylE was captured in an outward-facing, partly occluded conformation. Most of the important amino acids responsible for recognition of D-xylose or d-glucose are invariant in GLUT1-4, suggesting functional and mechanistic conservations. Structure-based modelling of GLUT1-4 allows mapping and interpretation of disease-related mutations. The structural and biochemical information reported here constitutes an important framework for mechanistic understanding of glucose transporters and sugar porters in general.

  11. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  12. The population structure of Escherichia coli isolated from subtropical and temperate soils

    Science.gov (United States)

    Byappanahalli, Muruleedhara N.; Yan, Tao; Hamilton, Matthew J.; Ishii, Satoshi; Fujioka, Roger S.; Whitman, Richard L.; Sadowsky, Michael J.

    2012-01-01

    While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous

  13. What makes a crystal structure report valid?

    NARCIS (Netherlands)

    Spek, Anthony L.|info:eu-repo/dai/nl/156517566

    2018-01-01

    Single crystal X-ray crystallography has developed into a unique, highly automated and accessible tool to obtain detailed information on molecular structures. Proper archival makes that referees, readers and users of the results of reported crystal structures no longer need to depend solely on the

  14. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ABSTRACT. Reaction of [VO(acac)2] (acac = acetylacetonate) with ... Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to ..... Molecular structure of complex (1) at 30% probability displacement. Figure 4.

  15. Structural and biochemical studies on ATP binding and hydrolysis by the Escherichia coli RNA chaperone Hfq.

    Directory of Open Access Journals (Sweden)

    Hermann Hämmerle

    Full Text Available In Escherichia coli the RNA chaperone Hfq is involved in riboregulation by assisting base-pairing between small regulatory RNAs (sRNAs and mRNA targets. Several structural and biochemical studies revealed RNA binding sites on either surface of the donut shaped Hfq-hexamer. Whereas sRNAs are believed to contact preferentially the YKH motifs present on the proximal site, poly(A(15 and ADP were shown to bind to tripartite binding motifs (ARE circularly positioned on the distal site. Hfq has been reported to bind and to hydrolyze ATP. Here, we present the crystal structure of a C-terminally truncated variant of E. coli Hfq (Hfq(65 in complex with ATP, showing that it binds to the distal R-sites. In addition, we revisited the reported ATPase activity of full length Hfq purified to homogeneity. At variance with previous reports, no ATPase activity was observed for Hfq. In addition, FRET assays neither indicated an impact of ATP on annealing of two model oligoribonucleotides nor did the presence of ATP induce strand displacement. Moreover, ATP did not lead to destabilization of binary and ternary Hfq-RNA complexes, unless a vast stoichiometric excess of ATP was used. Taken together, these studies strongly suggest that ATP is dispensable for and does not interfere with Hfq-mediated RNA transactions.

  16. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...

  17. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N'-(2-hydroxy-4- ... Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates .... Molecular structure of the complex at 30% probability displacement.

  18. Crystal structure refinement with SHELXL

    Energy Technology Data Exchange (ETDEWEB)

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstraße 4, Göttingen 37077 (Germany)

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  19. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  20. A structural investigation of the capsular antigens of some Klebsiella and E. coli serotypes

    International Nuclear Information System (INIS)

    Parolis, L.A.S.

    1985-11-01

    The work described in this thesis forms part of a program concerned with the study of exocellular capsular polysaccharides of some Enterobacteriaceae. 1 H- and 13 C-n.m.r. spectroscopy have been used in this study. Klebsiella and Escherichia coli are of interest because they are often pathogenic to man; E. coli are commensal bacteria as well as opportunistic pathogens. The bacterial capsule is the first line of defence of the bacterial cell against attack by the host's immunological defences and administered antibiotics, and thus knowledge of its composition and characteristics is of importance in devising ways of combating infection by these organisms. The structure of the capsular polysaccharide has been investigated employing a combination of chemical and spectroscopic methods. Several oligo-saccharides were isolated and characterized by high resolution 1 H-n.m.r. spectroscopy and methylation analysis. The E. coli group of bacteria possesses seventy-four recognized polysaccharide capsules and the structures of approximately twenty percent of these have been reported. The emphasis of this research group is centered on the elucidation of the structures of E. coli capsules. The acidic capsular polysaccharide isolated from E. coli K9 has been investigated using the techniques of methylation analysis periodate oxidation, bacteriophage degradation and n.m.r. spectroscopy. This thesis however represents a transition period in the study of Enterobacteriaceae capsular polysaccharides and so includes the structure elucidation of two Klebsiella polysaccharides, that of the K14 and K68 serotypes, and one E. coli polysaccharide, that of the K9 serotype. Bacteriophage-borne enzyme degradations of Klebsiella K14 and E. coli K9 polysaccharides have been performed and are presented. The thesis also includes a comparative study of the 0-specific side-chains of the lipo-polysaccharides of E. coli 09 and 09a serogroups

  1. Crystallization and preliminary X-ray characterization of two thermostable DNA nucleases

    International Nuclear Information System (INIS)

    Kuettner, E. Bartholomeus; Pfeifer, Sven; Keim, Antje; Greiner-Stöffele, Thomas; Sträter, Norbert

    2006-01-01

    Two thermostable DNA nucleases from archaea were crystallized in different space groups; the crystals were suitable for X-ray analysis. Temperature-tolerant organisms are an important source to enhance the stability of enzymes used in biotechnological processes. The DNA-cleaving enzyme exonuclease III from Escherichia coli is used in several applications in gene technology. A thermostable variant could expand the applicability of the enzyme in these methods. Two homologous nucleases from Archaeoglobus fulgidus (ExoAf) and Methanothermobacter thermoautrophicus (ExoMt) were studied for this purpose. Both enzymes were crystallized in different space groups using (poly)ethylene glycols, 2,4-methyl pentandiol, dioxane, ethanol or 2-propanol as precipitants. The addition of a 10-mer DNA oligonucleotide was important to obtain monoclinic crystals of ExoAf and ExoMt that diffracted to resolutions better than 2 Å using synchrotron radiation. The crystal structures of the homologous proteins can serve as templates for genetic engineering of the E. coli exonuclease III and will aid in understanding the different catalytic properties of the enzymes

  2. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L M; Barnik, M I; Lazarev, V V; Umanskii, B A; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  3. Isolation and crystallization of functionally competent Escherichia coli peptide deformylase forms containing either iron or nickel in the active site.

    Science.gov (United States)

    Groche, D; Becker, A; Schlichting, I; Kabsch, W; Schultz, S; Wagner, A F

    1998-05-19

    Three metallo forms of peptide deformylase (PDF, EC 3.5.1.31) of Escherichia coli were prepared and crystallized (space group C2, diffraction limit 1.9 A) for initiating the X-ray structure determination of the metal center in correlation with the catalytic functionality of this enzyme. The native Fe2+ containing enzyme species was directly isolated from overproducing bacteria by using catalase as a buffer additive, which stabilizes the catalytic activity against oxidative destruction. The Ni2+ containing form, which is oxygen-insensitive, was obtained by metal exchange with free Ni2+ and found to be catalytically equally effective (kcat/KM = 10(5) M-1 s-1 for N-formyl-Met-Ala). The Zn2+ form, prepared from the apoenzyme or by displacement of bound Ni2+ by free Zn2+, proved virtually inactive.

  4. The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong-Guang; Westbrook, M.L. [Argonne National Lab., IL (United States); Maulik, P.R.; Reed, R.A.; Shipley, G. [Boston Univ., MA (United States). School of Medicine; Westbrook, E.M. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States); Scott, D.L.; Otwinowski, Z. [Yale Univ., New Haven, CT (United States)

    1996-02-01

    Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.

  5. Comparison of multiple crystal structures with NMR data for engrailed homeodomain

    Energy Technology Data Exchange (ETDEWEB)

    Religa, Tomasz L. [MRC Centre for Protein Engineering (United Kingdom)], E-mail: tlr25@mrc-lmb.cam.ac.uk

    2008-03-15

    Two methods are currently available to solve high resolution protein structures-X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the {sup 3}J(H{sup N}H{sup {alpha}}) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.

  6. Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry.

    Directory of Open Access Journals (Sweden)

    Xiuchun Lin

    Full Text Available Controversial and inconsistent results on the eco-toxicity of TiO2 nanoparticles (NPs are commonly found in recorded studies and more experimental works are therefore warranted to elucidate the nanotoxicity and its underlying precise mechanisms. Toxicities of five types of TiO2 NPs with different particle sizes (10∼50 nm and crystal phases were investigated using Escherichia coli as a test organism. The effect of water chemistry on the nanotoxicity was also examined. The antibacterial effects of TiO2 NPs as revealed by dose-effect experiments decreased with increasing particle size and rutile content of the TiO2 NPs. More bacteria could survive at higher solution pH (5.0-10.0 and ionic strength (50-200 mg L(-1 NaCl as affected by the anatase TiO2 NPs. The TiO2 NPs with anatase crystal structure and smaller particle size produced higher content of intracellular reactive oxygen species and malondialdehyde, in line with their greater antibacterial effect. Transmission electron microscopic observations showed the concentration buildup of the anatase TiO2 NPs especially those with smaller particle sizes on the cell surfaces, leading to membrane damage and internalization. These research results will shed new light on the understanding of ecological effects of TiO2 NPs.

  7. Toxicity of TiO2 Nanoparticles to Escherichia coli: Effects of Particle Size, Crystal Phase and Water Chemistry

    Science.gov (United States)

    Lin, Xiuchun; Li, Jingyi; Ma, Si; Liu, Gesheng; Yang, Kun; Tong, Meiping; Lin, Daohui

    2014-01-01

    Controversial and inconsistent results on the eco-toxicity of TiO2 nanoparticles (NPs) are commonly found in recorded studies and more experimental works are therefore warranted to elucidate the nanotoxicity and its underlying precise mechanisms. Toxicities of five types of TiO2 NPs with different particle sizes (10∼50 nm) and crystal phases were investigated using Escherichia coli as a test organism. The effect of water chemistry on the nanotoxicity was also examined. The antibacterial effects of TiO2 NPs as revealed by dose-effect experiments decreased with increasing particle size and rutile content of the TiO2 NPs. More bacteria could survive at higher solution pH (5.0–10.0) and ionic strength (50–200 mg L−1 NaCl) as affected by the anatase TiO2 NPs. The TiO2 NPs with anatase crystal structure and smaller particle size produced higher content of intracellular reactive oxygen species and malondialdehyde, in line with their greater antibacterial effect. Transmission electron microscopic observations showed the concentration buildup of the anatase TiO2 NPs especially those with smaller particle sizes on the cell surfaces, leading to membrane damage and internalization. These research results will shed new light on the understanding of ecological effects of TiO2 NPs. PMID:25310452

  8. Structure analysis on synthetic emerald crystals

    Science.gov (United States)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  9. Expression, purification, crystallization and structure determination of the N terminal domain of Fhb, a factor H binding protein from Streptococcus suis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunmao [State Key Laboratory of Pathogen and Biosecurity, Beijng Institute of Microbiology and Infectious Disease, No. 20 Dongda Street, Fengtai District, Beijing 100071 (China); Yu, You [Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing (China); Yang, Maojun, E-mail: maojunyang@tsinghua.edu.cn [Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing (China); Jiang, Yongqiang, E-mail: jiangyq@bmi.ac.cn [State Key Laboratory of Pathogen and Biosecurity, Beijng Institute of Microbiology and Infectious Disease, No. 20 Dongda Street, Fengtai District, Beijing 100071 (China)

    2015-10-23

    Fhb is a surface virulence protein from Streptococcus suis, which could aid bacterial evasion of host innate immune defense by recruiting complement regulator factor H to inactivate C3b deposited on bacterial surface in blood. Here we successfully expressed and purified the N terminal domain of Fhb (N-Fhb) and obtained crystals of the N-Fhb by sitting-drop vapor diffusion method with a resolution of 1.50 Å. The crystals belong to space group C2 with unit cell parameters a = 127.1 Å, b = 77.3 Å, c = 131.6 Å, α = 90°, β = 115.9°, γ = 90°. The structure of N-Fhb was determined by SAD method and the core structure of N-Fhb is a β sandwich. We speculated that binding of Fhb to human factor H may be mainly mediated by surface amino acids with negative charges. - Highlights: • We expressed N-Fhb as the soluble protein in Escherichia coli. • Crystals of N-Fhb were grown by sitting drop vapor diffusion method. • Crystals of N-Fhb could diffracted to 1.5 Å. • The core structure of N-Fhb was a β sandwich. • A part of the surface of N-Fhb was rich with negative charges.

  10. Expression, purification, crystallization and structure determination of the N terminal domain of Fhb, a factor H binding protein from Streptococcus suis

    International Nuclear Information System (INIS)

    Zhang, Chunmao; Yu, You; Yang, Maojun; Jiang, Yongqiang

    2015-01-01

    Fhb is a surface virulence protein from Streptococcus suis, which could aid bacterial evasion of host innate immune defense by recruiting complement regulator factor H to inactivate C3b deposited on bacterial surface in blood. Here we successfully expressed and purified the N terminal domain of Fhb (N-Fhb) and obtained crystals of the N-Fhb by sitting-drop vapor diffusion method with a resolution of 1.50 Å. The crystals belong to space group C2 with unit cell parameters a = 127.1 Å, b = 77.3 Å, c = 131.6 Å, α = 90°, β = 115.9°, γ = 90°. The structure of N-Fhb was determined by SAD method and the core structure of N-Fhb is a β sandwich. We speculated that binding of Fhb to human factor H may be mainly mediated by surface amino acids with negative charges. - Highlights: • We expressed N-Fhb as the soluble protein in Escherichia coli. • Crystals of N-Fhb were grown by sitting drop vapor diffusion method. • Crystals of N-Fhb could diffracted to 1.5 Å. • The core structure of N-Fhb was a β sandwich. • A part of the surface of N-Fhb was rich with negative charges.

  11. Crystal structure and dimerization equilibria of PcoC, a methionine-rich copper resistance protein from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, A.K.; Huffman, D.L.; Finney, L.A.; Demeler, B.; O' Halloran, T.V.; Rosenzweig, A.C.

    2010-03-08

    PcoC is a soluble periplasmic protein encoded by the plasmid-born pco copper resistance operon of Escherichia coli. Like PcoA, a multicopper oxidase encoded in the same locus and its chromosomal homolog CueO, PcoC contains unusual methionine rich sequences. Although essential for copper resistance, the functions of PcoC, PcoA, and their conserved methionine-rich sequences are not known. Similar methionine motifs observed in eukaryotic copper transporters have been proposed to bind copper, but there are no precedents for such metal binding sites in structurally characterized proteins. The high-resolution structures of apo PcoC, determined for both the native and selenomethionine-containing proteins, reveal a seven-stranded barrel with the methionines unexpectedly housed on a solvent-exposed loop. Several potential metal-binding sites can be discerned by comparing the structures to spectroscopic data reported for copper-loaded PcoC. In the native structure, the methionine loop interacts with the same loop on a second molecule in the asymmetric unit. In the selenomethionine structure, the methionine loops are more exposed, forming hydrophobic patches on the protein surface. These two arrangements suggest that the methionine motifs might function in protein-protein interactions between PcoC molecules or with other methionine-rich proteins such as PcoA. Analytical ultracentrifugation data indicate that a weak monomer-dimer equilibrium exists in solution for the apo protein. Dimerization is significantly enhanced upon binding Cu(I) with a measured {Delta}({Delta}G{sup o}) {le} -8.0 kJ/mole, suggesting that copper might bind at the dimer interface.

  12. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  13. Crystallization and preliminary crystallographic analysis of an Escherichia coli-selected mutant of the nuclease domain of the metallonuclease colicin E7

    International Nuclear Information System (INIS)

    Czene, Anikó; Tóth, Eszter; Gyurcsik, Béla; Otten, Harm; Poulsen, Jens-Christian N.; Lo Leggio, Leila; Larsen, Sine; Christensen, Hans E. M.; Nagata, Kyosuke

    2013-01-01

    An N-terminally truncated mutant of the colicin E7 nuclease domain was crystallized and diffraction data set was collected to 1.6 Å resolution. The metallonuclease colicin E7 is a member of the HNH family of endonucleases. It serves as a bacterial toxin in Escherichia coli, protecting the host cell from other related bacteria and bacteriophages by degradation of their chromosomal DNA under environmental stress. Its cell-killing activity is attributed to the nonspecific nuclease domain (NColE7), which possesses the catalytic ββα-type metal ion-binding HNH motif at its C-terminus. Mutations affecting the positively charged amino acids at the N-terminus of NColE7 (444–576) surprisingly showed no or significantly reduced endonuclease activity [Czene et al. (2013 ▶), J. Biol. Inorg. Chem.18, 309–321]. The necessity of the N-terminal amino acids for the function of the C-terminal catalytic centre poses the possibility of allosteric activation within the enzyme. Precise knowledge of the intramolecular interactions of these residues that affect the catalytic activity could turn NColE7 into a novel platform for artificial nuclease design. In this study, the N-terminal deletion mutant ΔN4-NColE7-C* of the nuclease domain of colicin E7 selected by E. coli was overexpressed and crystallized at room temperature by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.6 Å resolution and could be indexed and averaged in the trigonal space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 55.4, c = 73.1 Å. Structure determination by molecular replacement is in progress

  14. The Crystal Structures of Two Novel Cadmium-Picolinic Acid ...

    African Journals Online (AJOL)

    The crystal structures of two novel cadmium-picolinic acid complexes grown in aqueous solutions at selected pH values are reported. The structures are compared to expected solution species under the same conditions. The crystal structure of complex 1 exhibits a seven coordinate structure which contains a protonated ...

  15. Crystal structure of Aquifex aeolicus gene product Aq1627: a putative phosphoglucosamine mutase reveals a unique C-terminal end-to-end disulfide linkage.

    Science.gov (United States)

    Sridharan, Upasana; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2017-06-27

    The Aq1627 gene from Aquifex aeolicus, a hyperthermophilic bacterium has been cloned and overexpressed in Escherichia coli. The protein was purified to homogeneity and its X-ray crystal structure was determined to 1.3 Å resolution using multiple wavelength anomalous dispersion phasing. The structural and sequence analysis of Aq1627 is suggestive of a putative phosphoglucosamine mutase. The structural features of Aq1627 further indicate that it could belong to a new subclass of the phosphoglucosamine mutase family. Aq1627 structure contains a unique C-terminal end-to-end disulfide bond, which links two monomers and this structural information can be used in protein engineering to make proteins more stable in different applications.

  16. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  17. Construction of crystal structure prototype database: methods and applications.

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  18. Construction of crystal structure prototype database: methods and applications

    International Nuclear Information System (INIS)

    Su, Chuanxun; Lv, Jian; Wang, Hui; Wang, Yanchao; Ma, Yanming; Li, Quan; Zhang, Lijun

    2017-01-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery. (paper)

  19. Preparation, crystallization and preliminary X-ray analysis of XC2382, an ApaG protein of unknown structure from Xanthomonas campestris

    International Nuclear Information System (INIS)

    Chin, Ko-Hsin; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-01-01

    A putative ApaG gene product from X. campestris pv. campestris was overexpressed in E. coli, purified and crystallized. The crystals diffracted to a resolution of at least 2.3 Å. Xanthomonas campestris pv. campestris is the causative agent of black rot, one of the major worldwide diseases of cruciferous crops. Its genome encodes approximately 4500 proteins, roughly one third of which have unknown function. XC2382 is one such protein, with a MW of 14.2 kDa. Based on a bioinformatics study, it was annotated as an ApaG gene product that serves multiple functions. The ApaG protein has been overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to a resolution of at least 2.30 Å. They are tetragonal and belong to space group P4 1/3 , with unit-cell parameters a = b = 57.6, c = 122.9 Å. There are two, three or four molecules in the asymmetric unit

  20. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    Science.gov (United States)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  1. Structural studies of the toxin-antitoxin proteins RelE and RelB from E. coli

    DEFF Research Database (Denmark)

    Andersen, Kasper Røjkjær; Overgaard, Martin; Gerdes, Kenn

    the special tRNA-mRNA mimic, tmRNA [1]. Questions to be addressed Many questions remain to be answered in the bacterial toxin-antitoxin system. The crystal structure of RelBE from Pyrococcus horikoshii OT3 was previously solved at 2.3Å [2]. This structure shows the molecule in an inactive state, but OT3......The bacterial toxin-antitoxin system The relBE operon in E. coli encodes two small proteins: A toxin, RelE (12 kDa) and an antitoxin, RelB (9 kDa). RelE is activated under nutritional stress and is able to inhibit protein synthesis by cleaving the mRNA in the ribosomal A-site. This stress response...... serves to down-regulate metabolism in the cell when growth conditions are limited. RelB is expressed in excess over RelE during balanced growth, and inhibits the toxicity of RelE by forming an extremely stable toxin-antitoxin complex. The activation of RelE is induced when the labile RelB protein...

  2. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    Science.gov (United States)

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.

  3. Crystal structure study of new lanthanide silicates with silico-carnotite structure

    International Nuclear Information System (INIS)

    Piccinelli, F.; Lausi, A.; Speghini, A.; Bettinelli, M.

    2012-01-01

    The crystal structures of new rare earth-based silicate compounds (Ca 3 Eu 2 Si 3 O 12 , Ca 3 Gd 2 Si 3 O 12 , Ca 3 Dy 2 Si 3 O 12 , Ca 3 Er 2 Si 3 O 12 and Ca 3 Lu 2 Si 3 O 12 ) have been determined using powder X-ray diffraction. From Rietveld refinement calculations on the collected powder patterns we observe a different distribution of the rare earth ions on the three available crystal sites characterized by different coordination numbers, depending on the ionic radius of the rare earth ion. The reasons of the instability of the silico-carnotite structure for lanthanide ions larger than Eu 3+ have been deduced. In addition, in order to detect crystal phase transitions, the powder patterns of Ca 3 Eu 2 Si 3 O 12 and Ca 3 Sm 2 Si 3 O 12 samples have been collected as a function of the temperature (RT-1000 °C range), but no phase transitions have been observed. - Graphical abstract: Synchrotron X-ray diffraction allows us the accurate determination of the RE 3+ ions distribution on the three available crystal sites of the silico-carnotite structure. Highlights: ► The structure of the Ca 3 M 2 Si 3 O 12 (M=Eu, Gd, Dy, Er and Lu) was determined. ► Different distribution of RE 3+ ions on the three available crystal sites was observed. ► The instability of the silico-carnotite structure for RE=La→Sm was discussed.

  4. Structure of Escherichia coli RutC, a member of the YjgF family and putative aminoacrylate peracid reductase of the rut operon

    Energy Technology Data Exchange (ETDEWEB)

    Knapik, Aleksandra Alicja; Petkowski, Janusz Jurand; Otwinowski, Zbyszek; Cymborowski, Marcin Tadeusz; Cooper, David Robert; Chruszcz, Maksymilian; Krajewska, Wanda Malgorzata; Minor, Wladek

    2014-10-02

    RutC is the third enzyme in the Escherichia coli rut pathway of uracil degradation. RutC belongs to the highly conserved YjgF family of proteins. The structure of the RutC protein was determined and refined to 1.95 Å resolution. This crystal belonged to space group P21212 and contained six molecules in the asymmetric unit. The structure was solved by SAD phasing and was refined to an Rwork of 19.3% (Rfree = 21.7%). Moreover, the final model revealed that this protein has a Bacillus chorismate mutase-like fold and forms a homotrimer with a hydrophobic cavity in the center of the structure and ligand-binding clefts between two subunits. A likely function for RutC is the reduction of peroxy-aminoacrylate to aminoacrylate as a part of a detoxification process.

  5. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of

  6. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  7. A Structural Study of Escherichia coli Cells Using an In Situ Liquid Chamber TEM Technology

    Directory of Open Access Journals (Sweden)

    Yibing Wang

    2015-01-01

    Full Text Available Studying cell microstructures and their behaviors under living conditions has been a challenging subject in microbiology. In this work, in situ liquid chamber TEM was used to study structures of Escherichia coli cells in aqueous solutions at a nanometer-scale resolution. Most of the cells remained intact under electron beam irradiation, and nanoscale structures were observed during the TEM imaging. The analysis revealed structures of pili surrounding the E. coli cells; the movements of the pili in the liquid were also observed during the in situ tests. This technology also allowed the observation of features of the nucleoid in the E. coli cells. Overall, in situ TEM can be applied as a valuable tool to study real-time microscopic structures and processes in microbial cells residing in native aqueous solutions.

  8. Crystallization and preliminary crystallographic studies of human kallikrein 7, a serine protease of the multigene kallikrein family

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Israel S. [Departamento de Ciencia de Proteínas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Ständker, Ludger [Departamento de Ciencia de Proteínas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Hannover Medical School, Center of Pharmacology, 30625 Hannover (Germany); Forssmann, Wolf-Georg [Hannover Medical School, Center of Pharmacology, 30625 Hannover (Germany); Giménez-Gallego, Guillermo; Romero, Antonio, E-mail: romero@cib.csic.es [Departamento de Ciencia de Proteínas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)

    2007-08-01

    The cloning, expression, purification and crystallization of recombinant human kallikrein 7, directly synthesized in the active form in E. coli, is described. Diffraction data were collected to 2.8 Å resolution from native crystals. Human kallikreins are a group of serine proteases of high sequence homology whose genes are grouped as a single cluster at chromosome 19. Although the physiological roles of kallikreins are generally still unknown, members of the kallikrein family have been clearly implicated in pathological situations such as cancer and psoriasis. Human kallikrein 7 (hK7) has been shown to be involved in pathological keratinization, psoriasis and ovarian cancer. In order to gain insight into the molecular structure of this protein, hK7 was crystallized after recombinant production in its folded and active form using a periplasmic secretion vector in Escherichia coli. The crystals belonged to the rhombohedral space group H32 and diffracted to 2.8 Å. The phase problem was solved by molecular replacement using the mouse kallikrein-related protein neuropsin. Completion of the model and structure refinement are under way.

  9. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  10. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  11. SYNTHESIS, CHARACTERIZATION, AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Barium, Crystal structure, 2,6-Pyridinedicarboxylic acid .... The rational design of novel metal-organic frameworks has attracted great ..... Bond, A.D.; Jones, W. Supramolecular Organization and Materials Design, Jones, W.; Rao,.

  12. The purification, crystallization and preliminary diffraction of a glycerophosphodiesterase from Enterobacter aerogenes

    International Nuclear Information System (INIS)

    Jackson, Colin J.; Carr, Paul D.; Kim, Hye-Kyung; Liu, Jian-Wei; Ollis, David L.

    2006-01-01

    The metallo-glycerophosphodiesterase from E. aerogenes (GpdQ) has been cloned, expressed in E. coli and purified. Initial screening of crystallization conditions for this enzyme resulted in the identification of needles from one condition in a sodium malonate grid screen. Removal of the metals from the enzyme and subsequent optimization of these conditions led to crystals. The metallo-glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) has been cloned, expressed in Escherichia coli and purified. Initial screening of crystallization conditions for this enzyme resulted in the identification of needles from one condition in a sodium malonate grid screen. Removal of the metals from the enzyme and subsequent optimization of these conditions led to crystals that diffracted to 2.9 Å and belonged to space group P2 1 3, with unit-cell parameter a = 164.1 Å. Self-rotation function analysis and V M calculations indicated that the asymmetric unit contains two copies of the monomeric enzyme, corresponding to a solvent content of 79%. It is intended to determine the structure of this protein utilizing SAD phasing from transition metals or molecular replacement

  13. The purification, crystallization and preliminary diffraction of a glycerophosphodiesterase from Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Colin J.; Carr, Paul D.; Kim, Hye-Kyung; Liu, Jian-Wei; Ollis, David L., E-mail: ollis@rsc.anu.edu.au [The Research School of Chemistry, Australian National University, ACT 0200 (Australia)

    2006-07-01

    The metallo-glycerophosphodiesterase from E. aerogenes (GpdQ) has been cloned, expressed in E. coli and purified. Initial screening of crystallization conditions for this enzyme resulted in the identification of needles from one condition in a sodium malonate grid screen. Removal of the metals from the enzyme and subsequent optimization of these conditions led to crystals. The metallo-glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) has been cloned, expressed in Escherichia coli and purified. Initial screening of crystallization conditions for this enzyme resulted in the identification of needles from one condition in a sodium malonate grid screen. Removal of the metals from the enzyme and subsequent optimization of these conditions led to crystals that diffracted to 2.9 Å and belonged to space group P2{sub 1}3, with unit-cell parameter a = 164.1 Å. Self-rotation function analysis and V{sub M} calculations indicated that the asymmetric unit contains two copies of the monomeric enzyme, corresponding to a solvent content of 79%. It is intended to determine the structure of this protein utilizing SAD phasing from transition metals or molecular replacement.

  14. Crystal structure of enolase from Drosophila melanogaster.

    Science.gov (United States)

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  15. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  16. Escherichia coli and Neisseria gonorrhoeae UvrD helicase unwinds G4 DNA structures.

    Science.gov (United States)

    Shukla, Kaustubh; Thakur, Roshan Singh; Ganguli, Debayan; Rao, Desirazu Narasimha; Nagaraju, Ganesh

    2017-10-18

    G-quadruplex (G4) secondary structures have been implicated in various biological processes, including gene expression, DNA replication and telomere maintenance. However, unresolved G4 structures impede replication progression which can lead to the generation of DNA double-strand breaks and genome instability. Helicases have been shown to resolve G4 structures to facilitate faithful duplication of the genome. Escherichia coli UvrD (EcUvrD) helicase plays a crucial role in nucleotide excision repair, mismatch repair and in the regulation of homologous recombination. Here, we demonstrate a novel role of E. coli and Neisseria gonorrhoeae UvrD in resolving G4 tetraplexes. EcUvrD and N gonorrhoeae UvrD were proficient in unwinding previously characterized tetramolecular G4 structures. Notably, EcUvrD was equally efficient in resolving tetramolecular and bimolecular G4 DNA that were derived from the potential G4-forming sequences from the genome of E. coli Interestingly, in addition to resolving intermolecular G4 structures, EcUvrD was robust in unwinding intramolecular G4 structures. These data for the first time provide evidence for the role of UvrD in the resolution of G4 structures, which has implications for the in vivo role of UvrD helicase in G4 DNA resolution and genome maintenance. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. The 1.8-Å resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: A member of the DJ-1/ThiJ/PfpI superfamily

    Science.gov (United States)

    Wilson, Mark A.; Amour, Courtney V. St.; Collins, Jennifer L.; Ringe, Dagmar; Petsko, Gregory A.

