WorldWideScience

Sample records for coli cells damages

  1. Damage-induced DNA repair processes in Escherichia coli cells

    International Nuclear Information System (INIS)

    Slezarikova, V.

    1986-01-01

    The existing knowledge is summed up of the response of Escherichia coli cells to DNA damage due to various factors including ultraviolet radiation. So far, three inducible mechanisms caused by DNA damage are known, viz., SOS induction, adaptation and thermal shock induction. Greatest attention is devoted to SOS induction. Its mechanism is described and the importance of the lexA recA proteins is shown. In addition, direct or indirect role is played by other proteins, such as the ssb protein binding the single-strand DNA sections. The results are reported of a study of induced repair processes in Escherichia coli cells repeatedly irradiated with UV radiation. A model of induction by repeated cell irradiation discovered a new role of induced proteins, i.e., the elimination of alkali-labile points in the daughter DNA synthetized on a damaged model. The nature of the alkali-labile points has so far been unclear. In the adaptation process, regulation proteins are synthetized whose production is induced by the presence of alkylation agents. In the thermal shock induction, new proteins synthetize in cells, whose function has not yet been clarified. (E.S.)

  2. Photoreactivable sector of lethal damage in ultraviolet-irradiated Escherichia coli cells

    International Nuclear Information System (INIS)

    Balgavy, P.

    1976-01-01

    The photoreactivable sector of lethal damage in Escherichia coli Bsub(s-1), Escherichia coli B/r Hcr - and Escherichia coli B/r Hcr + cells after ultraviolet irradiation at 254 nm is 0.823 +- 0.004, 0.70 +- 0.01 and 0.53 +- 0.06, respectively, at 99% confidence limits. For the low values of the photoreactivable sector in the B/r Hcr - and B/r Hcr + strains are likely to be responsible dark repair processes which eliminate lethal damage, brought about by pyrimidine dimers, preferably in comparison with lethal damage caused by photoproducts of another type. (author)

  3. Damage to E. coli cells induced by tritium decay: secondary lethality under nongrowth conditions

    International Nuclear Information System (INIS)

    Koukalova, B.; Kuhrova, V.

    1980-01-01

    Cells containing incorporated 3 H-thymidine are damaged by its decay. It was found with E.coli TAU-bar cells that a small part of the damage is lethal whereas most of it is reparable and only potentially lethal. If cells are subjected to nongrowth conditions, the potentially lethal damage changes to lethal damage. This process is called secondary lethality (SL). The extent of SL and some changes in DNA under three different modes of growth inhibition were determined. It was found that: (i) SL is maximal under conditions of amino acid starvation (-AA), the viable count decreasing by two orders of magnitude. (ii) SL is 4 times lower in the presence of chloramphenicol (-AA+CLP) and 6.5 times lower under +AA+CLP conditions. Changes in the sedimentation rate of DNA determined in alkaline sucrose gradient correlate with the differences in SL: under -AA conditions the sedimentation rate of DNA decreases whereas in the presence of CLP no decrease occurs. The results suggest that certain enzymatic processes take place under -AA conditions which lead to irreparable changes in DNA. (author)

  4. Damage to E. coli cells induced by tritium decay: secondary lethality under nongrowth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Koukalova, B; Kuhrova, V [Ceskoslovenska Akademie Ved, Brno. Biofysikalni Ustav

    1980-05-01

    Cells containing incorporated /sup 3/H-thymidine are damaged by its decay. It was found with E.coli TAU-bar cells that a small part of the damage is lethal whereas most of it is reparable and only potentially lethal. If cells are subjected to nongrowth conditions, the potentially lethal damage changes to lethal damage. This process is called secondary lethality (SL). The extent of SL and some changes in DNA under three different modes of growth inhibition were determined. It was found that: (i) SL is maximal under conditions of amino acid starvation (-AA), the viable count decreasing by two orders of magnitude. (ii) SL is 4 times lower in the presence of chloramphenicol (-AA+CLP) and 6.5 times lower under +AA+CLP conditions. Changes in the sedimentation rate of DNA determined in alkaline sucrose gradient correlate with the differences in SL: under -AA conditions the sedimentation rate of DNA decreases whereas in the presence of CLP no decrease occurs. The results suggest that certain enzymatic processes take place under -AA conditions which lead to irreparable changes in DNA.

  5. Increase of radiation damage to potassium-ion permeability in E. coli cells with decrease in membrane fluidity

    International Nuclear Information System (INIS)

    Suzuki, S.

    1980-01-01

    Membrane lipids of an auxotroph of E. coli requiring unsaturated fatty acid were manipulated by supplementing the growth medium with unsaturated fatty acids of different chain lengths and/or configurations, and the radiation damage to K + -permeability of the resulting modified cells was investigated in relation with factors influencing membrane fluidity, such as temperature and procaine. Radiation had greater effects on membranes supplemented with unsaturated fatty acids of the trans configuration with a longer chain than on those of the cis configuration with a shorter chain. Radiation damage also increased with decrease in temperature. Furthermore, procaine-treated membranes showed increased resistance to radiation. All these results indicate that the damage was affected by the physical character of membrane lipids and that it was greater in membranes with decreased fluidity. (author)

  6. Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system

    International Nuclear Information System (INIS)

    Ayano, Satoru; Wakamoto, Yuichi; Yamashita, Shinobu; Yasuda, Kenji

    2006-01-01

    We quantitatively examined the possible damage to the growth and cell division ability of Escherichia coli caused by 1064-nm optical trapping. Using the synchronous behavior of two sister E. coli cells, the growth and interdivision times between those two cells, one of which was trapped by optical tweezers, the other was not irradiated, were compared using an on-chip single cell cultivation system. Cell growth stopped during the optical trapping period, even with the smallest irradiated power on the trapped cells. Moreover, the damage to the cell's growth and interdivision period was proportional to the total irradiated energy (work) on the cell, i.e., irradiation time multiplied by irradiation power. The division ability was more easily affected by a smaller energy, 0.36 J, which was 30% smaller than the energy that adversely affected growth, 0.54 J. The results indicate that the damage caused by optical trapping can be estimated from the total energy applied to cells, and furthermore, that the use of optical trapping for manipulating cells might cause damage to cell division and growth mechanisms, even at wavelengths under 1064 nm, if the total irradiation energy is excessive

  7. Cell division in Escherichia coli BS-12 is hypersensitive to deoxyribonucleic acid damage by ultraviolet light

    International Nuclear Information System (INIS)

    Bridges, B.A.; Mottershead, R.P.; Green, M.H.

    1977-01-01

    Escherichia coli BS-12 uvrA lon is hypersensitive to ultraviolet light. On minimal agar plates at densities in excess of about 10(7) bacteria per plate, as few as one or two photoreversible pyrimidine dimers in the entire genome are sufficient to cause inhibition of cell division. Most of the resulting filaments are unable to divide or form a viable colony. Inhibition of cell division appears to be a rapid consequence of replication of deoxyribonucleic acid containing a pyrimidine dimer. Photoreversibility of the inhibition of cell division persists indefinitely, indicating that the continued presence of the pyrimidine dimers (or the continued generation of daughter strand gaps) is necessary to maintain the division-inhibited state. In view of the kinetics for the production of filamentation by ultraviolet light and the extremely low average inducing fluence (0.03 J/m2), it is concluded that the initiating signal is not the same as that causing other inducible phenomena such as prophage induction or Weigle reactivation

  8. Lactoferrin and lactoferrin chimera inhibit damage caused by enteropathogenic Escherichia coli in HEp-2 cells

    NARCIS (Netherlands)

    Flores-Villaseñor, H.; Canizalez-Román, A.; de la Garza, M.; Nazmi, K.; Bolscher, J.G.M.; Leon-Sicairos, N.

    2012-01-01

    Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea in developing countries. It produces a characteristic intestinal histopathological lesion on enterocytes known as ‘attaching and effacing’ (A/E), and these two steps are mediated by a type-III secretory system. In the

  9. Lactobacillus rhamnosus GR-1 Ameliorates Escherichia coli-Induced Inflammation and Cell Damage via Attenuation of ASC-Independent NLRP3 Inflammasome Activation.

    Science.gov (United States)

    Wu, Qiong; Liu, Ming-Chao; Yang, Jun; Wang, Jiu-Feng; Zhu, Yao-Hong

    2016-02-15

    Escherichia coli is a major environmental pathogen causing bovine mastitis, which leads to mammary tissue damage and cell death. We explored the effects of the probiotic Lactobacillus rhamnosus GR-1 on ameliorating E. coli-induced inflammation and cell damage in primary bovine mammary epithelial cells (BMECs). Increased Toll-like receptor 4 (TLR4), NOD1, and NOD2 mRNA expression was observed following E. coli challenge, but this increase was attenuated by L. rhamnosus GR-1 pretreatment. Immunofluorescence and Western blot analyses revealed that L. rhamnosus GR-1 pretreatment decreased the E. coli-induced increases in the expression of the NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3) and the serine protease caspase 1. However, expression of the adaptor protein apoptosis-associated speck-like protein (ASC, encoded by the Pycard gene) was decreased during E. coli infection, even with L. rhamnosus GR-1 pretreatment. Pretreatment with L. rhamnosus GR-1 counteracted the E. coli-induced increases in interleukin-1β (IL-1β), -6, -8, and -18 and tumor necrosis factor alpha mRNA expression but upregulated IL-10 mRNA expression. Our data indicate that L. rhamnosus GR-1 reduces the adhesion of E. coli to BMECs, subsequently ameliorating E. coli-induced disruption of cellular morphology and ultrastructure and limiting detrimental inflammatory responses, partly via promoting TLR2 and NOD1 synergism and attenuating ASC-independent NLRP3 inflammasome activation. Although the residual pathogenic activity of L. rhamnosus, the dosage regimen, and the means of probiotic supplementation in cattle remain undefined, our data enhance our understanding of the mechanism of action of this candidate probiotic, allowing for development of specific probiotic-based therapies and strategies for preventing pathogenic infection of the bovine mammary gland. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Andrographolide interferes quorum sensing to reduce cell damage caused by avian pathogenic Escherichia coli.

    Science.gov (United States)

    Guo, Xun; Zhang, Li-Yan; Wu, Shuai-Cheng; Xia, Fang; Fu, Yun-Xing; Wu, Yong-Li; Leng, Chun-Qing; Yi, Peng-Fei; Shen, Hai-Qing; Wei, Xu-Bin; Fu, Ben-Dong

    2014-12-05

    Avian pathogenic Escherichia coli (APEC) induce septicemia in chickens by invading type II pneumocytes to breach the blood-air barrier. The virulence of APEC can be regulated by quorum sensing (QS). Andrographolide is a QS inhibitor of Pseudomonas aeruginosa (P. aeruginosa). Therefore, we investigate whether andrographolide inhibits the injury of chicken type II pneumocytes by avian pathogenic E. coli O78 (APEC-O78) by disrupting the bacterial QS system. The results showed that sub-MIC of andrographolide significantly reduced the release of lactate dehydrogenase (LDH), F-actin cytoskeleton polymerization, and the degree of the adherence to chicken type II pneumocytes induced by APEC-O78. Further, we found that andrographolide significantly decreased the autoinducer-2 (AI-2) activity and the expression of virulence factors of APEC-O78. These results suggest that andrographolide reduce the pathogenicity of APEC-O78 in chicken type II pneumocytes by interfering QS and decreasing virulence. These results provide new evidence for colibacillosis prevention methods in chickens. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Entry of a Six-Residue Antimicrobial Peptide Derived from Lactoferricin B into Single Vesicles and Escherichia coli Cells without Damaging their Membranes.

    Science.gov (United States)

    Moniruzzaman, Md; Islam, Md Zahidul; Sharmin, Sabrina; Dohra, Hideo; Yamazaki, Masahito

    2017-08-22

    Lactoferricin B (LfcinB) and shorter versions of this peptide have antimicrobial activity. However, the elementary processes of interactions of these peptides with lipid membranes and bacteria are still not well understood. To elucidate the mechanism of their antimicrobial activity, we investigated the interactions of LfcinB (4-9) (its sequence of RRWQWR) with Escherichia coli cells and giant unilamellar vesicles (GUVs). LfcinB (4-9) and lissamine rhodamine B red-labeled LfcinB (4-9) (Rh-LfcinB (4-9)) did not induce an influx of a membrane-impermeant fluorescent probe, SYTOX green, from the outside of E. coli cells into their cytoplasm, indicating that no damage occurred in their plasma membrane. To examine the activity of LfcinB (4-9) to enter E. coli cytoplasm, we investigated the interaction of Rh-LfcinB (4-9) with single cells of E. coli containing calcein using confocal microscopy. We found that Rh-LfcinB (4-9) entered the cytoplasm without leakage of calcein. Next, we investigated the interactions of Rh-LfcinB (4-9) with single GUVs of dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC) mixtures containing a fluorescent probe, Alexa Fluor 647 hydrazide (AF647), using the single GUV method. The results indicate that Rh-LfcinB (4-9) outside the GUV translocated through the GUV membrane and entered its lumen without leakage of AF647. Interaction of Rh-LfcinB (4-9) with DNA increased its fluorescence intensity greatly. Therefore, we can conclude that Rh-LfcinB (4-9) can translocate across lipid membrane regions of the plasma membrane of E. coli cells to enter their cytoplasm without leakage of calcein and its antimicrobial activity is not due to damage of their plasma membranes.

  12. The oxygen effect in E. coli cells

    International Nuclear Information System (INIS)

    Myasnik, M.N.; Skvortsov, V.G.; Sokolov, V.A.

    1982-01-01

    In experiments on E. coli strains deficient in some stages of DNA repair from radiation damages, it was demonstrated that the value of the oxygen effect, under optimal conditions for manifestation thereof, decreases in the following order: E. coli WP2 (the wild type) → E. coli WP2 exr - and E. coli B → E. coli WP2 uvr A6 → E. coli WP2 rec Al and E. coli WP2 hcr - exr - . It was detected that 0.14 M NaCl solution sensitizes the anoxic cells of some E. coli strains to the effect of γ-radiation. It was established that mutation of the uvr A-gene increases sharply the sensitivity of cells to iradiation under the anoxic conditions in the presence of NaCl, the reverse'' oxygen effect being observed

  13. The role of genes controlling the replication and cell division in the repair of radiation damage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Zhestyanikov, V D; Svetlova, M P; Tomilin, N V; Savel' eva, G E [AN SSSR, Leningrad. Inst. Tsitologii

    1975-01-01

    Mutations in genes controlling the replication (dnaEsup(ts), dnaBsup(ts), dnaGsup(ts) and cell division (lon) in Escherichia coli prevent the rejoining of the gamma radiation-induced single-strand breaks (dnaE in combination with polA1 mutation and dnaG at the restrictive temperature) and effective postreplication DNA repair in UV-irradiated cells (dnaG at the non-permissive temperature and lon mutation) and decrease the survival of UV- and gamma-irradiated bacteria.

  14. A bioluminescence ATP assay for estimating surface hydrophobicity and membrane damage of Escherichia coli cells treated with pulsed electric fields

    Science.gov (United States)

    Pulse Electric Field (PEF) treatments, a non-thermal process have been reported to injure and inactivate bacteria in liquid foods. However, the effect of this treatment on bacterial cell surface charge and hydrophobicity has not been investigated. Apple juice (AJ, pH 3.8) purchased from a wholesale ...

  15. Involvement of membrane lipids in radiation damage to potassium-ion permeability of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S [Tokyo Univ. (Japan). Inst. for Medical Science; Akamatsu, Y

    1978-02-01

    Radiation damage to K/sup +/ permeability of an unsaturated fatty acid auxotroph of E.coli grown with oleate or linolenate was investigated at different temperatures. A remarkable effect of radiation was observed at 0/sup 0/C with cells that had been grown in linolenate at 42/sup 0/C. This indicates that, besides protein, membrane lipids at least are involved in the radiation damage. The damage also seems to be affected by the fluidity of membrane lipids.

  16. P2X receptor-dependent erythrocyte damage by α-hemolysin from Escherichia coli triggers phagocytosis by THP-1 cells

    DEFF Research Database (Denmark)

    Fagerberg, Steen Kåre; Skals, Marianne Gerberg; Leipziger, Jens Georg

    2013-01-01

    , which is known to be a keen trigger for phagocytosis. We hypothesize that exposure to HlyA elicits removal of the damaged erythrocytes by phagocytic cells. Cultured THP-1 cells as a model for erythrocytal phagocytosis was verified by a variety of methods, including live cell imaging. We consistently...

  17. Accelerated repair and reduced mutagenicity of DNA damage induced by cigarette smoke in human bronchial cells transfected with E.coli formamidopyrimidine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Mara Foresta

    Full Text Available Cigarette smoke (CS is associated to a number of pathologies including lung cancer. Its mutagenic and carcinogenic effects are partially linked to the presence of reactive oxygen species and polycyclic aromatic hydrocarbons (PAH inducing DNA damage. The bacterial DNA repair enzyme formamidopyrimidine DNA glycosylase (FPG repairs both oxidized bases and different types of bulky DNA adducts. We investigated in vitro whether FPG expression may enhance DNA repair of CS-damaged DNA and counteract the mutagenic effects of CS in human lung cells. NCI-H727 non small cell lung carcinoma cells were transfected with a plasmid vector expressing FPG fused to the Enhanced Green Fluorescent Protein (EGFP. Cells expressing the fusion protein EGFP-FPG displayed accelerated repair of adducts and DNA breaks induced by CS condensate. The mutant frequencies induced by low concentrations of CS condensate to the Na(+K(+-ATPase locus (oua(r were significantly reduced in cells expressing EGFP-FPG. Hence, expression of the bacterial DNA repair protein FPG stably protects human lung cells from the mutagenic effects of CS by improving cells' capacity to repair damaged DNA.

  18. Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences.

    Science.gov (United States)

    Zhou, Z X; Wei, D F; Guan, Y; Zheng, A N; Zhong, J J

    2010-03-01

    The purpose of this study was to provide micrographic evidences for the damaged membrane structure and intracellular structure change of Escherichia coli strain 8099, induced by polyhexamethylene guanidine hydrochloride (PHMG). The bactericidal effect of PHMG on E. coli was investigated based on beta-galactosidase activity assay, fluorescein-5-isothiocyanate confocal laser scanning microscopy, field emission scanning electron microscopy and transmission electron microscopy. The results revealed that a low dose (13 microg ml(-1)) of PHMG slightly damaged the outer membrane structure of the treated bacteria and increased the permeability of the cytoplasmic membrane, while no significant damage was observed to the morphological structure of the cells. A high dose (23 microg ml(-1)) of PHMG collapsed the outer membrane structure, led to the formation of a local membrane pore across the membrane and badly damaged the internal structure of the cells. Subsequently, intracellular components were leaked followed by cell inactivation. Dose-dependent membrane disruption was the main bactericidal mechanism of PHMG. The formation of the local membrane pores was probable after exposure to a high dose (23 microg ml(-1)) of PHMG. Micrographic evidences were provided about the damaged membrane structure and intracellular structure change of E. coli. The presented information helps understand the bactericidal mechanism of PHMG by membrane damage.

  19. Modeling base excision repair in Escherichia coli bacterial cells

    International Nuclear Information System (INIS)

    Belov, O.V.

    2011-01-01

    A model describing the key processes in Escherichia coli bacterial cells during base excision repair is developed. The mechanism is modeled of damaged base elimination involving formamidopyrimidine DNA glycosylase (the Fpg protein), which possesses several types of activities. The modeling of the transitions between DNA states is based on a stochastic approach to the chemical reaction description

  20. An active site aromatic triad in Escherichia coli DNA Pol IV coordinates cell survival and mutagenesis in different DNA damaging agents.

    Directory of Open Access Journals (Sweden)

    Ryan W Benson

    Full Text Available DinB (DNA Pol IV is a translesion (TLS DNA polymerase, which inserts a nucleotide opposite an otherwise replication-stalling N(2-dG lesion in vitro, and confers resistance to nitrofurazone (NFZ, a compound that forms these lesions in vivo. DinB is also known to be part of the cellular response to alkylation DNA damage. Yet it is not known if DinB active site residues, in addition to aminoacids involved in DNA synthesis, are critical in alkylation lesion bypass. It is also unclear which active site aminoacids, if any, might modulate DinB's bypass fidelity of distinct lesions. Here we report that along with the classical catalytic residues, an active site "aromatic triad", namely residues F12, F13, and Y79, is critical for cell survival in the presence of the alkylating agent methyl methanesulfonate (MMS. Strains expressing dinB alleles with single point mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in addition to its role in TLS, modulates DinB's accuracy in bypassing distinct lesions. The high bypass fidelity of prevalent alkylation lesions is evident even when the DinB active site performs error-prone NFZ-induced lesion bypass. The analyses carried out with the active site aromatic triad suggest that the DinB active site residues are poised to proficiently bypass distinctive DNA lesions, yet they are also malleable so that the accuracy of the bypass is lesion-dependent.

  1. Repair of membrane damage in X-irradiated E. coli

    International Nuclear Information System (INIS)

    Gillies, N.E.; Ratnajothi, N.H.; Hewamanna, R.; Obioha, F.I.

    1984-01-01

    When E. coli B/r or E. coli K12 AB1157 were X-irradiated in the presence of oxygen and incubated immediately after irradiation in broth containing penicillin in concentration that on its own was not lethal to unirradiated bacteria, substantial additional killing was caused. When treatment with penicillin was delayed for increasing times after irradiation the additional killing became progressively less. These results were interpreted as demonstrating the repair or removal of oxygen-dependent radiation-induced lesions in the bacterial membranes. Removal of these lesions was inhibited by incubation of the irradiated bacteria at low temperature before treatment with penicillin or by exposing the cells to a non-lethal concentration of toluene before irradiation. These observations suggest that an enzymatic repair process may be involved in the removal of the membrane lesions. The fatty acid mutant E. coli K 1060 proved exceptional in that some additional killing by penicillin was detectable after anaerobic as well as aerobic irradiation. This points to the importance of membrane composition in the development of those radiation lesions that are brought to light by penicillin treatment. (author)

  2. Recovery from damage induced by acridine plus near-ultraviolet light in Escherichia coli

    International Nuclear Information System (INIS)

    Wagner, S.; Feldman, A.; Snipes, W.

    1982-01-01

    Escherichia coli cells treated with sublethal doses of acridine plus near-UV light exhibit an effective split-dose recovery response that requires an incubation period of about 30-45 min. Studies of the metabolic requirements for split-dose recovery revealed the following: (a) DNA synthesis is not required for split-dose recovery: (b) inhibition of electron transport or protein synthesis reduces the efficiency of split-dose recovery by about one-half: (c) inhibition of phospholipid synthesis or cell wall synthesis completely eliminates the split-dose recovery response. These results suggest an involvement of membrane repair mechanisms in response to damage by acridine plus near-UV light. Additional evidence for such a process was provided by more direct assays for membrane recovery. It was found that cells treated with sublethal doses of acridine plus near-UV light are sensitive to low concentrations of detergents, and lose that sensitivity upon incubation. Likewise, treated cells are susceptible to lethal osmotic shock, but can recover from this susceptibility if incubated after treatment but prior to exposure to low osmotic conditions. Based on accumulating evidence it is proposed that E. coli cells are capable of repairing membrane damage resulting from exposure to acridine plus near-UV light. (author)

  3. How much territory can a single E. coli cell control?

    Directory of Open Access Journals (Sweden)

    Ziad W. El-Hajj

    2015-04-01

    Full Text Available Bacteria have been traditionally classified in terms of size and shape and are best known for their very small size. E. coli cells in particular are small rods, each 1-2 microns. However the size varies with the medium, and faster growing cells are larger because they must have more ribosomes to make more protoplasm per unit time, and ribosomes take up space. Indeed, Maaloe's experiments on how E. coli establishes its size began with shifts between rich and poor media.Recently much larger bacteria have been described, including Epulopiscium fishelsoni at 700 μm and Thiomargarita namibiensisis at 750 μm. These are not only much longer than E. coli cells but also much wider, necessitating considerable intracellular organization. Epulopiscium cells for instance, at 80 μm wide, enclose a large enough volume of cytoplasm to present it with major transport problems.This review surveys E. coli cells much longer than those which grow in nature and in usual lab cultures. These include cells mutated in a single gene (metK which are 2-4x longer than their nonmutated parent. This metK mutant stops dividing when slowly starved of S-adenosylmethionine but continues to elongate to 50 μm and more. FtsZ mutants have been routinely isolated as long cells which form during growth at 42°C. The SOS response is a well-characterized regulatory network that is activated in response to DNA damage and also results in cell elongation. Our champion elongated E. coli is a metK strain with a further, as yet unidentified mutation, which reaches 750 μm with no internal divisions and no increase in width.

  4. DNA turnover in buffer-held Escherichia coli and its effect on repair of UV damage

    International Nuclear Information System (INIS)

    Tang, M.S.; Wang, T.C.V.; Patrick, M.H.

    1979-01-01

    Continuous DNA degradation and resynthesis, without a net change in cellular DNA content, were observed in buffer-held, non-irradiated E. coli B/r. This constant DNA turnover probably involves most of the genome and reflects random sites of DNA repair due to the polA-dependent excision-resynthesis repair pathway. Under these non-growth conditions it appears that at any given time there is a minimum of one repair site per 6.5 x 10 6 daltons DNA, each of which is at least 160 nucleotides long. While the amount of DNA degradation is not influenced by prior exposure to UV radiation, the synthetic activity decreases with increasing UV fluence. It is suggested that when sites of DNA turnover occur opposite to cyclobutyl dipyrimidines in UV-irradiated cells, repair of the latter damage can be prevented. This implies that both beneficial and deleterious processes take place in irradiated buffer-held cells, and that cell survival depends on the delicate balance between DNA turnover and repair of UV-damage. Based on these findings, a model is proposed to explain the limit repair observed during post-irradiation liquid-holding and to account for the large difference in cell survival between irradiation at low fluence rates (fluence-rate dependent recovery) and at high fluence rates followed by liquid-holding (liquid-holding recovery). (author)

  5. Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage.

    Science.gov (United States)

    Mallik, Sarita; Popodi, Ellen M; Hanson, Andrew J; Foster, Patricia L

    2015-09-01

    Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings provide in vivo evidence

  6. Adherence of Enterohemorrhagic Escherichia coli to Human Epithelial Cells: The Role of Intimin

    Science.gov (United States)

    1995-04-28

    mucosa (e.g., enterotoxigenic E. coli, Vibrio cholerae , and Boroetella pertussis); ii) damage to the epithelial cell microvilli induced by the...diarrhea in Mayan childm in Mexico . J. Infect. Dis. 163, 507-513. G6mez-Ouarte, O.G. and Kaper, J.B. (1995). A plasmid-encoded regulartory region...de la Cabaca, F., and Garibay, E.V. (1987). Enteroadherent Escherichia coli as a cause of diarrhea among children in Mexico . J . Clin. Microbiol. 25

  7. Improved assay for thymine base damage in E. coli using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Claycamp, H.G.

    1985-01-01

    A simple high performance liquid chromatography (HPLC) technique has been established for the simultaneous assay of thymine and thymidine radiation damage products. The HPLC procedure uses an isocratic mobile phase of 4% acetonitrile in 0.2 M ammonium dihydrogen phosphate (pH 5.0), a reversed-phase octadecylsilicate (5 micro-spherical packing) 0.45 x 25 cm column, and a variable wavelength UV detector. This procedure affords much better resolution than other published procedures that use 10 micron columns or separate assays for bases and nucleosides. For example, irradiation of 5 x 10 -3 M thymidine solutions have been performed to calibrate the system for base damage assays in E. coli. This yields up to 15 resolvable residues within 20 minutes. Sensitivity of the system (at 2210 nm) for 5,6- dihydrothymine (DHT) is about 10 -10 moles. Preliminary results show that this translates to about 0.4 DHT residues per 10 6 daltons of E. coli DNA. This is comparable to the sensitivities of monoclonal assays to thymine damage products that have recently been reported by others. Since it is feasible that the sensitivity of this system can be improved by 2-3 times, this HPLC technique should provide a simple and rapid means of detecting E. coli base damage release and base damage in nucleoside hydrolysates of DNA

  8. Indigenous lactobacilli strains of food and human sources reverse enteropathogenic E. coli O26:H11-induced damage in intestinal epithelial cell lines: effect on redistribution of tight junction proteins.

    Science.gov (United States)

    Jariwala, Ruchi; Mandal, Hemanti; Bagchi, Tamishraha

    2017-09-01

    The aim of the study was to investigate the neutralizing effect of lactobacilli isolated from indigenous food and human sources on enteropathogenic Escherichia coli (EPEC) O26 : H11-induced epithelial barrier dysfunction in vitro. This was assessed by transepithelial electrical resistance (TEER) and permeability assays using intestinal cell lines, HT-29 and Caco-2. Furthermore, the expression and distribution of tight junction (TJ) proteins were analysed by qRT-PCR and immunofluorescence assay, respectively. The nine strains used in the study were from different species viz. Lactobacillus fermentum, Lactobacillushelveticus, Lactobacillus salivarius and Lactobacillus plantarum. All strains were able to reverse the decrease in TEER and corresponding increase in permeability across E. coli-infected monolayers. Maximum reversal was observed after 18 h [up to 93.8±2.0 % by L. rhamnosus GG followed by L. fermentum IIs11.2 (92.6±2.2 %) and L. plantarum GRI-2 (91.9±0.9 %)] of lactobacilli exposure following EPEC O26 : H11 infection. All strains were able to redistribute the TJ proteins to the cell periphery either partially or completely. Moreover, L. helveticus FA-7 was also able to significantly increase the mRNA expression of ZO-1 and claudin-1 (2.5-fold and 3.0-fold, respectively; PGRI-2 were good in all the aspects studied, and the other strains were good in some aspects. L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 can therefore be used for potential therapeutic purpose against intestinal epithelial dysfunction.

  9. Free radical scavenging and the expression of potentially lethal damage in X-irradiated repair-deficient Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1987-01-01

    When cells are exposed to ionizing radiation, they suffer lethal damage (LD), potentially lethal damage (PLD), and sublethal damage (SLD). All three forms of damage may be caused by direct or indirect radiation action or by the interaction of indirect radiation products with direct DNA damage. In this report I examine the expression of LD and PLD caused by the indirect action of X rays in isogenic, repair-deficient Escherichia coli. The radiosensitivity of a recA mutant, deficient both in pre- and post replication recombination repair and SOS induction (inducible error-prone repair), was compared to that of a recB mutant which is recombination deficient but SOS proficient and to a previously studied DNA polymerase 1-deficient mutant (polA) which lacks the excision repair pathway. Indirect damage by water radicals (primarily OH radicals) was circumvented by the presence of 2 M glycerol during irradiation. Indirect X-ray damage by water radicals accounts for at least 85% of the PLD found in exposed repair-deficient cells. The DNA polymerase 1-deficient mutant is most sensitive to indirect damage with the order of sensitivity polA1 greater than recB greater than or equal to recA greater than wild type. For the direct effects of X rays the order of sensitivity is recA greater than recB greater than polA1 greater than wild type. The significance of the various repair pathways in mitigating PLD by direct and indirect damage is discussed

  10. Influence of bromouracil density labelling on viability of UV irradiated Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Brozmanova, J [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1976-01-01

    Influence of 5-bromouracil cultivation on cell viability and DNA synthesis in the Escherichia coli B/r thy/sup -/ trp/sup -/ Hcr/sup +/ and Escherichia coli C thy-321 strains was followed. It was found that a 120 min cultivation in the bromouracil medium (unirradiated cells) does not essentially influence the viability of the two investigated strains but has an inhibitory effect on DNA synthesis in cells of the E. coli B/r Hcr/sup +/ strain. However, cultivation with bromouracil after ultraviolet irradiation leads to a decreased surviving ability of the irradiated cells of both investigated strains. Repair of damage induced by ultraviolet radiation probably exhausts a considerable proportion of repair activity, so that additional injury produced by bromouracil cultivation cannot be liquidated immediately.

  11. Effect of Light-Activated Hypocrellin B on the Growth and Membrane Permeability of Gram-Negative Escherichia coli Cells

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-01-01

    Full Text Available Aim. To investigate the effect of light-activated hypocrellin B on the growth and membrane permeability of Gram-negative bacteria. Methods. Escherichia coli (E. coli as a model bacterium of Gram-negative bacteria was incubated with various concentrations of hypocrellin B for 60 min and was subsequently irradiated by blue light with wavelength of 470 nm at the dose of 12 J/cm2. Colony forming units were counted and the growth inhibition rate of E. coli cells was calculated after light-activated hypocrellin B. Membrane permeability was measured using flow cytometry and confocal laser scanning microscopy (CLSM with propidium iodide (PI staining. Bacterial morphology was observed using transmission electron microscopy (TEM. Reactive oxygen species in bacterial cells were measured using flow cytometry with DCFH-DA staining. Results. Significant growth inhibition rate of E. coli cells was observed after photodynamic action of hypocrellin B. Remarkable damage to the ultrastructure of E. coli was also observed by TEM. Flow cytometry and CLSM observation showed that light-activated hypocrellin B markedly increased membrane permeability of E. coli. Flow cytometry showed the intracellular ROS increase in E. coli treated by photodynamic action of hypocrellin B. Conclusion. Light-activated hypocrellin B caused intracellular ROS increase and structural damages and inhibited the growth of Gram-negative E. coli cells.

  12. Differential actions of chlorhexidine on the cell wall of Bacillus subtilis and Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hon-Yeung Cheung

    Full Text Available Chlorhexidine is a chlorinated phenolic disinfectant used commonly in mouthwash for its action against bacteria. However, a comparative study of the action of chlorhexidine on the cell morphology of gram-positive and gram-negative bacteria is lacking. In this study, the actions of chlorhexidine on the cell morphology were identified with the aids of electron microscopy. After exposure to chlorhexidine, numerous spots of indentation on the cell wall were found in both Bacillus subtilis and Escherichia coli. The number of indentation spots increased with time of incubation and increasing chlorhexidine concentration. Interestingly, the dented spots found in B. subtilis appeared mainly at the hemispherical caps of the cells, while in E. coli the dented spots were found all over the cells. After being exposed to chlorhexidine for a prolonged period, leakage of cellular contents and subsequent ghost cells were observed, especially from B subtilis. By using 2-D gel/MS-MS analysis, five proteins related to purine nucleoside interconversion and metabolism were preferentially induced in the cell wall of E. coli, while three proteins related to stress response and four others in amino acid biosynthesis were up-regulated in the cell wall materials of B. subtilis. The localized morphological damages together with the biochemical and protein analysis of the chlorhexidine-treated cells suggest that chlorhexidine may act on the differentially distributed lipids in the cell membranes/wall of B. subtilis and E. coli.

  13. R.b.e. of 50 kVp X-rays and 660 keV γ-rays (137Cs) with respect to the production of DNA damage, repair and cell-killing in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Bonura, T.; Youngs, D.A.; Smith, K.C.

    1975-01-01

    A comparison has been made of the efficiency of cell-killing, DNA single-strand breakage and double-strand breakage in an Escherichia coli K-12 wild-type strain after irradiation with soft X-rays (50 kVp) and hard γ-rays (660 keV) under aerobic conditions. Irradiation with 50 kVp X-rays resulted in 1.47 times more cell-killing than was observed with 137 Cs γ-rays based on a comparison of D 0 values evaluated from the survival curves. DNA sedimentation studies showed that, although 50 kVp X-rays were 1.93 times more effective than 137 Cs γ-rays in producing DNA double-strand breaks, there was no significant difference between the two qualities of radiation with respect to the initial number of single-strand breaks produced. When the cells were irradiated and allowed to repair maximally in minimal medium, 1.57 times more unrepaired DNA single-strand breaks remained per krad after irradiation with 50 kVp X-rays than with 137 Cs γ-rays. The increased yield of DNA double-strand breaks resulting from 50 kVp X-irradiation may account for most of these additional unrepaired single-strand breaks, since single- and double-strand breaks are indistinguishable on alkaline sucrose gradients. These results suggest that the greater r.b.e. of 50 kVp X-rays may be related to an increased effectiveness for producing DNA double-strand breaks compared with the higher energy 137 Cs γ-rays. (author)

  14. Cerenkov light and the production of photoreactivatable damage in X-irradiated E. coli

    International Nuclear Information System (INIS)

    Redpath, J.L.; Zabilansky, E.; Morgan, T.; Ward, J.F.

    1981-01-01

    Survival curve data for oxygenated E. coli AB2480 irradiated with 6 MVp photons in the absence and presence of DNA are presented for bacteria which have or have not received photoreactivation treatment following x-ray exposure. At the concentration of DNA used (OD = 4.4 at 260 nm) partial protection against induction of photoreactivatable damage was attained. Following photoreactivation the survival curves had the same slope, irrespective of the presence or absence of DNA. Survival data for oxygenated E.coli AB2480 irradiated with 50 Gy of 6 MVp photons in the presence of DNA at varying concentrations (OD range 0.5 to 12) and then processed with or without exposure to photoreactivating light are also presented. Survival increased with DNA concentration in the absence, but not in the presence, of photoreactivation. It is concluded that theoretical considerations and experimental data are consistent with Cerenkov light being responsible for the production of a major part of the photoreactivatable damage induced in E.coli DNA by high energy X-,γ- or electron irradiation, but that the data obtained with low energy X-rays (300 kVp) and with high energy X-rays (6 MVp) plus DNA as a 'scavenger' of Cerenkov light, are indicative of a component of the photoreactivatable damage being induced by a mechanism not involving Cerenkov light. (U.K.)

  15. Cerenkov light and the production of photoreactivatable damage in X-irradiated E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Redpath, J L; Zabilansky, E; Morgan, T [California Univ., Irvine (USA). Dept. of Radiological Sciences; Ward, J F [California Univ., San Diego, La Jolla (USA). Dept. of Radiology

    1981-05-01

    Survival curve data for oxygenated E. coli AB2480 irradiated with 6 MVp photons in the absence and presence of DNA are presented for bacteria which have or have not received photoreactivation treatment following x-ray exposure. At the concentration of DNA used (OD = 4.4 at 260 nm) partial protection against induction of photoreactivatable damage was attained. Following photoreactivation the survival curves had the same slope, irrespective of the presence or absence of DNA. Survival data for oxygenated E.coli AB2480 irradiated with 50 Gy of 6 MVp photons in the presence of DNA at varying concentrations (OD range 0.5 to 12) and then processed with or without exposure to photoreactivating light are also presented. Survival increased with DNA concentration in the absence, but not in the presence, of photoreactivation. It is concluded that theoretical considerations and experimental data are consistent with Cerenkov light being responsible for the production of a major part of the photoreactivatable damage induced in E. coli DNA by high energy X-, ..gamma..- or electron irradiation, but that the data obtained with low energy X-rays (300 kVp) and with high energy X-rays (6 MVp) plus DNA as a scavenger of Cerenkov light, are indicative of a component of the photoreactivatable damage being induced by a mechanism not involving Cerenkov light.

  16. Modified Vero cell induced by Bifidobacterium bifidum inhibits enterohemorrhagic Escherichia coli O157:H7 cytopathic effect

    Directory of Open Access Journals (Sweden)

    Tahamtan, Y.

    2014-11-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC, such as E. coli O157:H7, are emerging food-borne pathogens worldwide. This micro-organism can damage the epithelial tissue of the large intestine. The cytotoxic effects can be neutralized by probiotics such as Bifidobacterium bifidum. Probiotics are viable cells that have beneficial effects on the health of the host. The preventing activity of B. bifidum against E. coli O157 was studied using a Vero cell model. Vero cell was pretreated with viable B. bifidum and incubated for either 3 h to 24 h and then collected from the cell to make modified Vero cell (MVC. Indirect antibacterial effects of B. bifidum were demonstrated by reduction of attachment of E. coli O157:H7 to MVC. The maximum reduction was resulted in pretreatment of Vero cell with B. bifidum for 24 h before infection. B. bifidum attenuated E. coli O157:H7 attachment to MVC up to 10 days of incubation. To our knowledge, MCV prevented Vero cell line injury induced by E. coli O157:H7. Therefore, B. bifidum can be used for inhibition of E. coli O157:H7 cytopathic effect (CPE in Vero cell model, even as pretreatment of the cell line.

  17. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells

    International Nuclear Information System (INIS)

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar

    2013-01-01

    Highlights: • Toxic effect of CdS NPs on the growth and cell division in E. coli was studied. • CdS NPs affected cell surface topology and cell division. • Downregulation of both FtsZ and FtsQ was observed due to NPs exposure. • CdS NPs affected HeLa cell morphology with fragmented nuclei. • All such effects might be due to elevated oxidative stress. -- Abstract: The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC 50 value was found to be 4 μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells

  18. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  19. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  20. Modification of radiation response of E. coli B/r cells by phenothiazines

    International Nuclear Information System (INIS)

    Maniar, H.S.; Singh, B.B.

    1983-01-01

    Promethazine and trimeprazine sensitized anoxic E. coli B/r cells to 60 Co gamma-rays, but both drugs showed a radioprotective effect under euoxic conditions. Their radiosensitizing effect was found to be due to the reaction of radiolytically induced hydroxyl radicals with the sensitizers. The radioprotective effect of these drugs is attributed to changes in the membrane structure conducive with chemical repair of the damaged sites in the gel region of the cellular membrane by intracellular sulphydryl compounds. Pre-irradiation depletion of sulphydryls from E. coli B/r by treatment with N-ethyl maleimide abolished the radioprotective effect of these drugs under euoxic conditions. (author)

  1. Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Bjørn, Louise; Mendoza-Chamizo, Belén

    2014-01-01

    In Escherichia coli, an increase in the ATP bound form of the DnaA initiator protein results in hyperinitiation and inviability. Here, we show that such replication stress is tolerated during anaerobic growth. In hyperinitiating cells, a shift from anaerobic to aerobic growth resulted in appearance...

  2. Alterations induced in Escherichia Coli cells by gamma radiation

    International Nuclear Information System (INIS)

    Kappke, J.; Schelin, H.R.; Paschuk, S.A.; Denyak, V.; Silva, E.R. da; Jesus, E.F.O. de; Lopes, R.T.; Carlin, N.; Toledo, E.S.

    2007-01-01

    Modifications occurred in Escherichia coli cells exposed to gamma radiation ( 60 Co source) were investigated. The irradiations were done at the LIN-COPPE laboratory of the UFRJ and the analysis at the Biology Department of the UTFPR. The E. coli cells were irradiated with 30, 60, 90, 120, 150, 180, 210, 240, 300, 480, 600 e 750 Gy doses. The samples were analyzed with Gram-stain, biochemical tests in EPM, MIO and Lysine Broth, Simmons Cytrate Medium and Rhamnose Broth, antibiogram and isolation of auxotrophic mutants. It was observed that for the received doses the E. coli did not show morphological alterations in the tests. Some E. Coli cells showed to be able to deaminade the L-tryptophan or they changed their sensibility for amoxillin and cephaloonine after the irradiation. The existence of aauxotrophic mutants after irradiation was also verified. (author)

  3. Repair of ultraviolet-light damaged ColE1 factor carrying Escherichia coli genes for guanine synthesis

    International Nuclear Information System (INIS)

    Kibe, A.; Shimada, K.; Tagaki, Y.

    1979-01-01

    Hybrid ColE1 plasmids called ColE1-cos lambda-guaA or ColE1-cos lambda-gal can be efficiently transduced into various E.coli K-12 cells through packaging into lambda phage particles. Using these plasmids, repair of ultraviolet-light (UV) damaged ColE1 DNAs was studied in various UV sensitive E.coli K-12 mutants. The host mutations uvrA and uvrB markedly reduced host-cell reactivation of UV-irradiated ColE1-cos lambda-guaA. Pre-existing hybrid ColE1 plasmids had no effect on the frequency of lambda phage-mediated transduction of another differentially marked hybrid ColE1 DNAs. ColE1-cos lambda-guaA and ColE1-cos lambda-gal DNAs could temporarily but not stably co-exist in E.coli K-12 recA cells. The presence of ColE1-cos lambda-gal in uvrB cells promoted the repair of super-infected UV-irradiated ColE1-cos lambda-guaA about 7-fold. The same ColE1-cos lambda-gal plasmid in a uvrB recA double mutant did not have this promoting effect. These results indicate that the effect of resident hybrid ColE1 plasmids is manifested by the host recA + gene function(s) and suggest that ColE1 plasmit itself provides no recA + -like functions. (orig.) [de

  4. Repair of ultraviolet-light damaged ColE1 factor carrying Escherichia coli genes for guanine synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kibe, A; Shimada, K; Tagaki, Y [Kyushu Univ., Fukuoka (Japan). Dept. of Biochemistry

    1979-01-01

    Hybrid ColE1 plasmids called ColE1-cos lambda-guaA or ColE1-cos lambda-gal can be efficiently transduced into various E.coli K-12 cells through packaging into lambda phage particles. Using these plasmids, repair of ultraviolet-light (UV) damaged ColE1 DNAs was studied in various UV sensitive E.coli K-12 mutants. The host mutations uvrA and uvrB markedly reduced host-cell reactivation of UV-irradiated ColE1-cos lambda-guaA. Pre-existing hybrid ColE1 plasmids had no effect on the frequency of lambda phage-mediated transduction of another differentially marked hybrid ColE1 DNAs. ColE1-cos lambda-guaA and ColE1-cos lambda-gal DNAs could temporarily but not stably co-exist in E.coli K-12 recA cells. The presence of ColE1-cos lambda-gal in uvrB cells promoted the repair of super-infected UV-irradiated ColE1-cos lambda-guaA about 7-fold. The same ColE1-cos lambda-gal plasmid in a uvrB recA double mutant did not have this promoting effect. These results indicate that the effect of resident hybrid ColE1 plasmids is manifested by the host recA/sup +/ gene function(s) and suggest that ColE1 plasmit itself provides no recA/sup +/-like functions.

  5. DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, C.J.; Walker, G.C.

    1988-05-01

    Operon fusions in Escherichia coli were obtained that showed increased beta-galactosidase expression in response to treatment with the DNA-damaging agent mitomycin C. These fusions were generated by using the Mud(ApR, lac) vector to insert the lactose structural genes randomly into the bacterial chromosome. Induction of beta-galactosidase in these strains, which carried fusions of lac to these din (damage-inducible) loci, was (i) triggered by UV light as well as by mitomycin C and (ii) abolished by either a recA- or a lexA- mutation. Similar characteristics of induction were observed when the lactose genes were fused to a prophage lambda promoter by using Mud(ApR, lac). These results indicate that E. coli contains a set of genes that, like prophage lambda genes, are expressed in response to DNA-damaging agents and regulated by the recA and lexA gene products. These din genes map at five bacterial loci. One din::Mud(ApR, lac) insertion results in a UV-sensitive phenotype and may be within the uvrA transcriptional unit.

  6. Mechanism of reactivation of the UV-inactivated cells of Escherichia coli by cell extracts of propionic acid bacteria

    International Nuclear Information System (INIS)

    Vorob'eva, L.I.; Khodzhaev, E.Y.; Ponomareva, G.M.

    1995-01-01

    Two mechanisms of reactivation of UV-inactivated Escherichia coli cells - photoreactivation (PhR) and reactivation by the dialyzate of cell extract of propionic acid bacteria - are shown to be different but not completely additive. PhR displays an insignificant negative effect on the reactivaton by active substances (peptides) of the dialyzate, whereas reactivation by dialyzate inhibits PhR. The maximal reactivation can be attained under complete PhR followed by the protective action of dialyzate. The dialyzate protects UV-irradiated E. coli cells with PolA, UvrA, and RecA mutations and Salmonella typhimurium TA 100 (UvrB) cells, and also exerts an antimutagenic effect on S. typhimurium TA 100. Protection by dialyzate is suggested to be due to restoration of the cell division mechanism damaged by UV irradiation. 14 refs., 3 figs., 5 tabs

  7. Relevance of DNA repair pathways on ascorbic acid effects on Echerichia Coli K-12 cells

    International Nuclear Information System (INIS)

    Slyus, M.A. van; Oliveira, R.L.B. da C.; Felzenszwalb, I.; Gomes, R.A.; Menck, C.F.

    1985-01-01

    Inactivation kinetics were performed with repair proficient and deficient Escherichia coli K-12 cells treated with oxidized solutions of ascorbic acid. The repair pathways controlled by the recA and uvrA gene products are essential for cell survival to the treatment. However, SOS chromotest result indicates that the SOS functions are only induced at high and toxic concentrations of the drug. Moreover, single strand breaks in DNA from treated cells are detected, demonstrating genome damage promoted by oxidized solutions of ascorbate. (M.A.C.) [pt

  8. Relationship between radiation damage on biomembranes and the cell killing

    International Nuclear Information System (INIS)

    Sato, Chikako

    1978-01-01

    Death of unproliferated mammalian erythrocytes causes an increase of ion permeability as membranous damage after x-ray irradiation and hemolysis, and production of peroxides in membrane and an effect of SH base are thought as the causes. As a mechanism of death of small lymphocytes with high radiosensitivity, the following three assumptions were reported: disorder of ATP synthesis in nucleus and cytoplasms, self-digestion by flowing out of proteinase from lysozyme by membranous disorder, and catalysis of DNA-protein complex. Death of proliferated cells causes loss of colony formation ability, and it was explained by colony method using Escherichia coli and mammalian cells and by dose-survival rate. Changes in membranous structure by cellular electrophoretic degree and the relationship between these changes and inhibition of cellular proliferation were mentioned as problems. (Tsunoda, M.)

  9. Radiation-induced cell damage

    International Nuclear Information System (INIS)

    Felix, W.D.; Schneiderman, M.H.

    1976-01-01

    The addition of irradiated crystals of galactose to Chinese hamster ovary cells resulted in mitotic delay, whereas exposure to nonirradiated crystals resulted in no detectable delay. The inference from this preliminary data is that free radicals or other transient irradiation products have reacted with external cellular components

  10. Chronic inflammatory cells and damaged limbal cells in pterygium ...

    African Journals Online (AJOL)

    Background: Chronic inflammation in pterygium occurrence has not been explained. Whether damaged limbal basal epithelial cells are associated with pterygium occurrence in black Africans is not clear. Objective: To explain chronic inflammation in pterygium, and to clarify whether damaged limbal basal epithelial cells ...

  11. ENTRAPMENT OF FLUORESCENT E. COLI CELLS IN ALGINATE GEL

    Directory of Open Access Journals (Sweden)

    T. VINTILA

    2009-05-01

    Full Text Available By this experiment we will demonstrate the possibility to obtain genetically modified microbial strains that can be used as markers in different studies. The trait transferred in this study is the fluorescence in UV light expressed by a gene isolated from jellyfish. This gene was insered into a plasmid carrying ampiciline resistance and in the operon for arabinose fermentation. The plasmid was called pGLO. E coli HB101 K-12, ampicillin resistant colonies has been obtained. The colonies on the LB/amp/ara plate fluoresce green under UV light and the transformed colonies can grow on ampicillin. Transformation efficiency = 362 transformed colonies/ μg DNA. The cells where immobilized by entrapment in alginate gel to study the phenomenon involved in cells immobilization. After immobilization in alginate gel, 5x104 cells of E. coli pGLO / capsule and 1,4 x 105 cells of E. coli HB101/capsule has been found. Fluorescent microscopy revealed the presence of pGLO carrying cells into the capsules. After cultivation of alginate capsules containing E. coli in LB broth, and fluorescent microscopy of the capsule sections, several observations of the phenomenon involved in continuous fermentation using biocatalysts in has been made. These cells grow and migrate to the cortical part of the matrix where they are immobilized.

  12. Biological consequences of potential repair intermediates of clustered base damage site in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Shikazono, Naoya, E-mail: shikazono.naoya@jaea.go.jp [Japan Atomic Energy Agency, Advanced Research Science Center, 2-4 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); O' Neill, Peter [Gray Institute for Radiation Oncology and Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom)

    2009-10-02

    Clustered DNA damage induced by a single radiation track is a unique feature of ionizing radiation. Using a plasmid-based assay in Escherichia coli, we previously found significantly higher mutation frequencies for bistranded clusters containing 7,8-dihydro-8-oxoguanine (8-oxoG) and 5,6-dihydrothymine (DHT) than for either a single 8-oxoG or a single DHT in wild type and in glycosylase-deficient strains of E. coli. This indicates that the removal of an 8-oxoG from a clustered damage site is most likely retarded compared to the removal of a single 8-oxoG. To gain further insights into the processing of bistranded base lesions, several potential repair intermediates following 8-oxoG removal were assessed. Clusters, such as DHT + apurinic/apyrimidinic (AP) and DHT + GAP have relatively low mutation frequencies, whereas clusters, such as AP + AP or GAP + AP, significantly reduce the number of transformed colonies, most probably through formation of a lethal double strand break (DSB). Bistranded AP sites placed 3' to each other with various interlesion distances also blocked replication. These results suggest that bistranded base lesions, i.e., single base lesions on each strand, but not clusters containing only AP sites and strand breaks, are repaired in a coordinated manner so that the formation of DSBs is avoided. We propose that, when either base lesion is initially excised from a bistranded base damage site, the remaining base lesion will only rarely be converted into an AP site or a single strand break in vivo.

  13. Biological consequences of potential repair intermediates of clustered base damage site in Escherichia coli

    International Nuclear Information System (INIS)

    Shikazono, Naoya; O'Neill, Peter

    2009-01-01

    Clustered DNA damage induced by a single radiation track is a unique feature of ionizing radiation. Using a plasmid-based assay in Escherichia coli, we previously found significantly higher mutation frequencies for bistranded clusters containing 7,8-dihydro-8-oxoguanine (8-oxoG) and 5,6-dihydrothymine (DHT) than for either a single 8-oxoG or a single DHT in wild type and in glycosylase-deficient strains of E. coli. This indicates that the removal of an 8-oxoG from a clustered damage site is most likely retarded compared to the removal of a single 8-oxoG. To gain further insights into the processing of bistranded base lesions, several potential repair intermediates following 8-oxoG removal were assessed. Clusters, such as DHT + apurinic/apyrimidinic (AP) and DHT + GAP have relatively low mutation frequencies, whereas clusters, such as AP + AP or GAP + AP, significantly reduce the number of transformed colonies, most probably through formation of a lethal double strand break (DSB). Bistranded AP sites placed 3' to each other with various interlesion distances also blocked replication. These results suggest that bistranded base lesions, i.e., single base lesions on each strand, but not clusters containing only AP sites and strand breaks, are repaired in a coordinated manner so that the formation of DSBs is avoided. We propose that, when either base lesion is initially excised from a bistranded base damage site, the remaining base lesion will only rarely be converted into an AP site or a single strand break in vivo.

  14. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms.

    Science.gov (United States)

    Prada Medina, Cesar Augusto; Aristizabal Tessmer, Elke Tatjana; Quintero Ruiz, Nathalia; Serment-Guerrero, Jorge; Fuentes, Jorge Luis

    2016-06-01

    Purpose In this paper, the contribution of different genes involved in DNA repair for both survival and SOS induction in Escherichia coli mutants exposed to ultraviolet B radiation (UVB, [wavelength range 280-315 nm]) was evaluated. Materials and methods E. coli strains defective in uvrA, oxyR, recO, recN, recJ, exoX, recB, recD or xonA genes were used to determine cell survival. All strains also had the genetic sulA::lacZ fusion, which allowed for the quantification of SOS induction through the SOS Chromotest. Results Five gene products were particularly important for survival, as follows: UvrA > RecB > RecO > RecJ > XonA. Strains defective in uvrA and recJ genes showed elevated SOS induction compared with the wild type, which remained stable for up to 240 min after UVB-irradiation. In addition, E. coli strains carrying the recO or recN mutation showed no SOS induction. Conclusions The nucleotide excision and DNA recombination pathways were equally used to repair UVB-induced DNA damage in E. coli cells. The sulA gene was not turned off in strains defective in UvrA and RecJ. RecO protein was essential for processing DNA damage prior to SOS induction. In this study, the roles of DNA repair proteins and their contributions to the mechanisms that induce SOS genes in E. coli are proposed.