    2004-01-01

    The yeast gene YDR533C encodes a protein belonging to the DJ-1/ThiJ/PfpI superfamily. This family includes the human protein DJ-1, which is mutated in autosomal recessive early-onset Parkinson's disease. The function of DJ-1 and its yeast homologue YDR533Cp is unknown. We report here the crystal structure of YDR533Cp at 1.8-Å resolution. The structure indicates that the closest relative to YDR533Cp is the Escherichia coli heat shock protein Hsp31 (YedU), which has both chaperone and protease activity. As expected, the overall fold of the core domain of YDR533Cp is also similar to that of DJ-1 and the bacterial protease PfpI. YDR533Cp contains a possible catalytic triad analogous to that of Hsp31 and an additional domain that is present in Hsp31 but is not seen in DJ-1 and other members of the family. The cysteine in this triad (Cys-138) is oxidized in this crystal structure, similar to modifications seen in the corresponding cysteine in the crystal structure of DJ-1. YDR533Cp appears to be a dimer both in solution and the crystal, but this dimer is formed by a different interface than that found in Hsp31 or other members of the superfamily. PMID:14745011

  18. ORF Alignment: NC_004337 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available UM|F Chain F, Crystal Structure Of The E.Coli ... Ferritin Ecftna pdb|1EUM|E Chain E, Crystal Structure Of ... The E.Co...li Ferritin Ecftna pdb|1EUM|D Chain D, Crystal ... Structure Of The E.Coli... Ferritin Ecftna pdb|1EUM|C Chain ... C, Crystal Structure Of The E.Coli Fer...ritin Ecftna ... pdb|1EUM|B Chain B, Crystal Structure Of The E.Coli ... Ferritin Ecftna pdb|1...EUM|A Chain A, Crystal Structure Of ... The E.Coli Ferritin Ecftna dbj|BAA

  19. ORF Alignment: NC_000913 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available UM|F Chain F, Crystal Structure Of The E.Coli ... Ferritin Ecftna pdb|1EUM|E Chain E, Crystal Structure Of ... The E.Co...li Ferritin Ecftna pdb|1EUM|D Chain D, Crystal ... Structure Of The E.Coli... Ferritin Ecftna pdb|1EUM|C Chain ... C, Crystal Structure Of The E.Coli Fer...ritin Ecftna ... pdb|1EUM|B Chain B, Crystal Structure Of The E.Coli ... Ferritin Ecftna pdb|1...EUM|A Chain A, Crystal Structure Of ... The E.Coli Ferritin Ecftna dbj|BAA

  20. ORF Alignment: NC_004741 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available UM|F Chain F, Crystal Structure Of The E.Coli ... Ferritin Ecftna pdb|1EUM|E Chain E, Crystal Structure Of ... The E.Co...li Ferritin Ecftna pdb|1EUM|D Chain D, Crystal ... Structure Of The E.Coli... Ferritin Ecftna pdb|1EUM|C Chain ... C, Crystal Structure Of The E.Coli Fer...ritin Ecftna ... pdb|1EUM|B Chain B, Crystal Structure Of The E.Coli ... Ferritin Ecftna pdb|1...EUM|A Chain A, Crystal Structure Of ... The E.Coli Ferritin Ecftna dbj|BAA

  1. ORF Alignment: NC_002655 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available UM|F Chain F, Crystal Structure Of The E.Coli ... Ferritin Ecftna pdb|1EUM|E Chain E, Crystal Structure Of ... The E.Co...li Ferritin Ecftna pdb|1EUM|D Chain D, Crystal ... Structure Of The E.Coli... Ferritin Ecftna pdb|1EUM|C Chain ... C, Crystal Structure Of The E.Coli Fer...ritin Ecftna ... pdb|1EUM|B Chain B, Crystal Structure Of The E.Coli ... Ferritin Ecftna pdb|1...EUM|A Chain A, Crystal Structure Of ... The E.Coli Ferritin Ecftna dbj|BAA

  2. ORF Alignment: NC_002695 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available UM|F Chain F, Crystal Structure Of The E.Coli ... Ferritin Ecftna pdb|1EUM|E Chain E, Crystal Structure Of ... The E.Co...li Ferritin Ecftna pdb|1EUM|D Chain D, Crystal ... Structure Of The E.Coli... Ferritin Ecftna pdb|1EUM|C Chain ... C, Crystal Structure Of The E.Coli Fer...ritin Ecftna ... pdb|1EUM|B Chain B, Crystal Structure Of The E.Coli ... Ferritin Ecftna pdb|1...EUM|A Chain A, Crystal Structure Of ... The E.Coli Ferritin Ecftna dbj|BAA

  3. ORF Alignment: NC_004431 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available UM|F Chain F, Crystal Structure Of The E.Coli ... Ferritin Ecftna pdb|1EUM|E Chain E, Crystal Structure Of ... The E.Co...li Ferritin Ecftna pdb|1EUM|D Chain D, Crystal ... Structure Of The E.Coli... Ferritin Ecftna pdb|1EUM|C Chain ... C, Crystal Structure Of The E.Coli Fer...ritin Ecftna ... pdb|1EUM|B Chain B, Crystal Structure Of The E.Coli ... Ferritin Ecftna pdb|1...EUM|A Chain A, Crystal Structure Of ... The E.Coli Ferritin Ecftna dbj|BAA

  4. Protein preparation, crystallization and preliminary X-ray analysis of Trypanosoma cruzi nucleoside diphosphate kinase 1

    International Nuclear Information System (INIS)

    Gómez Barroso, J. A.; Pereira, H.; Miranda, M.; Pereira, C.; Garratt, R. C.; Aguilar, C. F.

    2010-01-01

    T. cruzi TcNDPK1 was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl 2 , 20% PEG 3350. Data were collected to 3.5 Å resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 Å. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease

  5. Purification, crystallization and preliminary crystallographic analysis of the minor pilin FctB from Streptococcus pyogenes

    International Nuclear Information System (INIS)

    Linke, Christian; Young, Paul G.; Kang, Hae Joo; Proft, Thomas; Baker, Edward N.

    2010-01-01

    The minor pilin FctB from S. pyogenes strain 90/306S was expressed in E. coli, purified and crystallized. The hexagonal FctB crystals diffracted to 2.9 Å resolution. The minor pilin FctB is an integral part of the pilus assembly expressed by Streptococcus pyogenes. Since it is located at the cell wall, it can be hypothesized that it functions as a cell-wall anchor for the streptococcal pilus. In order to elucidate its structure, the genes for FctB from the S. pyogenes strains 90/306S and SF370 were cloned for overexpression in Escherichia coli. FctB from strain 90/306S was crystallized by the sitting-drop vapour-diffusion method using sodium citrate as a precipitant. The hexagonal FctB crystals belonged to space group P6 1 or P6 5 , with unit-cell parameters a = b = 95.15, c = 100.25 Å, and diffracted to 2.9 Å resolution

  6. Synthesis and crystal structure analysis of uranyl triple acetates

    Energy Technology Data Exchange (ETDEWEB)

    Klepov, Vladislav V., E-mail: vladislavklepov@gmail.com [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Serezhkina, Larisa B.; Serezhkin, Victor N. [Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2016-12-15

    Single crystals of triple acetates NaR[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon (Na[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}){sup 2–} clusters and [R(H{sub 2}O){sub 6}]{sup 2+} aqua-complexes. The cooling of a single crystal of NaMg[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studied and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO{sub 2}(CH{sub 3}COO){sub 3}] and [R(H{sub 2}O){sub 6}][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned. - Graphical abstract: Single crystals of uranium based triple acetates, analytical reagents for sodium determination, were synthesized and structurally, spectroscopically and topologically characterized. The structures were compared with the structures of compounds from preceding families [M(H{sub 2}O){sub 6})][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} (M = Mg, Co, Ni, Zn) and Na[UO{sub 2}(CH{sub 3}COO){sub 3}]. Analysis was performed with the method of molecular Voronoi-Dirichlet polyhedra to reveal a large contribution of the hydrogen bonds into intermolecular interactions which can be a reason of low solubility of studied complexes.

  7. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  8. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    International Nuclear Information System (INIS)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-01-01

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  9. Crystal structure and solid-state properties of discrete hexa cationic ...

    Indian Academy of Sciences (India)

    Subsequently, weight loss of 33% in two stages from 242 to 691◦C can be assigned to the decomposition of triazole ligands. 3.3 Description of the crystal structure. The solid-state structure of ZnT was unambiguously determined by the single crystal X-ray diffraction tech- nique (figures 2 and 3). Compound ZnT crystallizes in.

  10. Crystal structure and magnetism of UOsAl

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.V., E-mail: andreev@fzu.cz [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Daniš, S. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Šebek, J.; Henriques, M.S.; Vejpravová, J. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Gorbunov, D.I. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum, Dresden-Rossendorf, D-01314 Dresden (Germany); Havela, L. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic)

    2017-04-15

    Crystal structure, magnetization, and specific heat were studied on single crystal of uranium intermetallic compound UOsAl. It is a hexagonal Laves phase of MgZn{sub 2} type, space group P6{sub 3}/mmc, with lattice parameters a=536.4 pm, c=845.3 pm. Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). The compound is a weakly temperature-dependent paramagnet with magnetic susceptibility of ≈1.5*10{sup −8} m{sup 3} mol{sup −1} (at T=2 K), which is slightly higher with magnetic field along the a-axis compared to the c-axis. The Sommerfeld coefficient of electronic specific heat has moderate value of γ=36 mJ mol{sup −1} K{sup −2}. - Highlights: • Crystal structure and magnetic properties were studied on single crystal of UOsAl with hexagonal structure of MgZn{sub 2} type. • Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). • UOsAl has paramagnetic ground state as the compounds with T=Fe and Ru, i.e. 3d and 4d analogues of Os.

  11. Structure of the Ni(II) complex of Escherichia coli peptide deformylase and suggestions on deformylase activities depending on different metal(II) centres.

    Science.gov (United States)

    Yen, Ngo Thi Hai; Bogdanović, Xenia; Palm, Gottfried J; Kühl, Olaf; Hinrichs, Winfried

    2010-02-01

    Crystal structures of polypeptide deformylase (PDF) of Escherichia coli with nickel(II) replacing the native iron(II) have been solved with chloride and formate as metal ligands. The chloro complex is a model for the correct protonation state of the hydrolytic hydroxo ligand and the protonated status of the Glu133 side chain as part of the hydrolytic mechanism. The ambiguity that recently some PDFs have been identified with Zn(2+) ion as the active-site centre whereas others are only active with Fe(2+) (or Co(2+), Ni(2+) is discussed with respect to Lewis acid criteria of the metal ion and substrate activation by the CD loop.

  12. Crystallization and preliminary X-ray diffraction analysis of the peptidylprolyl isomerase Par27 of Bordetella pertussis

    International Nuclear Information System (INIS)

    Wohlkönig, Alexandre; Hodak, Hélène; Clantin, Bernard; Sénéchal, Magalie; Bompard, Coralie; Jacob-Dubuisson, Françoise; Villeret, Vincent

    2008-01-01

    Par27 from B. pertussis, the prototype of a new group of parvulins has been crystallized in two different crystal forms. Proteins with both peptidylprolyl isomerase (PPIase) and chaperone activities play a crucial role in protein folding in the periplasm of Gram-negative bacteria. Few such proteins have been structurally characterized and to date only the crystal structure of SurA from Escherichia coli has been reported. Par27, the prototype of a new group of parvulins, has recently been identified. Par27 exhibits both chaperone and PPIase activities in vitro and is the first identified parvulin protein that forms dimers in solution. Par27 has been expressed in E. coli. The protein was purified using affinity and gel-filtration chromatographic techniques and crystallized in two different crystal forms. Form A, which belongs to space group P2 (unit-cell parameters a = 42.2, b = 142.8, c = 56.0 Å, β = 95.1°), diffracts to 2.8 Å resolution, while form B, which belongs to space group C222 (unit-cell parameters a = 54.6, b = 214.1, c = 57.8 Å), diffracts to 2.2 Å resolution. Preliminary diffraction data analysis agreed with the presence of one monomer in the asymmetric unit of the orthorhombic crystal form and two in the monoclinic form

  13. Programmatic conversion of crystal structures into 3D printable files using Jmol

    OpenAIRE

    Scalfani, Vincent F.; Williams, Antony J.; Tkachenko, Valery; Karapetyan, Karen; Pshenichnov, Alexey; Hanson, Robert M.; Liddie, Jahred M.; Bara, Jason E.

    2016-01-01

    Background Three-dimensional (3D) printed crystal structures are useful for chemistry teaching and research. Current manual methods of converting crystal structures into 3D printable files are time-consuming and tedious. To overcome this limitation, we developed a programmatic method that allows for facile conversion of thousands of crystal structures directly into 3D printable files. Results A collection of over 30,000 crystal structures in crystallographic information file (CIF) format from...

  14. 1.8 Å structure of murine GITR ligand dimer expressed in Drosophila melanogaster S2 cells

    International Nuclear Information System (INIS)

    Chattopadhyay, Kausik; Ramagopal, Udupi A.; Nathenson, Stanley G.; Almo, Steven C.

    2009-01-01

    1.8 Å X-ray crystal structure of mouse GITRL expressed in D. melanogaster S2 cells shows an identical ‘strand-exchanged’ dimeric assembly similar to that observed previously for the E. coli-expressed protein. Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique ‘strand-exchanged’ dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 Å resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical ‘strand-exchanged’ dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL

  15. 1.8 Å structure of murine GITR ligand dimer expressed in Drosophila melanogaster S2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Kausik [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Ramagopal, Udupi A. [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Nathenson, Stanley G., E-mail: nathenso@aecom.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Almo, Steven C., E-mail: nathenso@aecom.yu.edu [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States)

    2009-05-01

    1.8 Å X-ray crystal structure of mouse GITRL expressed in D. melanogaster S2 cells shows an identical ‘strand-exchanged’ dimeric assembly similar to that observed previously for the E. coli-expressed protein. Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique ‘strand-exchanged’ dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 Å resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical ‘strand-exchanged’ dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.

  16. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    Science.gov (United States)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  17. Solving crystal structures with the symmetry minimum function

    International Nuclear Information System (INIS)

    Estermann, M.A.

    1995-01-01

    Unravelling the Patterson function (the auto-correlation function of the crystal structure) (A.L. Patterson, Phys. Rev. 46 (1934) 372) can be the only way of solving crystal structures from neutron and incomplete diffraction data (e.g. powder data) when direct methods for phase determination fail. The negative scattering lengths of certain isotopes and the systematic loss of information caused by incomplete diffraction data invalidate the underlying statistical assumptions made in direct methods. In contrast, the Patterson function depends solely on the quality of the available diffraction data. Simpson et al. (P.G. Simpson et al., Acta Crystallogr. 18 (1965) 169) showed that solving a crystal structure with a particular superposition of origin-shifted Patterson functions, the symmetry minimum function, is advantageous over using the Patterson function alone, for single-crystal X-ray data.This paper describes the extension of the Patterson superposition approach to neutron data and powder data by (a) actively using the negative regions in the Patterson map caused by negative scattering lengths and (b) using maximum entropy Patterson maps (W.I.F. David, Nature 346 (1990) 731). Furthermore, prior chemical knowledge such as bond lengths and angles from known fragments have been included. Two successful structure solutions of a known and a previously unknown structure (M. Hofmann, J. Solid State Chem., in press) illustrate the potential of this new development. ((orig.))

  18. Structure of Escherichia coli RutC, a member of the YjgF family and putative aminoacrylate peracid reductase of the rut operon

    International Nuclear Information System (INIS)

    Knapik, Aleksandra Alicja; Petkowski, Janusz Jurand; Otwinowski, Zbyszek; Cymborowski, Marcin Tadeusz; Cooper, David Robert; Chruszcz, Maksymilian; Krajewska, Wanda Małgorzata; Minor, Wladek

    2012-01-01

    The structure of the putative aminoacrylate peracid reductase RutC of the rut operon, a member of the YjgF family, is reported. RutC is the third enzyme in the Escherichia coli rut pathway of uracil degradation. RutC belongs to the highly conserved YjgF family of proteins. The structure of the RutC protein was determined and refined to 1.95 Å resolution. The crystal belonged to space group P2 1 2 1 2 and contained six molecules in the asymmetric unit. The structure was solved by SAD phasing and was refined to an R work of 19.3% (R free = 21.7%). The final model revealed that this protein has a Bacillus chorismate mutase-like fold and forms a homotrimer with a hydrophobic cavity in the center of the structure and ligand-binding clefts between two subunits. A likely function for RutC is the reduction of peroxy-aminoacrylate to aminoacrylate as a part of a detoxification process

  19. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. CCDC 1408042: Experimental Crystal Structure Determination : 6,13-dimesitylpentacene

    KAUST Repository

    Shi, Xueliang

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  2. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  3. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  4. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  5. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  6. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yong-Zhi; Sheng, Yu [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Li, Lan-Fen [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Tang, De-Wei [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liu, Xiang-Yu [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Zhao, Xiaojun, E-mail: zhaoxj@scu.edu.cn [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liang, Yu-He, E-mail: zhaoxj@scu.edu.cn; Su, Xiao-Dong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China)

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  7. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    International Nuclear Information System (INIS)

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He; Su, Xiao-Dong

    2007-01-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni 2+ -chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit

  8. Crystallization and preliminary X-ray crystallographic studies of O-methyltransferase from Anabaena PCC 7120

    International Nuclear Information System (INIS)

    Li, Guoming; Tang, Zhenting; Meng, Geng; Dai, Kesheng; Zhao, Jindong; Zheng, Xiaofeng

    2009-01-01

    The O-methyltransferase (OMT) from the Anabaena PCC 7120 has been overexpressed in a soluble form in E. coli, purified and crystallized. The crystals belonged to space group C222 1 and diffracted to 2.4 Å resolution. O-Methyltransferase (OMT) is a ubiquitous enzyme that exists in bacteria, plants and humans and catalyzes a methyl-transfer reaction using S-adenosyl-l-methionine as a methyl donor and a wide range of phenolics as acceptors. To investigate the structure and function of OMTs, omt from Anabaena PCC 7120 was cloned into expression vector pET21a and expressed in a soluble form in Escherichia coli strain BL21 (DE3). The recombinant OMT protein was purified to homogeneity using a two-step strategy. Crystals of OMT that diffracted to a resolution of 2.4 Å were obtained using the hanging-drop vapour-diffusion method. The crystals belonged to space group C222 1 , with unit-cell parameters a = 131.620, b = 227.994, c = 150.777 Å, α = β = γ = 90°. There are eight molecules per asymmetric unit

  9. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro

    2017-08-15

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  10. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro; Savikhin, Victoria; Yin, Jun; Grimsdale, Andrew C.; Soci, Cesare; Toney, Michael F.; Lam, Yeng Ming

    2017-01-01

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  11. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  12. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cornaby, Sterling [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Szebenyi, Doletha M. E. [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Smilgies, Detlef-M. [CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Schuller, David J.; Gillilan, Richard; Hao, Quan [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Bilderback, Donald H., E-mail: dhb2@cornell.edu [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States)

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.

  13. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    International Nuclear Information System (INIS)

    Cornaby, Sterling; Szebenyi, Doletha M. E.; Smilgies, Detlef-M.; Schuller, David J.; Gillilan, Richard; Hao, Quan; Bilderback, Donald H.

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used

  14. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  15. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  16. NMR structure of the protein NP-247299.1: comparison with the crystal structure

    International Nuclear Information System (INIS)

    Jaudzems, Kristaps; Geralt, Michael; Serrano, Pedro; Mohanty, Biswaranjan; Horst, Reto; Pedrini, Bill; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Comparison of the NMR and crystal structures of a protein determined using largely automated methods has enabled the interpretation of local differences in the highly similar structures. These differences are found in segments of higher B values in the crystal and correlate with dynamic processes on the NMR chemical shift timescale observed in solution. The NMR structure of the protein NP-247299.1 in solution at 313 K has been determined and is compared with the X-ray crystal structure, which was also solved in the Joint Center for Structural Genomics (JCSG) at 100 K and at 1.7 Å resolution. Both structures were obtained using the current largely automated crystallographic and solution NMR methods used by the JCSG. This paper assesses the accuracy and precision of the results from these recently established automated approaches, aiming for quantitative statements about the location of structure variations that may arise from either one of the methods used or from the different environments in solution and in the crystal. To evaluate the possible impact of the different software used for the crystallographic and the NMR structure determinations and analysis, the concept is introduced of reference structures, which are computed using the NMR software with input of upper-limit distance constraints derived from the molecular models representing the results of the two structure determinations. The use of this new approach is explored to quantify global differences that arise from the different methods of structure determination and analysis versus those that represent interesting local variations or dynamics. The near-identity of the protein core in the NMR and crystal structures thus provided a basis for the identification of complementary information from the two different methods. It was thus observed that locally increased crystallographic B values correlate with dynamic structural polymorphisms in solution, including that the solution state of the protein involves

  17. PDF analysis on re-crystallized structure from amorphous BiT

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Yasuhiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)]. E-mail: yoneda@spring8.or.jp; Kohara, Shinji [Synchrotron Radiation Research Laboratory, Japan Synchrotron Radiation, Research Institute, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hamazaki, Shin' ichi [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Takashige, Masaaki [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Mizuki, Jun' ichiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2005-08-15

    A glass sample of composition Bi{sub 4}Ti{sub 3}O{sub 12} was prepared by rapid quenching. The as-quenched sample was confirmed to be amorphous by synchrotron X-ray measurements. The crystallization process of the amorphous sample was also investigated by high-energy X-ray diffraction and by atomic pair distribution function analysis. The perovskite layer in the crystal Bi{sub 4}Ti{sub 3}O{sub 12} is transformed to a pyrochlore structure in the amorphous sample. The amorphous sample first crystallized to a metastable phase by acquiring long-range ordering of the pyrochlore structure at T {sub cryst1}, and then secondary crystallized into a reverted Bi{sub 4}Ti{sub 3}O{sub 12} structure at T {sub cryst2}.

  18. Nucleation of colloidal crystals on configurable seed structures

    NARCIS (Netherlands)

    Hermes, M; Vermolen, E.C.M.; Leunissen, M.E.; Vossen, D.L.J.; van Oostrum, P.D.J.; Dijkstra, M.; van Blaaderen, A.

    2011-01-01

    Nucleation is an important stage in the growth of crystals. During this stage, the structure and orientation of a crystal are determined. However, short time- and length-scales make nucleation poorly understood. Micrometer-sized colloidal particles form an ideal model system to study nucleation due

  19. Crystal structure of MboIIA methyltransferase.

    Science.gov (United States)

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  20. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    Science.gov (United States)

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  1. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations

    International Nuclear Information System (INIS)

    Streek, Jacco van de; Neumann, Marcus A.

    2010-01-01

    The accuracy of a dispersion-corrected density functional theory method is validated against 241 experimental organic crystal structures from Acta Cryst. Section E. This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect

  2. A unified picture of the crystal structures of metals

    Science.gov (United States)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  3. A unified picture of the crystal structures of metals

    International Nuclear Information System (INIS)

    Soederlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M.; Boring, A.M.

    1995-01-01

    The crystal structures of the light actinides have intrigued physicists and chemists for several decades. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry -tetragonal, orthorhombic and monoclinic. To understand these differences, we have have performed total-energy calculations, as a function of volume, for both high- and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression. (author)

  4. Structure and genetics of the O-specific polysaccharide of Escherichia coli O27.

    Science.gov (United States)

    Perepelov, Andrei V; Chen, Tingting; Senchenkova, Sofya N; Filatov, Andrei V; Song, Jingjie; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2018-02-01

    The O-specific polysaccharide (O-antigen) is a part of the lipopolysaccharide on the cell surface of Gram-negative bacteria. The O-polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O27 and studied by sugar analysis and Smith degradation along with 1 H and 13 C NMR spectroscopy. The following structure of the branched hexasaccharide repeating unit was established, which is unique among known structures of bacterial polysaccharides:where GlcA is non-stoichiometrically O-acetylated at position 3 (∼22%) or 4 (∼37%). Functions of genes in the O-antigen gene cluster of E. coli O27 were tentatively assigned by comparison with sequences in the available databases and found to be consistent with the O-polysaccharide structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    Science.gov (United States)

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  6. Multi-structure docking analysis of BACE1 crystal structures and non-peptidic ligands.

    Science.gov (United States)

    Haghighijoo, Zahra; Hemmateenejad, Bahram; Edraki, Najmeh; Miri, Ramin; Emami, Saeed

    2017-09-01

    In order to design novel non-peptidic inhibitors of BACE1, many research groups have attempted using computational studies including docking analyses. Since there are too many 3D structures for BACE1 in the protein database, the selection of suitable crystal structures is a key prerequisite for the successful application of molecular docking. We employed a multi-structure docking protocol. In which 615 ligands' structures were docked into 150 BACE1 structures. The large number of the resultant docking scores were post-processed by different data analysis methods including exploratory data analysis, regression analysis and discriminant analysis. It was found that using one crystal structure for docking did not result in high accuracy for predicting activity of the BACE1 inhibitors. Instead, using of the multi-structural docking scores, post-processed by chemometrics methods arrived to highly accurate predictive models. In this regards, the PDB accession codes of 4B70, 4DVF and 2WEZ could discriminate between active and inactive compounds, with higher accuracy. Clustering of the BACE1 structures based on principal component analysis of the crystallographic structures the revealed that the discriminant structures are in the center of the clusters. Thus, these structures can be selected as predominant crystal structures for docking studies of non-peptidic BACE1 inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNAArg: Pivotal Role of the D-loop.

    Science.gov (United States)

    Stephen, Preyesh; Ye, Sheng; Zhou, Ming; Song, Jian; Zhang, Rongguang; Wang, En-Duo; Giegé, Richard; Lin, Sheng-Xiang

    2018-05-25

    Aminoacyl-tRNA synthetases are essential components in protein biosynthesis. Arginyl-tRNA synthetase (ArgRS) belongs to the small group of aminoacyl-tRNA synthetases requiring cognate tRNA for amino acid activation. The crystal structure of Escherichia coli (Eco) ArgRS has been solved in complex with tRNA Arg at 3.0-Å resolution. With this first bacterial tRNA complex, we are attempting to bridge the gap existing in structure-function understanding in prokaryotic tRNA Arg recognition. The structure shows a tight binding of tRNA on the synthetase through the identity determinant A20 from the D-loop, a tRNA recognition snapshot never elucidated structurally. This interaction of A20 involves 5 amino acids from the synthetase. Additional contacts via U20a and U16 from the D-loop reinforce the interaction. The importance of D-loop recognition in EcoArgRS functioning is supported by a mutagenesis analysis of critical amino acids that anchor tRNA Arg on the synthetase; in particular, mutations at amino acids interacting with A20 affect binding affinity to the tRNA and specificity of arginylation. Altogether the structural and functional data indicate that the unprecedented ArgRS crystal structure represents a snapshot during functioning and suggest that the recognition of the D-loop by ArgRS is an important trigger that anchors tRNA Arg on the synthetase. In this process, A20 plays a major role, together with prominent conformational changes in several ArgRS domains that may eventually lead to the mature ArgRS:tRNA complex and the arginine activation. Functional implications that could be idiosyncratic to the arginine identity of bacterial ArgRSs are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Crystal structure of isomeric boron difluoride acetylnaphtholates

    International Nuclear Information System (INIS)

    Bukvetskij, B.V.; Fedorenko, E.V.; Mirochnik, A.G.; Karasev, V.E.

    2006-01-01

    Crystal structures of luminescent isomeric acetylnaphtholates of boron difluoride are investigated. Full X-ray structural analysis is done at 293 K. Coordinated of atoms, bond angles, bond lengths, interatomic distances are determined. Results of comparative evaluations of the isomers are represented [ru

  9. Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA).

    Science.gov (United States)

    Wang, Li Kai; Zhu, Hui; Shuman, Stewart

    2009-03-27

    NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria, where they are essential for growth and present attractive targets for antimicrobial drug discovery. LigA has a distinctive modular structure in which a nucleotidyltransferase catalytic domain is flanked by an upstream NMN-binding module and by downstream OB-fold, zinc finger, helix-hairpin-helix, and BRCT domains. Here we conducted a structure-function analysis of the nucleotidyltransferase domain of Escherichia coli LigA, guided by the crystal structure of the LigA-DNA-adenylate intermediate. We tested the effects of 29 alanine and conservative mutations at 15 amino acids on ligase activity in vitro and in vivo. We thereby identified essential functional groups that coordinate the reactive phosphates (Arg(136)), contact the AMP adenine (Lys(290)), engage the phosphodiester backbone flanking the nick (Arg(218), Arg(308), Arg(97) plus Arg(101)), or stabilize the active domain fold (Arg(171)). Finer analysis of the mutational effects revealed step-specific functions for Arg(136), which is essential for the reaction of LigA with NAD(+) to form the covalent ligase-AMP intermediate (step 1) and for the transfer of AMP to the nick 5'-PO(4) to form the DNA-adenylate intermediate (step 2) but is dispensable for phosphodiester formation at a preadenylylated nick (step 3).

  10. Lanthanide complexes with 2,3-dimethoxybenzoic acid and terpyridine. Crystal structures, thermal properties, and antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Pan-Pan; Wu, Xiao-Hui; Zhang, Jian-Jun [Testing and Analysis Center, Hebei Normal University, Shijiazhuang (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang (China); Ren, Ning [College of Chemical Engineering and Material, Handane College (China); Wang, Shu-Ping [College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang (China)

    2017-08-03

    The lanthanide coordination complexes Er(2,3-DMOBA){sub 3}(terpy)(H{sub 2}O) (1) and [Nd(2,3-DMOBA){sub 3}(terpy)(H{sub 2}O)]{sub 2} (2) (2,3-DMOBA = 2,3-dimethoxybenzoate; terpy = 2,2':6',2{sup ''}-terpyridine) were synthesized and characterized by IR spectroscopy, powder X-ray diffraction (XRD), single-crystal X-ray diffraction, and thermogravimetric analysis. Complex 1 crystallizes in the triclinic system, space group P1, and the mononuclear subunits form a 1D chain structure along the a axis by hydrogen bonds. Complex 2 crystallizes in the monoclinic system, space group P2{sub 1}/c, and the dinuclear subunits are further linked via the offset face-to-face π..π weak stacking interactions to form a supramolecular 2D layered structure. Thermal analysis showed that the complexes have three decomposition steps. The first step is the loss of coordination water molecules. The neutral terpy ligands and partial 2,3-DMOBA ligands are lost in the second step. The remaining 2,3-DMOBA ligands are lost in the third step. The 3D stacked plots for the FT-IR spectra of the evolved gases are recorded and the gaseous products are identified by the typical IR spectra obtained at different temperatures from the 3D stacked plots. Meanwhile, the results of the antibacterial action tests show that 1 and 2 have better antibacterial activities to Candida albicans than to Escherichia coli or Staphylococcus aureus. In addition, complex 2 has better antibacterial action to Candida albicans than complex 1. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Spectroscopic studies, antimicrobial activities and crystal structures of N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene

    Science.gov (United States)

    Ünver, Hüseyin; Yıldız, Mustafa; Dülger, Başaran; Özgen, Özen; Kendi, Engin; Durlu, Tahsin Nuri

    2005-03-01

    Schiff base N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with 1-aminonaphthalene. The compound were characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR and UV-visible techniques. The UV-visible spectra of the Schiff base were studied in polar and nonpolar solvents in acidic and basic media. The structure of the compound has been examined cyrstallographically. There are two independent molecules in the asymmetric unit. It crystallizes in the monoclinic space group P21/c, with unit cell parameters: a=14, 602(2), b=5,800(1), c=16, 899(1) Å, V=1394.4(2) Å 3, Dx=1.321 g cm -3 and Z=4. The crystal structure was solved by direct methods and refined by full-matrix least squares to a find R=0.041 of for 1179 observed reflections. The title compound's antimicrobial activities also have been studied. The antimicrobial activities of the ligand has been screened in vitro against the organisms Escherichia coli ATCC 11230, Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae UC57, Micrococcus luteus La 2971, Proteus vulgaris ATCC 8427, Pseudomonas aeruginosa ATCC 27853, Mycobacterium smegmatis CCM 2067, Bacillus cereus ATCC 7064 and Listeria monocytogenes ATCC 15313, the yeast cultures Candida albicans ATCC 10231, Kluyveromyces fragilis NRRL 2415, Rhodotorula rubra DSM 70403, Debaryomyces hansenii DSM 70238 and Hanseniaspora guilliermondii DSM 3432.

  12. Structure of the Y94F mutant of Escherichia coli thymidylate synthase

    International Nuclear Information System (INIS)

    Roberts, Sue A.; Hyatt, David C.; Honts, Jerry E.; Changchien, Liming; Maley, Gladys F.; Maley, Frank; Montfort, William R.

    2006-01-01

    Mutation of Tyr94 of E. coli thymidylate synthase to phenylalanine leads to a protein with k cat reduced by a factor of 400. The Y94F structure is essentially identical to the wild-type structure, which is consistent with a catalytic role for the phenolic OH. Tyr94 of Escherichia coli thymidylate synthase is thought to be involved, either directly or by activation of a water molecule, in the abstraction of a proton from C5 of the 2′-deoxyuridine 5′-monophosphate (dUMP) substrate. Mutation of Tyr94 leads to a 400-fold loss in catalytic activity. The structure of the Y94F mutant has been determined in the native state and as a ternary complex with thymidine 5′-monophosphate (dTMP) and 10-propargyl 5,8-dideazafolate (PDDF). There are no structural changes ascribable to the mutation other than loss of a water molecule hydrogen bonded to the tyrosine OH, which is consistent with a catalytic role for the phenolic OH

  13. Structure of the Y94F mutant of Escherichia coli thymidylate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Sue A.; Hyatt, David C. [Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 (United States); Honts, Jerry E. [Department of Biology, Drake University, Des Moines, IA 50311 (United States); Changchien, Liming; Maley, Gladys F.; Maley, Frank [Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509 (United States); Montfort, William R., E-mail: montfort@email.arizona.edu [Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 (United States)

    2006-09-01

    Mutation of Tyr94 of E. coli thymidylate synthase to phenylalanine leads to a protein with k{sub cat} reduced by a factor of 400. The Y94F structure is essentially identical to the wild-type structure, which is consistent with a catalytic role for the phenolic OH. Tyr94 of Escherichia coli thymidylate synthase is thought to be involved, either directly or by activation of a water molecule, in the abstraction of a proton from C5 of the 2′-deoxyuridine 5′-monophosphate (dUMP) substrate. Mutation of Tyr94 leads to a 400-fold loss in catalytic activity. The structure of the Y94F mutant has been determined in the native state and as a ternary complex with thymidine 5′-monophosphate (dTMP) and 10-propargyl 5,8-dideazafolate (PDDF). There are no structural changes ascribable to the mutation other than loss of a water molecule hydrogen bonded to the tyrosine OH, which is consistent with a catalytic role for the phenolic OH.

  14. Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis.

    Science.gov (United States)

    Gui, Wen-Jun; Lin, Shi-Qiang; Chen, Yuan-Yuan; Zhang, Xian-En; Bi, Li-Jun; Jiang, Tao

    2011-02-11

    The sliding clamp is a key component of DNA polymerase III (Pol III) required for genome replication. It is known to function with diverse DNA repair proteins and cell cycle-control proteins, making it a potential drug target. To extend our understanding of the structure/function relationship of the sliding clamp, we solved the crystal structure of the sliding clamp from Mycobacterium tuberculosis (M. tuberculosis), a human pathogen that causes most cases of tuberculosis (TB). The sliding clamp from M. tuberculosis forms a ring-shaped head-to-tail dimer with three domains per subunit. Each domain contains two α helices in the inner ring that lie against two β sheets in the outer ring. Previous studies have indicated that many Escherichia coli clamp-binding proteins have a conserved LF sequence, which is critical for binding to the hydrophobic region of the sliding clamp. Here, we analyzed the binding affinities of the M. tuberculosis sliding clamp and peptides derived from the α and δ subunits of Pol III, which indicated that the LF motif also plays an important role in the binding of the α and δ subunits to the sliding clamp of M. tuberculosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Structure of a second crystal form of Bence-Jones protein Loc: Strikingly different domain associations in two crystal forms of a single protein

    International Nuclear Information System (INIS)

    Schiffer, M.; Ainsworth, C.; Xu, Z.B.; Carperos, W.; Olsen, K.; Solomon, A.; Stevens, F.J.; Chang, C.H.

    1989-01-01

    The authors have determined the structure of the immunoglobulin light-chain dimer Loc in a second crystal form that was grown from distilled water. The crystal structure was determined to 2.8-angstrom resolution; the R factor is 0.22. The two variable domains are related by local 2-fold axes and form an antigen binding pocket. The variable domain-variable domain interaction observed in this crystal form differs from the one exhibited by the protein when crystallized from ammonium sulfate in which the two variable domains formed a protrusion. The structure attained in the distilled water crystals is similar to, but not identical with, the one observed for the Mcg light-chain dimer in crystals grown from ammonium sulfate. Thus, two strikingly different structures were attained by this multisubunit protein in crystals grown under two different, commonly used, crystallization techniques. The quaternary interactions exhibited by the protein in the two crystal forms are sufficiently different to suggest fundamentally different interpretations of the structural basis for the function of this protein. This observation may have general implications regarding the use of single crystallographic determinations for detailed identification of structural and functional relationships. On the other hand, proteins whose structures can be altered by manipulation of crystallization conditions may provide useful systems for study of fundamental structural chemistry

  16. Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan.

    Science.gov (United States)

    Byappanahalli, Muruleedhara N; Whitman, Richard L; Shively, Dawn A; Ferguson, John; Ishii, Satoshi; Sadowsky, Michael J

    2007-08-01

    We previously reported that the macrophytic green alga Cladophora harbors high densities (up to 10(6) colony-forming units/g dry weight) of the fecal indicator bacteria, Escherichia coli and enterococci, in shoreline waters of Lake Michigan. However, the population structure and genetic relatedness of Cladophora-borne indicator bacteria remain poorly understood. In this study, 835 E. coli isolates were collected from Cladophora tufts (mats) growing on rocks from a breakwater located within the Indiana Dunes National Lakeshore in northwest Indiana. The horizontal fluorophore enhanced rep-PCR (HFERP) DNA fingerprinting technique was used to determine the genetic relatedness of the isolates to each other and to those in a library of E. coli DNA fingerprints. While the E. coli isolates from Cladophora showed a high degree of genetic relatedness (92% similarity), in most cases, however, the isolates were genetically distinct. The Shannon diversity index for the population was very high (5.39). Both spatial and temporal influences contributed to the genetic diversity. There was a strong association of isolate genotypes by location (79% and 80% for lake- and ditch-side samplings, respectively), and isolates collected from 2002 were distinctly different from those obtained in 2003. Cladophora-borne E. coli isolates represented a unique group, which was distinct from other E. coli isolates in the DNA fingerprint library tested. Taken together, these results indicate that E. coli strains associated with Cladophora may be a recurring source of indicator bacteria to the nearshore beach.

  17. Structure of initial crystals formed during human amelogenesis

    Science.gov (United States)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  18. ORF Alignment: NC_004741 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_004741 gi|30064608 >1xeoA 1 165 1 165 2e-58 ... pdb|1LRU|C Chain C, Crystal Structure Of E.Coli... ... Structure Of E.Coli Peptide Deformylase Complexed With ... Antibiotic Actinonin pdb|1LRU|...A Chain A, Crystal ... Structure Of E.Coli Peptide Deformylase Complexed W...ith ... Antibiotic Actinonin pdb|1G2A|C Chain C, The Crystal ... Structure Of E.Coli Peptide D...eformylase Complexed With ... Actinonin pdb|1G2A|B Chain B, The Crystal Structure Of ... E.Coli

  19. ORF Alignment: NC_002695 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002695 gi|15833406 >1xeoA 1 165 1 165 2e-58 ... pdb|1LRU|C Chain C, Crystal Structure Of E.Coli... ... Structure Of E.Coli Peptide Deformylase Complexed With ... Antibiotic Actinonin pdb|1LRU|...A Chain A, Crystal ... Structure Of E.Coli Peptide Deformylase Complexed W...ith ... Antibiotic Actinonin pdb|1G2A|C Chain C, The Crystal ... Structure Of E.Coli Peptide D...eformylase Complexed With ... Actinonin pdb|1G2A|B Chain B, The Crystal Structure Of ... E.Coli

  20. ORF Alignment: NC_002655 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002655 gi|15803814 >1xeoA 1 165 1 165 2e-58 ... pdb|1LRU|C Chain C, Crystal Structure Of E.Coli... ... Structure Of E.Coli Peptide Deformylase Complexed With ... Antibiotic Actinonin pdb|1LRU|...A Chain A, Crystal ... Structure Of E.Coli Peptide Deformylase Complexed W...ith ... Antibiotic Actinonin pdb|1G2A|C Chain C, The Crystal ... Structure Of E.Coli Peptide D...eformylase Complexed With ... Actinonin pdb|1G2A|B Chain B, The Crystal Structure Of ... E.Coli

  1. ORF Alignment: NC_004337 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_004337 gi|24114564 >1xeoA 1 165 1 165 2e-58 ... pdb|1LRU|C Chain C, Crystal Structure Of E.Coli... ... Structure Of E.Coli Peptide Deformylase Complexed With ... Antibiotic Actinonin pdb|1LRU|...A Chain A, Crystal ... Structure Of E.Coli Peptide Deformylase Complexed W...ith ... Antibiotic Actinonin pdb|1G2A|C Chain C, The Crystal ... Structure Of E.Coli Peptide D...eformylase Complexed With ... Actinonin pdb|1G2A|B Chain B, The Crystal Structure Of ... E.Coli

  2. ORF Alignment: NC_000913 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000913 gi|16131166 >1xeoA 1 165 1 165 2e-58 ... pdb|1LRU|C Chain C, Crystal Structure Of E.Coli... ... Structure Of E.Coli Peptide Deformylase Complexed With ... Antibiotic Actinonin pdb|1LRU|...A Chain A, Crystal ... Structure Of E.Coli Peptide Deformylase Complexed W...ith ... Antibiotic Actinonin pdb|1G2A|C Chain C, The Crystal ... Structure Of E.Coli Peptide D...eformylase Complexed With ... Actinonin pdb|1G2A|B Chain B, The Crystal Structure Of ... E.Coli

  3. ORF Alignment: NC_004431 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_004431 gi|26249871 >1xeoA 1 165 1 165 2e-58 ... pdb|1LRU|C Chain C, Crystal Structure Of E.Coli... ... Structure Of E.Coli Peptide Deformylase Complexed With ... Antibiotic Actinonin pdb|1LRU|...A Chain A, Crystal ... Structure Of E.Coli Peptide Deformylase Complexed W...ith ... Antibiotic Actinonin pdb|1G2A|C Chain C, The Crystal ... Structure Of E.Coli Peptide D...eformylase Complexed With ... Actinonin pdb|1G2A|B Chain B, The Crystal Structure Of ... E.Coli

  4. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli.

    Science.gov (United States)

    Hayes, Robert P; Xiao, Yibei; Ding, Fran; van Erp, Paul B G; Rajashankar, Kanagalaghatta; Bailey, Scott; Wiedenheft, Blake; Ke, Ailong

    2016-02-25

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and the cas (CRISPR-associated) operon form an RNA-based adaptive immune system against foreign genetic elements in prokaryotes. Type I accounts for 95% of CRISPR systems, and has been used to control gene expression and cell fate. During CRISPR RNA (crRNA)-guided interference, Cascade (CRISPR-associated complex for antiviral defence) facilitates the crRNA-guided invasion of double-stranded DNA for complementary base-pairing with the target DNA strand while displacing the non-target strand, forming an R-loop. Cas3, which has nuclease and helicase activities, is subsequently recruited to degrade two DNA strands. A protospacer adjacent motif (PAM) sequence flanking target DNA is crucial for self versus foreign discrimination. Here we present the 2.45 Å crystal structure of Escherichia coli Cascade bound to a foreign double-stranded DNA target. The 5'-ATG PAM is recognized in duplex form, from the minor groove side, by three structural features in the Cascade Cse1 subunit. The promiscuity inherent to minor groove DNA recognition rationalizes the observation that a single Cascade complex can respond to several distinct PAM sequences. Optimal PAM recognition coincides with wedge insertion, initiating directional target DNA strand unwinding to allow segmented base-pairing with crRNA. The non-target strand is guided along a parallel path 25 Å apart, and the R-loop structure is further stabilized by locking this strand behind the Cse2 dimer. These observations provide the structural basis for understanding the PAM-dependent directional R-loop formation process.

  5. Crystal structure of vanadite: Refinement of anisotropic displacement parameters

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Skála, Roman; Haloda, J.; Císařová, I.

    2006-01-01

    Roč. 51, 3-4 (2006), s. 271-275 ISSN 1210-8197 Institutional research plan: CEZ:AV0Z30130516 Keywords : anisotropic displacement parameter * crystal structure * single-crystal X-ray refinement * vanadinite Subject RIV: DB - Geology ; Mineralogy

  6. Crystal structure of N-(quinolin-6-ylhydroxylamine

    Directory of Open Access Journals (Sweden)

    Anuruddha Rajapakse

    2014-11-01

    Full Text Available The title compound, C9H8N2O, crystallized with four independent molecules in the asymmetric unit. The four molecules are linked via one O—H...N and two N—H...N hydrogen bonds, forming a tetramer-like unit. In the crystal, molecules are further linked by O—H...N and N—H...O hydrogen bonds forming layers parallel to (001. These layers are linked via C—H...O hydrogen bonds and a number of weak C—H...π interactions, forming a three-dimensional structure. The crystal was refined as a non-merohedral twin with a minor twin component of 0.319.

  7. Physicochemical and crystal structure analyses of the antidiabetic agent troglitazone.

    Science.gov (United States)

    Kobayashi, Katsuhiro; Fukuhara, Hiroshi; Hata, Tadashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2003-07-01

    The antidiabetic agent troglitazone has two asymmetric carbons located at the chroman ring and the thiazolidine ring and is produced as a mixture of equal amounts of four optical isomers, 2R-5S, 2S-5R, 2R-5R, and 2S-5S. The crystalline powdered drug substance consists of two diastereomer pairs, 2R-5R/2S-5S and 2R-5S/2S-5R. There are many types of crystals obtained from various crystallization conditions. The X-ray structure analysis and the physicochemical analyses of troglitazone were performed. The solvated crystals of the 2R-5R/2S-5S pair were crystallized from several solutions: methanol, ethanol, acetonitrile, and dichloromethane. The ratio of solvent and troglitazone was 1 : 2 (L1/2-form). The monohydrate crystals were obtained from aqueous acetone solution (L1-form). On the other hand, only an anhydrate crystal of the 2R-5S/2S-5R pair was crystallized from various solutions (H0-form). The dihydrous mixed crystal (MA2-form) was obtained from a mixture of the two diastereomer pairs of 2R-5R/2S-5S and 2R-5S/2S-5R in equal amounts by the slow evaporation of aqueous acetone solution. The crystal structure of the MA2-form is similar to the H0-form. When the MA2 crystal was kept under low humidity, it was converted into the dehydrated form (MA0-form) with retention of the single crystal form. The structure of the MA0-form is isomorphous to the H0-form. The MA2-form was converted into the MA0-form and vice versa with retention of the single crystal under low and high humidity, respectively. The crystallization and storage conditions of the drug substances were successfully analyzed.

  8. ORF Alignment: NC_000913 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... I pdb|1GTP|A Chain A, Gtp Cyclohydrolase I pdb|1FBX|O ... Chain O, Crystal Structure Of Zinc-Containing E.Coli... Gtp ... Cyclohydrolase I pdb|1FBX|N Chain N, Crystal Structure ... Of Zinc-Containing E.Coli... Gtp Cyclohydrolase I ... pdb|1FBX|M Chain M, Crystal Structure Of Zinc-Containing ... E.Coli...oli Gtp Cyclohydrolase I ... pdb|1FBX|K Chain K, Crystal Structure Of Zinc-Containing ... E.Co...li Gtp Cyclohydrolase I pdb|1FBX|J Chain J, Crystal ... Structure Of Zinc-Containing E.Coli

  9. ORF Alignment: NC_002655 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... I pdb|1GTP|A Chain A, Gtp Cyclohydrolase I pdb|1FBX|O ... Chain O, Crystal Structure Of Zinc-Containing E.Coli... Gtp ... Cyclohydrolase I pdb|1FBX|N Chain N, Crystal Structure ... Of Zinc-Containing E.Coli... Gtp Cyclohydrolase I ... pdb|1FBX|M Chain M, Crystal Structure Of Zinc-Containing ... E.Coli...oli Gtp Cyclohydrolase I ... pdb|1FBX|K Chain K, Crystal Structure Of Zinc-Containing ... E.Co...li Gtp Cyclohydrolase I pdb|1FBX|J Chain J, Crystal ... Structure Of Zinc-Containing E.Coli

  10. ORF Alignment: NC_004741 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... I pdb|1GTP|A Chain A, Gtp Cyclohydrolase I pdb|1FBX|O ... Chain O, Crystal Structure Of Zinc-Containing E.Coli... Gtp ... Cyclohydrolase I pdb|1FBX|N Chain N, Crystal Structure ... Of Zinc-Containing E.Coli... Gtp Cyclohydrolase I ... pdb|1FBX|M Chain M, Crystal Structure Of Zinc-Containing ... E.Coli...oli Gtp Cyclohydrolase I ... pdb|1FBX|K Chain K, Crystal Structure Of Zinc-Containing ... E.Co...li Gtp Cyclohydrolase I pdb|1FBX|J Chain J, Crystal ... Structure Of Zinc-Containing E.Coli

  11. ORF Alignment: NC_004431 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... I pdb|1GTP|A Chain A, Gtp Cyclohydrolase I pdb|1FBX|O ... Chain O, Crystal Structure Of Zinc-Containing E.Coli... Gtp ... Cyclohydrolase I pdb|1FBX|N Chain N, Crystal Structure ... Of Zinc-Containing E.Coli... Gtp Cyclohydrolase I ... pdb|1FBX|M Chain M, Crystal Structure Of Zinc-Containing ... E.Coli...oli Gtp Cyclohydrolase I ... pdb|1FBX|K Chain K, Crystal Structure Of Zinc-Containing ... E.Co...li Gtp Cyclohydrolase I pdb|1FBX|J Chain J, Crystal ... Structure Of Zinc-Containing E.Coli

  12. ORF Alignment: NC_002695 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... I pdb|1GTP|A Chain A, Gtp Cyclohydrolase I pdb|1FBX|O ... Chain O, Crystal Structure Of Zinc-Containing E.Coli... Gtp ... Cyclohydrolase I pdb|1FBX|N Chain N, Crystal Structure ... Of Zinc-Containing E.Coli... Gtp Cyclohydrolase I ... pdb|1FBX|M Chain M, Crystal Structure Of Zinc-Containing ... E.Coli...oli Gtp Cyclohydrolase I ... pdb|1FBX|K Chain K, Crystal Structure Of Zinc-Containing ... E.Co...li Gtp Cyclohydrolase I pdb|1FBX|J Chain J, Crystal ... Structure Of Zinc-Containing E.Coli

  13. Two modifications of Y2Piv6(HPiv)6 crystals: synthesis and structures

    International Nuclear Information System (INIS)

    Kiseleva, E.A.; Troyanov, S.I.; Korenev, Yu.M.

    2006-01-01

    Crystal structure of solvate of yttrium pivalate YPiv 3 ·3HPiv is studied. Existing of two polymorphous modifications of the compound is detected. It is shown that α- and β-modifications of yttrium pivalate solvate have molecular crystal structures and are built of Y 2 Piv 6 (HPiv) 6 dimers. Difference of these two modifications is in package of dimer molecules and in center-symmetricity of dimers in α-modification structure. Molecular and crystal structure, crystal lattice parameters are determined [ru

  14. Crystal structure of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  15. The structure of an E. coli tRNAfMet A1-U72 variant shows an unusual conformation of the A1-U72 base pair.

    Science.gov (United States)

    Monestier, Auriane; Aleksandrov, Alexey; Coureux, Pierre-Damien; Panvert, Michel; Mechulam, Yves; Schmitt, Emmanuelle

    2017-05-01

    Translation initiation in eukaryotes and archaea involves a methionylated initiator tRNA delivered to the ribosome in a ternary complex with e/aIF2 and GTP. Eukaryotic and archaeal initiator tRNAs contain a highly conserved A 1 -U 72 base pair at the top of the acceptor stem. The importance of this base pair to discriminate initiator tRNAs from elongator tRNAs has been established previously using genetics and biochemistry. However, no structural data illustrating how the A 1 -U 72 base pair participates in the accurate selection of the initiator tRNAs by the translation initiation systems are available. Here, we describe the crystal structure of a mutant E. coli initiator tRNA f Met A 1 -U 72 , aminoacylated with methionine, in which the C 1 :A 72 mismatch at the end of the tRNA acceptor stem has been changed to an A 1 -U 72 base pair. Sequence alignments show that the mutant E. coli tRNA is a good mimic of archaeal initiator tRNAs. The crystal structure, determined at 2.8 Å resolution, shows that the A 1 -U 72 pair adopts an unusual arrangement. A 1 is in a syn conformation and forms a single H-bond interaction with U 72 This interaction requires protonation of the N1 atom of A 1 Moreover, the 5' phosphoryl group folds back into the major groove of the acceptor stem and interacts with the N7 atom of G 2 A possible role of this unusual geometry of the A 1 -U 72 pair in the recognition of the initiator tRNA by its partners during eukaryotic and archaeal translation initiation is discussed. © 2017 Monestier et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Crystal structure optimisation using an auxiliary equation of state

    Science.gov (United States)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  17. Crystal structure optimisation using an auxiliary equation of state

    International Nuclear Information System (INIS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" data-affiliation=" (Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" >Walsh, Aron

    2015-01-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu 2 ZnSnS 4 and the magnetic metal-organic framework HKUST-1

  18. Crystal structure optimisation using an auxiliary equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu{sub 2}ZnSnS{sub 4} and the magnetic metal-organic framework HKUST-1.

  19. CCDC 870534: Experimental Crystal Structure Determination : Dichloro-trimethyl-tantalum(v)

    KAUST Repository

    Chen, Yin; Callens, E.; Abou-Hamad, E.; Merle, N.; White, A.J.P.; Taoufik, M.; Coperet, C.; Le Roux, E.; Basset, J.-M.

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  4. Crystal structure and DNA-binding property of the ATPase domain of bacterial mismatch repair endonuclease MutL from Aquifex aeolicus.

    Science.gov (United States)

    Fukui, Kenji; Iino, Hitoshi; Baba, Seiki; Kumasaka, Takashi; Kuramitsu, Seiki; Yano, Takato

    2017-09-01

    DNA mismatch repair (MMR) system corrects mismatched bases that are generated mainly by DNA replication errors. The repair system excises the error-containing single-stranded region and enables the re-synthesis of the strand. In the early reactions of MMR, MutL endonuclease incises the newly-synthesized/error-containing strand of the duplex to initiate the downstream excision reaction. MutL endonuclease consists of the N-terminal ATPase and C-terminal endonuclease domains. In this study, we report the crystal structure of the ATPase domain of MutL endonuclease from Aquifex aeolicus. The overall structure of the domain was similar to those of human MutL homologs and Escherichia coli MutL, although E. coli MutL has no endonuclease activity. The ATPase domain was comprised of two subdomains: the N-terminal ATP-binding subdomain and the C-terminal α-β sandwich subdomain. Site-directed mutagenesis experiment identified DNA-interacting eight basic amino acid residues, which were distributed across both the two subdomains and formed a DNA-binding cleft. Docking simulation between the structures of the ATPase and endonuclease domains generated a reliable model structure for the full-length A. aeolicus MutL, which satisfies our previous result of small-angle X-ray scattering analysis. On the basis of the model structure and further experimental results, we concluded that the two separate DNA-binding sites in the full-length A. aeolicus MutL simultaneously bind a dsDNA molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Crystal structure of clathrates of Hofmann dma-type

    International Nuclear Information System (INIS)

    NIshikiori, Sh.; Ivamoto, T.

    1999-01-01

    Seven new clathrates Cd(DMA) 2 Ni(CN) 4 ·xG (x=1, G=aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine, and x=2, G=2,4,6-trimethylaniline) of Hofmann type are synthesized by amine substitution for dimethylamine (DMA). On the base of x-ray diffraction data it is shown that geometry of guest molecule in cage-like hollow determines the structure of the host and crystal structure of clathrates. Two-dimension metallocomplex of the host of studied clathrates is characterized by elastic folded structure appearing as a result of angular deformation of bond between Cd atoms and host cyanide bridge. Guest molecule orientation is fixed by hydrogen bond. Structural elasticity of the host complex directs to differences in crystal structure of clathrates formed and to considerable variety of incorporated guests [ru

  6. Crystal structure mediates mode of cell death in TiO2 nanotoxicity

    International Nuclear Information System (INIS)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C.; Jiang, Jingkun; Biswas, Pratim; Schlager, John J.; Hussain, Saber M.

    2009-01-01

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO 2 have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO 2 toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO 2 nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO 2 nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO 2 nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  7. Expression, purification, crystallization and preliminary crystallographic analysis of laminin-binding protein (Lmb) from Streptococcus agalactiae

    International Nuclear Information System (INIS)

    Ragunathan, Preethi; Spellerberg, Barbara; Ponnuraj, Karthe

    2009-01-01

    Laminin-binding protein from S. agalactiae was expressed, purified and crystallized and X-ray diffraction data were collected to 2.5 Å resolution. Laminin-binding protein (Lmb), a surface-exposed lipoprotein from Streptococcus agalactiae (group B streptococcus), mediates attachment to human laminin and plays a crucial role in the adhesion/invasion of eukaryotic host cells. However, the structural basis of laminin binding still remains unclear. In the context of detailed structural analysis, the lmb gene has been cloned, expressed in Escherichia coli, purified and crystallized. The crystals diffracted to a resolution of 2.5 Å and belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 56.63, b = 70.60, c = 75.37 Å, β = 96.77°

  8. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  9. Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal

    Science.gov (United States)

    Marchewka, M. K.; Pietraszko, A.

    2008-02-01

    The piperazinium bis(4-hydroxybenzenesulphonate) crystallizes from water solution at room temperature in P2 1/ c space group of monoclinic system. The crystals are built up of doubly protonated piperazinium cations and ionized 4-hydroxybenzenesulphonate anions that interact through weak hydrogen bonds of O-H⋯O and N-H⋯O type. Mutual orientation of anions is determined by non-conventional hydrogen bonds of C-H⋯π type. Room temperature powder FT IR and FT Raman measurements were carried out. The vibrational spectra are in full agreement with the structure obtained from X-ray crystallography. The big single crystals of the title salt can be grown.

  10. Crystallization and preliminary X-ray analysis of the major peanut allergen Ara h 1 core region

    International Nuclear Information System (INIS)

    Cabanos, Cerrone; Urabe, Hiroyuki; Masuda, Taro; Tandang-Silvas, Mary Rose; Utsumi, Shigeru; Mikami, Bunzo; Maruyama, Nobuyuki

    2010-01-01

    In this study, the core region of Ara h 1, one of the major peanut allergens, has been overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.25 Å resolution. Peanuts contain some of the most potent food allergens known to date. Ara h 1 is one of the three major peanut allergens. As a first step towards three-dimensional structure elucidation, recombinant Ara h 1 core region was cloned, expressed in Escherichia coli and purified to homogeneity. Crystals were obtained using 0.1 M sodium citrate pH 5.6, 0.1 M NaCl, 15% PEG 400 as precipitant. The crystals diffracted to 2.25 Å resolution using synchrotron radiation and belonged to the monoclinic space group C2, with unit-cell parameters a = 156.521, b = 88.991, c = 158.971 Å, β = 107.144°. Data were collected at the BL-38B1 station of SPring-8 (Hyogo, Japan)

  11. A Genetic Analysis of Crystal Growth

    DEFF Research Database (Denmark)

    Brown, Stanley; Sarikaya, Mehmet; Johnson, E.

    2000-01-01

    The regulation of crystal morphology by proteins is often observed in biology. It is a central feature in the formation of hard tissues such as bones, teeth and mollusc shells. We have developed a genetic system in the bacterium Escherichia coli to study the protein-mediated control of crystal...

  12. Local layer structure of smectic liquid crystals by X-ray micro-diffraction

    CERN Document Server

    Takanishi, Y

    2003-01-01

    The local layer structure of smectic liquid crystal has been measured using time-resolved synchrotron X-ray micro-diffraction. Typical layer disorders observed in surface stabilized (anti-) ferroelectric liquid crystals, i.e. a stripe texture, a needed-like defect and a zigzag defect, are directly analyzed. The detailed analysis slows that the surface anchoring force due to the interaction between the liquid crystal molecule and the alignment thin film plays an important role to realize both the static and dynamic local layer structures. The layer structure of the circular domain observed in the liquid crystal of bent-shaped molecules found to depend on the applied electric field though the optical micrograph shows little difference. The frustrated, double and single layer structures of the bent-shaped molecule liquid crystal are determined depending on the terminal alkyl chain length. (author)

  13. Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    International Nuclear Information System (INIS)

    Volkova, L M; Marinin, D V

    2013-01-01

    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)

  14. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2.

    Science.gov (United States)

    Liu, Mengjie; Duan, Liangwei; Wang, Meifang; Zeng, Hongmei; Liu, Xinqi; Qiu, Dewen

    2016-01-01

    The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity.

  15. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2

    Directory of Open Access Journals (Sweden)

    Mengjie Liu

    2016-07-01

    Full Text Available The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The 3-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI. To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and 8 truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity.

  16. Synthesis and crystal structures of three new benzotriazolylpropanamides

    Directory of Open Access Journals (Sweden)

    Donna S. Amenta

    2017-06-01

    Full Text Available The base-catalyzed Michael addition of 2-methylacrylamide to benzotriazole afforded 3-(1H-benzotriazol-1-yl-2-methylpropanamide, C10H12N4O (1, in 32% yield in addition to small amounts of isomeric 3-(2H-benzotriazol-2-yl-2-methylpropanamide, C10H12N4O (2. In a similar manner, 3-(1H-benzotriazol-1-yl-N,N-dimethylpropanamide, C11H14N4O (3, was prepared from benzotriazole and N,N-dimethylacrylamide. All three products have been structurally characterized by single-crystal X-ray diffraction. The crystal structures of 1 and 2 comprise infinite arrays formed by N—H...O and N—H...N bridges, as well as π–π interactions, while the molecules of 3 are aggregated to simple π-dimers in the crystal.

  17. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    Science.gov (United States)

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Crystal Structure of the Dithiol Oxidase DsbA Enzyme from Proteus Mirabilis Bound Non-covalently to an Active Site Peptide Ligand

    Science.gov (United States)

    Kurth, Fabian; Duprez, Wilko; Premkumar, Lakshmanane; Schembri, Mark A.; Fairlie, David P.; Martin, Jennifer L.

    2014-01-01

    The disulfide bond forming DsbA enzymes and their DsbB interaction partners are attractive targets for development of antivirulence drugs because both are essential for virulence factor assembly in Gram-negative pathogens. Here we characterize PmDsbA from Proteus mirabilis, a bacterial pathogen increasingly associated with multidrug resistance. PmDsbA exhibits the characteristic properties of a DsbA, including an oxidizing potential, destabilizing disulfide, acidic active site cysteine, and dithiol oxidase catalytic activity. We evaluated a peptide, PWATCDS, derived from the partner protein DsbB and showed by thermal shift and isothermal titration calorimetry that it binds to PmDsbA. The crystal structures of PmDsbA, and the active site variant PmDsbAC30S were determined to high resolution. Analysis of these structures allows categorization of PmDsbA into the DsbA class exemplified by the archetypal Escherichia coli DsbA enzyme. We also present a crystal structure of PmDsbAC30S in complex with the peptide PWATCDS. The structure shows that the peptide binds non-covalently to the active site CXXC motif, the cis-Pro loop, and the hydrophobic groove adjacent to the active site of the enzyme. This high-resolution structural data provides a critical advance for future structure-based design of non-covalent peptidomimetic inhibitors. Such inhibitors would represent an entirely new antibacterial class that work by switching off the DSB virulence assembly machinery. PMID:24831013

  19. Crystal structure and optical properties of silver nanorings

    Science.gov (United States)

    Zhou, Li; Fu, Xiao-Feng; Yu, Liao; Zhang, Xian; Yu, Xue-Feng; Hao, Zhong-Hua

    2009-04-01

    We report the polyol synthesis and crystal structure characterization of silver nanorings, which have perfect circular shape, smooth surface, and elliptical wire cross-section. The characterization results show that the silver nanorings have well-defined crystal of singly twinned along the whole ring. The spatial distribution of the scattering of a silver nanoring with slanted incidence reveals the unique focus effect of the nanoring, and the focus scattering varies with the incident wavelength. The silver nanorings with perfect geometry and well-defined crystal have potential applications in nanoscaled photonics, plasmonic devices, and optical manipulation.

  20. Crystal structure of PrRh4.8B2

    International Nuclear Information System (INIS)

    Higashi, Iwami; Shishido, Toetsu; Takei, Humihiko; Kobayashi, Takaaki

    1988-01-01

    The crystal structure of a new rare earth ternary boride PrRh 4.8 B 2 was investigated, by single-crystal X-ray diffractometry. PrRh 4.8 B 2 crystallizes in the orthorhombic space group Immm with a = 9.697(4), b = 5.577(2), c = 25.64(3) A, Z=12. The intensity data were collected on a four-circle diffractometer with graphite-monochromatized Mo Kα radiation. The structure was solved by the Patterson method and refined with a full-matrix least-squares program to an R value (equal to Σvertical strokeΔFvertical stroke/Σvertical strokeF 0 vertical stroke) of 0.055 for 1176 reflections. (orig.)

  1. Purification, crystallization and preliminary X-ray analysis of the aminoglycoside-6′-acetyltransferase AAC(6′)-Im

    International Nuclear Information System (INIS)

    Toth, Marta; Vakulenko, Sergei B.; Smith, Clyde A.

    2012-01-01

    AAC(6′)-Im is an N-acetyltransferase enzyme responsible for aminoglycoside resistance in E. faecium and E. coli isolates. Crystals of the kanamycin complex of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of enzymatic deactivation of the drugs. The aminoglycoside N-acetyltransferases (AACs) are a large family of bacterial enzymes that are responsible for coenzyme-A-facilitated acetylation of aminoglycosides. The gene encoding one of these enzymes, AAC(6′)-Im, has been cloned and the protein (comprising 178 amino-acid residues) was expressed in Escherichia coli, purified and crystallized as the kanamycin complex. Synchrotron diffraction data to approximately 2.0 Å resolution were collected from a crystal of this complex on beamline BL12-2 at SSRL (Stanford, California, USA). The crystals belonged to the hexagonal space group P6 5 , with approximate unit-cell parameters a = 107.75, c = 37.33 Å, and contained one molecule in the asymmetric unit. Structure determination is under way using molecular replacement

  2. PAK4 crystal structures suggest unusual kinase conformational movements.

    Science.gov (United States)

    Zhang, Eric Y; Ha, Byung Hak; Boggon, Titus J

    2018-02-01

    In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077). We find an unusual motion between the N-lobe and C-lobe of PAK4 that manifests as a partial unwinding of helix αC. Principal component analysis of the crystal structures rationalizes these movements into three major states, and analysis of the kinase hydrophobic spines indicates concerted movements that create an accessible back pocket cavity. The conformational changes that we observe for PAK4 differ from previous descriptions of kinase motions, and although we observe these differences in crystal structures there is the possibility that the movements observed may suggest a diversity of kinase conformational changes associated with regulation. Protein kinases are key signaling proteins, and are important drug targets, therefore understanding their regulation is important for both basic research and clinical points of view. In this study, we observe unusual conformational 'hinging' for protein kinases. Hinging, the opening and closing of the kinase sub-domains to allow nucleotide binding and release, is critical for proper kinase regulation and for targeted drug discovery. We determine new crystal structures of PAK4, an important Rho-effector kinase, and conduct analyses of these and previously determined structures. We find that PAK4 crystal structures can be classified into specific conformational groups, and that these groups are associated with previously unobserved hinging motions and an unusual conformation for the kinase hydrophobic core. Our findings therefore indicate that there may be a diversity of kinase hinging motions, and that these may

  3. Synthesis, Characterization, Crystal Structure and Antibacterial Activities of Transition Metal(II Complexes of the Schiff Base 2-[(4-Methylphenyliminomethyl]-6-methoxyphenol

    Directory of Open Access Journals (Sweden)

    Guo-Liang Zhao

    2009-05-01

    Full Text Available Five transition metal(II complexes, [ML2Cl2] 1~5, were synthesized from the reaction of MCl2·nH2O (M = Mn, Co, Ni, Cu, Cd and the Schiff base ligand 2-[(4-methylphenyliminomethyl]-6-methoxyphenol (C15H15NO2, L, obtained by condensation of o-vanillin (2-hydroxy-3-methoxybenzaldehyde with p-toluidine. They were characterized by elemental analysis, molar conductance, FT-IR spectra, thermal analysis. The structure of complex 1 was determined by single-crystal X-ray diffraction. Its crystal structure is of monoclinic system, space group P21/c with a = 9.0111(18 Å, b = 11.222(2 Å, c =28.130 (6 Å, α = 90 º, β = 92.29(3 º, γ = 90 º, V = 2867.6(10 Å3, Z = 4. The Mn atom is six-coordinate and displays distorted octahedral geometry.The Schiff base ligand and its complexes have been tested in vitro to evaluate their antibacterial activity against bacteria, viz., Escherichia coli, Staphylococcus aureus and Bacillus subtilis. It has been found that the complexes have higher activity than the corresponding free Schiff base ligand against the same bacteria.