  15. Investigation of solar cell radiation damage

    International Nuclear Information System (INIS)

    Bernard, J.; Reulet, R.; Arndt, R.A.

    1974-01-01

    Development of communications satellites has led to the requirement for a greater and longer lived solar cell power source. Accordingly, studies have been undertaken with the aim of determining which solar cell array provides the greatest power at end of life and the amount of degradation. Investigation of the damage done to thin silicon and thin film CdS solar cells is being carried out in two steps. First, irradiations were performed singly with 0.15, 1.0 and 2.0MeV electrons and 0.7, 2.5 and 22MeV proton. Solar cells and their cover materials were irradiated separately in order to locate the sites of the damage. Diffusion length and I.V. characteristics of the cells and transmission properties of the cover materials were measured. All neasurements were made in vacuum immediately after irradiation. In the second part it is intended to study the effect of various combinations of proton, electron and photon irradiation both with and without an electrical load. The results of this part show whether synergism is involved in solar cell damage and the relative importance of each of three radiation sources if synergism is found [fr

  16. Repair of UV damage in Escherichia coli under non-growth conditions

    International Nuclear Information System (INIS)

    Tang, M.-S.; Patrick, M.H.

    1977-01-01

    A large difference in survival occurred between buffered suspensions of E.coli irradiated with UV radiation at a low fluence rate and those irradiated at a high fluence rate. For sufficiently large fluences, the extent of this fluence rate dependent recovery (FRR) was about two orders of magnitude greater than that which could be brought about by liquid holding recovery (LHR) following high fluence rate irradiation in most of the E.coli strains studied. LHR and FRR occurred in excision resynthesis repair proficient (ERR + ) but not ERR - strains of E.coli, although its observation could be masked in strains with complete repair potential upon subsequent growth on nutrient plates. Accumulation of DNA strand interruptions and excision of cyclobutyl dipyrimidine occurred during LHR and FRR but were more extensive for the latter. The data suggest that events beyond incision and excision occurred during LHR and FRR, but differences in the extent of ERR during LHR and FRR could not account for the difference in cell survival between these two phenomena. (author)

  17. Repair of uv damage in Escherichia coli under non-growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M S; Patrick, M H [Texas Univ., Dallas (USA)

    1977-09-01

    A large difference in survival occurred between buffered suspensions of E.coli irradiated with uv radiation at a low fluence rate and those irradiated at a high fluence rate. For sufficiently large fluences, the extent of this fluence rate dependent recovery (FRR) was about two orders of magnitude greater than that which could be brought about by liquid holding recovery (LHR) following high fluence rate irradiation in most of the E.coli strains studied. LHR and FRR occurred in excision resynthesis repair proficient (ERR/sup +/) but not ERR/sup -/ strains of E.coli, although its observation could be masked in strains with complete repair potential upon subsequent growth on nutrient plates. Accumulation of DNA strand interruptions and excision of cyclobutyl dipyrimidine occurred during LHR and FRR but were more extensive for the latter. The data suggest that events beyond incision and excision occurred during LHR and FRR, but differences in the extent of ERR during LHR and FRR could not account for the difference in cell survival between these two phenomena.

  18. Recognition of damaged DNA by Escherichia coli Fpg protein: insights from structural and kinetic data

    International Nuclear Information System (INIS)

    Zharkov, Dmitry O.; Ishchenko, Alexander A.; Douglas, Kenneth T.; Nevinsky, Georgy A.

    2003-01-01

    Formamidopyrimidine-DNA glycosylase (Fpg) excises oxidized purines from damaged DNA. The recent determination of the three-dimensional structure of the covalent complex of DNA with Escherichia coli Fpg, obtained by reducing the Schiff base intermediate formed during the reaction [Gilboa et al., J. Biol. Chem. 277 (2002) 19811] has revealed a number of potential specific and non-specific interactions between Fpg and DNA. We analyze the structural data for Fpg in the light of the kinetic and thermodynamic data obtained by the method of stepwise increase in ligand complexity to estimate relative contributions of individual nucleotide units of lesion-containing DNA to its total affinity for this enzyme [Ishchenko et al., Biochemistry 41 (2002) 7540]. Stopped-flow kinetic analysis that has allowed the dissection of Fpg catalysis in time [Fedorova et al., Biochemistry 41 (2002) 1520] is also correlated with the structural data

  19. Dynamic single-cell NAD(P)H measurement reveals oscillatory metabolism throughout the E. coli cell division cycle.

    Science.gov (United States)

    Zhang, Zheng; Milias-Argeitis, Andreas; Heinemann, Matthias

    2018-02-01

    Recent work has shown that metabolism between individual bacterial cells in an otherwise isogenetic population can be different. To investigate such heterogeneity, experimental methods to zoom into the metabolism of individual cells are required. To this end, the autofluoresence of the redox cofactors NADH and NADPH offers great potential for single-cell dynamic NAD(P)H measurements. However, NAD(P)H excitation requires UV light, which can cause cell damage. In this work, we developed a method for time-lapse NAD(P)H imaging in single E. coli cells. Our method combines a setup with reduced background emission, UV-enhanced microscopy equipment and optimized exposure settings, overall generating acceptable NAD(P)H signals from single cells, with minimal negative effect on cell growth. Through different experiments, in which we perturb E. coli's redox metabolism, we demonstrated that the acquired fluorescence signal indeed corresponds to NAD(P)H. Using this new method, for the first time, we report that intracellular NAD(P)H levels oscillate along the bacterial cell division cycle. The developed method for dynamic measurement of NAD(P)H in single bacterial cells will be an important tool to zoom into metabolism of individual cells.

  20. Indirect effects are involved in the production of potentially lethal damage in X irradiated escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1985-01-01

    When living cells are exposed to low LET radiation, 60 to 70% of the resulting lethality is said to be due to indirect effects. Using the OH radical scavengers: glycerol n-butanol, t-butanol, and NO/sub 2//sup -/. The authors observed that a radiosensitive E. coli K-12 mutant (W 3110 thy/sup -/ polAl/sup -/) lacking DNA polymerase 1 displays a markedly enhanced radioresistance when exposed to X rays in the presence of these chemicals. The extent of protection afforded by these chemicals correlated with their OH radical scavenging ability over the limited range of concentrations of the chemicals studied. (Only non-toxic concentrations of the chemicals were used). The presence of 2M glycerol during irradiation of the PolAl/sup -/ cells results in a survival level higher than that seen for the unprotected parent strain (W 3110 thy polA/sup +/)

  1. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome....... The absence of the initiation cascade in Dam- cells is proposed to account for this observation of apparent incompatibility between plasmid and chromosomal copies of oriC. Studies using oriC-pBR322 chimeric plasmids and their deletion derivatives indicated that the incompatibility determinant is an intact...

  2. Cytomegalovirus-Induced Effector T Cells Cause Endothelial Cell Damage

    NARCIS (Netherlands)

    van de Berg, Pablo J. E. J.; Yong, Si-La; Remmerswaal, Ester B. M.; van Lier, René A. W.; ten Berge, Ineke J. M.

    2012-01-01

    Human cytomegalovirus (CMV) infection has been linked to inflammatory diseases that involve vascular endothelial cell damage, but definitive proof for a direct cytopathic effect of CMV in these diseases is lacking. CMV infection is associated with a strong increase in both CD4(+) and CD8(+) T cells

  3. Photoinduced membrane damage of E. coli and S. aureus by the photosensitizer-antimicrobial peptide conjugate eosin-(KLAKLAK2.

    Directory of Open Access Journals (Sweden)

    Gregory A Johnson

    Full Text Available BACKGROUND/OBJECTIVES: Upon irradiation with visible light, the photosensitizer-peptide conjugate eosin-(KLAKLAK2 kills a broad spectrum of bacteria without damaging human cells. Eosin-(KLAKLAK2 therefore represents an interesting lead compound for the treatment of local infection by photodynamic bacterial inactivation. The mechanisms of cellular killing by eosin-(KLAKLAK2, however, remain unclear and this lack of knowledge hampers the development of optimized therapeutic agents. Herein, we investigate the localization of eosin-(KLAKLAK2 in bacteria prior to light treatment and examine the molecular basis for the photodynamic activity of this conjugate. METHODOLOGY/PRINCIPAL FINDINGS: By employing photooxidation of 3,3-diaminobenzidine (DAB, (scanning transmission electron microscopy ((STEM, and energy dispersive X-ray spectroscopy (EDS methodologies, eosin-(KLAKLAK2 is visualized at the surface of E. coli and S. aureus prior to photodynamic irradiation. Subsequent irradiation leads to severe membrane damage. Consistent with these observations, eosin-(KLAKLAK2 binds to liposomes of bacterial lipid composition and causes liposomal leakage upon irradiation. The eosin moiety of the conjugate mediates bacterial killing and lipid bilayer leakage by generating the reactive oxygen species singlet oxygen and superoxide. In contrast, the (KLAKLAK2 moiety targets the photosensitizer to bacterial lipid bilayers. In addition, while (KLAKLAK2 does not disrupt intact liposomes, the peptide accelerates the leakage of photo-oxidized liposomes. CONCLUSIONS/SIGNIFICANCE: Together, our results suggest that (KLAKLAK2 promotes the binding of eosin Y to bacteria cell walls and lipid bilayers. Subsequent light irradiation results in membrane damage from the production of both Type I & II photodynamic products. Membrane damage by oxidation is then further aggravated by the (KLAKLAK2 moiety and membrane lysis is accelerated by the peptide. These results therefore

  4. Role of Uropathogenic Escherichia coli Virulence Factors in Development of Urinary Tract Infection and Kidney Damage

    Science.gov (United States)

    Bien, Justyna; Sokolova, Olga; Bozko, Przemyslaw

    2012-01-01

    Uropathogenic Escherichia coli (UPEC) is a causative agent in the vast majority of urinary tract infections (UTIs), including cystitis and pyelonephritis, and infectious complications, which may result in acute renal failure in healthy individuals as well as in renal transplant patients. UPEC expresses a multitude of virulence factors to break the inertia of the mucosal barrier. In response to the breach by UPEC into the normally sterile urinary tract, host inflammatory responses are triggered leading to cytokine production, neutrophil influx, and the exfoliation of infected bladder epithelial cells. Several signaling pathways activated during UPEC infection, including the pathways known to activate the innate immune response, interact with calcium-dependent signaling pathways. Some UPEC isolates, however, might possess strategies to delay or suppress the activation of components of the innate host response in the urinary tract. Studies published in the recent past provide new information regarding how virulence factors of uropathogenic E. coli are involved in activation of the innate host response. Despite numerous host defense mechanisms, UPEC can persist within the urinary tract and may serve as a reservoir for recurrent infections and serious complications. Presentation of the molecular details of these events is essential for development of successful strategies for prevention of human UTIs and urological complications associated with UTIs. PMID:22506110

  5. Specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells in vivo

    International Nuclear Information System (INIS)

    Tanaka, K.; Hayakawa, H.; Sekiguchi, M.; Okada, Y.

    1977-01-01

    The specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells was examined using an in vivo assay system with hemagglutinating virus of Japan (Sendai virus) inactivated by uv light. A clear dose response was observed between the level of uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells and the amount of T4 endonuclease V activity added. The T4 enzyme was unstable in human cells, and its half-life was 3 hr. Fractions derived from an extract of Escherichia coli infected with T4v 1 , a mutant defective in the endonuclease V gene, showed no ability to restore the uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells. However, fractions derived from an extract of T4D-infected E. coli with endonuclease V activity were effective. The T4 enzyme was effective in xeroderma pigmentosum cells on DNA damaged by uv light but not in cells damaged by 4-nitroquinoline 1-oxide. The results of these experiments show that the T4 enzyme has a specific action on human cell DNA in vivo. Treatment with the T4 enzyme increased the survival of group A xeroderma pigmentosum cells after uv irradiation

  6. Mechanisms of dealing with DNA damage in terminally differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Fortini, P. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Dogliotti, E., E-mail: eugenia.dogliotti@iss.it [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)

    2010-03-01

    To protect genomic integrity living cells that are continuously exposed to DNA-damaging insults are equipped with an efficient defence mechanism termed the DNA damage response. Its function is to eliminate DNA damage through DNA repair and to remove damaged cells by apoptosis. The DNA damage response has been investigated mainly in proliferating cells, in which the cell cycle machinery is integrated with the DNA damage signalling. The current knowledge of the mechanisms of DNA repair, DNA damage signalling and cell death of post-mitotic cells that have undergone irreversible cell cycle withdrawal will be reviewed. Evidence will be provided that the protection of the genome integrity in terminally differentiated cells is achieved by different strategies than in proliferating cells.

  7. Mechanisms of dealing with DNA damage in terminally differentiated cells

    International Nuclear Information System (INIS)

    Fortini, P.; Dogliotti, E.

    2010-01-01

    To protect genomic integrity living cells that are continuously exposed to DNA-damaging insults are equipped with an efficient defence mechanism termed the DNA damage response. Its function is to eliminate DNA damage through DNA repair and to remove damaged cells by apoptosis. The DNA damage response has been investigated mainly in proliferating cells, in which the cell cycle machinery is integrated with the DNA damage signalling. The current knowledge of the mechanisms of DNA repair, DNA damage signalling and cell death of post-mitotic cells that have undergone irreversible cell cycle withdrawal will be reviewed. Evidence will be provided that the protection of the genome integrity in terminally differentiated cells is achieved by different strategies than in proliferating cells.

  8. Impact of genomic damage and ageing on stem cell function

    Science.gov (United States)

    Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896

  9. Repair of damage induced by ultraviolet radiation in mutator T-1 Escherichia coli transductants

    International Nuclear Information System (INIS)

    Sideropoulos, A.S.; Greenberg, J.; Warren, G.

    1975-01-01

    To ascertain whether a relationship commonly exists between azide resistance, ultraviolet (uv) resistance, and the mutator property (mut T-1), we performed uv survival and mutation frequency determinations with and without caffeine (2.571 mM) in nonmutator azide resistant (azi/sup r/) and phage mediated mut T-1 transductants of Escherichia coli K-12, B/r, B/r T-, Bs-1, and Bs-8. The strains constructed were assumed to be ''co-isogenic'' except for the mutator factor. The frequency of mutation to streptomycin resistance (str/sup r/) was relatively constant and approximated 2 x 10- 7 . Transductants carrying the azide marker with or without the mut T-1 gene had the same level of uv survival as the parent with the same mutator phenotype. Dark repair of the prelethal uv lesion is equally caffeine sensitive in the nonmutator and mutator HCR+ strains. Our results indicated that the mut T-1 strains possess an efficient dark repair system for uv damage and that the mechanism of mut T-1 action is independent of uv dark repair processes. (auth)

  10. Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division.

    Science.gov (United States)

    Singh, Deepti; Narayanamoorthy, Shwetha; Gamre, Sunita; Majumdar, Ananda Guha; Goswami, Manish; Gami, Umesh; Cherian, Susan; Subramanian, Mahesh

    2018-05-20

    Antibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed towards the pre-antibiotic era. Botanical sources remain a vital source of diverse organic molecules that possess antibacterial property as well as augment existing antibacterial molecules. Piper betle, a climber, is widely used in south and south-east Asia whose leaves and nuts are consumed regularly. Hydroxychavicol (HC) isolated from Piper betle has been reported to possess antibacterial activity. It is currently not clear how the antibacterial activity of HC is manifested. In this investigation we show HC generates superoxide in E. coli cells. Antioxidants protected E. coli against HC induced cell death while gshA mutant was more sensitive to HC than wild type. DNA damage repair deficient mutants are hypersensitive to HC and HC induces the expression of DNA damage repair genes that repair oxidative DNA damage. HC treated E. coli cells are inhibited from growth and undergo DNA condensation. In vitro HC binds to DNA and cleaves it in presence of copper. Our data strongly indicates HC mediates bacterial cell death by ROS generation and DNA damage. Damage to iron sulfur proteins in the cells contribute to amplification of oxidative stress initiated by HC. Further HC is active against a number of Gram negative bacteria isolated from patients with a wide range of clinical symptoms and varied antibiotic resistance profiles. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Radioactive background with thymine dimer estimation in uv irradiated Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Masek, F [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1976-01-01

    Ultraviolet radiation induces photoproducts in the cell DNA, mainly pyrimidine dimers responsible for the essential part of lethal and mutagenic damage. Radioactive tracers were used in determining the amount of photoproducts. Radioisotope labelling of microbial cells involves the problem of background which influences analytical results. Undesirably high radioactive background on the chromatograms of the hydrolysates of the acid-insoluble fraction of UV irradiated Escherichia coli cells complicates the determination of the amount of UV photoproducts. The background may be suppressed by chromatographic purification of radioactive precursors. Also a more thorough separation orocedure of DNA macromolecules contributes to reducing the background. From this point of view it seems advantageous to use two-dimensional paper chromatography rather than one-dimensional.

  12. Cell damage by bilirubin and light

    International Nuclear Information System (INIS)

    Granli, T.

    1993-01-01

    Large doses of light are given to newborns during phototherapy for hyperbilirubinemia. Tissues containing concentrations of bilirubin almost in the mM range may be subjected to irradiation. Therefore it is of interest to study cellular effects of light and bilirubin on cells. In order to select the optimal wavelength, possible detrimental effects of light on cells must be taken into consideration among a number of other factors. In this study cellular effects of selected wavelengths of blue-green light are compared. It is not clear whether cullular damage occurs in vivo during phototherapy of newborns. Since a possibility exists that some adverse effects are caused by light, one should choose wavelengths where these effects are minimal without loosing therapeutic efficiency. Todays knowledge of the photochemical mechanisms of phototherapy, indicates that short waved light with wavelengths below 450 nm has a low therapeutic effect. The data in this paper indicate that the cellular damage is most severe at short wavelengths, and these should be reduced to a minimum in the spectra of phototherapy lamps. Further studies of possible side effects of phototherapy should be made. 64 refs., 34 figs., 1 tab

  13. [Plasma cell dyscrasias and renal damage].

    Science.gov (United States)

    Pasquali, Sonia; Iannuzzella, Francesco; Somenzi, Danio; Mattei, Silvia; Bovino, Achiropita; Corradini, Mattia

    2012-01-01

    Kidney damage caused by immunoglobulin free light chains in the setting of plasma cell dyscrasias is common and may involve all renal compartments, from the glomerulus to the tubulointerstitium, in a wide variety of histomorphological and clinical patterns. The knowledge of how free light chains can promote kidney injury is growing: they can cause functional changes, be processed and deposited, mediate inflammation, apoptosis and fibrosis, and obstruct nephrons. Each clone of the free light chain is unique and its primary structure and post-translation modification can determine the type of renal disease. Measurement of serum free light chain concentrations and calculation of the serum kappa/lambda ratio, together with renal biopsy, represent essential diagnostic tools. An early and correct diagnosis of renal lesions due to plasma cell dyscrasias will allow early initiation of disease-specific treatment strategies. The treatment of free light chain nephropathies is evolving and knowledge of the pathways that promote renal damage should lead to further therapeutic developments.

  14. Radiation damage in flash memory cells

    International Nuclear Information System (INIS)

    Claeys, C.; Ohyama, H.; Simoen, E.; Nakabayashi, M.; Kobayashi, K.

    2002-01-01

    Results are presented of a study on the effects of total ionization dose and displacement damage, induced by high-energy electrons, protons and alphas, on the performance degradation of flash memory cells integrated in a microcomputer. A conventional stacked-gate n-channel flash memory cell using a 0.8 μm n-polysilicon gate technology is employed. Irradiations by 1-MeV electrons and 20-MeV protons and alpha particles were done at room temperature. The impact of the fluence on the input characteristics, threshold voltage shift and drain and gate leakage was investigated. The threshold voltage change for proton and alpha irradiations is about three orders of magnitude larger than that for electrons. The performance degradation is mainly caused by the total ionization dose (TID) damage in the tunnel oxide and in the interpoly dielectric layer and by the creation of interface traps at the Si-SiO 2 interface. The impact of the irradiation temperature on the device degradation was studied for electrons and gammas, pointing out that irradiation at room temperature is mostly the worst case. Finally, attention is given to the impact of isochronal and isothermal annealing on the recovery of the degradation introduced after room temperature proton and electron irradiation

  15. DNA polymerase I is crucial for the repair of potentially lethal damage caused by the indirect effects of X irradiation in Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1985-01-01

    The radiosensitivity of an Escherichia coli mutant deficient in DNA polymerase I was measured in the presence of OH radical scavengers. The extreme X-ray sensitivity of the mutant could be abolished by OH radical scavengers if a sufficiently high level of radioprotector was present. There was a direct correlation between the OH radical scavenging activity of the chemicals tested (NO 2 - , n-butanol, glycerol, t-amyl alcohol, and t-butanol) and their protective ability. The author interprets the data as showing that the indirect actions of X rays (primarily OH radicals) result in major damage to the bacterial DNA which in large part consists of potentially lethal lesions. This potentially lethal damage is repaired through an enzymatic pathway requiring DNA polymerase I. I. In the mutant lacking DNA polymerase I, these potentially lethal lesions are expressed as cell lethality

  16. Radiation induced damage to the lipid contents of bacteria and cultured mammalian cells

    International Nuclear Information System (INIS)

    Gholipour Khalili, K.

    1993-01-01

    In this study, exponentially growing phase of E. Coli. K12-N167 and cultured mouse leukemic L5178Y were used to study the effect of gamma irradiation on phospholipid contents. Following irradiation, both bacteria and cultured cells were incubated with either 14 C or 32 P labelled precursors for periods of cell division time. Phospholipid composition and their contents were detected in both the bacteria and cultured cells by using liquid scintillation counting and autoradiography methods. In contrast, as radiation dose increased, the Phospholipid contents were decreased in the both bacteria and cultured cells. It was concluded that the changes of phospholipid contents may result to altered activities of phospholipid pathway enzymes damaged by a radiation dose. The results of this investigation would be helpful in control of induced radiation damages in cell killings in radiation workers and radiation treatment of human cancer in the clinics. (author). 35 refs, 3 figs, 4 tabs

  17. Reductone effect on UV-irradiated starved E. coli cells

    International Nuclear Information System (INIS)

    Felzenszwalb, I.; Gomes, R.A.

    1982-01-01

    A starvation-induced resistence enhancement (SIRE) to UV and reductone treatments was observed in repair-profient E. coli cells. The UV-reductone positive interaction, which is possibly related to excision repair mechanisms, was not modified by prestarvation when all cells in culture had completed their round of DNA replication. In irradiated prestarved reductone-treated cells, a decrease in the DNA degradation rate was detected after the removal of reductone and the induction of a lower number of DNA single-strand breaks. The induction kinectics of DNA single-strand breaks in prestarved UV-irradiated and the repair kinetics of these lesions are slower than in non-starved cells. The resistance enhancement demonstrated under these conditions could be justified either by the generation of fewer doubles strand breaks during repair or by the possibility of repair of these lesions. (Author) [pt

  18. Chronic inflammatory cells and damaged limbal cells in pterygium

    African Journals Online (AJOL)

    EB

    2013-09-03

    Sep 3, 2013 ... Objective: To explain chronic inflammation in pterygium, and to clarify whether damaged limbal basal epithelial cells were ..... Jiang Y, Goldberg ID, Shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 2002; 21: 2245-2252. 6. Kato S, Aoshima H, Saitoh Y, Miwa N. Fullerene-.

  19. Near-ultraviolet radiation blocks SOS responses to DNA damage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.A.; Eisenstark, A.

    1984-01-01

    Escherichia coli cells in which the recA promoter is fused to a lac structural gene, (Mu) Mud(Ap,lac)::rec, were irradiated with two far-ultraviolet light wavelengths (254 and 290 nm), selected monochromatic near-ultraviolet (NUV) wavelengths 313 nm, 334 nm, 365 nm, or broad band solar-UV (290-420 nm) from a solar simulator. Irradiation with the two far-ultraviolet wavelengths was followed by high yields of ..beta..-galactosidase, lambda prophage induction, and Weigle reactivation. These end points were not observed after irradiation with the selected NUV wavelengths or the broad spectrum solar-UV. Thus, neither broad spectrum solar-UV nor monochromatic NUV wavelengths resulted in the derepression of the recA promoter. Further, prior exposure of the cells either to the selected monochromatic NUV wavelengths or to solar-UV inhibited a) the induction of ..beta..-galactosidase by subsequent 254-nm radiation, b) subsequent 254-nm induction of lambda prophage, c) Weigle reactivation, and d) mutation frequency. These observations are consistent with the hypothesis that NUV blocks subsequent recA protease action.

  20. Membrane damage and viability loss of thermally treated and high hydrostatic pressurized E. coli 0157:H7 and Salmonella spp. in apple juice

    Science.gov (United States)

    Differences in membrane damage including leakage of intracellular UV-materials and loss of viability of Salmonella spp. and Escherichia coli O157:H7 bacteria in apple juice following thermal death time disk (TDT) and high hydrostatic pressure treatments were investigated. Salmonella and E. coli O157...

  1. TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia coli

    NARCIS (Netherlands)

    Carre, Gaelle; Hamon, Erwann; Ennahar, Said; Estner, Maxime; Lett, Marie-Claire; Horvatovich, Peter; Gies, Jean-Pierre; Keller, Valerie; Keller, Nicolas; Andre, Philippe

    This study investigates the mechanisms of UV-A (315 to 400 nm) photocatalysis with titanium dioxide (TiO2) applied to the degradation of Escherichia coli and their effects on two key cellular components: lipids and proteins. The impact of TiO2 photocatalysis on E. coli survival was monitored by

  2. The study of preparation for immobilized cells membranes of E. Coli. by radiation technique

    International Nuclear Information System (INIS)

    Cao Jin; Chen Pin; Yu Yi

    1991-01-01

    The paper described the preparation of immobilized cells membranes with E. Coli by radiation technique. The nylon 6 was grafted with HEMA, which as a matrix to prepare immobilized cells membranes with E. Coli. by radiation entrapment at low temperature. The results showed that the retentive activity possessed a maximum value for membranes with E. Coli. when the irradiation dose was at 10-12 kGy, the entrapped cells has 2.3 g/ml at 50% HEMA concentration, the optimum pH and optimum temperature for membranes with E. Coli. are as same the original cells

  3. Differential mechanism of Escherichia coli Inactivation by (+)-limonene as a function of cell physiological state and drug's concentration.

    Science.gov (United States)

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about

  4. Synergistic effect of heat and solar UV on DNA damage and water disinfection of E. coli and bacteriophage MS2.

    Science.gov (United States)

    Theitler, Dana Jennifer; Nasser, Abid; Gerchman, Yoram; Kribus, Abraham; Mamane, Hadas

    2012-12-01

    The response of a representative virus and indicator bacteria to heating, solar irradiation, or their combination, was investigated in a controlled solar simulator and under real sun conditions. Heating showed higher inactivation of Escherichia coli compared to the bacteriophage MS2. Heating combined with natural or simulated solar irradiation demonstrated a synergistic effect on the inactivation of E. coli, with up to 3-log difference for 50 °C and natural sun insolation of 2,000 kJ m(-2) (compared to the sum of the separate treatments). Similar synergistic effect was also evident when solar-UV induced DNA damage to E. coli was assessed using the endonuclease sensitive site assay (ESS). MS2 was found to be highly resistant to irradiation and heat, with a slightly synergistic effect observed only at 59 °C and natural sun insolation of 5,580 kJ m(-2). Heat treatment also hindered light-dependent recovery of E. coli making the treatment much more effective.

  5. Transcriptome of E. coli K1 bound to human brain microvascular endothelial cells

    OpenAIRE

    Xie, Yi; Parthasarathy, Geetha; Di Cello, Francescopaolo; Teng, Ching-Hao; Paul-Satyaseela, Maneesh; Kim, Kwang Sik

    2007-01-01

    Escherichia coli K1 is the most common Gram-negative organism causing neonatal meningitis. Binding to human brain microvascdular endothelial cells (HBMEC) is an essential step for E. coli K1 traversal of the blood-brain barrier. In this study, we examined expression profiles of E. coli K1 strain RS218 during its binding to HBMEC. Comparison of HBMEC-bound E. coli K1 with collagen-bound E. coli revealed more than one hundred genes whose expression patterns were significantly changed in HBMEC-b...

  6. Bacterial Cell Surface Damage Due to Centrifugal Compaction

    NARCIS (Netherlands)

    Peterson, Brandon W.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we

  7. Inactivation of Escherichia coli in broth and sausage by combined high pressure and Lactobacillus casei cell extract.

    Science.gov (United States)

    Chung, Hyun-Jung; Yousef, Ahmed E

    2010-10-01

    The purpose of this study was to investigate the effect of combined high pressure and Lactobacillus casei cell extract (CE) on Escherichia coli O157 strains with variation in pressure resistance in broth and sausage. Pressure-resistant (O157:H7 and O157:H12) and -sensitive (O157-M1 and O157-M2) E. coli strains were used. Pressure treatment at 350 MPa for 20 min in broth caused 1.1-1.2 logs reduction in O157:H12 and O157:H7 and 4.1-5.5 logs reduction in the O157-M1 and O157-M2. When high pressure was treated in the presence of CE (32 CEAU/mL), the combination treatment caused a significant inactivation in the pressure-resistant O157:H7 strains resulting in the viability loss of 4.3-4.6 logs and the synergistic effect increased with increase in treatment time (p casei CE may cause considerable damage to cellular components of E. coli during the high pressure treatment. The synergy between high pressure processing and Lb. casei OSY-LB6A CE against pressure-resistant E. coli O157 strains suggests the feasibility of using this combination to minimize the risk of transmission of E. coli O157 by food.

  8. Radiation-induced damage in E. coli B: The effect of superoxide radicals and molecular oxygen. Progress report, December 1, 1978--November 30, 1979

    International Nuclear Information System (INIS)

    Samuni, A.; Czapski, G.

    The roles of superoxide radicals and of molecular oxygen in the radiodamage of E. coli B suspended in dilute phosphate buffer were studied. The presence of high concentrations of polyethylene glycol in the γ-irradiated cell suspensions, had no effect on bacterial radiosensitivity. This indicates that the damage was primarily endogenous, i.e. originated intracellularly. Saturation of the cell suspensions with N 2 O doubled the radiosensitivity, thus indicating that OH radicals are responsible for the majority of the damage (indirect radiation effect). The presence of oxygen either in the absence or presence of N 2 O brought about roughly a three-fold increase in the radiosensitivity. Since in the presence of N 2 O all e - /sub aq/ are scavenged by the nitrous oxide rather than by oxygen, this shows that superoxide radicals play no role in the bacterial radiodamage. Our results substantiate the attribution of the oxygen effect to a direct interaction of O 2 with the hydroxyl-radical-damaged sites on vital biomolecules, and exclude any significant contribution of e - /sub aq/ and superoxide radicals to the cellular radiodamage

  9. Phenotypic plasticity and effects of selection on cell division symmetry in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Uttara N Lele

    Full Text Available Aging has been demonstrated in unicellular organisms and is presumably due to asymmetric distribution of damaged proteins and other components during cell division. Whether the asymmetry-induced aging is inevitable or an adaptive and adaptable response is debated. Although asymmetric division leads to aging and death of some cells, it increases the effective growth rate of the population as shown by theoretical and empirical studies. Mathematical models predict on the other hand, that if the cells divide symmetrically, cellular aging may be delayed or absent, growth rate will be reduced but growth yield will increase at optimum repair rates. Therefore in nutritionally dilute (oligotrophic environments, where growth yield may be more critical for survival, symmetric division may get selected. These predictions have not been empirically tested so far. We report here that Escherichia coli grown in oligotrophic environments had greater morphological and functional symmetry in cell division. Both phenotypic plasticity and genetic selection appeared to shape cell division time asymmetry but plasticity was lost on prolonged selection. Lineages selected on high nutrient concentration showed greater frequency of presumably old or dead cells. Further, there was a negative correlation between cell division time asymmetry and growth yield but there was no significant correlation between asymmetry and growth rate. The results suggest that cellular aging driven by asymmetric division may not be hardwired but shows substantial plasticity as well as evolvability in response to the nutritional environment.

  10. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Michelle W Clark

    Full Text Available Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH, no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5 the cells maintained cytoplasmic pH values at 7.2-7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.

  11. Mutagenic action of heavy ions on Escherichia coli cells

    International Nuclear Information System (INIS)

    Tokarova, B.; Amirtayev, K.G.; Kozubek, S.; Krasavin, E.A.

    1989-01-01

    Introduction of direct mutations in the lactose operon of E.coli cells by γ radiation and accelerated heavy ions with different LET was studied. The experiments were performed with the wide type polA and lexA strains. The quadratic dependence of the mutation rate on the dose of different radiation for the wild type strain and the polA mutant was observed. However different radiations showed different relative genetic effectiveness. The dependence of RGE on LET for the wild type and polA strain has a maximum. In the experiments with the lexA strain low mutation rates and linear dose-response dependences N m /N(D) were observed. The RGE falls down with increasing LET of ionizing radiation. 22 refs.; 5 figs.; 2 tabs

  12. Cell damage evaluation of mammalian cells in cell manipulation by amplified femtosecond ytterbium laser

    Science.gov (United States)

    Hong, Z.-Y.; Iino, T.; Hagihara, H.; Maeno, T.; Okano, K.; Yasukuni, R.; Hosokawa, Y.

    2018-03-01

    A micrometer-scale explosion with cavitation bubble generation is induced by focusing a femtosecond laser in an aqueous solution. We have proposed to apply the explosion as an impulsive force to manipulate mammalian cells especially in microfluidic chip. Herein, we employed an amplified femtosecond ytterbium laser as an excitation source for the explosion and evaluated cell damage in the manipulation process to clarify the application potential. The damage of C2C12 myoblast cell prepared as a representative mammalian cell was investigated as a function of distance between cell and laser focal point. Although the cell received strong damage on the direct laser irradiation condition, the damage sharply decreased with increasing distance. Since the threshold distance, above which the cell had no damage, was consistent with radius of the cavitation bubble, impact of the cavitation bubble would be a critical factor for the cell damage. The damage had strong nonlinearity in the pulse energy dependence. On the other hand, cell position shift by the impact of the cavitation bubble was almost proportional to the pulse energy. In balance between the cell viability and the cell position shift, we elucidated controllability of the cell manipulation in microfluidic chip.

  13. Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli

    Science.gov (United States)

    Bhat, Supriya V.; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E. S.

    2018-01-01

    Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro, and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force – laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage. PMID:29472899

  14. Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli.

    Science.gov (United States)

    Zhang, Xing-Chen; Guo, Yingying; Liu, Xu; Chen, Xin-Guang; Wu, Qiong; Chen, Guo-Qiang

    2018-01-01

    The rigidity of bacterial cell walls synthesized by a complicated pathway limit the cell shapes as coccus, bar or ellipse or even fibers. A less rigid bacterium could be beneficial for intracellular accumulation of poly-3-hydroxybutyrate (PHB) as granular inclusion bodies. To understand how cell rigidity affects PHB accumulation, E. coli cell wall synthesis pathway was reinforced and weakened, respectively. Cell rigidity was achieved by thickening the cell walls via insertion of a constitutive gltA (encoding citrate synthase) promoter in front of a series of cell wall synthesis genes on the chromosome of several E. coli derivatives, resulting in 1.32-1.60 folds increase of Young's modulus in mechanical strength for longer E. coli cells over-expressing fission ring FtsZ protein inhibiting gene sulA. Cell rigidity was weakened by down regulating expressions of ten genes in the cell wall synthesis pathway using CRISPRi, leading to elastic cells with more spaces for PHB accumulation. The regulation on cell wall synthesis changes the cell rigidity: E. coli with thickened cell walls accumulated only 25% PHB while cell wall weakened E. coli produced 93% PHB. Manipulation on cell wall synthesis mechanism adds another possibility to morphology engineering of microorganisms. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Phenolic antioxidants attenuate hippocampal neuronal cell damage ...

    Indian Academy of Sciences (India)

    Unknown

    CP had lower Fe3+ reducing activity in comparison to WS and AV. Plant extracts given singly ... modulators of nervous system damage. In epilepsy, ex- ..... D 1978 Antimicrobial agents from higher plants, Glycy- rrhiza glabra L. I. Some ...

  16. Track structure model of cell damage in space flight

    Science.gov (United States)

    Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.

    1992-01-01

    The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.

  17. Effects of Saponins against Clinical E. coli Strains and Eukaryotic Cell Line

    Science.gov (United States)

    Arabski, Michał; Węgierek-Ciuk, Aneta; Czerwonka, Grzegorz; Lankoff, Anna; Kaca, Wiesław

    2012-01-01

    Saponins are detergent-like substances showing antibacterial as well as anticancer potential. In this study, the effects of saponins from Quillaja saponaria were analyzed against prokaryotic and eukaryotic cells. Multidrug-resistant clinical E. coli strains were isolated from human urine. As eukaryotic cells, the CHO-K1 cell lines were applied. Antibacterial effect of ampicillin, streptomycin, and ciprofloxacin in the presence of saponins was measured by cultivation methods. Properties of saponins against CHO-K1 cells were measured by the MTT test, hemolysis assay and flow cytometry. Saponin from Quillaja saponaria has a cytotoxic effect at concentrations higher than 25 μg/mL and in the range of 12–50 μg/mL significantly increases the level of early apoptotic cells. Saponin at dose of 12 μg/mL enhances the six E. coli strains growth. We postulate that saponins increase the influx of nutrients from the medium into E. coli cells. Saponins do not have synergetic effects on antibacterial action of tested antibiotics. In contrary, in the presence of saponins and antibiotics, more CFU/mL E. coli cells were observed. This effect was similar to saponins action alone towards E. coli cells. In conclusion, saponins was cytotoxic against CHO-K1 cells, whereas against E. coli cells this effect was not observed. PMID:22500084

  18. Effects of Saponins against Clinical E. coli Strains and Eukaryotic Cell Line

    Directory of Open Access Journals (Sweden)

    Michał Arabski

    2012-01-01

    Full Text Available Saponins are detergent-like substances showing antibacterial as well as anticancer potential. In this study, the effects of saponins from Quillaja saponaria were analyzed against prokaryotic and eukaryotic cells. Multidrug-resistant clinical E. coli strains were isolated from human urine. As eukaryotic cells, the CHO-K1 cell lines were applied. Antibacterial effect of ampicillin, streptomycin, and ciprofloxacin in the presence of saponins was measured by cultivation methods. Properties of saponins against CHO-K1 cells were measured by the MTT test, hemolysis assay and flow cytometry. Saponin from Quillaja saponaria has a cytotoxic effect at concentrations higher than 25 μg/mL and in the range of 12–50 μg/mL significantly increases the level of early apoptotic cells. Saponin at dose of 12 μg/mL enhances the six E. coli strains growth. We postulate that saponins increase the influx of nutrients from the medium into E. coli cells. Saponins do not have synergetic effects on antibacterial action of tested antibiotics. In contrary, in the presence of saponins and antibiotics, more CFU/mL E. coli cells were observed. This effect was similar to saponins action alone towards E. coli cells. In conclusion, saponins was cytotoxic against CHO-K1 cells, whereas against E. coli cells this effect was not observed.

  19. Prophage induction and cell division in E. coli. Pt. 3

    International Nuclear Information System (INIS)

    George, J.; Castellazzi, M.; Buttin, G.

    1975-01-01

    In E. coli K12, cell filamentation promoted by tif is enhanced by the lon mutation; in contrast, prophage induction and repair of UV-irradiated phage lambda, also promoted by tif, are not affected by lon. From a tif lon double mutant, 'revertants' having recovered the ability to divide at 41 0 were isolated, among which most (95%) had also lost heir Lon filamentous phenotype after ultraviolet (UV) irradiation. From these 95% of revertants 94% are suppressed for the whole Tif phenotype, by additional mutations that render them deficient in DNA repair, as judged from their high UV sensitivity; some have been characterized as recA mutants. 1% have recovered a control on cell division at 41% or after UV irradiation by means of secondary mutations altering neither the other phenotypic properties of tif and lon, nor the repair and recombination ability of the cells: in particular, this class of 'revertants' remains thermoinducible upon lysogenisation; the mutations which specifically supress filamentation have been mapped at two loci, sfiA and sfiB, cotransducible respectively with pyrD and leu. In the remaining 5% of revertants that still exhibit an UV-induced filamentous growth, 3% can be tentatively classified as true tif + revertants; 2% behave as tif thermodependent revertants, showing suppression of Tif (and Lon) phenotype only at 41 0 : 2 recAts have been identified in this class. Non-lysogenic tif lon sfi and tif sfi strains remain viable during prolonged growth at 41 0 . Under these conditions, tif expresses mutator properties, which can be conveniently analyzed in this sfi background. The action of tif, lon and sfi mutations is tentatively interpreted on the basis of a negative control of cell division specifically associated with DNA repair. (orig.) [de

  20. DNA damage in synchronized hela cells irradiated with ultraviolet

    International Nuclear Information System (INIS)

    Downes, C.S.; Collins, A.R.S.; Johnson, R.T.

    1979-01-01

    The lethal effect of uv radiation on HeLa cells is least in mitosis and greatest in late G 1 -early S. Photochemical damage to HeLa DNA, as measured by thymine-containing dimer formation and by alkaline sucrose sedimentation, also increases from mitosis towards early S phase. Computer simulations of uv absorption by an idealized HeLa cell at different stages of the cell cycle indicate that changes in damage could be due solely to changes in chromatin geometry. But survival is not exclusively a function of damage

  1. Structural and mutational analysis of Escherichia coli AlkB provides insight into substrate specificity and DNA damage searching.

    Directory of Open Access Journals (Sweden)

    Paul J Holland

    Full Text Available BACKGROUND: In Escherichia coli, cytotoxic DNA methyl lesions on the N1 position of purines and N3 position of pyrimidines are primarily repaired by the 2-oxoglutarate (2-OG iron(II dependent dioxygenase, AlkB. AlkB repairs 1-methyladenine (1-meA and 3-methylcytosine (3-meC lesions, but it also repairs 1-methylguanine (1-meG and 3-methylthymine (3-meT at a much less efficient rate. How the AlkB enzyme is able to locate and identify methylated bases in ssDNA has remained an open question. METHODOLOGY/PRINCIPAL FINDINGS: We determined the crystal structures of the E. coli AlkB protein holoenzyme and the AlkB-ssDNA complex containing a 1-meG lesion. We coupled this to site-directed mutagenesis of amino acids in and around the active site, and tested the effects of these mutations on the ability of the protein to bind both damaged and undamaged DNA, as well as catalyze repair of a methylated substrate. CONCLUSIONS/SIGNIFICANCE: A comparison of our substrate-bound AlkB-ssDNA complex with our unliganded holoenzyme reveals conformational changes of residues within the active site that are important for binding damaged bases. Site-directed mutagenesis of these residues reveals novel insight into their roles in DNA damage recognition and repair. Our data support a model that the AlkB protein utilizes at least two distinct conformations in searching and binding methylated bases within DNA: a "searching" mode and "repair" mode. Moreover, we are able to functionally separate these modes through mutagenesis of residues that affect one or the other binding state. Finally, our mutagenesis experiments show that amino acid D135 of AlkB participates in both substrate specificity and catalysis.

  2. Variant innate immune responses of mammary epithelial cells to challenge by Staphylococcus aureus, Escherichia coli and the regulating effect of taurine on these bioprocesses.

    Science.gov (United States)

    Zheng, Liuhai; Xu, Yuanyuan; Lu, Jinye; Liu, Ming; Bin Dai; Miao, Jinfeng; Yin, Yulong

    2016-07-01

    taurine improved the antioxidant ability of cells. We conclude that taurine can regulate the inflammatory response during infection with E. coli and prevent cell damage by affecting the signaling pathways mediated by TLRs and by improving the antioxidant ability of cells. In S. aureus infections, taurine's antioxidant ability may be the primary means of resistance to inflammation. This study provides a better understanding of the inflammatory mechanisms of E. coli and S. aureus mastitis, and it provides a putative strategy for the prevention of this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Penicillin-binding site on the Escherichia coli cell envelope

    International Nuclear Information System (INIS)

    Amaral, L.; Lee, Y.; Schwarz, U.; Lorian, V.

    1986-01-01

    The binding of 35 S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin

  4. Photooxidative damage to mammalian cells and proteins by visible light

    International Nuclear Information System (INIS)

    Packer, L.; Kellogg, E.W. III

    1980-01-01

    In the present article, studies carried out in our laboratory on the effects of visible irradiation and O 2 in a variety of target systems ranging from cultured mammalian cells to purified catalase are reviewed. We will relate these studies of photooxidative damage to a scheme for the propagation of intracellular damage which traces a number of the possible pro-oxidant and anti-oxidant pathways found in the cell

  5. Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance.

    Science.gov (United States)

    Jin, Tao; Rover, Marjorie R; Petersen, Elspeth M; Chi, Zhanyou; Smith, Ryan G; Brown, Robert C; Wen, Zhiyou; Jarboe, Laura R

    2017-09-01

    Lignocellulosic biomass is an appealing feedstock for the production of biorenewable fuels and chemicals, and thermochemical processing is a promising method for depolymerizing it into sugars. However, trace compounds in this pyrolytic sugar syrup are inhibitory to microbial biocatalysts. This study demonstrates that hydrophobic inhibitors damage the cell membrane of ethanologenic Escherichia coli KO11+lgk. Adaptive evolution was employed to identify design strategies for improving pyrolytic sugar tolerance and utilization. Characterization of the resulting evolved strain indicates that increased resistance to the membrane-damaging effects of the pyrolytic sugars can be attributed to a glutamine to leucine mutation at position 29 of carbon storage regulator CsrA. This single amino acid change is sufficient for decreasing EPS protein production and increasing membrane integrity when exposed to pyrolytic sugars.

  6. Radiometric study of the metabolic processes in cell cultures inoculated with E.coli 0111

    International Nuclear Information System (INIS)

    Stankova-Shindarova, I.

    1977-01-01

    The penetration and propagation of bacteria in tissue cells is accompanied by changes in the metabolic processes. A group of strains, belonging to one serologic type comprises invasive and noninvasive variants. Twenty two E.coli 0111 strains were studied. By labelling strains with 3 H-thymidine, 3 H-uridine and 14C-leucine it was demonstrated that the amino acid and protein synthesis of RC 3 cells inoculated with invasive E.coli 0111 variants becomes more intensive. Amino acid and protein synthesis in noninvasive E.coli 0111 following previous high incorporation of the three labelled compounds is rapidly reduced and remains within control limits. (author)

  7. Primary radiation damage and disturbance in cell divisions

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Yun-Jong; Kim, Jae-Hun; Petin, Vladislav G.; Nili, Mohammad

    2008-01-01

    Survived cells from a homogeneous population exposed to ionizing radiation form various colonies of different sizes and morphology on a solid nutrient medium, which appear at different time intervals after irradiation. Such a phenomenon agrees well with the modern theory of microdosimetry and classical hit-and-target models of radiobiology. According to the hit-principle, individual cells exposed to the same dose of radiation are damaged in different manners. It means that the survived cells can differ in the content of sublethal damage (hits) produced by the energy absorbed into the cell and which is not enough to give rise to effective radiation damage which is responsible for cell killing or inactivation. In diploid yeast cells, the growth rate of cells from 250 colonies of various sizes appeared at different time intervals after irradiation with 600 Gy of gamma radiation from a 60 Co isotopic source was analyzed. The survival rate after irradiation was 20%. Based on the analyses results, it was possible to categorize the clones grown from irradiated cells according to the number of sub-lesions from 1 to 4. The clones with various numbers of sub-lesions were shown to be different in their viability, radiosensitivity, sensitivity to environmental conditions, and the frequency of recombination and respiratory deficient mutations. Cells from unstable clones exhibited an enhanced radiosensitivity, and an increased portion of morphologically changed cells, nonviable cells and respiration mutants, as well. The degree of expression of the foregoing effects was higher if the number of primary sublethal lesions was greater in the originally irradiated cell. Disturbance in cell division can be characterized by cell inactivation or incorrect distribution of mitochondria between daughter cells. Thus, the suggested methodology of identification of cells with a definite number of primary sublethal lesions will promote further elucidation of the nature of primary radiation

  8. Expression of assayable residual stem cell damage in erythroid differentiation

    International Nuclear Information System (INIS)

    Huebner, G.E.; Miller, M.E.; Cronkite, E.P.

    1985-01-01

    In rodents, residual damage is inducible in hematopoietic stem cells by exposure to ionizing radiation or alkylating agents. This damage can b e assayed in mice by transferring bone marrow into lethally irradiated syngeneic recipients and subsequently measuring the incremental increase of-( 125 I)iodo-2'-deoxyuridine incorporation in spleens. In this study, bone marrow from mice treated 3 weeks previously with Methylnitrosourea (50 mg/kg) or 450 rad was injected into recipients in order to determine possible residual effects of treatment of erythroid cell differentiation following stem cell seeding. Such effects were detected by a reduced amount of 59 Fe incorporation into spleens, thus indicatin g transfer of residual stem cell damage to differentiating cells. (orig.)

  9. Quantification of DNA damage by single-cell electrophoresis

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1990-01-01

    A simple technique of micro-agarose gel electrophoresis has been developed to quantify DNA damage in individual cells. Cells are embedded in agarose gel on microscope slides, lysed by detergents and then electrophoresed for a short time under neutral or alkaline condition. In irradiated cells, DNA migrates from the nucleus toward the anode, displaying commet-like pattern by staining with DNA-specific fluorescence dye. DNA damage is evaluated by measuring the distance of DNA migration. The technique was applied for measuring DNA damage in single cells exposed to 60 Co γ-rays, or to KUR radiation in the presence or absence of 10 B-enriched boric acid. The enhanced production of double-stranded DNA breaks by 10 B(n,α) 7 Li reaction was demonstrated here. The significant increase in the length of DNA migration was observed in single cells exposed to such a low dose as 20 cGy after alkaline micro electrophoresis. (author)

  10. Aging of hematopoietic stem cells: DNA damage and mutations?

    Science.gov (United States)

    Moehrle, Bettina M; Geiger, Hartmut

    2016-10-01

    Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  11. Different reparability of the chromosomal and cytoplasmic deoxyribonucleic acid in Escherichia coli damaged by γ and ultraviolet irradiation

    International Nuclear Information System (INIS)

    Petranovic, D.; Petranovic, M.; Nozinic, R.; Trgovcevic, Z.

    1978-01-01

    The relative efficiencies by which chromosomal and extrachromosomal DNAs are repaired in irradiated bacteria were assayed. Repair-proficient Escherichia coli C600 cells lysogenic for, or infected with, the thermoinducible phage lambdacI857 ind were exposed to γ or uv radiation and then tested for colony- and plaque-forming ability. The results show that the bacterial cell is about 5 times more sensitive to γ rays and about 1.5 times more sensitive to uv light, if compared to either (1) the prophage that is irradiated in the bacterial chromosome and, on heat induction, repaired in the cytoplasm or (2) the infecting phage that is irradiated and repaired in the cytoplasm. Since the bacterial DNA is about 80 times larger than the phage DNA, it is inferred that repair processes operating along the chromosomal DNA are one order of magnitude more efficient than those operating along the extrachromosomal DNA. This conclusion is reinforced by the fact that the absence of repair in the system Escherichia coli AB2480 uvrA recA-lambdacI857 ind red gives the expected ratio of 80/1 for the uv sensitivity of cells and that of intracellular phage

  12. Phagocytic response of astrocytes to damaged neighboring cells.

    Directory of Open Access Journals (Sweden)

    Nicole M Wakida

    Full Text Available This study aims to understand the phagocytic response of astrocytes to the injury of neurons or other astrocytes at the single cell level. Laser nanosurgery was used to damage individual cells in both primary mouse cortical astrocytes and an established astrocyte cell line. In both cases, the release of material/substances from laser-irradiated astrocytes or neurons induced a phagocytic response in near-by astrocytes. Propidium iodide stained DNA originating from irradiated cells was visible in vesicles of neighboring cells, confirming phagocytosis of material from damaged cortical cells. In the presence of an intracellular pH indicator dye, newly formed vesicles correspond to acidic pH fluorescence, thus suggesting lysosome bound degradation of cellular debris. Cells with shared membrane connections prior to laser damage had a significantly higher frequency of induced phagocytosis compared to isolated cells with no shared membrane. The increase in phagocytic response of cells with a shared membrane occurred regardless of the extent of shared membrane (a thin filopodial connection vs. a cell cluster with significant shared membrane. In addition to the presence (or lack of a membrane connection, variation in phagocytic ability was also observed with differences in injury location within the cell and distance separating isolated astrocytes. These results demonstrate the ability of an astrocyte to respond to the damage of a single cell, be it another astrocyte, or a neuron. This single-cell level of analysis results in a better understanding of the role of astrocytes to maintain homeostasis in the CNS, particularly in the sensing and removal of debris in damaged or pathologic nervous tissue.

  13. Cellular damage of Escherichia coli 0157:H7 and Salmonella spp. in apple juice treated with high hydrostatic pressure and thermal death time disks

    Science.gov (United States)

    Differences in membrane damage including leakage of intracellular UV-materials and loss of viability of Salmonella spp. and Escherichia coli O157:H7 bacteria in apple juice, pH 3.1 following thermal-death-time (TDT) disk and high hydrostatic pressure (HHP) treatments were investigated. Salmonella an...

  14. A Structural Study of Escherichia coli Cells Using an In Situ Liquid Chamber TEM Technology

    Directory of Open Access Journals (Sweden)

    Yibing Wang

    2015-01-01

    Full Text Available Studying cell microstructures and their behaviors under living conditions has been a challenging subject in microbiology. In this work, in situ liquid chamber TEM was used to study structures of Escherichia coli cells in aqueous solutions at a nanometer-scale resolution. Most of the cells remained intact under electron beam irradiation, and nanoscale structures were observed during the TEM imaging. The analysis revealed structures of pili surrounding the E. coli cells; the movements of the pili in the liquid were also observed during the in situ tests. This technology also allowed the observation of features of the nucleoid in the E. coli cells. Overall, in situ TEM can be applied as a valuable tool to study real-time microscopic structures and processes in microbial cells residing in native aqueous solutions.

  15. Following Drug Uptake and Reactions inside Escherichia coli Cells by Raman Microspectroscopy

    Science.gov (United States)

    2015-01-01

    Raman microspectroscopy combined with Raman difference spectroscopy reveals the details of chemical reactions within bacterial cells. The method provides direct quantitative data on penetration of druglike molecules into Escherichia coli cells in situ along with the details of drug–target reactions. With this label-free technique, clavulanic acid and tazobactam can be observed as they penetrate into E. coli cells and subsequently inhibit β-lactamase enzymes produced within these cells. When E. coli cells contain a β-lactamase that forms a stable complex with an inhibitor, the Raman signature of the known enamine acyl–enzyme complex is detected. From Raman intensities it is facile to measure semiquantitatively the number of clavulanic acid molecules taken up by the lactamase-free cells during growth. PMID:24901294

  16. The intersection between DNA damage response and cell death pathways.

    Science.gov (United States)

    Nowsheen, S; Yang, E S

    2012-10-01

    Apoptosis is a finely regulated process that serves to determine the fate of cells in response to various stresses. One such stress is DNA damage, which not only can signal repair processes but is also intimately involved in regulating cell fate. In this review we examine the relationship between the DNA damage/repair response in cell survival and apoptosis following insults to the DNA. Elucidating these pathways and the crosstalk between them is of great importance, as they eventually contribute to the etiology of human disease such as cancer and may play key roles in determining therapeutic response. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later".

  17. Repair processes for photochemical damage in mammalian cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1974-01-01

    Repair processes for photochemical damage in cells following uv irradiation are reviewed. Cultured fibroblast cells from human patients with xeroderma pigmentosum were used as an example to illustrate aspects of repair of injuries to DNA and proteins. (250 references) (U.S.)

  18. Sunlight-induced DNA damage in human mononuclear cells

    DEFF Research Database (Denmark)

    Møller, Peter; Wallin, Hakan; Holst, Erik

    2002-01-01

    of sunlight was comparable to the interindividual variation, indicating that sunlight exposure and the individual's background were the two most important determinants for the basal level of DNA damage. Influence of other lifestyle factors such as exercise, intake of foods, infections, and age could......In this study of 301 blood samples from 21 subjects, we found markedly higher levels of DNA damage (nonpyrimidine dimer types) in the summer than in the winter detected by single-cell gel electrophoresis. The level of DNA damage was influenced by the average daily influx of sunlight ... to blood sampling. The 3 and 6 day periods before sampling influenced DNA damage the most. The importance of sunlight was further emphasized by a positive association of the DNA damage level to the amount of time the subjects had spent in the sun over a 3 day period prior to the sampling. The effect...

  19. Sulphonated hypocrellin B sensitized photo damage to ascetic hepatoma cells

    International Nuclear Information System (INIS)

    Yue Jiachang; Wang Tiandun; Pang Suzhen; An Jingyi; Jiang Lijing

    1994-01-01

    The cellular uptake of sulphonated hypocrellin (S-HB), as well as photo damage on cellular viability, lipid peroxidation and intrinsic fluorescence quenching of membrane protein was studied. It was found that S-HB suitable dissolved in aqueous solution, its cellular uptake is slower than HB. The photo damage on cellular viability both photo sensitizers was close to each other, however the photo sensitizers were different in physical and chemical properties. The HB photo damage target of cells was membrane, but the sulphonated HB photo damage target of cells may be part of organelles, besides the membrane. the experiments showed the sulphonated HB would be suggested as a potential advantage for photodynamic therapy of tumor in clinical application

  20. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli.

    Science.gov (United States)

    Wu, Hong; Chen, Jinchun; Chen, Guo-Qiang

    2016-12-01

    E. coli JM109∆envC∆nlpD deleted with genes envC and nlpD responsible for degrading peptidoglycan (PG) led to long filamentous cell shapes. When cell fission ring location genes minC and minD of Escherichia coli were deleted, E. coli JM109∆minCD changed the cell growth pattern from binary division to multiple fissions. Bacterial morphology can be further engineered by overexpressing sulA gene resulting in inhibition on FtsZ, thus generating very long cellular filaments. By overexpressing sulA in E. coli JM109∆envC∆nlpD and E. coli JM109∆minCD harboring poly(3-hydroxybutyrate) (PHB) synthesis operon phbCAB encoded in plasmid pBHR68, respectively, both engineered cells became long filaments and accumulated more PHB compared with the wild-type. Under same shake flask growth conditions, E. coli JM109∆minCD (pBHR68) overexpressing sulA grown in multiple fission pattern accumulated approximately 70 % PHB in 9 g/L cell dry mass (CDM), which was significantly higher than E. coli JM109∆envC∆nlpD and the wild type, that produced 7.6 g/L and 8 g/L CDM containing 64 % and 51 % PHB, respectively. Results demonstrated that a combination of the new division pattern with elongated shape of E. coli improved PHB production. This provided a new vision on the enhanced production of inclusion bodies.

  1. Autolysis of Escherichia coli and Bacillus subtilis cells in low gravity

    Science.gov (United States)

    Kacena, M. A.; Smith, E. E.; Todd, P.

    1999-01-01

    The role of gravity in the autolysis of Bacillus subtilis and Escherichia coli was studied by growing cells on Earth and in microgravity on Space Station Mir. Autolysis analysis was completed by examining the death phase or exponential decay of cells for approximately 4 months following the stationary phase. Consistent with published findings, the stationary-phase cell population was 170% and 90% higher in flight B. subtilis and E. coli cultures, respectively, than in ground cultures. Although both flight autolysis curves began at higher cell densities than control curves, the rate of autolysis in flight cultures was identical to that of their respective ground control rates.

  2. Effect of radiation doses rate on SOS response induction in irradiated Escherichia coli Cells

    International Nuclear Information System (INIS)

    Cuetara Lugo, Elizabeth B.; Fuentes Lorenzo, Jorge L.; Almeida Varela, Eliseo; Prieto Miranda, Enrique F.; Sanchez Lamar, Angel; Llagostera Casal, Montserrat

    2005-01-01

    The present work is aimed to study the effect of radiation dose rate on the induction of SOS response in Escherichia coli cells. We measured the induction of sul A reporter gene in PQ-37 (SOS Chromotest) cells. Lead devises were built with different diameter and these were used for diminishing the dose rate of PX- -30M irradiator. Our results show that radiation doses rate significantly modifies the induction of SOS response. Induction factor increases proportionally to doses rate in Escherichia coli cells defective to nucleotide excision repair (uvrA), but not in wild type cells. We conclude that the dose rate affects the level of induction of SOS response

  3. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900 MHz radiofrequency fields

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yulong; Zong, Lin; Gao, Zhen [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Zhu, Shunxing [Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province (China); Tong, Jian [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Cao, Yi, E-mail: yicao@suda.edu.cn [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China)

    2017-03-15

    Highlights: • Increased reactive oxygen species. • Decreased mitochondrial transcription Factor A and polymerase gamma. • Decreased mitochondrial transcripts (ND1 and 16S) and mtDNA copy number. • Increased 8-hydroxy-2′deoxyguanosine. • Decreased adenosine triphosphate. - Abstract: HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm{sup 2} power intensity for 4 h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2′-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells.

  4. Epithelial Cell Adherence Mediated by the Enterotoxigenic Escherichia coli Tia Protein

    OpenAIRE

    Mammarappallil, Joseph G.; Elsinghorst, Eric A.

    2000-01-01

    In vitro studies have shown that enterotoxigenic Escherichia coli (ETEC) strains are capable of invading cultured epithelial cells derived from the human ileum and colon. Two separate invasion loci (tia and tib) have previously been isolated from the classical ETEC strain H10407. The tia locus has been shown to direct the synthesis of Tia, a 25-kDa outer membrane protein. Tia is sufficient to confer the adherence and invasion phenotypes on laboratory stains of E. coli, suggesting that this pr...

  5. Expression of goose parvovirus whole VP3 protein and its epitopes in Escherichia coli cells.

    Science.gov (United States)

    Tarasiuk, K; Woźniakowski, G; Holec-Gąsior, L

    2015-01-01

    The aim of this study was the expression of goose parvovirus capsid protein (VP3) and its epitopes in Escherichia coli cells. Expression of the whole VP3 protein provided an insufficient amount of protein. In contrast, the expression of two VP3 epitopes (VP3ep4, VP3ep6) in E. coli, resulted in very high expression levels. This may suggest that smaller parts of the GPV antigenic determinants are more efficiently expressed than the complete VP3 gene.

  6. Ionizing radiation damage to the folded chromosome of Escherichia coli K-12: repair of double-strand breaks in deoxyribonucleic acid

    International Nuclear Information System (INIS)

    Ulmer, M.K.; Gomez, R.F.; Sinskevy, A.J.

    1979-01-01

    The extremely gentle lysis and unfolding procedures that have been developed for the isolation of nucleoid deoxyribonucleic acid yield undamaged, replicating genomes, thus permitting direct measurement of the formation and repair of DNA double-strand breaks at biologically significant doses of ionizing radiation. Repair of ionizing radiation damage to folded chromosomes of Escherichia coli K-12 strain AB2497 was observed within 2 to 3 h of post-irradiation incubation in growth medium. Such behavior was not observed after post-irradiation incubation in growth medium of a recA13 strain (strain AB2487). A model based on recombinational repair is proposed to explain the formation of 2,200 to 2,300S material during early stages of incubation and to explain subsequent changes in the gradient profiles. Association of unrepaired DNA with the plasma membrane is proposed to explain the formation of a peak of rapidly sedimenting material (greater than 3,100S) during the later stage of repair. Direct evidence of repair of double-strand breaks during post-irradiation incubation in growth medium was obtained from gradient profiles of DNA from ribonuclease-digested chromosomes. The sedimentation coefficient of broken molecules was restored to the value of unirradiated DNA after 2 to 3 h of incubation, and the fraction of the DNA repaired in this fashion was equal to the fraction of cells that survived at the same dose. An average of 2.7 double-strand breaks per genome per lethal event was observed, suggesting that one to two double-strand breaks per genome are repairable in E. coli K-12 strain AB2497

  7. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  8. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@thep-center.org [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Phanchaisri, B. [Institute of Science and Technology Research, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singkarat, S. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  9. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangwijit, K.; Prakrajang, K.; Phanchaisri, B.; Thongkumkoon, P.; Thopan, P.; Singkarat, S.; Anuntalabhochai, S.

    2014-01-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence

  10. Amaranthus caudatus extract inhibits the invasion of E. coli into uroepithelial cells.

    Science.gov (United States)

    Mohanty, Soumitra; Zambrana, Silvia; Dieulouard, Soizic; Kamolvit, Witchuda; Nilsén, Vera; Gonzales, Eduardo; Östenson, Claes-Göran; Brauner, Annelie

    2018-06-28

    Amaranthus caudatus is traditionally used to treat infections. Based on its traditional usage, we investigated the effect of A. caudatus on the bladder epithelial cells in the protection of E. coli infection. The direct antimicrobial effects of A. caudatus on uropathogenic bacteria were investigated using minimum inhibitory concentration (MIC) assay. Bladder epithelial cell lines T24 and 5637 and uropathogenic E. coli strain #12 were used to investigate the effect of A. caudatus. Bacterial adhesion and invasion into bladder cells treated with A. caudatus was analyzed. Expression of uroplakin-1a (UPK1A), β1 integrin (ITGB1), caveolin-1 (CAV1) and the antimicrobial peptides human β defensin-2 (DEFB4A) and LL-37 (CAMP) was evaluated using RT-PCR. No direct antibacterial effect on E. coli or any of the tested uropathogenic strains was observed by A. caudatus. However, we demonstrated reduced mRNA expression of uroplakin-1a and caveolin-1, but not β1 integrin after treatment of uroepithelial cells, mirrored by the decreased adhesion and invasion of E. coli. A. caudatus treatment did not induce increased gene expression of the antimicrobial peptides, LL-37 and human β-defensin-2. Our results showed that A. caudatus has a protective role on bladder epithelial cells against uropathogenic E. coli infection by decreasing the bacterial adhesion and invasion, thereby preventing infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Radiation damage to integrated injection logic cells

    International Nuclear Information System (INIS)

    Pease, R.L.; Galloway, K.F.; Stehlin, R.A.

    1975-01-01

    The effects of neutron and total dose gamma irradiations on the electrical characteristics of an integrated injection logic (l 2 L) cell and an l 2 L multiple inverter circuit were investigated. These units were designed and fabricated to obtain circuit development information and did not have radiation hardness as a goal. The following parameters of the test structures were measured as a function of total dose and neutron fluence: the dc common-base current gain of the lateral pnp transistor; the dc common-emitter current gain of the vertical npn transistor; the forward current-voltage characteristics of the injector-substrate junction, and the propagation delay versus power dissipation per gate for the multiple inverter circuit. The limitations of the present test structures in a radiation environment and possible hardening techniques are discussed

  12. Cell membrane damage by iron nanoparticles: an invitro study

    Directory of Open Access Journals (Sweden)

    Gelare Hajsalimi

    2016-12-01

    Full Text Available Application of nanotechnology in medicinal and biological fields has attracted a great interest in the recent yeras. In this paper the cell membrane leakage induced by iron nanoparticles (Fe-NP against PC12 cell line which is known as a model of nervous system cell line was investigated by the lactate dehydrogenase (LDH test. Therefore, PC12 cells were incubated with different concentration of Fe-NP and test was performed after 48h of incubation of the cells with Fe-NP. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters.

  13. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage.

    Science.gov (United States)

    Wang, Kai; Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin

    2016-01-01

    Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.

  14. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2016-01-01

    Full Text Available Chinese propolis (CP, an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T, we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS, heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.

  15. Nucleic acid and protein extraction from electropermeabilized E. coli cells on a microfluidic chip

    DEFF Research Database (Denmark)

    Matos, T.; Senkbeil, Silja; Mendonça, A.

    2013-01-01

    technique has been developed which is based on exposing E. coli cells to low voltages to allow extraction of nucleic acids and proteins. The flow-through electropermeability chip used consists of a microfluidic channel with integrated gold electrodes that promote cell envelope channel formation at low...

  16. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells

    NARCIS (Netherlands)

    Roubos-van den Hil, P.J.; Nout, M.J.R.; Beumer, R.R.; Meulen, van der J.; Zwietering, M.H.

    2009-01-01

    Aims: This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and

  17. Colocalization and interaction between elongasome and divisome during a preparative cell division phase in Escherichia coli

    NARCIS (Netherlands)

    Ploeg, van der R.; Verheul, J.; Vischer, N.O.E.; Alexeeva, S.V.; Hoogendoorn, E.; Postma, M.; Banzhaf, M.; Vollmer, W.; Blaauwen, den T.

    2013-01-01

    The rod-shaped bacterium Escherichia coli grows by insertion of peptidoglycan into the lateral wall during cell elongation and synthesis of new poles during cell division. The monofunctional transpeptidases PBP2 and PBP3 are part of specialized protein complexes called elongasome and divisome,

  18. Induction of sos response in Escherichia Coli cells by gamma rays

    International Nuclear Information System (INIS)

    Fuentes Lorenzo, J.L.; Padron Soler, E.; Martin Hernandez, G.; Perez Tamayo, N.; del Sol Abascal, E.R.; Almeida Varela, E.

    1996-01-01

    The kinetics of sos response induction in Escherichia Coli cells was studied by means of the gene fusion SfiA:LacZ. In these cells, the specific beta galactosidase activity and the cellular growth rate showed an exponential behaviour. The sensitivity of the GC 2181 starin to gamma irradiation is equal to Do -1= 0.00088/Gy. The beta galactosidase activity

  19. Cell extracts of propionic acid bacteria reactivate cells of Escherichia coli inactivated by ultraviolet radiation

    International Nuclear Information System (INIS)

    Vorob'eva, L.I.; Nikitenko, G.V.; Khodzhaev, E.Yu.; Ponomareva, G.M.

    1994-01-01

    Cell extracts of three Propionibacterium shermanii strains were shown to exert a reactivating effect on cells of E. coli AB 1157 inactivated by ultraviolet radiation. The reactivating effect was revealed after both preincubation and postincubation of the irradiated cells with the extracts. The effect increased with a decrease of the survival rate within the range of 1.8-0.006%. The protective factor (or factors) is dialyzable and thermolabile; it was detected both in the fraction of soluble proteins and in the fraction of nucleoproteins and nucleic acids. The protective properties of dialyzate disappear after incubation with proteinase K and trypsin, decrease after incubation with α-amylase, deoxyribonuclease-1, or ribonuclease, and do not change under the influence of lipase. The reactivating factor is believed to be of a polypeptide nature

  20. DNA-repair, cell killing and normal tissue damage

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.; Brammer, I.

    1998-01-01

    Background: Side effects of radiotherapy in normal tissue is determined by a variety of factors of which cellular and genetic contributions are described here. Material and methods: Review. Results: Normal tissue damage after irradiation is largely due to loss of cellular proliferative capacity. This can be due to mitotic cell death, apoptosis, or terminal differentiation. Dead or differentiated cells release cytokines which additionally modulate the tissue response. DNA damage, in particular non-reparable or misrepaired double-strand breaks are considered the basic lesion leading to G1-arrest and ultimately to cell inactivation. Conclusion: Evidence for genetic bases of normal tissue response, cell killing and DNA-repair capacity is presented. However, a direct link of all 3 endpoints has not yet been proved directly. (orig.) [de

  1. Role of UV-inducible proteins in repair of various wild-type Escherichia coli cells

    International Nuclear Information System (INIS)

    Sedliakova, M.; Slezarikova, V.; Brozmanova, J.; Masek, F.; Bayerova, V.

    1980-01-01

    3 wild-type strains of E. coli, namely K12 AB2497, B/r WP2 and 15 555-7, proficient in excision and post-replication repair, differ markedly in their UV resistance. To elucidate this difference, the influence was investigated of induction by application of inducing fluence (IF) before lethal fluence (LF) on repair processes after LF. In cells distinguished by low UV resistance (E. coli 15 555-7; E. coli B/r WP2), dimer excision was less complete in cultures irradiated with IF + LF than in cultures irradiated with LF only. The highly resistant E. coli K12 AB2497 performed complete excision both after IF + LF or after LF alone. All 3 types of cell survived better after IF + LF than after LF only. Because, in most strains so far investigated, the application of IF reduced dimer excision and increased survival, dimer excision per se does not appear important for survival. We conclude that the rate and completeness of dimer excision can serve as a measure of efficiency of the excision system whose action is necessary for repair of another lesion. Cells of all investigated strains could not resume DNA replication and died progressively when irradiated with LF and post-incubated with chloramphenicol (LF CAP + ). Thus, it appears that inducible proteins are necessary for repair in all wild-type E. coli cells given with potentially lethal doses of UV irradiation. (orig.)

  2. Integration of AI-2 Based Cell-Cell Signaling with Metabolic Cues in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Arindam Mitra

    Full Text Available The quorum sensing molecule Autoinducer-2 (AI-2 is generated as a byproduct of activated methyl cycle by the action of LuxS in Escherichia coli. AI-2 is synthesized, released and later internalized in a cell-density dependent manner. Here, by mutational analysis of the genes, uvrY and csrA, we describe a regulatory circuit of accumulation and uptake of AI-2. We constructed a single-copy chromosomal luxS-lacZ fusion in a luxS + merodiploid strain and evaluated its relative expression in uvrY and csrA mutants. At the entry of stationary phase, the expression of the fusion and AI-2 accumulation was positively regulated by uvrY and negatively regulated by csrA respectively. A deletion of csrA altered message stability of the luxS transcript and CsrA protein exhibited weak binding to 5' luxS regulatory region. DNA protein interaction and chromatin immunoprecipitation analysis confirmed direct interaction of UvrY with the luxS promoter. Additionally, reduced expression of the fusion in hfq deletion mutant suggested involvement of small RNA interactions in luxS regulation. In contrast, the expression of lsrA operon involved in AI-2 uptake, is negatively regulated by uvrY and positively by csrA in a cell-density dependent manner. The dual role of csrA in AI-2 synthesis and uptake suggested a regulatory crosstalk of cell signaling with carbon regulation in Escherichia coli. We found that the cAMP-CRP mediated catabolite repression of luxS expression was uvrY dependent. This study suggests that luxS expression is complex and regulated at the level of transcription and translation. The multifactorial regulation supports the notion that cell-cell communication requires interaction and integration of multiple metabolic signals.

  3. Influence of some exo nucleases in response to the induced genetic damage in Escherichia coli by alpha radiation

    International Nuclear Information System (INIS)

    Aguilar M, M.

    2005-01-01

    Within the strategies with those that E. coli counts to overcome to the genetic damage there is the SOS response, a group of genes that participate in repair and/or tolerance that it confers to the bacteria major opportunities of surviving. These genes are repressed and its only are expressed when it happens genetic damage. So that this system is activated it is necessary that DNA of a band exists and in this sense the double ruptures (RDB) its are not able to induce this response unless there is a previous processing. In stumps with defects in certain genes that have to do with repair of RDB (as recO, recJ and xonA) the activity of SOS is smaller than in a wild stump what suggests that these participate in the previous processes to the activation of the response. The ionizing radiation produce among other many lesions, RDB in greater or smaller proportion, depending on the ionization capacity. A parameter to evaluate this capacity is the lineal energy transfer (LET), defined as the average energy given by unit of distance travelled. In general the LET of the corpuscular radiations is a lot but high that of the electromagnetic one, for what produces bigger quantity of ionizations inside a restricted zone and it increases by this way the probability that RDB has been generated. This work has for object to infer the participation of xonA and recJ in this response and to evaluate the damage produced by ionizing radiation of different LET (alpha particles of different energies) in a stump with all the functional repair mechanisms. Its were considered two parameters: the survival and the activity of SOS evaluated by means of the chromo test. The results indicate that the activity of these exo nucleases is necessary for the repair of RDB as well as for the processing of lesions foresaw to the activation of SOS. As for the treatment with alphas of different energies is observed that so much the survival like the activity of SOS vary as the LET of the radiation changes

  4. Comparison of mutagenic efficiency of decay of 32P incorporated in E.Coli WP-2 and E.Coli WP-2S cells

    International Nuclear Information System (INIS)

    Pluciennik, H.

    1975-01-01

    32 P-labelled Escherichia coli WP-2 and Escherichia coli WP-2S cells were stored at -196 0 . The lethal effect induced by 32 P decay was equal in both strains. Lethal efficiency of 32 P→ 32 S transmutation in DNA amounted to 0.046. Reversion try→try + were induced with a ten times higher efficiency in UV-sensitive strain WP-2S, as compared with strain WP-2. (author)

  5. Comparison of mutagenic efficiency of decay of /sup 32/P incorporated in E. Coli WP-2 and E. Coli WP-2S cells

    Energy Technology Data Exchange (ETDEWEB)

    Pluciennik, H [Warsaw Univ. (Poland). Instytut Podstawowych Problemow Chemii

    1975-01-01

    Phosphorous-32 labelled Escherichia coli WP-2 and Escherichia coli WP-2S cells were stored at -196/sup 0/. The lethal effect induced by /sup 32/P decay was equal in both strains. Lethal efficiency of /sup 32/P..-->../sup 32/S transmutation in DNA amounted to 0.046. Reversion try..-->..try/sup +/ were induced with a ten times higher efficiency in uv-sensitive strain WP-2S, as compared with strain WP-2.

  6. Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70

    Directory of Open Access Journals (Sweden)

    Noireaux Vincent

    2010-06-01

    Full Text Available Abstract Background Escherichia coli cell-free expression systems use bacteriophage RNA polymerases, such as T7, to synthesize large amounts of recombinant proteins. These systems are used for many applications in biotechnology, such as proteomics. Recently, informational processes have been reconstituted in vitro with cell-free systems. These synthetic approaches, however, have been seriously limited by a lack of transcription modularity. The current available cell-free systems have been optimized to work with bacteriophage RNA polymerases, which put significant restrictions to engineer processes related to biological information. The development of efficient cell-free systems with broader transcription capabilities is required to study complex informational processes in vitro. Results In this work, an efficient cell-free expression system that uses the endogenous E. coli RNA polymerase only and sigma factor 70 for transcription was prepared. Approximately 0.75 mg/ml of Firefly luciferase and enhanced green fluorescent protein were produced in batch mode. A plasmid was optimized with different regulatory parts to increase the expression. In addition, a new eGFP was engineered that is more translatable in cell-free systems than the original eGFP. The protein production was characterized with three different adenosine triphosphate (ATP regeneration systems: creatine phosphate (CP, phosphoenolpyruvate (PEP, and 3-phosphoglyceric acid (3-PGA. The maximum protein production was obtained with 3-PGA. Preparation of the crude extract was streamlined to a simple routine procedure that takes 12 hours including cell culture. Conclusions Although it uses the endogenous E. coli transcription machinery, this cell-free system can produce active proteins in quantities comparable to bacteriophage systems. The E. coli transcription provides much more possibilities to engineer informational processes in vitro. Many E. coli promoters/operators specific to sigma

  7. Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida.

    Science.gov (United States)

    Yamada, Mamoru; Okada, Yukiyoshi; Yoshida, Toyokazu; Nagasawa, Toru

    2008-04-01

    The isoeugenol monooxygenase gene of Pseudomonas putida IE27 was inserted into an expression vector, pET21a, under the control of the T7 promoter. The recombinant plasmid was introduced into Escherichia coli BL21(DE3) cells, containing no vanillin-degrading activity. The transformed E. coli BL21(DE3) cells produced 28.3 g vanillin/l from 230 mM isoeugenol, with a molar conversion yield of 81% at 20 degrees C after 6 h. In the reaction system, no accumulation of undesired by-products, such as vanillic acid or acetaldehyde, was observed.

  8. DamX Controls Reversible Cell Morphology Switching in Uropathogenic Escherichia coli

    DEFF Research Database (Denmark)

    Khandige, Surabhi; Antoinette Asferg, Cecilie; Rasmussen, Karina Juhl

    2016-01-01

    undertaking targeted investigations that are challenging to perform in animal infection models. IMPORTANCE: Urinary tract infections (UTIs) are most often caused by uropathogenic Escherichia coli (UPEC) and account for a considerable health care burden. UPEC exhibits a dynamic lifestyle in the course....... In aiming to uncover genes underlying the phenomenon of UPEC morphotype switching, this study identifies damX, a cell division gene, as a mediator of reversible filamentation during UTI. DamX-mediated filamentation represents an additional pathway for bacterial cell shape control, an alternative to Sul......A-mediated FtsZ sequestration during E. coli uropathogenesis, and hence represents a potential target for combating UTI....

  9. DNA damage responses in human induced pluripotent stem cells and embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Olga Momcilovic

    2010-10-01

    Full Text Available Induced pluripotent stem (iPS cells have the capability to undergo self-renewal and differentiation into all somatic cell types. Since they can be produced through somatic cell reprogramming, which uses a defined set of transcription factors, iPS cells represent important sources of patient-specific cells for clinical applications. However, before these cells can be used in therapeutic designs, it is essential to understand their genetic stability.Here, we describe DNA damage responses in human iPS cells. We observe hypersensitivity to DNA damaging agents resulting in rapid induction of apoptosis after γ-irradiation. Expression of pluripotency factors does not appear to be diminished after irradiation in iPS cells. Following irradiation, iPS cells activate checkpoint signaling, evidenced by phosphorylation of ATM, NBS1, CHEK2, and TP53, localization of ATM to the double strand breaks (DSB, and localization of TP53 to the nucleus of NANOG-positive cells. We demonstrate that iPS cells temporary arrest cell cycle progression in the G(2 phase of the cell cycle, displaying a lack of the G(1/S cell cycle arrest similar to human embryonic stem (ES cells. Furthermore, both cell types remove DSB within six hours of γ-irradiation, form RAD51 foci and exhibit sister chromatid exchanges suggesting homologous recombination repair. Finally, we report elevated expression of genes involved in DNA damage signaling, checkpoint function, and repair of various types of DNA lesions in ES and iPS cells relative to their differentiated counterparts.High degrees of similarity in DNA damage responses between ES and iPS cells were found. Even though reprogramming did not alter checkpoint signaling following DNA damage, dramatic changes in cell cycle structure, including a high percentage of cells in the S phase, increased radiosensitivity and loss of DNA damage-induced G(1/S cell cycle arrest, were observed in stem cells generated by induced pluripotency.

  10. Unscheduled DNA synthesis and elimination of DNA damage in liver cells of. gamma. -irradiated senescent mice

    Energy Technology Data Exchange (ETDEWEB)

    Gaziev, A.I.; Malakhova, L.V. (AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki)

    1982-10-01

    The level of 'spontaneous' and ..gamma..-radiation-induced DNA synthesis which is not inhibited with hydroxyurea (unscheduled synthesis) is considerably lower in hepatocytes of 18-22-month-old mice than that of 1.5-2-month-old mice. The dose-dependent increase (10-300 Gy) of unscheduled DNA synthesis (UDS) in hepatocytes of senescent mice is higher than in young animals. The elimination of damage in DNA of ..gamma..-irradiated hepatocytes (100 Gy) was examined by using an enzyme system (M. luteus extract and DNA-polymerase I of E. coli). It was found that the rate of elimination of the DNA damage in hepatocytes of 20-month-old mice is lower than that of 2-month-old mice although the activities of DNA-polymerase ..beta.. and apurinic endonuclease remain equal in the liver of both senescent and young mice. However, the nucleoids from ..gamma..-irradiated liver nuclei of 2-month-old mice are relaxed to a greater extent (as judged by the criterion of ethidium-binding capacity) than those of 20-month-old mice. The results suggest that there are limitations in the functioning of repair enzymes and in their access to damaged DNA sites in the chromatin of senescent mouse liver cells.

  11. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.

  12. The repair of damage to DNA in different cell types

    International Nuclear Information System (INIS)

    Karran, P.

    1974-01-01

    DNA single strand breaks induced by either X-ray irradiation or by methyl methanesulphonate (MMS) were studied in different lymphoid cell populations directly taken from the animal and maintained in tissue culture merely for the duration of the experiment. The results obtained from these cell populations were compared with those obtained with L5178Y cells maintained in tissue culture. All cell types studied were found to possess at least one class of enzymes required for repair of DNA damage, namely those enzymes involved in the rejoining of X-ray induced by MMS is different in each cell type. Repair replication was at much reduced levels and the endonucleolytic degradation was at much reduced levels and the endonucleolytic degradation was initiated at lower MMS concentration in the lymphoid cells as compared to L5178Y cells. It is suggested that the overall ''repair capacity'' of a population may be related to the number of cells in a cycle which, moreover, might be the only ones to have the ability to repair damage to DNA induced by MMS (G.G.)

  13. Polymyxin B Nephrotoxicity: From Organ to Cell Damage.

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Fernandes Vattimo

    Full Text Available Polymyxins have a long history of dose-limiting toxicity, but the underlying mechanism of polymyxin B-induced nephrotoxicity is unclear. This study investigated the link between the nephrotoxic effects of polymyxin B on renal metabolic functions and mitochondrial morphology in rats and on the structural integrity of LLC-PK1 cells. Fifteen Wistar rats were divided into two groups: Saline group, rats received 3 mL/kg of 0.9% NaCl intraperitoneally (i.p. once a day for 5 days; Polymyxin B group, rats received 4 mg/kg/day of polymyxin B i.p. once a day for 5 days. Renal function, renal hemodynamics, oxidative stress, mitochondrial injury and histological characteristics were assessed. Cell membrane damage was evaluated via lactate dehydrogenase and nitric oxide levels, cell viability, and apoptosis in cells exposed to 12.5 μM, 75 μM and 375 μM polymyxin B. Polymyxin B was immunolocated using Lissamine rhodamine-polymyxin B in LLC-PK1 cells. Polymyxin B administration in rats reduced creatinine clearance and increased renal vascular resistance and oxidative damage. Mitochondrial damage was confirmed by electron microscopy and cytosolic localization of cytochrome c. Histological analysis revealed tubular dilatation and necrosis in the renal cortex. The reduction in cell viability and the increase in apoptosis, lactate dehydrogenase levels and nitric oxide levels confirmed the cytotoxicity of polymyxin B. The incubation of LLC-PK1 cells resulted in mitochondrial localization of polymyxin B. This study demonstrates that polymyxin B nephrotoxicity is characterized by mitochondrial dysfunction and free radical generation in both LLC-PK1 cells and rat kidneys. These data also provide support for clinical studies on the side effects of polymyxin B.

  14. Production of chlorphenesin galactoside by whole cells of β-galactosidase-containing Escherichia coli.

    Science.gov (United States)

    Lee, Sang-Eun; Lee, Hyang-Yeol; Jung, Kyung-Hwan

    2013-06-28

    We investigated the transgalactosylation reaction of chlorphenesin (CPN) using β-galactosidase (β-gal)-containing Escherichia coli (E. coli) cells, in which galactose from lactose was transferred to CPN. The optimal CPN concentration for CPN galactoside (CPN-G) synthesis was observed at 40 mM under the conditions that lactose and β-gal (as E. coli cells) were 400 g/l and 4.8 U/ml, respectively, and the pH and temperature were 7.0 and 40oC, respectively. The time-course profile of CPN-G synthesis under these optimal conditions showed that CPN-G synthesis from 40 mM CPN reached a maximum of about 27 mM at 12 h. This value corresponded to an about 67% conversion of CPN to CPN-G, which was 4.47-5.36-fold higher than values in previous reports. In addition, we demonstrated by thin-layer chromatography to detect the sugar moiety that galactose was mainly transferred from lactose to CPN. Liquid chromatography-mass spectrometry revealed that CPN-G and CPN-GG (CPN galactoside, which accepted two galactose molecules) were definitively identified as the synthesized products using β-gal-containing E. coli cells. In particular, because we did not use purified β-gal, our β-gal-containing E. coli cells might be practical and cost-effective for enzymatically synthesizing CPN-G. It is expected that the use of β-gal-containing E. coli will be extended to galactose derivatization of other drugs to improve their functionality.

  15. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.

    Science.gov (United States)

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-03-03

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.

  16. The lethal interaction of x ray and penicillin induced lesions following x-irradiation of Escherichia coli B/r in the presence of hypoxic cell sensitizers

    International Nuclear Information System (INIS)

    Gillies, N.E.; Obioha, F.I.

    1982-01-01

    When Escherichia coli B/r were x-irradiated under anoxia in the presence of different electron-affinic sensitizers and then incubated in broth containing penicillin (at a concentration that did not kill unirradiated cells) additional killing of the bacteria occurred provided the sensitizers were of relatively high lipophilicity. The overall effect was to increase the efficiency of these sensitizers. It is concluded that sensitizer-dependent latent radiation lesions(s) are produced in membrane components of the cell envelope that interact with damage caused by penicillin in the peptidoglycan layer and this causes the additional lethality

  17. Global transcriptional response of Escherichia coli MG1655 cells exposed to the oxygenated monoterpenes citral and carvacrol.

    Science.gov (United States)

    Chueca, Beatriz; Pérez-Sáez, Elisa; Pagán, Rafael; García-Gonzalo, Diego

    2017-09-18

    DNA microarrays were used to study the mechanism of bacterial inactivation by carvacrol and citral. After 10-min treatments of Escherichia coli MG1655 cells with 100 and 50ppm of carvacrol and citral, 76 and 156 genes demonstrated significant transcriptional differences (p≤0.05), respectively. Among the up-regulated genes after carvacrol treatment, we found gene coding for multidrug efflux pumps (acrA, mdtM), genes related to phage shock response (pspA, pspB, pspC, pspD, pspF and pspG), biosynthesis of arginine (argC, argG, artJ), and purine nucleotides (purC, purM). In citral-treated cells, transcription of purH and pyrB and pyrI was 2 times higher. Deletion of several differentially expressed genes confirmed the role of ygaV, yjbO, pspC, sdhA, yejG and ygaV in the mechanisms of E. coli inactivation by carvacrol and citral. These results would indicate that citral and carvacrol treatments cause membrane damage and activate metabolism through the production of nucleotides required for DNA and RNA synthesis and metabolic processes. Comparative transcriptomics of the response of E. coli to a heat treatment, which caused a significant change of the transcription of 1422 genes, revealed a much weaker response to both individual constituents of essential oils (ICs).·Thus, inactivation by citral or carvacrol was not multitarget in nature. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. DNA damage-inducible transcripts in mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Alamo, I. Jr.; Hollander, M.C.

    1988-01-01

    Hybridization subtraction at low ratios of RNA to cDNA was used to enrich for the cDNA of transcripts increased in Chinese hamster cells after UV irradiation. Forty-nine different cDNA clones were isolated. Most coded for nonabundant transcripts rapidly induced 2- to 10-fold after UV irradiation. Only 2 of the 20 cDNA clones sequenced matched known sequences (metallothionein I and II). The predicted amino acid sequence of one cDNA had two localized areas of homology with the rat helix-destabilizing protein. These areas of homology were at the two DNA-binding sites of this nucleic acid single-strand-binding protein. The induced transcripts were separated into two general classes. Class I transcripts were induced by UV radiation and not by the alkylating agent methyl methanesulfonate. Class II transcripts were induced by UV radiation and by methyl methanesulfonate. Many class II transcripts were induced also by H2O2 and various alkylating agents but not by heat shock, phorbol 12-tetradecanoate 13-acetate, or DNA-damaging agents which do not produce high levels of base damage. Since many of the cDNA clones coded for transcripts which were induced rapidly and only by certain types of DNA-damaging agents, their induction is likely a specific response to such damage rather than a general response to cell injury

  19. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Thomas Secher

    Full Text Available Cellular senescence is an irreversible state of proliferation arrest evoked by a myriad of stresses including oncogene activation, telomere shortening/dysfunction and genotoxic insults. It has been associated with tumor activation, immune suppression and aging, owing to the secretion of proinflammatory mediators. The bacterial genotoxin colibactin, encoded by the pks genomic island is frequently harboured by Escherichia coli strains of the B2 phylogenetic group. Mammalian cells exposed to live pks+ bacteria exhibit DNA-double strand breaks (DSB and undergo cell-cycle arrest and death. Here we show that cells that survive the acute bacterial infection with pks+ E. coli display hallmarks of cellular senescence: chronic DSB, prolonged cell-cycle arrest, enhanced senescence-associated β-galactosidase (SA-β-Gal activity, expansion of promyelocytic leukemia nuclear foci and senescence-associated heterochromatin foci. This was accompanied by reactive oxygen species production and pro-inflammatory cytokines, chemokines and proteases secretion. These mediators were able to trigger DSB and enhanced SA-β-Gal activity in bystander recipient cells treated with conditioned medium from senescent cells. Furthermore, these senescent cells promoted the growth of human tumor cells. In conclusion, the present data demonstrated that the E. coli genotoxin colibactin induces cellular senescence and subsequently propel bystander genotoxic and oncogenic effects.

  20. Induction of genetic recombination in the lambda bacteriophage by ultraviolet radiation of the Escherichia Coli cells

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1986-12-01

    In this work there are reported the results that show that although the stimulation of the recombination of the Lambda bacteriophage, by UV irradiation of the cells of Escherichia Coli, it looks to be the result of the high expression of the functions of the SOS system, doesn't keep some relationship with the high concentration of protein reached RecA. (Author)

  1. Preparation of α-deuterated L-amino acids using E.coli cells containing tryptophanase

    International Nuclear Information System (INIS)

    Faleev, N.G.; Ruvinov, S.B.; Saporovskaya, M.B.; Belikov, V.M.; Zakomyrdina, L.N.; Sakharova, I.S.; Torchinskij, Yu.M.

    1989-01-01

    Method for preparation of a series of α-deuterated L-amino acids of high optical purity with quantitative chemica yield, suing stereospecific isotopic exchange in D 2 O under the effect of E.coli cells with high tryptophanase activity was developed

  2. Problem-Solving Test: RNA and Protein Synthesis in Bacteriophage-Infected "E. coli" Cells

    Science.gov (United States)

    Szeberenyi, Jozsef

    2008-01-01

    The classic experiment presented in this problem-solving test was designed to identify the template molecules of translation by analyzing the synthesis of phage proteins in "Escherichia coli" cells infected with bacteriophage T4. The work described in this test led to one of the most seminal discoveries of early molecular biology: it dealt a…

  3. Ingestion of Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli by human peritoneal mesothelial cells

    NARCIS (Netherlands)

    Visser, C. E.; Brouwer-Steenbergen, J. J.; Schadee-Eestermans, I. L.; Meijer, S.; Krediet, R. T.; Beelen, R. H.

    1996-01-01

    In the present study we examined whether mesothelial cells can ingest and digest bacteria. The results showed that all strains were ingested. Ingested staphylococci proliferated abundantly, and only a few were digested. Escherichia coli, however, was digested during the first 8 h, whereafter the

  4. Immunocytochemical localization of the elongation factor Tu in E. coli cells

    NARCIS (Netherlands)

    Slot, J.W.; Schilstra, M.J.; Meide, P.H. van der; Posthuma, G.; Cremers, A.F.M.; Bosch, L.

    1984-01-01

    The localization of the elongation factor Tu (EF-Tu) in ultrathin cryosections of E. coli cells was determined with the electron microscope using a highly specific immunological labellin technique. EF-Tu is distributed almost homogeneously throughout the cytoplasm. Although it has often been

  5. Restriction alleviation of phage λ in Escherichia Coli K-12 cells after γ-irradiation

    International Nuclear Information System (INIS)

    Rabinkova, E.V.; Torosyan, M.V.; Fradkin, G.E.

    1987-01-01

    In γ-irradiated cells of Escherichia coli K-12 restriction allevation of an unmodified phage λ is only observed in AB1157 strain. No restriction allevation by γ-rays is registered in AB1157 mutants (rec A and ssb-1)

  6. DNA Damage by Radiation in Tradescantia Leaf Cells

    International Nuclear Information System (INIS)

    Han, Min; Hyun, Kyung Man; Ryu, Tae Ho; Kim, Jin Kyu; Nili, Mohammad

    2010-01-01

    The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Tradescantia tests are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay. The development of comet assay has enabled investigators to detect DNA damage at the levels of cells. To adapt this assay to plant cells, nuclei were directly obtained from Tradescantia leaf samples. A significant dose-dependent increase in the average tail moment values over the negative control was observed. Recently the adaptation of this technique to plant cells opens new possibilities for studies in variety area. The future applications of the comet assay could impact some other important areas, certainly, one of the limiting factors to its utility is the imagination of the investigator.

  7. Melanin photosensitizes ultraviolet light (UVC) DNA damage in pigmented cells

    International Nuclear Information System (INIS)

    Huselton, C.A.; Hill, H.Z.

    1990-01-01

    Melanins, pigments of photoprotection and camouflage, are very photoreactive and can both absorb and emit active oxygen species. Nevertheless, black skinned individuals rarely develop skin cancer and melanin is assumed to act as a solar screen. Since DNA is the target for solar carcinogenesis, the effect of melanin on Ultraviolet (UV)-induced thymine lesions was examined in mouse melanoma and carcinoma cells that varied in melanin content. Cells prelabeled with 14C-dThd were irradiated with UVC; DNA was isolated, purified, degraded to bases by acid hydrolysis and analyzed by HPLC. Thymine dimers were detected in all of the extracts of irradiated cells. Melanotic and hypomelanotic but not mammary carcinoma cell DNA from irradiated cells contained hydrophilic thymine derivatives. The quantity of these damaged bases was a function of both the UVC dose and the cellular melanin content. One such derivative was identified by gas chromatography-mass spectroscopy as thymine glycol. The other appears to be derived from thymine glycol by further oxidation during acid hydrolysis of the DNA. The finding of oxidative DNA damage in melanin-containing cells suggests that melanin may be implicated in the etiology of caucasian skin cancer, particularly melanoma. Furthermore, the projected decrease in stratospheric ozone could impact in an unanticipated deleterious manner on dark-skinned individuals

  8. DNA Damage by Radiation in Tradescantia Leaf Cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Hyun, Kyung Man; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-04-15

    The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Tradescantia tests are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay. The development of comet assay has enabled investigators to detect DNA damage at the levels of cells. To adapt this assay to plant cells, nuclei were directly obtained from Tradescantia leaf samples. A significant dose-dependent increase in the average tail moment values over the negative control was observed. Recently the adaptation of this technique to plant cells opens new possibilities for studies in variety area. The future applications of the comet assay could impact some other important areas, certainly, one of the limiting factors to its utility is the imagination of the investigator.

  9. Leydig cell damage after testicular irradiation for lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Shalet, S.M.; Horner, A.; Ahmed, S.R.; Morris-Jones, P.H.

    1985-01-01

    The effect of testicular irradiation on Leydig cell function has been studied in a group of boys irradiated between 1 and 5 years earlier for a testicular relapse of acute lymphoblastic leukemia. Six of the seven boys irradiated during prepubertal life had an absent testosterone response to HCG stimulation. Two of the four boys irradiated during puberty had an appropriate basal testosterone level, but the testosterone response to HCG stimulation was subnormal in three of the four. Abnormalities in gonadotropin secretion consistent with testicular damage were noted in nine of the 11 boys. Evidence of severe Leydig cell damage was present irrespective of whether the boys were studied within 1 year or between 3 and 5 years after irradiation, suggesting that recovery is unlikely. Androgen replacement therapy has been started in four boys and will be required by the majority of the remainder to undergo normal pubertal development

  10. DNA damage by carbonyl stress in human skin cells

    International Nuclear Information System (INIS)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L.

    2003-01-01

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the α-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N ε -(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress

  11. DNA damage by carbonyl stress in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L

    2003-01-28

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the {alpha}-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N{sup {epsilon}}-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.

  12. Hypoxia-ischemia and retinal ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Charanjit Kaur

    2008-08-01

    Full Text Available Charanjit Kaur1, Wallace S Foulds2, Eng-Ang Ling11Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; 2Singapore Eye Research Institute, SingaporeAbstract: Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF and nitric oxide synthase (NOS. Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.Keywords: retinal hypoxia, retinal ganglion cells, glutamate receptors, neuronal injury, retina

  13. Local stem cell depletion model for normal tissue damage

    International Nuclear Information System (INIS)

    Yaes, R.J.; Keland, A.

    1987-01-01

    The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a patient is known

  14. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  15. Interferon synthesis in mouse peritoneal cells damaged by x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Szolgay, E; T' alas, M

    1976-01-01

    NDV-induced interferon of peritoneal cells of irradiated (x-rays, 400 R) and control mice was investigated in vitro. Irradiation or treatment with hydroxyurea (10(-5) M) and mitomycin C (25 microng/ml) did not change interferon synthesis in spite of an 80 to 90% inhibition of 3H-thymidine incorporation. Increased doses of mitomycin C and treatment with actinomycin D and puromycin blocked interferon production. De novo interferon synthesis occurred in cells with damaged replicative activity of DNA caused by irradiation or by treatment with antimetabolites.

  16. Polyphosphate is a key factor for cell survival after DNA damage in eukaryotic cells.

    Science.gov (United States)

    Bru, Samuel; Samper-Martín, Bàrbara; Quandt, Eva; Hernández-Ortega, Sara; Martínez-Laínez, Joan M; Garí, Eloi; Rafel, Marta; Torres-Torronteras, Javier; Martí, Ramón; Ribeiro, Mariana P C; Jiménez, Javier; Clotet, Josep

    2017-09-01

    Cells require extra amounts of dNTPs to repair DNA after damage. Polyphosphate (polyP) is an evolutionary conserved linear polymer of up to several hundred inorganic phosphate (Pi) residues that is involved in many functions, including Pi storage. In the present article, we report on findings demonstrating that polyP functions as a source of Pi when required to sustain the dNTP increment essential for DNA repair after damage. We show that mutant yeast cells without polyP produce less dNTPs upon DNA damage and that their survival is compromised. In contrast, when polyP levels are ectopically increased, yeast cells become more resistant to DNA damage. More importantly, we show that when polyP is reduced in HEK293 mammalian cell line cells and in human dermal primary fibroblasts (HDFa), these cells become more sensitive to DNA damage, suggesting that the protective role of polyP against DNA damage is evolutionary conserved. In conclusion, we present polyP as a molecule involved in resistance to DNA damage and suggest that polyP may be a putative target for new approaches in cancer treatment or prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  18. Molecular cloning and expression of Corynebacterium glutamicum genes for amino acid synthesis in Escherichia coli cells

    International Nuclear Information System (INIS)

    Beskrovnaya, O.Yu.; Fonshtein, M.Yu.; Kolibaba, L.G.; Yankovskii, N.K.; Debabov, V.G.

    1989-01-01

    Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector λpSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB + clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA + transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmids consistently transduced the markers thrB + and lysA + . The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes

  19. Cancer cells recovering from damage exhibit mitochondrial restructuring and increased aerobic glycolysis

    Energy Technology Data Exchange (ETDEWEB)

    Akakura, Shin; Ostrakhovitch, Elena; Sanokawa-Akakura, Reiko [Frontiers in Bioscience Research Institute in Aging and Cancer, University of California, Irvine, CA (United States); Tabibzadeh, Siamak, E-mail: fbs@bioscience.org [Frontiers in Bioscience Research Institute in Aging and Cancer, University of California, Irvine, CA (United States); Dept of Oncologic Radiology, University of California, Irvine, CA (United States)

    2014-06-13

    Highlights: • Some cancer cells recover from severe damage that causes cell death in majority of cells. • Damage-Recovered (DR) cancer cells show reduced mitochondria, mDNA and mitochondrial enzymes. • DR cells show increased aerobic glycolysis, ATP, cell proliferation, and resistance to damage. • DR cells recovered from in vivo damage also show increased glycolysis and proliferation rate. - Abstract: Instead of relying on mitochondrial oxidative phosphorylation, most cancer cells rely heavily on aerobic glycolysis, a phenomenon termed as “the Warburg effect”. We considered that this effect is a direct consequence of damage which persists in cancer cells that recover from damage. To this end, we studied glycolysis and rate of cell proliferation in cancer cells that recovered from severe damage. We show that in vitro Damage-Recovered (DR) cells exhibit mitochondrial structural remodeling, display Warburg effect, and show increased in vitro and in vivo proliferation and tolerance to damage. To test whether cancer cells derived from tumor microenvironment can show similar properties, we isolated Damage-Recovered (T{sup DR}) cells from tumors. We demonstrate that T{sup DR} cells also show increased aerobic glycolysis and a high proliferation rate. These findings show that Warburg effect and its consequences are induced in cancer cells that survive severe damage.

  20. Un-repairable DNA damage in cell due to irradiation

    International Nuclear Information System (INIS)

    Yoshii, Giichi

    1992-01-01

    Radiation-induced cell reproductive deactivation is caused by damage to DNA. In a cell, cellular DNA radical reacts with diffusion controlled rate and generates DNA peroxide radical. The chemical repair of DNA radical with hydrogen donation by thiol competes with the reaction of oxygen with same radicals in the DNA molecules. From the point reaction rates, the prolongation of radical life time is not as great as expected from the reduction in the glutathione content of the cell. This indicates that further reducting compounds (protein bound thiol) are present in the cell. The residual radicals are altered to strand breaks, base damages and so on. The effective lesions for a number of endpoints is un-repaired double strand break, which has been discovered in a cluster. This event gives risk to high LET radiation or to a track end of X-rays. For X- or electron irradiations the strand breaks are frequently induced by the interactions between sublesions on two strands in DNA. A single strand break followed by radical action may be unstable excited state, because of remaining sugar radical action and of having negative charged phosphates, in which strands breaks will be rejoined in a short time to stable state. On the same time, a break in the double helix will be immediately produced if two breaks are on either or approximately opposite locations. The formation of a double strand break in the helix depends on the ion strength of the cell. The potassium ions are largely released from polyanionic strand during irradiation, which results in the induction of denatured region. Double strand break with the denatured region seems to be un-repairable DNA damage. (author)

  1. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    International Nuclear Information System (INIS)

    Roper, Katherine; Coverley, Dawn

    2012-01-01

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naïve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naïve nuclei. At the same time, H2AX is phosphorylated in naïve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naïve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: ► A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. ► Damage-activated extracts impose the cellular response to DNA damage on naïve nuclei. ► PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. ► Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. ► LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening approach.

  2. Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production.

    Science.gov (United States)

    Goers, Lisa; Ainsworth, Catherine; Goey, Cher Hui; Kontoravdi, Cleo; Freemont, Paul S; Polizzi, Karen M

    2017-06-01

    Many high-value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole-cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole-cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole-cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole-cell biosensors. Biotechnol. Bioeng. 2017;114: 1290-1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  3. Whole‐cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production

    Science.gov (United States)

    Goers, Lisa; Ainsworth, Catherine; Goey, Cher Hui; Kontoravdi, Cleo; Freemont, Paul S.

    2017-01-01

    ABSTRACT Many high‐value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole‐cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole‐cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole‐cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole‐cell biosensors. Biotechnol. Bioeng. 2017;114: 1290–1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28112405

  4. Circulating endothelial cells: a potential parameter of organ damage in sickle cell anemia?

    NARCIS (Netherlands)

    Strijbos, Michiel H.; Landburg, Precious P.; Nur, Erfan; Teerlink, Tom; Leebeek, Frank W. G.; Rijneveld, Anita W.; Biemond, Bart J.; Sleijfer, Stefan; Gratama, Jan W.; Duits, Ashley J.; Schnog, John-John B.

    2009-01-01

    Objective laboratory tools are needed to monitor developing organ damage in sickle cell disease (SCD). Circulating endothelial cells (CECs) are indicative of vascular injury. We determined whether elevated CEC can be detected in asymptomatic SCD with the CellSearch system and whether the CEC count

  5. Isolating E.Coli Bacteriophage from Raw Sewage and Determining its Selectivity to the Host Cell

    Directory of Open Access Journals (Sweden)

    SM Imeni

    2016-05-01

    Full Text Available Introduction: Bacteriophages are viruses that infect and destroy prokaryote cells, specifically the bacteria. They act too selective, so as each bacteriophage affects only on specific type of bacteria. Due to their specific features, bacteriophages can be used as an appropriate substitute for antibiotics in infectious diseases treatment. Therefore, this study aimed to isolate E. coli-specific bacteriophage from raw sewage. Methods: Eight samples of raw sewage, each containing approximately 50 ml of raw sewage with 10 minute gap, were prepared from Zargandeh wastewater treatment plant, Tehran, Iran. The sewages were mixed with Brain-heart infusion medium (BHI as a liquid culture medium in order to let the microorganisms grow. Incubation, purification and determination of bacteria were followed repeatedly to isolate the bacteriophage. Then it was tested on E.coli (ATCC 25922, Enterococcus faecalis (ATCC 19433, Staphylococcus aureus (ATCC 2392, and Yersinia enterocolitica (ATCC 9610 in order to determine the bacteriophage selectivity. Results: The E.coli bacteriophages were successfully isolated from all the eight samples, that were completely able to lyse and destroy E.coli bacterial cells, though no effect was observed on other types of bacteria. Conclusion: The study findings revealed that bacteriophages act selectively. Considering the raise of antibiotic resistance in the world, bacteriophages can serve as a good substitute for antibiotics in treating infectious diseases.

  6. Sensitization of ultraviolet radiation damage in bacteria and mammalian cells

    International Nuclear Information System (INIS)

    Fisher, G.J.; Watts, M.E.; Patel, K.B.; Adams, G.E.

    1978-01-01

    Bacteria (Serratia marcescens) and mammalian cells (Chinese hamsters V79-379A) were irradiated in monolayers with ultraviolet light at 254 nm or 365 nm in the presence or absence of radiosensitizing drugs. At 254 nm, killing is very efficient (Dsub(37) approximately equal 1 J m -2 exposure, or approximately equal 6 x 10 4 photons absorbed by DNA per bacterium), and sensitizers have no effect. At 365 nm, cells are not killed in buffer, but are inactivated in the presence of nifurpipone or misonidazole. Lethal exposures (approximately equal 5 x 10 3 J m -2 at 10 nM misonidazole) correspond to about 10 7 photons absorbed by sensitizer molecules per bacterium. Toxicity of stable photoproducts of the drugs is not involved, nor is oxygen required. Hence the transient species formed by photo-excitation of radiosensitizer molecules are capable of killing cells in the absence of other types of radiation damage. (author)

  7. Burst annealing of electron damage in silicon solar cells

    International Nuclear Information System (INIS)

    Day, A.C.; Horne, W.E.; Thompson, M.A.; Lancaster, C.A.

    1985-01-01

    A study has been performed of burst annealing of electron damage in silicon solar cells. Three groups of cells consisting of 3 and 0.3 ohm-cm silicon were exposed to fluences of 2 x 10 to the 14th power, 4 x 10 to the 14th power, and 8 x 10 to the 14th power 1-MeV electrons/sq cm, respectively. They were subsequently subjected to 1-minute bursts of annealing at 500 C. The 3 ohm-cm cells showed complete recovery from each fluence level. The 0.3 ohm-cm cells showed complete recovery from the 2 x 10 to the 14th power e/sq cm fluence; however, some of the 0.3 ohm-cm cells did not recover completely from the higher influences. From an analysis of the results it is concluded that burst annealing of moderate to high resistivity silicon cell arrays in space is feasible and that with more complete understanding, even the potentially higher efficiency low resistivity cells may be usable in annealable arrays in space

  8. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    International Nuclear Information System (INIS)

    Gehrau, Ricardo C.; D'Astolfo, Diego S.; Andreoli, Veronica; Bocco, Jose L.; Koritschoner, Nicolas P.