  4. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  5. YbiV from E. coli K12 is a HAD phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Anne; Lee, Seok-Yong; McCullagh, Emma; Silversmith, Ruth E.; Wemmer, David E.

    2004-03-16

    The protein YbiV from Escherichia coli K12 MG1655 is a hypothetical protein with sequence homology to the haloacid dehalogenase (HAD) superfamily of proteins. Although numerous members of this family have been identified, the functions of few are known. Using the crystal structure, sequence analysis, and biochemical assays, we have characterized ybiV as a HAD phosphatase. The crystal structure of YbiV reveals a two domain protein, one with the characteristic HAD hydrolase fold, the other an inserted a/b fold. In an effort to understand the mechanism we also solved and report the structures of YbiV in complex with beryllofluoride (BeF3-) and aluminum trifluoride (AlF3) which have been shown to mimic the phosphorylated intermediate and transition state for hydrolysis, respectively, in analogy to other HAD phosphatases. Analysis of the structures reveals the substrate binding cavity, which is hydrophilic in nature. Both structure and sequence homology indicate ybiV may be a sugar phosphatase, which is supported by biochemical assays which measured the release of free phosphate on a number of sugar-like substrates. We also investigated available genomic and functional data in an effort to determine the physiological substrate.

  6. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    Science.gov (United States)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  7. Cloning, purification and crystallization of a Walker-type Pyrococcus abyssi ATPase family member

    International Nuclear Information System (INIS)

    Uhring, Muriel; Bey, Gilbert; Lecompte, Odile; Cavarelli, Jean; Moras, Dino; Poch, Olivier

    2005-01-01

    The Walker-type ATPase PABY2304 of P. abyssi has been cloned, overexpressed, purified and crystallized. X-ray diffraction data from selenomethionine-derivative crystals have been collected to 2.6 Å. The structure has been solved by MAD techniques. Several ATPase proteins play essential roles in the initiation of chromosomal DNA replication in archaea. Walker-type ATPases are defined by their conserved Walker A and B motifs, which are associated with nucleotide binding and ATP hydrolysis. A family of 28 ATPase proteins with non-canonical Walker A sequences has been identified by a bioinformatics study of comparative genomics in Pyrococcus genomes. A high-throughput structural study on P. abyssi has been started in order to establish the structure of these proteins. 16 genes have been cloned and characterized. Six out of the seven soluble constructs were purified in Escherichia coli and one of them, PABY2304, has been crystallized. X-ray diffraction data were collected from selenomethionine-derivative crystals using synchrotron radiation. The crystals belong to the orthorhombic space group C2, with unit-cell parameters a = 79.41, b = 48.63, c = 108.77 Å, and diffract to beyond 2.6 Å resolution

  8. Cloning, purification and crystallization of a Walker-type Pyrococcus abyssi ATPase family member

    Energy Technology Data Exchange (ETDEWEB)

    Uhring, Muriel; Bey, Gilbert; Lecompte, Odile; Cavarelli, Jean; Moras, Dino; Poch, Olivier, E-mail: poch@igbmc.u-strasbg.fr [Département de Biologie et Génomiques Structurales, UMR 7104, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP Strasbourg, 1 Rue Laurent Fries, 64404 Illkirch (France)

    2005-10-01

    The Walker-type ATPase PABY2304 of P. abyssi has been cloned, overexpressed, purified and crystallized. X-ray diffraction data from selenomethionine-derivative crystals have been collected to 2.6 Å. The structure has been solved by MAD techniques. Several ATPase proteins play essential roles in the initiation of chromosomal DNA replication in archaea. Walker-type ATPases are defined by their conserved Walker A and B motifs, which are associated with nucleotide binding and ATP hydrolysis. A family of 28 ATPase proteins with non-canonical Walker A sequences has been identified by a bioinformatics study of comparative genomics in Pyrococcus genomes. A high-throughput structural study on P. abyssi has been started in order to establish the structure of these proteins. 16 genes have been cloned and characterized. Six out of the seven soluble constructs were purified in Escherichia coli and one of them, PABY2304, has been crystallized. X-ray diffraction data were collected from selenomethionine-derivative crystals using synchrotron radiation. The crystals belong to the orthorhombic space group C2, with unit-cell parameters a = 79.41, b = 48.63, c = 108.77 Å, and diffract to beyond 2.6 Å resolution.

  9. Crystal structure of importin-{alpha} complexed with a classic nuclear localization sequence obtained by oriented peptide library screening

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, A.A.S.; Fontes, M.R.M. [UNESP, Universidade Estadual Paulista, Botucatu, SP (Brazil); Yang, S.N.Y. [University of Melbourne, Melbourne (Australia); Harris, J.M. [Queensland University of Technology, Brisbane (Australia); Jans, D.A. [Monash University, Clayton (Australia); Kobe, B. [University of Queensland, Brisbane, QU (Australia)

    2012-07-01

    Full text: Importin-{alpha} (Imp{alpha}) plays a role in the classical nuclear import pathway, binding to cargo proteins with activities in the nucleus. Different Imp{alpha} paralogs responsible for specific cargos can be found in a single organism. The cargos contain nuclear localization sequences (NLSs), which are characterized by one or two clusters of basic amino acids (monopartite and bipartite NLSs, respectively). In this work we present the crystal structure of Imp{alpha} from M. musculus (residues 70-529, lacking the auto inhibitory domain) bound to a NLS peptide (pepTM). The peptide corresponds to the optimal sequence obtained by an oriented peptide library experiment designed to probe the specificity of the major NLS binding site. The peptide library used five degenerate positions and identified the sequence KKKRR as the optimal sequence for binding to this site for mouse Imp{alpha} (70-529). The protein was obtained using an E. coli expression system and purified by affinity chromatography followed by an ion exchange chromatography. A single crystal of Imp{alpha} -pepTM complex was grown by the hanging drop method. The data were collected using the Synchrotron Radiation Source LNLS, Brazil and processed to 2.3. Molecular replacement techniques were used to determine the crystal structure. Electron density corresponding to the peptide was present in both major and minor binding sites The peptide is bound to Imp{alpha} similar as the simian virus 40 (SV40) large tumour (T)-antigen NLS. Binding assays confirmed that the peptide bound to Imp{alpha} with low nM affinities. This is the first time that structural information has been linked to an oriented peptide library screening approach for importin-{alpha}; the results will contribute to understanding of the sequence determinants of classical NLSs, and may help identify as yet unidentified classical NLSs in novel proteins. (author)

  10. A hybrid computational-experimental approach for automated crystal structure solution

    Science.gov (United States)

    Meredig, Bryce; Wolverton, C.

    2013-02-01

    Crystal structure solution from diffraction experiments is one of the most fundamental tasks in materials science, chemistry, physics and geology. Unfortunately, numerous factors render this process labour intensive and error prone. Experimental conditions, such as high pressure or structural metastability, often complicate characterization. Furthermore, many materials of great modern interest, such as batteries and hydrogen storage media, contain light elements such as Li and H that only weakly scatter X-rays. Finally, structural refinements generally require significant human input and intuition, as they rely on good initial guesses for the target structure. To address these many challenges, we demonstrate a new hybrid approach, first-principles-assisted structure solution (FPASS), which combines experimental diffraction data, statistical symmetry information and first-principles-based algorithmic optimization to automatically solve crystal structures. We demonstrate the broad utility of FPASS to clarify four important crystal structure debates: the hydrogen storage candidates MgNH and NH3BH3; Li2O2, relevant to Li-air batteries; and high-pressure silane, SiH4.

  11. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    Directory of Open Access Journals (Sweden)

    Kamela O. Alegre

    2015-03-01

    Full Text Available Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS. Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

  12. Gallium arsenide single crystal solar cell structure and method of making

    Science.gov (United States)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  13. Preparation, crystallization and preliminary X-ray characterization of a conserved hypothetical protein XC1692 from Xanthomonas campestris

    International Nuclear Information System (INIS)

    Chin, Ko-Hsin; Huang, Zhao-Wei; Wei, Kun-Chou; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Gao, Fei Philip; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-01-01

    A conserved hypothetical protein XC1692 from X. campestris pv. campestris has been overexpressed in E. coli. The purified recombinant protein crystallized in a variety of forms and diffracted to a resolution of at least 1.45 Å. Xanthomonas campestris pv. campestris strain 17 is a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. Its genome contains approximately 4500 genes, one third of which have no known structure and/or function yet are highly conserved among several different bacterial genuses. One of these gene products is XC1692 protein, containing 141 amino acids. It was overexpressed in Escherichia coli, purified and crystallized in a variety of forms using the hanging-drop vapour-diffusion method. The crystals diffract to at least 1.45 Å resolution. They are hexagonal and belong to space group P6 3 , with unit-cell parameters a = b = 56.9, c = 71.0 Å. They contain one molecule per asymmetric unit

  14. First principles study of structural, electronic and optical properties of KCl crystal

    International Nuclear Information System (INIS)

    Chen, Z.J.; Xiao, H.Y.; Zu, X.T.

    2006-01-01

    The structural, electronic and optical properties of KCl crystal in B1, B2, B3 and T1 structures have been systematically studied using first-principle pseudopotential calculations. In addition, pressure-induced phase transition has also been investigated. It was found that when the pressure is below 2.8 GPa, the B1 structure is the most stable. Above 2.8 GPa KCl crystal will undergo a structural phase transition from the relatively open NaCl structure into the more dense CsCl atomic arrangement. Our results also suggested that at about 1.2 GPa structural phase transition from B3 to T1 will occur. When the pressure arrives at 39.9 GPa, the phase transition will occur from B2 to T1. In addition, we found KCl Crystal has indirect band gap in B2 structure and direct band gap in B1, B3 and T1 structures. The band gap value is the smallest in the T1 structure and is the largest in the B1 and B3 structures. Our calculations are found to be in good agreement with available experimental and theoretical results. The dielectric function and energy loss function of KCl crystal in four structures (B1, B2, B3 and T1) have been calculated as well as the anisotropy of the optical properties of KCl crystal in T1 structure

  15. Purification, crystallization and X-ray diffraction analysis of the C-terminal protease domain of Venezuelan equine encephalitis virus nsP2

    International Nuclear Information System (INIS)

    Russo, Andrew T.; Watowich, Stanley J.

    2006-01-01

    The C-terminal protease domain of Venezuelan equine encephalitis virus (VEEV) nsP2 has been overexpressed in E. coli, purified and successfully crystallized. Native crystals diffract to beyond 2.5 Å resolution and isomorphous heavy-atom derivatives suitable for phase analysis have been identified. The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichia coli, purified and crystallized. Crystals diffract to beyond 2.5 Å resolution and belong to the orthorhombic space group P2 1 2 1 2 1 . Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way

  16. Purification, crystallization and X-ray diffraction analysis of the C-terminal protease domain of Venezuelan equine encephalitis virus nsP2

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Andrew T.; Watowich, Stanley J., E-mail: watowich@xray.utmb.edu [Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX (United States)

    2006-06-01

    The C-terminal protease domain of Venezuelan equine encephalitis virus (VEEV) nsP2 has been overexpressed in E. coli, purified and successfully crystallized. Native crystals diffract to beyond 2.5 Å resolution and isomorphous heavy-atom derivatives suitable for phase analysis have been identified. The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichia coli, purified and crystallized. Crystals diffract to beyond 2.5 Å resolution and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way.

  17. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin

    Science.gov (United States)

    Wang, Yuan; Liang, Zuozhong

    2017-12-01

    Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.

  18. Cyclic saturation dislocation structures of multiple-slip-oriented copper single crystals

    International Nuclear Information System (INIS)

    Li, X.W.; Chinese Academy of Sciences, Shenyang; Umakoshi, Y.; Li, S.X.; Wang, Z.G.

    2001-01-01

    The dislocation structures of [011] and [ anti 111] multiple-slip-oriented Cu single crystals cyclically saturated at constant plastic strain amplitudes were investigated through transmission electron microscopy. The results obtained on [001] multiple-slip-oriented Cu single crystals were also included for summarization. Unlike the case for single-slip-oriented Cu single crystals, the crystallographic orientation has a strong effect on the saturation dislocation structure in these three multiple-slip-oriented crystals. For the [011] crystal, different dislocation patterns such as veins, PSB walls, labyrinths and PSB ladders were observed. The formation of PSB ladders is believed to be a major reason for the existence of a plateau region in the cyclic stress-strain (CSS) curve for the [011] crystal. The cyclic saturation dislocation structure of a [ anti 111] crystal cycled at a low applied strain amplitude γ pl of 2.0 x 10 -4 was found to consist of irregular cells, which would develop into a more regular arrangement (e. g. PSB ladder-like) and the scale of which tends to decrease with increasing γ pl . Finally, three kinds of representative micro-deformation mode were summarized and termed as labyrinth-mode (or [001]-mode), cell-mode (or [ anti 111]-mode) and PSB ladder-mode (or [011]-mode). (orig.)

  19. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  20. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  1. imide, crystal structure, thermal and dielectric studies

    Indian Academy of Sciences (India)

    methyl imidazolium methylidene bis(trifluoromethanesulfonyl)imide, crystal structure, thermal and dielectric studies. BOUMEDIENE HADDAD1,2,3,∗, TAQIYEDDINE MOUMENE2, DIDIER VILLEMIN1,. JEAN-FRANÇOIS LOHIER1 and EL-HABIB ...

  2. Expression, purification and crystallization of the SARS-CoV macro domain

    International Nuclear Information System (INIS)

    Malet, Hélène; Dalle, Karen; Brémond, Nicolas; Tocque, Fabienne; Blangy, Stéphanie; Campanacci, Valérie; Coutard, Bruno; Grisel, Sacha; Lichière, Julie; Lantez, Violaine; Cambillau, Christian; Canard, Bruno; Egloff, Marie-Pierre

    2006-01-01

    The SARS-CoV macro domain was expressed, purified and crystallized. Selenomethionine-labelled crystals diffracted to 1.8 Å resolution. Macro domains or X domains are found as modules of multidomain proteins, but can also constitute a protein on their own. Recently, biochemical and structural studies of cellular macro domains have been performed, showing that they are active as ADP-ribose-1′′-phosphatases. Macro domains are also present in a number of positive-stranded RNA viruses, but their precise function in viral replication is still unknown. The major human pathogen severe acute respiratory syndrome coronavirus (SARS-CoV) encodes 16 non-structural proteins (nsps), one of which (nsp3) encompasses a macro domain. The SARS-CoV nsp3 gene region corresponding to amino acids 182–355 has been cloned, expressed in Escherichia coli, purified and crystallized. The crystals belong to space group P2 1 , with unit-cell parameters a = 37.5, b = 55.6, c = 108.9 Å, β = 91.4°, and the asymmetric unit contains either two or three molecules. Both native and selenomethionine-labelled crystals diffract to 1.8 Å

  3. Expression, purification and crystallization of the SARS-CoV macro domain

    Energy Technology Data Exchange (ETDEWEB)

    Malet, Hélène; Dalle, Karen; Brémond, Nicolas; Tocque, Fabienne; Blangy, Stéphanie; Campanacci, Valérie; Coutard, Bruno; Grisel, Sacha; Lichière, Julie; Lantez, Violaine; Cambillau, Christian; Canard, Bruno; Egloff, Marie-Pierre, E-mail: marie-pierre.egloff@afmb.univ-mrs.fr [Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, UMR 6098-Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 9 (France)

    2006-04-01

    The SARS-CoV macro domain was expressed, purified and crystallized. Selenomethionine-labelled crystals diffracted to 1.8 Å resolution. Macro domains or X domains are found as modules of multidomain proteins, but can also constitute a protein on their own. Recently, biochemical and structural studies of cellular macro domains have been performed, showing that they are active as ADP-ribose-1′′-phosphatases. Macro domains are also present in a number of positive-stranded RNA viruses, but their precise function in viral replication is still unknown. The major human pathogen severe acute respiratory syndrome coronavirus (SARS-CoV) encodes 16 non-structural proteins (nsps), one of which (nsp3) encompasses a macro domain. The SARS-CoV nsp3 gene region corresponding to amino acids 182–355 has been cloned, expressed in Escherichia coli, purified and crystallized. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 37.5, b = 55.6, c = 108.9 Å, β = 91.4°, and the asymmetric unit contains either two or three molecules. Both native and selenomethionine-labelled crystals diffract to 1.8 Å.

  4. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    Science.gov (United States)

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  5. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  6. The in vitro synthesis of {beta}-galactosidase induced in a subcellular structure of Escherichia coli (1961); Synthese in vitro de {beta}-galactosidase induite dans une structure subcellulaire d'Escherichia coli (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Nisman, B; Kayser, A; Demailly, J; Genin, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Isopropyl-thio-galactoside (IPTG), an inducer of 3-galactosidase, makes it possible to synthesise this enzyme in vitro with the subcellular structure (P{sub 1}). The enzyme is isolated from the bacteria Escherichia coli K 12 which are inductive but not induced. The incorporation of radioactive amino-acids, which is stimulated by the presence of an inducer, was studied during the course of the enzyme synthesis. Saccharose suppresses the induction of {beta}-galactosidase. The presence of a specific inhibitor in the structure studied is considered. (authors) [French] L'isopropylthiogalactoside (IPTG), inducteur de la 3-galactosidase, permet la synthese in vitro de cette enzyme dans la structure subcellulaire (P{sub 1}) isolee a partir des bacteries d'Escherichia coli K 12, inductibles mais non induites. L'incorporation d'acides amines radioactifs, stimulee par la presence d'inducteur, a ete etudiee au cours de la synthese de l'enzyme. Le saccharose supprime l'induction de la 3-galactosidase. La presence du represseur specifique dans la structure etudiee est consideree. (auteurs)

  7. Synthesis, Crystal Structure and Anti-ischaemic Activity of (E)-1-{4 ...

    African Journals Online (AJOL)

    chloro- phenyl)prop-2-en-1-one (C28H29ClN2O3, Mr = 476.98) (5) was synthesized and studied by the single crystal X-ray diffraction method. Its structure was confirmed by 1HNMR, 13CNMR,HRMSand X-ray single crystal structure ...

  8. Preliminary X-ray diffraction analysis of YqjH from Escherichia coli: a putative cytoplasmic ferri-siderophore reductase.

    Science.gov (United States)

    Bamford, Vicki A; Armour, Maria; Mitchell, Sue A; Cartron, Michaël; Andrews, Simon C; Watson, Kimberly A

    2008-09-01

    YqjH is a cytoplasmic FAD-containing protein from Escherichia coli; based on homology to ViuB of Vibrio cholerae, it potentially acts as a ferri-siderophore reductase. This work describes its overexpression, purification, crystallization and structure solution at 3.0 A resolution. YqjH shares high sequence similarity with a number of known siderophore-interacting proteins and its structure was solved by molecular replacement using the siderophore-interacting protein from Shewanella putrefaciens as the search model. The YqjH structure resembles those of other members of the NAD(P)H:flavin oxidoreductase superfamily.

  9. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    Science.gov (United States)

    Peña-Soler, Esther; Fernandez, Francisco J; López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J; Quintana, Juan F; Rudd, Kenneth E; Coll, Miquel; Vega, M Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  10. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    Science.gov (United States)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  11. Crystal Structure of Human Enterovirus 71

    Energy Technology Data Exchange (ETDEWEB)

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

    2013-04-08

    Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the 'pocket factor,' a small molecule that stabilizes the virus, is partly exposed on the floor of the 'canyon.' Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.

  12. Peptidoglycan Hydrolases of Escherichia coli

    Science.gov (United States)

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  13. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles.

    Science.gov (United States)

    Boerneke, Mark A; Dibrov, Sergey M; Hermann, Thomas

    2016-03-14

    RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base-pair interactions. Herein, we report the crystal-structure-guided design of highly stable RNA nanotriangles that self-assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so-far smallest circularly closed nanoobject made entirely of double-stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand-responsive RNA switches, which offer the opportunity to control self-assembly and dissociation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. CCDC 1515632: Experimental Crystal Structure Determination : hexakis(dimethyl sulfoxide)-manganese(ii) tetraiodide

    KAUST Repository

    Haque, M.A.; Davaasuren, Bambar; Rothenberger, Alexander; Wu, Tao

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  15. Hydrogen-bonded co-crystal structure of benzoic acid and zwitterionic l-proline

    Directory of Open Access Journals (Sweden)

    Aaron M. Chesna

    2017-03-01

    Full Text Available The title compound [systematic name: benzoic acid–pyrrolidin-1-ium-2-carboxylate (1/1], C7H6O2·C5H9NO2, is an example of the application of non-centrosymmetric co-crystallization for the growth of a crystal containing a typically centrosymmetric component in a chiral space group. It co-crystallizes in the space group P212121 and contains benzoic acid and l-proline in equal proportions. The crystal structure exhibits chains of l-proline zwitterions capped by benzoic acid molecules which form a C(5[R33(11] hydrogen-bonded network along [100]. The crystal structure is examined and compared to that of a similar co-crystal containing l-proline zwitterions and 4-aminobenzoic acid.

  16. Crystal structure of Sus scrofa quinolinate phosphoribosyltransferase in complex with nicotinate mononucleotide.

    Directory of Open Access Journals (Sweden)

    Hyung-Seop Youn

    Full Text Available We have determined the crystal structure of porcine quinolinate phosphoribosyltransferase (QAPRTase in complex with nicotinate mononucleotide (NAMN, which is the first crystal structure of a mammalian QAPRTase with its reaction product. The structure was determined from protein obtained from the porcine kidney. Because the full protein sequence of porcine QAPRTase was not available in either protein or nucleotide databases, cDNA was synthesized using reverse transcriptase-polymerase chain reaction to determine the porcine QAPRTase amino acid sequence. The crystal structure revealed that porcine QAPRTases have a hexameric structure that is similar to other eukaryotic QAPRTases, such as the human and yeast enzymes. However, the interaction between NAMN and porcine QAPRTase was different from the interaction found in prokaryotic enzymes, such as those of Helicobacter pylori and Mycobacterium tuberculosis. The crystal structure of porcine QAPRTase in complex with NAMN provides a structural framework for understanding the unique properties of the mammalian QAPRTase active site and designing new antibiotics that are selective for the QAPRTases of pathogenic bacteria, such as H. pylori and M. tuberculosis.

  17. Crystal structure mediates mode of cell death in TiO{sub 2} nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C. [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States); Jiang, Jingkun; Biswas, Pratim [Washington University in St. Louis, Department of Energy, Environmental, and Chemical Engineering (United States); Schlager, John J.; Hussain, Saber M., E-mail: Saber.Hussain@wpafb.af.mi [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States)

    2009-08-15

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO{sub 2} have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO{sub 2} toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO{sub 2} nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO{sub 2} nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO{sub 2} nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  18. Crystallization and preliminary X-ray diffraction analysis of mevalonate kinase from Methanosarcina mazei

    International Nuclear Information System (INIS)

    Zhuang, Ningning; Seo, Kyung Hye; Chen, Cong; Zhou, Jia; Kim, Seon Won; Lee, Kon Ho

    2012-01-01

    Recombinant mevalonate kinase from M. mazei has been crystallized. Diffraction data were collected to 2.08 Å resolution. Mevalonate kinase (MVK), which plays an important role in catalysing the biosynthesis of isoprenoid compounds derived from the mevalonate pathway, transforms mevalonate to 5-phosphomevalonate using ATP as a cofactor. Mevalonate kinase from Methanosarcina mazei (MmMVK) was expressed in Escherichia coli, purified and crystallized for structural analysis. Diffraction-quality crystals of MmMVK were obtained by the vapour-diffusion method using 0.32 M MgCl 2 , 0.08 M bis-tris pH 5.5, 16%(w/v) PEG 3350. The crystals belonged to space group P2 1 2 1 2, with unit-cell parameters a = 97.11, b = 135.92, c = 46.03 Å. Diffraction data were collected to 2.08 Å resolution

  19. Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites

    International Nuclear Information System (INIS)

    Serrano, Pedro; Pedrini, Bill; Geralt, Michael; Jaudzems, Kristaps; Mohanty, Biswaranjan; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Tools for systematic comparisons of NMR and crystal structures developed by the JCSG were applied to two proteins with known functions: the T. maritima anti-σ factor antagonist TM1081 and the mouse γ-glutamylamine cyclotransferase A2LD1 (gi:13879369). In an attempt to exploit the complementarity of crystal and NMR data, the combined use of the two structure-determination techniques was explored for the initial steps in the challenge of searching proteins of unknown functions for putative active sites. The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ factor antagonist, and A2LD1 (gi:13879369), a mouse γ-glutamylamine cyclotransferase, is explored. The NMR structures of the two proteins have been determined in solution at 313 and 298 K, respectively, using the current JCSG protocol based on the software package UNIO for extensive automation. The corresponding crystal structures were solved by the JCSG at 100 K and 1.6 Å resolution and at 100 K and 1.9 Å resolution, respectively. The NMR and crystal structures of the two proteins share the same overall molecular architectures. However, the precision of the structure determination along the amino-acid sequence varies over a significantly wider range in the NMR structures than in the crystal structures. Thereby, in each of the two NMR structures about 65% of the residues have displacements below the average and in both proteins the less well ordered residues include large parts of the active sites, in addition to some highly solvent-exposed surface areas. Whereas the latter show increased disorder in the crystal and in solution, the active-site regions display increased displacements only in the NMR structures, where they undergo local conformational exchange on the

  20. CCDC 1024814: Experimental Crystal Structure Determination : 1,3-Dimesitylimidazolidine-2-selenone

    KAUST Repository

    Vummaleti, Sai V. C.; Nelson, David J.; Poater, Albert; Gó mez-Suá rez, Adriá n; Cordes, David B.; Slawin, Alexandra M. Z.; Nolan, Steven P.; Cavallo, Luigi

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. CCDC 1446070: Experimental Crystal Structure Determination : tris(Pentafluorophenyl)-(triethylsilyl formate)-boron

    KAUST Repository

    Chen, Jiawei

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. CCDC 1446069: Experimental Crystal Structure Determination : tris(Pentafluorophenyl)-(triethylsilyl formate)-aluminium

    KAUST Repository

    Chen, Jiawei

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. Crystal and electronic structure study of Mn doped wurtzite ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    O.M. Ozkendir

    2016-08-01

    Full Text Available The change in the crystal and electronic structure properties of wurtzite ZnO nanoparticles was studied according to Mn doping in the powder samples. The investigations were conducted by X-ray Absorption Fine Structure Spectroscopy (XAFS technique for the samples prepared with different heating and doping processes. Electronic analysis was carried out by the collected data from the X-ray Absorption Near-Edge Structure Spectroscopy (XANES measurements. Additional crystal structure properties were studied by Extended-XAFS (EXAFS analysis. Longer heating periods for the undoped wurtzite ZnO samples were determined to own stable crystal geometries. However, for some doped samples, the distortions in the crystal were observed as a result of the low doping amounts of Mn which was treated as an impurity. Besides, the changes in oxygen locations were determined to create defects and distortions in the samples.

  4. Reversible Single-Crystal-to-Single-Crystal Structural Transformation in a Mixed-Ligand 2D Layered Metal-Organic Framework: Structural Characterization and Sorption Study

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-12-01

    Full Text Available A 3D supramolecular network, [Cd(bipy(C4O4(H2O2]·3H2O (1 (bipy = 4,4′-bipyridine and C4O42− = dianion of H2C4O4, constructed by mixed-ligand two-dimensional (2D metal-organic frameworks (MOFs has been reported and structurally determined by the single-crystal X-ray diffraction method and characterized by other physicochemical methods. In 1, the C4O42− and bipy both act as bridging ligands connecting the Cd(II ions to form a 2D layered MOF, which are then extended to a 3D supramolecular network via the mutually parallel and interpenetrating arrangements among the 2D-layered MOFs. Compound 1 shows a two-step dehydration process with weight losses of 11.0% and 7.3%, corresponding to the weight-loss of three guest and two coordinated water molecules, respectively, and exhibits an interesting reversible single-crystal-to-single-crystal (SCSC structural transformation upon de-hydration and re-hydration for guest water molecules. The SCSC structural transformation have been demonstrated and monitored by single-crystal and X-ray powder diffraction, and thermogravimetic analysis studies.

  5. On structure of some laminated crystals with organic molecules

    International Nuclear Information System (INIS)

    Volodina, G.F.; Ivanova, V.Ya.; Malinovskij, T.I.

    1982-01-01

    A survey is made of papers dealing with intercalation of organic molecules into crystals of dihalcogenides of some transition metals (TaS 2 , TiS 2 , NbS 2 , ZrS 2 , TaSe 2 ), variation of their structure and physical properties. Among the used intercalates ammonia, pyridine, aniline and other aromatic amines proved to be most satisfactory from the viewpoint of reaction rate and product stability. A possibility is discussed of intercalation into PbI 2 and CdI 2 crystals that are of the same structural type as dihalcogenides

  6. Ligand size is a major determinant of specificity in periplasmic oxyanion-binding proteins: the 1.2 A resolution crystal structure of Azotobacter vinelandii ModA.

    Science.gov (United States)

    Lawson, D M; Williams, C E; Mitchenall, L A; Pau, R N

    1998-12-15

    . Periplasmic receptors constitute a diverse class of binding proteins that differ widely in size, sequence and ligand specificity. Nevertheless, almost all of them display a common beta/alpha folding motif and have similar tertiary structures consisting of two globular domains. The ligand is bound at the bottom of a deep cleft, which lies at the interface between these two domains. The oxyanion-binding proteins are notable in that they can discriminate between very similar ligands. . Azotobacter vinelandii is unusual in that it possesses two periplasmic molybdate-binding proteins. The crystal structure of one of these with bound ligand has been determined at 1.2 A resolution. It superficially resembles the structure of sulphate-binding protein (SBP) from Salmonella typhimurium and uses a similar constellation of hydrogen-bonding interactions to bind its ligand. However, the detailed interactions are distinct from those of SBP and the more closely related molybdate-binding protein of Escherichia coli. . Despite differences in the residues involved in binding, the volumes of the binding pockets in the A. vinelandii and E. coli molybdate-binding proteins are similar and are significantly larger than that of SBP. We conclude that the discrimination between molybdate and sulphate shown by these binding proteins is largely dependent upon small differences in the sizes of these two oxyanions.

  7. Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery

    Directory of Open Access Journals (Sweden)

    Kah Chun Lau

    2015-01-01

    Full Text Available We describe a series of metastable Li2O2 crystal structures involving different orientations and displacements of the O22− peroxy ions based on the known Li2O2 crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li2O2 crystal structure (i.e., Föppl structure, all of these newly found metastable Li2O2 crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O22− O-O vibration mode (ω ~ 799–865 cm−1, which is in the range of that commonly observed in Li-air battery experiments, regardless of the random O22− orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li2O2 powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li2O2 compounds that are grown electrochemically under the environment of Li-O2 cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li2O2 crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O22− vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li2O2 crystal structures, as all of them similarly share the similar O22− vibration mode. However considering that the discharge voltage in most Li-O2 cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li2O2 crystal structures appears to be thermodynamically feasible.