    2011-01-01

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC 50 ). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p 50 concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable marker for the efficiency of cell death upon cancer treatment.

  9. Cell-cycle-dependent repair of heavy-ion damage

    International Nuclear Information System (INIS)

    Blakely, E.A.; Chang, P.Y.; Lommel, L.; Tobias, C.A.

    1985-01-01

    Synchronized human T-1 cells have been used to investigate the G1-phase age dependence of repair of potentially lethal damage (PLDR). The cells were irradiated with single doses of either 225 kVp X rays or Bragg-peak 425 MeV/μ neon ions at ages between 1.5 and 6.0 hrs after mitotic selection, and then either trypsinized and plated immediately, or held at 37 0 C for 6 hrs in PBS, or PBS containing 60μM of the DNA-polymerase-inhibitor 1-β-D-arabinofurano-syladenine (β-araA) before trypsinization and plating. Delayed plating showed significant PLDR at all ages irradiated with X rays, with the increase of survival varying between 2- to 8-fold. At equivalent survival levels, there was a reduced capacity for PLDT at each cell age irradiated with neon ions. In early G1 after neon-ion exposures, delayed plating actually enhanced cell killing; whereas, in late G1 the survival increased about 2-fold. β-araA almost completely eliminated the PLDR after X rays, reducing the survival to that measured with immediate plating. β-araA slightly enhanced neon-ion cell killing at all cell ages

  10. Protein synthesis and sublethal damage repair in synchronized CHO cells

    International Nuclear Information System (INIS)

    Yezzi, M.J.; Tobias, C.A.; Blakely, E.A.

    1984-01-01

    The authors have previously reported that the split dose survival response to x-rays of asynchronous CHO-TSH1 cells is reduced if the cells are held at 40 0 C,a temperature that inhibits protein synthesis, for 2 hours before the first dose and during a 2-hour interval between doses. In conjunction with the survival experiments on asynchronous cells, the authors also examined the DNA rejoining ability in split dose studies with and without inhibition of protein synthesis. The results of these experiments suggest that inhibition of protein synthesis affects a pool of proteins that are necessary for the correct expression of the DNA, although they do not appear to be involved in rejoining DNA breaks. They have extended this work to the study of cells synchronized in G1 phase (2 hour post-mitosis) and S phase (10 hour post-mitosis). Autoradiographic analyses, using 3H-TdR pulse labeling, demonstrated that a delay in the progression of each synchronized cell population occurs after inhibition of protein synthesis. Data are reported on the effects of inhibition of protein synthesis on the ability of G1 and S phase cells to repair sublethal damage

  11. In vitro and in vivo assay of radio-induced damage in Escherichia Coli, DNA labelled on thymidilic fragment

    International Nuclear Information System (INIS)

    Bonicel, A.

    1977-01-01

    A technique of rapid assay for a particular and very important damage, N-formamido (DNA), is described. Using this technique, the importance of radio-induced DNA damage can be evaluated before the repair enzymatic system takes place [fr

  12. Hyperthermia studies using inductive and ultrasound methods on E. coli bacteria and mouse glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cabral–Prieto, A., E-mail: agustin.cabral@inin.gob.mx; López-Callejas, R., E-mail: regulo.lopez@inin.gob.mx; Rodríguez-Méndez, B. G., E-mail: benjamin.rodriguez@inin.gob.mx; Santos-Cuevas, C. L., E-mail: clara.cuevas@inin.gob.mx [Carretera México-Toluca s/n, La Marquesa, Instituto Nacional de Investigaciones Nucleares (Mexico); Celis-Almazán, J., E-mail: jony-jac-5@hotmail.com; Olea-Mejía, O., E-mail: oleaoscar@yahoo.com.mx [Universidad Autónoma del Estado de México, Centro Conjunto de Investigación en Química Sustentable (Mexico); Gómez-Morales, J. L. [Universidad Autónoma del Estado de México, Campus El Cerrillo, Facultad de Ciencias (Mexico); Peña-Eguiluz, R., E-mail: rosendo.eguiluz@inin.gob.mx; Valencia-Alvarado, R., E-mail: raul.valencia@inin.gob.mx; Mercado-Cabrera, A., E-mail: antonio.mercado@inin.gob.mx; Muñoz-Castro, A. E., E-mail: arturo.munoz@inin.gob.mx [Carretera México-Toluca s/n, La Marquesa, Instituto Nacional de Investigaciones Nucleares (Mexico); García-Santibañez, F., E-mail: fegasa2@yahoo.com.mx [Universidad Autónoma del Estado de México, Campus El Cerrillo, Facultad de Ciencias (Mexico)

    2017-11-15

    The survival of Escherichia coli bacteria and mouse glioma cells were studied under different temperatures using direct heating in water, ultrasound, and magnetic fluid hyperthermia. The survival of these microorganisms depended on whether the heating mode was continuous or discontinuous, surviving more in the former than in the discontinuous heating mode. Whereas Escherichia coli bacteria did not survive at temperatures ≥50{sup ∘}C, the mouse glioma cells did not survive at temperatures ≥48{sup ∘}C. The survival of both these microorganisms was independent of the presence or absence of the magnetic nanoparticles of magnetite, suggesting that these, having mean particle sizes of 9.5, 8.5 and 5, did not show any apparent cytotoxicity effect. Present results also showed that the inductive heating system which used a radiofrequency of 13.56 MHz, providing a maximum magnetic field strength of 160 A/m, the electric rather than magnetic heating predominated.

  13. Hyperthermia studies using inductive and ultrasound methods on E. coli bacteria and mouse glioma cells

    International Nuclear Information System (INIS)

    Cabral–Prieto, A.; López-Callejas, R.; Rodríguez-Méndez, B. G.; Santos-Cuevas, C. L.; Celis-Almazán, J.; Olea-Mejía, O.; Gómez-Morales, J. L.; Peña-Eguiluz, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Muñoz-Castro, A. E.; García-Santibañez, F.

    2017-01-01

    The survival of Escherichia coli bacteria and mouse glioma cells were studied under different temperatures using direct heating in water, ultrasound, and magnetic fluid hyperthermia. The survival of these microorganisms depended on whether the heating mode was continuous or discontinuous, surviving more in the former than in the discontinuous heating mode. Whereas Escherichia coli bacteria did not survive at temperatures ≥50"∘C, the mouse glioma cells did not survive at temperatures ≥48"∘C. The survival of both these microorganisms was independent of the presence or absence of the magnetic nanoparticles of magnetite, suggesting that these, having mean particle sizes of 9.5, 8.5 and 5, did not show any apparent cytotoxicity effect. Present results also showed that the inductive heating system which used a radiofrequency of 13.56 MHz, providing a maximum magnetic field strength of 160 A/m, the electric rather than magnetic heating predominated.

  14. λ-prophage induction in E.coli cells by radiation with different LET

    International Nuclear Information System (INIS)

    Bonev, M.N.; Collev, S.D.

    1997-01-01

    λ-prophage induction in E.coli H fr H (λ) strain after irradiation with α-particles, accelerated helium ions, boron and carbon ions, as well as deuterons is investigated. The dose dependence of the fraction of induced cells is measured and its initial slope (λ-induction potency - λ i p) is determined. It is shown that the dependence of λ i p on LET is a curve with a maximum

  15. Prodigiosin - A Multifaceted Escherichia coli Antimicrobial Agent.

    Directory of Open Access Journals (Sweden)

    Tjaša Danevčič

    Full Text Available Despite a considerable interest in prodigiosin, the mechanism of its antibacterial activity is still poorly understood. In this work, Escherichia coli cells were treated with prodigiosin to determine its antimicrobial effect on bacterial physiology. The effect of prodigiosin was concentration dependent. In prodigiosin treated cells above MIC value no significant DNA damage or cytoplasmic membrane disintegration was observed. The outer membrane, however, becomes leaky. Cells had severely decreased respiration activity. In prodigiosin treated cells protein and RNA synthesis were inhibited, cells were elongated but could not divide. Pre-treatment with prodigiosin improved E. coli survival rate in media containing ampicillin, kanamycin and erythromycin but not phleomycin. The results suggest that prodigiosin acts as a bacteriostatic agent in E. coli cells. If prodigiosin was diluted, cells resumed growth. The results indicate that prodigiosin has distinct mode of antibacterial action in different bacteria.

  16. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gehrau, Ricardo C.; D' Astolfo, Diego S.; Andreoli, Veronica [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Bocco, Jose L., E-mail: jbocco@fcq.unc.edu.ar [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Koritschoner, Nicolas P. [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-02-10

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC{sub 50}). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p < 0.0001) in KLF6 mRNA levels were observed depending on the cellular p53 status upon cell damage. KLF6 expression was significantly increased in 63% of p53-deficient cells (122/195). Conversely, KLF6 mRNA level decreased nearly 4 fold in more than 70% of p53+/+ cells. In addition, klf6 gene promoter activity was down-regulated by DNA damaging agents in cells expressing the functional p53 protein whereas it was moderately increased in the absence of functional p53. Consistent results were obtained for the endogenous KLF6 protein level. Results indicate that human klf6 gene expression is responsive to external cell damage mediated by IC{sub 50} concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable

  17. Characterization of substances that restore impaired cell division of UV-irradiated E. coli B

    International Nuclear Information System (INIS)

    Yoshiyama, Y.; Shimoii, H.; Tamura, G.

    1981-01-01

    Substances which restore impaired cell division in UV-irradiated E. coli B were surveyed among various bacteria. The active substance was found only in several genera of Gram-negative bacteria, i.e., Escherichia, Enterobacter, Salmonella and some species of Pseudomonas. The activity in the dialyzed cell extract of E. coli B/r was observed in the presence of β-NAD and was enhanced by Mg 2+ and Mn 2+ . The active substance was very labile, but the activity was protected by 1 mM dithiothreitol in the process of purification. The activity of a fraction recovered through DEAE-cellulose column chromatography was stimulated by the presence of membrane fraction. Upon treatment with lipid-degrading enzymes and proteases, the division-stimulating activity was lost or reduced. It appears that the inactivation by lipase and phospholipase A2 was due to the formation of lysophospholipids and that a proteinous substance participated in the recovery of impaired cell division of UV-irradiated E. coli B

  18. E. coli Nissle 1917 Affects Salmonella adhesion to porcine intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Peter Schierack

    Full Text Available BACKGROUND: The probiotic Escherichia coli strain Nissle 1917 (EcN has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. CONCLUSIONS: We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion.

  19. Inhibitory effect of membrane-specific drugs on liquid-holding recovery in U.V.-irradiated E. coli cells

    International Nuclear Information System (INIS)

    Yonei, S.

    1980-01-01

    Liquid-holding recovery (LHR), as been shown to be dependent on the polA + -dependent DNA repair pathways. The experiment described attempted to examine whether the membrane-specific drugs, procaine and chlorpromazine, can inhibit the LHR in U.V.-irradiated cells of E. coli B. Results show that cell membranes may influence DNA repair and ultimate survival of E. coli. (author)

  20. Low-level red laser therapy alters effects of ultraviolet C radiation on Escherichia coli cells

    International Nuclear Information System (INIS)

    Canuto, K.S.; Guimaraes, O.R.; Geller, M.; Sergio, L.P.S.; Paoli, F.; Fonseca, A.S.

    2015-01-01

    Low-level lasers are used at low power densities and doses according to clinical protocols supplied with laser devices or based on professional practice. Although use of these lasers is increasing in many countries, the molecular mechanisms involved in effects of low-level lasers, mainly on DNA, are controversial. In this study, we evaluated the effects of low-level red lasers on survival, filamentation, and morphology of Escherichia coli cells that were exposed to ultraviolet C (UVC) radiation. Exponential and stationary wild-type and uvrA-deficient E. coli cells were exposed to a low-level red laser and in sequence to UVC radiation. Bacterial survival was evaluated to determine the laser protection factor (ratio between the number of viable cells after exposure to the red laser and UVC and the number of viable cells after exposure to UVC). Bacterial filaments were counted to obtain the percentage of filamentation. Area-perimeter ratios were calculated for evaluation of cellular morphology. Experiments were carried out in duplicate and the results are reported as the means of three independent assays. Pre-exposure to a red laser protected wild-type and uvrA-deficient E. coli cells against the lethal effect of UVC radiation, and increased the percentage of filamentation and the area-perimeter ratio, depending on UVC fluence and physiological conditions in the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a sub-lethal level. Consequences to cells and tissues should be considered when clinical protocols based on this laser are carried out. (author)

  1. Low-level red laser therapy alters effects of ultraviolet C radiation on Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Canuto, K.S.; Guimaraes, O.R.; Geller, M. [Centro Universitario Serra dos Orgaos, Teresopolis, RJ (Brazil). Centro de Ciencias da Saude; Sergio, L.P.S. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Low-level lasers are used at low power densities and doses according to clinical protocols supplied with laser devices or based on professional practice. Although use of these lasers is increasing in many countries, the molecular mechanisms involved in effects of low-level lasers, mainly on DNA, are controversial. In this study, we evaluated the effects of low-level red lasers on survival, filamentation, and morphology of Escherichia coli cells that were exposed to ultraviolet C (UVC) radiation. Exponential and stationary wild-type and uvrA-deficient E. coli cells were exposed to a low-level red laser and in sequence to UVC radiation. Bacterial survival was evaluated to determine the laser protection factor (ratio between the number of viable cells after exposure to the red laser and UVC and the number of viable cells after exposure to UVC). Bacterial filaments were counted to obtain the percentage of filamentation. Area-perimeter ratios were calculated for evaluation of cellular morphology. Experiments were carried out in duplicate and the results are reported as the means of three independent assays. Pre-exposure to a red laser protected wild-type and uvrA-deficient E. coli cells against the lethal effect of UVC radiation, and increased the percentage of filamentation and the area-perimeter ratio, depending on UVC fluence and physiological conditions in the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a sub-lethal level. Consequences to cells and tissues should be considered when clinical protocols based on this laser are carried out. (author)

  2. A cell-penetrating peptide analogue, P7, exerts antimicrobial activity against Escherichia coli ATCC25922 via penetrating cell membrane and targeting intracellular DNA.

    Science.gov (United States)

    Li, Lirong; Shi, Yonghui; Cheng, Xiangrong; Xia, Shufang; Cheserek, Maureen Jepkorir; Le, Guowei

    2015-01-01

    The antibacterial activities and mechanism of a new P7 were investigated in this study. P7 showed antimicrobial activities against five harmful microorganisms which contaminate and spoil food (MIC=4-32 μM). Flow cytometry and scanning electron microscopy analyses demonstrated that P7 induced pore-formation on the cell surface and led to morphological changes but did not lyse cell. Confocal fluorescence microscopic observations and flow cytometry analysis expressed that P7 could penetrate the Escherichia coli cell membrane and accumulate in the cytoplasm. Moreover, P7 possessed a strong DNA binding affinity. Further cell cycle analysis and change in gene expression analysis suggested that P7 induced a decreased expression in the genes involved in DNA replication. Up-regulated expression genes encoding DNA damage repair. This study suggests that P7 could be applied as a candidate for the development of new food preservatives as it exerts its antibacterial activities by penetrating cell membranes and targets intracellular DNA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Damage-recognition proteins as a potential indicator of DNA-damage-mediated sensitivity or resistance of human cells to ultraviolet radiation

    International Nuclear Information System (INIS)

    Chao, C.C.-K.

    1992-01-01

    The authors compared damage-recognition proteins in cells expressing different sensitivities to DNA damage. An increase in damage-recognition proteins and an enhancement of plasmid re-activation were detected in HeLa cells resistant to cisplatin and u.v. However, repair-defective cells derived from xeroderma-pigmentosum (a rare skin disease) patients did not express less cisplatin damage-recognition proteins than repair-competent cells, suggesting that damage-recognition-protein expression may not be related to DNA repair. By contrast, cells resistant to DNA damage consistently expressed high levels of u.v.-modified-DNA damage-recognition proteins. The results support the notion that u.v. damage-recognition proteins are different from those that bind to cisplatin. Findings also suggest that the damage-recognition proteins identified could be used as potential indicators of the sensitivity or resistance of cells to u.v. (author)

  4. Preharvest internalization of Escherichia coli O157:H7 into lettuce leaves, as affected by insect and physical damage.

    Science.gov (United States)

    Erickson, Marilyn C; Liao, Jean; Payton, Alison S; Riley, David G; Webb, Cathy C; Davey, Lindsey E; Kimbrel, Sophia; Ma, Li; Zhang, Guodong; Flitcroft, Ian; Doyle, Michael P; Beuchat, Larry R

    2010-10-01

    Environmental pests may serve as reservoirs and vectors of zoonotic pathogens to leafy greens; however, it is unknown whether insect pests feeding on plant tissues could redistribute these pathogens present on the surface of leaves to internal sites. This study sought to differentiate the degree of tissue internalization of Escherichia coli O157:H7 when applied at different populations on the surface of lettuce and spinach leaves, and to ascertain whether lettuce-infesting insects or physical injury could influence the fate of either surface or internalized populations of this enteric pathogen. No internalization of E. coli O157:H7 occurred when lettuce leaves were inoculated with 4.4 log CFU per leaf, but it did occur when inoculated with 6.4 log CFU per leaf. Internalization was statistically greater when spinach leaves were inoculated on the abaxial (underside) than when inoculated on the adaxial (topside) side, and when the enteric pathogen was spread after surface inoculation. Brief exposure (∼18 h) of lettuce leaves to insects (5 cabbage loopers, 10 thrips, or 10 aphids) prior to inoculation with E. coli O157:H7 resulted in significantly reduced internalized populations of the pathogen within these leaves after approximately 2 weeks, as compared with leaves not exposed to insects. Surface-contaminated leaves physically injured through file abrasions also had significantly reduced populations of both total and internalized E. coli O157:H7 as compared with nonabraded leaves 2 weeks after pathogen exposure.

  5. Paraquat initially damages cochlear support cells leading to anoikis-like hair cell death.

    Science.gov (United States)

    Zhang, Jianhui; Sun, Hong; Salvi, Richard; Ding, Dalian

    2018-07-01

    Paraquat (PQ), one of the most widely used herbicides, is extremely dangerous because it generates the highly toxic superoxide radical. When paraquat was applied to cochlear organotypic cultures, it not only damaged the outer hair cells (OHCs) and inner hair cells (IHCs), but also caused dislocation of the hair cell rows. We hypothesized that the dislocation arose from damage to the support cells (SCs) that anchors hair cells within the epithelium. To test this hypothesis, rat postnatal cochlear cultures were treated with PQ. Shortly after PQ treatment, the rows of OHCs separated from one another and migrated radially away from IHCs suggesting loss of cell-cell adhesion that hold the hair cells in proper alignment. Hair cells dislocation was associated with extensive loss of SCs in the organ of Corti, loss of tympanic border cells (TBCs) beneath the basilar membrane, the early appearance of superoxide staining and caspase-8 labeling in SCs below the OHCs and disintegration of E-cadherin and β-catenin in the organ of Corti. Damage to the TBCs and SCs occurred prior to loss of OHC or IHC loss suggesting a form of detachment-induced apoptosis referred to as anoikis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells

    International Nuclear Information System (INIS)

    Yan, Zhengyu; Qian, Jing; Su, Yilong; Ai, Xiaoxia; Wu, Shengmei; Gu, Yueqing

    2014-01-01

    A green and efficient biosynthesis method to prepare fluorescence-tunable biocompatible cadmium selenide quantum dots using Escherichia coli cells as biological matrix was proposed. Decisive factors in biosynthesis of cadmium selenide quantum dots in a designed route in Escherichia coli cells were elaborately investigated, including the influence of the biological matrix growth stage, the working concentration of inorganic reactants, and the co-incubation duration of inorganic metals to biomatrix. Ultraviolet-visible, photoluminescence, and inverted fluorescence microscope analysis confirmed the unique optical properties of the biosynthesized cadmium selenide quantum dots. The size distribution of the nanocrystals extracted from cells and the location of nanocrystals foci in vivo were also detected seriously by transmission electron microscopy. A surface protein capping layer outside the nanocrystals was confirmed by Fourier transform infrared spectroscopy measurements, which were supposed to contribute to reducing cytotoxicity and maintain a high viability of cells when incubating with quantum dots at concentrations as high as 2 μM. Cell morphology observation indicated an effective labeling of living cells by the biosynthesized quantum dots after a 48 h co-incubation. The present work demonstrated an economical and environmentally friendly approach to fabricating highly fluorescent quantum dots which were expected to be an excellent fluorescent dye for broad bio-imaging and labeling. (papers)

  7. Photodynamic damage of glial cells in crayfish ventral nerve cord

    Science.gov (United States)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  8. Mechanisms of pressure-mediated cell death and injury in Escherichia coli: from fundamentals to food applications.

    Directory of Open Access Journals (Sweden)

    Michael eGänzle

    2015-06-01

    Full Text Available High hydrostatic pressure is commercially applied to extend the shelf life of foods, and to improve food safety. Current applications operate at ambient temperature and 600 MPa or less. However, bacteria that may resist this pressure level include the pathogens Staphylococcus aureus and strains of Escherichia coli, including shiga-toxin producing E. coli. The resistance of E. coli to pressure is variable between strains and highly dependent on the food matrix. The targeted design of processes for the safe elimination of E. coli thus necessitates deeper insights into mechanisms of interaction and matrix-strain interactions. Cellular targets of high pressure treatment in E. coli include the barrier properties of the outer membrane, the integrity of the cytoplasmic membrane as well as the activity of membrane-bound enzymes, and the integrity of ribosomes. The pressure-induced denaturation of membrane bound enzymes results in generation of reactive oxygen species and subsequent cell death caused by oxidative stress. Remarkably, pressure resistance at the single cell level relates to the disposition of misfolded proteins in inclusion bodies. While the pressure resistance E. coli can be manipulated by over-expression or deletion of (stress proteins, the mechanisms of pressure resistance in wild type strains is multi-factorial and not fully understood. This review aims to provide an overview on mechanisms of pressure-mediated cell death in E. coli, and the use of this information for optimization of high pressure processing of foods.

  9. Mechanisms of pressure-mediated cell death and injury in Escherichia coli: from fundamentals to food applications.

    Science.gov (United States)

    Gänzle, Michael; Liu, Yang

    2015-01-01

    High hydrostatic pressure is commercially applied to extend the shelf life of foods, and to improve food safety. Current applications operate at ambient temperature and 600 MPa or less. However, bacteria that may resist this pressure level include the pathogens Staphylococcus aureus and strains of Escherichia coli, including shiga-toxin producing E. coli. The resistance of E. coli to pressure is variable between strains and highly dependent on the food matrix. The targeted design of processes for the safe elimination of E. coli thus necessitates deeper insights into mechanisms of interaction and matrix-strain interactions. Cellular targets of high pressure treatment in E. coli include the barrier properties of the outer membrane, the integrity of the cytoplasmic membrane as well as the activity of membrane-bound enzymes, and the integrity of ribosomes. The pressure-induced denaturation of membrane bound enzymes results in generation of reactive oxygen species and subsequent cell death caused by oxidative stress. Remarkably, pressure resistance at the single cell level relates to the disposition of misfolded proteins in inclusion bodies. While the pressure resistance E. coli can be manipulated by over-expression or deletion of (stress) proteins, the mechanisms of pressure resistance in wild type strains is multi-factorial and not fully understood. This review aims to provide an overview on mechanisms of pressure-mediated cell death in E. coli, and the use of this information for optimization of high pressure processing of foods.

  10. DNA synthesis and uv resistance in Escherichia coli K12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Slezarikova, V [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1976-01-01

    The influence was studied of preirradiation inhibition of proteosynthesis by amino acids starvation on survival and DNA synthesis in E. coli K 12 cells, which differ by their genetic features with regard to a certain type of repair. The surviving fraction was studied by appropriate dilution of cell suspension and spreading on agar plates. DNA synthesis was investigated by the incorporation of thymine-2-/sup 14/C. In our conditions a correlation was found between cell survival and the resistance of DNA replication to UV radiation in cells proficient in excision and post-replication repair. This correlation was not found in the excision deficient strain. It is concluded that enhanced resistance of DNA replication is not a sufficient condition for enhanced cell resistance.

  11. In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing.

    Science.gov (United States)

    Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu

    2014-01-21

    Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery

  12. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    Science.gov (United States)

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  13. Endogenous DNA Damage and Risk of Testicular Germ Cell Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cook, M B; Sigurdson, A J; Jones, I M; Thomas, C B; Graubard, B I; Korde, L; Greene, M H; McGlynn, K A

    2008-01-18

    Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas and nonseminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable endogenous DNA damage. To assess our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort provided 112 TGCT cases (51 seminomas & 61 nonseminomas). A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modeled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with nonseminoma compared to seminoma (OR{sub 50th percentile} = 3.31, 95%CI: 1.00, 10.98; OR{sub 75th percentile} = 3.71, 95%CI: 1.04, 13.20; p for trend=0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR{sub 50th percentile} = 2.27, 95%CI: 0.75, 6.87; OR{sub 75th percentile} = 2.40, 95%CI: 0.75, 7.71; p for trend=0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage levels are higher in patients who develop nonseminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.

  14. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge.

    Science.gov (United States)

    Guo, Xuesong; Liu, Junxin; Xiao, Benyi

    2014-10-20

    Extracellular polymeric substances (EPS) are susceptible to contamination by intracellular substances released during the extraction of EPS owing to the damage caused to microbial cell structures. The damage to cell walls and cell membranes in nine EPS extraction processes of activated sludge was evaluated in this study. The extraction of EPS (including proteins, carbohydrates and DNA) was the highest using the NaOH extraction method and the lowest using formaldehyde extraction. All nine EPS extraction methods in this study resulted in cell wall and membrane damage. The damage to cell walls, evaluated by 2-keto-3-deoxyoctonate (KDO) and N-acetylglucosamine content changes in extracted EPS, was the most significant in the NaOH extraction process. Formaldehyde extraction showed a similar extent of damage to cell walls to those detected in the control method (centrifugation), while those in the formaldehyde-NaOH and cation exchange resin extractions were slightly higher than those detected in the control. N-acetylglucosamine was more suitable than KDO for the evaluation of cell wall damage in the EPS extraction of activated sludge. The damage to cell membranes was characterized by two fluorochromes (propidium iodide and FITC Annexin V) with flow cytometry (FCM) measurement. The highest proportion of membrane-damaged cells was detected in NaOH extraction (26.54% of total cells) while membrane-damaged cells comprised 8.19% of total cells in the control. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  16. Adhesion and internalization differences of COM nanocrystals on Vero cells before and after cell damage

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Ouyang, Jian-Ming, E-mail: toyjm@jnu.edu.cn

    2016-02-01

    The adhesion and internalization between African green monkey kidney epithelial (Vero) cells (before and after oxidative damage by hydrogen peroxide) and calcium oxalate monohydrate (COM) nanocrystals (97 ± 35 nm) were investigated so as to discuss the molecular and cellular mechanism of kidney stone formation. Scanning electron microscope (SEM) was used to observe the Vero–COM nanocrystal adhesion; the nanocrystal-cell adhesion was evaluated by measuring the content of malonaldehyde (MDA), the activity of superoxide dismutase (SOD), the expression level of cell surface osteopontin (OPN) and the change of Zeta potential. Confocal microscopy and flow cytometry were used for the observation and quantitative analysis of crystal internalization. In the process of adhesion, the cell viability and the SOD activity declined, the MDA content, Zeta potential, and the OPN expression level increased. The adhesive capacity of injured Vero was obviously stronger than normal cells; in addition the injured cells promoted the aggregation of COM nanocrystals. The capacity of normal cells to internalize crystals was obviously stronger than that of injured cells. Cell injury increased adhesive sites on cell surface, thereby facilitating the aggregation of COM nanocrystals and their attachment, which results in enhanced risk of calcium oxalate stone formation. - Graphical abstract: The adhesion and internalization differences between Vero cells before and after oxidative damage and calcium oxalate monohydrate nanocrystals were comparatively studied. - Highlights: • Adhesion capacity of injured Vero cells was stronger than normal cells. • Internalization capacity of injured Vero cells was weaker than normal cells. • Injured cells promoted the aggregation of COM nanocrystals. • COM adhesion could aggravate cell injury in both normal and injured cells.

  17. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Christophersen, Daniel Vest

    2015-01-01

    -reactivity with other molecules in cells. This review provides an overview of efforts to reliably detect oxidatively damaged DNA and a critical assessment of the published studies on DNA damage levels. Animal studies with high baseline levels of oxidatively damaged DNA are more likely to show positive associations...... of oxidatively damaged DNA in lung tissue. Oral exposure to nanosized carbon black, TiO2 , carbon nanotubes and ZnO is associated with elevated levels of oxidatively damaged DNA in tissues. These observations are supported by cell culture studies showing concentration-dependent associations between ENM exposure...... and oxidatively damaged DNA measured by the comet assay. Cell culture studies show relatively high variation in the ability of ENMs to oxidatively damage DNA; hence, it is currently impossible to group ENMs according to their DNA damaging potential. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc....

  18. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    Science.gov (United States)

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  19. Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells.

    Science.gov (United States)

    Burke, Russell T; Marcus, Joshua M; Orth, James D

    2017-06-13

    Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers.

  20. Sensibilization of escherichia coli cells by cholesterol incorporated into their membrane

    International Nuclear Information System (INIS)

    Breslev, S.E.; Rozenberg, O.A.; Noskin, L.A.; Stepanova, I.M.; Beketova, A.G.; Loshakova, L.V.; Kovaleva, I.G.

    1984-01-01

    It has been established earlier that a level of cell radiosensitivity is defined by membrane viscosity changing in a wide temperature range. Therefore in epsilon coli cells of a natural type lethal doses of gamma rays are increased approximately a 3.5 times at 45 deg C, as compared to 4 deg C. Cholesterol changing a phase state of membrane lipids was used as a modifying factor. Liposomes were used with the goal of effective bacteria transfer to a membrane. It is established that liposomes without cholesterol do not affect their radioresistance and an increase of its content leads to resistance decrease. The effect is attained only at a sufficient long time of incubation of cells with liposomes (10-16 h). At 4 deg C lipids of E. coli membrane are in a solid-crystalline state independently on pholesterol presence, because of this, radiosensitivity does not change. Temperature increase up to 45 deg C transfer a part of lipids to a liquid-crystalline state, thus decreasing membrane viscosity. In this case cholesterol manifests itself. The authors explain viscosity increase with a violation in functioning of those enzyme systems, which activity is connected with membrane structural state, including enzymes of DNA repair. The authors assume that the radiosensibilization effect of cholesterol introduction into a bacterial membrane in high-temperature cell irradiation is explained by this phenomenon

  1. Effect of visible light on progressive dormancy of Escherichia coli cells during the survival process in natural fresh water

    International Nuclear Information System (INIS)

    Barcina, I.; Gonzalez, J.M.; Iriberri, J.; Egea, L.

    1989-01-01

    Some effects of visible light on the survival of Escherichia coli in waters of the Butron river were studied by comparing illuminated and nonilluminated systems. The following count methods were used: CFU on a selective medium (eosin-methylene blue agar), CFU on a medium of recuperation (Trypticase soy agar with yeast extract and glucose), number of metabolically active cells by reduction of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, and total number of E. coli cells as determined by the acridine orange direct-count method. In the illuminated systems, decreases in CFU of E. coli and in the number of metabolically active cells were observed. However, no decline of the total number of E. coli cells was observed. By count methods, different stages of progressive dormancy of E. coli cells were determined to exist in illuminated systems. Culturable and recoverable cells were defined as viable cells, and metabolically active cells and morphologically intact cells were defined as somnicells. Indirect activity measurements were also done by using [14C]glucose. In illuminated systems, a decrease of glucose uptake by E. coli cells was observed throughout the experiments. The assimilated fraction of [14C]glucose decreased faster than the respired fraction in illuminated systems. The percentage of respired [14C]glucose (14CO2 production) with respect to the total glucose uptake increased throughout the experiments, and the percentage of assimilated glucose decreased. Therefore, the visible light was also responsible for an additional inhibition of biosynthetic processes

  2. Cell-to-cell transformation in Escherichia coli: a novel type of natural transformation involving cell-derived DNA and a putative promoting pheromone.

    Directory of Open Access Journals (Sweden)

    Rika Etchuuya

    Full Text Available Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain. In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as 'cell-to-cell transformation'. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10(-5-10(-6, suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria.

  3. Targeting Ongoing DNA Damage in Multiple Myeloma: Effects of DNA Damage Response Inhibitors on Plasma Cell Survival

    Directory of Open Access Journals (Sweden)

    Ana Belén Herrero

    2017-05-01

    Full Text Available Human myeloma cell lines (HMCLs and a subset of myeloma patients with poor prognosis exhibit high levels of replication stress (RS, leading to DNA damage. In this study, we confirmed the presence of DNA double-strand breaks (DSBs in several HMCLs by measuring γH2AX and RAD51 foci and analyzed the effect of various inhibitors of the DNA damage response on MM cell survival. Inhibition of ataxia telangiectasia and Rad3-related protein (ATR, the main kinase mediating the response to RS, using the specific inhibitor VE-821 induced more cell death in HMCLs than in control lymphoblastoid cells and U266, an HMCL with a low level of DNA damage. The absence of ATR was partially compensated by ataxia telangiectasia-mutated protein (ATM, since chemical inhibition of both kinases using VE-821 and KU-55933 significantly increased the death of MM cells with DNA damage. We found that ATM and ATR are involved in DSB repair by homologous recombination (HR in MM. Inhibition of both kinases resulted in a stronger inhibition that may underlie cell death induction, since abolition of HR using two different inhibitors severely reduced survival of HMCLs that exhibit DNA damage. On the other hand, inhibition of the other route involved in DSB repair, non-homologous end joining (NHEJ, using the DNA-PK inhibitor NU7441, did not affect MM cell viability. Interestingly, we found that NHEJ inhibition did not increase cell death when HR was simultaneously inhibited with the RAD51 inhibitor B02, but it clearly increased the level of cell death when HR was inhibited with the MRE11 inhibitor mirin, which interferes with recombination before DNA resection takes place. Taken together, our results demonstrate for the first time that MM cells with ongoing DNA damage rely on an intact HR pathway, which thereby suggests therapeutic opportunities. We also show that inhibition of HR after the initial step of end resection might be more appropriate for inducing MM cell death, since it

  4. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet

    Czech Academy of Sciences Publication Activity Database

    Doležalová, Eva; Lukeš, Petr

    2015-01-01

    Roč. 103, June (2015), s. 7-14 ISSN 1567-5394 R&D Projects: GA MŠk(CZ) LD14080 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 Keywords : Electrical discharge * Escherichia coli * LIVE/DEAD assay * Viability * culturability * Lipid peroxidation Subject RIV: EE - Microbiology, Virology Impact factor: 3.556, year: 2015 http://dx.doi.org/10.1016/j.bioelechem.2014.08.018

  5. Effect of antibiotics influencing membrane function on the potassium transport of E. coli cells

    International Nuclear Information System (INIS)

    Szoegyi, M.; Tarjan, I.; Tamas, Gy.

    1980-01-01

    The effect of polymixin, nigericin, gramicidin on the 42 K-efflux of E. coli cells was studied. The 42 K-efflux of the bacteria decreases in time according to an exponential function. The slopes of the linearized functions characterizing the efflux increase with increasing concentration of antibiotics. The frequency of events of the 42 K-release as a parameter of antibiotics membrane interaction was determined on the basis of a theoretical model developed for the evaluation of the authors' experimental data. In this way a quantitative comparison of the effectiveness of antibiotics was possible. The most effective antibiotic was polymixin, followed by nigericin and gramicidin. (author)

  6. Damage to plasmid DNA produced by 60Co-gamma radiation and subsequent repair processes in E. coli with and without SOS induction

    International Nuclear Information System (INIS)

    Bien, M.

    1986-01-01

    This study was carried out to provide information on the question as to whether radiation-induced separation of double-stranded DNA in E. coli is followed by repair processes leading to the formation of replicable material. For the detection of those double-strand breaks, E. coli was first transformed using enzymatically linearised dBR 322-DNA. This served as a reference standard to compare the transformations using radiated DNA. DNA was either exposed to increasing doses of 60 Co-gamma radiation or separated into one oc-fraction and one lin-fraction following exposure to 30 Gy. The DNA samples thus obtained were then used to transform three different strains of E. coli (wild strain, SFX, SFXrecA - ). In order to improve the repair yield, the cells were additionally SOS-induced using ultraviolet radiation. The mutation rates were a measure of the number of errors occurring during the various repair processes. Restriction analysis was carried out to characterise the resulting mutants in greater detail. (orig./MG) [de

  7. Characterization of MreB polymers in E. coli and their correlations to cell shape

    Science.gov (United States)

    Nguyen, Jeffrey; Ouzonov, Nikolay; Gitai, Zemer; Shaevitz, Joshua

    2015-03-01

    Shape influences all facets of how bacteria interact with their environment. The size of E. coli is determined by the peptidoglycan cell wall and internal turgor pressure. The cell wall is patterned by MreB, an actin homolog that forms short polymers on the cytoplasmic membrane. MreB coordinates the breaking of old material and the insertion of new material for growth, but it is currently unknown what mechanism sets the absolute diameter of the cell. Using new techniques in fluorescence microscopy and image processing, we are able to quantify cell shape in 3- dimensions and access previously unattainable data on the conformation of MreB polymers. To study how MreB affects the diameter of bacteria, we analyzed the shapes and polymers of cells that have had MreB perturbed by one of two methods. We first treated cells with the MreB polymerization-inhibiting drug A22. Secondly, we created point mutants in MreB that change MreB polymer conformation and the cell shape. By analyzing the correlations between different shape and polymer metrics, we find that under both treatments, the average helical pitch angle of the polymers correlates strongly with the cell diameter. This observation links the micron scale shape of the cell to the nanometer scale MreB cytoskeleton.

  8. Studies on radiosensitization of Escherichia coli cells by cis-platinum complexes

    International Nuclear Information System (INIS)

    Zimbrick, J.D.; Sukrochana, A.; Richmond, R.C.

    1979-01-01

    We recently reported that the antitumor drug cis-Pt(NH 3 ) 2 Cl 2 (cis-DDP) produces significant radiosensitization of anoxic E coli C cells. We have extended these studies to three other platinum drugs, all of which have been shown to be more effective antitumor drugs than cis-DDP. The drugs are: cis-dichloro bis(ethylene imine) Pt(II) (cis-DEP); cis-dichlorobicyclopentylamine Pt(II) (cis-PAD); and Pt-thymine blue (cis-PTB). Survival curve studies indicate that these drugs all produce greater anoxic radiosensitization of E coli C than cis-DDP at concentrations which are less toxic to the cells than similar concentrations of cis-DDP. If the cells are treated with any one of these drugs for two hours and then washed to remove the drug before irradiation, no detectable radiosensitization is found. We conclude that these drugs have the potential for being useful agents in combined modality therapy and that they warrant further study in mammalian systems

  9. Global chromosomal structural instability in a subpopulation of starving Escherichia coli cells.

    Directory of Open Access Journals (Sweden)

    Dongxu Lin

    2011-08-01

    Full Text Available Copy-number variations (CNVs constitute very common differences between individual humans and possibly all genomes and may therefore be important fuel for evolution, yet how they form remains elusive. In starving Escherichia coli, gene amplification is induced by stress, controlled by the general stress response. Amplification has been detected only encompassing genes that confer a growth advantage when amplified. We studied the structure of stress-induced gene amplification in starving cells in the Lac assay in Escherichia coli by array comparative genomic hybridization (aCGH, with polymerase chain reaction (pcr and DNA sequencing to establish the structures generated. About 10% of 300 amplified isolates carried other chromosomal structural change in addition to amplification. Most of these were inversions and duplications associated with the amplification event. This complexity supports a mechanism similar to that seen in human non-recurrent copy number variants. We interpret these complex events in terms of repeated template switching during DNA replication. Importantly, we found a significant occurrence (6 out of 300 of chromosomal structural changes that were apparently not involved in the amplification event. These secondary changes were absent from 240 samples derived from starved cells not carrying amplification, suggesting that amplification happens in a differentiated subpopulation of stressed cells licensed for global chromosomal structural change and genomic instability. These data imply that chromosomal structural changes occur in bursts or showers of instability that may have the potential to drive rapid evolution.

  10. Formation and repair of gamma-ray induced nucleic acid base damage in bacteria and mammalian cells. Final report, September 1, 1973--August 31, 1976

    International Nuclear Information System (INIS)

    Cerutti, P.A.

    1976-01-01

    Results are summarized from a three-year study of the formation and repair of γ-ray induced thymine damage in bacteria and mammalian cells. A systematic study was made of the formation of a specific type of ionizing radiation induced base damage under in vivo conditions. Assay for the determination of γ-ray products of the 5,6-dihydroxy-dihydrothymine type (alkaline-acid degradation assay) and a method for the determination of the formation of 5-methylene-uracil radicals (formation of ( 3 H)H 2 O from thymine-methyl ( 3 H)) are discussed. The radiation-chemical reactivity of thymine decreased according to the following pattern in different biological systems: phi X174-DNA greater than E. coli DNA = phi X174 phage much greater than HeLa chromatin greater than E. coli cells greater than human fibroblasts WI-38. In WI-38 the efficiency of formation of 5-methylene-uracil radicals was 1.6 x 10 -3 per Krad and 10 6 daltons DNA and of products of the 5,6-dihydroxy-dihydrothymine type 0.54 x 10 -3 per Krad per 10 6 daltons DNA (uncorrected). It was concluded that γ-rays produce DNA single strand breaks and (total) base damage with comparable efficiencies under in vivo conditions in cultured cells. A list is included of 18 published papers that report the findings in detail

  11. The comparative investigation of gene mutation induction in Bacillus subtilis and Escherichia coli cells after irradiation by different LET radiation

    International Nuclear Information System (INIS)

    Borejko, A.V.; Bulah, A.P.

    2005-01-01

    The data of mutagenetic action of ionizing radiation with different physical characteristics on bacterial cells with various genotypes are presented. It was shown that regularities of inducible mutagenesis in Bacillus subtilis and E. coli are consimilar. The dose-response dependence for both types of cells is described by the linear-quadratic function. The RBE on LET relationship has a local maximum at 20 keV/μm. The crucial role in inducible mutagenesis in E. coli and Bacillus subtilis cells is played by the error-prone SOS-repair

  12. Synergy between type 1 fimbriae expression and C3 opsonisation increases internalisation of E. coli by human tubular epithelial cells.

    Science.gov (United States)

    Li, Ke; Zhou, Wuding; Hong, Yuzhi; Sacks, Steven H; Sheerin, Neil S

    2009-03-31

    Bacterial infection of the urinary tract is a common clinical problem with E. coli being the most common urinary pathogen. Bacterial uptake into epithelial cells is increasingly recognised as an important feature of infection. Bacterial virulence factors, especially fimbrial adhesins, have been conclusively shown to promote host cell invasion. Our recent study reported that C3 opsonisation markedly increases the ability of E. coli strain J96 to internalise into human proximal tubular epithelial cells via CD46, a complement regulatory protein expressed on host cell membrane. In this study, we further assessed whether C3-dependent internalisation by human tubular epithelial cells is a general feature of uropathogenic E. coli and investigated features of the bacterial phenotype that may account for any heterogeneity. In 31 clinical isolates of E. coli tested, C3-dependent internalisation was evident in 10 isolates. Type 1 fimbriae mediated-binding is essential for C3-dependent internalisation as shown by phenotypic association, type 1 fimbrial blockade with soluble ligand (mannose) and by assessment of a type 1 fimbrial mutant. we propose that efficient internalisation of uropathogenic E. coli by the human urinary tract depends on co-operation between type 1 fimbriae-mediated adhesion and C3 receptor -ligand interaction.

  13. Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates

    DEFF Research Database (Denmark)

    Machado, Ana Manuel; Sommer, Morten

    2014-01-01

    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems...... to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co...... of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut....

  14. Influence of heavy ions on cell survival, cytogenetic damage and mitochondrial function of human endothelial cells

    Science.gov (United States)

    Ritter, Sylvia; Helm, Alexander; Lee, Ryonfa; Pollet, Dieter; Durante, Marco

    There is increasing evidence that there is an elevated risk of cardiovascular disease among atomic bomb survivors and radiotherapy patients, typically developing with a long latency. However, essentially no information is available on the potential cardiovascular risks associated with space radiation, in particular heavy ions. To address this issue, we have chosen human umbilical vein endothelial cells (HUVEC) as a model system. Cells at an early passage number were irradiated with 0.1 to 4 Gy of either 9.8 MeV/u C-ions (LET=170 keV/µm), 91 MeV/u C-ions (LET=29 keV/µm) or 250 kV X-rays. Cells were regularly subcultured up to 40 days (20 population doublings) post-irradiation. Immediately after exposure cell inactivation was deter-mined by the colony forming assay. Furthermore, at selected time-points cytogenetic damage (formation of micronuclei in binucleated cells) and the mitochondrial membrane potential ΨM (flow cytometric analysis following JC-1 staining) were assessed. Measurement of the directly induced radiation damage showed that 9.8 MeV/u and 91 MeV/u C-ions were more effective than X-rays (i.e. about 3 and 2 times, respectively) with respect to cell inactivation or the in-duction of cytogenetic damage. At the subsequent days in the irradiated cultures the number of cells with micronuclei declined to the control level (3-5Altogether our data indicate that under the applied radiation conditions the integrity of mitochondria which play a significant role in the regulation of cardiovascular cell function is not impaired. With respect to directly induced genetic damage C-ions are more effective than X-rays as observed in other cell systems. If the effectiveness of charged particles for the occurrence of late chromosomal damage in endothelial cells is higher than that of sparsely ionizing radiation needs further clarification. The data obtained up to now indicate that sophisticated cytogenetic techniques have to be applied in order to draw any firm

  15. Single-cell, real-time detection of oxidative stress induced in Escherichia coli by the antimicrobial peptide CM15.

    Science.gov (United States)

    Choi, Heejun; Yang, Zhilin; Weisshaar, James C

    2015-01-20

    Antibiotics target specific biochemical mechanisms in bacteria. In response to new drugs, pathogenic bacteria rapidly develop resistance. In contrast, antimicrobial peptides (AMPs) have retained broad spectrum antibacterial potency over millions of years. We present single-cell fluorescence assays that detect reactive oxygen species (ROS) in the Escherichia coli cytoplasm in real time. Within 30 s of permeabilization of the cytoplasmic membrane by the cationic AMP CM15 [combining residues 1-7 of cecropin A (from moth) with residues 2-9 of melittin (bee venom)], three fluorescence signals report oxidative stress in the cytoplasm, apparently involving O2 (-), H2O2, and •OH. Mechanistic studies indicate that active respiration is a prerequisite to the CM15-induced oxidative damage. In anaerobic conditions, signals from ROS are greatly diminished and the minimum inhibitory concentration increases 20-fold. Evidently the natural human AMP LL-37 also induces a burst of ROS. Oxidative stress may prove a significant bacteriostatic mechanism for a variety of cationic AMPs. If so, host organisms may use the local oxygen level to modulate AMP potency.

  16. Changes in antibiotic sensitivity and cell surface hydrophobicity in Escherichia coli injured by heating, freezing, drying or gamma radiation

    International Nuclear Information System (INIS)

    Mackey, B.M.

    1983-01-01

    Escherichia coli cells exposed to mild heating, freezing and thawing, drying or γ-radiation were sensitised to hydrophobic antibiotics and sodium deoxycholate but not to small hydrophilic antibiotics. These stress treatments also caused increases in cell surface hydrophobicity broadly reflecting the degree of sensitivity to hydrophobic antibiotics. (Auth.)

  17. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro

    NARCIS (Netherlands)

    Sipka, Anja; Pomeroy, Brianna; Klaessig, Suzanne; Schukken, Ynte

    2016-01-01

    Natural killer (NK) cells are early responders in bacterial infections but their role in bovine mastitis has not been characterized. For the first time, we show the presence of NK cells (NKp46+/CD3−) in bovine mammary gland tissue after an intramammary challenge with Escherichia (E.) coli. A small

  18. Mycolactone cytotoxicity in Schwann cells could explain nerve damage in Buruli ulcer.

    Directory of Open Access Journals (Sweden)

    Junichiro En

    2017-08-01

    Full Text Available Buruli ulcer is a chronic painless skin disease caused by Mycobacterium ulcerans. The local nerve damage induced by M. ulcerans invasion is similar to the nerve damage evoked by the injection of mycolactone in a Buruli ulcer mouse model. In order to elucidate the mechanism of this nerve damage, we tested and compared the cytotoxic effect of synthetic mycolactone A/B on cultured Schwann cells, fibroblasts and macrophages. Mycolactone induced much higher cell death and apoptosis in Schwann cell line SW10 than in fibroblast line L929. These results suggest that mycolactone is a key substance in the production of nerve damage of Buruli ulcer.

  19. Tannins extracted starting from residual bark of pinus caribaea morelet like protective of the adn before the damage induced by gamma rays a cellular cultivation of escherichia coli

    International Nuclear Information System (INIS)

    Vernhe, M.; Fuentes, J.L.; Prieto, E.F.; Cuetara, E.B.; Sanchez Lamar, A.; Santana, J.L.

    2005-01-01

    This work was aimed to evaluate genotoxicity and anti genotoxicity activity against rays of the a tannins fraction obtained from barks of Pinus caribaea Morelet, as well as to elucidate the anti genotoxic mechanisms implicated in radioprotection using deferent's approaches as pre- co- and post-irradiation cell treatments with plant extract. The tannins fraction was not genotoxic to E. coli cells in experiments using different exposure times. This extract was anti genotoxic against rays when the cells were pre- or co-treated with this extracts, but not during post-irradiation treatments, suggesting a possibly anti genotoxic action through free radicals scavenging mechanisms. The results are discussed in relation to the chemo preventive and therapeutic potential of the studied plant species

  20. Surface conditioning with Escherichia coli cell wall components can reduce biofilm formation by decreasing initial adhesion

    Directory of Open Access Journals (Sweden)

    Luciana C. Gomes

    2017-07-01

    Full Text Available Bacterial adhesion and biofilm formation on food processing surfaces pose major risks to human health. Non-efficient cleaning of equipment surfaces and piping can act as a conditioning layer that affects the development of a new biofilm post-disinfection. We have previously shown that surface conditioning with cell extracts could reduce biofilm formation. In the present work, we hypothesized that E. coli cell wall components could be implicated in this phenomena and therefore mannose, myristic acid and palmitic acid were tested as conditioning agents. To evaluate the effect of surface conditioning and flow topology on biofilm formation, assays were performed in agitated 96-well microtiter plates and in a parallel plate flow chamber (PPFC, both operated at the same average wall shear stress (0.07 Pa as determined by computational fluid dynamics (CFD. It was observed that when the 96-well microtiter plate and the PPFC were used to form biofilms at the same shear stress, similar results were obtained. This shows that the referred hydrodynamic feature may be a good scale-up parameter from high-throughput platforms to larger scale flow cell systems as the PPFC used in this study. Mannose did not have any effect on E. coli biofilm formation, but myristic and palmitic acid inhibited biofilm development by decreasing cell adhesion (in about 50%. These results support the idea that in food processing equipment where biofilm formation is not critical below a certain threshold, bacterial lysis and adsorption of cell components to the surface may reduce biofilm buildup and extend the operational time.

  1. Biocatalytic Production of Trehalose from Maltose by Using Whole Cells of Permeabilized Recombinant Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Zhaojuan Zheng

    Full Text Available Trehalose is a non-reducing disaccharide, which can protect proteins, lipid membranes, and cells from desiccation, refrigeration, dehydration, and other harsh environments. Trehalose can be produced by different pathways and trehalose synthase pathway is a convenient, practical, and low-cost pathway for the industrial production of trehalose. In this study, 3 candidate treS genes were screened from genomic databases of Pseudomonas and expressed in Escherichia coli. One of them from P. stutzeri A1501 exhibited the best transformation ability from maltose into trehalose and the least byproduct. Thus, whole cells of this recombinant E. coli were used as biocatalyst for trehalose production. In order to improve the conversion rate of maltose to trehalose, optimization of the permeabilization and biotransformation were carried out. Under optimal conditions, 92.2 g/l trehalose was produced with a high productivity of 23.1 g/(l h. No increase of glucose was detected during the whole course. The biocatalytic process developed in this study might serve as a candidate for the large scale production of trehalose.

  2. Ascorbate enhances u.v.-mutagenesis in E. coli but inhibits it in Chinese hamster cells

    International Nuclear Information System (INIS)

    Rossman, T.G.; Klein, C.B.; Naslund, M.

    1986-01-01

    Ascorbic acid (vitamin C) causes an increase in the mutation frequency of u.v.-irradiated Escherichia coli WP2. The enhancement occurs at all u.v. fluences, and is dependent upon the ascorbate concentration in the medium. A maximum effect (approx. 8- to 13-fold) is seen at 100-150 μg/ml, although some enhancement can be seen even at 10 μg/ml. The comutagenic effect of ascorbate with u.v. in E. coli is dependent upon peptone, a constituent of nutrient broth. The enhancement of u.v.-mutagenesis by ascorbate is absent in strains WP2sub(s) (uvrA) amd WP6 (polA), suggesting that ascorbate affects the repair of pyrimidine dimers. The opposite results are observed for u.v.-mutagenesis in Chinese hamster V79 cells. The presence of ascorbate (50 μg/ml) during u.v. irradiation does not enhance the u.v. effect, but rather decreases it approx. 30%. These results are discussed with regard to differences in the mechanism of u.v.-mutagenesis and DNA repair in bacterial and mammalian cells. (author)

  3. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.

    Science.gov (United States)

    Zhang, Wen; Stack, Andrew G; Chen, Yongsheng

    2011-02-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.

    Science.gov (United States)

    Chao, Hui Xiao; Poovey, Cere E; Privette, Ashley A; Grant, Gavin D; Chao, Hui Yan; Cook, Jeanette G; Purvis, Jeremy E

    2017-11-22

    Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells.

    Science.gov (United States)

    Roubos-van den Hil, P J; Nout, M J R; Beumer, R R; van der Meulen, J; Zwietering, M H

    2009-03-01

    This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and to clarify the mechanism of action. Tempe was prepared at controlled laboratory scale using Rhizopus microsporus var. microsporus as the inoculum. Extracts of raw, soaked and cooked soya beans reduced ETEC adhesion to brush border cells by 40%. Tempe extracts reduced adhesion by 80% or more. ETEC adhesion to Caco-2 cells reduced by 50% in the presence of tempe extracts. ETEC K88 bacteria were found to interact with soya bean extracts, and this may contribute to the observed decrease of ETEC adhesion to intestinal epithelial cells. Fermented soya beans (tempe) reduce the adhesion of ETEC to intestinal epithelial cells of pig and human origin. This reduced adhesion is caused by an interaction between ETEC K88 bacteria and soya bean compounds. The results strengthen previous observations on the anti-diarrhoeal effect of tempe. This effect indicates that soya-derived compounds may reduce adhesion of ETEC to intestinal cells in pigs as well as in humans and prevent against diarrhoeal diseases.

  6. Rifampicin sensitivity of residual RNA synthesis in Escherichia coli cells exposed to ultraviolet radiation and combined ultraviolet and γ radiations

    International Nuclear Information System (INIS)

    Prakash, R.K.; Netrawali, M.S.; Pradhan, D.S.

    1976-01-01

    UV-irradiation prevents rifampicin inhibition of the initiation of RNA synthesis by E.coli cells, but such rifampicin insensitivity is not exhibited by the residual RNA synthesis in γ-irradiated cells. Studies of the rate of [ 3 H]-uridine incorporation by E.coli cells at various times of incubation have been used to show that when γ-irradiation was given either before or after UV-irradiation of cells, the observed rifampicin insensitivity of residual RNA synthesis in the UV-irradiated cells was obliterated. RNA synthesis in cells subjected to combined exposures of UV- and γ-radiations was lowered to a lesser extent than that in the cells exposed to UV-irradiation alone. Possible mechanisms are discussed. (U.K.)

  7. Rifampicin sensitivity of residual RNA synthesis in Escherichia coli cells exposed to ultraviolet radiation and combined ultraviolet and. gamma. radiations

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, R K; Netrawali, M S; Pradhan, D S [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1976-09-01

    UV-irradiation prevents rifampicin inhibition of the initiation of RNA synthesis by E.coli cells, but such rifampicin insensitivity is not exhibited by the residual RNA synthesis in ..gamma..-irradiated cells. Studies of the rate of (/sup 3/H)-uridine incorporation by E.coli cells at various times of incubation have been used to show that when ..gamma.. irradiation was given either before or after uv-irradiation of cells, the observed rifampicin insensitivity of residual RNA synthesis in the uv-irradiated cells was obliterated. RNA synthesis in cells subjected to combined exposures of uv- and ..gamma..-radiations was lowered to a lesser extent than that in the cells exposed to uv-irradiation alone. Possible mechanisms are discussed.

  8. Recombinant Escherichia coli Trx-JZTX-III represses the proliferation of mouse hepatocellular carcinoma cells through induction of cell cycle arrest.

    Science.gov (United States)

    Sun, Mei-Na; Zhao, Xue-Jiao; Zhao, Han-Dong; Zhang, Wei-Guang; Li, Feng-Lan; Chen, Ming-Zi; Li, Hui; Li, Guangchao

    2013-06-01

    The aim of the present study was to investigate the effects of recombinant Escherichia coli (E. coli) Trx-jingzhaotoxin (JZTX)-III on cell growth in the mouse hepatocellular carcinoma (HCC) cell line Hepa1-6. The JZTX-III gene sequence was synthesized and cloned into the pET-32a(+) vector to construct the recombinant fusion protein Trx-JZTX-III, which was subsequently purified. Hepa1-6 cells were treated with 0 to 1,000-µg/ml concentrations of Trx-JZTX-III; this was demonstrated to affect cell viability, as determined by the 3-(4,5-dimethylthiazol‑2-yl)-2,5-diphenyltetra-zolium bromide (MTT) assay. The expression of the proliferating cell nuclear antigen (PCNA) protein was investigated using western blot analysis. A colony formation assay was used to determine Hepa1-6 cell proliferation, and the migration ability of cells was determined using a wound‑healing assay. Additionally, flow cytometry was employed to observe changes in the cell cycle. The MTT assay and quantification of PCNA expression indicated that recombinant E. coli Trx-JZTX-III significantly repressed the proliferation of Hepa1-6 cells. Colony formation and the migration of malignant cells was inhibited following treatment with recombinant E. coli Trx-JZTX-III. Flow cytometry showed that recombinant E. coli Trx-JZTX-III induced G0/G1 cell cycle arrest. In conclusion, recombinant E. coli Trx-JZTX-III functions as a tumor suppressor drug in mouse HCC and its underlying mechanism may involve the induction of G0/G1 cell cycle arrest.

  9. Physiological responses of Escherichia coli to far-ultraviolet radiation

    International Nuclear Information System (INIS)

    Swenson, P.A.

    1976-01-01

    The following topics are reviewed: photochemical damage to DNA; measurement of cell survival; DNA repair processes and genetics of radiation sensitivity; degradation of DNA and RNA; biochemical and physiological consequences; reactivation of bacteriophage in Escherichia coli cells; filament formation; influence of growth phase on survival after uv irradiation; and post-uv-irradiation treatment

  10. Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

    Science.gov (United States)

    Vlasblom, James; Gagarinova, Alla; Phanse, Sadhna; Graham, Chris; Yousif, Fouad; Ding, Huiming; Xiong, Xuejian; Nazarians-Armavil, Anaies; Alamgir, Md; Ali, Mehrab; Pogoutse, Oxana; Pe'er, Asaf; Arnold, Roland; Michaut, Magali; Parkinson, John; Golshani, Ashkan; Whitfield, Chris; Wodak, Shoshana J.; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack F.; Emili, Andrew

    2011-01-01

    As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target. PMID:22125496

  11. Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2011-11-01

    Full Text Available As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium and prototrophic (minimal medium culture conditions. The differential patterns of genetic interactions detected among > 235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens and an important target.

  12. The role of genotype in protection against gamma-radiation of E. coli cells by glycerol

    International Nuclear Information System (INIS)

    Amirtaev, K.G.; Krasavin, E.A.; Kozubek, S.; Tokarova, B.; Nyamsambuu, A.

    1984-01-01

    The protective effect of glycerol and anoxia on the survival of γ-irradiated E.coli cells of wild type, recA - , polA - mutants has been investigated. The protection by glycerol increases from recA - mutant to wild type and polA - mutant with dose modifying factors (DMF) being 2.03+-0.12, 2.52+-0.25, and 2.80+-0.26. Analogically the protection by hypoxia is genetically determined, too. The value of oxygen effect increases from 1.77+-0.23 for recA - mutant to 3.38+-0.29 for wild type cells and 4.66+-0.41 for polA - -mutant. The oxygen independent component of glycerol protection is geltically independent (DMF=2). Possible mechanisms of genetic determination of the protection by glycerol and anoxia are discussed

  13. The 4.5 S RNA gene of Escherichia coli is essential for cell growth

    DEFF Research Database (Denmark)

    Brown, S; Fournier, M J

    1984-01-01

    The Escherichia coli gene coding for the metabolically stable 4.5 S RNA (ffs) has been shown to be required for cell viability. Essentiality was demonstrated by examining the recombination behavior of substitution mutations of ffs generated in vitro. Substitution mutants of ffs are able to replace...... the chromosomal allele only in the presence of a second, intact copy of ffs. Independent evidence of essentiality and the finding that 4.5 S RNA is important for protein synthetic activity came from characterization of cells dependent on the lac operon inducer isopropyl-beta-D-thiogalactoside for ffs gene...... expression. Here, a strain dependent on isopropyl-beta-D-thiogalactoside for 4.5 S RNA synthesis was developed by inactivation of the chromosomal ffs allele and lysogenization by a lambda phage containing 4.5 S DNA fused to a hybrid trp-lac promoter. Withdrawal of the thiogalactoside leads to a deficiency...

  14. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    Science.gov (United States)

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  15. Thermal degradation products of saccharides: effect study over Escherichia coli K12S cells

    International Nuclear Information System (INIS)

    Oliveira, R.L.B.C. de.

    1980-01-01

    The heat sterilization of reducing sugars, in the presence of phosphates, in alkaline pH, promotes caramelization reactions, yielding a serie of degradation products. Among them, aldehyde-like compounds seem to be responsible for the decrease in viability of DNA repair-proficient E.coli cells. A positive interaction between toxic solutions and UV-radiation effects is observed in these cells. The sinergism UV-toxic solutions varies in function of post-irradiation time and is dependent on UV dose, indicating the interference of repair processes in toxicity. The effect of non-reducing sugars on cellular viability is negligible, suggesting that toxic substances generation is linked to the presence of at least a free carbonyl group in sugar structure. All tested reducing sugars, when experimental conditions remained constant, have similarly shaped inactivation kinetics and their effects are equally inhibited by catalase activity, during incubation. (author)

  16. Damages to DNA that result in neoplastic transformation

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1975-01-01

    Some topics discussed are: correlation between carcinogens and mutagens; defective DNA repair in uv-damaged xeroderma pigmentosum cells; analysis of nucleotide damage to DNA following exposure to chemicals or radiations; photoreactivation in uv-irradiated Escherichia coli; tumor development in fish; excision repair as an aid in identifying damage; detection of excision repair; role of endonucleases in repair of uv damage; and alkylation products and tumors

  17. Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on enterohemorrhagic Escherichia coli infection using mouse and intestinal cell models.

    Science.gov (United States)

    Chen, Y P; Lee, T Y; Hong, W S; Hsieh, H H; Chen, M J

    2013-01-01

    A potential probiotic strain, Lactobacillus kefiranofaciens M1, was previously isolated from kefir grains, which are used to manufacture the traditional fermented drink kefir. The aim of this study was to investigate the effects of Lb. kefiranofaciens M1 on enterohemorrhagic Escherichia coli (EHEC) infection, using mice and intestinal cell models. BALB/c mice were daily administrated with either phosphate buffered saline or Lb. kefiranofaciens M1 at 2×10(8) cfu/mouse per day intragastrically for 7 d. Intragastric challenges with EHEC (2×10(9) cfu/mouse) were conducted on d 0, 4, and 7 after treatment. Administration of Lb. kefiranofaciens M1 was able to prevent EHEC infection-induced symptoms, intestinal damage, renal damage, bacterial translocation, and Shiga toxin penetration. Furthermore, the mucosal EHEC-specific IgA responses were increased after Lb. kefiranofaciens M1 administration in the EHEC-infected mouse system. Additionally, in vitro, Lb. kefiranofaciens M1 was shown to have a protective effect on Caco-2 intestinal epithelial cells and Caco-2 intestinal epithelial cell monolayers; the bacteria limited EHEC-induced cell death and reduced the loss of epithelial integrity. These findings support the potential of Lb. kefiranofaciens M1 treatment as an approach to preventing EHEC infection and its effects. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Link between DNA damage and centriole disengagement/reduplication in untransformed human cells.

    Science.gov (United States)

    Douthwright, Stephen; Sluder, Greenfield

    2014-10-01

    The radiation and radiomimetic drugs used to treat human tumors damage DNA in both cancer cells and normal proliferating cells. Centrosome amplification after DNA damage is well established for transformed cell types but is sparsely reported and not fully understood in untransformed cells. We characterize centriole behavior after DNA damage in synchronized untransformed human cells. One hour treatment of S phase cells with the radiomimetic drug, Doxorubicin, prolongs G2 by at least 72 h, though 14% of the cells eventually go through mitosis in that time. By 72 h after DNA damage we observe a 52% incidence of centriole disengagement plus a 10% incidence of extra centrioles. We find that either APC/C or Plk activities can disengage centrioles after DNA damage, though they normally work in concert. All disengaged centrioles are associated with γ-tubulin and maturation markers and thus, should in principle be capable of reduplicating and organizing spindle poles. The low incidence of reduplication of disengaged centrioles during G2 is due to the p53-dependent expression of p21 and the consequent loss of Cdk2 activity. We find that 26% of the cells going through mitosis after DNA damage contain disengaged or extra centrioles. This could produce genomic instability through transient or persistent spindle multipolarity. Thus, for cancer patients the use of DNA damaging therapies raises the chances of genomic instability and evolution of transformed characteristics in proliferating normal cell populations. © 2014 Wiley Periodicals, Inc.

  19. Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells.

    Science.gov (United States)

    Priest, David G; Tanaka, Nobuyuki; Tanaka, Yo; Taniguchi, Yuichi

    2017-12-21

    High-throughput microscopy of bacterial cells elucidated fundamental cellular processes including cellular heterogeneity and cell division homeostasis. Polydimethylsiloxane (PDMS)-based microfluidic devices provide advantages including precise positioning of cells and throughput, however device fabrication is time-consuming and requires specialised skills. Agarose pads are a popular alternative, however cells often clump together, which hinders single cell quantitation. Here, we imprint agarose pads with micro-patterned 'capsules', to trap individual cells and 'lines', to direct cellular growth outwards in a straight line. We implement this micro-patterning into multi-pad devices called CapsuleHotel and LineHotel for high-throughput imaging. CapsuleHotel provides ~65,000 capsule structures per mm 2 that isolate individual Escherichia coli cells. In contrast, LineHotel provides ~300 line structures per mm that direct growth of micro-colonies. With CapsuleHotel, a quantitative single cell dataset of ~10,000 cells across 24 samples can be acquired and analysed in under 1 hour. LineHotel allows tracking growth of > 10 micro-colonies across 24 samples simultaneously for up to 4 generations. These easy-to-use devices can be provided in kit format, and will accelerate discoveries in diverse fields ranging from microbiology to systems and synthetic biology.

  20. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury

    Science.gov (United States)

    Greune, Lilo; Jarosch, Kevin-André; Steil, Daniel; Zhang, Wenlan; He, Xiaohua; Lloubes, Roland; Fruth, Angelika; Kim, Kwang Sik; Schmidt, M. Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge

    2017-01-01

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV-delivered virulence factors

  1. Simulation of E. coli gene regulation including overlapping cell cycles, growth, division, time delays and noise.

    Directory of Open Access Journals (Sweden)

    Ruoyu Luo

    Full Text Available Due to the complexity of biological systems, simulation of biological networks is necessary but sometimes complicated. The classic stochastic simulation algorithm (SSA by Gillespie and its modified versions are widely used to simulate the stochastic dynamics of biochemical reaction systems. However, it has remained a challenge to implement accurate and efficient simulation algorithms for general reaction schemes in growing cells. Here, we present a modeling and simulation tool, called 'GeneCircuits', which is specifically developed to simulate gene-regulation in exponentially growing bacterial cells (such as E. coli with overlapping cell cycles. Our tool integrates three specific features of these cells that are not generally included in SSA tools: 1 the time delay between the regulation and synthesis of proteins that is due to transcription and translation processes; 2 cell cycle-dependent periodic changes of gene dosage; and 3 variations in the propensities of chemical reactions that have time-dependent reaction rates as a consequence of volume expansion and cell division. We give three biologically relevant examples to illustrate the use of our simulation tool in quantitative studies of systems biology and synthetic biology.

  2. A Spatial Control for Correct Timing of Gene Expression during the Escherichia coli Cell Cycle

    Directory of Open Access Journals (Sweden)

    Yuan Yao

    2016-12-01

    Full Text Available Temporal transcriptions of genes are achieved by different mechanisms such as dynamic interaction of activator and repressor proteins with promoters, and accumulation and/or degradation of key regulators as a function of cell cycle. We find that the TorR protein localizes to the old poles of the Escherichia coli cells, forming a functional focus. The TorR focus co-localizes with the nucleoid in a cell-cycle-dependent manner, and consequently regulates transcription of a number of genes. Formation of one TorR focus at the old poles of cells requires interaction with the MreB and DnaK proteins, and ATP, suggesting that TorR delivery requires cytoskeleton organization and ATP. Further, absence of the protein–protein interactions and ATP leads to loss in function of TorR as a transcription factor. We propose a mechanism for timing of cell-cycle-dependent gene transcription, where a transcription factor interacts with its target genes during a specific period of the cell cycle by limiting its own spatial distribution.

  3. Escherichia Coli

    Science.gov (United States)

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  4. PKC 412 sensitizes U1810 non-small cell lung cancer cells to DNA damage

    International Nuclear Information System (INIS)

    Hemstroem, Therese H.; Joseph, Bertrand; Schulte, Gunnar; Lewensohn, Rolf; Zhivotovsky, Boris

    2005-01-01

    Non-small cell lung carcinoma (NSCLC) is characterized by resistance to drug-induced apoptosis, which might explain the survival of lung cancer cells following treatment. Recently we have shown that the broad-range kinase inhibitor staurosporine (STS) reactivates the apoptotic machinery in U1810 NSCLC cells [Joseph et al., Oncogene 21 (2002) 65]. Lately, several STS analogs that are more specific in kinase inhibition have been suggested for tumor treatment. In this study the apoptosis-inducing ability of the STS analogs PKC 412 and Ro 31-8220 used alone or in combination with DNA-damaging agents in U1810 cells was investigated. In these cells Ro 31-8220 neither induced apoptosis when used alone, nor sensitized cells to etoposide treatment. PKC 412 as a single agent induced death of a small number of U1810 cells, whereas it efficiently triggered a dose- and time-dependent apoptosis in U1285 small cell lung carcinoma cells. In both cell types PKC 412 triggered release of mitochondrial proteins followed by caspase activation. However, concomitant activation of a caspase-independent pathway was essential to kill NSCLC cells. Importantly, PKC 412 was able to sensitize etoposide- and radiation-induced death of U1810 cells. The best sensitization was achieved when PKC 412 was administered 24 h after treatments. In U1810 cells, Ro 31-8220 decreased PMA-induced ERK phosphorylation as efficiently as PKC 412, indicating that the failure of Ro 31-8220 to induce apoptosis was not due to weaker inhibition of conventional and novel PKC isoforms. However, Ro 31-8220 increased the basal level of ERK and Akt phosphorylation in both cell lines, whereas Akt phosphorylation was suppressed in the U1810 cells, which might influence apoptosis. These results suggest that PKC 412 could be a useful tool in increasing the efficiency of therapy of NSCLC

  5. [miR-182 promotes cell proliferation of cervical cancer cells by targeting adenomatous polyposis coli (APC) gene].

    Science.gov (United States)

    Li, Pei; Hu, Jing; Zhang, Ying; Li, Jianping; Dang, Yunzhi; Zhang, Rui; Wei, Lichun; Shi, Mei

    2018-02-01

    Objective To investigate the role and mechanism of microRNA-182 (miR-182) in the proliferation of cervical cancer cells. Methods With liposome-mediated transient transfection method, the level of miR-182 in HeLa and SiHa cells was increased or decreased. CCK-8 assay and colony formation assay were used to observe the effect of miR-182 on the proliferation of cervical cancer cells. Using bioinformatics predictions, real-time quantitative PCR, and dual luciferase reporter assay, we clarified the role of miR-182 in posttranscriptional regulation of adenomatous polyposis coli (APC) gene and its effect on the downstream molecules (c-Myc and cyclin D1) of Wnt singling pathway. Results Up-regulation of miR-182 significantly promoted the proliferation of cervical cancer cells, while down-regulation of miR-182 significantly inhibited the proliferation of cervical cancer cells. Over-expression of miR-182 inhibited the expression of APC gene in cervical cancer cells and the regulation of miR-182 affected the expression of canonical Wnt signaling pathway downstream molecules in cervical cancer cells. Conclusion The miR-182 stimulates canonical Wnt signaling pathway by targeting APC gene and enhances the proliferation of cervical cancer cells.

  6. Production of functional bacteriorhodopsin by an Escherichia coli cell-free protein synthesis system supplemented with steroid detergent and lipid

    OpenAIRE

    Shimono, Kazumi; Goto, Mie; Kikukawa, Takashi; Miyauchi, Seiji; Shirouzu, Mikako; Kamo, Naoki; Yokoyama, Shigeyuki

    2009-01-01

    Cell-free expression has become a highly promising tool for the efficient production of membrane proteins. In this study, we used a dialysis-based Escherichia coli cell-free system for the production of a membrane protein actively integrated into liposomes. The membrane protein was the light-driven proton pump bacteriorhodopsin, consisting of seven transmembrane α-helices. The cell-free expression system in the dialysis mode was supplemented with a combination of a detergent and a natural lip...

  7. Cell Survival and DNA Damage in Normal Prostate Cells Irradiated Out-of-Field.

    LENUS (Irish Health Repository)

    Shields, L

    2014-10-31

    Interest in out-of-field radiation dose has been increasing with the introduction of new techniques, such as volumetric modulated arc therapy (VMAT). These new techniques offer superior conformity of high-dose regions to the target compared to conventional techniques, however more normal tissue is exposed to low-dose radiation with VMAT. There is a potential increase in radiobiological effectiveness associated with lower energy photons delivered during VMAT as normal cells are exposed to a temporal change in incident photon energy spectrum. During VMAT deliveries, normal cells can be exposed to the primary radiation beam, as well as to transmission and scatter radiation. The impact of low-dose radiation, radiation-induced bystander effect and change in energy spectrum on normal cells are not well understood. The current study examined cell survival and DNA damage in normal prostate cells after exposure to out-of-field radiation both with and without the transfer of bystander factors. The effect of a change in energy spectrum out-of-field compared to in-field was also investigated. Prostate cancer (LNCaP) and normal prostate (PNT1A) cells were placed in-field and out-of-field, respectively, with the PNT1A cells being located 1 cm from the field edge when in-field cells were being irradiated with 2 Gy. Clonogenic and γ-H2AX assays were performed postirradiation to examine cell survival and DNA damage. The assays were repeated when bystander factors from the LNCaP cells were transferred to the PNT1A cells and also when the PNT1A cells were irradiated in-field to a different energy spectrum. An average out-of-field dose of 10.8 ± 4.2 cGy produced a significant reduction in colony volume and increase in the number of γ-H2AX foci\\/cell in the PNT1A cells compared to the sham-irradiated control cells. An adaptive response was observed in the PNT1A cells having first received a low out-of-field dose and then the bystander factors. The PNT1A cells showed a significant

  8. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage

    DEFF Research Database (Denmark)

    Maynard, Scott; Swistowska, Anna Maria; Lee, Jae Wan

    2008-01-01

    cells compared with various differentiated murine cells. Using single-cell gel electrophoresis (comet assay) we found that human embryonic stem cells (BG01, I6) have more efficient repair of different types of DNA damage (generated from H2O2, UV-C, ionizing radiation, or psoralen) than human primary...

  9. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    International Nuclear Information System (INIS)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao; Luo, YunBo; Hao, Junran; Shen, Xiao Li; Yang, Xuan; Li, Xiaohong; Huang, Kunlun

    2013-01-01

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ m ). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by OTA in

  10. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Juanjuan; Zhang, Yu [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentaoboy@sina.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Luo, YunBo [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Hao, Junran [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Shen, Xiao Li [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Yang, Xuan [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Li, Xiaohong [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Huang, Kunlun, E-mail: hkl009@163.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  11. Rifampicin and chloramphenicol effects on DNA replication in ultraviolet-damaged Escherichia coli B/r WP2 thy trp

    International Nuclear Information System (INIS)

    Doudney, C.O.

    1976-01-01

    The antibiotic rifampicin, which blocks specifically RNA synthesis, limited DNA replication in Escherichia coli strain B/r WP2 thy trp after an increase of about 50% when added to the incubation medium at the time of replication initiation after ultraviolet fluences of 20 J/m 2 or 25 J/m 2 . Chloramphenicol, which blocks protein synthesis, did not limit DNA replication when added at initiation or any time after. The prolonged lag in DNA replication caused by ultraviolet was not itself responsible for the rifampicin limitation. When a lag of 30 min was caused by starvation for thymine, DNA was synthesized after readdition of thymine to an increase of 100% or more in rifampicin-containing medium. When chloramphenicol was added to an ultraviolet-exposed culture, the limiting effect of rifampicin alone was suppressed. This effect held even with a higher fluence (32.5 J/m 2 ), after which the ability to make DNA in the presence of rifampicin alone was slight. Maximum effect was obtained when the chloramphenicol was added to the ultraviolet-exposed, rifampicin-containing culture immediately before initiation of DNA replication. When rifampicin was present at a concentration of 150 μg/ml (2.2 x 10 -4 M), 3 μg/ml of chloramphenicol (9.2 x 10 -6 M) was as effective as 160 μg/ml (5.0 x 10 -4 M), thus eliminating the possibility that direct stoichiometric interaction of rifampicin and chloramphenicol molecules caused the effect

  12. Cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies.

    Science.gov (United States)

    Faria, Daniella Renata; Sakita, Karina Mayumi; Akimoto-Gunther, Luciene Setsuko; Kioshima, Érika Seki; Svidzinski, Terezinha Inez Estivalet; Bonfim-Mendonça, Patrícia de Souza

    2017-08-01

    The present study aimed to characterize cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies. It was evaluated 12 clinical isolates of C. albicans from vaginal samples: 4 from asymptomatic women (AS), 4 from women with a single episode of vulvovaginal candidiasis (VVC) and 4 from women with recurrent vulvovaginal candidiasis (RVVC). We evaluated the ability of C. albicans to adhere to human cervical cancer cells (SiHa), the yeast-SiHa cell interactions and cell damage. All of the clinical isolates presented a high adhesion capacity on SiHa cells. However, clinical isolates from symptomatic women (VVC and RVVC) had higher filamentation after contact (24 h) with SiHa cells and a greater capacity to cause cell damage (>80 %). Clinical isolates from symptomatic women had greater potential to invade SiHa cells, suggesting that they are more pathogenic than AS isolates.

  13. Factors limiting SOS expression in log-phase cells of Escherichia coli.

    Science.gov (United States)

    Massoni, Shawn C; Leeson, Michael C; Long, Jarukit Edward; Gemme, Kristin; Mui, Alice; Sandler, Steven J

    2012-10-01

    In Escherichia coli, RecA-single-stranded DNA (RecA-ssDNA) filaments catalyze DNA repair, recombination, and induction of the SOS response. It has been shown that, while many (15 to 25%) log-phase cells have RecA filaments, few (about 1%) are induced for SOS. It is hypothesized that RecA's ability to induce SOS expression in log-phase cells is repressed because of the potentially detrimental effects of SOS mutagenesis. To test this, mutations were sought to produce a population where the number of cells with SOS expression more closely equaled the number of RecA filaments. Here, it is shown that deleting radA (important for resolution of recombination structures) and increasing recA transcription 2- to 3-fold with a recAo1403 operator mutation act independently to minimally satisfy this condition. This allows 24% of mutant cells to have elevated levels of SOS expression, a percentage similar to that of cells with RecA-green fluorescent protein (RecA-GFP) foci. In an xthA (exonuclease III gene) mutant where there are 3-fold more RecA loading events, recX (a destabilizer of RecA filaments) must be additionally deleted to achieve a population of cells where the percentage having elevated SOS expression (91%) nearly equals the percentage with at least one RecA-GFP focus (83%). It is proposed that, in the xthA mutant, there are three independent mechanisms that repress SOS expression in log-phase cells. These are the rapid processing of RecA filaments by RadA, maintaining the concentration of RecA below a critical level, and the destabilizing of RecA filaments by RecX. Only the first two mechanisms operate independently in a wild-type cell.

  14. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    Science.gov (United States)

    Gruel, Gaëtan; Villagrasa, Carmen; Voisin, Pascale; Clairand, Isabelle; Benderitter, Marc; Bottollier-Depois, Jean-François; Barquinero, Joan Francesc

    2016-01-01

    Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF) per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This comparison allowed us to

  15. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    Directory of Open Access Journals (Sweden)

    Gaëtan Gruel

    Full Text Available Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This

  16. Reactivation in UV inactivated Escherichia coli by cell-free extracts of propionic acid bacteria

    International Nuclear Information System (INIS)

    Vorob'eva, L.I.; Nikitenko, G.V.; Khodzhaev, E.Yu.; Ponomareva, G.M.

    1993-01-01

    For the first time reactivation of cell extraction of three strains of Propionibacterium shermanii in UV inactivated not filament-forming strain Escherichia colli AB 1157 is shown. Reactivation was demonstrated in prencubated and postincubated test-culture and increased as survival of E.coli decreased in a range 1,8-0,006%. The factor (factores) of defense in dialysable, thermolable and is present as in a fraction of nucleoproteins and nucleic acids so in a fraction of soluble proteins. The extracts were inactivated by incubation with proteinase K and trypsin, partly decreased activity by incubation with alpha-amylase and selected nuclease but not with lipase. Polypeltide nature of reactivative factor is supposed

  17. The relative cytotoxicity and mutagenicity of cyclobutane pyrimidine dimers and photoproducts in Escherichia coli cells

    International Nuclear Information System (INIS)

    Tang, Moon-shong; Hrncir, J.; Mitchell, D.; Ross, J.; Clarkson, J.

    1986-01-01

    In order to calculate the relative cytotoxicity and mutagenicity of cyclobutane pyrimidine dimers and photoproducts, the authors have measured survival and mutation induction in UV-irradiated excision-deficient E. coli uvrA cells, with or without complete photoreactivation of the dimers. Radioimmunoassays with specificity for dimers or photoproducts have shown that maximum photoreactivation eliminates all of the dimers produce up to 10 Jm -2 254-nm light, while it has no effect on photoproducts. These results were confirmed by measuring the frequency of T4 endonuclease V-sensitive sites. Based on the best fit equations for survival and mutation induction, the authors have found that the calculated cytotoxicity of photoproducts is similar to that of dimers; however, the former is much more mutagenic than the latter. (Auth.)

  18. Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective

    Science.gov (United States)

    Bayramoglu, Bihter; Toubiana, David; van Vliet, Simon; Inglis, R. Fredrik; Shnerb, Nadav; Gillor, Osnat

    2017-02-01

    Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells’ close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies—or bet-hedging—as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population.

  19. Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells.

    Science.gov (United States)

    Zhang, Yue-Hui; Li, Hai-Dong; Li, Bo; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2014-02-01

    Panax ginseng is a Chinese medicinal herb. Ginsenosides are the main bioactive components of P. ginseng, and ginsenoside Rg3 is the primary ginsenoside. Ginsenosides can potently kill various types of cancer cells. The present study was designed to evaluate the potential genotoxicity of ginsenoside Rg3 in human osteosarcoma cells and the protective effect of ginsenoside Rg3 with respect to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced DNA damage and apoptosis in a normal human cell line (human fibroblasts). Four human osteosarcoma cell lines (MG-63, OS732, U-2OS and HOS cells) and a normal human cell line (human fibroblasts) were employed to investigate the cytotoxicity of ginsenosides Rg3 by MTT assay. Alkaline comet assay and γH2AX focus staining were used to detect the DNA damage in MG-63 and U-2OS cells. The extent of cell apoptosis was determined by flow cytometry and a DNA ladder assay. Our results demonstrated that the cytotoxicity of ginsenoside Rg3 was dose-dependent in the human osteosarcoma cell lines, and MG-63 and U-2OS cells were the most sensitive to ginsenoside Rg3. As expected, compared to the negative control, ginsenoside Rg3 significantly increased DNA damage in a concentration-dependent manner. In agreement with the comet assay data, the percentage of γH2AX-positive MG-63 and U-2OS cells indicated that ginsenoside Rg3 induced DNA double-strand breaks in a concentration-dependent manner. The results also suggest that ginsenoside Rg3 reduces the extent of MNNG-induced DNA damage and apoptosis in human fibroblasts.

  20. Influence of some exo nucleases in response to the induced genetic damage in Escherichia coli by alpha radiation; Influencia de algunas exonucleasas en respuesta al dano genetico inducido en Escherichia coli por radiacion alfa

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar M, M

    2005-07-01

    Within the strategies with those that E. coli counts to overcome to the genetic damage there is the SOS response, a group of genes that participate in repair and/or tolerance that it confers to the bacteria major opportunities of surviving. These genes are repressed and its only are expressed when it happens genetic damage. So that this system is activated it is necessary that DNA of a band exists and in this sense the double ruptures (RDB) its are not able to induce this response unless there is a previous processing. In stumps with defects in certain genes that have to do with repair of RDB (as recO, recJ and xonA) the activity of SOS is smaller than in a wild stump what suggests that these participate in the previous processes to the activation of the response. The ionizing radiation produce among other many lesions, RDB in greater or smaller proportion, depending on the ionization capacity. A parameter to evaluate this capacity is the lineal energy transfer (LET), defined as the average energy given by unit of distance travelled. In general the LET of the corpuscular radiations is a lot but high that of the electromagnetic one, for what produces bigger quantity of ionizations inside a restricted zone and it increases by this way the probability that RDB has been generated. This work has for object to infer the participation of xonA and recJ in this response and to evaluate the damage produced by ionizing radiation of different LET (alpha particles of different energies) in a stump with all the functional repair mechanisms. Its were considered two parameters: the survival and the activity of SOS evaluated by means of the chromo test. The results indicate that the activity of these exo nucleases is necessary for the repair of RDB as well as for the processing of lesions foresaw to the activation of SOS. As for the treatment with alphas of different energies is observed that so much the survival like the activity of SOS vary as the LET of the radiation changes

  1. Epithelial and Mesenchymal Cells in the Bovine Colonic Mucosa Differ in Their Responsiveness to Escherichia coli Shiga Toxin 1

    Science.gov (United States)

    Cells in the depth of the crypts in the bovine colon express CD77 molecules that potentially act as receptors for Shiga toxins (Stx). The implication of this finding for the intestinal colonization 25 of cattle with human pathogenic Stx-producing Escherichia coli (STEC) remains undefined. We used f...

  2. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli

    DEFF Research Database (Denmark)

    Putaala, H; Barrangou, R; Leyer, G J

    2010-01-01

    a comparative analysis of the global in vitro transcriptional response of human intestinal epithelial cells to Lactobacillus acidophilus NCFM™, Lactobacillus salivarius Ls-33, Bifidobacterium animalis subsp. lactis 420, and enterohaemorrhagic Escherichia coli O157:H7 (EHEC). Interestingly, L. salivarius Ls-33...

  3. Cell kinetical aspect of normal tissue damages in relation to radiosensitivity of cells, especially from the points of LQ model

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Oohara, Hiroshi.

    1989-01-01

    Several points on the early and late radiation induced-normal tissue damages in terms of LQ model in multifractionation experiments of isoeffect were discussed from two fractors, (1) dose-responses of cell survivals or of tissue damages and (2) principles of the model. Application of the model to the both early and late tissue damages was fairly difficult in several tissues and several experimental conditions. In early damages, cell survival curve of single irradiation did not always fit to LQ model and further more incomlete repair as well as repopulation in multifractionation experiment contradicted the model especially in low dose fractionation. In late damages, the damages themselves did not express directly cell survival but probably indicate the degree of functional cell damage at the level of 10 -1 . As most isoeffects in early damages were taken at the level of 10 -3 , the comparison of two results from early and late tissue damages indicated the lack of coordinations both conceptionally and experimentally. (author)

  4. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells

    Directory of Open Access Journals (Sweden)

    Muyrers Joep PP

    2003-01-01

    Full Text Available Abstract Background The phage protein pairs, RecE/RecT from Rac or Redα/Redβ from λ, initiate efficient double strand break repair (DSBR in Escherichia coli that has proven very useful for DNA engineering. These phage pairs initiate DSBR either by annealing or by another mechanism that is not defined. Results Here we report that these proteins also mediate single strand oligonucleotide repair (ssOR at high efficiencies. The ssOR activity, unlike DSBR, does not require a phage exonuclease (RecE or Redα but only requires a phage annealing protein (RecT or Redβ. Notably, the P22 phage annealing protein Erf, which does not mediate the same DSBR reactions, also delivers ssOR activity. By altering aspects of the oligonucleotides, we document length and design parameters that affect ssOR efficiency to show a simple relationship to homologies either side of the repair site. Notably, ssOR shows strand bias. Oligonucleotides that can prime lagging strand replication deliver more ssOR than their leading complements. This suggests a model in which the annealing proteins hybridize the oligonucleotides to single stranded regions near the replication fork. We also show that ssOR is a highly efficient way to engineer BACs and can be detected in a eukaryotic cell upon expression of a phage annealing protein. Conclusion Phage annealing proteins can initiate the recombination of single stranded oligonucleotides into endogenous targets in Escherichia coli at very high efficiencies. This expands the repertoire of useful DNA engineering strategies, shows promise for applications in eukaryotic cells, and has implications for the unanswered questions regarding DSBR mediated by RecE/RecT and Redα/Redβ.

  5. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  6. Radioadaptive response. Efficient repair of radiation-induced DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji; Aritomi, Hisako; Morisita, Jun

    1996-01-01

    To verify the hypothesis that the induction of a novel, efficient repair mechanism for chromosomal DNA breaks may be involved in the radioadaptive response, the repair kinetics of DNA damage has been studied in cultured Chinese hamster V79 cells with single-cell gel electrophoresis. The cells were adapted by priming exposure with 5 cGy of γ-rays and 4-h incubation at 37C. There were no indication of any difference in the initial yields of DNA double-strand breaks induced by challenging doses from non-adapted cells and from adapted cells. The rejoining of DNA double-strand breaks was monitored over 120 min after the adapted cells were challenged with 5 or 1.5 Gy, doses at the same level to those used in the cytogenetical adaptive response. The rate of DNA damage repair in adapted cells was higher than that in non-adapted cells, and the residual damage was less in adapted cells than in non-adapted cells. These results indicate that the radioadaptive response may result from the induction of a novel, efficient DNA repair mechanism which leads to less residual damage, but not from the induction of protective functions that reduce the initial DNA damage

  7. The proximal tubular cell, a key player in renal damage

    NARCIS (Netherlands)

    Timmeren, Mirjan Miranda van

    2008-01-01

    A decline in renal function is associated with the degree of proteinuria and with histological findings of glomerulosclerosis and interstitial fibrosis. Proteinuria is not only a marker of renal damage, but ultrafiltered proteins can be toxic to the kidney, thereby contributing to

  8. Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2003-04-01

    Full Text Available Abstract Background Use of lactose-rich concentrates from dairy processes for the induction of recombinant gene's expression has not received much attention although they are interesting low cost substrates for production of recombinant enzymes. Applicability of dairy waste for induction of recombinant genes in Escherichia coli was studied. Clones expressing Lactobacillus phage muramidase and Lactobacillus alcohol dehydrogenase were used for the experiments. Results Shake flask cultivations in mineral salt medium showed that cheese whey or deproteinised whey induced gene expression as efficiently as IPTG (isopropyl-β-D-thiogalactopyranoside or pure lactose. Addition of yeast extract or proteolytically degraded whey proteins did not improve the recombinant protein yield. In contrast, addition of yeast extract to the well-balanced mineral salt medium decreased the product yield. Feeding with glycerol provided sufficient amount of easily assimilable carbon source during the induction period without preventing lactose intake and induction by lactose. High-cell-density fed-batch cultivations showed that product yields comparable to IPTG-induction can be achieved by feeding bacteria with a mixture of glycerol and concentrated whey permeate during the induction. Conclusion Whey and concentrated whey permeate can be applied as an alternative inducer in recombinant high-cell-density fed-batch fermentations. The yield of the recombinant product was comparable to fermentations induced by IPTG. In low-cell-density shake flask experiments the yield was higher with whey or whey permeate than with IPTG.

  9. Four dimensional imaging of E. coli nucleoid organization and dynamics in living cells

    Science.gov (United States)

    Fisher, J. K.; Bourniquel, A.; Witz, G.; Weiner, B.; Prentiss, M.; Kleckner, N.

    2013-01-01

    Visualization of living E. coli nucleoids, defined by HupA-mCherry, reveals a discrete, dynamic helical ellipsoid. Three basic features emerge. (i) Nucleoid density efficiently coalesces into longitudinal bundles, giving a stiff, low DNA density ellipsoid. (ii) This ellipsoid is radially confined within the cell cylinder. Radial confinement gives helical shape and drives and directs global nucleoid dynamics, including sister segregation. (iii) Longitudinal density waves flux back and forth along the nucleoid, with 5–10% of density shifting within 5s, enhancing internal nucleoid mobility. Furthermore, sisters separate end-to-end in sequential discontinuous pulses, each elongating the nucleoid by 5–15%. Pulses occur at 20min intervals, at defined cell cycle times. This progression is mediated by sequential installation and release of programmed tethers, implying cyclic accumulation and relief of intra-nucleoid mechanical stress. These effects could comprise a chromosome-based cell cycle engine. Overall, the presented results suggest a general conceptual framework for bacterial nucleoid morphogenesis and dynamics. PMID:23623305

  10. Genome-wide analysis of E. coli cell-gene interactions.

    Science.gov (United States)

    Cardinale, S; Cambray, G

    2017-11-23

    The pursuit of standardization and reliability in synthetic biology has achieved, in recent years, a number of advances in the design of more predictable genetic parts for biological circuits. However, even with the development of high-throughput screening methods and whole-cell models, it is still not possible to predict reliably how a synthetic genetic construct interacts with all cellular endogenous systems. This study presents a genome-wide analysis of how the expression of synthetic genes is affected by systematic perturbations of cellular functions. We found that most perturbations modulate expression indirectly through an effect on cell size, putting forward the existence of a generic Size-Expression interaction in the model prokaryote Escherichia coli. The Size-Expression interaction was quantified by inserting a dual fluorescent reporter gene construct into each of the 3822 single-gene deletion strains comprised in the KEIO collection. Cellular size was measured for single cells via flow cytometry. Regression analyses were used to discriminate between expression-specific and gene-specific effects. Functions of the deleted genes broadly mapped onto three systems with distinct primary influence on the Size-Expression map. Perturbations in the Division and Biosynthesis (DB) system led to a large-cell and high-expression phenotype. In contrast, disruptions of the Membrane and Motility (MM) system caused small-cell and low-expression phenotypes. The Energy, Protein synthesis and Ribosome (EPR) system was predominantly associated with smaller cells and positive feedback on ribosome function. Feedback between cell growth and gene expression is widespread across cell systems. Even though most gene disruptions proximally affect one component of the Size-Expression interaction, the effect therefore ultimately propagates to both. More specifically, we describe the dual impact of growth on cell size and gene expression through cell division and ribosomal content

  11. Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Luca A Petruccelli

    Full Text Available Histone deacetylase inhibitors (HDACi are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents.

  12. Vorinostat Induces Reactive Oxygen Species and DNA Damage in Acute Myeloid Leukemia Cells

    Science.gov (United States)

    Pettersson, Filippa; Retrouvey, Hélène; Skoulikas, Sophia; Miller, Wilson H.

    2011-01-01

    Histone deacetylase inhibitors (HDACi) are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML) cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC) reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents. PMID:21695163

  13. Live cell microscopy of DNA damage response in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pinela da Silva, Sonia Cristina; Gallina, Irene; Eckert-Boulet, Nadine Valerie

    2012-01-01

    live cell imaging allows for multiple cellular markers to be monitored over several hours. This chapter reviews useful fluorescent markers and genotoxic agents for studying the DNA damage response in living cells and provides protocols for live cell imaging, time-lapse microscopy, and for induction...

  14. Non-Destructive Detection and Separation of Radiation Damaged Cells in Miniaturized, Inexpensive Device, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a clear and well-identified need for rapid, efficient, non-destructive detection and isolation of radiation damaged cells. Available commercial technologies...

  15. DNA damage in male gonad cells of Green mussel (Perna viridis) upon exposure to tobacco products

    Digital Repository Service at National Institute of Oceanography (India)

    Nagarajappa; Ganguly, A.; Goswami, U.

    DNA damage (determined by the Comet Assay) and the occurrence of deformed nuclei were measured as endpoints of genotoxicity in male gonad cells of the marine mussel (Perna viridis). Upon exposure of the organism to varying concentrations...

  16. Fate of Salmonella enterica and Enterohemorrhagic Escherichia coli Cells Artificially Internalized into Vegetable Seeds during Germination.

    Science.gov (United States)

    Liu, Da; Cui, Yue; Walcott, Ronald; Chen, Jinru

    2018-01-01

    Vegetable seeds contaminated with bacterial pathogens have been linked to fresh-produce-associated outbreaks of gastrointestinal infections. This study was undertaken to observe the physiological behavior of Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC) cells artificially internalized into vegetable seeds during the germination process. Surface-decontaminated seeds of alfalfa, fenugreek, lettuce, and tomato were vacuum-infiltrated with four individual strains of Salmonella or EHEC. Contaminated seeds were germinated at 25°C for 9 days, and different sprout/seedling tissues were microbiologically analyzed every other day. The internalization of Salmonella and EHEC cells into vegetable seeds was confirmed by the absence of pathogens in seed-rinsing water and the presence of pathogens in seed homogenates after postinternalization seed surface decontamination. Results show that 317 (62%) and 343 (67%) of the 512 collected sprout/seedling tissue samples were positive for Salmonella and EHEC, respectively. The average Salmonella populations were significantly larger ( P seed coat tissues, followed by the root tissues, but the mean EHEC populations from all sampled tissue sections were statistically similar, except in pregerminated seeds. Three Salmonella and two EHEC strains had significantly larger cell populations on sprout/seedling tissues than other strains used in the study. Salmonella and EHEC populations from fenugreek and alfalfa tissues were significantly larger than those from tomato and lettuce tissues. The study showed the fate of internalized human pathogens on germinating vegetable seeds and sprout/seedling tissues and emphasized the importance of using pathogen-free seeds for sprout production. IMPORTANCE The internalization of microorganisms into vegetable seeds could occur naturally and represents a possible pathway of vegetable seed contamination by human pathogens. The present study investigated the ability of two important

  17. iTRAQ-Based Proteomic Analysis of Sublethally Injured Escherichia coli O157:H7 Cells Induced by High Pressure Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Xiufang Bi

    2017-12-01

    Full Text Available High pressure carbon dioxide (HPCD could cause sublethally injured cells (SICs, which may cause food poisoning and spoilage during food storage and limit its application. Therefore, the formation of SICs of Escherichia coli O157:H7 was investigated by isobaric tag for relative and absolute quantification (iTRAQ proteomic methods in this study for better controlling the SICs induced by HPCD. A total of 2,446 proteins was identified by iTRAQ, of which 93 and 29 were significantly differentially expressed in the SICs compared with live control cells (CKL and dead control cells (CKD, respectively. Among the 93 differentially expressed proteins (DEP in the SICs compared with CKL, 65 proteins showed down-regulation and 28 showed up-regulation. According to the comprehensive proteome coverage analysis, the SICs survived under HPCD by reducing carbohydrate decomposing, lipid transport and metabolism, amino acid transport and metabolism, transcription and translation, DNA replication and repair. Besides, the SICs showed stress response, DNA damage response and an increased carbohydrate transport, peptidoglycan synthesis and disulfide bond formation to HPCD. Among the 29 DEP in the SICs compared with CKD, 12 proteins showed down-regulation and 17 showed up-regulation. According to the comprehensive proteome coverage analysis, the SICs survived under HPCD by accumulation of cell protective agents like carbohydrates and amino acids, and decreasing transcription and translation activities. Results showed that the formation of the SICs with low metabolic activity and high survival ability was a survival strategy for E. coli O157:H7 against HPCD.

  18. Circulating nucleic acids damage DNA of healthy cells by integrating ...

    Indian Academy of Sciences (India)

    2015-02-04

    Feb 4, 2015 ... detected the presence of tens of thousands of human sequence reads in the recipient mouse cells. Genomic .... 2.7 Development of single-cell clones from DNAfs- ... DNA was isolated to generate whole genome libraries for.

  19. Damage effect of γ-rays on bacillus subtilis vegetative Cells

    International Nuclear Information System (INIS)

    Chen Xiaoming; Liu Fang; Zhang Jianguo; Yan Wanli; Zheng Chun; Li Xiaoyan

    2011-01-01

    In order to investigate the damage effects of γ-rays at cell and molecular level, Bacillus subtilis vegetative cells were irradiated by 60 Co γ-rays at different absorbed doses. The cell survival rate was examined with the standard plate-count method. The intracellular SOD activity was measured by SOD kit through xanthine oxidase method. DNA double-strand breaks were analyzed by pulsed-field gel electrophoresis (PFGE). The cell survival rate decreases when γ-rays dose increases. A clear relation could not be found between intracellular SOD activity and absorbed dose. The DNA release percentage value and break level value increase obviously with γ-rays dose. Cell survival rate is related to DNA double-strand breaks level. It can be concluded that γ-rays have obviously damage effect on Bacillus subtilis vegetative cell, and the damage effect changes with SOD activity and DSB. (authors)

  20. Flow cytometric determination of radiation-induced chromosome damage and its correlation with cell survival

    International Nuclear Information System (INIS)

    Welleweerd, J.; Wilder, M.E.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Chinese hamster M3-1 cells were irradiated with several doses of x rays or α particles from 238 Pu. Propidium iodide-stained chromosome suspensions were prepared at different times after irradiation; cells were also assayed for survival. The DNA histograms of these chromosomes showed increased background counts with increased doses of radiation. This increase in background was cell-cycle dependent and was correlated with cell survival. The correlation between radiation-induced chromosome damage and cell survival was the same for X rays and α particles. Data are presented which indicate that flow cytometric analysis of chromosomes of irradiated cell populations can be a useful adjunct to classical cytogenic analysis of irradiation-induced chromosomal damage by virtue of its ability to express and measure chromosomal damage not seen by classical cytogenic methods

  1. Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device.

    Science.gov (United States)

    Murugesan, Nithya; Panda, Tapobrata; Das, Sarit K

    2016-08-01

    Bacteria responds to changing chemical and thermal environment by moving towards or away from a particular location. In this report, we looked into thermal gradient generation and response of E. coli DH5α cells to thermal gradient in the presence and in the absence of spherical gold nanoparticles (size: 15 to 22 nm) in a static microfluidic environment using a polydimethylsiloxane (PDMS) made microfluidic device. A PDMS-agarose based microfluidic device for generating thermal gradient has been developed and the thermal gradient generation in the device has been validated with the numerical simulation. Our studies revealed that the presence of gold nanoparticles, AuNPs (0.649 μg/mL) has no effect on the thermal gradient generation. The E. coli DH5α cells have been treated with AuNPs of two different concentrations (0.649 μg/mL and 0.008 μg/mL). The thermotaxis behavior of cells in the presence of AuNPs has been studied and compared to the thermotaxis of E.coli DH5α cells in the absence of AuNPs. In case of thermotaxis, in the absence of the AuNPs, the E. coli DH5α cells showed better thermotaxis towards lower temperature range, whereas in the presence of AuNPs (0.649 μg/mL and 0.008 μg/mL) thermotaxis of the E. coli DH5α cells has been inhibited. The results show that the spherical AuNPs intervenes in the themotaxis of E. coli DH5α cells and inhibits the cell migration. The reason for the failure in thermotaxis response mechanism may be due to decreased F-type ATP synthase activity and collapse of membrane potential by AuNPs, which, in turn, leads to decreased ATP levels. This has been hypothesized since both thermotaxis and chemotaxis follows the same response mechanism for migration in which ATP plays critical role.

  2. Individuality and universality in the growth-division laws of single E. coli cells

    Science.gov (United States)

    Kennard, Andrew S.; Osella, Matteo; Javer, Avelino; Grilli, Jacopo; Nghe, Philippe; Tans, Sander J.; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2016-01-01

    The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both size and doubling times is a linear function of the population means of these variables. Here we combine experiments and theory and use scaling concepts to elucidate the constraints posed by the second observation on the division control mechanism and on the joint fluctuations of sizes and doubling times. We found that scaling relations based on the means collapse both size and doubling-time distributions across different conditions and explain how the shape of their joint fluctuations deviates from the means. Our data on these joint fluctuations highlight the importance of cell individuality: Single cells do not follow the dependence observed for the means between size and either growth rate or inverse doubling time. Our calculations show that these results emerge from a broad class of division control mechanisms requiring a certain scaling form of the "division hazard rate function," which defines the probability rate of dividing as a function of measurable parameters. This "model free" approach gives a rationale for the universal body-size distributions observed in microbial ecosystems across many microbial species, presumably dividing with multiple mechanisms. Additionally, our experiments show a crossover between fast and slow growth in the relation between individual-cell growth rate and division time, which can be understood in terms of different regimes of genome replication control.

  3. Inhibition of HAS2 induction enhances the radiosensitivity of cancer cells via persistent DNA damage

    International Nuclear Information System (INIS)

    Shen, Yan Nan; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Kim, Su-Hyeon; Hwang, Sang-Gu; Park, Sang Jun; Kim, Chun-Ho; Lee, Kee-Ho

    2014-01-01

    Highlights: •HAS2 may be a promising target for the radiosensitization of human cancer. •HAS2 is elevated (up to ∼10-fold) in irradiated radioresistant and -sensitive cancer cells. •HAS2 knockdown sensitizes cancer cells to radiation. •HAS2 knockdown potentiates irradiation-induced DNA damage and apoptotic death. •Thus, the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. -- Abstract: Hyaluronan synthase 2 (HAS2), a synthetic enzyme for hyaluronan, regulates various aspects of cancer progression, including migration, invasion and angiogenesis. However, the possible association of HAS2 with the response of cancer cells to anticancer radiotherapy, has not yet been elucidated. Here, we show that HAS2 knockdown potentiates irradiation-induced DNA damage and apoptosis in cancer cells. Upon exposure to radiation, all of the tested human cancer cell lines exhibited marked (up to 10-fold) up-regulation of HAS2 within 24 h. Inhibition of HAS2 induction significantly reduced the survival of irradiated radioresistant and -sensitive cells. Interestingly, HAS2 depletion rendered the cells to sustain irradiation-induced DNA damage, thereby leading to an increase of apoptotic death. These findings indicate that HAS2 knockdown sensitizes cancer cells to radiation via persistent DNA damage, further suggesting that the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. Thus, HAS2 could potentially be targeted for therapeutic interventions aimed at radiosensitizing cancer cells

  4. Quantitative aspects of repair of potentially lethal damage in mammalian cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Pohlit, W.

    1979-01-01

    Stationary cultures of Ehrlich ascites tumour cells were irradiated with X-rays and then immediately or after a time interval tsub(rep) plated to measure the survival. The increase in survival observed after delayed plating was interpreted as repair of potentially lethal damage. A cybernetic model was used to analyse these data. Three states of damage were assumed for the cells. In state A the cells could grow to macrocolonies, in state B the cells suffered potentially lethal damage and could grow to macrocolonies only if they were allowed to repair the damage and in state C the cells were lethally damaged. A method of deriving the values of the parameters of the model from the experimental data was given. The dependence of the reaction rate constant of the repair potentially lethal damage on the dose D was used to derive a possible mechanism for the production of the shoulder in the dose effect curve. Finally this model was compared with other models of radiation action in living cells. (author)

  5. Genotoxic damage in non-irradiated cells: contribution from the bystander effect

    International Nuclear Information System (INIS)

    Zhou, H.; Randers-Pherson, G.; Suzuki, M.; Waldren, C.A.; Hei, T.K.

    2002-01-01

    It has always been accepted dogma that the deleterious effects of ionising radiation such as mutagenesis and carcinogenesis are due mainly to direct damage to DNA. Using the Columbia University charged-particle microbeam and the highly sensitive A L cell mutagenic assay, it is shown here that non-irradiated cells acquire the mutagenic phenotype through direct contact with cells whose nuclei are traversed with 2 alpha particles each. Pre-treatment of cells with lindane, a gap junction inhibitor, significantly decreased the mutant yield. Furthermore, when irradiated cells were mixed with control cells in a similar ration as the in situ studies, no enhancement in bystander mutagenesis was detected. Our studies provide clear evidence that genotoxic damage can be induced in non-irradiated cells, and that gap junction mediated cell-cell communication plays a critical role in the bystander phenomenon. (author)

  6. LIVER AND BONE MARROW STEM/PROGENITOR CELLS AS REGULATORS OF REPARATIVE REGENERATION OF DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    А. V. Lundup

    2010-01-01

    Full Text Available In this review the modern information about effectiveness of liver insufficiency treatment by stem/ progenitor cells of liver (oval cells and bone marrow (hemopoietic cells and mesenchymal cells was presented. It is shown that medical action of these cells is referred on normalization of liver cell interaction and reorganization of processes of a reparative regeneration in damaged liver. It is believed that application of mesenchymal stromal cells from an autological bone marrow is the most perspective strategy. However, for definitive judgement about regenerative possibilities of the autological bone marrow cells it is necessary to carry out large-scale double blind clinical researches. 

  7. Excision of x-ray-induced thymine damage in chromatin from heated cells

    International Nuclear Information System (INIS)

    Warters, R.L.; Roti Roti, J.L.