  8. Polarization singularities of optical fields caused by structural dislocations in crystals

    International Nuclear Information System (INIS)

    Savaryn, V; Vasylkiv, Yu; Krupych, O; Skab, I; Vlokh, R

    2013-01-01

    We analyze polarization singularities of optical beams that propagate through crystals possessing structural dislocations. We show that screw dislocations of crystalline structure can lead to the appearance of purely screw-type dislocations of light wavefronts. This can happen only in crystals that belong to trigonal and cubic systems. These polarization singularities will give rise to optical vortices with the topological charge equal to ±1, whenever a crystal sample is placed between crossed circular polarizers. We have also found that edge dislocations present in the cubic and trigonal crystals, with the Burgers vector perpendicular to the three-fold symmetry axes, can impose mixed screw-edge dislocations in the wavefronts of optical beams and generate singly charged optical vortices. The results of our analysis can be applied for detecting and identifying dislocations of different types available in crystals. (paper)

  9. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    The design and construction of ... dination polymers. It is difficult to design coordination .... The first endotherm at about 180 ... graphic data for coordination polymer 1. ... Sheldrick G M 1997 SHELXS-97: Program for solution of crystal structures ...

  10. Crystallization and preliminary X-ray analysis of PaaAC, the main component of the hydroxylase of the Escherichia coli phenylacetyl-coenzyme A oxygenase complex

    International Nuclear Information System (INIS)

    Grishin, Andrey M.; Ajamian, Eunice; Zhang, Linhua; Cygler, Miroslaw

    2010-01-01

    The expression, purification, crystallization and preliminary crystallographic analysis of the PaaAC complex is reported. This is the main component of the E. coliphenylacetyl-coenzyme A oxygenase complex. The Escherichia coli paa operon encodes enzymes of the phenylacetic acid-utilization pathway that metabolizes phenylacetate in the form of a coenzyme A (CoA) derivative. The phenylacetyl-coenzyme A oxygenase complex, which has been postulated to contain five components designated PaaABCDE, catalyzes ring hydroxylation of phenylacetyl-CoA. The PaaAC subcomplex shows low sequence similarity to other bacterial multicomponent monooxygenases (BMMs) and forms a separate branch on the phylogenetic tree. PaaAC, which catalyzes the hydroxylation reaction, was purified and crystallized in the absence of a bound ligand as well as in complexes with CoA, 3-hydroxybutyryl-CoA, benzoyl-CoA and the true substrate phenylacetyl-CoA. Crystals of the ligand-free enzyme belonged to space group P2 1 2 1 2 1 and diffracted to 2.65 Å resolution, whereas complexes with CoA and its derivatives crystallized in space group P4 1 2 1 2 and diffracted to ∼2.0 Å resolution. PaaAC represents the first crystallized BMM hydroxylase that utilizes a CoA-linked substrate

  11. Crystal structure of N′-hydroxypyrimidine-2-carboximidamide

    Directory of Open Access Journals (Sweden)

    Nithianantham Jeeva Jasmine

    2014-10-01

    Full Text Available The title compound, C5H6N4O, is approximately planar, with an angle of 11.04 (15° between the planes of the pyrimidine ring and the non-H atoms of the carboximidamide unit. The molecule adopts an E configuration about the C=N double bond. In the crystal, adjacent molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with an R22(10 ring motif. The dimers are further linked via N—H...N and O—H...N hydrogen bonds into a sheet structure parallel to the ac plane. The crystal structure also features N—H...O and weak C—H...O hydrogen bonds and offset π–π stacking interactions between adjacent pyrimidine rings [centroid–centroid distance = 3.622 (1 Å].

  12. Assessment of Escherichia coli selenophosphate synthetase oligomeric states by analytical ultracentrifugation and small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Silva, I.R.; Faim, F.M.; Oliveira Neto, M.; Thiemann, O.H. [Universidade de Sao Paulo (USP-SC), Sao Carlos, SP (Brazil); Borges, J.C. [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2012-07-01

    Full text: Selenium is an essential micronutrient for many organisms and is present in selenium-containing proteins as selenocysteine (Sec) and RNAs as selenouridine. Specific selenium incorporation into selenoproteins and RNAs requires the generation of a biologically active selenium donor compound, selenophosphate, which is produced from the activation of selenide with adenosine 5-triphosphate (ATP) in a reaction catalyzed by Selenophosphate Synthetase (SELD). Therefore, SELD is a key enzyme of the selenium pathway in the cell. The Escherichia coli SELD open reading frame was cloned into pET28a (Novagen) expression vector and the recombinant protein was over expressed in Escherichia coli BL21(DE3) strain. In order to purify the protein, we used metal-chelate affinity chromatography followed by a gel filtration step. Analytical Ultracentrifugation (AUC) and Small Angle X-ray Scattering (SAXS) were employed to study the oligomeric states of the soluble protein. The results of AUC revealed dimer-tetramer and tetramer-octamer equilibrium at low concentrations of protein, with dissociation constants of 70 2 and 560 40 M, respectively. Moreover, the SAXS results pointed the oligomeric state of the protein at higher concentrations as predominantly dimeric and the p(r) and the SAXS envelope revealed the SELD as elongated. We also performed initial crystallization trials with protein samples at 7 mg/ml in 96-well sitting-drop crystallization plates at room temperature using a crystallization robot. Needle crystals appeared after some days. X-ray diffraction for these crystals were tested in the MX2 beamline at the Brazilian Synchrotron Laboratory (LNLS Campinas). We are now working to improve these crystals in order to obtain suitable crystals for structure determination. (author)

  13. Global chromosomal structural instability in a subpopulation of starving Escherichia coli cells.

    Directory of Open Access Journals (Sweden)

    Dongxu Lin

    2011-08-01

    Full Text Available Copy-number variations (CNVs constitute very common differences between individual humans and possibly all genomes and may therefore be important fuel for evolution, yet how they form remains elusive. In starving Escherichia coli, gene amplification is induced by stress, controlled by the general stress response. Amplification has been detected only encompassing genes that confer a growth advantage when amplified. We studied the structure of stress-induced gene amplification in starving cells in the Lac assay in Escherichia coli by array comparative genomic hybridization (aCGH, with polymerase chain reaction (pcr and DNA sequencing to establish the structures generated. About 10% of 300 amplified isolates carried other chromosomal structural change in addition to amplification. Most of these were inversions and duplications associated with the amplification event. This complexity supports a mechanism similar to that seen in human non-recurrent copy number variants. We interpret these complex events in terms of repeated template switching during DNA replication. Importantly, we found a significant occurrence (6 out of 300 of chromosomal structural changes that were apparently not involved in the amplification event. These secondary changes were absent from 240 samples derived from starved cells not carrying amplification, suggesting that amplification happens in a differentiated subpopulation of stressed cells licensed for global chromosomal structural change and genomic instability. These data imply that chromosomal structural changes occur in bursts or showers of instability that may have the potential to drive rapid evolution.

  14. Structural templating in a nonplanar phthalocyanine using single crystal copper iodide

    OpenAIRE

    Rochford, L. A. (Luke A.); Ramadan, Alexandra J.; Keeble, Dean S.; Ryan, Mary P.; Heutz, Sandrine; Jones, T. S. (Tim S.)

    2015-01-01

    Solution-grown copper iodide crystals are used as substrates for the templated growth of the nonplanar vanadyl phthalocyanine using organic molecular beam deposition. Structural characterization reveals a single molecular orientation produced by the (111) Miller plane of the copper iodide crystals. These fundamental measurements show the importance of morphology and structure in templating interactions for organic electronics applications.

  15. Synthesis, crystal growth and characterization of bioactive material: 2- Amino-1H-benzimidazolium pyridine-3-carboxylate single crystal- a proton transfer molecular complex

    Science.gov (United States)

    Fathima, K. Saiadali; Kavitha, P.; Anitha, K.

    2017-09-01

    The 1:1 molecular adducts 2- Amino-1H-benzimidazolium pyridine-3-carboxylate (2ABPC) was synthesized and grown as single crystal where 2-aminobenzimidazole (ABI) acts as a donor and nicotinic acid (NA) acts as an acceptor. The presence of proton and carbon were predicted using 1H and 13C NMR spectral analysis. The molecular structure of the crystal was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R = 0.038 for 2469 reflections. The vibrational modes of functional group have been studied using FTIR and Raman spectroscopic analysis. The UV-Vis spectrum exhibited a visible band at 246 nm for 2ABPC due to the nicotinate anion of the molecule. Further, the antimicrobial activity of 2ABPC complex against B. subtilis, klebsiella pneumonia, Pseudomonas eruginos and E. coli pathogens was investigated. Minimum Inhibitory Concentration (MIC) for this crystal was obtained using UV spectrometer against MRSA pathogen. It was found that the benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of 2ABPC crystal.

  16. Crystal structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Meiying; Cooper, David; Grossoehmerb, Nickolas; Yu, Minmin; Hung, Li-Wei; Cieslik, Murcin; Derewendaro, Urszula; Lesley, Scott; Wilson, Ian; Giedrocb, David; Derewenda, Zygmunt

    2009-06-06

    The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged helix (WH) DNA-binding domains and diverse C-terminal, regulatory domains, which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all a-helical regulatory domains classified into two related Pfam families: FadR{_}C and FCD. Only two crystal structures of the FadR family members, i.e. the E. coli FadR protein and the LldR from C. glutamicum, have been described to date in literature. Here we describe the crystal structure of TM0439, a GntR regulator with an FCD domain, found in the Thermotoga maritima genome. The FCD domain is similar to that of the LldR regulator, and contains a buried metal binding site. Using atomic absorption spectroscopy and Trp fluorescence, we show that the recombinant protein contains bound Ni{sup 2+} ions, but it is able to bind Zn{sup 2+} with K{sub D} < 70 nM . We conclude that Zn{sup 2+} is the likely physiological metal, where it may perform either or both structural and regulatory roles. Finally, we compare the TM0439 structure to two other FadR family structures recently deposited by Structural Genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors.

  17. ORF Alignment: NC_004741 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available A64852.1| OrfUU ... pdb|1K4M|C Chain C, Crystal Structure Of E.Coli ... Nicotinic Acid Mononuc...B, Crystal ... Structure Of E.Coli Nicotinic Acid Mononucleotide ... Adenylyltransferase Compl...exed To Deamido-Nad pdb|1K4M|A ... Chain A, Crystal Structure Of E.Coli Nicotinic Acid ... Mon

  18. ORF Alignment: NC_000913 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available A64852.1| OrfUU ... pdb|1K4M|C Chain C, Crystal Structure Of E.Coli ... Nicotinic Acid Mononuc...B, Crystal ... Structure Of E.Coli Nicotinic Acid Mononucleotide ... Adenylyltransferase Compl...exed To Deamido-Nad pdb|1K4M|A ... Chain A, Crystal Structure Of E.Coli Nicotinic Acid ... Mon

  19. ORF Alignment: NC_004337 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available A64852.1| OrfUU ... pdb|1K4M|C Chain C, Crystal Structure Of E.Coli ... Nicotinic Acid Mononuc...B, Crystal ... Structure Of E.Coli Nicotinic Acid Mononucleotide ... Adenylyltransferase Compl...exed To Deamido-Nad pdb|1K4M|A ... Chain A, Crystal Structure Of E.Coli Nicotinic Acid ... Mon

  20. High-Q microwave resonators with a photonic crystal structure

    International Nuclear Information System (INIS)

    Schuster, M.

    2001-08-01

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  1. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  2. Crystallization Process of Protein Rv0731c from Mycobacterium Tuberculosis for a Successful Atomic Resolution Crystal Structure at 1.2 Angstrom

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang Cong

    2009-06-08

    Proteins are bio-macromolecules consisting of basic 20 amino acids and have distinct three-dimensional folds. They are essential parts of organisms and participate in every process within cells. Proteins are crucial for human life, and each protein within the body has a specific function, such as antibodies, contractile proteins, enzymes, hormonal proteins, structural proteins, storage proteins and transport proteins. Determining three-dimensional structure of a protein can help researchers discover the remarkable protein folding, binding site, conformation and etc, in order to understand well of protein interaction and aid for possible drug design. The research on protein structure by X-ray protein crystallography carried by Li-Wei Hung's research group in the Physical Bioscience Division at Lawrence Berkeley National Laboratory (LBNL) is focusing on protein crystallography. The research in this lab is in the process of from crystallizing the proteins to determining the three dimensional crystal structures of proteins. Most protein targets are selected from Mycobacterium Tuberculosis. TB (Tuberculosis) is a possible fatal infectious disease. By studying TB target protein can help discover antituberculer drugs, and find treatment for TB. The high-throughput mode of crystallization, crystal harvesting, crystal screening and data collection are applied to the research pipeline (Figure 1). The X-ray diffraction data by protein crystals can be processed and analyzed to result in a three dimensional representation of electron density, producing a detailed model of protein structure. Rv0731c is a conserved hypothetical protein with unknown function from Mycobacterium Tuberculosis. This paper is going to report the crystallization process and brief structure information of Rv0731c.

  3. Molecular Complex of Lumiflavin and 2-Aminobenzoic Acid : Crystal Structure, Crystal Spectra, and Solution Properties

    OpenAIRE

    Shieh, Huey-Sheng; Ghisla, Sandro; Hanson, Louise Karle; Ludwig, Martha L.; Nordman, Christer E.

    1981-01-01

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N402●C7H7N02●H2O)crystallizes from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 Å, c = 7.045 Å, α = 95.44°, β = 95.86°, and γ = 105.66°. The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating l...

  4. Synthesis, crystal structure, physicochemical properties of hydrogen bonded supramolecular assembly of N,N-diethylanilinium-3, 5-dinitrosalicylate crystal

    Science.gov (United States)

    Rajkumar, M.; Chandramohan, A.

    2017-12-01

    An organic salt, N,N-diethylanilinium 3,5-dinitrosalicylate was synthesized and single crystals grown by employing the slow solvent evaporation solution growth technique in methanol-acetone (1:1) mixture. The electronic transitions of the salt crystal were studied by UV-Visible spectrum. The optical transmittance window and lower wavelength cut-off of grown crystal have been identified by UV-Vis-NIR studies. The FT-IR spectrum was recorded to confirm the presence of various functional groups in the grown crystal. 1H and 13C NMR spectrum were recorded to establish the molecular structure of the title crystal. Single crystal X-ray diffraction data indicated that the crystal belongs to monoclinic crystal system with P21/n space group. The thermal stability of the crystal was established by TG/DTA studies. The mechanical properties of the grown crystal were studied by Vickers' microhardness technique. The dielectric studies indicated that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures.

  5. Investigation of melt structure and crystallization processes by high-temperature Raman spectroscopy method

    International Nuclear Information System (INIS)

    Voron'ko, Yu.K.; Kudryavtsev, A.B.; Osiko, V.V.; Sobol', A.A.

    1988-01-01

    A review of studies dealing with the melts of alkali, rare earth and other element phosphates, gallates, germanates, niobates and tungstates, which are carried out by the method of high-temperature Raman spectroscopy, is given. The effect of the melt structure on the mechanism of the substance cystallization is considered. It is shown that vitrification and supercooling of the melt, as well as its crystallization in the from of metastable structures, are related to the effect of nonconformity between the melt and crystal strucure. The effect of nonconformity between anion motives in the melt and crystal creates obstacles for equilibrium structure nucleation, which results in the formation mainly of metastable forms with lattice structure for from the structure of the melt, though cases of equilibrium phase crystallization are also possible. 37 refs.; 13 figs.; 2 tabs

  6. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    International Nuclear Information System (INIS)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group

  7. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    Energy Technology Data Exchange (ETDEWEB)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Roszak, Aleksander W. [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel, E-mail: daniel.walker@glasgow.ac.uk [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom)

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  8. Cleaved thioredoxin fusion protein enables the crystallization of poorly soluble ERα in complex with synthetic ligands

    International Nuclear Information System (INIS)

    Cura, Vincent; Gangloff, Monique; Eiler, Sylvia; Moras, Dino; Ruff, Marc

    2007-01-01

    A new crystallization strategy: the presence of cleaved thioredoxin fusion is critical for crystallization of the estrogen nuclear receptor ligand binding domain in complex with synthetic ligands. This novel technique should be regarded as an interesting alternative for crystallization of difficult proteins. The ligand-binding domain (LBD) of human oestrogen receptor α was produced in Escherichia coli as a cleavable thioredoxin (Trx) fusion in order to improve solubility. Crystallization trials with either cleaved and purified LBD or with the purified fusion protein both failed to produce crystals. In another attempt, Trx was not removed from the LBD after endoproteolytic cleavage and its presence promoted nucleation and subsequent crystal growth, which allowed the structure determination of two different LBD–ligand–coactivator peptide complexes at 2.3 Å resolution. This technique is likely to be applicable to other low-solubility proteins

  9. Crystallization and preliminary X ray analysis of nucleoside diphosphate kinase 1 from T. cruzi

    International Nuclear Information System (INIS)

    Gomez Barroso, J.A.; Aguilar, C.F.; Miranda, M.R.; Pereira, C.A.

    2009-01-01

    Introduction: Trypanosoma cruzi is the etiologic agent of Chagas disease. The Nucleoside diphosphate kinases (NDPKs) are enzymes involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform. The objective of this work is obtaining protein's crystals, diffract and process the data for tridimensional structure resolution. Materials and Methods: TcNDPK1 was expressed in E. coli as a fusion protein with Nterminal His-tag. TcNDPK1 was overexpressed and purified by FPLC. Crystallization was assayed by sitting drop and hanging drop vapor diffusion method. Crystals was frozen and diffracted on synchrotron x-ray radiation in Campinas (Brasil). The data set collected was reduced and merged using MOSFLM and SCALA programs. Results and Discussion: His-TcNDPK was overexpressed, purified and crystallized. The crystals are diffracted and collected the data to 3.5A. The crystals belong to the trigonal space group P3, with unit cell parameters a=127.94, b=127.84, c=275.49. Structure determination is under way. These results will provide relevant information that could be the first step in rational drug design for treating Chagas disease.(authors)

  10. Crystal structure representations for machine learning models of formation energies

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Felix [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Lindmaa, Alexander [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden; von Lilienfeld, O. Anatole [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Armiento, Rickard [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden

    2015-04-20

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations.

  11. Origin of the complex crystal structures of elements at intermediate pressure

    International Nuclear Information System (INIS)

    Ackland, G J; Macleod, I R

    2004-01-01

    We present a unifying theory for the observed complex structures of sp-bonded elements under pressure on the basis of nearly free electron picture. In the intermediate pressure regime, the dominant contribution to crystal structure arises from Fermi-surface Brillouin zone interactions-structures which allow this are favoured. This simple theory explains the observed crystal structures, transport properties and the evolution of internal and unit cell parameters with pressure and appears to hold for elements in groups I-VI. We illustrate it with experimental data for these elements and ab initio calculations for Li

  12. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  13. Purification, crystallization and preliminary X-ray diffraction analysis of the glyoxalase II from Leishmania infantum

    International Nuclear Information System (INIS)

    Trincão, José; Sousa Silva, Marta; Barata, Lídia; Bonifácio, Cecília; Carvalho, Sandra; Tomás, Ana Maria; Ferreira, António E. N.; Cordeiro, Carlos; Ponces Freire, Ana; Romão, Maria João

    2006-01-01

    A glyoxalase II from L. infantum was cloned, purified and crystallized and its structure was solved by X-ray crystallography. In trypanosomatids, trypanothione replaces glutathione in all glutathione-dependent processes. Of the two enzymes involved in the glyoxalase pathway, glyoxalase I and glyoxalase II, the latter shows absolute specificity towards trypanothione thioester, making this enzyme an excellent model to understand the molecular basis of trypanothione binding. Cloned glyoxalase II from Leishmania infantum was overexpressed in Escherichia coli, purified and crystallized. Crystals belong to space group C222 1 (unit-cell parameters a = 65.6, b = 88.3, c = 85.2 Å) and diffract beyond 2.15 Å using synchrotron radiation. The structure was solved by molecular replacement using the human glyoxalase II structure as a search model. These results, together with future detailed kinetic characterization using lactoyltrypanothione, should shed light on the evolutionary selection of trypanothione instead of glutathione by trypano-somatids

  14. Solution study of the Escherichia coli DNA polymerase III clamp loader reveals the location of the dynamic ψχ heterodimer

    Directory of Open Access Journals (Sweden)

    Farzaneh Tondnevis

    2015-09-01

    Full Text Available Several X-ray crystal structures of the E. coli core clamp loader containing the five core (δ′, δ, and three truncated γ subunits have been determined, but they lack the ψ and χ subunits. We report the first solution structure of the complete seven-subunit clamp loader complex using small angle X-ray scattering. This structure not only provides information about the location of the χ and ψ subunits but also provides a model of the dynamic nature of the clamp loader complex.

  15. Cellulose as an Architectural Element in Spatially Structured Escherichia coli Biofilms

    Science.gov (United States)

    Serra, Diego O.; Richter, Anja M.

    2013-01-01

    Morphological form in multicellular aggregates emerges from the interplay of genetic constitution and environmental signals. Bacterial macrocolony biofilms, which form intricate three-dimensional structures, such as large and often radially oriented ridges, concentric rings, and elaborate wrinkles, provide a unique opportunity to understand this interplay of “nature and nurture” in morphogenesis at the molecular level. Macrocolony morphology depends on self-produced extracellular matrix components. In Escherichia coli, these are stationary phase-induced amyloid curli fibers and cellulose. While the widely used “domesticated” E. coli K-12 laboratory strains are unable to generate cellulose, we could restore cellulose production and macrocolony morphology of E. coli K-12 strain W3110 by “repairing” a single chromosomal SNP in the bcs operon. Using scanning electron and fluorescence microscopy, cellulose filaments, sheets and nanocomposites with curli fibers were localized in situ at cellular resolution within the physiologically two-layered macrocolony biofilms of this “de-domesticated” strain. As an architectural element, cellulose confers cohesion and elasticity, i.e., tissue-like properties that—together with the cell-encasing curli fiber network and geometrical constraints in a growing colony—explain the formation of long and high ridges and elaborate wrinkles of wild-type macrocolonies. In contrast, a biofilm matrix consisting of the curli fiber network only is brittle and breaks into a pattern of concentric dome-shaped rings separated by deep crevices. These studies now set the stage for clarifying how regulatory networks and in particular c-di-GMP signaling operate in the three-dimensional space of highly structured and “tissue-like” bacterial biofilms. PMID:24097954

  16. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN− binding defined by EPR-based hybrid method

    Science.gov (United States)

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN−, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane. PMID:26817826

  17. Potassium and magnesium succinatouranilates – Synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, S.A., E-mail: serg.alex.novikov@gmail.com [Samara National Research University, 443086 Samara (Russian Federation); Grigoriev, M.S. [Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071 Moscow (Russian Federation); Serezhkina, L.B.; Serezhkin, V.N. [Samara National Research University, 443086 Samara (Russian Federation)

    2017-04-15

    Single crystal X-ray diffraction has been applied to determine the structures of two new uranyl coordination polymers: K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}] [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), where C{sub 4}H{sub 4}O{sub 4}{sup 2-} is succinate anion. Crystals of 1 and 2 contain polymeric complex anions [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} with the same A{sub 2}Q{sup 02}{sub 3} crystallochemical formula (A=UO{sub 2}{sup 2+}, Q{sup 02}=C{sub 4}O{sub 4}H{sub 4}{sup 2-}), and have layered (1) or chain (2) structure. It has been found, that conformation of succinate ions is one of the factors, which affects the structure of [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} anions. IR spectra of these new compounds are in good agreement with crystallographic data. Topological analysis of the uranium dicarboxylates with A{sub 2}Q{sup 02}{sub 3} crystallochemical formula has shown the presence of five isomers which differ from each other in coordination sequences and / or dimensionality. - Graphical abstract: Crystal structures of two new uranium(VI) coordination polymers with succinate linkers, namely K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}][(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), were determined by single-crystal XRD. Crystals of studied compounds are based on 2D or 1D structural units with the same composition and crystallochemical formula. Topological isomerism in A{sub 2}Q{sup 02}{sub 3} crystallochemical group and conformations of succinate anions in uranyl complexes are under discussion. - Highlights: • Two new uranium coordination polymers were synthesized. • Their structural units have the same composition and crystallochemical formula. • In spite the same composition and CCF dimensionality of units is different. • Structural features of uranyl CPs

  18. Structural characterization of CFA/III and Longus type IVb pili from enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Kolappan, Subramaniapillai; Roos, Justin; Yuen, Alex S W; Pierce, Owen M; Craig, Lisa

    2012-05-01

    The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 3(10)-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 3(10)-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.

  19. Molecular Dynamic Simulation of Space and Earth-Grown Crystal Structures of Thermostable T1 Lipase Geobacillus zalihae Revealed a Better Structure.

    Science.gov (United States)

    Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd

    2017-09-25

    Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.

  20. Crystallization and preliminary X-ray crystallographic studies of Mycobacterium tuberculosis CRP/FNR family transcription regulator

    International Nuclear Information System (INIS)

    Akif, Mohd; Akhter, Yusuf; Hasnain, Seyed E.; Mande, Shekhar C.

    2006-01-01

    The CRP/FNR family transcription factor from M. tuberculosis H37Rv has been crystallized in space group P2 1 2 1 2 1 in the absence of cAMP. The crystals show the presence of a dimeric molecule in the asymmetric unit. CRP/FNR family members are transcription factors that regulate the transcription of many genes in Escherichia coli and other organisms. Mycobacterium tuberculosis H37Rv contains a probable CRP/FNR homologue encoded by the open reading frame Rv3676. The deletion of this gene is known to cause growth defects in cell culture, in bone marrow-derived macrophages and in a mouse model of tuberculosis. The mycobacterial gene Rv3676 shares ∼32% sequence identity with prototype E. coli CRP. The structure of the protein might provide insight into transcriptional regulation in the pathogen by this protein. The M. tuberculosis CRP/FNR transcription regulator was crystallized in space group P2 1 2 1 2 1 , with unit-cell parameters a = 54.1, b = 84.6, c = 101.2 Å. The crystal diffracted to a resolution of 2.9 Å. Matthews coefficient and self-rotation function calculations reveal the presence of two monomers in the asymmetric unit

  1. Protein NMR Structures Refined with Rosetta Have Higher Accuracy Relative to Corresponding X-ray Crystal Structures

    Science.gov (United States)

    2014-01-01

    We have found that refinement of protein NMR structures using Rosetta with experimental NMR restraints yields more accurate protein NMR structures than those that have been deposited in the PDB using standard refinement protocols. Using 40 pairs of NMR and X-ray crystal structures determined by the Northeast Structural Genomics Consortium, for proteins ranging in size from 5–22 kDa, restrained Rosetta refined structures fit better to the raw experimental data, are in better agreement with their X-ray counterparts, and have better phasing power compared to conventionally determined NMR structures. For 37 proteins for which NMR ensembles were available and which had similar structures in solution and in the crystal, all of the restrained Rosetta refined NMR structures were sufficiently accurate to be used for solving the corresponding X-ray crystal structures by molecular replacement. The protocol for restrained refinement of protein NMR structures was also compared with restrained CS-Rosetta calculations. For proteins smaller than 10 kDa, restrained CS-Rosetta, starting from extended conformations, provides slightly more accurate structures, while for proteins in the size range of 10–25 kDa the less CPU intensive restrained Rosetta refinement protocols provided equally or more accurate structures. The restrained Rosetta protocols described here can improve the accuracy of protein NMR structures and should find broad and general for studies of protein structure and function. PMID:24392845

  2. Synthesis and Single Crystal X-Ray Structure Determination of 3,3',5 ...

    African Journals Online (AJOL)

    Single crystal structure determination at 100 K revealed needle-like crystals in an orthorhombic crystal system. The asymmetric unit of the cell consists of an isolated chloride ion, one half of a tetrahedral [MnCl4]2- anion, a [H2Me4bpz]2+ dication and one half of a molecule of water. Keywords: Crystal Engineering, Hydrogen ...

  3. Preparation and crystal structure of Ca4Sb2O

    International Nuclear Information System (INIS)

    Eisenmann, B.; Limartha, H.; Schaefer, H.

    1980-01-01

    The formerly described compound Ca 2 Sb is to be corrected to Ca 4 Sb 2 O as shown by X-ray diffractometer data of single crystals and neutron diffraction diagrams of powders. The compound crystallizes in the K 2 NiF 4 structure type. (orig.)

  4. The crystal structure and the phase transitions of pyridinium trifluoromethanesulfonate

    International Nuclear Information System (INIS)

    Jesariew, Dominik; Ilczyszyn, Maria M; Pietraszko, Adam

    2014-01-01

    The calorimetric and optical studies and the structural properties of pyridinium trifluoromethanesulfonate (abbreviated as PyHOTf) are reported. A sequence of four fully reversible solid–solid phase transitions, at 223.0, 309.0, 359.9 and 394.3 K, has been discovered. The phase transition sequence was confirmed by x-ray diffraction data. The crystal structures of three phases (V, IV and III) have been determined from the single crystal x-ray diffraction data. Structural properties of the high temperature phases are characterized using powder x-ray diffraction data measured in the 290–425 K temperature range. The structural changes triggered by the temperature change are discussed in relation to the phase transitions. Two low temperature phases (V and IV) belong to the P4 3 2 1 2 space group of the tetragonal system. The intermediate phases (III and II) are monoclinic and the prototype high temperature phase (I) is a pseudo-cubic (tetragonal) one. The low temperature phases (V and IV) are well ordered. The crystal structure of intermediate (III and II) and prototype (I) phases are characterized by high disorder of the pyridinium cations and triflate anions. (papers)

  5. An arc detector for neutron crystal structure investigations

    Energy Technology Data Exchange (ETDEWEB)

    Habib, N [Reactor and Neutron Physics Dept., Nuclear Research Center. AEA, Cairo (Egypt)

    1997-12-31

    An arc detector for neutron structure investigations of powder crystals using time-of-flight technique is described. In order to enable the measurement of integral intensity from about 1/4 of the Debye-Scherrer ring and for simplicity reasons, the scattering angle 20-90 degree was chosen and a special arc collimator was built. The arc collimator-detector had a divergency of about 20 minutes of arc, and the distance between detector-sample was 64 cm. Four {sup 3} He detectors were fixed on the arc of the collimator. Both efficiency and space sensitivity of the detector were determined using a point neutron source. Results of measurements show that parameters of the arc detector are acceptable for high resolution crystal structure investigations. 6 figs.

  6. Structural Analysis of the Active Site Geometry of N5-Carboxyaminoimidazole Ribonucleotide Synthetase from Escherichia coli

    International Nuclear Information System (INIS)

    Thoden, James B.; Holden, Hazel M.; Firestine, Steven M.

    2008-01-01

    N 5 -Carboxyaminoimidazole ribonucleotide synthetase (N 5 -CAIR synthetase) converts 5-aminoimidazole ribonucleotide (AIR), MgATP, and bicarbonate into N 5 -CAIR, MgADP, and P i . The enzyme is required for de novo purine biosynthesis in microbes yet is not found in humans suggesting that it represents an ideal and unexplored target for antimicrobial drug design. Here we report the X-ray structures of N 5 -CAIR synthetase from Escherichia coli with either MgATP or MgADP/P i bound in the active site cleft. These structures, determined to 1.6-(angstrom) resolution, provide detailed information regarding the active site geometry before and after ATP hydrolysis. In both structures, two magnesium ions are observed. Each of these is octahedrally coordinated, and the carboxylate side chain of Glu238 bridges them. For the structure of the MgADP/P i complex, crystals were grown in the presence of AIR and MgATP. No electron density was observed for AIR, and the electron density corresponding to the nucleotide clearly revealed the presence of ADP and P i rather than ATP. The bound P i shifts by approximately 3 (angstrom) relative to the γ-phosphoryl group of ATP and forms electrostatic interactions with the side chains of Arg242 and His244. Since the reaction mechanism of N 5 -CAIR synthetase is believed to proceed via a carboxyphosphate intermediate, we propose that the location of the inorganic phosphate represents the binding site for stabilization of this reactive species. Using the information derived from the two structures reported here, coupled with molecular modeling, we propose a catalytic mechanism for N 5 -CAIR synthetase.

  7. Atomic structures and mechanical properties of single-crystal GaN nanotubes

    International Nuclear Information System (INIS)

    Xu, B.; Lu, A.J.; Pan, B.C.; Yu, Q.X.