    1979-01-01

    Experiments were performed to distinguish between two possible modes of hyperthermia-induced inhibition of thymine base damage excision from the DNA of CHO cells: (1) heat denaturation of excision enzyme(s) or (2) heat-induced alteration of the substrate for damage excision (chromatin). While hyperthermia (45 0 C, 15 min) had no apparent effect on the capacity of the excision enzymes to excise damage from DNA it had a dramatic effect (ca. 80% inhibition) on the ability of chromatin to serve as a substrate for unheated enzymes. These results suggest that hyperthermia-induced radiosensitization of CHO cells may be due primarily to lesions in the cellular chromatin

  8. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro

    DEFF Research Database (Denmark)

    Ebert, Regina; Ulmer, Matthias; Zeck, Sabine

    2006-01-01

    signaling, cumulative cell damage, senescence, and tumor development. Selenium-dependent (glutathione peroxidases [GPxs] and thioredoxin reductases [TrxRs]) and selenium-independent (superoxide dismutases [SODs] and catalase [CAT]) enzyme systems regulate cellular ROS steady state levels. SODs process...

  9. Structural damage of chicken red blood cells exposed to platinum nanoparticles and cisplatin

    DEFF Research Database (Denmark)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Sławomir

    2014-01-01

    of platinum nanoparticles (NP-Pt) and cisplatin with blood compartments are important for future applications. This study investigated structural damage, cell membrane deformation and haemolysis of chicken embryo red blood cells (RBC) after treatment with cisplatin and NP-Pt. Cisplatin (4 μg/ml) and NP-Pt (2......,6 μg/ml), when incubated with chicken embryo RBC, were detrimental to cell structure and induced haemolysis. The level of haemolytic injury was increased after cisplatin and NP-Pt treatments compared to the control group. Treatment with cisplatin caused structural damage to cell membranes...

  10. Processing of radiation-induced clustered DNA damage generates DSB in mammalian cells

    International Nuclear Information System (INIS)

    Gulston, M.K.; De Lara, C.M.; Davis, E.L.; Jenner, T.J.; O'Neill, P.

    2003-01-01

    Full text: Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cell. With 60 Co-radiation, the abundance of clustered DNA damage induced in CHO cells is ∼4x that of prompt double strand breaks (DSB) determined by PFGE. Less is known about the processing of non-DSB clustered DNA damage induced in cells. To optimize observation of any additional DSB formed during processing of DNA damage at 37 deg C, xrs-5 cells deficient in non-homologous end joining were used. Surprisingly, ∼30% of the DSB induced by irradiation at 37 deg C are rejoined within 4 minutes in both mutant and wild type cells. No significant mis-repair of these apparent DSB was observed. It is suggested that a class of non-DSB clustered DNA damage is formed which repair correctly within 4 min but, if 'trapped' prior to repair, are converted into DSB during the lysis procedure of PFGE. However at longer times, a proportion of non-DSB clustered DNA damage sites induced by γ-radiation are converted into DSB within ∼30 min following post-irradiation incubation at 37 deg C. The corresponding formation of additional DSB was not apparent in wild type CHO cells. From these observations, it is estimated that only ∼10% of the total yield of non DSB clustered DNA damage sites are converted into DSB through cellular processing. The biological consequences that the majority of non-DSB clustered DNA damage sites are not converted into DSBs may be significant even at low doses, since a finite chance exists of these clusters being formed in a cell by a single radiation track

  11. Damaging and protective cell signalling in the untargeted effects of ionizing radiation

    International Nuclear Information System (INIS)

    Coates, Philip J.; Lorimore, Sally A.; Wright, Eric G.

    2004-01-01

    The major adverse consequences of radiation exposures are attributed to DNA damage in irradiated cells that has not been correctly restored by metabolic repair processes. However, the dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells either directly or via media transfer (radiation-induced genomic instability) or in cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by a number of delayed responses including chromosomal abnormalities, gene mutations and cell death. Bystander effects include increases or decreases in damage-inducible and stress-related proteins, increases or decreases in reactive oxygen and nitrogen species, cell death or cell proliferation, cell differentiation, radioadaptation, induction of mutations and chromosome aberrations and chromosomal instability. The phenotypic expression of untargeted effects and the potential consequences of these effects in tissues reflect a balance between the type of bystander signals produced and the responses of cell populations to such signals, both of which may be significantly influenced by cell type and genotype. Thus, in addition to targeted effects of damage induced directly in cells by irradiation, a variety of untargeted effects may also make important short-term and long-term contributions to determining overall outcome after radiation exposures

  12. Oxygen-Dependent Cell-to-Cell Variability in the Output of the Escherichia coli Tor Phosphorelay.

    Science.gov (United States)

    Roggiani, Manuela; Goulian, Mark

    2015-06-15

    Escherichia coli senses and responds to trimethylamine-N-oxide (TMAO) in the environment through the TorT-TorS-TorR signal transduction system. The periplasmic protein TorT binds TMAO and stimulates the hybrid kinase TorS to phosphorylate the response regulator TorR through a phosphorelay. Phosphorylated TorR, in turn, activates transcription of the torCAD operon, which encodes the proteins required for anaerobic respiration via reduction of TMAO to trimethylamine. Interestingly, E. coli respires TMAO in both the presence and absence of oxygen, a behavior that is markedly different from the utilization of other alternative electron acceptors by this bacterium. Here we describe an unusual form of regulation by oxygen for this system. While the average level of torCAD transcription is the same for aerobic and anaerobic cultures containing TMAO, the behavior across the population of cells is strikingly different under the two growth conditions. Cellular levels of torCAD transcription in aerobic cultures are highly heterogeneous, in contrast to the relatively homogeneous distribution in anaerobic cultures. Thus, oxygen regulates the variance of the output but not the mean for the Tor system. We further show that this oxygen-dependent variability stems from the phosphorelay. Trimethylamine-N-oxide (TMAO) is utilized by numerous bacteria as an electron acceptor for anaerobic respiration. In E. coli, expression of the proteins required for TMAO respiration is tightly regulated by a signal transduction system that is activated by TMAO. Curiously, although oxygen is the energetically preferred electron acceptor, TMAO is respired even in the presence of oxygen. Here we describe an interesting and unexpected form of regulation for this system in which oxygen produces highly variable expression of the TMAO utilization proteins across a population of cells without affecting the mean expression of these proteins. To our knowledge, this is the first reported example of a stimulus

  13. Behavior of pulsed electric field injured Escherichia coli O157:H7 cells in apple juice amended with pyruvate and catalase

    Science.gov (United States)

    Pulse Electric Field (PEF) treatment has been used to inactivate bacteria in liquid foods. However, information on the behavior of PEF injured Escherichia coli bacteria in media during storage at 5 and 23C are limited. In this study, we investigated the fate of E. coli O157:H7 cells at 6.8 log CFU/m...

  14. Removal of radiation damage by subpopulations of plateau-phase Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Nelson, J.M.; Metting, N.F.; Braby, L.A.; Roesch, W.C.

    1987-01-01

    Specific cellular radiobiology studies are often required to test aspects of the mathematical models developed in the Radiation Dosimetry program. These studies are designed to determine whether specific mathematical expressions, which characterize the expected effect of biochemical mechanisms on observable biological responses, are consistent with the behavior of selected cell lines. Since these tests place stringent requirements on the cellular system, special techniques and culture conditions are required to minimize biological variability. The use of specialized cell populations is providing data on the extent of repair following low doses, and on the changes in the types of damage that can be repaired as the cell progresses toward mitosis. The stationary-phase Chinese hamster ovary (CHO) cells are composed primarily of G(1)-phase cells (83%), with the remainder comprising both G(2) and S phases. Removal of radiation damage by cells was studied in split-dose experiments. To date, we have observed no significant differences in cellular repair rate. This suggests, therefore, that each of the repair processes found in stationary-phase cells is cell-age independent. However, cellular radiation sensitivity does change rapidly and considerably as the cells progress from one phase to the next through the cell cycle. Since the rate of damage removal appears invariant, the change in survival must reflect the efficiency of producing that damage. The experimental data suggest that production of one or another sort of damage probably dominates during specific phases of the cell cycle, while the capacity for removal of all types of damage remains relatively constant

  15. Radiation damage evaluation on AlGaAs/GaAs solar cells

    International Nuclear Information System (INIS)

    Moreno, E.G.; Alcubilla, R.; Prat, L.; Castaner, L.

    1988-01-01

    A piecewise model to evaluate radiation damage on AlGaAs based solar cells has been developed, which gives complete electrical parameters of the cells in the operating temperature range. Different structures, including graded band gap and double heteroface can be analyzed. The cell structure is sliced into layers of constant parameters, allowing the model to take into account nonuniform damage produced by low energy protons without excess computer time. Proton damage coefficients as well as proton damage ratios can be calculated for energies between 30 and 10/sup 4/ keV with only two adjustable parameters. In addition, coirradiation experiments with different energy protons can be simulated, by improving the conventional method of degradation computering

  16. Effect of Spermidine Analogues on Cell Growth of Escherichia coli Polyamine Requiring Mutant MA261.

    Directory of Open Access Journals (Sweden)

    Taketo Yoshida

    Full Text Available The effects of spermidine analogues [norspermidine (NSPD, 33, spermidine (SPD, 34, homospermidine (HSPD, 44 and aminopropylcadaverine (APCAD, 35] on cell growth were studied using Escherichia coli polyamine-requiring mutant MA261. Cell growth was compared at 32°C, 37°C, and 42°C. All four analogues were taken up mainly by the PotABCD spermidine-preferential uptake system. The degree of stimulation of cell growth at 32°C and 37°C was NSPD ≥ SPD ≥ HSPD > APCAD, and SPD ≥ HSPD ≥ NSPD > APCAD, respectively. However, at 42°C, it was HSPD » SPD > NSPD > APCAD. One reason for this is HSPD was taken up effectively compared with other triamines. In addition, since natural polyamines (triamines and teteraamines interact mainly with RNA, and the structure of RNA is more flexible at higher temperatures, HSPD probably stabilized RNA more tightly at 42°C. We have thus far found that 20 kinds of protein syntheses are stimulated by polyamines at the translational level. Among them, synthesis of OppA, RpoE and StpA was more strongly stimulated by HSPD at 42°C than at 37°C. Stabilization of the initiation region of oppA and rpoE mRNA was tighter by HSPD at 42°C than 37°C determined by circular dichroism (CD. The degree of polyamine stimulation of OppA, RpoE and StpA synthesis by NSPD, SPD and APCAD was smaller than that by HSPD at 42°C. Thus, the degree of stimulation of cell growth by spermidine analogues at the different temperatures is dependent on the stimulation of protein synthesis by some components of the polyamine modulon.

  17. Repair of DNA damage induced by ionizing radiation and benzo[a]pyrene in mammalian cells

    International Nuclear Information System (INIS)

    Cerutti, P.; Shinohara, K.; Remsen, J.

    1977-01-01

    The biological effects of DNA-damaging agents are codetermined by the structural characteristics of the lesions, the quality and extent of the local distortion of DNA and chromatin structure, and the mode(s) of damage processing used by a given type of cell. Persistent damage (i.e., damage that is not removed before it is reached by DNA replication) may be mostly responsible for mutagenesis and carcinogenesis. To understand the effects of environmental physical and chemical DNA-damaging agents on human health, the mechanisms of damage processing used by human cells have to be elucidated. We report our studies of the excision of gamma-ray products of the 5,6-dihydroxydihydrothymine type (t 0 /sub 2//sup γ/) in normal human fibroblasts and in fibroblasts from patients with the hereditary diseases Fanconi's anemia (FA) and ataxia telangiectasia (AT). Both diseases are characterized by chromosomal instability and increased susceptibility for the development of cancer. Formation and repair of DNA-benzo[a]pyrene adducts were studied in baby hamster kidney cells, secondary mouse embryo cells, and human lymphoma. The relative persistence of DNA-B[a]P may explain the high mutagenicity of the 7,8-dihydroxy-9,10-epoxy-tetrahydrobenzo[a]pyrene metabolites in rodent cells that has been observed by several investigators

  18. Apple Flavonoids Suppress Carcinogen-Induced DNA Damage in Normal Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Vazhappilly Cijo George

    2017-01-01

    Full Text Available Scope. Human neoplastic transformation due to DNA damage poses an increasing global healthcare concern. Maintaining genomic integrity is crucial for avoiding tumor initiation and progression. The present study aimed to investigate the efficacy of an apple flavonoid fraction (AF4 against various carcinogen-induced toxicity in normal human bronchial epithelial cells and its mechanism of DNA damage response and repair processes. Methods and Results. AF4-pretreated cells were exposed to nicotine-derived nitrosamine ketones (NNK, NNK acetate (NNK-Ae, methotrexate (MTX, and cisplatin to validate cytotoxicity, total reactive oxygen species, intracellular antioxidants, DNA fragmentation, and DNA tail damage. Furthermore, phosphorylated histone (γ-H2AX and proteins involved in DNA damage (ATM/ATR, Chk1, Chk2, and p53 and repair (DNA-PKcs and Ku80 mechanisms were evaluated by immunofluorescence and western blotting, respectively. The results revealed that AF4-pretreated cells showed lower cytotoxicity, total ROS generation, and DNA fragmentation along with consequent inhibition of DNA tail moment. An increased level of γ-H2AX and DNA damage proteins was observed in carcinogen-treated cells and that was significantly (p≤0.05 inhibited in AF4-pretreated cells, in an ATR-dependent manner. AF4 pretreatment also facilitated the phosphorylation of DNA-PKcs and thus initiation of repair mechanisms. Conclusion. Apple flavonoids can protect in vitro oxidative DNA damage and facilitate repair mechanisms.

  19. Exposure of E. coli to DNA-methylating agents impairs biofilm formation and invasion of eukaryotic cells via down regulation of the N-acetylneuraminate lyase NanA

    Directory of Open Access Journals (Sweden)

    Pamela eDi Pasquale

    2016-02-01

    Full Text Available DNA methylation damage can be induced by endogenous and exogenous chemical agents, which has led every living organism to develop suitable response strategies. We investigated protein expression profiles of Escherichia coli upon exposure to the alkylating agent methyl-methane sulfonate (MMS by differential proteomics. Quantitative proteomic data showed a massive downregulation of enzymes belonging to the glycolytic pathway and fatty acids degradation, strongly suggesting a decrease of energy production. A strong reduction in the expression of the N-acetylneuraminate lyases (NanA involved in the sialic acid metabolism was also observed. Using a null NanA mutant and DANA, a substrate analogue acting as competitive inhibitor, we demonstrated that down regulation of NanA affects biofilm formation and adhesion properties of E. coli MV1161. Exposure to alkylating agents also decreased biofilm formation and bacterial adhesion to Caco-2 eukaryotic cell line by the adherent invasive E. coli (AIEC strain LF82. Our data showed that methylation stress impairs E. coli adhesion properties and suggest a possible role of NanA in biofilm formation and bacteria host interactions.

  20. WR-1065 and radioprotection of vascular endothelial cells. I. Cell proliferation, DNA synthesis and damage

    International Nuclear Information System (INIS)

    Rubin, D.B.; Drab, E.A.; Kang, H.J.; Baumann, F.E.; Blazek, E.R.

    1996-01-01

    Normal tissue toxicity limits radiation therapy and could depend on the extent of damage to the vascular endothelium. Aminothiols such as WR-1065 [N-(2-mercaptoethyl)-1,3-diaminopropane] provide radioprotection for normal tissues, but little is known about how the aminothiols specifically affect the endothelium. Bovine aortic endothelial cells in culture were exposed to WR-1065 for 2 h before irradiation ( 137 Cs γ rays, 1 Gy/min). Alone, WR-1065 demonstrated an antiproliferative effect that was related to dose (0.5-4 mM) and was evident by lowered counts of adherent cells 48 h after exposure. WR-1065 was clearly radioprotective when assessed by colony formation and incorporation of [ 3 H]thymidine. However, when the number of adherent cells was evaluated, radioprotection appeared to be slight and evident only in logarithmically growing cells. WR-1065 at 2 mM suppressed single-strand DNA breaks after 3 Gy by 22% and double-strand breaks after 9 Gy by 47%. Also in the irradiated cells, WR-1065 more than doubled the rate of progression of cells from G 1 to S phase. WR-1065 pretreatment elevated cellular glutathione (GSH) content more than twofold. Although pretreatment with buthionine sulfoximine inhibited the elevation of GSH, the radioprotective impact of WR-1065 on total DNA strand breaks and colony formation was unaffected. These results suggest that WR-1065 may enable tissue recovery from irradiation by promoting the replication of endothelial cells, possibly by mechanisms independent of GSH. 46 refs., 6 figs., 2 tabs

  1. Antibacterial effects of zinc oxide nanoparticles on Escherichia coli ...

    African Journals Online (AJOL)

    To study the antibacterial mechanisms, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to observe morphological changes of E. coli K88 treated with 0.8 μg/ml zinc oxide nanoparticles. The results reveal that zinc oxide nanoparticles could damage cell membranes, lead to leakage of ...

  2. Inhibition of Inducible Nitric Oxide Controls Pathogen Load and Brain Damage by Enhancing Phagocytosis of Escherichia coli K1 in Neonatal Meningitis

    OpenAIRE

    Mittal, Rahul; Gonzalez-Gomez, Ignacio; Goth, Kerstin A.; Prasadarao, Nemani V.

    2010-01-01

    Escherichia coli K1 is a leading cause of neonatal meningitis in humans. In this study, we sought to determine the pathophysiologic relevance of inducible nitric oxide (iNOS) in experimental E. coli K1 meningitis. By using a newborn mouse model of meningitis, we demonstrate that E. coli infection triggered the expression of iNOS in the brains of mice. Additionally, iNOS−/− mice were resistant to E. coli K1 infection, displaying normal brain histology, no bacteremia, no disruption of the blood...

  3. Toxic and radiosensitizina effect of reduced nitroimidazoles on E.COLI B/r cells

    International Nuclear Information System (INIS)

    Ryabchenko, N.I.; Semin, Yu.A.; Petrova, K.M.; Kutmin, A.I.

    1983-01-01

    The spectrophotometric method was used to study the rate of chemical reduction of misonidazole and metronidazole by NH 4 Cl and Zn in the atmosphere of argon and oxygen. Reduction of drugs increased their toxicity for hypoxic and oxygenated E. coli B/r. The reduced metronidazole is a more effective radiosensitizer of hypoxic E. coli B/r than the original compound

  4. Ultrastructural study of mitochondrial damage in CHO cells exposed to hyperthermia.

    Science.gov (United States)

    Cole, A; Armour, E P

    1988-09-01

    A unique direct-view stereo electron microscope technique was used to visualize the structure and three-dimensional distributions of mitochondria in CHO cells in situ following hyperthermic treatments. Aberrations induced by various heating regimens were recorded. The protocol included a trypsin digestion that may have enhanced the expression of the initial heat damage. The developed damage was observed as increasing levels of mitochondrial distortion, swelling, and dissociation. Minimal damage was induced at 42 degrees C for exposures of up to 4 h, while significant damage was induced at 43 degrees C for exposures of more than 30 min and at 45 degrees C for exposures of more than 10 min. For moderate exposures, a partial recovery of mitochondrial integrity was observed when the heat treatment was followed by incubation at 37 degrees C for 24 h. Mitochondrial damage was related to the heat dose in that increasing treatment temperature resulted in greater damage, but when compared to cell survival the damage did not parallel cell killing under all time-temperature conditions.

  5. Effects of burn with and without Escherichia coli infection in rats on intestinal vs. splenic T-cell responses.

    Science.gov (United States)

    Ravindranath, T; Al-Ghoul, W; Namak, S; Fazal, N; Durazo-Arvizu, R; Choudhry, M; Sayeed, M M

    2001-12-01

    To evaluate the effect of burn injury with and without an Escherichia coliseptic complication on T-cell proliferation, interleukin-2 production, and Ca(2+) signaling responses in intestinal Peyer's patch and splenic T cells. Prospective, randomized, sham-controlled animal study. University medical center research laboratory. Adult male Sprague-Dawley rats. Rats were subjected to a 30% total body surface area, full skin thickness burn. Infection in rats was induced via intraperitoneal inoculation of E. coli, 10(9) colony forming units/kg, with or without a prior burn. Rat Peyer's patch and splenic T lymphocytes were isolated by using a nylon wool cell purification protocol. T-cell proliferation, interleukin-2 production, and Ca(2+) signaling responses were measured after stimulation of cells with the mitogen, concanavalin A. T-cell proliferation was determined by measuring incorporation of (3)H-thymidine into T-cell cultures. Interleukin-2 production by T-cell cultures was measured by using enzyme-linked immunosorbent assay. Intracellular T-cell Ca2(+ )concentration, [Ca(2+)](i), was measured by the use of Ca(2+)-specific fluorescent label, fura-2, and its fluorometric quantification. [Ca(2+)](i) was also evaluated by the use of digital video imaging of fura-2 loaded individual T cells. T-cell proliferation and interleukin-2 production were suppressed substantially in both Peyer's patch and splenic T cells 3 days after either the initial burn alone or burn followed by the E. coli inoculation at 24 hrs after the initial burn. There seemed to be no demonstrable additive effects of E. coli infection on the effects produced by burn injury alone. The T-cell proliferation and interleukin-2 production suppressions with burn or burn-plus-infection insults were correlated with attenuated Ca(2+) signaling. E. coli infection alone suppressed T-cell proliferation in Peyer's patch but not in splenic T cells at 2 days postbacterial inoculation; E. coli infection had no effect on

  6. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  7. Acute hydrodynamic damage induced by SPLITT fractionation and centrifugation in red blood cells.

    Science.gov (United States)

    Urbina, Adriana; Godoy-Silva, Ruben; Hoyos, Mauricio; Camacho, Marcela

    2016-05-01

    Though blood bank processing traditionally employs centrifugation, new separation techniques may be appealing for large scale processes. Split-flow fractionation (SPLITT) is a family of techniques that separates in absence of labelling and uses very low flow rates and force fields, and is therefore expected to minimize cell damage. However, the hydrodynamic stress and possible consequent damaging effects of SPLITT fractionation have not been yet examined. The aim of this study was to investigate the hydrodynamic damage of SPLITT fractionation to human red blood cells, and to compare these effects with those induced by centrifugation. Peripheral whole blood samples were collected from healthy volunteers. Samples were diluted in a buffered saline solution, and were exposed to SPLITT fractionation (flow rates 1-10 ml/min) or centrifugation (100-1500 g) for 10 min. Cell viability, shape, diameter, mean corpuscular hemoglobin, and membrane potential were measured. Under the operating conditions employed, both SPLITT and centrifugation maintained cell viability above 98%, but resulted in significant sublethal damage, including echinocyte formation, decreased cell diameter, decreased mean corpuscular hemoglobin, and membrane hyperpolarization which was inhibited by EGTA. Wall shear stress and maximum energy dissipation rate showed significant correlation with lethal and sublethal damage. Our data do not support the assumption that SPLITT fractionation induces very low shear stress and is innocuous to cell function. Some changes in SPLITT channel design are suggested to minimize cell damage. Measurement of membrane potential and cell diameter could provide a new, reliable and convenient basis for evaluation of hydrodynamic effects on different cell models, allowing identification of optimal operating conditions on different scales. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. DNA sequence changes in mutation induced by ultraviolet light in the gpt gene on the chromosome of Escherichia coli uvr+ und uvrA cells

    International Nuclear Information System (INIS)

    Sockett, H.; Romac, S.; Hutchinson, F.

    1991-01-01

    Sequence changes in mutations induced by ultraviolet light are reported for the chromosomal Escherichia coli gpt gene in almost isogenic E. coli uvr + and excision-deficient uvrA cells. Differences between the mutagenic spectra are ascribed to preferential removal of photoproducts in the transcribed strand by excision repair in uvr + cells. This conclusion is confirmed by analysis of published results for genes in both uvr + and uvr − cells, showing a similar selective removal of mutagenic products from the transcribed strand of the E. coli lacI gene and of the lambda phage cl repressor gene. Comparison of these data with published results for ultraviolet mutagenesis of gpt on a chromosome in Chinese hamster ovary cells showed that a mutagenic hot spot in mammalian cells is not present in E. coli; the possibility is suggested that the hot spot might arise from localized lack of excision repair. Otherwise, mutagenesis in hamster cells appeared similar to that in E. coli uvr + cells, except there appears to be a smaller fraction of single-base additions and deletions (frameshifts) in mammalian than in bacterial cells. Phenotypes of 6-thioguanine-resistant E. coli showed there is a gene (or genes) other than gpt involved in the utilization of thioguanine by bacteria

  9. Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy.

    Science.gov (United States)

    Fox, Candace R; Parks, Griffith D

    2018-04-01

    A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked

  10. Cell damage of hepatoma-22 cells exposed to continuous wave ultrasound.

    Science.gov (United States)

    Wang, Pan; Wang, Xiaobing; Liu, Quanhong

    2012-01-01

    processes. Moreover the mechanical effect might also be involved in inducing cell damage because there was significant mitochondria membrane potential loss and no visible ROS detection when cells were exposed to ultrasound for 30 s.

  11. Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells.

    Science.gov (United States)

    Liu, Mingchao; Wu, Qiong; Wang, Mengling; Fu, Yunhe; Wang, Jiufeng

    2016-08-01

    Intrauterine Escherichia coli infection after calving reduces fertility and causes major economic losses in the dairy industry. We investigated the protective effect of the probiotic Lactobacillus rhamnosus GR-1 on E. coli-induced cell damage and inflammation in primary bovine endometrial epithelial cells (BEECs). L. rhamnosus GR-1 reduced ultrastructure alterations and the percentage of BEECs apoptosis after E. coli challenge. Increased messenger RNA (mRNA) expression of immune response indicators, including pattern recognition receptors (toll-like receptor [TLR]2, TLR4, nucleotide-binding oligomerization domain [NOD]1, and NOD2), inflammasome proteins (NOD-like receptor family member pyrin domain-containing protein 3, apoptosis-associated speck-like protein, and caspase-1), TLR4 downstream adaptor molecules (myeloid differentiation antigen 88 [MyD88], toll-like receptor adaptor molecule 2 [TICAM2]), nuclear transcription factor kB (NF-kB), and the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-18, and interferon (IFN)-β, was observed following E. coli challenge. However, these increases were attenuated by L. rhamnosus GR-1 pretreatment. Our data indicate that L. rhamnosus GR-1 ameliorates the E. coli-induced disruption of cellular ultrastructure, subsequently reducing the percentage of BEECs apoptosis and limiting inflammatory responses, partly via attenuation of MyD88-dependent and MyD88-independent pathway activation. Certain probiotics could potentially prevent postpartum uterine diseases in dairy cows, ultimately reducing the use of antibiotics.

  12. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their

  13. Quinacrine pretreatment reduces microwave-induced neuronal damage by stabilizing the cell membrane

    Science.gov (United States)

    Ding, Xue-feng; Wu, Yan; Qu, Wen-rui; Fan, Ming; Zhao, Yong-qi

    2018-01-01

    Quinacrine, widely used to treat parasitic diseases, binds to cell membranes. We previously found that quinacrine pretreatment reduced microwave radiation damage in rat hippocampal neurons, but the molecular mechanism remains poorly understood. Considering the thermal effects of microwave radiation and the protective effects of quinacrine on heat damage in cells, we hypothesized that quinacrine would prevent microwave radiation damage to cells in a mechanism associated with cell membrane stability. To test this, we used retinoic acid to induce PC12 cells to differentiate into neuron-like cells. We then pretreated the neurons with quinacrine (20 and 40 mM) and irradiated them with 50 mW/cm2 microwaves for 3 or 6 hours. Flow cytometry, atomic force microscopy and western blot assays revealed that irradiated cells pretreated with quinacrine showed markedly less apoptosis, necrosis, and membrane damage, and greater expression of heat shock protein 70, than cells exposed to microwave irradiation alone. These results suggest that quinacrine stabilizes the neuronal membrane structure by upregulating the expression of heat shock protein 70, thus reducing neuronal injury caused by microwave radiation. PMID:29623929

  14. Assessment of the progressive nature of cell damage in the pilocarpine model of epilepsy

    Directory of Open Access Journals (Sweden)

    L. Covolan

    2006-07-01

    Full Text Available Pilocarpine-induced (320 mg/kg, ip status epilepticus (SE in adult (2-3 months male Wistar rats results in extensive neuronal damage in limbic structures. Here we investigated whether the induction of a second SE (N = 6 would generate damage and cell loss similar to that seen after a first SE (N = 9. Counts of silver-stained (indicative of cell damage cells, using the Gallyas argyrophil III method, revealed a markedly lower neuronal injury in animals submitted to re-induction of SE compared to rats exposed to a single episode of pilocarpine-induced SE. This effect could be explained as follows: 1 the first SE removes the vulnerable cells, leaving behind resistant cells that are not affected by the second SE; 2 the first SE confers increased resistance to the remaining cells, analogous to the process of ischemic tolerance. Counting of Nissl-stained cells was performed to differentiate between these alternative mechanisms. Our data indicate that different neuronal populations react differently to SE induction. For some brain areas most, if not all, of the vulnerable cells are lost after an initial insult leaving only relatively resistant cells and little space for further damage or cell loss. For some other brain areas, in contrast, our data support the hypothesis that surviving cells might be modified by the initial insult which would confer a sort of excitotoxic tolerance. As a consequence of both mechanisms, subsequent insults after an initial insult result in very little damage regardless of their intensity.

  15. A linear-quadratic model of cell survival considering both sublethal and potentially lethal radiation damage

    International Nuclear Information System (INIS)

    Rutz, H.P.; Coucke, P.A.; Mirimanoff, R.O.

    1991-01-01

    The authors assessed the dose-dependence of repair of potentially lethal damage in Chinese hamster ovary cells x-irradiated in vitro. The recovery ratio (RR) by which survival (SF) of the irradiated cells was enhanced increased exponentially with a linear and a quadratic component namely ζ and ψ: RR=exp(ζD+ψD 2 ). Survival of irradiated cells can thus be expressed by a combined linear-quadratic model considering 4 variables, namely α and β for the capacity of the cells to accumulate sublethal damage, and ζ and ψ for their capacity to repair potentially lethal damage: SF=exp((ζ-α)D+ (ψ-β)D 2 ). author. 26 refs.; 1 fig.; 1 tab

  16. Repair of human DNA: radiation and chemical damage in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Setlow, R.B.

    1976-01-01

    We present the experimental evidence we have gathered, using a particular assay for DNA repair in human cells, the photolysis of bromodeoxyuridine (BrdUrd) incorporated during repair. This assay characterizes the sequence of repair events that occur in human cells after radiation, both ultraviolet and ionizing, and permits an estimation of the size of the average repaired region after these physical insults to DNA. We will discuss chemical insults to DNA and attempt to liken the repair processes after chemical damages of various kinds to those repair processes that occur in human DNA after damage from physical agents. We will also show results indicating that, under certain conditions, repair events resembling those seen after uv-irradiation can be observed in normal human cells after ionizing radiation. Furthermore the XP cells, defective in the repair of uv-induced DNA damage, show defective repair of these uv-like DNA lesions induced by ionizing radiation

  17. Ku70 inhibits gemcitabine-induced DNA damage and pancreatic cancer cell apoptosis

    International Nuclear Information System (INIS)

    Ma, Jiali; Hui, Pingping; Meng, Wenying; Wang, Na; Xiang, Shihao

    2017-01-01

    The current study focused on the role of Ku70, a DNA-dependent protein kinase (DNA-PK) complex protein, in pancreatic cancer cell resistance to gemcitabine. In both established cell lines (Mia-PaCa-2 and PANC-1) and primary human pancreatic cancer cells, shRNA/siRNA-mediated knockdown of Ku70 significantly sensitized gemcitabine-induced cell death and proliferation inhibition. Meanwhile, gemcitabine-induced DNA damage and subsequent pancreatic cancer cell apoptosis were also potentiated with Ku70 knockdown. On the other hand, exogenous overexpression of Ku70 in Mia-PaCa-2 cells suppressed gemcitabine-induced DNA damage and subsequent cell apoptosis. In a severe combined immune deficient (SCID) mice Mia-PaCa-2 xenograft model, gemcitabine-induced anti-tumor activity was remarkably pontificated when combined with Ku70 shRNA knockdown in the xenografts. The results of this preclinical study imply that Ku70 might be a primary resistance factor of gemcitabine, and Ku70 silence could significantly chemo-sensitize gemcitabine in pancreatic cancer cells. - Highlights: • Ku70 knockdown sensitizes gemcitabine-induced killing of pancreatic cancer cells. • Ku70 knockdown facilitates gemcitabine-induced DNA damage and cell apoptosis. • Ku70 overexpression deceases gemcitabine's sensitivity in pancreatic cancer cells. • Ku70 knockdown sensitizes gemcitabine-induced anti-tumor activity in vivo.

  18. DNA Damage: A Sensible Mediator of the Differentiation Decision in Hematopoietic Stem Cells and in Leukemia

    Directory of Open Access Journals (Sweden)

    Cary N. Weiss

    2015-03-01

    Full Text Available In the adult, the source of functionally diverse, mature blood cells are hematopoietic stem cells, a rare population of quiescent cells that reside in the bone marrow niche. Like stem cells in other tissues, hematopoietic stem cells are defined by their ability to self-renew, in order to maintain the stem cell population for the lifetime of the organism, and to differentiate, in order to give rise to the multiple lineages of the hematopoietic system. In recent years, increasing evidence has suggested a role for the accumulation of reactive oxygen species and DNA damage in the decision for hematopoietic stem cells to exit quiescence and to differentiate. In this review, we will examine recent work supporting the idea that detection of cell stressors, such as oxidative and genetic damage, is an important mediator of cell fate decisions in hematopoietic stem cells. We will explore the benefits of such a system in avoiding the development and progression of malignancies, and in avoiding tissue exhaustion and failure. Additionally, we will discuss new work that examines the accumulation of DNA damage and replication stress in aging hematopoietic stem cells and causes us to rethink ideas of genoprotection in the bone marrow niche.

  19. Effect of Saccharomyces cerevisiae var. Boulardii and β-galactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4 (K88

    Directory of Open Access Journals (Sweden)

    Badia Roger

    2012-01-01

    Full Text Available Abstract Probiotic and prebiotics, often called "immune-enhancing" feed additives, are believed to deal with pathogens, preventing the need of an immune response and reducing tissue damage. In this study, we investigated if a recently developed β-galactomannan (βGM had a similar protective role compared to Saccharomyces cerevisiae var. Boulardii (Scb, a proven probiotic, in the context of enterotoxigenic Escherichia coli (ETEC infection. ETEC causes inflammation, diarrhea and intestinal damage in piglets, resulting in large economic loses worldwide. We observed that Scb and βGM products inhibited in vitro adhesion of ETEC on cell surface of porcine intestinal IPI-2I cells. Our data showed that Scb and βGM decreased the mRNA ETEC-induced gene expression of pro-inflammatory cytokines TNF-α, IL-6, GM-CSF and chemokines CCL2, CCL20 and CXCL8 on intestinal IPI-2I. Furthermore, we investigated the putative immunomodulatory role of Scb and βGM on porcine monocyte-derived dendritic cells (DCs per se and under infection conditions. We observed a slight up-regulation of mRNA for TNF-α and CCR7 receptor after co-incubation of DC with Scb and βGM. However, no differences were found in DC activation upon ETEC infection and Scb or βGM co-culture. Therefore, our results indicate that, similar to probiotic Scb, prebiotic βGM may protect intestinal epithelial cells against intestinal pathogens. Finally, although these products may modulate DC activation, their effect under ETEC challenge conditions remains to be elucidated.

  20. Human sepsis-associated Escherichia coli (SEPEC) is able to adhere to and invade kidney epithelial cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Conceição, R.A. [Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de Campinas, Campinas, SP (Brazil); Ludovico, M.S. [Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, PR (Brazil); Andrade, C.G.T.J. [Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR (Brazil); Yano, T. [Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de Campinas, Campinas, SP (Brazil)

    2012-04-13

    The adhesins of extraintestinal pathogenic Escherichia coli are essential for mediating direct interactions between the microbes and the host cell surfaces that they infect. Using fluorescence microscopy and gentamycin protection assays, we observed that 49 sepsis-associated E. coli (SEPEC) strains isolated from human adults adhered to and invaded Vero cells in the presence of D-mannose (100%). In addition, bacteria concentrations of approximately 2 × 10{sup 7} CFU/mL were recovered from Vero cells following an invasion assay. Furthermore, PCR analysis of adhesin genes showed that 98.0% of these SEPEC strains tested positive for fimH, 69.4% for flu, 53.1% for csgA, 38.8% for mat, and 32.7% for iha. Analysis of the invasin genes showed that 16.3% of the SEPEC strains were positive for tia, 12.3% for gimB, and 10.2% for ibeA. Therefore, these data suggest that SEPEC adhesion to cell surfaces occurs through non-fimH mechanisms. Scanning electron microscopy showed the formation of microcolonies on the Vero cell surface. SEPEC invasiveness was also confirmed by the presence of intracellular bacteria, and ultrastructural analysis using electron transmission microscopy revealed bacteria inside the Vero cells. Taken together, these results demonstrate that these SEPEC strains had the ability to adhere to and invade Vero cells. Moreover, these data support the theory that renal cells may be the predominant pathway through which SEPEC enters human blood vessels.

  1. Effect of DNA sequence of Fab fragment on yield characteristics and cell growth of E. coli.

    Science.gov (United States)

    Kulmala, Antti; Huovinen, Tuomas; Lamminmäki, Urpo

    2017-06-19

    Codon usage is one of the factors influencing recombinant protein expression. We were interested in the codon usage of an antibody Fab fragment gene exhibiting extreme toxicity in the E. coli host. The toxic synthetic human Fab gene contained domains optimized by the "one amino acid-one codon" method. We redesigned five segments of the Fab gene with a "codon harmonization" method described by Angov et al. and studied the effects of these changes on cell viability, Fab yield and display on filamentous phage using different vectors and bacterial strains. The harmonization considerably reduced toxicity, increased Fab expression from negligible levels to 10 mg/l, and restored the display on phage. Testing the impact of the individual redesigned segments revealed that the most significant effects were conferred by changes in the constant domain of the light chain. For some of the Fab gene variants, we also observed striking differences in protein yields when cloned from a chloramphenicol resistant vector into an identical vector, except with ampicillin resistance. In conclusion, our results show that the expression of a heterodimeric secretory protein can be improved by harmonizing selected DNA segments by synonymous codons and reveal additional complexity involved in heterologous protein expression.

  2. Serine integrase chimeras with activity in E. coli and HeLa cells

    Directory of Open Access Journals (Sweden)

    Alfonso P. Farruggio

    2014-09-01

    Full Text Available In recent years, application of serine integrases for genomic engineering has increased in popularity. The factor-independence and unidirectionality of these large serine recombinases makes them well suited for reactions such as site-directed vector integration and cassette exchange in a wide variety of organisms. In order to generate information that might be useful for altering the specificity of serine integrases and to improve their efficiency, we tested a hybridization strategy that has been successful with several small serine recombinases. We created chimeras derived from three characterized members of the serine integrase family, phiC31, phiBT1, and TG1 integrases, by joining their amino- and carboxy-terminal portions. We found that several phiBT1-phiC31 (BC and phiC31-TG1 (CT hybrid integrases are active in E. coli. BC chimeras function on native att-sites and on att-sites that are hybrids between those of the two donor enzymes, while CT chimeras only act on the latter att-sites. A BC hybrid, BC{−1}, was also active in human HeLa cells. Our work is the first to demonstrate chimeric serine integrase activity. This analysis sheds light on integrase structure and function, and establishes a potentially tractable means to probe the specificity of the thousands of putative large serine recombinases that have been revealed by bioinformatics studies.

  3. Reconstruction of radical prostatectomy-induced urethral damage using skeletal muscle-derived multipotent stem cells.

    Science.gov (United States)

    Hoshi, Akio; Tamaki, Tetsuro; Tono, Kayoko; Okada, Yoshinori; Akatsuka, Akira; Usui, Yukio; Terachi, Toshiro

    2008-06-15

    Postoperative damage of the urethral rhabdosphincter (URS) and neurovascular bundle (NVB) is a major operative complication of radical prostatectomy. It is generally recognized to be caused by unavoidable surgical damage to the muscle-nerve-blood vessel units around the urethra. We attempted to treat this damage using skeletal muscle-derived stem cells, which are able to reconstitute muscle-nerve-blood vessel units. Cells were enzymatically extracted and sorted by flow cytometry as CD34/45 (Sk-34) and CD34/45 (Sk-DN) cells from green fluorescent protein transgenic mice and rats. URS-NVB damage was induced by manually removing one-third of the total URS and unilateral invasion of NVB in wild-type Sprague-Dawley and node rats. Freshly isolated Sk-34, Sk-34+Sk-DN cells, and cultured Sk-DN cells were directly transplanted into the damaged portion. At 4 and 12 weeks after transplantation, urethral pressure profile by electrical stimulation through the sacral surface (L6-S1) was evaluated as functional recovery. The recovery ratio in the control and transplanted groups was 37.6% and 72.9%, at 4 weeks, and 41.6% and 78.4% at 12 weeks, respectively (Pcells differentiated into numerous skeletal muscle fibers having neuromuscular junctions (innervation) and nerve bundle-related Schwann cells and perineurium, and blood vessel-related endothelial cells and pericyte around the urethra. Thus, we conclude that transplantation of skeletal muscle-derived multipotent Sk-34 and Sk-DN cells is potentially useful for the reconstitution of postoperative damage of URS and NVB after radical prostatectomy.

  4. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  5. The role of genotype in the mutagenic effect of ionizing radiations with different LET on E. coli cells

    International Nuclear Information System (INIS)

    Tokarova, B.; Amirtaev, K.G.; Krasavin, E.A.; Kozubek, S.

    1988-01-01

    The mutagenic effects of γ-irradiation and accelerated deuterium and helium ions on Escherichia coli cells with various repair genotype (wild type, pol A, lex A, and rec BC mutants) have been investigated. It has been shown that the types of dose dependences of the mutagenic effect and the relative genetic effectivenes for various linear energy transfers of ionizing radiation differ in the case of repair deficient mutants and are discussed in terms of current hypotheses. 12 refs.; 2 figs.; 2 tabs

  6. Increased DNA damage in blood cells of rat treated with lead as assessed by comet assay

    Directory of Open Access Journals (Sweden)

    Mohammad Arif

    2008-06-01

    Full Text Available A growing body of evidence suggests that oxidative stress is the key player in the pathogenesis of lead-induced toxicity. The present study investigated lead induced oxidative DNA damage, if any in rat blood cells by alkaline comet assay. Lead was administered intraperitoneally to rats at doses of 25, 50 and 100 mg/kg body weight for 5 days consecutively. Blood collected on day six from sacrificed lead-treated rats was used to assess the extent of DNA damage by comet assay which entailed measurement of comet length, olive tail moment, tail DNA (% and tail length. The results showed that treatment with lead significantly increased DNA damage in a dose-dependent manner. Therefore, our data suggests that lead treatment is associated with oxidative stress-induced DNA damage in rat blood cells which could be used as an early bio-marker of lead-toxicity.

  7. "Commercial stem cells" damage medicine: medicine is aware.

    Science.gov (United States)

    Bianco, Paolo

    2015-11-01

    A recent Editorial in the NEJM on the flourishing of stem cell clinics providing unproven treatments ona commercial basis and the widespread use of fake cell therapies in the US resonates with worldwide concerns on unproven therapies and in Italy, with the recent and luckily finished “Stamina case”. The article brings into focus a resurgence of concern, awareness and willingness to stand up of the broad medical community, in a scenario in which fundamental values of science and medicine are at stake.

  8. [Sea urchin embryo, DNA-damaged cell cycle checkpoint and the mechanisms initiating cancer development].

    Science.gov (United States)

    Bellé, Robert; Le Bouffant, Ronan; Morales, Julia; Cosson, Bertrand; Cormier, Patrick; Mulner-Lorillon, Odile

    2007-01-01

    Cell division is an essential process for heredity, maintenance and evolution of the whole living kingdom. Sea urchin early development represents an excellent experimental model for the analysis of cell cycle checkpoint mechanisms since embryonic cells contain a functional DNA-damage checkpoint and since the whole sea urchin genome is sequenced. The DNA-damaged checkpoint is responsible for an arrest in the cell cycle when DNA is damaged or incorrectly replicated, for activation of the DNA repair mechanism, and for commitment to cell death by apoptosis in the case of failure to repair. New insights in cancer biology lead to two fundamental concepts about the very first origin of cancerogenesis. Cancers result from dysfunction of DNA-damaged checkpoints and cancers appear as a result of normal stem cell (NCS) transformation into a cancer stem cell (CSC). The second aspect suggests a new definition of "cancer", since CSC can be detected well before any clinical evidence. Since early development starts from the zygote, which is a primary stem cell, sea urchin early development allows analysis of the early steps of the cancerization process. Although sea urchins do not develop cancers, the model is alternative and complementary to stem cells which are not easy to isolate, do not divide in a short time and do not divide synchronously. In the field of toxicology and incidence on human health, the sea urchin experimental model allows assessment of cancer risk from single or combined molecules long before any epidemiologic evidence is available. Sea urchin embryos were used to test the worldwide used pesticide Roundup that contains glyphosate as the active herbicide agent; it was shown to activate the DNA-damage checkpoint of the first cell cycle of development. The model therefore allows considerable increase in risk evaluation of new products in the field of cancer and offers a tool for the discovery of molecular markers for early diagnostic in cancer biology

  9. Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest.

    Science.gov (United States)

    Pelegrini, Alessandra Luíza; Moura, Dinara Jaqueline; Brenner, Bethânia Luise; Ledur, Pitia Flores; Maques, Gabriela Porto; Henriques, João Antônio Pegas; Saffi, Jenifer; Lenz, Guido

    2010-09-01

    Never in mitosis A (NIMA)-related kinases (Nek) are evolutionarily conserved proteins structurally related to the Aspergillus nidulans mitotic regulator NIMA. Nek1 is one of the 11 isoforms of the Neks identified in mammals. Different lines of evidence suggest the participation of Nek1 in response to DNA damage, which is also supported by the interaction of this kinase with proteins involved in DNA repair pathways and cell cycle regulation. In this report, we show that cells with Nek1 knockdown (KD) through stable RNA interference present a delay in DNA repair when treated with methyl-methanesulfonate (MMS), hydrogen peroxide (H(2)O(2)) and cisplatin (CPT). In particular, interstrand cross links induced by CPT take much longer to be resolved in Nek1 KD cells when compared to wild-type (WT) cells. In KD cells, phosphorylation of Chk1 in response to CPT was strongly reduced. While WT cells accumulate in G(2)/M after DNA damage with MMS and H(2)O(2), Nek1 KD cells do not arrest, suggesting that G(2)/M arrest induced by the DNA damage requires Nek1. Surprisingly, CPT-treated Nek1 KD cells arrest with a 4N DNA content similar to WT cells. This deregulation in cell cycle control in Nek1 KD cells leads to an increased sensitivity to genotoxic agents when compared to WT cells. These results suggest that Nek1 is involved in the beginning of the cellular response to genotoxic stress and plays an important role in preventing cell death induced by DNA damage.

  10. Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity.

    Science.gov (United States)

    Schmidt, Stanislaw; Tramsen, Lars; Perkhofer, Susanne; Lass-Flörl, Cornelia; Hanisch, Mitra; Röger, Frauke; Klingebiel, Thomas; Koehl, Ulrike; Lehrnbecher, Thomas

    2013-07-01

    Mucormycosis has a high mortality and is increasingly diagnosed in hematopoietic stem cell transplant (HSCT) recipients. In this setting, there is a growing interest to restore host defense to combat infections by adoptively transferring donor-derived immunocompetent cells. Natural killer (NK) cells exhibit antitumor and antiinfective activity, but the interaction with Mucormycetes is unknown. Our data demonstrate that both unstimulated and IL-2 prestimulated human NK cells damage Rhizopus oryzae hyphae, but do not affect resting conidia. The damage of the fungus is mediated, at least in part, by perforin. R. oryzae hyphae decrease the secretion of immunoregulatory molecules by NK cells, such as IFN-γ and RANTES, indicating an immunosuppressive effect of the fungus. Our data indicate that NK cells exhibit activity against Mucormycetes and future research should evaluate NK cells as a potential tool for adoptive immunotherapy in HSCT. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy.

    Science.gov (United States)

    Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2015-04-01

    Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/Escherichia coli (E. coli) polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Repair of potentially lethal and sublethal radiation damage in x-irradiated ascites tumor cells

    International Nuclear Information System (INIS)

    Tsuboi, Atsushi; Okamoto, Mieko; Tsuchiya, Takehiko.

    1985-01-01

    The ability of cells to repair cellular radiation damage during the growth of TMT-3 ascites tumor and the effect of host reaction on the repair ability were examined by using an in vitro assay of cell clonogenicity after in situ irradiation of tumor cells. In single-dose experiments, the repair of potentially lethal radiation damage (PLD) was observed in stationary phase cells (12-day tumor) of the unirradiated host, but not in exponential phase cells (3-day tumor) of the unirradiated host animals. However, if previously irradiated host animals were used, even the exponentially growing tumor cells showed repair of PLD. In two-dose experiments, the ability to repair sublethal radiation damage (SLD) in exponential phase tumor cells was less than that of stationary phase cells in the unirradiated host. In the pre-irradiated host, the extent of the repair in exponential phase cells was somewhat enhanced. These results suggest that irradiation of host animals might suppress a factor that inhibits repair, resulting in enhancement of the repair capability of tumor cells. (author)

  13. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage

    Directory of Open Access Journals (Sweden)

    Rolletschek Alexandra

    2009-06-01

    Full Text Available Abstract Background P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. Results In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. Conclusion In embryonic stem cells where (anti-proliferative p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  14. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.

    Science.gov (United States)

    Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine

    2009-06-17

    P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  15. Harnessing the p53-PUMA Axis to Overcome DNA Damage Resistance in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhou

    2014-12-01

    Full Text Available Resistance to DNA damage–induced apoptosis is a hallmark of cancer and a major cause of treatment failure and lethal disease outcome. A tumor entity that is largely resistant to DNA-damaging therapies including chemo- or radiotherapy is renal cell carcinoma (RCC. This study was designed to explore the underlying molecular mechanisms of DNA damage resistance in RCC to develop strategies to resensitize tumor cells to DNA damage–induced apoptosis. Here, we show that apoptosis-resistant RCC cells have a disconnect between activation of p53 and upregulation of the downstream proapoptotic protein p53 upregulated modulator of apoptosis (PUMA. We demonstrate that this disconnect is not caused by gene-specific repression through CCCTC-binding factor (CTCF but instead by aberrant chromatin compaction. Treatment with an HDAC inhibitor was found to effectively reactivate PUMA expression on the mRNA and protein level and to revert resistance to DNA damage–induced cell death. Ectopic expression of PUMA was found to resensitize a panel of RCC cell lines to four different DNA-damaging agents tested. Remarkably, all RCC cell lines analyzed were wild-type for p53, and a knockdown was likewise able to sensitize RCC cells to acute genotoxic stress. Taken together, our results indicate that DNA damage resistance in RCC is reversible, involves the p53-PUMA axis, and is potentially targetable to improve the oncological outcomes of RCC patients.

  16. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation.

    Science.gov (United States)

    Kang, Kyoung Ah; Lee, Kyoung Hwa; Chae, Sungwook; Zhang, Rui; Jung, Myung Sun; Ham, Young Min; Baik, Jong Seok; Lee, Nam Ho; Hyun, Jin Won

    2006-02-15

    We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway. (c) 2005 Wiley-Liss, Inc.

  17. Ochratoxin A: induction of (oxidative) DNA damage, cytotoxicity and apoptosis in mammalian cell lines and primary cells

    International Nuclear Information System (INIS)

    Kamp, Hennicke G.; Eisenbrand, Gerhard; Schlatter, Josef; Wuerth, Kirsten; Janzowski, Christine

    2005-01-01

    Ochratoxin A (OTA) is a nephrotoxic/-carcinogenic mycotoxin, produced by several Aspergillus- and Penicillium-strains. Humans are exposed to OTA via food contamination, a causal relationship of OTA to human endemic Balkan nephropathy is still under debate. Since DNA-adducts of OTA or its metabolites could not be identified unambiguously, its carcinogenic effectiveness might be related to secondary effects, such as oxidative cell damage or cell proliferation. In this study, OTA mediated induction of (oxidative) DNA damage, cytotoxicity (necrosis, growth inhibition, apoptosis) and modulation of glutathione were investigated in cell lines (V79, CV-1) and primary rat kidney cells. After 24 h incubation, viability of V79 cells was strongly decreased by OTA concentrations >2.5 μmol/L, whereas CV-1 cells were clearly less sensitive. Strong growth inhibition occurred in both cell lines (IC 50 ∼2 μmol/L). Apoptosis, detected with an immunochemical test and with flow cytometry, was induced by >1 μmol/L OTA. Oxidative DNA damage, detected by comet assay after additional treatment with repair enzymes, was induced in all cell systems already at five-fold lower concentrations. Glutathione in CV-1 cells was depleted after 1 h incubation (>100 μmol/L). In contrast, an increase was measured after 24 h incubation (>0.5 μmol/L). In conclusion, OTA induces oxidative DNA damage at low, not yet cytotoxic concentrations. Oxidative DNA damage might initiate cell transformation eventually in connection with proliferative response following cytotoxic cell death. Both events might represent pivotal factors in the chain of cellular events leading into nephro-carcinogenicity of OTA

  18. Factors determinating the shape of survival curves of Escherichia coli cells irradiated by ionizing radiation with different LET. Peculiarities of genom organization and the shape of survival curves

    International Nuclear Information System (INIS)

    Krasavin, E.A.

    1984-01-01

    The basic biological mechanisms realized on molecular, cellular and population levels and stipulating the shape of dependence of the cell suriival (S) on the dose (D) are considered. One of possible causes of nonlinear S(D) dependence are the peculiarities of DNA degradation in E. coli cells. The mechanisms of genetic control of different types of degradation are discussed. Some regularities of the genetic recombination and replication of DNA in E. coli are considered. The conclusion is made that one of the basic stipulating for the shoulder on the survival curves in E. coli are the peculiarities of the chromosome replication

  19. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    tetrazolium bromide (MTT) test. Production of ROS was determined by the oxidation of 2',7'-dichlorodihydrofluorescein to a fluorescent 2',7'-dichlorofluorescein and measured by fluorescence reading and visualized by fluorescence microscopy. DNA stability was determined by single cell gel electrophoresis...

  20. Cell damage and recovery in cryopreserved microphytobenthic diatoms

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Anil, A.C.

    -preservation recovery. Cells were subjected to (1) direct freezing in liquid nitrogen and (2) two-step cooling with and without the cryoprotectant, dimethyl sulfoxide (Me2 SO). Mechanical injury due to exposure to low temperature diVered between the two species. While...

  1. Antimutagenic action of aminoacids on UV-irradiated E. Coli cells: evidence of the existence of metabolic regulation of antimutagenic activity

    International Nuclear Information System (INIS)

    Filippov, V.D.

    1990-01-01

    The yield of mutations in Escherichia Coli cells placed after UV irradiation in a glucose-free salt medium enriched with casamino acids was determined. It is shown that in the absence of glucose casamino acids and certain individual amino acids produce a strong antimutagenetic effect. The acquired data allow to assume the existence of fine metabolic regulation of mutation reparation processes and occurrence of mutations in E. Coli cells exposed to UV-radiation

  2. Persistence of DNA damage following exposure of human bladder cells to chronic monomethylarsonous acid

    International Nuclear Information System (INIS)

    Wnek, S.M.; Medeiros, M.K.; Eblin, K.E.; Gandolfi, A.J.

    2009-01-01

    Malignant transformation was demonstrated in UROtsa cells following 52-weeks of exposure to 50 nM monomethylarsonous acid (MMA III ); the result was the malignantly transformed cell line, URO-MSC. URO-MSC cells were used to study the induction of DNA damage and the alteration of DNA repair enzymes in both the presence of MMA III [URO-MSC(+)] and after subsequent removal of MMA III [URO-MSC(-)] following chronic, low-level exposure. In the presence of MMA III , URO-MSC(+) cells demonstrated a sustained increase in DNA damage following 12-weeks of exposure; in particular, a significant increase in DNA single-strand breaks at 12-weeks of exposure consistently elevated through 52 weeks. The persistence of DNA damage in URO-MSC cells was assessed after a 2-week removal of MMA III . URO-MSC(-) cells demonstrated a decrease in DNA damage compared to URO-MSC(+); however, DNA damage in URO-MSC(-) remained significantly elevated when compared to untreated UROtsa and increased in a time-dependent manner. Reactive oxygen species (ROS) were demonstrated to be a critical component in the generation of DNA damage determined through the incubation of ROS scavengers with URO-MSC cells. Poly (ADP-ribose) polymerase (PARP) is a key repair enzyme in DNA single-strand break repair. URO-MSC(+) resulted in a slight increase in PARP activity after 36-weeks of MMA III exposure, suggesting the presence of MMA III is inhibiting the increase in PARP activity. In support, PARP activity in URO-MSC(-) increased significantly, coinciding with a subsequent decrease in DNA damage demonstrated in URO-MSC(-) compared to URO-MSC(+). These data demonstrate that chronic, low-level exposure of UROtsa cells to 50 nM MMA III results in: the induction of DNA damage that remains elevated upon removal of MMA III ; increased levels of ROS that play a role in MMA III induced-DNA damage; and decreased PARP activity in the presence of MMA III .

  3. Epithelial Cell Damage Activates Bactericidal/Permeability Increasing-Protein (BPI Expression in Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Arjun Balakrishnan

    2017-08-01

    Full Text Available As the first line of defense against invading pathogen, intestinal epithelium produces various antimicrobial proteins (AMP that help in clearance of pathogen. Bactericidal/permeability-increasing protein (BPI is a 55 kDa AMP that is expressed in intestinal epithelium. Dysregulation of BPI in intestinal epithelium is associated with various inflammatory diseases like Crohn’s Disease, Ulcerative colitis, and Infectious enteritis’s. In this paper, we report a direct correlation between intestinal damage and BPI expression. In Caco-2 cells, we see a significant increase in BPI levels upon membrane damage mediated by S. aureus infection and pore-forming toxins (Streptolysin and Listeriolysin. Cells detect changes in potassium level as a Danger-associated molecular pattern associated with cell damage and induce BPI expression in a p38 dependent manner. These results are further supported by in vivo findings that the BPI expression in murine intestinal epithelium is induced upon infection with bacteria which cause intestinal damage (Salmonella Typhimurium and Shigella flexneri whereas mutants that do not cause intestinal damage (STM ΔfliC and STM ΔinvC did not induce BPI expression. Our results suggest that epithelial damage associated with infection act as a signal to induce BPI expression.

  4. Ceramide Production Mediates Aldosterone-Induced Human Umbilical Vein Endothelial Cell (HUVEC Damages.

    Directory of Open Access Journals (Sweden)

    Yumei Zhang

    Full Text Available Here, we studied the underlying mechanism of aldosterone (Aldo-induced vascular endothelial cell damages by focusing on ceramide. We confirmed that Aldo (at nmol/L inhibited human umbilical vein endothelial cells (HUVEC survival, and induced considerable cell apoptosis. We propose that ceramide (mainly C18 production might be responsible for Aldo-mediated damages in HUVECs. Sphingosine-1-phosphate (S1P, an anti-ceramide lipid, attenuated Aldo-induced ceramide production and following HUVEC damages. On the other hand, the glucosylceramide synthase (GCS inhibitor PDMP or the ceramide (C6 potentiated Aldo-induced HUVEC apoptosis. Eplerenone, a mineralocorticoid receptor (MR antagonist, almost completely blocked Aldo-induced C18 ceramide production and HUVEC damages. Molecularly, ceramide synthase 1 (CerS-1 is required for C18 ceramide production by Aldo. Knockdown of CerS-1 by targeted-shRNA inhibited Aldo-induced C18 ceramide production, and protected HUVECs from Aldo. Reversely, CerS-1 overexpression facilitated Aldo-induced C18 ceramide production, and potentiated HUVEC damages. Together, these results suggest that C18 ceramide production mediates Aldo-mediated HUVEC damages. MR and CerS-1 could be the two signaling molecule regulating C18 ceramide production by Aldo.

  5. Endogenous E. coli endophthalmitis.

    Science.gov (United States)

    Shammas, H F

    1977-01-01

    A case of Escherichia coli septicemia with associated metastatic en dophthalmitis and endocarditis is presented. The ocular signs and symptoms were the initial manifestations of sepsis. Irreversible damage to the eye occurred in less than 24 hours. The pattern of metastatic bacterial endophthalmitis has changed since the introduction of potent antimicrobial agents, with an increased incidence of Gram-negative bacillemia. E. coli endophthalmitis carries a poor prognosis. Early diagnosis and systemic treatment will prevent the life-threatening complications of sepsis.

  6. Repair of radiation damage in mammalian cells: its relevance to environmental effects

    International Nuclear Information System (INIS)

    Han, A.; Elkind, M.M.

    1979-01-01

    Assessment of the potential biological hazards associated with energy production technologies involves the quantitation of risk on the basis of dose-effect dependencies, from which, it is hoped, some safety guidelines can be developed. Our current knowledge of the biological importance of damage/repair processes stems by and large from radiation studies which clearly demonstrate that cellular response to radiation depends upon the ability of cells to repair the damage. Apparently, the same is true for cellular response to different chemical agents. Drawing upon our experiences from radiation studies, we demonstrate the relevance of ongoing repair processes, as evident in the studies of radiation induced cell killing and neoplastic transformation, to the type of risk estimates that might be associated with the hazards from energy production technologies. The effect of repair on cell survival is considered. It is evident from our studies that in the region of small doses, repair of damage relative to cell lethality is of importance in estimating the magnitude of effect. Aside from the cytotoxic effects in terms of cell killing, one of the greatest concerns associated with energy production is the potential of a given technology, or its effluents, to produce cancer. It is therefore of importance to quantify the risk in this context of damage registration and possible effect of repair on damage expression. It has been generally established that exposure of normal cells in culture to a variety of known carcinogens results in neoplastic transformation. Our observations with C3H/10T1/2 cells in culture lend direct evidence for the hypothesis that reduced tumor incidences at low dose rates of radiation could be due to the repair of induced damage

  7. Effects of chemical-induced DNA damage on male germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Holme, J.A.; Bjoerge, C.; Trbojevic, M.; Olsen, A.K.; Brunborg, G.; Soederlund, E.J. [National Inst. of Public Health, Oslo (Norway). Dept. of Environmental Medicine; Bjoeras, M.; Seeberg, E. [National Hospital, Oslo (Norway). Dept. of Microbiology; Scholz, T.; Dybing, E.; Wiger, R. [National Hospital, Oslo (Norway). Inst. for Surgical Research and Surgical Dept. B

    1998-12-31

    Several recent studies indicate declines in sperm production, as well as increases in the incidence of genitourinary abnormalities such as testicular cancer, cryptorchidism and hypospadias. It is not known if these effects are due to exposure to chemical pollutants or if other ethiological factors are involved. Animal studies indicate that chemicals will induce such effects by various genetic, epigenetic or non-genetic mechanisms. Recently, much attention has been focused on embryonic/fetal exposure to oestrogen-mimicking chemicals (Toppari et al., 1996). However, the possibility that chemicals may cause reproductive toxicity by other mechanisms such as interactions with DNA, should not be ignored. DNA damage in germ cells may lead to the production of mutated spermatozoa, which in turn may result in spontaneous abortions, malformations and/or genetic defects in the offspring. Regarding the consequences of DNA alterations for carcinogenesis it is possible that genetic damage may occur germ cells, but the consequences are not expressed until certain genetic events occur in postnatal life. Transmission of genetic risk is best demonstrated by cancer-prone disorders such as hereditary retinoblastoma and the Li-Fraumeni syndrome. A number of experiments indicate that germ cells and proliferating cells may be particularly sensitive to DNA damaging agents compared to other cells. Furthermore, several lines of evidence have indicated that one of the best documented male reproductive toxicants, 1,2-dibrome-3-chloropropane (DBCP), causes testicular toxicity through DNA damage. It is possible that testicular cells at certain maturational stages are more subject to DNA damage, have less efficient DNA repair, or have different thresholds for initiating apoptosis following DNA damage than other cell types. (orig.)

  8. Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions

    DEFF Research Database (Denmark)

    He, Lian; Xiu, Yu; Jones, J. Andrew

    2017-01-01

    Microbial fermentation conditions are dynamic, due to transcriptional induction, nutrient consumption, or changes to incubation conditions. In this study, 13C-metabolic flux analysis was used to characterize two violacein-producing E. coli strains with vastly different productivities...

  9. [Nickel exposure to A549 cell damage and L-ascorbic acid interference effect].

    Science.gov (United States)

    Fu, Yao; Wang, Yue; Dan, Han; Zhang, Lin; Ma, Wenhan; Pan, Yulin; Wu, Yonghui

    2015-05-01

    Studying different concentrations of nickel smelting smoke subjects of human lung adenocarcinoma cells (A549) carcinogenic effects, discusses the influence of L-ascorbic acid protection. The A549 cells were divided into experimental and L-ascorbic acid in the intervention group. Plus exposure group concentration of nickel refining dusts were formulated 0.00, 6.25, 12.50, 25.00, 50.00, 100.00 µg/ml suspension, the intervention group on the basis of the added exposure group containing L-ascorbic acid (100 mmol/L), contact 24 h. Detection of cell viability by MTT assay. When the test substance concentration select 0.00, 25.00, 50.00, 100.00 µg/ml experiment for internal Flou-3 fluorescent probe to detect cell Ca²⁺ concentration, within DCFH-DA detect intracellular reactive oxygen (ROS) content, real-time quantitative PCR (real time, in the RT-PCR) was used to detect cell HIF-1α gene expression. With the increase of concentration, subjects increased cell growth inhibition rate, intracellular Ca²⁺ concentration increases, ROS content increased, HIF-1α gene expression increased, differences were statistically significant (P nickel exposure damage to cells. With subjects following exposure to nickel concentration increased, its effect on A549 cell damage increases, L-ascorbic acid cell damage caused by nickel has certain protective effect.

  10. Chromosomal damages and mutagenesis in mammalian and human cells induced by ionizing radiations with different LET

    International Nuclear Information System (INIS)

    Govorun, R.D.

    1997-01-01

    On the basis of literature and proper data the inference was made about essential role of structural chromosomal (and gene) damages in spontaneous and radiation-induced mutagenesis of mammalian and human cells on HPRT-loci. The evidences of increasing role of these damages in the mutagenesis after the influence of ionizing radiations with high LET are adduced. The consequences of HPRT-gene damages have been examined hypothetically. The geterogeneity of mutant subclones on their cytogenetical properties were revealed experimentally. The data reflect a phenomenon of the reproductive chromosomal instability in many generations of mutant cell. The mutagenesis of mammalian cells is also accompanied by the impairment of chromosome integrity with high probability as a stage of appropriate genome reorganization because of changed vital conditions

  11. Bacterial mutagenicity and mammalian cell DNA damage by several substituted anilines.

    Science.gov (United States)

    Zimmer, D; Mazurek, J; Petzold, G; Bhuyan, B K

    1980-04-01

    Several substituted alkyl- and haloanilines were tested for their ability to mutate Salmonella typhimurium and to damage the DNA of mammalian (V79) cells. These results were correlated with their reported carcinogenicity. Of 9 suspected carcinogens, 4 were bacterial mutagens and 4 (out of 7 tested) damaged DNA of V79 cells. The following compounds were weakly mutagenic (less than 150 revertants/mumole): 4-fluoroaniline, 2,3-, 2,4-, 2,5- and 3,4-dimethylaniline, and 2-methyl-4-fluoroaniline. The following compounds were strong mutagens: 2,4,5-trimethylaniline, 2-methyl-4-chloro-, and 2-methyl-4-bromo-, 4-methyl-2-chloro-, 4-methyl-2-bromo- and 2-ethyl-4-chloroaniline. The compounds which damaged DNA in V79 cells were: 2 methyl-4-chloroaniline, 2-methyl-4-bromoaniline, 2,4,5- and 2,4,6-trimethylaniline.

  12. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage.

    Science.gov (United States)

    Sana, Santanu; Datta, Sriparna; Biswas, Dipa; Sengupta, Dipanjan

    2018-02-01

    Besides potential surface activity and some beneficial physical properties, biosurfactants express antibacterial activity. Bacterial cell membrane disrupting ability of rhamnolipid produced by Pseudomonas aeruginosa C2 and a lipopeptide type biosurfactant, BS15 produced by Bacillus stratosphericus A15 was examined against Staphylococcus aureus ATCC 25923 and Escherichia coli K8813. Broth dilution technique was followed to examine minimum inhibitory concentration (MIC) of both the biosurfactants. The combined effect of rhamnolipid and BS15 against S. aureus and E. coli showed synergistic activity by expressing fractional inhibitory concentration (FIC) index of 0.43 and 0.5. Survival curve of both the bacteria showed bactericidal activity after treating with biosurfactants at their MIC obtained from FIC index study as it killed >90% of initial population. The lesser value of MIC than minimum bactericidal concentration (MBC) of the biosurfactants also supported their bactericidal activity against both the bacteria. Membrane permeability against both the bacteria was supported by amplifying protein release, increasing of cell surface hydrophobicity, withholding capacity of crystal violet dye and leakage of intracellular materials. Finally cell membrane disruption was confirmed by scanning electron microscopy (SEM). All these experiments expressed synergism and effective bactericidal activity of the combination of rhamnolipid and BS15 by enhancing the bacterial cell membrane permeability. Such effect of the combination of rhamnolipid and BS15 could make them promising alternatives to traditional antibiotic in near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Enhanced replication of UV-damaged Simian virus 40 DNA in carcinogen-treated mammalian cells

    International Nuclear Information System (INIS)

    Maga, J.A.

    1983-01-01

    The replication of UV-damaged Simian virus 40 (SV40) in carcinogen-treated monkey cells has been studied to elucidate the mechanism of carcinogen-enhanced reactivation. Carcinogen enhanced reactivation is the observed increase in UV-irradiated virus survival in host cells treated with low doses of carcinogen compared to UV-irradiated virus survival in untreated hosts. Carcinogen treatment of monkey kidney cells with either N-acetoxy-2-acetylaminofluorene (AAAF) or UV radiation leads to an enhanced capacity to replicate UV-damaged virus during the first round of infection. To further define the mechanism leading to enhanced replication, a detailed biochemical analysis of replication intermediates in carcinogen-treated cells was performed. Several conclusions can be drawn. First enhanced replication can be observed in the first four rounds of replication after UV irradiation of viral templates. The second major finding is that the relaxed circular intermediate model proposed for the replication of UV-damaged templates in untreated cells appears valid for replication of UV-damaged templates in carcinogen-treated cells. Possible mechanisms and the supporting evidence are discussed and future experiments outlined

  14. Production of R-Mandelic Acid Using Nitrilase from Recombinant E. coli Cells Immobilized with Tris(Hydroxymethyl)Phosphine.

    Science.gov (United States)

    Zhang, Xin-Hong; Liu, Zhi-Qiang; Xue, Ya-Ping; Wang, Yuan-Shan; Yang, Bo; Zheng, Yu-Guo

    2018-03-01

    Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L -1  day -1 and the space-time productivity of 143.2 mmol L -1  h -1  g -1 . The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.

  15. Radiation-induced DNA damage in halogenated pyrimidine incorporated cells and its correlation with radiosensitivity

    International Nuclear Information System (INIS)

    Watanabe, R.; Nikjoo, H.

    2003-01-01

    Cells with DNA containing 5-halogenated pyrimidines in place of thymidine show significant reductions of slope (Do) and shoulder (Dq) of their radiation survival curves. Similar radiosensitization has also been observed in the yield of DNA strand breaks. The purpose of this study is to obtain an insight into the mechanism of cell lethality by examining the relationship between the spectrum of DNA damage and the cell survival. In this study we estimated the enhancement of strand breaks due to incorporation of halogenated pyrimidine, the complexity of DNA damage and the probability of the initial DNA damage leading to cell inactivation. Monte Carlo track structure methods were used to model and simulate the induction of strand breakage by X-rays. The increase of DNA strand break was estimated by assuming the excess strand break was caused by the highly reactive uracil radicals at the halouracil substituted sites. The assumption of the enhancement mechanism of strand breaks was examined and verified by comparison with experimental data for induction of SSB and DSB. The calculated DNA damage spectrum shows the increase in complexity of strand breaks is due to incorporation of halogenated pyrimidines. The increase in the yield of DSB and cell lethality show similar trend at various degrees of halogenated pyrimidine substitution. We asked the question whether this agreement supports the hypothesis that DSB is responsible for cell lethality? The estimated number of lethal damage from the cell survival using a linear-quadratic model is much less than the initial yield of DSB. This work examines the correlation of cell lethality as a function of frequencies of complex form of double strand breaks

  16. Damage to UV-sensitive cells by short UV in photographic flashes

    International Nuclear Information System (INIS)

    Menezes, S.; Monteiro, C.

    1996-01-01

    Light emitted by electronic photographic flash units is shown to damage bacteria and human skin fibroblasts deficient in repair systems, with survival curves very similar to those produced by 254 nm short UV. The lesions induced by these flashes are as photorepairable by the photolyase enzyme as those induced by 254 nm UV and result in equivalent survival rates. Biological dosimetry performed with microorganisms highly sensitive to UV (Escherichia coli K12 AB2480, deficient in excision and recombinational-dependent repair systems and Bacillus subtilis UVSSP spores, deficient in excision and in a specific spore repair process) revealed that each 1 ms flash of light from the photographic unit used in this work contained the equivalent of 0.25 J m -2 of 254 nm UV, when measured at a distance of 7.0 cm. This dose of UV was found to be lethal to both repair-deficient E. coli bacteria and repair-deficient human skin fibroblasts obtained from xeroderma pigmentosum donors, as well as mutagenic in B/r wild-type and HCR-mutant bacteria. (Author)

  17. Remarks on the radiation chemistry of radiation damage in cells

    International Nuclear Information System (INIS)

    Powers, E.L.

    1975-01-01

    Several models of the actions of compounds that sensitize cells to x-irradiation are reviewed and commented on. The electron sequestration model is described in detail and typical experimental results upon which it is based are reviewed. The varieties of responses induced by a number of sensitizers and their antagonists are stressed; there is no single, simple chemical explanation that can account for all the results. However, the importance of the e - /sub aq/ -- .OH relation is evident in all the experimental results with the compounds tested to date

  18. Recent progress of applying mesenchymal stem cells in therapy of urgent radiation damage

    International Nuclear Information System (INIS)

    Liu Jiangong; Guo Wanlong; Zhang Shuxian; Duan Zhikai

    2010-01-01

    At present, Cytokine therapy is the main strategy capable of preventing and reducing the acute radiation syndrome (ARS). With the problem of difficult match and severe graft versus host disease, haemopoietic stem cells can be used to find some effective approaches to treat acute radiation damage. Mesenchymal stem cells are of great therapeutic potential due to their particular characteristics including secretion of hematopoietic cytokine, reconstruction hemopoietic microenvironment, poor-immunogenicity, ease of reception ectogenic gene transfection and expression. This paper is to summarize the studies of biological characteristics of MSC and its application prospects in urgent radiation damage. (authors)

  19. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response.

    Science.gov (United States)

    Reinhardt, H Christian; Yaffe, Michael B

    2013-09-01

    Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.

  20. Predominance of membrane damage in yeast cells in suspension with monochromatic 163-nm vacuum ultraviolet light

    International Nuclear Information System (INIS)

    Ito, T.; Ito, A.

    1980-01-01

    Effects of monochromatic 163-nm ultraviolet light on aqueous suspensions of yeast cells were studied under N 2 and O 2 bubbling conditions. This is a continuation of previous attempts at using a bromine resonance lamp immersed in cell suspension as a means of treating cells with water radicals (163-nm photons decompose water molecules into H atoms and OH' radicals). We found that inactivation occurred only under O 2 bubbling. Genetic changes were induced, but this was attributed to the effects of far-uv components which contaminate the emission. A characteristic feature of the vacuum uv inactivation was a decrease in survival when cells were held in liquid after irradiation. The presence of p-nitrosodimethylaniline (a known OH' scavenger) during irradiation prevented the O 2 -dependent enhancement of inactivation. Cells irradiated under N 2 bubbling showed no such enhancement. Thus, the fast access of oxygen is a necessary condition for fixing initial damage. Initial damage of this type seems to be amplified during subsequent incubation, causing further killing. Cells irradiated under N 2 bubbling were not, however, free of damage, since dye permeability across the cell membrane of irradiated samples increased markedly with both N 2 and O 2 as tested by photodynamic induction of genetic changes using normally unpenetrable dye as a sensitizer. Spectrophotometric evidence for the presence of toluidine blue in the irradiated cells are also presented

  1. The Effects of Brazilian Green Propolis against Excessive Light-Induced Cell Damage in Retina and Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Hiromi Murase

    2013-01-01

    Full Text Available Background. We investigated the effects of Brazilian green propolis and its constituents against white light- or UVA-induced cell damage in mouse retinal cone-cell line 661W or human skin-derived fibroblast cells (NB1-RGB. Methods. Cell damage was induced by 3,000lx white light for 24 h or 4/10 J/cm2 UVA exposure. Cell viability was assessed by Hoechst33342 and propidium iodide staining or by tetrazolium salt (WST-8 cell viability assay. The radical scavenging activity of propolis induced by UVA irradiation in NB1-RGB cells was measured using a reactive-oxygen-species- (ROS- sensitive probe CM-H2DCFDA. Moreover, the effects of propolis on the UVA-induced activation of p38 and extracellular signal-regulated kinase (ERK were examined by immunoblotting. Results. Treatment with propolis and two dicaffeoylquinic acids significantly inhibited the decrease in cell viability induced by white light in 661W. Propolis and its constituents inhibited the decrease in cell viability induced by UVA in NB1-RGB. Moreover, propolis suppressed the intracellular ROS production by UVA irradiation. Propolis also inhibited the levels of phosphorylated-p38 and ERK by UVA irradiation. Conclusion. Brazilian green propolis may become a major therapeutic candidate for the treatment of AMD and skin damage induced by UV irradiation.

  2. Continuous treatment process of mercury removal from aqueous solution by growing recombinant E. coli cells and modeling study

    International Nuclear Information System (INIS)

    Deng, X.; Hu, Z.L.; Yi, X.E.

    2008-01-01

    A continuous treatment process was developed to investigate the capability of genetically engineered E. coli to simultaneously accumulate mercuric ions and reproduce itself in a continuous stirred tank reactor (CSTR) system. The influence of dilution rate and initial Hg 2+ concentration on continuous process was evaluated. Results indicated that the recombinant E. coli could effectively accumulate Hg 2+ from aqueous solution with Hg 2+ removal ratio up to about 90%, and propagate its cells at the same time in the continuous treatment system under suitable operational conditions. A kinetic model based on mass balance of Hg 2+ was proposed to simulate the continuous process. The modeling results were in good agreement with the experimental data

  3. Cephem Potentiation by Inactivation of Nonessential Genes Involved in Cell Wall Biogenesis of beta-Lactamase-Producing Escherichia coli

    DEFF Research Database (Denmark)

    Baker, Kristin R.; Sigurdardottir, Helga Høeg; Jana, Bimal

    2017-01-01

    Reversal of antimicrobial resistance is an appealing and largely unexplored strategy in drug discovery. The objective of this study was to identify potential targets for “helper” drugs reversing cephem resistance in Escherichia coli strains producing β-lactamases. A CMY-2-encoding plasmid...... was transferred by conjugation to seven isogenic deletion mutants exhibiting cephem hypersusceptibility. The effect of each mutation was evaluated by comparing the MICs in the wild type and the mutant harboring the same plasmid. Mutation of two genes encoding proteins involved in cell wall biosynthesis, dap...... for all three drugs. Individual deletion of dapF and mrcB in a clinical isolate of CTX-M-15-producing E. coli sequence type 131 (ST131) resulted in partial reversal of ceftazidime and cefepime resistance but did not reduce MICs below susceptibility breakpoints. Growth curve analysis indicated no fitness...

  4. Reproductive-phase and interphase lethal cell damage after irradiation and treatment with cytostatics

    International Nuclear Information System (INIS)

    Hagemann, G.

    1979-01-01

    After X-ray irradiation of manual cells, two lethal fractions occur due to reproductive and interphase death under low and high radiation doses. The damage kinetics on which this fact is based is compared with hypothetical tumour frequencies and leucemia induction caused in experiments. The reproductive-lethal damage can be manifested by means of colony size spectrometry, with the median colony size class differences (MCD) serving as measure for the damage found. The simultaneous effects of the cytostatics BLEOMYCIN or ICRF 159 and X-rays on reproductive lethal and interphase-lethal damage are measured by means of MCD and survival fraction, and the additive and intensifying effect' is judged with the help of suitably defined terms. This shows that the clinically used ICRF 159 has an additive effect on interphase-lethal and a sub-additive effect on reproductive-lethal cell damage. Thus, favourable results may be expected for the electivity factor in fractionated irradiation and with regard to delayed damage in healthy tissue. (orig.) 891 MG/orig. 892 RDG [de

  5. Sulforaphane enhances irradiation effects in terms of perturbed cell cycle progression and increased DNA damage in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Patrick Naumann

    Full Text Available Sulforaphane (SFN, an herbal isothiocyanate enriched in cruciferous vegetables like broccoli and cauliflower, has gained popularity for its antitumor effects in cell lines such as pancreatic cancer. Antiproliferative as well as radiosensitizing properties were reported for head and neck cancer but little is known about its effects in pancreatic cancer cells in combination with irradiation (RT.In four established pancreatic cancer cell lines we investigated clonogenic survival, analyzed cell cycle distribution and compared DNA damage via flow cytometry and western blot after treatment with SFN and RT.Both SFN and RT show a strong and dose dependent survival reduction in clonogenic assays, an induction of a G2/M cell cycle arrest and an increase in γH2AX protein level indicating DNA damage. Effects were more pronounced in combined treatment and both cell cycle perturbation and DNA damage persisted for a longer period than after SFN or RT alone. Moreover, SFN induced a loss of DNA repair proteins Ku 70, Ku 80 and XRCC4.Our results suggest that combination of SFN and RT exerts a more distinct DNA damage and growth inhibition than each treatment alone. SFN seems to be a viable option to improve treatment efficacy of chemoradiation with hopefully higher rates of secondary resectability after neoadjuvant treatment for pancreatic cancer.

  6. Stem cell therapy for the treatment of radiation-induced normal tissue damage

    International Nuclear Information System (INIS)

    Chapel, A.; Benderitter, M.; Gourmelon, P.; Lataillade, J.J.; Gorin, N.C.

    2013-01-01

    Radiotherapy may induce irreversible damage on healthy tissues surrounding the tumour. In Europe, per year, 1.5 million patients undergo external radiotherapy. Acute adverse effect concern 80% of patients. The late adverse effect of radiotherapy concern 5 to 10% of them, which could be life threatening. Eradication of these manifestations is crucial. The French Institute of Radioprotection and Nuclear Safety (IRSN) contribute to understand effect of radiation on healthy tissue. IRSN is strongly implicated in the field of regeneration of healthy tissue after radiotherapy or radiological accident and in the clinical use of cell therapy in the treatment of irradiated patients. Our first success in cell therapy was the correction of deficient hematopoiesis in two patients. The intravenous injection of Mesenchymal Stem Cells (MSC) has restored bone marrow micro-environment after total body irradiation necessary to sustain hematopoiesis. Cutaneous radiation reactions play an important role in radiation accidents, but also as a limitation in radiotherapy and radio-oncology. We have evidenced for the first time, the efficiency of MSC therapy in the context of acute cutaneous and muscle damage following irradiation in five patients. Concerning the medical management of gastrointestinal disorder after irradiation, we have demonstrated the promising approach of the MSC treatment. We have shown that MSC migrate to damaged tissues and restore gut functions after radiation damage. The evaluation of stem cell therapy combining different sources of adult stem cells is under investigation

  7. Nexrutine Inhibits Cancer Cell Growth as a Consequence of Mitochondrial Damage and Mitophagy

    Directory of Open Access Journals (Sweden)

    Xiang Wu

    2015-05-01

    Full Text Available Background/Aims: Nexrutine is an herbal extract of Phellodendron amurense and has been used as nutrient supplement in China as well as America. Potential protection effect of Nexrutine has been reported. Methods: To investigate the mechanism of Nexrutine, we used the HeLa, U2OS and HCT116 as a model. Based on the acidification of cell culture media, we examined the lactate, mitochondria damage as well as mitophagy status by corresponding assay. Results: Our data suggest that Nexrutine alters the cellular glucose metabolism to promote lactate production. This effect is caused by mitochondrial damage, not an alteration to lactate dehydrogenase activity. As a result of the mitochondrial damage, cell proliferation was inhibited and was associated with an elevation in p21/p27 proteins, which are both important cell cycle inhibitors. As another consequence of the mitochondrial damage, mitophagy was highly activated in Nexrutine-treated cells in a dose-dependent manner. When the autophagy pathway was blocked by siRNAs against BECN1 or ATG7, the growth inhibition caused by Nexrutine was reversed. Conclusion: Our study revealed that autophagy plays an important role in the inhibition of cancer cell proliferation by Nexrutine.

  8. Xeroderma Pigmentosum Group C Deficiency Alters Cigarette Smoke DNA Damage Cell Fate and Accelerates Emphysema Development.

    Science.gov (United States)

    Sears, Catherine R; Zhou, Huaxin; Justice, Matthew J; Fisher, Amanda J; Saliba, Jacob; Lamb, Isaac; Wicker, Jessica; Schweitzer, Kelly S; Petrache, Irina

    2018-03-01

    Cigarette smoke (CS) exposure is a major risk factor for the development of emphysema, a common disease characterized by loss of cells comprising the lung parenchyma. The mechanisms of cell injury leading to emphysema are not completely understood but are thought to involve persistent cytotoxic or mutagenic DNA damage induced by CS. Using complementary cell culture and mouse models of CS exposure, we investigated the role of the DNA repair protein, xeroderma pigmentosum group C (XPC), on CS-induced DNA damage repair and emphysema. Expression of XPC was decreased in mouse lungs after chronic CS exposure and XPC knockdown in cultured human lung epithelial cells decreased their survival after CS exposure due to activation of the intrinsic apoptosis pathway. Similarly, cell autophagy and apoptosis were increased in XPC-deficient mouse lungs and were further increased by CS exposure. XPC deficiency was associated with structural and functional changes characteristic of emphysema, which were worsened by age, similar to levels observed with chronic CS exposure. Taken together, these findings suggest that repair of DNA damage by XPC plays an important and previously unrecognized role in the maintenance of alveolar structures. These findings support that loss of XPC, possibly due to chronic CS exposure, promotes emphysema development and further supports a link between DNA damage, impaired DNA repair, and development of emphysema.

  9. Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.

    Science.gov (United States)

    Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke

    2013-10-21

    Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.

  10. Mechanisms of Sensorineural Cell Damage, Death and Survival in the Cochlea

    Directory of Open Access Journals (Sweden)

    Allen Frederic Ryan

    2015-04-01

    Full Text Available The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss. Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed.

  11. DNA damage and the bystander response in tumor and normal cells exposed to X-rays.

    Science.gov (United States)

    Subhashree, M; Venkateswarlu, R; Karthik, K; Shangamithra, V; Venkatachalam, P

    2017-09-01

    Monolayer and suspension cultures of tumor (BMG-1, CCRF-CEM), normal (AG1522, HADF, lymphocytes) and ATM-mutant (GM4405) human cells were exposed to X-rays at doses used in radiotherapy (high dose and high dose-rate) or radiological imaging (low dose and low dose-rate). Radiation-induced DNA damage, its persistence, and possible bystander effects were evaluated, based on DNA damage markers (γ-H2AX, p53 ser15 ) and cell-cycle-specific cyclins (cyclin B1 and cyclin D1). Dose-dependent DNA damage and a dose-independent bystander response were seen after exposure to high dose and high dose-rate radiation. The level of induced damage (expression of p53 ser15 , γ-H2AX) depended on ATM status. However, low dose and dose-rate exposures neither increased expression of marker proteins nor induced a bystander response, except in the CCRF-CEM cells. Bystander effects after high-dose irradiation may contribute to stochastic and deterministic effects. Precautions to protect unexposed regions or to inhibit transmission of DNA damage signaling might reduce radiation risks. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Regenerative capacity of old muscle stem cells declines without significant accumulation of DNA damage.

    Directory of Open Access Journals (Sweden)

    Wendy Cousin

    Full Text Available The performance of adult stem cells is crucial for tissue homeostasis but their regenerative capacity declines with age, leading to failure of multiple organs. In skeletal muscle this failure is manifested by the loss of functional tissue, the accumulation of fibrosis, and reduced satellite cell-mediated myogenesis in response to injury. While recent studies have shown that changes in the composition of the satellite cell niche are at least in part responsible for the impaired function observed with aging, little is known about the effects of aging on the intrinsic properties of satellite cells. For instance, their ability to repair DNA damage and the effects of a potential accumulation of DNA double strand breaks (DSBs on their regenerative performance remain unclear. This work demonstrates that old muscle stem cells display no significant accumulation of DNA DSBs when compared to those of young, as assayed after cell isolation and in tissue sections, either in uninjured muscle or at multiple time points after injury. Additionally, there is no significant difference in the expression of DNA DSB repair proteins or globally assayed DNA damage response genes, suggesting that not only DNA DSBs, but also other types of DNA damage, do not significantly mark aged muscle stem cells. Satellite cells from DNA DSB-repair-deficient SCID mice do have an unsurprisingly higher level of innate DNA DSBs and a weakened recovery from gamma-radiation-induced DNA damage. Interestingly, they are as myogenic in vitro and in vivo as satellite cells from young wild type mice, suggesting that the inefficiency in DNA DSB repair does not directly correlate with the ability to regenerate muscle after injury. Overall, our findings suggest that a DNA DSB-repair deficiency is unlikely to be a key factor in the decline in muscle regeneration observed upon aging.

  13. Induction of genetic recombination in the lambda bacteriophage by ultraviolet radiation of the Escherichia Coli cells; Induccion de recombinacion genetica en el bacteriofago lambda por irradiacion ultravioleta de las cellulas de Escherichia Coli

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1986-12-15

    In this work there are reported the results that show that although the stimulation of the recombination of the Lambda bacteriophage, by UV irradiation of the cells of Escherichia Coli, it looks to be the result of the high expression of the functions of the SOS system, doesn't keep some relationship with the high concentration of protein reached RecA. (Author)

  14. Preparation of. alpha. -deuterated L-amino acids using E. coli cells containing tryptophanase. Poluchenie. alpha. -dejterirovannykh L-aminokislot s ispol'zovaniem kletok E. coli, soderzhashchikh triptofanazy

    Energy Technology Data Exchange (ETDEWEB)

    Faleev, N G; Ruvinov, S B; Saporovskaya, M B; Belikov, V M; Zakomyrdina, L N; Sakharova, I S; Torchinskij, Yu M [AN SSSR, Moscow (USSR). Inst. Ehlementoorganicheskikh Soedinenij AN SSSR, Moscow (USSR). Inst. Molekulyarnoj Biologii AN SSSR, Moscow (USSR)

    1989-10-01

    Method for preparation of a series of {alpha}-deuterated L-amino acids of high optical purity with quantitative chemica yield, suing stereospecific isotopic exchange in D{sub 2}O under the effect of E.coli cells with high tryptophanase activity was developed.

  15. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    Directory of Open Access Journals (Sweden)

    Razmik Mirzayans

    2016-05-01

    Full Text Available It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E2, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional “repair and survive, or die” hypothesis.

  16. Radioimmunoassay studies on repair of ultraviolet damaged DNA in cultured animal cells

    International Nuclear Information System (INIS)

    Yatani, Ryuichi; Tohgo, Yukihiro; Kunishima, Nobuyoshi.

    1975-01-01

    UV (ultraviolet) damaged DNA and its repair of various cultured animal cells were observed by radioimmunoassay using anti-serum against the UV irradiation induced heat-degenerated DNA. There is some difference among the cells of used animals according to their DNA repairabilities. The cells were divided into four groups according to the existence or strength of their repairabilities. 1) excision repair type: cells of men and chimpanzees. 2) photoreactivation type: cells derived from Tachydromus tachydromoides and chicks. 3) photoreactivation with excision repair: cells of rats, kangaroos and mosquitos. 4) non-excision repair type: cells of mice, Meriones and rats. Animal cells have plural types of repair. Main types of repair will differ according to the kind of animals. (Ichikawa, K.)

  17. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    Imbalanced dNTP pools are highly mutagenic due to a deleterious effect on DNA polymerase fidelity. Mitochondrial DNA defects, including mutations and deletions, are commonly found in a wide variety of different cancer types. In order to further study the interconnection between dNTP pools...... and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect...... shows that normal mitochondrial function is prerequisite for retaining stable dNTP pools upon DNA damage. Therefore it is likely that mitochondrial deficiency defects may cause an increase in DNA mutations by disrupting dNTP pool balance....

  18. Helicobacter pylori Infection Causes Characteristic DNA Damage Patterns in Human Cells

    Directory of Open Access Journals (Sweden)

    Max Koeppel

    2015-06-01

    Full Text Available Infection with the human pathogen Helicobacter pylori (H. pylori is a major risk factor for gastric cancer. Since the bacterium exerts multiple genotoxic effects, we examined the circumstances of DNA damage accumulation and identified regions within the host genome with high susceptibility to H. pylori-induced damage. Infection impaired several DNA repair factors, the extent of which depends on a functional cagPAI. This leads to accumulation of a unique DNA damage pattern, preferentially in transcribed regions and proximal to telomeres, in both gastric cell lines and primary gastric epithelial cells. The observed pattern correlates with focal amplifications in adenocarcinomas of the stomach and partly overlaps with known cancer genes. We thus demonstrate an impact of a bacterial infection directed toward specific host genomic regions and describe underlying characteristics that make such regions more likely to acquire heritable changes during infection, which could contribute to cellular transformation.

  19. Proposed Pharmacological Countermeasures Against Apoptotic Cell Death in Experimental Models Mimicking Space Environment Damage

    Science.gov (United States)

    Lulli, Matteo; Papucci, Laura; Witort, Ewa; Donnini, Martino; Lapucci, Andrea; Lazzarano, Stefano; Mazzoni, Tiziano; Simoncini, Madine; Falciani, Piergiuseppe; Capaccioli, Sergio

    2008-06-01

    Several damaging agents have been suggested to affect human vision during long term space travels. Recently, apoptosis induced by DNA-damaging agents has emerged as frequent pathogenetic mechanism of ophthalmologic pathologies. Here, we propose two countermeasures: coenzyme Q10 and bcl-2 downregulation preventing antisense oligoribonucleotides (ORNs), aimed to inhibit cellular apoptotic death. Our studies have been carried out on retina and neuronal cultured cells treated with the following apoptotic stimuli mimicking space environment: a several-day exposure to either 3H-labeled tymidine or to the genotoxic drug doxorubicin, UV irradiation, hypoxia and glucose/growth factor starvation (Locke medium). The preliminary results clearly indicate that CoQ10, as well as bcl-2 down-regulation preventing ORNs, significantly counteract apoptosis in response to different DNA damaging agents in cultured eye and in neuronal cells. This supports the possibility that both could be optimal countermeasures against ophthalmologic lesions during space explorations.

  20. DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity.

    Directory of Open Access Journals (Sweden)

    Katherine S Lawrence

    2015-04-01

    Full Text Available Errors in replication or segregation lead to DNA damage, mutations, and aneuploidies. Consequently, cells monitor these events and delay progression through the cell cycle so repair precedes division. The DNA damage response (DDR, which monitors DNA integrity, and the spindle assembly checkpoint (SAC, which responds to defects in spindle attachment/tension during metaphase of mitosis and meiosis, are critical for preventing genome instability. Here we show that the DDR and SAC function together throughout the cell cycle to ensure genome integrity in C. elegans germ cells. Metaphase defects result in enrichment of SAC and DDR components to chromatin, and both SAC and DDR are required for metaphase delays. During persistent metaphase arrest following establishment of bi-oriented chromosomes, stability of the metaphase plate is compromised in the absence of DDR kinases ATR or CHK1 or SAC components, MAD1/MAD2, suggesting SAC functions in metaphase beyond its interactions with APC activator CDC20. In response to DNA damage, MAD2 and the histone variant CENPA become enriched at the nuclear periphery in a DDR-dependent manner. Further, depletion of either MAD1 or CENPA results in loss of peripherally associated damaged DNA. In contrast to a SAC-insensitive CDC20 mutant, germ cells deficient for SAC or CENPA cannot efficiently repair DNA damage, suggesting that SAC mediates DNA repair through CENPA interactions with the nuclear periphery. We also show that replication perturbations result in relocalization of MAD1/MAD2 in human cells, suggesting that the role of SAC in DNA repair is conserved.

  1. The small molecule calactin induces DNA damage and apoptosis in human leukemia cells.

    Science.gov (United States)

    Lee, Chien-Chih; Lin, Yi-Hsiung; Chang, Wen-Hsin; Wu, Yang-Chang; Chang, Jan-Gowth

    2012-09-01

    We purified calactin from the roots of the Chinese herb Asclepias curassavica L. and analyzed its biologic effects in human leukemia cells. Our results showed that calactin treatment caused DNA damage and resulted in apoptosis. Increased phosphorylation levels of Chk2 and H2AX were observed and were reversed by the DNA damage inhibitor caffeine in calactin-treated cells. In addition, calactin treatment showed that a decrease in the expression of cell cycle regulatory proteins Cyclin B1, Cdk1, and Cdc25C was consistent with a G2/M phase arrest. Furthermore, calactin induced extracellular signal-regulated kinase (ERK) phosphorylation, activation of caspase-3, caspase-8, and caspase-9, and PARP cleavage. Pretreatment with the ERK inhibitor PD98059 significantly blocked the loss of viability in calactin-treated cells. It is indicated that calactin-induced apoptosis may occur through an ERK signaling pathway. Our data suggest that calactin is a potential anticancer compound.

  2. Damage and repair in mammalian cells after exposure to non-ionizing radiations. 1

    International Nuclear Information System (INIS)

    Harm, H.

    1978-01-01

    Cornea cells of the rat kangaroo or 'potoroo' (Potorous tridactylus) were exposed to far-UV (254 or 302 nm) radiation, with or without subsequent illumination by near-UV or visible light. The DNA of these cells was extracted and tested for the presence of photoproducts binding yeast photoreactivating enzyme (PRE). The effects on repair kinetics of the transforming DNA indicate that in UV-irradiated potoroo cornea cells up to approximately 90% of photorepairable DNA damage can be photorepaired within 15 min. However, the extent of cellular photorepair depends appreciably on experimental parameters during photoreactivating treatment, including the spectral composition of photoreactivating light. Apparently superposition of damage by the photoreactivating treatment itself is the critical factor. This may explain experimental discrepancies existing in different laboratories studying photorepair in UV-irradiated cells of placental mammals. (Auth.)

  3. Cell-wall recycling and synthesis in Escherichia coli and Pseudomonas aeruginosa - their role in the development of resistance.

    Science.gov (United States)

    Dhar, Supurna; Kumari, Hansi; Balasubramanian, Deepak; Mathee, Kalai

    2018-01-01

    The bacterial cell-wall that forms a protective layer over the inner membrane is called the murein sacculus - a tightly cross-linked peptidoglycan mesh unique to bacteria. Cell-wall synthesis and recycling are critical cellular processes essential for cell growth, elongation and division. Both de novo synthesis and recycling involve an array of enzymes across all cellular compartments, namely the outer membrane, periplasm, inner membrane and cytoplasm. Due to the exclusivity of peptidoglycan in the bacterial cell-wall, these players are the target of choice for many antibacterial agents. Our current understanding of cell-wall biochemistry and biogenesis in Gram-negative organisms stems mostly from studies of Escherichia coli. An incomplete knowledge on these processes exists for the opportunistic Gram-negative pathogen, Pseudomonas aeruginosa. In this review, cell-wall synthesis and recycling in the various cellular compartments are compared and contrasted between E. coli and P. aeruginosa. Despite the fact that there is a remarkable similarity of these processes between the two bacterial species, crucial differences alter their resistance to β-lactams, fluoroquinolones and aminoglycosides. One of the common mediators underlying resistance is the amp system whose mechanism of action is closely associated with the cell-wall recycling pathway. The activation of amp genes results in expression of AmpC β-lactamase through its cognate regulator AmpR which further regulates multi-drug resistance. In addition, other cell-wall recycling enzymes also contribute to antibiotic resistance. This comprehensive summary of the information should spawn new ideas on how to effectively target cell-wall processes to combat the growing resistance to existing antibiotics.

  4. Change in the dibenzyldimethylammonium accumulation by irradiated Streptococcus cells caused by radiation damage modifiers

    International Nuclear Information System (INIS)

    Fomenko, B.S.; Leont'eva, G.A.

    1975-01-01

    Anoxia, concentrated cell suspension, glutathione (10 -4 -10 -2 M) or low concentrations of cysteine (10 -4 -10 -3 M) exerted a radioprotective effect and suppressed the accumulation of dibenzyldimethylammonium chloride (DDA + ) by γ-irradiated (40 krad) S. faecalis cells. Dilution of the cell suspensions and higher cysteine concentrations (>10 -3 M) increased the effects of irradiation on bacterial accumulation of DDA + and decreased the cell survival. The lethal action of irradiation apparently involves damage to the mechanisms which maintain a normal membrane potential

  5. Cell survival, UV-reactivation and induction of prophage lambda in Escherichia coli K12 overproducing RecA protein

    International Nuclear Information System (INIS)

    Quillardet, P.; Moreau, P.L.; Devoret, R.; Ginsburg, H.; Mount, D.W.

    1982-01-01

    The effect of the cellular level of RecA protein on the ability of E. coli K12 bacteria to (I) survive UV-irradiation (II) promote UV-reactivation of UV-damaged phage lambda (III) induce prophage lambda was determined in bacterial mutants with discrete increasing levels of RecA protein. The various levels of RecA protein were obtained by combining lexA and recA alleles. Except for the double mutant lexA3 recAo98, whose repair ability was 25% less than that observed in wild type bacteria, bacterial survival was proportional to the level of ReCA protein measured after 90 min of incubation. In lexA3 recAo98 bacteria, RecA protein, at a constitutive high basal level, failed to compensate totally for the lack of LexA repressor cleavage; UV-reactivation of UV-damaged phage lambda was not restored; yet, prophage lambda was induced with 35% efficiency. Efficient UV-induction of prophage lambda is linked to the induction of lexA-controlled host processes that repair the UV-damaged prophage. (orig.)

  6. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    International Nuclear Information System (INIS)

    Averbeck, D.; Boucher, D.

    2006-01-01

    Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using 137 Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage into

  7. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D.; Boucher, D. [Institut Curie-Section de Recherche, UMR2027 CNRS, LCR-V28 du CEA, Centre Universitaire, 91405 Orsay Cedex (France)

    2006-07-01

    Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using {sup 137}Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage

  8. Mechanisms of cytolysin-induced cell damage -- a role for auto- and paracrine signalling

    DEFF Research Database (Denmark)

    Skals, Marianne Gerberg; Prætorius, Helle

    2013-01-01

    Cytolysins inflict cell damage by forming pores in the plasma membrane. The Na(+) conductivity of these pores results in an ion influx that exceeds the capacity of the Na(+) /K(+) -pump to extrude Na(+) . This net load of intracellular osmolytes results in swelling and eventual lysis of the attac...

  9. Chromosomal damage and apoptosis analysis in exfoliated oral epithelial cells from mouthwash and alcohol users

    Science.gov (United States)

    Rocha, Rodrigo dos Santos; Meireles, José Roberto Cardoso; de Moraes Marcílio Cerqueira, Eneida

    2014-01-01

    Chromosomal damage and apoptosis were analyzed in users of mouthwash and/or alcoholic beverages, using the micronucleus test on exfoliated oral mucosa cells. Samples from four groups of 20 individuals each were analyzed: three exposed groups (EG1, EG2 and EG3) and a control group (CG). EG1 comprised mouthwash users; EG2 comprised drinkers, and EG3 users of both mouthwashes and alcoholic beverages. Cell material was collected by gently scraping the insides of the cheeks. Then the cells were fixed in a methanol/acetic acid (3:1) solution and stained and counterstained, respectively, with Schiff reactive and fast green. Endpoints were computed on 2,000 cells in a blind test. Statistical analysis showed that chromosomal damage and apoptosis were significantly higher in individuals of groups EG1 and EG3 than in controls (p < 0.005 and p < 0.001, respectively). No significant difference in chromosomal damage and apoptosis was observed between the exposed groups. In EG2, only the occurrence of apoptosis was significantly higher than in the controls. These results suggest that mouthwashes alone or in association with alcoholic drinks induce genotoxic effects, manifested as chromosomal damage and apoptosis. They also suggest that alcoholic drinks are effective for stimulating the process of apoptosis. However, these data need to be confirmed in larger samples. PMID:25505845

  10. UV-induced cell damage is species-specific among aquatic phagotrophic protists

    NARCIS (Netherlands)

    Sommaruga, R; Buma, AGJ

    2000-01-01

    The sensitivity to ultraviolet radiation (UVR, 280-400 nm) of ten species of freshwater and marine phagotrophic protists was assessed in short-term (4 h) laboratory experiments. Changes in the motility and morphology of the cells, as well as direct quantification of DNA damage, were evaluated. The

  11. Very low temperature rise laser annealing of radiation-damaged solar cells in orbit

    International Nuclear Information System (INIS)

    Poulek, V.

    1988-01-01

    Solar cells of all space objects are damaged by radiation in orbit. This damage, however, can be removed by laser annealing. A new in-orbit laser regeneration system for both body- and spin-stabilized space objects is proposed. For successful annealing of solar cells damaged by 10 years' radiation dose in orbit it is necessary for the temperature rise in the incidence point of the laser beam to reach about 400 0 C. By continuous regeneration, however, between two annealing cycles the solar cells are hit by about two orders of magnitude lower radiation dose. This makes it possible to carry out the regeneration at a temperature rise well under 1 0 C! If an optimal laser regeneration system is used, such low temperature rise laser annealing of radiation-damaged solar cells is possible. A semiconductor GaAlAs diode laser with output power up to 10 mW CW was used for annealing. Some results of the very low temperature rise annealing experiment are given in this paper. (author)

  12. Radiation-induced DNA damage in canine hemopoietic cells and stromal cells as measured by the comet assay

    International Nuclear Information System (INIS)

    Kreja, L.; Selig, C.; Plappert, U.; Nothdurft, W.

    1996-01-01

    Stromal cell progenitors (fibroblastoid colony-forming unit; CFU-Fs) are representative of the progenitor cell population of the hemopoietic microenvironment in bone marrow (BM). Previous studies of the radiation dose-effect relationships for colony formation have shown that canine CFU-Fs are relatively radioresistant as characterized by a D 0 value of about 2.4 Gy. In contrast, hemopoietic progenitors are particularly radiosensitive (D 0 values = 0.12-0.60 Gy). In the present study, the alkaline single-cell gel electrophoresis technique for the in situ quantitation of DNA strand breaks and alkalilabile site was employed. Canine buffy coat cells from BM aspirates and cells harvested from CFU-F colonies or from mixed populations of adherent BM stromal cell (SC) layers were exposed to increasing doses of X-rays, embedded in agarose gel on slides, lysed with detergents, and placed in an electric field. DNA migrating from single cells in the gel was made visible as open-quotes cometsclose quotes by ethidium bromide staining. Immediate DNA damage was much less in cultured stromal cells than in hemopoietic cells in BM aspirates. These results suggest that the observed differences in clonogenic survival could be partly due to differences in the type of the initial DNA damage between stromal cells and hemopoietic cells. 37 refs., 2 figs., 1 tab

  13. Lack of functional relevance of isolated cell damage in transplants of Parkinson's disease patients

    DEFF Research Database (Denmark)

    Cooper, Oliver; Astradsson, Arnar; Hallett, Penny

    2009-01-01

    Postmortem analyses from clinical neural transplantation trials of several subjects with Parkinson's disease revealed surviving grafted dopaminergic neurons after more than a decade. A subset of these subjects displayed isolated dopaminergic neurons within the grafts that contained Lewy body......-like structures. In this review, we discuss why this isolated cell damage is unlikely to affect the overall graft function and how we can use these observations to help us to understand age-related neurodegeneration and refine our future cell replacement therapies....

  14. Apoptosis-like yeast cell death in response to DNA damage and replication defects

    Energy Technology Data Exchange (ETDEWEB)

    Burhans, William C.; Weinberger, Martin; Marchetti, Maria A.; Ramachandran, Lakshmi; D' Urso, Gennaro; Huberman, Joel A

    2003-11-27

    In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast - reactive oxygen species (ROS) - can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication.

  15. Apoptosis-like yeast cell death in response to DNA damage and replication defects

    International Nuclear Information System (INIS)

    Burhans, William C.; Weinberger, Martin; Marchetti, Maria A.; Ramachandran, Lakshmi; D'Urso, Gennaro; Huberman, Joel A.

    2003-01-01

    In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast - reactive oxygen species (ROS) - can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication

  16. Occurrence and elimination of sites sensitive to UV-endonuclease in UV-irradiated E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Kleibl, K; Sedliakova, M [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1979-01-01

    The occurrence and elimination of sites sensitive to the endonucleolytic action of crude extract from M. luteus (Es sites) were studied in both the parental and daughter DNA of E. coli B/r Hcr/sup +/ irradiated either with lethal fluence only (LF) or with inducing and lethal fluence (IF+LF); after the lethal fluence protein synthesis could either take place or it was inhibited by chlorampehnicol (CAP). The data obtained showed that in the wild type UV-irradiated cells Es sites could be eliminated from their DNA molecules either through pyrimidine dimer excision or through the modification of dimers on replication. It appears that DNA repair takes place most efficiently in cells irradiated with IF+LF and postincubated with CAP; in these conditions cells are supplied with inducible proteins, and enough time for DNA repair is provided before the division of irradiated cells is resumed.

  17. A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell.

    Science.gov (United States)

    Bourdakos, Nicholas; Marsili, Enrico; Mahadevan, Radhakrishnan

    2014-04-01

    Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m(-2) , compared to 63 mW m(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. © 2013 Wiley Periodicals, Inc.

  18. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Enterotoxigenic Escherichia coli (ETEC are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2 were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial

  19. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model.

    Science.gov (United States)

    Zhang, Wei; Zhu, Yao-Hong; Yang, Jin-Cai; Yang, Gui-Yan; Zhou, Dong; Wang, Jiu-Feng

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in

  20. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ghee Chuan Lai

    2017-07-01

    Full Text Available Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG. Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs, preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi

  1. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli.