    2005-01-01

    An approach is proposed to theoretically construct a realistic single-crystal GaN nanotube at atomic scale. The generated atomic structures of the single-crystal GaN nanotubes match the structural aspects from experiment very well. Our energetic calculations show that a single-crystal GaN nanotube with [100]-oriented lateral facets is more stable than that with [110]-oriented lateral facets, when they have around the same wall thickness. For a specified orientation of the lateral facets on the single-crystal GaN nanotubes, the energetic stabilities of the tubes obey a P rule, in which P is the ratio of the number of four-coordinated atoms to the number of three-coordinated atoms. Furthermore, the Young's modulus of the considered GaN nanotubes decrease with increasing the ratio of the number of bulk atoms to the number of surface atoms in each type of tube. Our calculations and analysis demonstrate that the surface effect of a single-crystal nanotube enhances its Young's modulus significantly

  8. Cocrystals of kaempferol, quercetin and myricetin with 4,4‧-bipyridine: Crystal structures, analyses of intermolecular interactions and antibacterial properties

    Science.gov (United States)

    Zhang, Yu-Nan; Yin, He-Mei; Zhang, Yu; Zhang, Da-Jun; Su, Xin; Kuang, Hai-Xue

    2017-02-01

    With an aim to explore the interactions of Osbnd H⋯N between hydroxyl moiety of the flavonoids and the pyridyl ring of N-containing aromatic amines, three flavonols with varying B-ring-hydroxyl groups (kaempferol, quercetin, and myricetin) were selected to combine with 4,4‧-bipyridine. As a result, three new cocrystals of flavonols were obtained with a solution evaporation approach. These three cocrystals were characterized by single crystal X-ray diffraction, XPRD, IR and NMR methods. The resulting cocrystals were kaempferol: 4,4‧-bipyridine (2:1) (KAE·BPY·2H2O), quercetin: 4,4‧-bipyridine (1:1.5) (QUE·BPY), and myricetin: 4,4‧-bipyridine (1:2) (MYR·BPY·H2O). Structural analyses show that an array of hydrogen bonds and π-π stacking interactions interconnect the molecules to form a two-dimensional (2D) supramolecular layer in KAE·BPY·2H2O, QUE·BPY, and MYR·BPY·H2O. In the three cocrystals, they present as three different synthons-ⅠR88(58), Ⅳ R44(42) and, Ⅶ R66(29) with 4,4‧-bipyridine, respectively-which may yield a strategy for constructing the supramolecule. Cocrystals of flavonols combined with N-containing aromatic amines, 7-OH, B-ring-hydroxyl number and/or the location of the flavonols to play a significant part in extending the dimensionality of the cocrystals. The resulting motif formation and crystal packing in these flavonols cocrystals has combined with N-containing aromatic amines. Additionally, the antibacterial properties of the three cocrystals against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been investigated.

  9. Antibacterial activity against Escherichia coli and characterization of ZnO and ZnO–Al2O3 mixed oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Ertan Şahin

    2017-02-01

    Full Text Available In order to achieve better antibacterial water insoluble nanoparticles (Nanoparticles of ZnO and ZnO–Al2O3 were studied. ZnO–Al2O3 mixed oxide nanoparticles were produced from a solution containing Zn(AC2⋅2H2O and AlCl3 by Solvothermal method. The calcination process of the ZnO–Al2O3 composite nanoparticles brought forth polycrystalline one phase ZnO–Al2O3 nanoparticles of 30–50 nm in diameters. ZnO and ZnO–Al2O3 were crystallized into würtzite and rock salt structures, respectively. The structural properties of this sample were analyzed by XRD and compared with bulk case of these samples. Antibacterial effectiveness of the ZnO and ZnO–Al2O3 nanoparticles were tested against general Escherichia coli (E. coli ATCC 25922 and E. coli O157:H7 by measuring the growth through optical density and digital counting of live–dead cells. Minimum inhibitory concentration values against four representative bacteria along with E. coli O157:H7 were also obtained.

  10. Synthesis, Crystal Structure, and Biological Activity of cis/trans Amide Rotomers of (Z-N′-(2-Oxoindolin-3-ylideneformohydrazide

    Directory of Open Access Journals (Sweden)

    Hatem A. Abdel-Aziz

    2014-01-01

    Full Text Available (Z-N′-(2-Oxoindolin-3-ylideneformohydrazide (2 was synthesized by the reaction of (Z-3-hydrazonoindolin-2-one (1 with formic acid under reflux. The structure of 2 was characterized by IR, Mass, 1H NMR, and X-ray crystal structure determination. Interestingly, compound 2 appeared in DMSO-d6 as cis and trans amide rotomers in 25% and 75%, respectively. The X-ray analysis showed the Z geometrical isomer of 2 around –C=N– for cis and trans amide rotomers. The crystal of 2 belongs to monoclinic, space group P21/c, with a=4.5206 (1 Å, b=22.4747 (7 Å, c=17.3637 (5 Å, β=103.752 (1°, Z=8, V=1713.57 (8 Å3, Dc=1.467 Mg m−3, μ=0.11 mm−1, F(000=784, R=0.047, and wR=0.123 for 3798 observed reflections with I>2σ(I. Compound 2 exhibited a moderate activity in its antimicrobial evaluation against E. coli and P. aeruginosa and a good activity against S. aureus close to that of the standard drug ciprofloxacin. The in vitro anticancer activity of 2 was evaluated against two human tumor cell lines, namely, HepG2 hepatocellular carcinoma and MCF-7 breast cancer. HepG2 cancer cell line was more susceptible to compound 2 than MCF-7.

  11. Growth and structural, optical, and electrical properties of zincite crystals

    Science.gov (United States)

    Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.

    2013-03-01

    An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.

  12. Structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in a quaternary complex with a magnesium ion, NADPH and the antimalarial drug fosmidomycin

    International Nuclear Information System (INIS)

    Yajima, Shunsuke; Hara, Kodai; Iino, Daisuke; Sasaki, Yasuyuki; Kuzuyama, Tomohisa; Ohsawa, Kanju; Seto, Haruo

    2007-01-01

    The crystal structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) from Escherichia coli complexed with Mg 2+ , NADPH and fosmidomycin was determined at 2.2 Å resolution. The structure showed a well defined loop conformation at the active site of DXR. The crystal structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) from Escherichia coli complexed with Mg 2+ , NADPH and fosmidomycin was solved at 2.2 Å resolution. DXR is the key enzyme in the 2-C-methyl-d-erythritol 4-phosphate pathway and is an effective target of antimalarial drugs such as fosmidomycin. In the crystal structure, electron density for the flexible loop covering the active site was clearly observed, indicating the well ordered conformation of DXR upon substrate binding. On the other hand, no electron density was observed for the nicotinamide-ribose portion of NADPH and the position of Asp149 anchoring Mg 2+ was shifted by NADPH in the active site

  13. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Directory of Open Access Journals (Sweden)

    Catherine L Worth

    Full Text Available BACKGROUND: Up until recently the only available experimental (high resolution structure of a G-protein-coupled receptor (GPCR was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. METHODOLOGY: We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s for building a comparative molecular model. CONCLUSIONS: The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying

  14. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Science.gov (United States)

    Worth, Catherine L; Kleinau, Gunnar; Krause, Gerd

    2009-09-16

    Up until recently the only available experimental (high resolution) structure of a G-protein-coupled receptor (GPCR) was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s) to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s) for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s) for building a comparative molecular model. The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying suitable templates for GPCR homology modelling that will

  15. Visualization of Hyperconjugation and Subsequent Structural Distortions through 3D Printing of Crystal Structures.

    Science.gov (United States)

    Mithila, Farha J; Oyola-Reynoso, Stephanie; Thuo, Martin M; Atkinson, Manza Bj

    2016-01-01

    Structural distortions due to hyperconjugation in organic molecules, like norbornenes, are well captured through X-ray crystallographic data, but are sometimes difficult to visualize especially for those applying chemical knowledge and are not chemists. Crystal structure from the Cambridge database were downloaded and converted to .stl format. The structures were then printed at the desired scale using a 3D printer. Replicas of the crystal structures were accurately reproduced in scale and any resulting distortions were clearly visible from the macroscale models. Through space interactions or effect of through space hyperconjugation was illustrated through loss of symmetry or distortions thereof. The norbornene structures exhibits distortion that cannot be observed through conventional ball and stick modelling kits. We show that 3D printed models derived from crystallographic data capture even subtle distortions in molecules. We translate such crystallographic data into scaled-up models through 3D printing.

  16. Simulation and design of the photonic crystal microwave accelerating structure

    International Nuclear Information System (INIS)

    Song Ruiying; Wu Congfeng; He Xiaodong; Dong Sai

    2007-01-01

    The authors have derived the global band gaps for general two-dimensional (2D) photonic crystal microwave accelerating structures formed by square or triangular arrays of metal posts. A coordinate-space, finite-difference code was used to calculate the complete dispersion curves for the lattices. The fundamental and higher frequency global photonic band gaps were determined numerically. The structure formed by triangular arrays of metal posts with a missing rod at the center has advantages of higher-order-modes (HOM) suppression and main mode restriction under the condition of a/b<0.2. The relationship between the RF properties and the geometrical parameters have been studied for the 9.37 GHz photonic crystal accelerating structure. The Rs, Q, Rs/Q of the new structure may be comparable to the disk-loaded accelerating structure. (authors)

  17. Crystal structure of calcioburbankite and the characteristic features of the burbankite structure type

    International Nuclear Information System (INIS)

    Belovitskaya, Yu.V.; Pekov, I.V.; Gobechiya, E.R.; Kabalov, Yu.K.; Subbotin, V.V.

    2001-01-01

    The crystal structure of calcioburbankite (Na,Ca) 3 (Ca,RE,Sr,Ba) 3 (CO 3 ) 5 found in carbonatites from Vuoriyarvi (North Kareliya) was solved by the Rietveld method. The experimental data were collected on an ADP-2 diffractometer (λCuK α radiation; Ni filter; 16.00 deg. 1 + α 2 ) reflections was 455). All the calculations were performed within the sp. gr. P6 3 mc; a = 10.4974(1) A, c = 6.4309(1) A, V = 613.72(1) A 3 ; R wp = 2.49%. The structure was refined with the use of the anisotropic thermal parameters for the (Na,Ca) and (Sr,Ba,Ce) cations. The comparison of the crystal structures of all of the known hexagonal representatives of the burbankite family demonstrates that the burbankite structure type (sp. gr. P6 3 mc) is stable, irrespectively of the occupancy of the ten-vertex polyhedra predominantly with Ca, Sr, or Ba cations and the occupancies of the positions in the eight-vertex polyhedra

  18. Synthesis, crystal structure and Thermogravimetry of ortho-phthalic ...

    Indian Academy of Sciences (India)

    satisfied by two chelated carboxylates while fifth and sixth co-ordination positions are satisfied by monodentate ... Keywords. o-Phthalic acid; coordination polymer; X-ray crystal structure; Copper(II); EPR; TGA. 1. .... Absorption coefficient.

  19. GPCR crystal structures: Medicinal chemistry in the pocket.

    Science.gov (United States)

    Shonberg, Jeremy; Kling, Ralf C; Gmeiner, Peter; Löber, Stefan

    2015-07-15

    Recent breakthroughs in GPCR structural biology have significantly increased our understanding of drug action at these therapeutically relevant receptors, and this will undoubtedly lead to the design of better therapeutics. In recent years, crystal structures of GPCRs from classes A, B, C and F have been solved, unveiling a precise snapshot of ligand-receptor interactions. Furthermore, some receptors have been crystallized in different functional states in complex with antagonists, partial agonists, full agonists, biased agonists and allosteric modulators, providing further insight into the mechanisms of ligand-induced GPCR activation. It is now obvious that there is enormous diversity in the size, shape and position of the ligand binding pockets in GPCRs. In this review, we summarise the current state of solved GPCR structures, with a particular focus on ligand-receptor interactions in the binding pocket, and how this can contribute to the design of GPCR ligands with better affinity, subtype selectivity or efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The use of radionuclides for the study of crystal structure of solids

    International Nuclear Information System (INIS)

    Jech, C.

    1976-01-01

    It is well known that by the coordinated action of atoms arranged in rows and planes in the crystal lattice, the motion of charged particles such as protons, alpha particles and heavier ions can be influenced so that their range in the single crystals is considerably enhanced in low-index directions. A technique has been developed based on such enhanced penetration (channeling) of radioactive atoms ( 220 Rn) emitted by recoil with a 100 keV energy from a 224 Ra point source to record channeling patterns which show the crystal structure. The radioactive recoil atoms impinging from this source on the surface of a single crystal penetrate deeper in places where their direction of impact is identical with low index crystal directions and planes. These places can be visualized by autoradiography when having first stripped a thin layer from the surface corresponding to the random range of the atoms. This technique is generally applicable in close packed crystals and gives information about the crystal structure of very thin surface layers. (author)

  1. CCDC 1048727: Experimental Crystal Structure Determination : bis(2-(hydroxyimino)propanoato)-tin(ii)

    KAUST Repository

    Khanderi, Jayaprakash; Davaasuren, Bambar; Alshankiti, Buthainah; Rothenberger, Alexander

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. CCDC 1515632: Experimental Crystal Structure Determination : hexakis(dimethyl sulfoxide)-manganese(ii) tetraiodide

    KAUST Repository

    Haque, M.A.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. CCDC 1429311: Experimental Crystal Structure Determination : N-(5-Bromoquinolin-8-yl)benzamide

    KAUST Repository

    Xu, Jun; Shen, Chao; Zhu, Xiaolei; Zhang, Pengfei; Ajitha, Manjaly John; Huang, Kuo-Wei; An, Zhongfu; Liu, Xiaogang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  4. CCDC 1427126: Experimental Crystal Structure Determination : bis(1,10-Phenanthroline)-copper pentafluoropropanoate

    KAUST Repository

    Huang, Yangjie

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    International Nuclear Information System (INIS)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan

    2012-01-01

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, 1 H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  6. Moessbauer determination of magnetic structure of Fe3BO6 crystal

    International Nuclear Information System (INIS)

    Kovalenko, P.P.; Labushkin, V.G.; Ovsepyan, A.K.; Sarkisov, Eh.R.; Smirnov, E.V.; Prokopov, A.R.; Seleznev, V.N.

    1984-01-01

    The magnetic structure of a Fe 3 BO 6 crystal belonging to space group Dsub(2h)sup(16)(Psub(nma)) is determined by the Moessbauer γ-radiation diffraction. The bragg reflection (700) of Moessbauer 14.4 keV γ-quanta from the Fe 3 BO 6 monocrystal has been studied experimentally. A high sensitivity of the interference of γ-quantum diffraction scattering on Fe nuclei being in crystallographically non-equivalent 8d- and 4s-positions to the type of magnetic ordering in the crystal is used for determination of the magnetic structure. Agreement of the experimental results with the theoretical calculations, conducted for types of magnetic ordering resolved by the symmetry of the crystal, permitted to reliably determine the magnetic structure of this compound. The results obtained confirm the data of neutrondiffraction studies on magnetic ordering in Fe 3 BO 6 . Advantages of the Moessbauer-diffraction study, as compared to the magnetic neutrondiffraction method, in particular, for investigation of crystals, in which the hyperfine magnetic fields on Fe nuclei have different values, are revealed and discussed in detail

  7. Purification, crystallization and preliminary X-ray diffraction analysis of human Gadd45γ

    International Nuclear Information System (INIS)

    Zhang, Wenzheng; Zhao, Mingzhuo; Li, Jianhui; Li, Xuemei; Zeng, ZongHao; Rao, Zihe

    2008-01-01

    The human Gadd45γ protein has been crystallized as a prelude towards determination of its three-dimensional structure by X-ray crystallography. Gadd45, MyD118 and CR6 (also termed Gadd45α, Gadd45β and Gadd45γ, respectively) comprise a family of proteins that play important roles in negative growth control, maintenance of genomic stability, DNA repair, cell-cycle control and apoptosis. Recombinant human Gadd45γ and its selenomethionine derivative were expressed in an Escherichia coli expression system and purified; they were then crystallized using the hanging-drop vapour-diffusion method. Diffraction-quality crystals were grown at 291 K using PEG 3350 as precipitant. Using synchrotron radiation, the best diffraction data were collected to 2.3 Å resolution for native crystals at 100 K; selenomethionyl derivative data were collected to 3.3 Å resolution. All the crystals belonged to space group I2 1 3, with approximate unit-cell parameters a = b = c = 126 Å

  8. Rapid X-ray crystal structure analysis in few second measurements using microstrip gas chamber

    CERN Document Server

    Ochi, A; Tanimori, T; Ohashi, Y; Toyokawa, H; Nishi, Y; Nishi, Y; Nagayoshi, T; Koishi, S

    2001-01-01

    X-ray crystal structure analysis using microstrip gas chamber was successfully carried out in a measurement time within a few seconds. The continuous rotation photograph method, in which most of the diffraction peaks can be obtained within one continuous rotation of the sample crystal (without stopping or oscillation), was applied for this measurement. As an example, the structure of a single crystal of ammonium bitartrate (r=1 mm, spherical) was measured. Diffraction spots from the sample, which were sufficient to obtain crystal structure, were successfully obtained by taking only 2 s measurements with a commercially available laboratory X-ray source.

  9. Welcome to Crystals: A New Open-Access, Multidisciplinary Forum for Growth, Structures and Properties of Crystals

    Directory of Open Access Journals (Sweden)

    Gerd Meyer

    2010-12-01

    Full Text Available The majority of the earth’s crust is made up of crystalline material. The research areas of mineralogy, petrology, chimie minerále (inorganic chemistry and, of course, crystallography outgrew from the fascination of mankind with the color and symmetry of crystals. Crystals have translational symmetry in two or three dimensions, quasicrystals have translational symmetry in higher spaces. Further symmetries may be observed by the eye, by microscopic techniques or by the diffraction of X-ray, electron, or neutron beams. Diffraction techniques are also used, due to Max von Laue’s eminent discovery a century ago, to determine crystal structures. [...

  10. The Crystal Structure of Streptococcus pyogenes Uridine Phosphorylase Reveals a Distinct Subfamily of Nucleoside Phosphorylases

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Timothy H.; Christoffersen, S.; Allan, Paula W.; Parker, William B.; Piskur, Jure; Serra, I.; Terreni, M.; Ealick, Steven E. (Cornell); (Pavia); (Lund); (Southern Research)

    2011-09-20

    Uridine phosphorylase (UP), a key enzyme in the pyrimidine salvage pathway, catalyzes the reversible phosphorolysis of uridine or 2'-deoxyuridine to uracil and ribose 1-phosphate or 2'-deoxyribose 1-phosphate. This enzyme belongs to the nucleoside phosphorylase I superfamily whose members show diverse specificity for nucleoside substrates. Phylogenetic analysis shows Streptococcus pyogenes uridine phosphorylase (SpUP) is found in a distinct branch of the pyrimidine subfamily of nucleoside phosphorylases. To further characterize SpUP, we determined the crystal structure in complex with the products, ribose 1-phosphate and uracil, at 1.8 {angstrom} resolution. Like Escherichia coli UP (EcUP), the biological unit of SpUP is a hexamer with an ?/? monomeric fold. A novel feature of the active site is the presence of His169, which structurally aligns with Arg168 of the EcUP structure. A second active site residue, Lys162, is not present in previously determined UP structures and interacts with O2 of uracil. Biochemical studies of wild-type SpUP showed that its substrate specificity is similar to that of EcUP, while EcUP is {approx}7-fold more efficient than SpUP. Biochemical studies of SpUP mutants showed that mutations of His169 reduced activity, while mutation of Lys162 abolished all activity, suggesting that the negative charge in the transition state resides mostly on uracil O2. This is in contrast to EcUP for which transition state stabilization occurs mostly at O4.

  11. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    Science.gov (United States)

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.

  12. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    Science.gov (United States)

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  13. Crystallization and preliminary X-ray analysis of recombinant Glomerella cingulata cutinase.

    Science.gov (United States)

    Nyon, Mun Peak; Rice, David W; Berrisford, John M; Huang, Huazhang; Moir, Arthur J G; Craven, C Jeremy; Nathan, Sheila; Mahadi, Nor Muhammad; Abu Bakar, Farah Diba

    2008-06-01

    Cutinase catalyzes the hydrolysis of water-soluble esters and long-chain triglycerides and belongs to the family of serine hydrolases. The enzyme is thought to represent an evolutionary link between the esterase and lipase families and has potential applications in a wide range of industrial hydrolytic processes, for which an understanding of the molecular basis of its substrate specificity is critical. Glomerella cingulata cutinase has been cloned and the protein has been overexpressed in Escherichia coli, purified and subsequently crystallized in a wide range of different crystal forms in the presence and absence of inhibitors. The best crystals are those of the apo cutinase, which diffract to beyond 1.6 A resolution and belong to space group P4(1)2(1)2 or P4(3)2(1)2. Crystals of cutinase with the inhibitors PETFP or E600 belong to space groups P2(1)2(1)2(1) and P2(1), respectively, and diffract to approximately 2.5 A resolution. All of the crystals are suitable for structural studies, which are currently ongoing.

  14. Crystallization and structure of chromium cast iron with addition of Mo and Ni

    International Nuclear Information System (INIS)

    Pietrowski, S.

    1998-01-01

    The aim of the presented paper is to show the results of examination of the crystallization process using the method of thermal-derivative analysis (ATD) and the structure examination of chromium cast iron, chromium molybdenum c. i. and chromium molybdenum nickel c.i. It was found that molybdenum in amount over 2 wt % causes the crystallization of eutectic carbides M 23 C 6 and M 6 C. The M 23 C 6 carbide crystallizes upon the crystallization of eutectic carbides M 3 C and M 7 C 3 . It is shown that ATD method facilitates both interpretation and control of the crystallization as well as formation of the cast iron structure at the solid state. (author)

  15. Crystal structure, growth and nonlinear optical studies of isonicotinamide p-nitrophenol: A new organic crystal for optical limiting applications

    Science.gov (United States)

    Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.

    2016-08-01

    Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.

  16. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  17. Crystal Structure of a Eukaryotic GEN1 Resolving Enzyme Bound to DNA

    Directory of Open Access Journals (Sweden)

    Yijin Liu

    2015-12-01

    Full Text Available We present the crystal structure of the junction-resolving enzyme GEN1 bound to DNA at 2.5 Å resolution. The structure of the GEN1 protein reveals it to have an elaborated FEN-XPG family fold that is modified for its role in four-way junction resolution. The functional unit in the crystal is a monomer of active GEN1 bound to the product of resolution cleavage, with an extensive DNA binding interface for both helical arms. Within the crystal lattice, a GEN1 dimer interface juxtaposes two products, whereby they can be reconnected into a four-way junction, the structure of which agrees with that determined in solution. The reconnection requires some opening of the DNA structure at the center, in agreement with permanganate probing and 2-aminopurine fluorescence. The structure shows that a relaxation of the DNA structure accompanies cleavage, suggesting how second-strand cleavage is accelerated to ensure productive resolution of the junction.

  18. Low resolution solution structure of the Apo form of Escherichia coli haemoglobin protease Hbp.

    NARCIS (Netherlands)

    scott, D.J.; Grossman, J.G.; Tame, J.R.H.; Byron, O.; Wilson, K.S.; Otto, B.R.

    2002-01-01

    We have studied the solution properties of the apo form of the haemoglobin protease or "haemoglobinase", Hbp, a principal component of an important iron acquisition system in pathogenic Escherichia coli. Experimental determination of secondary structure content from circular dichroism (CD)

  19. The crystal structure of the phosphatidylinositol 4-kinase IIalpha

    Czech Academy of Sciences Publication Activity Database

    Bäumlová, Adriana; Chalupská, Dominika; Rozycki, B.; Jovic, M.; Wisniewski, E.; Klíma, Martin; Dubánková, Anna; Kloer, D. P.; Nencka, Radim; Balla, T.; Bouřa, Evžen

    2015-01-01

    Roč. 22, č. 1 (2015), s. 5 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : PI4K IIalpha * crystal structure Subject RIV: CE - Biochemistry

  20. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  1. Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure

    International Nuclear Information System (INIS)

    Eliziario Nunes, Sayonara; Wang, Chun-Hai; So, Karwei; Evans, John S.O.; Evans, Ivana Radosavljević

    2015-01-01

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn 2 VO 6 , known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn 2 VO 6 adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO 4 tetrahedra, ZnO 6 octahedra and VO 4 tetrahedra, and Bi 2 O 12 dimers. It is the only known member of the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn 2 VO 6 , calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn 2 VO 6 , a new structure type in the BiM 2 AO 6 (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation

  2. Cloning, production, and purification of proteins for a medium-scale structural genomics project.

    Science.gov (United States)

    Quevillon-Cheruel, Sophie; Collinet, Bruno; Trésaugues, Lionel; Minard, Philippe; Henckes, Gilles; Aufrère, Robert; Blondeau, Karine; Zhou, Cong-Zhao; Liger, Dominique; Bettache, Nabila; Poupon, Anne; Aboulfath, Ilham; Leulliot, Nicolas; Janin, Joël; van Tilbeurgh, Herman

    2007-01-01

    The South-Paris Yeast Structural Genomics Pilot Project (http://www.genomics.eu.org) aims at systematically expressing, purifying, and determining the three-dimensional structures of Saccharomyces cerevisiae proteins. We have already cloned 240 yeast open reading frames in the Escherichia coli pET system. Eighty-two percent of the targets can be expressed in E. coli, and 61% yield soluble protein. We have currently purified 58 proteins. Twelve X-ray structures have been solved, six are in progress, and six other proteins gave crystals. In this chapter, we present the general experimental flowchart applied for this project. One of the main difficulties encountered in this pilot project was the low solubility of a great number of target proteins. We have developed parallel strategies to recover these proteins from inclusion bodies, including refolding, coexpression with chaperones, and an in vitro expression system. A limited proteolysis protocol, developed to localize flexible regions in proteins that could hinder crystallization, is also described.

  3. Crystal structure of the enzyme-product complex reveals sugar ring distortion during catalysis by family 63 inverting α-glycosidase.

    Science.gov (United States)

    Miyazaki, Takatsugu; Nishikawa, Atsushi; Tonozuka, Takashi

    2016-12-01

    Glycoside hydrolases are divided into two groups, known as inverting and retaining enzymes, based on their hydrolytic mechanisms. Glycoside hydrolase family 63 (GH63) is composed of inverting α-glycosidases, which act mainly on α-glucosides. We previously found that Escherichia coli GH63 enzyme, YgjK, can hydrolyze 2-O-α-d-glucosyl-d-galactose. Two constructed glycosynthase mutants, D324N and E727A, which catalyze the transfer of a β-glucosyl fluoride donor to galactose, lactose, and melibiose. Here, we determined the crystal structures of D324N and E727A soaked with a mixture of glucose and lactose at 1.8- and 2.1-Å resolutions, respectively. Because glucose and lactose molecules are found at the active sites in both structures, it is possible that these structures mimic the enzyme-product complex of YgjK. A glucose molecule found at subsite -1 in both structures adopts an unusual 1 S 3 skew-boat conformation. Comparison between these structures and the previously determined enzyme-substrate complex structure reveals that the glucose pyranose ring might be distorted immediately after nucleophilic attack by a water molecule. These structures represent the first enzyme-product complex for the GH63 family, as well as the structurally-related glycosidases, and it may provide insight into the catalytic mechanism of these enzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Free-standing nanomechanical and nanophotonic structures in single-crystal diamond

    Science.gov (United States)

    Burek, Michael John

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast

  5. Crystallization and preliminary X-ray crystallographic analysis of a highly specific serpin from the beetle Tenebrio molitor

    Science.gov (United States)

    Park, Sun Hee; Piao, Shunfu; Kwon, Hyun-Mi; Kim, Eun-Hye; Lee, Bok Luel; Ha, Nam-Chul

    2010-01-01

    The Toll signalling pathway, which is crucial for innate immunity, is transduced in insect haemolymph via a proteolytic cascade consisting of three serine proteases. The proteolytic cascade is downregulated by a specific serine protease inhibitor (serpin). Recently, the serpin SPN48 was found to show an unusual specific reactivity towards the terminal serine protease, Spätzle-processing enzyme, in the beetle Tenebrio molitor. In this study, the mature form of SPN48 was overexpressed in Escherichia coli and purified. The purified SPN48 protein was crystallized using 14% polyethylene glycol 8000 and 0.1 M 2-(N-morpho­lino)ethanesulfonic acid pH 6.0 as the precipitant. The crystals diffracted X-rays to 2.1 Å resolution and were suitable for structure determination. The crystals belonged to space group P21. The crystal structure will provide information regarding how SPN48 achieves its unusual specificity for its target protease. PMID:20124722

  6. Expression, purification, crystallization and preliminary X-ray analysis of rice (Oryza sativa L.) Os4BGlu12 β-glucosidase

    International Nuclear Information System (INIS)

    Sansenya, Sompong; Ketudat Cairns, James R.; Opassiri, Rodjana

    2010-01-01

    Recombinant rice Os4BGlu12 β-glucosidase purified from E. coli was crystallized with and without 2,4-dinitrophenyl-2-deoxy-2-fluoro-β-d-glucopyranoside. Rice (Oryza sativa L.) Os4BGlu12, a glycoside hydrolase family 1 β-glucosidase (EC 3.2.1.21), was expressed as a fusion protein with an N-terminal thioredoxin/His 6 tag in Escherichia coli strain Origami B (DE3) and purified with subsequent removal of the N-terminal tag. Native Os4BGlu12 and its complex with 2,4-dinitrophenyl-2-deoxy-2-fluoro-β-d-glucopyranoside (DNP2FG) were crystallized using 19% polyethylene glycol (3350 or 2000, respectively) in 0.1 M Tris–HCl pH 8.5, 0.16 M NaCl at 288 K. Diffraction data sets for the apo and inhibitor-bound forms were collected to 2.50 and 2.45 Å resolution, respectively. The space group and the unit-cell parameters of the crystal indicated the presence of two molecules per asymmetric unit, with a solvent content of 50%. The structure of Os4BGlu12 was successfully solved in space group P4 3 2 1 2 by molecular replacement using the white clover cyanogenic β-glucosidase structure as a search model

  7. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  8. Effect of crystal structure on optical properties of sol–gel derived zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: xiaodong_wang@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Wu, Guangming; Zhou, Bin [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Shen, Jun, E-mail: shenjun67@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China)

    2013-04-15

    Highlights: ► ZrO{sub 2} films were deposited by sol–gel method. ► Crystal structures of the films were tuned by different thermal annealing methods. ► The refractive indices vary with the crystal structures of the films. ► Lattice-mismatch was found to reduce the refractive index of ZrO{sub 2} films. -- Abstract: The optical properties of sol–gel derived zirconia thin films and their relation to the crystal structure are studied in this paper. ZrO{sub 2} films were deposited on quartz glass and silicon wafer substrates by sol–gel method with conventional furnace annealing (CFA) and rapid thermal annealing (RTA). Crystal structures of the films were analyzed by X-ray diffraction (XRD) and Raman spectroscopy, while refractive indices of the films were determined from the reflectance and transmittance spectra. The refractive indices vary with the function of crystal structure and density of the films, which depends on annealing temperature and annealing technique. Lattice-mismatch between monoclinic phase and tetragonal phase was found to reduce the refractive index of ZrO{sub 2} films.

  9. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  10. Band structures in Sierpinski triangle fractal porous phononic crystals

    International Nuclear Information System (INIS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-01-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  11. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  12. Synthesis and Crystal Structure of 1-Chloro-2-methyl-4-nitrobenzene

    Directory of Open Access Journals (Sweden)

    Jim Simpson

    2012-03-01

    Full Text Available The title compound (3 was prepared from 4-chloroaniline in good yield on successive oxidation and methylation and its crystal and molecular structure is reported. The compound crystallizes in the monoclinic space group P 21/n with unit cell dimensions a = 13.5698(8, b = 3.7195 (3, c = 13.5967 (8 Å, ß = 91.703(3 °, V = 685.96 (10 Å3. The molecule is essentially planar with a dihedral angle of 6.2(3 ° between the nitro group and the phenyl ring. The crystal structure is stabilised by π...π contacts between adjacent benzene rings together with C–H...O hydrogen bonds and close Cl...O contacts.

  13. Structure of single-chain single crystals of isotactic polystyrene and their radiation resistance

    International Nuclear Information System (INIS)

    Bu Haishan; Cao Jie; Xu Shengyong; Zhang Ze

    1997-01-01

    The structure of the single-chain single crystals of isotactic polystyrene (i-PS) was investigated by electron diffraction (ED) and high resolution electron microscopy (HREM). The nano-scale single-chain single crystals were found to be very stable to electron irradiation. According to the unit cell of i-PS crystals, the reflection rings in ED pattern and the lattice fringes in HREM images could be indexed, but the lower-index diffractions were not found. It is proposed that the single-chain single crystals are very small, thus secondary electrons may be allowed to escape and radiation damage is highly reduced, and that there are less lower-index lattice planes in the single-chain single crystals to provide sufficient diffraction intensity for recording. HREM images can be achieved at room temperature in the case of single-chain single crystals because of its stability to electron irradiation, therefore, this might be a novel experimental approach to the study of crystal structure of macromolecules

  14. Crystal Structure of Tetragonal Form of La2NiO4+x

    Science.gov (United States)

    Kajitani, Tsuyoshi; Hosoya, Syoichi; Hirabayashi, Makoto; Fukuda, Tsuguo; Onozuka, Takashi

    1989-10-01

    The crystal structure of the title oxide was studied by means of the X-ray and neutron single crystal diffraction measurements. At room temperature, the tetragonal crystal structure is P42/ncm-type (No. 138), which is one of the subgroup of the space group I4/mmm. The lattice parameters of a sample annealed and slowly cooled in oxygen atmosphere from 673 K are a{=}b{=}5.4640(1) Å and c{=}12.6719(2) Å, while the oxygen content, x{=}0.10(4), was determined from obtained neutron data. The title oxide undergoes a tetragonal (P42/ncm)/tetragonal (I4/mmm) phase transition at about 560 K. The transition temperature is almost identical both in the annealed and as-grown crystals.

  15. Crystallization and preliminary X-ray diffraction studies of polyketide synthase-1 (PKS-1) from Cannabis sativa

    International Nuclear Information System (INIS)

    Taguchi, Chiho; Taura, Futoshi; Tamada, Taro; Shoyama, Yoshinari; Shoyama, Yukihiro; Tanaka, Hiroyuki; Kuroki, Ryota; Morimoto, Satoshi

    2008-01-01

    Polyketide synthase-1 from C. sativa has been crystallized. The crystal diffracted to 1.55 Å resolution with sufficient quality for further structure determination. Polyketide synthase-1 (PKS-1) is a novel type III polyketide synthase that catalyzes the biosynthesis of hexanoyl triacetic acid lactone in Cannabis sativa (Mexican strain). PKS-1 was overproduced in Escherichia coli, purified and finally crystallized in two different space groups. The crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M calcium acetate and 20%(w/v) polyethylene glycol 3350 diffracted to 1.65 Å resolution and belonged to space group P1, with unit-cell parameters a = 54.3, b = 59.3, c = 62.6 Å, α = 69, β = 81, γ = 80°. Another crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M sodium chloride and 20%(w/v) polyethylene glycol 3350 diffracted to 1.55 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 54.3, b = 110, c = 130 Å. These data will enable us to determine the crystal structure of PKS-1

  16. Crystallization and preliminary X-ray diffraction studies of polyketide synthase-1 (PKS-1) from Cannabis sativa

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Chiho [Faculty of Pharmaceutical Sciences, Kyushu University (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency (Japan); Taura, Futoshi [Faculty of Pharmaceutical Sciences, Kyushu University (Japan); Tamada, Taro; Shoyama, Yoshinari [Quantum Beam Science Directorate, Japan Atomic Energy Agency (Japan); Shoyama, Yukihiro; Tanaka, Hiroyuki [Faculty of Pharmaceutical Sciences, Kyushu University (Japan); Kuroki, Ryota [Quantum Beam Science Directorate, Japan Atomic Energy Agency (Japan); Morimoto, Satoshi [Faculty of Pharmaceutical Sciences, Kyushu University (Japan)

    2008-03-01

    Polyketide synthase-1 from C. sativa has been crystallized. The crystal diffracted to 1.55 Å resolution with sufficient quality for further structure determination. Polyketide synthase-1 (PKS-1) is a novel type III polyketide synthase that catalyzes the biosynthesis of hexanoyl triacetic acid lactone in Cannabis sativa (Mexican strain). PKS-1 was overproduced in Escherichia coli, purified and finally crystallized in two different space groups. The crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M calcium acetate and 20%(w/v) polyethylene glycol 3350 diffracted to 1.65 Å resolution and belonged to space group P1, with unit-cell parameters a = 54.3, b = 59.3, c = 62.6 Å, α = 69, β = 81, γ = 80°. Another crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M sodium chloride and 20%(w/v) polyethylene glycol 3350 diffracted to 1.55 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 54.3, b = 110, c = 130 Å. These data will enable us to determine the crystal structure of PKS-1.

  17. Machine learning for the structure-energy-property landscapes of molecular crystals.

    Science.gov (United States)

    Musil, Félix; De, Sandip; Yang, Jack; Campbell, Joshua E; Day, Graeme M; Ceriotti, Michele

    2018-02-07

    Molecular crystals play an important role in several fields of science and technology. They frequently crystallize in different polymorphs with substantially different physical properties. To help guide the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the stable polymorphs and to predict their properties, as well as to propose heuristic rules to rationalize the correlations between crystal structure and materials properties. Here we show how a recently-developed machine-learning (ML) framework can be used to achieve inexpensive and accurate predictions of the stability and properties of polymorphs, and a data-driven classification that is less biased and more flexible than typical heuristic rules. We discuss, as examples, the lattice energy and property landscapes of pentacene and two azapentacene isomers that are of interest as organic semiconductor materials. We show that we can estimate force field or DFT lattice energies with sub-kJ mol -1 accuracy, using only a few hundred reference configurations, and reduce by a factor of ten the computational effort needed to predict charge mobility in the crystal structures. The automatic structural classification of the polymorphs reveals a more detailed picture of molecular packing than that provided by conventional heuristics, and helps disentangle the role of hydrogen bonded and π-stacking interactions in determining molecular self-assembly. This observation demonstrates that ML is not just a black-box scheme to interpolate between reference calculations, but can also be used as a tool to gain intuitive insights into structure-property relations in molecular crystal engineering.

  18. High-brightness tapered laser diodes with photonic crystal structures

    Science.gov (United States)

    Li, Yi; Du, Weichuan; Kun, Zhou; Gao, Songxin; Ma, Yi; Tang, Chun

    2018-02-01

    Beam quality of tapered laser diodes is limited by higher order lateral mode. On purpose of optimizing the brightness of tapered laser diodes, we developed a novel design of tapered diodes. This devices based on InGaAs/AlGaAs asymmetry epitaxial structure, containing higher order lateral mode filtering schemes especially photonic crystal structures, which fabricated cost effectively by using standard photolithography and dry etch processes. Meanwhile, the effects of photonic crystal structures on mode control are also investigated theoretically by FDBPM (Finite-Difference Beam Propagation Method) calculation. We achieved a CW optical output power of 6.9W at 940nm for a single emitter with 4 mm cavity length. A nearly diffraction limited beam of M2 ≍1.9 @ 0.5W has been demonstrated, and a highest brightness of β =75MW/(cm2 ·sr) was reached.

  19. Solving crystal structures from neutron diffraction data

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1987-07-01

    In order to pursue crystal structure determination using neutron diffraction data, and given the wide experience available of solving structures using X-ray data, the codes used in X-ray structural analysis should be adapted to the different requirements of a neutron experiment. Modifications have been made to a direct methods program MITHRIL and to a Patterson methods program PATMET to incorporate into these the features of neutron rather than X-ray diffraction. While to date these modifications have been fairly straightforward and many sophistications remain to be exploited, results obtained from the neutron versions of both programs are promising. (author)

  20. CRYSTAL AND MOLECULAR STRUCTURE OF 5-NITROPIRIDINE PIPERIDINE-SULFENAMIDE

    OpenAIRE

    Brito, Iván; León, Yasna; Arias, Mauricio; Vargas, Danitza; Carmona, Francisco; Ramírez, Eduardo; Restovic, Ambrosio; Cárdenas, Alejandro; Wittke, Oscar; López-Rodríguez, Matías

    2002-01-01

    The crystal and molecular structure of 5-nitropiridine piperidine-sulfenamide, C10H13N3O2 S is described and compared with other sulfenamides and with other similar compounds. This structure belongs to a type of divalent sulphur compound and crystallizes in the orthorhombic space group Pnma with a= 27.810(4), b=6.797(1), c=6.110(1)Å, and Dx =1.376 g cm-3 with Z=4. The S-N bond distance of 1.699(4) Å is shorter than a single S-N bond [1.74 Å]. The NO2-(C6H3N)-S-N(C 5H10) molecule lies on a cry...

  1. Crystallization and preliminary X-ray analysis of recombinant Glomerella cingulata cutinase

    International Nuclear Information System (INIS)

    Nyon, Mun Peak; Rice, David W.; Berrisford, John M.; Huang, Huazhang; Moir, Arthur J. G.; Craven, C. Jeremy; Nathan, Sheila; Mahadi, Nor Muhammad; Abu Bakar, Farah Diba

    2008-01-01

    Recombinant G. cingulata cutinase has been overexpressed and the protein has been purified and crystallized in the absence or presence of inhibitors. Cutinase catalyzes the hydrolysis of water-soluble esters and long-chain triglycerides and belongs to the family of serine hydrolases. The enzyme is thought to represent an evolutionary link between the esterase and lipase families and has potential applications in a wide range of industrial hydrolytic processes, for which an understanding of the molecular basis of its substrate specificity is critical. Glomerella cingulata cutinase has been cloned and the protein has been overexpressed in Escherichia coli, purified and subsequently crystallized in a wide range of different crystal forms in the presence and absence of inhibitors. The best crystals are those of the apo cutinase, which diffract to beyond 1.6 Å resolution and belong to space group P4 1 2 1 2 or P4 3 2 1 2. Crystals of cutinase with the inhibitors PETFP or E600 belong to space groups P2 1 2 1 2 1 and P2 1 , respectively, and diffract to approximately 2.5 Å resolution. All of the crystals are suitable for structural studies, which are currently ongoing

  2. Protein crystal growth on board Shenzhou 3: a concerted effort improves crystal diffraction quality and facilitates structure determination

    International Nuclear Information System (INIS)

    Han, Y.; Cang, H.-X.; Zhou, J.-X.; Wang, Y.-P.; Bi, R.-C.; Colelesage, J.; Delbaere, L.T.J.; Nahoum, V.; Shi, R.; Zhou, M.; Zhu, D.-W.; Lin, S.-X.

    2004-01-01

    The crystallization of 16 proteins was carried out using 60 wells on board Shenzhou 3 in 2002. Although the mission was only 7 days, careful and concerted planning at all stages made it possible to obtain crystals of improved quality compared to their ground controls for some of the proteins. Significantly improved resolutions were obtained from diffracted crystals of 4 proteins. A complete data set from a space crystal of the PEP carboxykinase yielded significantly higher resolution (1.46 A vs. 1.87 A), I/sigma (22.4 vs. 15.5), and a lower average temperature factor (29.2 A 2 vs. 42.9 A 2 ) than the best ground-based control crystal. The 3-D structure of the enzyme is well improved with significant ligand density. It has been postulated that the reduced convection and absence of macromolecule sedimentation under microgravity have advantages/benefits for protein crystal growth. Improvements in experimental design for protein crystal growth in microgravity are ongoing

  3. Parallelization for X-ray crystal structural analysis program

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Tokyo (Japan); Minami, Masayuki; Yamamoto, Akiji

    1997-10-01

    In this report we study vectorization and parallelization for X-ray crystal structural analysis program. The target machine is NEC SX-4 which is a distributed/shared memory type vector parallel supercomputer. X-ray crystal structural analysis is surveyed, and a new multi-dimensional discrete Fourier transform method is proposed. The new method is designed to have a very long vector length, so that it enables to obtain the 12.0 times higher performance result that the original code. Besides the above-mentioned vectorization, the parallelization by micro-task functions on SX-4 reaches 13.7 times acceleration in the part of multi-dimensional discrete Fourier transform with 14 CPUs, and 3.0 times acceleration in the whole program. Totally 35.9 times acceleration to the original 1CPU scalar version is achieved with vectorization and parallelization on SX-4. (author)

  4. Re-investigation of the crystal structure of enstatite under high-pressure conditions

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Balic Zunic, Tonci; Nestola, Fabrizio

    2012-01-01

    A synthetic single crystal of pure orthoenstatite (MgSiO3, space group Pbca) has been investigated at high pressure for structural determinations by in situ single-crystal X‑ray diffraction using a diamond-anvil cell. Ten complete intensity data collections were performed up to 9.36 GPa. This study...... with different compositions. The structural evolution determined in this work confirms the high-pressure evolution found previously for other orthopyroxenes and removes some ambiguities originating from the less accurate published data on the MgSiO3 structure at high pressure. The structural compression...

  5. Structure of the CFA/III major pilin subunit CofA from human enterotoxigenic Escherichia coli determined at 0.90 Å resolution by sulfur-SAD phasing.

    Science.gov (United States)

    Fukakusa, Shunsuke; Kawahara, Kazuki; Nakamura, Shota; Iwashita, Takaki; Baba, Seiki; Nishimura, Mitsuhiro; Kobayashi, Yuji; Honda, Takeshi; Iida, Tetsuya; Taniguchi, Tooru; Ohkubo, Tadayasu

    2012-10-01

    CofA, a major pilin subunit of colonization factor antigen III (CFA/III), forms pili that mediate small-intestinal colonization by enterotoxigenic Escherichia coli (ETEC). In this study, the crystal structure of an N-terminally truncated version of CofA was determined by single-wavelength anomalous diffraction (SAD) phasing using five sulfurs in the protein. Given the counterbalance between anomalous signal strength and the undesired X-ray absorption of the solvent, diffraction data were collected at 1.5 Å resolution using synchrotron radiation. These data were sufficient to elucidate the sulfur substructure at 1.38 Å resolution. The low solvent content (29%) of the crystal necessitated that density modification be performed with an additional 0.9 Å resolution data set to reduce the phase error caused by the small sulfur anomalous signal. The CofA structure showed the αβ-fold typical of type IVb pilins and showed high structural homology to that of TcpA for toxin-coregulated pili of Vibrio cholerae, including spatial distribution of key residues critical for pilin self-assembly. A pilus-filament model of CofA was built by computational docking and molecular-dynamics simulation using the previously reported filament model of TcpA as a structural template. This model revealed that the CofA filament surface was highly negatively charged and that a 23-residue-long loop between the α1 and α2 helices filled the gap between the pilin subunits. These characteristics could provide a unique binding epitope for the CFA/III pili of ETEC compared with other type IVb pili.

  6. Magnetic structure of URhSi single crystal

    Czech Academy of Sciences Publication Activity Database

    Prokeš, K.; Andreev, Alexander V.; Honda, F.; Sechovský, V.

    2003-01-01

    Roč. 261, - (2003), s. 131-138 ISSN 0304-8853 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : URhSi single crystal * magnetization * neutron diffraction * magnetic structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  7. Band structures of two dimensional solid/air hierarchical phononic crystals

    International Nuclear Information System (INIS)

    Xu, Y.L.; Tian, X.G.; Chen, C.Q.

    2012-01-01

    The hierarchical phononic crystals to be considered show a two-order “hierarchical” feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  8. Band structures of two dimensional solid/air hierarchical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.L.; Tian, X.G. [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics, AML and CNMM, Tsinghua University, Beijing 100084 (China)

    2012-06-15

    The hierarchical phononic crystals to be considered show a two-order 'hierarchical' feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  9. Overexpression, purification and crystallization of the tetrameric form of SorC sorbitol operon regulator

    International Nuclear Information System (INIS)

    Sanctis, Daniele de; Rêgo, Ana T.; Marçal, David; McVey, Colin E.; Carrondo, Maria A.; Enguita, Francisco J.

    2007-01-01

    The sorbitol operon regulator from K. pneumoniae has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 3.2 Å. The sorbitol operon regulator (SorC) regulates the metabolism of l-sorbose in Klebsiella pneumonia. SorC was overexpressed in Escherichia coli and purified, and crystals were obtained of a tetrameric form. A single crystal showed X-ray diffraction to 3.20 Å. The crystal belongs to space group P2 1 2 1 2 1 , with unit-cell parameters a = 91.6, b = 113.3, c = 184.1 Å. Analysis of the molecular-replacement solution indicates the presence of four SorC molecules in the asymmetric unit

  10. Crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 6

    International Nuclear Information System (INIS)

    Xie, Qing; Ongley, Heather M.; Hare, Joan; Chapman, Michael S.

    2008-01-01

    Adeno-associated virus type 6, a human DNA virus that is being developed as a vector for gene therapy, has been crystallized in a form suitable for structure determination at about 3.2 Å resolution. Adeno-associated viruses are being developed as vectors for gene therapy and have been used in a number of clinical trials. Vectors to date have been based on the type species AAV-2, the structure of which was published in 2002. There is growing interest in modulating the cellular tropism and immune neutralization of AAV-2 with variants inspired by the properties of other serotypes. Towards the determination of a structure for AAV type 6, this paper reports the high-yield production, purification, crystallization and preliminary diffraction studies of infectious AAV-6 virions. The crystals diffracted to 3.2 Å resolution using synchrotron radiation. The most promising crystal form belonged to space group R3 and appeared to be suitable for initial structure determination

  11. Crystal Structure of Cocosin, A Potential Food Allergen from Coconut (Cocos nucifera).

    Science.gov (United States)

    Jin, Tengchuan; Wang, Cheng; Zhang, Caiying; Wang, Yang; Chen, Yu-Wei; Guo, Feng; Howard, Andrew; Cao, Min-Jie; Fu, Tong-Jen; McHugh, Tara H; Zhang, Yuzhu

    2017-08-30

    Coconut (Cocos nucifera) is an important palm tree. Coconut fruit is widely consumed. The most abundant storage protein in coconut fruit is cocosin (a likely food allergen), which belongs to the 11S globulin family. Cocosin was crystallized near a century ago, but its structure remains unknown. By optimizing crystallization conditions and cryoprotectant solutions, we were able to obtain cocosin crystals that diffracted to 1.85 Å. The cocosin gene was cloned from genomic DNA isolated from dry coconut tissue. The protein sequence deduced from the predicted cocosin coding sequence was used to guide model building and structure refinement. The structure of cocosin was determined for the first time, and it revealed a typical 11S globulin feature of a double layer doughnut-shaped hexamer.

  12. Crystallization and preliminary X-ray analysis of S-ribosylhomocysteinase from Streptococcus mutans

    International Nuclear Information System (INIS)

    Li, Hui; Zhao, Hongyan; Zhu, Laikuan; Hong, Lihua; Zhang, Hong; Lin, Fanjing; Xu, Chunyan; Li, Shentao; Zhang, Zhimin

    2012-01-01

    S-Ribosylhomocysteinase (LuxS) encoded by the LuxS gene from Streptococcus mutans was solubly expressed in Escherichia coli, purified and crystallized. Diffraction by the crystal extended to 2.4 Å resolution. S-Ribosylhomocysteinase (LuxS) encoded by the luxS gene from Streptococcus mutans plays a crucial role in the quorum-sensing system. LuxS was solubly expressed in Escherichia coli with high yield. The purity of the purified target protein, which was identified by SDS–PAGE and MALDI–TOF MS analysis, was >95%. The protein was crystallized using the hanging-drop vapour-diffusion method with PEG 3350 as the primary precipitant. X-ray diffraction data were collected at Beijing Synchrotron Radiation Facility (BSRF). Diffraction by the crystal extended to 2.4 Å resolution and the crystal belonged to space group C222 1 , with unit-cell parameters a = 55.3, b = 148.7, c = 82.8 Å

  13. Genetic Transfer of Salmonella typhimurium and Escherichia coli Lipopolysaccharide Antigens to Escherichia coli K-12

    Science.gov (United States)

    Jones, Randall T.; Koeltzow, Donald E.; Stocker, B. A. D.

    1972-01-01

    Escherichia coli K-12 ϰ971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv+ hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his+ (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F′ factor (FS400) carrying the rfb–his region of S. typhimurium to the same two ilv+ hybrids gave similar results. LPS extracted from two ilv+,his+, factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his+ hybrids obtained from ϰ971 itself by similar HfrK9 and F′FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli ϰ971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli ϰ971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli ϰ971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his+ recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Ω8. This suggests that, although the parental E. coli K-12 strain ϰ971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units. PMID:4559827

  14. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model

    Directory of Open Access Journals (Sweden)

    Alexander Gabriëlse

    2017-11-01

    Full Text Available In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO lattices not previously considered for the square shoulder model.

  15. Distressing bacteria: structure of a prokaryotic detox program.

    Science.gov (United States)

    de la Cueva-Méndez, Guillermo

    2003-04-01

    MazF and MazE are components of a chromosomal toxin-antitoxin system of Escherichia coli. In this issue of Molecular Cell, Kamada et al. describe the crystal structure of a MazE/MazF heterohexamer and propose that the mechanism of toxin-antidote recognition is common to other homologous chromosomal and plasmid-borne systems.

  16. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    DEFF Research Database (Denmark)

    Yennawar, Hemant; Møller, Magda; Gillilan, Richard

    2011-01-01

    The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer...

  17. Crystallization and preliminary X-ray analysis of aspartate transcarbamoylase from the parasitic protist Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Matoba, Kazuaki; Nara, Takeshi; Aoki, Takashi; Honma, Teruki; Tanaka, Akiko; Inoue, Masayuki; Matsuoka, Shigeru; Inaoka, Daniel Ken; Kita, Kiyoshi; Harada, Shigeharu

    2009-01-01

    Aspartate transcarbamoylase, the second enzyme of the de novo pyrimidine-biosynthetic pathway, from T. cruzi has been purified and crystallized for X-ray structure analysis. Aspartate transcarbamoylase (ATCase), the second enzyme of the de novo pyrimidine-biosynthetic pathway, catalyzes the production of carbamoyl aspartate from carbamoyl phosphate and l-aspartate. In contrast to Escherichia coli ATCase and eukaryotic CAD multifunctional fusion enzymes, Trypanosoma cruzi ATCase lacks regulatory subunits and is not part of the multifunctional fusion enzyme. Recombinant T. cruzi ATCase expressed in E. coli was purified and crystallized in a ligand-free form and in a complex with carbamoyl phosphate at 277 K by the sitting-drop vapour-diffusion technique using polyethylene glycol 3350 as a precipitant. Ligand-free crystals (space group P1, unit-cell parameters a = 78.42, b = 79.28, c = 92.02 Å, α = 69.56, β = 82.90, γ = 63.25°) diffracted X-rays to 2.8 Å resolution, while those cocrystallized with carbamoyl phosphate (space group P2 1 , unit-cell parameters a = 88.41, b = 158.38, c = 89.00 Å, β = 119.66°) diffracted to 1.6 Å resolution. The presence of two homotrimers in the asymmetric unit (38 kDa × 6) gives V M values of 2.3 and 2.5 Å 3 Da −1 for the P1 and P2 1 crystal forms, respectively

  18. Influence of hydrological conditions on the Escherichia coli population structure in the water of a creek on a rural watershed

    Directory of Open Access Journals (Sweden)

    Ratajczak Mehdy

    2010-08-01

    Full Text Available Abstract Background Escherichia coli is a commensal bacterium of the gastro-intestinal tract of human and vertebrate animals, although the aquatic environment could be a secondary habitat. The aim of this study was to investigate the effect of hydrological conditions on the structure of the E. coli population in the water of a creek on a small rural watershed in France composed of pasture and with human occupation. Results It became apparent, after studying the distribution in the four main E. coli phylo-groups (A, B1, B2, D, the presence of the hly (hemolysin gene and the antibiotic resistance pattern, that the E. coli population structure was modified not only by the hydrological conditions (dry versus wet periods, rainfall events, but also by how the watershed was used (presence or absence of cattle. Isolates of the B1 phylo-group devoid of hly and sensitive to antibiotics were particularly abundant during the dry period. During the wet period and the rainfall events, contamination from human sources was predominantly characterized by strains of the A phylo-group, whereas contamination by cattle mainly involved B1 phylo-group strains resistant to antibiotics and exhibiting hly. As E. coli B1 was the main phylo-group isolated in water, the diversity of 112 E. coli B1 isolates was further investigated by studying uidA alleles (beta-D-glucuronidase, the presence of hly, the O-type, and antibiotic resistance. Among the forty epidemiolgical types (ETs identified, five E. coli B1 ETs were more abundant in slightly contaminated water. Conclusions The structure of an E. coli population in water is not stable, but depends on the hydrological conditions and on current use of the land on the watershed. In our study it was the ratio of A to B1 phylo-groups that changed. However, a set of B1 phylo-group isolates seems to be persistent in water, strengthening the hypothesis that they may correspond to specifically adapted strains.

  19. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams

    Science.gov (United States)

    Chen, Feng

    2009-10-01

    A range of ion beam techniques have been used to fabricate a variety of photonic guiding structures in the well-known lithium niobate (LiNbO3 or LN) crystals that are of great importance in integrated photonics/optics. This paper reviews the up-to-date research progress of ion-beam-processed LiNbO3 photonic structures and reports on their fabrication, characterization, and applications. Ion beams are being used with this material in a wide range of techniques, as exemplified by the following examples. Ion beam milling/etching can remove the selected surface regions of LiNbO3 crystals via the sputtering effects. Ion implantation and swift ion irradiation can form optical waveguide structures by modifying the surface refractive indices of the LiNbO3 wafers. Crystal ion slicing has been used to obtain bulk-quality LiNbO3 single-crystalline thin films or membranes by exfoliating the implanted layer from the original substrate. Focused ion beams can either generate small structures of micron or submicron dimensions, to realize photonic bandgap crystals in LiNbO3, or directly write surface waveguides or other guiding devices in the crystal. Ion beam-enhanced etching has been extensively applied for micro- or nanostructuring of LiNbO3 surfaces. Methods developed to fabricate a range of photonic guiding structures in LiNbO3 are introduced. Modifications of LiNbO3 through the use of various energetic ion beams, including changes in refractive index and properties related to the photonic guiding structures as well as to the materials (i.e., electro-optic, nonlinear optic, luminescent, and photorefractive features), are overviewed in detail. The application of these LiNbO3 photonic guiding structures in both micro- and nanophotonics are briefly summarized.

  20. Structure of E. coli 16S RNA elucidated by psoralen crosslinking

    International Nuclear Information System (INIS)

    Thompson, J.F.; Hearst, J.E.

    1983-01-01

    E. coli 16S RNA in solution was photoreacted with hydroxymethyltrimethylpsoralen and long wave ultraviolet light. Positions of crosslinks were determined to high resolution by partially digesting the RNA with T 1 RNase, separating the crosslinked fragments by two-dimensional gel electrophoresis, reversing the crosslink, and sequencing the separated fragments. This method yielded the locations of crosslinks to +/-15 nucleotides. Even finer placement has been made on the basis of our knowledge of psoralen reactivity. Thirteen unique crosslinks were mapped. Seven crosslinks confirmed regions of secondary structure which had been predicted in published phylogenetic models, three crosslinks discriminated between phylogenetic models, and three proved the existence of new structures. The new structures were all long-range interactions which appear to be in dynamic equilibrium with local secondary structure. Because this technique yields direct information about the secondary structure of large RNAs, it should prove invaluable in studying the structure of other RNAs of all sizes

  1. Coefficient of crystal lattice matching as a parameter of substrate - crystal structure compatibility in silumins

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2009-07-01

    Full Text Available Adding high-melting point elements (Mo, Nb, Ni, Ti, W to complex silumins results in hardening of the latter ones, owing to the formation of new intermetallic phases of the AlxMey type, with refinement of dendrites in α solution and crystals in β phase. The hardening is also due to the effect of various inoculants. An addition of the inoculant is expected to form substrates, the crystal lattice of which, or some (privileged lattice planes and interatomic spaces should bear a strong resemblance to the crystal nucleus. To verify this statement, using binary phase equilibria systems, the coefficient of crystal lattice matching, being one of the measures of the crystallographic similarity, was calculated. A compatibility of this parameter (up to 20% may decide about the structure compatibility between the substrate and crystal which, in turn, is responsible for the effectiveness of alloy modification. Investigations have proved that, given the temperature range of their formation, the density, the lattice type, and the lattice parameter, some intermetallic phases of the AlxMey type can act as substrates for the crystallisation of aluminium and silicon, and some of the silumin hardening phases.

  2. Synthesis, characterization and crystal structure of a ...

    African Journals Online (AJOL)

    The Mo atom in the complex is in octahedral coordination. Thermal stability of the complex has also been studied. KEY WORDS: Molybdenum complex, Hydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. Bull. Chem. Soc. Ethiop. 2014, 28(3), 409-414. DOI: http://dx.doi.org/10.4314/bcse.v28i3.10 ...

  3. Crystal structure of ethyl 2,4-dichloroquinoline-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Alberto Cabrera

    2015-12-01

    Full Text Available In the crystal structure of the title compound, C12H9Cl2NO2, the mean planes through the quinoline and carboxylate groups have r.m.s. deviations of 0.006 and 0.021 Å, respectively, and form a dihedral angle of 87.06 (19°. In the crystal, molecules are linked via very weak C—H...O hydrogen bonds, forming chains, which propagate along the c-axis direction.

  4. Cloning, crystallization and preliminary X-ray studies of XC2981 from Xanthomonas campestris, a putative CutA1 protein involved in copper-ion homeostasis

    International Nuclear Information System (INIS)

    Lin, Chien-Hung; Chin, Ko-Hsin; Gao, Fei Philip; Lyu, Ping-Chiang; Shr, Hui-Lin; Wang, Andrew H.-J.; Chou, Shan-Ho

    2006-01-01

    A probable copper-ion tolerance protein from the plant pathogen X. campestris has been overexpressed in E. coli, purified and crystallized. Divalent metal ions play key roles in all living organisms, serving as cofactors for many proteins involved in a variety of electron-transfer activities. However, copper ions are highly toxic when an excessive amount is accumulated in a cell. CutA1 is a protein found in all kingdoms of life that is believed to participate in copper-ion tolerance in Escherichia coli, although its specific function remains unknown. Several crystal structures of multimeric CutA1 with different rotation angles and degrees of interaction between trimer interfaces have been reported. Here, the cloning, expression, crystallization and preliminary X-ray analysis of XC2981, a possible CutA1 protein present in the plant pathogen Xanthomonas campestris, are reported. The XC2981 crystals diffracted to a resolution of 2.6 Å. They are cubic and belong to space group I23, with unit-cell parameters a = b = c = 130.73 Å

  5. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach

    Directory of Open Access Journals (Sweden)

    Buer Jan

    2004-12-01

    Full Text Available Abstract Background Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. Results In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. Conclusion The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E

  6. The crystal structure of bøgvadite (Na2SrBa2Al4F20)

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci

    2014-01-01

    The crystal structure of bøgvadite, Na2SrBa2Al4F20, has been solved and refined to a R1 factor of 4.4% from single-crystal data (MoKα X-ray diffraction, CCD area detector) on a sample from the cryolite deposit at Ivittuut, SW Greenland. Bøgvadite is monoclinic, P21/n space group, with unit cell...... parameters a= 7.134(1), b= 19.996(3) and c= 5.3440(8) Å, β = 90.02(1)o. A close proximity of the crystal structure to an orthorhombic symmetry and the presence of the two twin components in a nearly 1:1 ratio suggest that the investigated bøgvadite crystal has originally formed as a high......-temperature orthorhombic polymorph which on cooling transformed to the stable low temperature monoclinic structure. The bøgvadite crystal structure has groupings of cation-fluoride coordination polyhedra similar to those found in the crystal structures of the genetically closely associated minerals jarlite...

  7. Synthesis, Crystal Structure, and DFT Calculations of 1,3-Diisobutyl Thiourea

    Directory of Open Access Journals (Sweden)

    Ataf A. Altaf

    2015-01-01

    Full Text Available 1,3-Diisobutyl thiourea was synthesized and characterized by single crystal X-ray diffraction. It gives a monoclinic (α = γ = 90 and β  ≠ 90 structure with the space group P21/c. The unit cell dimensions are a = 11.5131 (4 Å, b = 9.2355 (3 Å, c = 11.3093 (5 Å, α = 90°, β = 99.569° (2, γ = 90°, V = 1185.78 (8 Å3, and Z = 4. The crystal packing is stabilized by intermolecular (N–H⋯S hydrogen bonding in the molecules. The optimized geometry and Mullikan's charges of the said molecule calculated with the help of DFT using B3LYP-6-311G model support the crystal structure.

  8. The structure of the hypothetical protein smu.1377c from Streptococcus mutans suggests a role in tRNA modification

    International Nuclear Information System (INIS)

    Fu, Tian-Min; Liu, Xiang; Li, Lanfen; Su, Xiao-Dong

    2010-01-01

    The crystal structure of smu.1377c, a hypothetical protein from S. mutans, shows a similar fold to Sua5-YciO-YrdC-family proteins and indicates its functional role in tRNA modification. Members of the Sua5-YciO-YrdC protein family are found in both eukaryotes and prokaryotes and possess a conserved α/β twisted open-sheet fold. The Escherichia coli protein YrdC has been shown to be involved in modification of tRNA. The crystal structure of smu.1377c, a hypothetical protein from Streptococcus mutans, has been determined to 2.25 Å resolution. From structure analysis and comparison, it is shown that smu.1377c is a member of the Sua5-YciO-YrdC family and that it may play the same role as E. coli YrdC

  9. The crystal structures of three pyrazine-2,5-dicarboxamides: three-dimensional supramolecular structures

    Directory of Open Access Journals (Sweden)

    Dilovan S. Cati

    2017-05-01

    Full Text Available The complete molecules of the title compounds, N2,N5-bis(pyridin-2-ylmethylpyrazine-2,5-dicarboxamide, C18H16N6O2 (I, 3,6-dimethyl-N2,N5-bis(pyridin-2-ylmethylpyrazine-2,5-dicarboxamide, C20H20N6O2 (II, and N2,N5-bis(pyridin-4-ylmethylpyrazine-2,5-dicarboxamide, C18H16N6O2 (III, are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each molecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7° in (I, 75.83 (8° in (II and by 82.71 (6° in (III. In the crystal of (I, molecules are linked by N—H...N hydrogen bonds, forming layers lying parallel to the bc plane. The layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (II, molecules are also linked by N—H...N hydrogen bonds, forming layers lying parallel to the (10-1 plane. As in (I, the layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (III, molecules are again linked by N—H...N hydrogen bonds, but here form corrugated sheets lying parallel to the bc plane. Within the sheets, neighbouring pyridine rings are linked by offset π–π interactions [intercentroid distance = 3.739 (1 Å]. The sheets are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. Compound (I crystallizes in the monoclinic space group P21/c. Another monoclinic polymorph, space group C2/c, has been reported on by Cockriel et al. [Inorg. Chem. Commun. (2008, 11, 1–4]. The molecular structures of the two polymorphs are compared.

  10. Crystal structure of natural phaeosphaeride A

    Directory of Open Access Journals (Sweden)

    Victoria V. Abzianidze

    2015-08-01

    Full Text Available The asymmetric unit of the title compound, C15H23NO5, contains two independent molecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the molecules form layered structures. Nearly planar sheets, parallel to the (001 plane, form bilayers of two-dimensional hydrogen-bonded networks with the hydroxy groups located on the interior of the bilayer sheets. The network is constructed primarily of four O—H...O hydrogen bonds, which form a zigzag pattern in the (001 plane. The butyl chains interdigitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major–minor occupancy fractions of 0.718 (6:0.282 (6.

  11. Crystallization and preliminary X-ray diffraction studies of the precursor protein of a thermostable variant of papain

    International Nuclear Information System (INIS)

    Roy, Sumana; Choudhury, Debi; Chakrabarti, Chandana; Biswas, Sampa; Dattagupta, J. K.

    2011-01-01

    The crystallization of the precursor of a thermostable variant of papain and the collection of diffraction data to 2.6 Å resolution are reported. The crystallization of a recombinant thermostable variant of pro-papain has been carried out. The mutant pro-enzyme was expressed in Escherichia coli as inclusion bodies, refolded, purified and crystallized. The crystals belonged to space group P2 1 , with unit-cell parameters a = 42.9, b = 74.8, c = 116.5 Å, β = 93.0°, and diffracted to 2.6 Å resolution using synchrotron radiation. Assuming the presence of two molecules in the asymmetric unit, the calculated Matthews coefficient is 2.28 Å 3 Da −1 , corresponding to a solvent content of 46%. Initial attempts to solve the structure using molecular-replacement techniques were successful

  12. Molecular complex of lumiflavin and 2-aminobenzoic acid: crystal structure, crystal spectra, and solution properties.

    Science.gov (United States)

    Shieh, H S; Ghisla, S; Hanson, L K; Ludwig, M L; Nordman, C E

    1981-08-04

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N4O2.C7H7NO2.H2O) crystallizes from from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 A, c = 7.045 A, alpha = 95.44 degrees , beta = 95.86 degrees, and gamma = 105.66 degrees . The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating lumiflavin adn un-ionized (neutral) 2-aminobenzoic acid molecules. Two different modes of stacking interaction are observed. In one, 2-aminobenzoic acid overlaps all three of the isoalloxazine rings, at a mean distance of 3.36 A; in the other, 2-aminobenzoic acid interacts distance of 3.36 A; in the other, 2-aminobenzoic acid interacts with the pyrazine and dimethylbenzene moieties, at a distance of 3.42 A. Perpendicular to the stacking direction, the molecules form a continuous sheet. Each flavin is hydrogen bonded via O(2) and NH(3) to two symmetrically related aminobenzoates; the water of crystallization forms three hydrogen bonds, bridging two flavins, via O(4) and N(5), and one aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid molecules. Measurements of the polarized optical absorption spectra of crystals show that the transition moment direction for the long wavelength absorbance (beyond 530 nm) contains an out-of-plane component which can only arise from a charge-transfer interaction. Since the amino N does not make exceptionally close interactions with isoalloxazine atoms in either stacking mode (minimum interatomic distance 3.52 A), the charge transfer is presumed to involve pi orbitals of the 2-aminobenzoic acid donor.

  13. Expression, crystallization and preliminary crystallographic data analysis of filamin A repeats 14–16

    International Nuclear Information System (INIS)

    Aguda, Adeleke Halilu; Sakwe, Amos Malle; Rask, Lars; Robinson, Robert Charles

    2007-01-01

    The crystallization and crystallographic data analysis of filamin repeats 14–16 are reported. Human filamin A is a 280 kDa protein involved in actin-filament cross-linking. It is structurally divided into an actin-binding headpiece (ABD) and a rod domain containing 24 immunoglobulin-like (Ig) repeats. A fragment of human filamin A (Ig repeats 14–16) was cloned and expressed in Escherichia coli and the purified protein was crystallized in 1.6 M ammonium sulfate, 2% PEG 1000 and 100 mM HEPES pH 7.5. The crystals diffracted to 1.95 Å and belong to space group P2 1 2 1 2 1 , with unit-cell parameters a = 50.63, b = 52.10, c = 98.46 Å, α = β = γ = 90°

  14. On the crystal structure of Z-phase Cr(V,Nb)N

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John; Grumsen, Flemming Bjerg

    2006-01-01

    The Z-phase Cr(YNb)N particles in various 9 to 12 pct Cr creep-resistant steels were investigated with electron diffraction, energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy(EELS). In addition to the well-known tetragonal crystal structure for Z phase, a cubic crystal s...

  15. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  16. Data on the purification and crystallization of the loss-of-function von Willebrand disease variant (p.Gly1324Ser of the von Willebrand factor A1 domain

    Directory of Open Access Journals (Sweden)

    James C. Cambell

    2016-06-01

    In this data article we describe the production, quality control and crystallization of the p.Gly1324Ser vWD variant of the A1 domain of VWF. p.Gly1324Ser A1 was expressed in Escherichia coli as insoluble inclusion bodies. After the preparation of the inclusion bodies, the protein was solubilized, refolded, purified by affinity chromatography and crystallized. The crystal structure of the p.Gly1324Ser mutant of the A1 domain is deposited at the Protein Data Bank PDB: 5BV8

  17. Probing Zeolite Crystal Architecture and Structural Imperfections using Differently Sized Fluorescent Organic Probe Molecules.

    Science.gov (United States)

    Hendriks, Frank C; Schmidt, Joel E; Rombouts, Jeroen A; Lammertsma, Koop; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2017-05-05

    A micro-spectroscopic method has been developed to probe the accessibility of zeolite crystals using a series of fluorescent 4-(4-diethylaminostyryl)-1-methylpyridinium iodide (DAMPI) probes of increasing molecular size. Staining large zeolite crystals with MFI (ZSM-5) topology and subsequent mapping of the resulting fluorescence using confocal fluorescence microscopy reveal differences in structural integrity: the 90° intergrowth sections of MFI crystals are prone to develop structural imperfections, which act as entrance routes for the probes into the zeolite crystal. Polarization-dependent measurements provide evidence for the probe molecule's alignment within the MFI zeolite pore system. The developed method was extended to BEA (Beta) crystals, showing that the previously observed hourglass pattern is a general feature of BEA crystals with this morphology. Furthermore, the probes can accurately identify at which crystal faces of BEA straight or sinusoidal pores open to the surface. The results show this method can spatially resolve the architecture-dependent internal pore structure of microporous materials, which is difficult to assess using other characterization techniques such as X-ray diffraction. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Band structure and optical properties of opal photonic crystals

    Science.gov (United States)

    Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.

    2005-07-01

    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order planes (corresponding to the excitation of photonic modes in the crystal). Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.

  19. Crystals structure of Na3Li(TiF6)2

    International Nuclear Information System (INIS)

    Popov, D.Yu.; Antokhina, T.F.; Gerasimenko, A.V.; Kajdalova, T.A.; Sergienko, V.I.

    2004-01-01

    Crystals of Na 3 Li(TiF 6 ) 2 (1) were synthesized in aqueous solution and characterized by the elementary and X-ray phase analysis methods. According to X-ray diffraction analysis data compound 1 is crystallized in a tetragonal crystal system with the following parameters: a=5.130(1), c=18.046(4) A, Z=2, space group P4-bar2 1 c. Alternating layers on the basis of dimers made up by octahedrons of TiF 6 and Na(1)F 6 constitute the frame of compound 1 crystal structure. The dimer layers are joined in a continuous frame by Na(2) and Li cations. Coordination polyhedron of Li atom is tetrahedron (Li-F 1.898(3) A) [ru

  20. CCDC 963856: Experimental Crystal Structure Determination : catena-[bis(mu2-2-methylimidazole)-zinc

    KAUST Repository

    Shekhah, Osama; Swaidan, Raja; Belmabkhout, Youssef; du Plessis, Marike; Jacobs, Tia; Barbour, Leonard J.; Pinnau, Ingo; Eddaoudi, Mohamed

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. CCDC 1477679: Experimental Crystal Structure Determination : (1,3-dimesitylimidazolidin-2-ylidene)-trimethyl-indium

    KAUST Repository

    Wu, Melissa M.; Gill, Arran M.; Yunpeng, Lu; Yongxin, Li; Ganguly, Rakesh; Falivene, Laura; Garcí a, Felipe

    2017-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. CCDC 1477678: Experimental Crystal Structure Determination : (1,3-dimesitylimidazolidin-2-ylidene)-trimethyl-gallium

    KAUST Repository

    Wu, Melissa M.; Gill, Arran M.; Yunpeng, Lu; Yongxin, Li; Ganguly, Rakesh; Falivene, Laura; Garcí a, Felipe

    2017-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. CCDC 1059905: Experimental Crystal Structure Determination : 7,13-dimesitylindeno[1,2-b]thioxanthene

    KAUST Repository

    Shi, Xueliang; Kueh, Weixiang; Zheng, Bin; Huang, Kuo-Wei; Chi, Chunyan

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  4. CCDC 844302: Experimental Crystal Structure Determination : N-1-Naphthyl-P,P-diphenylphosphinoselenoic amide

    KAUST Repository

    Al-Masri, H.T.; Emwas, Abdul-Hamid M.; Al-Talla, Zeyad; Al Kordi, Mohamed

    2012-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. CCDC 1010350: Experimental Crystal Structure Determination : dichloro-(methylenebis(di-t-butylphosphine))-palladium(ii)

    KAUST Repository

    Roesle, Philipp; Caporaso, Lucia; Schnitte, Manuel; Goldbach, Verena; Cavallo, Luigi; Mecking, Stefan

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  6. CCDC 721713: Experimental Crystal Structure Determination : Dichloro-(ethyl phenylalaninate)-tris(pyridine)-ruthenium(ii)

    KAUST Repository

    Reiner, Thomas; Jantke, Dominik; Miao, Xiao-He; Marziale, Alexander N.; Kiefer, Florian J.; Eppinger, Jö rg

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  7. CCDC 713130: Experimental Crystal Structure Determination : bis(2,5-Dihydrobenzylammonium) hexachloro-osmium(iv)

    KAUST Repository

    Reiner, T.

    2011-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  8. CCDC 1420581: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium ethylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  9. CCDC 1420582: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium ethane

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  10. CCDC 1420580: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium acetylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  11. CCDC 1048729: Experimental Crystal Structure Determination : bis(2-(hydroxyimino)-3-phenylpropanoato)-tin(ii)

    KAUST Repository

    Khanderi, Jayaprakash

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  12. The quaternary structure of the amidase from Geobacillus pallidus RAPc8 is revealed by its crystal packing

    International Nuclear Information System (INIS)

    Agarkar, Vinod B.; Kimani, Serah W.; Cowan, Donald A.; Sayed, Muhammed F.-R.; Sewell, B. Trevor

    2006-01-01

    The amidase from G. pallidus RAPc8, a moderate thermophile, converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned, expressed and purified, and then crystallized using the hanging-drop vapour-diffusion method. The amidase from Geobacillus pallidus RAPc8, a moderate thermophile, is a member of the nitrilase enzyme superfamily. It converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned and functionally expressed in Escherichia coli and has been purified by heat treatment and a number of chromatographic steps. The enzyme was crystallized using the hanging-drop vapour-diffusion method. Crystals produced in the presence of 1.2 M sodium citrate, 400 mM NaCl, 100 mM sodium acetate pH 5.6 were selected for X-ray diffraction studies. A data set having acceptable statistics to 1.96 Å resolution was collected under cryoconditions using an in-house X-ray source. The space group was determined to be primitive cubic P4 2 32, with unit-cell parameter a = 130.49 (±0.05) Å. The structure was solved by molecular replacement using the backbone of the hypothetical protein PH0642 from Pyrococcus horikoshii (PDB code 1j31) with all non-identical side chains substituted with alanine as a probe. There is one subunit per asymmetric unit. The subunits are packed as trimers of dimers with D3 point-group symmetry around the threefold axis in such a way that the dimer interface seen in the homologues is preserved

  13. Effect of antimony incorporation on structural properties of CuInS2 crystals

    International Nuclear Information System (INIS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.

    2010-01-01

    CuInS 2 (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS 2 phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  14. Crystal structures of two eukaryotic nucleases involved in RNA metabolism

    DEFF Research Database (Denmark)

    Jonstrup, Anette Thyssen; Midtgaard, Søren Fuglsang; Van, Lan Bich

    RNA serves a number of functions in the cell: mRNAs are the carriers of information between gene and protein, tRNAs and rRNAs are involved in the synthesis of proteins, whereas a number of additional RNA species are responsible for other functions in the cell. The quality of the different RNAs...... RNAs. We have solved the structures of two nucleases involved in 3'-5' degradation of RNA; the S. pombe Pop2p and the S. cerevisiae Rrp6p. Pop2p is part of the main cytoplasmatic deadenylation complex in yeast, which also contains the nuclease Ccr4p. Deadenylation, where the poly(A)-tail is removed...... specific transcripts. Here, we present the crystal structure of the S. pombe Pop2p protein to 1.4 Å resolution. The high resolution structure provides a clear picture of the active site architecture. Structural alignment of single nucleotides and poly(A)-oligonucleotides from earlier co-crystal structures...

  15. Crystal structure, vibrational and DFT simulation studies of melaminium dihydrogen phosphite monohydrate

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-08-01

    The crystal structure investigations of melamine with phosphorous acid, namely melaminium dihydrogenphosphite monohydrate (C3N6H7·H2PO3·H2O) have been investigated by means of single crystal X-ray diffraction method. The title compound crystallizes in monoclinic crystal system, and the space group is P21/c with a = 10.069 Å, b = 21.592 Å, c = 12.409 Å and Z = 12. The vibrational assignments and analysis of melaminium dihydrogen phosphite monohydrate have also been performed by FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical simulations were performed with DFT (B3LYP) method using 6-31G**, cc-pVTZ, and 6-311++G** basis sets to determine the energy, structural, thermodynamic parameters and vibrational frequencies of melaminium dihydrogen phosphite monohydrate. The hydrogen atom from phosphorous acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H···O and Nsbnd H···O hydrogen bonds shows notable vibrational effects.

  16. Preparation, crystallization and preliminary X-ray crystallographic studies of diadenosine tetraphosphate hydrolase from Shigella flexneri 2a

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wenxin; Wang, Qihai; Bi, Ruchang, E-mail: rcbi@sun5.ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2005-12-01

    The 31.3 kDa Ap{sub 4}A hydrolase from Shigella flexneri 2a has been cloned, expressed and purified using an Escherichia coli expression system. Crystals of Ap{sub 4}A hydrolase have been obtained by the hanging-drop technique at 291 K using PEG 550 MME as precipitant. Diadenosine tetraphosphate (Ap{sub 4}A) hydrolase (EC 3.6.1.41) hydrolyzes Ap{sub 4}A symmetrically in prokaryotes. It plays a potential role in organisms by regulating the concentration of Ap{sub 4}A in vivo. To date, no three-dimensional structures of proteins with significant sequence homology to this protein have been determined. The 31.3 kDa Ap{sub 4}A hydrolase from Shigella flexneri 2a has been cloned, expressed and purified using an Escherichia coli expression system. Crystals of Ap{sub 4}A hydrolase have been obtained by the hanging-drop technique at 291 K using PEG 550 MME as precipitant. Ap{sub 4}A hydrolase crystals diffract X-rays to 3.26 Å and belong to space group P2{sub 1}, with unit-cell parameters a = 118.9, b = 54.6, c = 128.5 Å, β = 95.7°.

  17. Comparison of NMR and crystal structures for the proteins TM1112 and TM1367

    International Nuclear Information System (INIS)

    Mohanty, Biswaranjan; Serrano, Pedro; Pedrini, Bill; Jaudzems, Kristaps; Geralt, Michael; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    NMR structures of the proteins TM1112 and TM1367 solved by the JCSG in solution at 298 K could be superimposed with the corresponding crystal structures at 100 K with r.m.s.d. values of <1.0 Å for the backbone heavy atoms. For both proteins the structural differences between multiple molecules in the asymmetric unit of the crystals correlated with structural variations within the bundles of conformers used to represent the NMR solution structures. A recently introduced JCSG NMR structure-determination protocol, which makes use of the software package UNIO for extensive automation, was further evaluated by comparison of the TM1112 structure obtained using these automated methods with another NMR structure that was independently solved in another PSI center, where a largely interactive approach was applied. The NMR structures of the TM1112 and TM1367 proteins from Thermotoga maritima in solution at 298 K were determined following a new protocol which uses the software package UNIO for extensive automation. The results obtained with this novel procedure were evaluated by comparison with the crystal structures solved by the JCSG at 100 K to 1.83 and 1.90 Å resolution, respectively. In addition, the TM1112 solution structure was compared with an NMR structure solved by the NESG using a conventional largely interactive methodology. For both proteins, the newly determined NMR structure could be superimposed with the crystal structure with r.m.s.d. values of <1.0 Å for the backbone heavy atoms, which provided a starting platform to investigate local structure variations, which may arise from either the methods used or from the different chemical environments in solution and in the crystal. Thereby, these comparative studies were further explored with the use of reference NMR and crystal structures, which were computed using the NMR software with input of upper-limit distance constraints derived from the molecular models that represent the results of structure

  18. Crystal structures of two thiacalix[4]arene derivatives anchoring four ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The crystal structures of two thiacalixarene derivatives anchoring thiadiazole functional groups at lower rim, C60H72O4S12N8 (1), C64H80O4S12N8 (2), have been determined by single crystal X-ray diffraction. The thiacalix[4]arene framework in both 1 and 2 adopts the 1,3-alternate conformation. Com- pound 1 ...

  19. Crystal chemistry of nephelines from ijolites and nepheline-rich pegmatites: influence of composition and genesis on the crystal structure investigated by X-ray diffraction

    DEFF Research Database (Denmark)

    Vulić, Predrag; Balić-Žunić, Tonči; Belmonte, Louise Josefine

    2011-01-01

    Ten nepheline single crystals from five different localities representing rocks from nepheline-syenite pegmatites to urtite, ijolite and cancrinite-ijolite were investigated chemically and structurally. The chemical compositions were determined by electron microprobe, whereas the crystal structur...

  20. Crystal Structure of Rat Carnitine Palmitoyltransferase II (CPT-II)

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao,Y.; Jogl, G.; Esser, V.; Tong, L.

    2006-01-01

    Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the {beta}-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9 Angstroms resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.

  1. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    International Nuclear Information System (INIS)

    Vitova, Tonya

    2008-02-01

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu 1+ and Cu 2+ ) and Fe (Fe 2+ and Fe 3+ ) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn 2+ and Mn 3+ in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu 1+ ) and sixfold (Cu 2+ ) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with 3 He 2+ ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  2. Purification, crystallization and preliminary crystallographic analysis of Streptococcus pyogenes laminin-binding protein Lbp

    International Nuclear Information System (INIS)

    Linke, Christian; Caradoc-Davies, Tom T.; Proft, Thomas; Baker, Edward N.

    2008-01-01

    The S. pyogenes laminin-binding protein Lbp, which is essential for adhesion to human laminin, has been expressed, purified and crystallized. The laminin-binding protein Lbp (Spy2007) from Streptococcus pyogenes (a group A streptococcus) mediates adhesion to the human basal lamina glycoprotein laminin. Accordingly, Lbp is essential in in vitro models of cell adhesion and invasion. However, the molecular and structural basis of laminin binding by bacteria remains unknown. Therefore, the lbp gene has been cloned for recombinant expression in Escherichia coli. Lbp has been purified and crystallized from 30%(w/v) PEG 1500 by the sitting-drop vapour-diffusion method. The crystals belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 42.62, b = 92.16, c = 70.61 Å, β = 106.27°, and diffracted to 2.5 Å resolution

  3. Purification, crystallization and preliminary crystallographic analysis of Streptococcus pyogenes laminin-binding protein Lbp

    Energy Technology Data Exchange (ETDEWEB)

    Linke, Christian, E-mail: clin180@ec.auckland.ac.nz [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Caradoc-Davies, Tom T. [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Australian Synchrotron, Clayton, Victoria 3168 (Australia); Proft, Thomas [School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Baker, Edward N. [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand)

    2008-02-01

    The S. pyogenes laminin-binding protein Lbp, which is essential for adhesion to human laminin, has been expressed, purified and crystallized. The laminin-binding protein Lbp (Spy2007) from Streptococcus pyogenes (a group A streptococcus) mediates adhesion to the human basal lamina glycoprotein laminin. Accordingly, Lbp is essential in in vitro models of cell adhesion and invasion. However, the molecular and structural basis of laminin binding by bacteria remains unknown. Therefore, the lbp gene has been cloned for recombinant expression in Escherichia coli. Lbp has been purified and crystallized from 30%(w/v) PEG 1500 by the sitting-drop vapour-diffusion method. The crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 42.62, b = 92.16, c = 70.61 Å, β = 106.27°, and diffracted to 2.5 Å resolution.

  4. Shear effects on crystallization behaviors and structure transitions of isotactic poly-1-butene

    DEFF Research Database (Denmark)

    Li, Jingqing; Guan, Peipei; Zhang, Yao

    2014-01-01

    Different melt pre-shear conditions were applied to isotactic poly-1-butene (iP-1-B) and the effect on the crystallization behaviors and the crystalline structure transitions of iP-1-B were investigated. The polarized optical microscope observations during isothermal crystallization process...... revealed that the applied melt pre-shear within the experimental range could enhance the nucleation of crystal II and accelerate the diameter growth of the formed spherulites. If the applied melt pre-shear rate was large enough, Shish-Kebabs structure could be formed. After the isothermal crystallization...... was formed in the melt pre-sheared iP-1-B samples. Further investigations were applied with synchrotron radiation instruments. Wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS) after the crystal transition showed that the applied melt pre-shear could result in orientated fine...

  5. Intramolecular binding mode of the C-terminus of Escherichia coli single-stranded DNA binding protein determined by nuclear magnetic resonance spectroscopy

    OpenAIRE

    Shishmarev, Dmitry; Wang, Yao; Mason, Claire E.; Su, Xun-Cheng; Oakley, Aaron J.; Graham, Bim; Huber, Thomas; Dixon, Nicholas E.; Otting, Gottfried

    2013-01-01

    Single-stranded DNA (ssDNA) binding protein (SSB) is an essential protein to protect ssDNA and recruit specific ssDNA-processing proteins. Escherichia coli SSB forms a tetramer at neutral pH, comprising a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain) of ∼64 amino acid residues. The C-terminal eight-residue segment of SSB (C-peptide) has been shown to interact with the OB-domain, but crystal structures failed to reveal any electron den...

  6. NATO Advanced Study Institute on Electronic Structure of Polymers and Molecular Crystals

    CERN Document Server

    Ladik, János

    1975-01-01

    The NATO Advanced Study Institute on "Electronic Structure of Polymers and Molecular Crystals" was held at the Facultes Universi­ taires de Namur (F.U.N.) from September 1st till September 14th, 1974. We wish to express our appreciation to the NATO Scientific Affairs Division whose generous support made this Institute possible and to the Facultes Universitaires de Namur and the Societe Chimique de Belgique which provided fellowships and travel grants to a number of students. This volume contains the main lectures about the basic principles of the field and about different recent developments of the theory of the electronic structure of polymers and molecular crystals. The school started with the presentation of the basic SCF-LCAO theory of the electronic structure of periodic polymers and molecular crystals (contributions by Ladik, Andre & Delhalle) showing how a combination of quantum chemical and solid state physical methods can provide band structures for these systems. The numerical aspects of these ...

  7. Dual Effect of the Cubic Ag₃PO₄ Crystal on Pseudomonas syringae Growth and Plant Immunity

    Directory of Open Access Journals (Sweden)

    Mi Kyung Kim

    2016-04-01

    Full Text Available We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating activity. Since SPC can simultaneously inhibit P. syringae growth and induce plant defense responses, it might be used as a more effective plant disease-controlling agent.

  8. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics Project: one size fits all?

    Science.gov (United States)

    Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman

    2005-06-01

    Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.

  9. Expression, crystallization and preliminary crystallographic study of mouse hepatitis virus (MHV) nucleocapsid protein C-terminal domain

    International Nuclear Information System (INIS)

    Tong, Xiaohang; Ma, Yanlin; Li, Xuemei

    2010-01-01

    The C-terminal domain of mouse hepatitis virus nucleocapsid protein has been overexpressed in E. coli, purified and crystallized. The crystal belonged to space group P422, with unit-cell parameters a = 66.6, c = 50.8 Å, and diffracted to 2.20 Å resolution. Mouse hepatitis virus (MHV) belongs to the group II coronaviruses. The virus produces nine genes encoding 11 proteins that could be recognized as structural proteins and nonstructural proteins and are crucial for viral RNA synthesis. The nucleocapsid (N) protein, one of the structural proteins, interacts with the 30.4 kb virus genomic RNA to form the helical nucleocapsid and associates with the membrane glycoprotein via its C-terminus to stabilize virion assembly. Here, the expression and crystallization of the MHV nucleocapsid protein C-terminal domain are reported. The crystals diffracted to 2.20 Å resolution and belonged to space group P422, with unit-cell parameters a = 66.6, c = 50.8 Å. Assuming the presence of two molecules in the asymmetric unit, the solvent content is 43.0% (V M = 2.16 Å 3 Da −1 )

  10. Synthesis, crystal structure and electronic structure of the binary phase Rh{sub 2}Cd{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Biplab [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Chatterjee, S. [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Jana, Partha P., E-mail: ppj@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2017-02-15

    A new phase in the Rh-Cd binary system - Rh{sub 2}Cd{sub 5} has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh{sub 2}Cd{sub 5} crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh{sub 2}Cd{sub 5} can be described as a defect form of the In{sub 3}Pd{sub 5} structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (3{sup 5}) (3{sup 7})- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh{sub 2}Cd{sub 5}. - Graphical abstract: (3.6.3.6)-Kagomé nets of cadmium atoms (top) and (3{sup 5}) (3{sup 7})- nets of both cadmium and rhodium atoms (bottom) in the structure of Rh{sub 2}Cd{sub 5}.

  11. Crystal structure of di-( N-methylmorpholine betaine)- L(+)-tartrate

    Science.gov (United States)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.

    2002-11-01

    The crystal structure of di-( N-methylmorpholine betaine)- L(+)-tartrate has been determined by X-ray diffraction method. Crystals are orthorhombic, space group P2 12 12 1, a=9.580(1), b=12.208(1), c=18.677(1) Å, Z=4, R=0.037. The molecule of L(+)-tartaric acid appears in the extended form with the hydroxyl groups as well as carboxyl groups in anti positions. The molecule is involved in a number of the intra- and intermolecular hydrogen bonds. The COOH groups of the tartaric acid link two non-equivalent N-methylmorpholine betaine molecules by a short, intermolecular O-H⋯O bonds of the lengths 2.456(1) and 2.510(1) Å. The OH groups form two different bifurcated hydrogen bonds, the intramolecular with the CO oxygen atoms (2.641(2) and 2.638(2) Å) and the intermolecular (2.919(2) and 3.084(2) Å) with neighbouring tartaric acid molecules, and link complexes in the zigzag ribbon parallel to the x-axis. The morpholine rings of both betaine molecules are in chair conformation with methyl groups in an axial position and CH 2COO - substituents in an equatorial one. In the crystals and the PM3-optimized structures there is no symmetry, both in the tartrate and N-methylmorpholine betaine moieties. FTIR spectrum confirms the complex structure of the investigated molecule.

  12. Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers

    Science.gov (United States)

    Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan

    2018-04-01

    Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.

  13. Twinning structures in near-stoichiometric lithium niobate single crystals

    International Nuclear Information System (INIS)

    Yao, Shuhua; Chen, Yanfeng

    2010-01-01

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔX and ΔY in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01 anti 1 anti 2} m planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  14. Crystal structure and spin state of mixed-crystals of iron with zinc and cobalt for the assembled complexes bridged by 1,3-bis(4-pyridyl)propanes

    Energy Technology Data Exchange (ETDEWEB)

    Dote, Haruka [Hiroshima University, Graduate School of Science (Japan); Nakashima, Satoru, E-mail: snaka@hiroshima-u.ac.jp [Hiroshima University, Natural Science Center for Basic Research and Development (Japan)

    2012-03-15

    Mixed crystals of cobalt and zinc were synthesized using 1,3-bis(4-pyridyl)propane (bpp) as bridging ligand and NCS{sup - } as anion. Red crystals and blue crystals were obtained. Powder X-ray diffraction patterns showed that the former is in 2D interpenetrated structure, while the latter has the same structure with Zn(NCS){sub 2}(bpp). Iron ion was introduced both into the red crystals and blue crystals of the mixed crystals of cobalt with zinc. {sup 57}Fe Moessbauer spectrum of the red crystals showed a main doublet of Fe{sup II} high-spin state at 78 K, while the spectrum of blue crystals did not show Fe{sup II} high-spin state at 78 K.

  15. Crystal structure and spin state of mixed-crystals of iron with zinc and cobalt for the assembled complexes bridged by 1,3-bis(4-pyridyl)propanes

    International Nuclear Information System (INIS)

    Dote, Haruka; Nakashima, Satoru

    2012-01-01

    Mixed crystals of cobalt and zinc were synthesized using 1,3–bis(4–pyridyl)propane (bpp) as bridging ligand and NCS  −  as anion. Red crystals and blue crystals were obtained. Powder X-ray diffraction patterns showed that the former is in 2D interpenetrated structure, while the latter has the same structure with Zn(NCS) 2 (bpp). Iron ion was introduced both into the red crystals and blue crystals of the mixed crystals of cobalt with zinc. 57 Fe Mössbauer spectrum of the red crystals showed a main doublet of Fe II high-spin state at 78 K, while the spectrum of blue crystals did not show Fe II high-spin state at 78 K.

  16. Photonic crystals, light manipulation, and imaging in complex nematic structures

    Science.gov (United States)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  17. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  18. The crystal structure of tris(thenoyltrifluoroacetonato)bis(triphenylphosphine oxide)neodymium(III)

    International Nuclear Information System (INIS)

    Leipoldt, J.G.; Bok, L.D.C.; Laubscher, A.E.; Basson, S.S.

    1975-01-01

    The crystal structure of tris(thenoyltrifluoroacetonato)bis= x (triphenylphosphine oxide)neodymium(III), (Nd(TTa) 3 .2TPPO), has been determined by single crystal X-ray diffraction. A total number of 5505 independent reflections was used for the structure determination. The complex crystallized in the triclinic space group P 1 - with two molecules in the unit cell. The cell dimensions are a = 23.64 A, b Z= 12.15 A, C 11.19 A, α = 109.4 0 , β = 104.2 0 , γ = 90.8 0 . The final calculated R vale is 8.4%. The molecule is monomeric and the neodymium atom is coordinated to eight oxygen atoms (six from the three thenoyltrifluoroacetone groups and two from the two triphenylphosphine groups) which form a dodecahedron. The average neodymium-oxygen bond length is 2.44 A. (author)

  19. The effect of exchange-correlation on change and stability of crystal structure

    International Nuclear Information System (INIS)

    Yazdani, A.; Niazi, M.; Alimardan, V.

    2007-01-01

    Since exchange interaction energy has effect on band structure via polarization of spin of free electron, then can directly effects formation crystal structure. Therefore exchange-correlation is able to have an effect on determination of crystal structure or its change and stability. This energy is subject to fluctuation range of electrons between conduction band and valance band or density of electrons which due to increase the entropy of system, via Gibss Energy .We investigated these factors: 1) Size of ions 2) Density of States 3) Range of inter atomic and pair-potential.

  20. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Arabidopsis thaliana cyclophilin 38 (AtCyp38)

    International Nuclear Information System (INIS)

    Vasudevan, Dileep; Gopalan, Gayathri; He, Zengyong; Luan, Sheng; Swaminathan, Kunchithapadam

    2005-01-01

    Crystallization of Arabidopsis thaliana cyclophilin 38. The crystal diffracts X-rays to 2.5 Å resolution. AtCyp38 is one of the highly divergent multidomain cyclophilins from Arabidopsis thaliana. A recombinant form of AtCyp38 (residues 83–437) was expressed in Escherichia coli and purified to homogeneity. The protein was crystallized using the vapour-batch technique with PEG 6000 and t-butanol as precipitants. Crystals of recombinant AtCyp38 diffracted X-rays to better than 2.5 Å resolution at 95 K using a synchrotron-radiation source. The crystal belongs to the C-centred orthorhombic space group C222 1 , with unit-cell parameters a = 58.2, b = 95.9, c = 167.5 Å, and contains one molecule in the asymmetric unit. The selenomethionine derivative of the AtCyp38 protein was overexpressed, purified and crystallized in the same space group and data were collected to 3.5 Å at the NSLS synchrotron. The structure is being solved by the MAD method