    Science.gov (United States)

    Lai, Ghee Chuan; Cho, Hongbaek; Bernhardt, Thomas G

    2017-07-01

    Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG). Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs), preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq) as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi-enzyme complexes

  2. Dihydropyridines decrease X-ray-induced DNA base damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojewodzka, M., E-mail: marylaw@ichtj.waw.pl [Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa (Poland); Gradzka, I.; Buraczewska, I.; Brzoska, K.; Sochanowicz, B. [Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa (Poland); Goncharova, R.; Kuzhir, T. [Institute of Genetics and Cytology, Belarussian National Academy of Sciences, Minsk (Belarus); Szumiel, I. [Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa (Poland)

    2009-12-01

    Compounds with the structural motif of 1,4-dihydropyridine display a broad spectrum of biological activities, often defined as bioprotective. Among them are L-type calcium channel blockers, however, also derivatives which do not block calcium channels exert various effects at the cellular and organismal levels. We examined the effect of sodium 3,5-bis-ethoxycarbonyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate (denoted here as DHP and previously also as AV-153) on X-ray-induced DNA damage and mutation frequency at the HGPRT (hypoxanthine-guanine phosphoribosyl transferase) locus in Chinese hamster ovary CHO-K1 cells. Using formamido-pyrimidine glycosylase (FPG) comet assay, we found that 1-h DHP (10 nM) treatment before X-irradiation considerably reduced the initial level of FPG-recognized DNA base damage, which was consistent with decreased 8-oxo-7,8-dihydro-2'-deoxyguanosine content and mutation frequency lowered by about 40%. No effect on single strand break rejoining or on cell survival was observed. Similar base damage-protective effect was observed for two calcium channel blockers: nifedipine (structurally similar to DHP) or verapamil (structurally unrelated). So far, the specificity of the DHP-caused reduction in DNA damage - practically limited to base damage - has no satisfactory explanation.

  3. Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells.

    Science.gov (United States)

    Santacruz-Gomez, K; Silva-Campa, E; Melendrez-Amavizca, R; Teran Arce, F; Mata-Haro, V; Landon, P B; Zhang, C; Pedroza-Montero, M; Lal, R

    2016-04-07

    Nanodiamonds when carboxylated (cNDs) act as reducing agents and hence could limit oxidative damage in biological systems. Gamma (γ)-irradiation of whole blood or its components is required in immunocompetent patients to prevent transfusion-associated graft versus host disease (TA-GVHD). However, γ-irradiation of blood also deoxygenates red blood cells (RBCs) and induces oxidative damage, including abnormalities in cellular membranes and hemolysis. Using atomic force microscopy (AFM) and Raman spectroscopy, we examined the effect of cNDs on γ-irradiation mediated deoxygenation and morphological damage of RBCs. γ-Radiation induced several morphological phenotypes, including stomatocytes, codocytes and echinocytes. While stomatocytes and codocytes are reversibly damaged RBCs, echinocytes are irreversibly damaged. AFM images show significantly fewer echinocytes among cND-treated γ-irradiated RBCs. The Raman spectra of γ-irradiated RBCs had more oxygenated hemoglobin patterns when cND-treated, resembling those of normal, non-irradiated RBCs, compared to the non-cND-treated RBCs. cND inhibited hemoglobin deoxygenation and morphological damage, possibly by neutralizing the free radicals generated during γ-irradiation. Thus cNDs have the therapeutic potential to preserve the quality of stored blood following γ-irradiation.

  4. Radionuclide toxicity in cultured mammalian cells: elucidation of the primary site of radiation damage

    International Nuclear Information System (INIS)

    Warters, R.L.; Hofer, K.G.; Harris, C.R.; Smith, J.M.

    1978-01-01

    Synchronized suspension cultures of Chinese hamster ovary cells (CHO) were labeled with various doses of 3 H-thymidine or 125 I-iododeoxyuridine to evaluate the cytocidal effects of intranuclear radionuclide decay. Damage produced by radionuclide decay outside the cell nucleus was studied on cells exposed to 125 I labeled, monovalent concanavalin A. After labeling, the cells were resynchronized in G 1 -phase and incubated for 36 h at 4 0 C to permit dose accumulation. Cell lethality was evaluated by the standard colony assay. Based on radionuclide incorporation data, cellular dimensions, and subcellular radionuclide distributions, the cumulative dose to whole cells, cell nuclei, and cellular cytoplasm was calculated from the known decay properties of 3 H and 125 I. (Auth.)

  5. Experimental validation of the predicted binding site of Escherichia coli K1 outer membrane protein A to human brain microvascular endothelial cells: identification of critical mutations that prevent E. coli meningitis.

    Science.gov (United States)

    Pascal, Tod A; Abrol, Ravinder; Mittal, Rahul; Wang, Ying; Prasadarao, Nemani V; Goddard, William A

    2010-11-26

    Escherichia coli K1, the most common cause of meningitis in neonates, has been shown to interact with GlcNAc1-4GlcNAc epitopes of Ecgp96 on human brain microvascular endothelial cells (HBMECs) via OmpA (outer membrane protein A). However, the precise domains of extracellular loops of OmpA interacting with the chitobiose epitopes have not been elucidated. We report the loop-barrel model of these OmpA interactions with the carbohydrate moieties of Ecgp96 predicted from molecular modeling. To test this model experimentally, we generated E. coli K1 strains expressing OmpA with mutations of residues predicted to be critical for interaction with the HBMEC and tested E. coli invasion efficiency. For these same mutations, we predicted the interaction free energies (including explicit calculation of the entropy) from molecular dynamics (MD), finding excellent correlation (R(2) = 90%) with experimental invasion efficiency. Particularly important is that mutating specific residues in loops 1, 2, and 4 to alanines resulted in significant inhibition of E. coli K1 invasion in HBMECs, which is consistent with the complete lack of binding found in the MD simulations for these two cases. These studies suggest that inhibition of the interactions of these residues of Loop 1, 2, and 4 with Ecgp96 could provide a therapeutic strategy to prevent neonatal meningitis due to E. coli K1.

  6. Changes in nuclear protein acetylation in u. v. -damaged human cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, B.; Smerdon, M.J.

    1986-07-01

    We have investigated the levels of nuclear protein acetylation in u.v.-irradiated human fibroblasts. We measured the levels of acetylation in total acid-soluble nuclear proteins and observed two distinct differences between the irradiated and unirradiated (control) cells. Immediately after irradiation, there is a wave of protein hyperacetylation (i.e. a total acetylation level greater than that of unirradiated cells) that lasts for 2-6 h depending on the experimental conditions. This hyperacetylation phase is then followed by a hypoacetylation phase, lasting for many hours, and the total level of acetylation does not return to that of control cells until 24-72 h after u.v. damage. Both the magnitude and duration of each phase is dependent on the dose of u.v. light used. The wave of hyperacetylation is more pronounced at low u.v. doses (i.e. less than 5 J/m2), while the wave of hypoacetylation is more pronounced at higher u.v. doses (greater than or equal to 8 J/m2). Furthermore, the duration of each phase is prolonged when cells are exposed to 2 mM hydroxyurea. Examination of the acetylation levels of the individual nuclear proteins indicated that acetylation of the core histones follows the same pattern observed for the total acid-soluble protein fractions. Furthermore, these were the only major proteins in the total acid-soluble fraction observed to undergo the early, rapid hyperacetylation immediately following u.v. damage. Acetylation of histone H1 was negligible in both damaged and control cells, while three prominent non-histone proteins were acetylated only after long labeling times (greater than 4 h) in each case, gradually becoming hyperacetylated in the u.v.-damaged cells. These results raise the possibility that a causal relationship exists between nuclear protein acetylation and nucleotide excision repair of DNA in human cells.

  7. Patterns of DNA damage response in intracranial germ cell tumors versus glioblastomas reflect cell of origin rather than brain environment

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Hoei-Hansen, Christina E; Krizova, Katerina

    2014-01-01

    The DNA damage response (DDR) machinery becomes commonly activated in response to oncogenes and during early stages of development of solid malignancies, with an exception of testicular germ cell tumors (TGCTs). The active DDR signaling evokes cell death or senescence but this anti-tumor barrier ...... checkpoints in intracranial tumorigenesis, with implications for the differential biological responses of diverse tumor types to endogenous stress as well as to genotoxic treatments such as ionizing radiation or chemotherapy....

  8. Differences in the stimulation of repair replication by 3-aminobenzamide in lymphoblastoid cells damaged by methylmethanesulfonate or ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.; Morgan, W.F.

    1987-09-01

    Human lymphoblastoid cells damaged by u.v. light accumulated DNA breaks in the presence of cytosine arabinoside and hydroxyurea at a frequency similar to that of cells damaged by methylmethanesulfonate. 3-Aminobenzamide (1 mM) reduced the net strand-break frequency detected after either kind of damage. Repair replication, however, was stimulated only in methylmethanesulfonate-damaged cells. This stimulation is therefore not related directly to the DNA strand-break frequencies and concomitant poly(ADP-ribose) synthesis, but depends on some other cellular response specific to alkylating agents.

  9. Escherichia coli O157:H7 and rectoanal junction cell interactome

    Science.gov (United States)

    Introduction. Cattle are the primary E. coli O157 (O157) reservoir and principal source of human infection. The anatomical site of O157 persistence is the bovine recto-anal (RAJ) junction; hence, an in-depth understanding of O157-RAJ interactions will help develop novel modalities to limit O157 in c...

  10. Ionizing Radiation-Induced DNA Damage and Its Repair in Human Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dizdaroglu, Miral

    1999-05-12

    DNA damage in mammalian chromatin in vitro and in cultured mammalian cells including human cells was studied. In the first phase of these studies, a cell culture laboratory was established. Necessary equipment including an incubator, a sterile laminar flow hood and several centrifuges was purchased. We have successfully grown several cell lines such as murine hybridoma cells, V79 cells and human K562 leukemia cells. This was followed by the establishment of a methodology for the isolation of chromatin from cells. This was a very important step, because a routine and successful isolation of chromatin was a prerequisite for the success of the further studies in this project, the aim of which was the measurement of DNA darnage in mammalian chromatin in vitro and in cultured cells. Chromatin isolation was accomplished using a slightly modified procedure of the one described by Mee & Adelstein (1981). For identification and quantitation of DNA damage in cells, analysis of chromatin was preferred over the analysis of "naked DNA" for the following reasons: i. DNA may not be extracted efficiently from nucleoprotein in exposed cells, due to formation of DNA-protein cross-links, ii. the extractability of DNA is well known to decrease with increasing doses of radiation, iii. portions of DNA may not be extracted due to fragmentation, iv. unextracted DNA may contain a significant portion of damaged DNA bases and DNA-protein cross-links. The technique of gas chromatography/mass spectrometry (GC/MS), which was used in the present project, permits the identification and quantitation of modified DNA bases in chromatin in the presence of proteins without the necessity of first isolating DNA from chromatin. This has been demonstrated previously by the results from our laboratory and by the results obtained during the course of the present project. The quality of isolated chromatin was tested by measurement of its content of DNA, proteins, and RNA, by analysis of its protein

  11. Ionizing Radiation-Induced DNA Damage and Its Repair in Human Cells

    International Nuclear Information System (INIS)

    Dizdaroglu, Miral

    1999-01-01

    DNA damage in mammalian chromatin in vitro and in cultured mammalian cells including human cells was studied. In the first phase of these studies, a cell culture laboratory was established. Necessary equipment including an incubator, a sterile laminar flow hood and several centrifuges was purchased. We have successfully grown several cell lines such as murine hybridoma cells, V79 cells and human K562 leukemia cells. This was followed by the establishment of a methodology for the isolation of chromatin from cells. This was a very important step, because a routine and successful isolation of chromatin was a prerequisite for the success of the further studies in this project, the aim of which was the measurement of DNA darnage in mammalian chromatin in vitro and in cultured cells. Chromatin isolation was accomplished using a slightly modified procedure of the one described by Mee ampersand Adelstein (1981). For identification and quantitation of DNA damage in cells, analysis of chromatin was preferred over the analysis of ''naked DNA'' for the following reasons: i. DNA may not be extracted efficiently from nucleoprotein in exposed cells, due to formation of DNA-protein cross-links, ii. the extractability of DNA is well known to decrease with increasing doses of radiation, iii. portions of DNA may not be extracted due to fragmentation, iv. unextracted DNA may contain a significant portion of damaged DNA bases and DNA-protein cross-links. The technique of gas chromatography/mass spectrometry (GC/MS), which was used in the present project, permits the identification and quantitation of modified DNA bases in chromatin in the presence of proteins without the necessity of first isolating DNA from chromatin. This has been demonstrated previously by the results from our laboratory and by the results obtained during the course of the present project. The quality of isolated chromatin was tested by measurement of its content of DNA, proteins, and RNA, by analysis of its protein

  12. ATM-activated autotaxin (ATX) propagates inflammation and DNA damage in lung epithelial cells: a new mode of action for silica-induced DNA damage?

    Science.gov (United States)

    Zheng, Huiyuan; Högberg, Johan; Stenius, Ulla

    2017-12-07

    Silica exposure is a common risk factor for lung cancer. It has been claimed that key elements in cancer development are activation of inflammatory cells that indirectly induce DNA damage and proliferative stimuli in respiratory epithelial cells. We studied DNA damage induced by silica particles in respiratory epithelial cells and focused the role of the signaling enzyme autotaxin (ATX). A549 and 16 bronchial epithelial cells (16HBE) lung epithelial cells were exposed to silica particles. Reactive oxygen species (ROS), NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome activation, ATX, ataxia telangiectasia mutated (ATM), and DNA damage (γH2AX, pCHK1, pCHK2, comet assay) were end points. Low doses of silica induced NLRP3 activation, DNA damage accumulation, and ATM phosphorylation. A novel finding was that ATM induced ATX generation and secretion. Not only silica but also rotenone, camptothecin and H2O2 activated ATX via ATM, suggesting that ATX is part of a generalized ATM response to double-strand breaks (DSBs). Surprisingly, ATX inhibition mitigated DNA damage accumulation at later time points (6-16 h), and ATX transfection caused NLRP3 activation and DNA damage. Furthermore, the product of ATX enzymatic activity, lysophosphatidic acid, recapitulated the effects of ATX transfection. These data indicate an ATM-ATX-dependent loop that propagates inflammation and DSB accumulation, making low doses of silica effective inducers of DSBs in epithelial cells. We conclude that an ATM-ATX axis interconnects DSBs with silica-induced inflammation and propagates these effects in epithelial cells. Further studies of this adverse outcome pathway may give an accurate assessment of the lowest doses of silica that causes cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Association between age and repair of oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    damaged DNA in peripheral blood mononuclear cells (PBMCs). We isolated PBMCs from subjects aged 18-83 years, as part of a health survey of the Danish population that focussed on lifestyle factors. The level of DNA repair activity was measured as incisions on potassium bromate-damaged DNA by the comet...... assay. There was an inverse association between age and DNA repair activity with a 0.65% decline in activity per year from age 18 to 83 (95% confidence interval: 0.16-1.14% per year). Univariate regression analysis also indicated inverse associations between DNA repair activity and waist-hip ratio (P...

  14. Dose-rate evidence for two kinds of radiation damage in stationary-phase mammalian cells

    International Nuclear Information System (INIS)

    Metting, N.F.; Braby, L.A.; Roesch, W.C.; Nelson, J.M.

    1985-01-01

    Survival based on colony formation was measured for starved plateau-phase Chinese hamster ovary (CHO) cells exposed to 250 kVp X rays at dose rates of 0.0031, 0.025, 0.18, 0.31, and 1.00 Gy/min. A large dose-rate effect was demonstrated. Delayed plating experiments and dose response experiments following a conditioning dose, both using a dose rate of 1.00 Gy/min and plating delays of up to 48 hr, were also used to investigate the alternative repair hypotheses. There is clearly a greater change in survival in dose-rate experiments than in the other experiments. Thus the authors believe that a process which depends on the square of the concentration of initial damage, and which alters the effect of initial damage on cell survival is being observed. They have applied the damage accumulation model to separate the single-event damage from this concentration-dependent form and estimate the repair rate for the latter type to be 70 min for their CHO cells

  15. Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.

    Science.gov (United States)

    Smith, Michael E; Monroe, J David

    2016-01-01

    Sensory hair cells are the mechanotransductive receptors that detect gravity, sound, and vibration in all vertebrates. Damage to these sensitive receptors often results in deficits in vestibular function and hearing. There are currently two main reasons for studying the process of hair cell loss in fishes. First, fishes, like other non-mammalian vertebrates, have the ability to regenerate hair cells that have been damaged or lost via exposure to ototoxic chemicals or acoustic overstimulation. Thus, they are used as a biomedical model to understand the process of hair cell death and regeneration and find therapeutics that treat or prevent human hearing loss. Secondly, scientists and governmental natural resource managers are concerned about the potential effects of intense anthropogenic sounds on aquatic organisms, including fishes. Dr. Arthur N. Popper and his students, postdocs and research associates have performed pioneering experiments in both of these lines of fish hearing research. This review will discuss the current knowledge regarding the causes and consequences of both lateral line and inner ear hair cell damage in teleost fishes.

  16. The oxygen effect in E.coli K-12 cells of various repair genotypes exposed to neutrons and gamma rays

    International Nuclear Information System (INIS)

    Komova, O.V.; Golovacheva, E.V.

    1988-01-01

    The oxygen enchancement ratio, as estimated after the effect of 137 Cs-γ-quanta, depends on the repair genotype of E. coli K-12 cells and increases in the studied strains in the following order: recA - uvrA - →recA - →wild type→polA - . These variations are levelled with the effect of fast neutrons of divison spectrum (0.75 MeV); the oxygen enhancement ratio for the strains under study decrease, while the oxygen effect is virtually absent in recA - uvrA - -mutant

  17. The use of valinomycin, nigericin and trichlorocarbanilide in control of the protonmotive force in Escherichia coli cells.

    OpenAIRE

    Ahmed, S; Booth, I R

    1983-01-01

    Valinomycin, nigericin and trichlorocarbanilide were assessed for their ability to control the protonmotive force in Escherichia coli cells. Valinomycin, at high K+ concentrations, was found to decrease the membrane potential delta phi and indirectly to decrease the pH gradient delta pH. Nigericin was found to have two modes of action. At low concentrations (0.05-2 microM) it carried out K+/H+ exchange and decreased delta pH. At higher concentrations (50 microM) it carried out a K+-dependent ...

  18. The effects of exogenous catalase on broad-spectrum near-UV (300-400nm) treated Escherichia coli cells

    International Nuclear Information System (INIS)

    Sammartano, L.J.; Tuveson, R.W.

    1984-01-01

    Catalase incorporated into plating medium protects against inactivation and mutagenesis by broad-spectrum near-ultraviolet wavelength (300-400nm) (NUV) radiation in strains of Escherichia coli. Plating medium containing catalase does not provide protection against inactivation by wavelengths in the FUV region. Catalase added to the cell suspension during or added immediately after NUV exposure also protects against inactivation. The protection provided by catalase suggests a possible role for hydrogen peroxide in the processes of inactivation and mutagenesis by broad-spectrum NUV. (author)

  19. DNA replication in necessary for fixing induced mutations to streptomycin-resistance in UV-irradiated Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Dubinin, N P; Filippov, V D

    1986-01-01

    A suspension of E.coli cells has been subjected to UV radiation, then it has been incubated in the growth medium for 15 min. After that one of the portions was incubated with nalidixic acid (NA), and the other one without it in the presence of an antibiotic. Frequency of mutations depending on or irrespective of photoactivation, has been determined. Dependence of Str mutation fixing, induced by low UV radiation doses, on DNA synthesis is determined. Results indicate that both photoreactivation of mutations and its senstivity to mfd system are simultaneously lost.

  20. Edaravone ameliorates compression-induced damage in rat nucleus pulposus cells.

    Science.gov (United States)

    Lin, Hui; Ma, Xuan; Wang, Bai-Chuan; Zhao, Lei; Liu, Jian-Xiang; Pu, Fei-Fei; Hu, Yi-Qiang; Hu, Hong-Zhi; Shao, Zeng-Wu

    2017-11-15

    Edaravone is a strong free radical scavenger most used for treating acute ischemic stroke. In this study we investigated the protective effects and underlying mechanisms of edaravone on compression-induced damage in rat nucleus pulposus (NP) cells. Cell viability was determined using MTT assay methods. NP cell apoptosis was measured by Hoechst 33,258 staining and Annexin V/PI double staining. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and intracellular calcium ([Ca 2+ ] i ) were determined by fluorescent probes DCFH-DA, JC-1 and Fluo-3/AM, respectively. Apoptosis-related proteins (cleaved caspase-3, cytosolic cytochrome c, Bax and Bcl-2) and extracellular matrix proteins (aggrecan and collagen II) were analyzed by western blot. Edaravone attenuated the compression-induced decrease in viability of NP cells in a dose-dependent manner. 33,258 and Annexin V/PI double staining showed that edaravone protected NP cells from compression-induced apoptosis. Further studies confirmed that edaravone protected NP cells against compression-induced mitochondrial pathway of apoptosis by inhibiting overproduction of ROS, collapse of MMP and overload of [Ca 2+ ] i . In addition, edaravone promoted the expression of aggrecan and collagen II in compression-treated NP cells. These results strongly indicate that edaravone ameliorates compression-induced damage in rat nucleus pulposus cells. Edaravone could be a potential new drug for treatment of IDD. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Echinacoside Induces Apoptosis in Human SW480 Colorectal Cancer Cells by Induction of Oxidative DNA Damages

    Directory of Open Access Journals (Sweden)

    Liwei Dong

    2015-06-01

    Full Text Available Echinacoside is a natural compound with potent reactive oxygen species (ROS-scavenging and anti-oxidative bioactivities, which protect cells from oxidative damages. As cancer cells are often under intense oxidative stress, we therefore tested if Echinacoside treatment would promote cancer development. Surprisingly, we found that Echinacoside significantly inhibited the growth and proliferation of a panel of cancer cell lines. Treatment of the human SW480 cancer cells with Echinacoside resulted in marked apoptosis and cell cycle arrest, together with a significant increase in active caspase 3 and cleaved PARP, and upregulation of the G1/S-CDK blocker CDKN1B (p21. Interestingly, immunocytochemistry examination of drug-treated cancer cells revealed that Echinacoside caused a significant increase of intracellular oxidized guanine, 8-oxoG, and dramatic upregulation of the double-strand DNA break (DSB-binding protein 53BP1, suggesting that Echinacoside induced cell cycle arrest and apoptosis in SW480 cancer cells via induction of oxidative DNA damages. These results establish Echinacoside as a novel chemical scaffold for development of anticancer drugs.

  2. Regulation of radiation protective agents on cell damage induced by reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Si Eun; Ju, Eun Mi; Gao, Eu Feng [Kyung Hee University, Seoul (Korea)

    2002-04-01

    In this study, we developed candidates of new radio-protective agents and elucidated the regulation mechanism of these candidates on cell damage induced by reactive oxygen species. The methanol extracts and ethylacetate fractions of NP-1, NP-5, NP-7, NP-11, NP-12 and NP-14 showed higher radical scavenging activity. The extracts of NP-7, NP-12 and NP-14 showed strong protective effect against oxidative damage induced by UV and H{sub 2}O{sub 2}. The most of samples enhanced SOD, CAT and GPX activity in V79-4 cells. The protective effect of samples on H{sub 2}O{sub 2}-induced apoptosis was observed with microscope and flow cytometer. Cells exposed to H{sub 2}O{sub 2} exhibit distinct morphological features of programmed cell death, such as nuclear fragmentation and increase in the percentage of cells with a sub-G1 DNA content. However, cells which was pretreated with samples significantly reduced the characteristics of apoptotic cells. Their morphological observation and DNA profiles were similar to those of the control cells. NP-14 which had excellent antioxidant activity restored G2/M arrest induced by oxidative stress. These data suggested that natural medicinal plants protected H{sub 2}O{sub 2}-induced apoptosis. 42 refs., 29 figs., 11 tabs. (Author)

  3. Deficiency in DNA damage response of enterocytes accelerates intestinal stem cell aging in Drosophila.

    Science.gov (United States)

    Park, Joung-Sun; Jeon, Ho-Jun; Pyo, Jung-Hoon; Kim, Young-Shin; Yoo, Mi-Ae

    2018-03-07

    Stem cell dysfunction is closely linked to tissue and organismal aging and age-related diseases, and heavily influenced by the niche cells' environment. The DNA damage response (DDR) is a key pathway for tissue degeneration and organismal aging; however, the precise protective role of DDR in stem cell/niche aging is unclear. The Drosophila midgut is an excellent model to study the biology of stem cell/niche aging because of its easy genetic manipulation and its short lifespan. Here, we showed that deficiency of DDR in Drosophila enterocytes (ECs) accelerates intestinal stem cell (ISC) aging. We generated flies with knockdown of Mre11 , Rad50 , Nbs1 , ATM , ATR , Chk1 , and Chk2 , which decrease the DDR system in ECs. EC-specific DDR depletion induced EC death, accelerated the aging of ISCs, as evidenced by ISC hyperproliferation, DNA damage accumulation, and increased centrosome amplification, and affected the adult fly's survival. Our data indicated a distinct effect of DDR depletion in stem or niche cells on tissue-resident stem cell proliferation. Our findings provide evidence of the essential role of DDR in protecting EC against ISC aging, thus providing a better understanding of the molecular mechanisms of stem cell/niche aging.

  4. Muscle-Derived Cells for Treatment of Iatrogenic Sphincter Damage and Urinary Incontinence in Men

    Directory of Open Access Journals (Sweden)

    H. Gerullis

    2012-01-01

    Full Text Available Introduction. Aim of this study was to assess the safety and efficacy of injection of autologous muscle-derived cells into the urinary sphincter for treatment of postprostatectomy urinary incontinence in men and to characterize the injected cells prior to transplantation. Methods. 222 male patients with stress urinary incontinence and sphincter damage after uroloical procedures were treated with transurethral injection of autologous muscle-derived cells. The transplanted cells were investigated after cultivation and prior to application by immunocytochemistry using different markers of myogenic differentiation. Feasibility and functionality assessment was achieved with a follow-up of at least 12 months. Results. Follow-up was at least 12 months. Of the 222 treated patients, 120 responded to therapy of whom 26 patients (12% were continent, and 94 patients (42% showed improvement. In 102 (46% patients, the therapy was ineffective. Clinical improvement was observed on average 4.7 months after transplantation and continued in all improved patients. The cells injected into the sphincter were at least ~50% of myogenic origin and representative for early stages of muscle cell differentiation. Conclusions. Transurethral injection of muscle-derived cells into the damaged urethral sphincter of male patients is a safe procedure. Transplanted cells represent different phases of myogenic differentiation.

  5. On-Line Monitoring the Growth of E. coli or HeLa Cells Using an Annular Microelectrode Piezoelectric Biosensor

    Directory of Open Access Journals (Sweden)

    Feifei Tong

    2016-12-01

    Full Text Available Biological information is obtained from the interaction between the series detection electrode and the organism or the physical field of biological cultures in the non-mass responsive piezoelectric biosensor. Therefore, electric parameter of the electrode will affect the biosensor signal. The electric field distribution of the microelectrode used in this study was simulated using the COMSOL Multiphysics analytical tool. This process showed that the electric field spatial distribution is affected by the width of the electrode finger or the space between the electrodes. In addition, the characteristic response of the piezoelectric sensor constructed serially with an annular microelectrode was tested and applied for the continuous detection of Escherichia coli culture or HeLa cell culture. Results indicated that the piezoelectric biosensor with an annular microelectrode meets the requirements for the real-time detection of E. coli or HeLa cells in culture. Moreover, this kind of piezoelectric biosensor is more sensitive than the sensor with an interdigital microelectrode. Thus, the piezoelectric biosensor acts as an effective analysis tool for acquiring online cell or microbial culture information.

  6. On-Line Monitoring the Growth of E. coli or HeLa Cells Using an Annular Microelectrode Piezoelectric Biosensor.

    Science.gov (United States)

    Tong, Feifei; Lian, Yan; Han, Junliang

    2016-12-18

    Biological information is obtained from the interaction between the series detection electrode and the organism or the physical field of biological cultures in the non-mass responsive piezoelectric biosensor. Therefore, electric parameter of the electrode will affect the biosensor signal. The electric field distribution of the microelectrode used in this study was simulated using the COMSOL Multiphysics analytical tool. This process showed that the electric field spatial distribution is affected by the width of the electrode finger or the space between the electrodes. In addition, the characteristic response of the piezoelectric sensor constructed serially with an annular microelectrode was tested and applied for the continuous detection of Escherichia coli culture or HeLa cell culture. Results indicated that the piezoelectric biosensor with an annular microelectrode meets the requirements for the real-time detection of E. coli or HeLa cells in culture. Moreover, this kind of piezoelectric biosensor is more sensitive than the sensor with an interdigital microelectrode. Thus, the piezoelectric biosensor acts as an effective analysis tool for acquiring online cell or microbial culture information.

  7. The role of genotype in the protection of E.coli cells against radiation of defferent LET by cysteamin and glycerol

    International Nuclear Information System (INIS)

    Krasavin, E.A.; Amirtaev, K.G.; Kozubek, S.; Tokarova, B.; Cherevatenko, A.P.

    1985-01-01

    The protecting effects of cysteamin and glycerol on the survival of wild type E.Coli cells, rec A - mutant, pol A - mutant, and Gamsup(r) 444 mutant cells against radiation of different LET has been investigated. The results suggest that the protection of E.Coli cells by the alone-mentioned compounds are of different nature. There is no protection by cysteamin in repair defficient mutants. On the other hand the protective effects of glycerol increases from rec A - mutant to wild type and pol A - mutant. Dose-modifying factors (DMF) in the case of carbon particles have been determined, too. We have obtained DMF=1.36 and DMF=1.32 respectively, in the case of glycerol. On the contrary, cysteamin did not influence the effect of carbon ions in E.Coli cells at all. Possible mechanisms of the protecting effects of cysteamin and glycerol are considered

  8. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage

    Directory of Open Access Journals (Sweden)

    Lars eRoll

    2014-08-01

    Full Text Available The limited regeneration capacity of the adult central nervous system requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation.In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo.As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM, a complex network that contains numerous signaling molecules. It appears that signals in the damaged central nervous system lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C.Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.

  9. The Comparative Investigation of Gene Mutation Induction in {\\it Bacillus subtilis} and {\\it Escherichia coli} Cells after Irradiation by Different LET Radiation

    CERN Document Server

    Boreyko, A V

    2005-01-01

    The data of mutagenic action of ionizing radiation with different physical characteristics on bacterial cells with various genotypes are presented. It was shown that regularities of inducible mutagenesis in {\\it Bacillus subtilis} and {\\it E.coli} are consimilar. The dose-response dependence for both types of cells is described by the linear-quadratic function. The RBE on LET relationship has a local maximum at 20 keV/$\\mu $m. The crucial role in inducible mutagenesis in {\\it E.coli} and {\\it Bacillus subtilis} cells is played by the error-prone $SOS$-repair.

  10. Damage to lens fiber cells causes TRPV4-dependent Src family kinase activation in the epithelium.

    Science.gov (United States)

    Shahidullah, M; Mandal, A; Delamere, N A

    2015-11-01

    The bulk of the lens consists of tightly packed fiber cells. Because mature lens fibers lack mitochondria and other organelles, lens homeostasis relies on a monolayer of epithelial cells at the anterior surface. The detection of various signaling pathways in lens epithelial cells suggests they respond to stimuli that influence lens function. Focusing on Src Family Kinases (SFKs) and Transient Receptor Potential Vanilloid 4 (TRPV4), we tested whether the epithelium can sense and respond to an event that occurs in fiber mass. The pig lens was subjected to localized freeze-thaw (FT) damage to fibers at posterior pole then the lens was incubated for 1-10 min in Krebs solution at 37 °C. Transient SFK activation in the epithelium was detectable at 1 min. Using a western blot approach, the ion channel TRPV4 was detected in the epithelium but was sparse or absent in fiber cells. Even though TRPV4 expression appears low at the actual site of FT damage to the fibers, SFK activation in the epithelium was suppressed in lenses subjected to FT damage then incubated with the TRPV4 antagonist HC067047 (10 μM). Na,K-ATPase activity was examined because previous studies report changes of Na,K-ATPase activity associated with SFK activation. Na,K-ATPase activity doubled in the epithelium removed from FT-damaged lenses and the response was prevented by HC067047 or the SFK inhibitor PP2 (10 μM). Similar changes were observed in response to fiber damage caused by injection of 5 μl hyperosmotic NaCl or mannitol solution beneath the surface of the posterior pole. The findings point to a TRPV4-dependent mechanism that enables the epithelial cells to detect remote damage in the fiber mass and respond within minutes by activating SFK and increasing Na,K-ATPase activity. Because TRPV4 channels are mechanosensitive, we speculate they may be stimulated by swelling of the lens structure caused by damage to the fibers. Increased Na,K-ATPase activity gives the lens greater capacity to

  11. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xu; Ptasinska, Sylwia [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Klas, Matej [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Liu, Yueying [Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Sharon Stack, M. [Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  12. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    International Nuclear Information System (INIS)

    Han, Xu; Ptasinska, Sylwia; Klas, Matej; Liu, Yueying; Sharon Stack, M.

    2013-01-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  13. The use of valinomycin, nigericin and trichlorocarbanilide in control of the protonmotive force in Escherichia coli cells.

    Science.gov (United States)

    Ahmed, S; Booth, I R

    1983-04-15

    Valinomycin, nigericin and trichlorocarbanilide were assessed for their ability to control the protonmotive force in Escherichia coli cells. Valinomycin, at high K+ concentrations, was found to decrease the membrane potential delta phi and indirectly to decrease the pH gradient delta pH. Nigericin was found to have two modes of action. At low concentrations (0.05-2 microM) it carried out K+/H+ exchange and decreased delta pH. At higher concentrations (50 microM) it carried out a K+-dependent transfer of H+, decreasing both delta phi and delta pH. In EDTA-treated cells only the latter mode of action was evident, whereas in a mutant sensitive to deoxycholate both types of effect were observed. Trichlorocarbanilide is proposed as an alternative to nigericin for the specific control of delta pH, and it can be used in cells not treated with EDTA.

  14. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Science.gov (United States)

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  15. Radiation damage and annealing of lithium-doped silicon solar cells

    Science.gov (United States)

    Statler, R. L.

    1971-01-01

    Evidence has been presented that a lithium-diffused crucible-grown silicon solar cell can be made with better efficiency than the flight-quality n p 10 ohms-cm solar cell. When this lithium cell is exposed to a continuous radiation evironment at 60 C (electron spectrum from gamma rays) it has a higher power output than the N/P cell after a fluence equivalent to 1 MeV. A comparison of annealing of proton- and electron-damage in this lithium cell reveals a decidedly faster rate of recovery and higher level of recoverable power from the proton effects. Therefore, the lithium cell shows a good potential for many space missions where the proton flux is a significant fraction of the radiation field to be encountered.

  16. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress.

    Science.gov (United States)

    Ciniglia, Claudia; Mastrobuoni, Francesco; Scortichini, Marco; Petriccione, Milena

    2015-05-01

    The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW.

  17. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    Aging is associated with oxidative stress-generated damage to DNA and this could be related to metabolic disturbances. This study investigated the association between levels of oxidatively damaged DNA in peripheral blood mononuclear cells (PBMCs) and metabolic risk factors in 1,019 subjects, aged...... 18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency......, cholesterol and glycosylated hemoglobin (HbA1c). In the group of men, there were significant positive associations between alcohol intake, HbA1c and FPG-sensitive sites in multivariate analysis. The levels of metabolic risk factors were positively associated with age, yet only few subjects fulfilled all...

  18. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Sondhaus, C.A.; Altman, K.I.

    1998-01-01

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts

  19. Inhibition of DNA chain elongation in Chinese hamster cells by damage localized behind the replication fork

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Hur, E [Israel Atomic Energy Commission, Beersheba. Nuclear Research Center-Negev; Hagan, M P [Armed Forces Radiobiology Research Inst., Bethesda, MD (USA)

    1984-05-01

    Chinese hamster fibroblasts were pulse labelled with 5-bromodeoxyuridine and exposed at time intervals (Tsub(i)) to near-ultraviolet (U.V.A.) light in the presence of a bisbenzimidazole derivative (Hoechst 33342). The sensitivity of the cells in terms of colony forming ability fluctuated depending on Tsub(i). Inhibition of DNA synthesis also depended on Tsub(i) and was maximal when Tsub(i)=O. Using the alkaline elution technique it was shown that the effect of a large dose of light was to inhibit both initiation and elongation of DNA chains. These effects were most pronounced for Tsub(i)=O. It is concluded that DNA damage in an active replicon can inhibit initiation of new replicons and that damage localized behind the replication fork can retard elongation of nascent DNA chains. This effect on chain elongation decreases with increased distance of the damage from the replication fork.

  20. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.; Bond, V.P. [Washington State Univ., Richland, WA (United States); Sondhaus, C.A. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Radiology and Radiation Control Office; Altman, K.I. [Univ. of Rochester Medical Center, NY (United States). Dept. of Biochemistry and Biophysics

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.

  1. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    Science.gov (United States)

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  2. Potentially lethal damage repair in cell lines of radioresistant human tumours and normal skin fibroblasts

    International Nuclear Information System (INIS)

    Marchese, M.J.; Minarik, L.; Hall, E.J.; Zaider, M.

    1985-01-01

    Radiation cell survival data were obtained in vitro for three cell lines isolated from human tumours traditionally considered to be radioresistant-two melanomas and one osteosarcoma-as well as from a diploid skin fibroblast cell line. One melanoma cell line was much more radioresistant than the other, while the osteosarcoma and fibroblast cell lines were more radiosensitive than either. For cells growing exponentially, little potentially lethal damage repair (PLDR) could be demonstrated by comparing survival data for cells in which subculture was delayed by 6 h with those sub-cultured immediately after treatment. For the malignant cells in plateau phase, which in these cells might be better termed 'slowed growth phase', since an appreciable fraction of the cells are still cycling, a small amount of PLDR was observed, but not as much as reported by other investigators in the literature. The normal fibroblasts, which achieved a truer plateau phase in terms of noncycling cells, showed a significantly larger amount of PLDR than the tumour cells. (author)

  3. Recovery from radiation-induced damage in primary cultures of human epithelial thyroid cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Hiraoka, Toshio; Enno, Masumi; Takeichi, Nobuo.

    1985-01-01

    Human thyroid epithelial tissues from 23 individuals were obtained from surgical tissue, and cultured in vitro. Dose response survival curves showed thyroid cells, when compared to mammary epithelial and skin fibroblast cells of human origin, to be only slightly more radiosensitive to X-rays. Cell survival curves from the cell strains showed wide variability in radiation sensitivity. Of the 23 cell strains tested, 21 strains displayed significant shoulders (nonzero quasi-threshold (D q ) values and extrapolation number (n) values greater than 1) at low dose exposures. The ability of human cells to recover from radiation damage was further studied by dose fractionation. Two cell strains were given a total X-ray dose of 304 cGy in two equal fractions separated by varying time intervals. Maximal cell survival was observed when the time interval exceeded two hours. When the two cell strains were exposed to 152 cGy of X-rays followed four hours later by second graded doses, cell survival was enhanced as compared to survival after single dose exposures. However, no benefit of dose splitting was observed when cells were exposed to low second doses. These results support previous studies showing that human cells are capable of repair but require relatively large doses to elicit a repair response. (author)

  4. Recovery from radiation-induced damage in primary cultures of human epithelial thyroid cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Hiraoka, Toshio; Enno, Masumi; Takeichi, Nobuo.

    1985-09-01

    Human thyroid epithelial tissue from 23 individuals was obtained from surgical tissue, and cultured in vitro. Dose-response survival curves showed thyroid cells, when compared to mammary epithelial and skin fibroblast cells of human origin, to be only slightly more radiosensitive to X rays. Cell survival curves from the cell strains showed wide variability in radiation sensitivity. Of the 23 cell strains tested, 21 strains displayed significant shoulders (nonzero quasi-threshold (Dsub(q)) values and extrapolation number (n) values greater than 1)* at low dose exposures. The ability of human cells to recover from radiation damage was further studied by dose fractionation. Two cell strains were given a total X-ray dose of 304 cGy in two equal fractions separated by varying time intervals. Maximal cell survival was observed when the time interval exceeded two hours. When the two cell strains were exposed to 152 cGy of X rays followed four hours later by second graded doses, cell survival was enhanced as compared to survival after single dose exposures. However, no benefit of dose splitting was observed when cells were exposed to low second doses. These results support previous studies showing that human cells are capable of repair but require relatively large doses to elicit a repair response. (author)

  5. Metallic ion content and damage to the DNA in oral mucosa cells patients treated dental implants.

    Science.gov (United States)

    López-Jornet, Pía; Perrez, Francisco Parra; Calvo-Guirado, José Luis; Ros-Llor, Irene; LLor-Ros, Irene; Ramírez-Fernández, Piedad

    2014-07-01

    The aim of this study was to assess the potential genotoxicity of dental implants, evaluating biomarkers of DNA damage (micronuclei and/or nuclear buds), cytokinetic defects (binucleated cells) and the presence of trace metals in gingival cells of patients with implants, comparing these with a control group. A total of 60 healthy adults (30 patients with dental implants and 30 control patients without) were included in the study. Medical and dental histories were made for each including life-style factors. Genotoxicity effects were assessed by micronucleus assays in the gingival epithelial cells of each patient; 1,000 epithelial cells were analyzed, evaluating the frequency of micronucleated cells and other nuclear anomalies. The concentration of metals (Al(27), Ag(107), Co (59), Cr (52), Cu(63), Fe(56), Sn(118), Mn(55), Mo(92), Ni(60), Pb(208), Ti(47)) were assayed by means of coupled plasma-mass spectrophotometry (ICP-MS). The frequency of micronuclei in the patient group with implants was higher than in the control group but without statistically significant differences (P > 0.05). Similar results were found for binucleated cells and nuclear buds (P > 0.05). For metals assayed by ICP-MS, significant differences were found for Ti(47) (P ≤ 0.045). Univariate analysis identified a significant association between the presence of micronuclei and age. Dental implants do not induce DNA damage in gingival cells, the slight effects observed cannot be indicated as biologically relevant.

  6. Sinularin Selectively Kills Breast Cancer Cells Showing G2/M Arrest, Apoptosis, and Oxidative DNA Damage

    Directory of Open Access Journals (Sweden)

    Hurng-Wern Huang

    2018-04-01

    Full Text Available The natural compound sinularin, isolated from marine soft corals, is antiproliferative against several cancers, but its possible selective killing effect has rarely been investigated. This study investigates the selective killing potential and mechanisms of sinularin-treated breast cancer cells. In 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H- tetrazolium, inner salt (MTS assay, sinularin dose-responsively decreased the cell viability of two breast cancer (SKBR3 and MDA-MB-231 cells, but showed less effect on breast normal (M10 cells after a 24 h treatment. According to 7-aminoactinomycin D (7AAD flow cytometry, sinularin dose-responsively induced the G2/M cycle arrest of SKBR3 cells. Sinularin dose-responsively induced apoptosis on SKBR3 cells in terms of a flow cytometry-based annexin V/7AAD assay and pancaspase activity, as well as Western blotting for cleaved forms of poly(ADP-ribose polymerase (PARP, caspases 3, 8, and 9. These caspases and PARP activations were suppressed by N-acetylcysteine (NAC pretreatment. Moreover, sinularin dose-responsively induced oxidative stress and DNA damage according to flow cytometry analyses of reactive oxygen species (ROS, mitochondrial membrane potential (MitoMP, mitochondrial superoxide, and 8-oxo-2′-deoxyguanosine (8-oxodG. In conclusion, sinularin induces selective killing, G2/M arrest, apoptosis, and oxidative DNA damage of breast cancer cells.

  7. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier.

    Science.gov (United States)

    Santos, Margarida A; Faryabi, Robert B; Ergen, Aysegul V; Day, Amanda M; Malhowski, Amy; Canela, Andres; Onozawa, Masahiro; Lee, Ji-Eun; Callen, Elsa; Gutierrez-Martinez, Paula; Chen, Hua-Tang; Wong, Nancy; Finkel, Nadia; Deshpande, Aniruddha; Sharrow, Susan; Rossi, Derrick J; Ito, Keisuke; Ge, Kai; Aplan, Peter D; Armstrong, Scott A; Nussenzweig, André

    2014-10-02

    Self-renewal is the hallmark feature both of normal stem cells and cancer stem cells. Since the regenerative capacity of normal haematopoietic stem cells is limited by the accumulation of reactive oxygen species and DNA double-strand breaks, we speculated that DNA damage might also constrain leukaemic self-renewal and malignant haematopoiesis. Here we show that the histone methyl-transferase MLL4, a suppressor of B-cell lymphoma, is required for stem-cell activity and an aggressive form of acute myeloid leukaemia harbouring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukaemic blasts, which protects mice from death related to acute myeloid leukaemia. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 protects MLL4(-/-) MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM or BRCA1 sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Indeed, we show that restriction-enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21(Cip1) (Cdkn1a) activity. In summary, we have uncovered an unexpected tumour-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in acute myeloid leukaemia.

  8. DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    Science.gov (United States)

    Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém

    2011-01-01

    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605

  9. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda.

    Directory of Open Access Journals (Sweden)

    Monika Hlavová

    Full Text Available DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.

  10. Evaluation of saw damage using diamond-coated wire in crystalline silicon solar cells by photoluminescence imaging

    Science.gov (United States)

    Kinoshita, Kosuke; Kojima, Takuto; Suzuki, Ryota; Kawatsu, Tomoyuki; Nakamura, Kyotaro; Ohshita, Yoshio; Ogura, Atsushi

    2018-05-01

    Si ingots were sliced using a diamond-coated wire, and saw damage was observed even after damage removal etching and texturization. Since invisible microscopic damage was observed only under uncontrolled slice conditions, such damage was identified as saw damage. The wafers with saw damage exhibited the degradation of solar cell conversion efficiency (approximately 1–2% absolute). The results of external quantum efficiency (EQE) measurements showed a slight deterioration of EQE in the short wavelength region. Current–voltage characteristic measurements showed similar results that agreed with the EQE measurement results. In addition, EQE mapping measurements were carried out at various irradiation wavelengths between 350 and 1150 nm. Areas with dark contrasts in EQE mapping correspond to saw damage. In the cells with a low conversion efficiency, both EQE mapping and PL images exhibited dark areas and lines. On the other hand, in the cells with a high conversion efficiency, a uniform distribution of saw damage was observed even with the saw damage in the PL images. We believe that sophisticated control to suppress saw damage during sawing is required to realize higher conversion efficiency solar cells in the future.

  11. Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer's disease.

    Science.gov (United States)

    Wang, Feixiang; Jia, Yali; Liu, Jiajing; Zhai, Jinglei; Cao, Ning; Yue, Wen; He, Huixia; Pei, Xuetao

    2017-06-01

    Alzheimer's disease (AD) is an incurable neurodegenerative disease and many types of stem cells have been used in AD therapy with some favorable effects. In this study, we investigated the potential therapeutical effects of human dental pulp stem cells (hDPSCs) on AD cellular model which established by okadaic acid (OA)-induced damage to human neuroblastoma cell line, SH-SY5Y, in vitro for 24 h. After confirmed the AD cellular model, the cells were co-culture with hDPSCs by transwell co-culture system till 24 h for treatment. Then the cytomorphology of the hDPSCs-treated cells were found to restore gradually with re-elongation of retracted dendrites. Meanwhile, Cell Counting Kit-8 assay and Hoechst 33258 staining showed that hDPSCs caused significant increase in the viability and decrease in apoptosis of the model cells, respectively. Observation of DiI labeling also exhibited the prolongation dendrites in hDPSCs-treated cells which were obviously different from the retraction dendrites in AD model cells. Furthermore, specific staining of α-tubulin and F-actin demonstrated that the hDPSCs-treated cells had the morphology of restored neurons, with elongated dendrites, densely arranged microfilaments, and thickened microtubular fibrils. In addition, results from western blotting revealed that phosphorylation at Ser 396 of Tau protein was significantly suppressed by adding of hDPSCs. These results indicate that hDPSCs may promote regeneration of damaged neuron cells in vitro model of AD and may serve as a useful cell source for treatment of AD. © 2017 International Federation for Cell Biology.

  12. G9a coordinates with the RPA complex to promote DNA damage repair and cell survival.

    Science.gov (United States)

    Yang, Qiaoyan; Zhu, Qian; Lu, Xiaopeng; Du, Yipeng; Cao, Linlin; Shen, Changchun; Hou, Tianyun; Li, Meiting; Li, Zhiming; Liu, Chaohua; Wu, Di; Xu, Xingzhi; Wang, Lina; Wang, Haiying; Zhao, Ying; Yang, Yang; Zhu, Wei-Guo

    2017-07-25

    Histone methyltransferase G9a has critical roles in promoting cancer-cell growth and gene suppression, but whether it is also associated with the DNA damage response is rarely studied. Here, we report that loss of G9a impairs DNA damage repair and enhances the sensitivity of cancer cells to radiation and chemotherapeutics. In response to DNA double-strand breaks (DSBs), G9a is phosphorylated at serine 211 by casein kinase 2 (CK2) and recruited to chromatin. The chromatin-enriched G9a can then directly interact with replication protein A (RPA) and promote loading of the RPA and Rad51 recombinase to DSBs. This mechanism facilitates homologous recombination (HR) and cell survival. We confirmed the interaction between RPA and G9a to be critical for RPA foci formation and HR upon DNA damage. Collectively, our findings demonstrate a regulatory pathway based on CK2-G9a-RPA that permits HR in cancer cells and provide further rationale for the use of G9a inhibitors as a cancer therapeutic.

  13. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  14. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    International Nuclear Information System (INIS)

    Tang, J.; Jiang, Y.; Tang, Y.; Chen, B.; Sun, X.; Su, L.; Liu, Z.

    2013-01-01

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries

  15. Changes in nuclear protein acetylation in u.v.-damaged human cells

    International Nuclear Information System (INIS)

    Ramanathan, B.; Smerdon, M.J.

    1986-01-01

    The levels of nuclear protein acetylation in u.v.-irradiated human fibroblasts have been investigated. Initially, we measured the levels of acetylation in total acid-soluble nuclear proteins and observed two distinct differences between the irradiated and unirradiated (control) cells. Immediately after irradiation, there is a 'wave' of protein hyperacetylation that lasts for 2-6 h, followed by a hypoacetylation phase, lasting for many hours, and the total level of acetylation does not return to that of control cells until 24-72 h after u.v. damage. Both the magnitude and duration of each phase is dependent on the dose of u.v. light used. The wave of hyperacetylation is more pronounced at low u.v. doses, while the wave of hypoacetylation is more pronounced at higher u.v. doses. Furthermore, the duration of each phase is prolonged when cells are exposed to 2 mM hydroxyurea, an agent which retards the rate of excision repair at u.v.-damaged sites. Examinations of the acetylation levels of the individual nuclear proteins indicated that acetylation of the core histones follows the same pattern observed for the total acid-soluble protein fractions. Furthermore, these were the only major proteins in the total acid-soluble fraction observed to undergo the early, rapid hyperacetylation immediately following u.v. damage. These results raise the possibility that a causal relationship exists between nuclear protein acetylation and nucleotide excision repair of DNA in human cells. (author)

  16. DNA damage in oral cancer and normal cells induced by nitrogen atmospheric pressure plasma jets

    Science.gov (United States)

    Han, Xu; Kapaldo, James; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2015-09-01

    Nitrogen atmospheric pressure plasma jets (APPJs) have been shown to effectively induce DNA double strand breaks in SCC25 oral cancer cells. The APPJ source constructed in our laboratory operates based on dielectric barrier discharge. It consists of two copper electrodes alternatively wrapping around a fused silica tube with nitrogen as a feed gas. It is generally more challenging to ignite plasma in N2 atmosphere than in noble gases. However, N2 provides additional advantages such as lower costs compared to noble gases, thus this design can be beneficial for the future long-term clinical use. To compare the effects of plasma on cancer cells (SCC25) and normal cells (OKF), the cells from both types were treated at the same experimental condition for various treatment times. The effective area with different damage levels after the treatment was visualized as 3D maps. The delayed damage effects were also explored by varying the incubation times after the treatment. All of these studies are critical for a better understanding of the damage responses of cellular systems exposed to the plasma radiation, thus are useful for the development of the advanced plasma cancer therapy. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through Grant No. DE-FC02-04ER15533.

  17. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    Directory of Open Access Journals (Sweden)

    R Sunil Kumar

    2017-01-01

    Full Text Available Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  18. Damage of chromosomes in mouse bone marrow cells after combined treatment with gamma radiation and cyclophosphamide

    International Nuclear Information System (INIS)

    Rupova, Ivanka

    2008-01-01

    Full text: Current approaches to successful management of malignancy include combined modalities of treatment with ionizing radiation and anticancer drugs. Together with tumor cells normal tissues and cells are also submitted to the damaging effect of these agents, creating thus a probability for development of secondary neoplastic processes. The aim of the present study was to investigate the rate of chromosome damage at different modalities of combined exposures to gamma irradiation and cyclophosphamide(CY) of mice. Chromosomal aberration frequency in metaphase bone marrow cells was used as a measure to evaluate the effect. Combination treatments with 3 Gy gamma irradiation and 20 mg/kg cyclophosphamide were given at different intervals - simultaneously or at 12 hr interval, in order to establish the conditions and factors influencing the rate of chromosome damage. The distribution of different types of chromosome aberrations, such as chromatid fragments, chromatid exchanges, chromosome fragments and chromosome exchanges was analyzed. The results showed a high synergistic effect at simultaneous treatment with both agents if assessed by the index of aberrations per cell (%). An attempt has been made to suggest a possible explanation of the effects at different combined treatments related to the type of induced chromosomal aberrations. (author)

  19. [Effect of eicosapentaenoic acid on mRNA expression of tight junction protein ZO-1 in intestinal epithelial cells after Escherichia coli LF82 infection].

    Science.gov (United States)

    Hao, Li-Jun; Lin, Yan; Zhang, Wei; Tian, Jiao; Wang, Ya; Chen, Peng-De; Hu, Chong-Kang; Zeng, Ling-Chao; Yang, Jie; Wang, Bao-Xi; Jiang, Xun

    2017-06-01

    To investigate the change in the expression of tight junction protein ZO-1 in intestinal epithelial cells (Caco-2 cells) and the protective effect of eicosapentaenoic acid (EPA) after adherent-invasive Escherichia coli (E.coli) LF82 infection. The Caco-2 cell line was used to establish an in vitro model of tight junction of intestinal epithelial cells. Caco-2 cells were divided into EPA treatment groups (0, 25, 50, 100, and 200 μmol/L EPA) and EPA (0, 25, 50, 100, and 200 μmol/L EPA)+E.coli LF82 treatment (0, 6, and 12 hours) groups. A microscope was used to observe the morphological characteristics of the cells. MTT assay was used to determine the cell growth curve. The activity of alkaline phosphatase (ALP) at both sides of the cell membrane was compared to evaluate the Caco-2 cell model. MTT assay and flow cytometry were used to investigate the effects of different concentrations of EPA on the survival rate and apoptosis rate of Caco-2 cells. RT-qPCR was used to measure the mRNA expression of ZO-1 in Caco-2 cells after EPA and/or E.coli LF82 treatment. ELISA was used to measure the change in the level of tumor necrosis factor-α (TNF-α) in culture supernatant. After EPA treatment (25 and 50 μmol/L), the proliferation of Caco-2 cells was induced in a dose-dependent manner. The survival rates of the cells were significantly higher than those in the control group (PE.coli LF82 treatment groups had decreasing mRNA expression of ZO-1 in Caco-2 cells over the time of treatment and had significantly lower mRNA expression of ZO-1 than the untreated group (PE.coli LF82 and 25 or 50 μmol/L EPA for 6 or 12 hours showed an increase in the mRNA expression of ZO-1 with the increasing concentration of EPA, as well as significantly higher mRNA expression of ZO-1 than the Caco-2 cells treated with E.coli LF82 alone (PE.coli LF82 alone for 6 or 12 hours had increasing secretion of TNF-α over the time of treatment and had significantly higher secretion than the untreated

  20. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed