WorldWideScience

Sample records for coli amyloid biogenesis

  1. The Production of Curli Amyloid Fibers Is Deeply Integrated into the Biology of Escherichia coli

    Science.gov (United States)

    Smith, Daniel R.; Price, Janet E.; Burby, Peter E.; Blanco, Luz P.; Chamberlain, Justin; Chapman, Matthew R.

    2017-01-01

    Curli amyloid fibers are the major protein component of the extracellular matrix produced by Enterobacteriaceae during biofilm formation. Curli are required for proper biofilm development and environmental persistence by Escherichia coli. Here, we present a complete and vetted genetic analysis of functional amyloid fiber biogenesis. The Keio collection of single gene deletions was screened on Congo red indicator plates to identify E. coli mutants that had defective amyloid production. We discovered that more than three hundred gene products modulated curli production. These genes were involved in fundamental cellular processes such as regulation, environmental sensing, respiration, metabolism, cell envelope biogenesis, transport, and protein turnover. The alternative sigma factors, σS and σE, had opposing roles in curli production. Mutations that induced the σE or Cpx stress response systems had reduced curli production, while mutant strains with increased σS levels had increased curli production. Mutations in metabolic pathways, including gluconeogenesis and the biosynthesis of lipopolysaccharide (LPS), produced less curli. Regulation of the master biofilm regulator, CsgD, was diverse, and the screen revealed several proteins and small RNAs (sRNA) that regulate csgD messenger RNA (mRNA) levels. Using previously published studies, we found minimal overlap between the genes affecting curli biogenesis and genes known to impact swimming or swarming motility, underlying the distinction between motile and sessile lifestyles. Collectively, the diversity and number of elements required suggest curli production is part of a highly regulated and complex developmental pathway in E. coli. PMID:29088115

  2. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.

    Science.gov (United States)

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen

    2017-08-15

    While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they

  3. Staphylococcus aureus and Escherichia coli have disparate dependences on KsgA for growth and ribosome biogenesis

    Directory of Open Access Journals (Sweden)

    O’Farrell Heather C

    2012-10-01

    Full Text Available Abstract Background The KsgA methyltransferase has been conserved throughout evolution, methylating two adenosines in the small subunit rRNA in all three domains of life as well as in eukaryotic organelles that contain ribosomes. Understanding of KsgA’s important role in ribosome biogenesis has been recently expanded in Escherichia coli; these studies help explain why KsgA is so highly conserved and also suggest KsgA’s potential as an antimicrobial drug target. Results We have analyzed KsgA’s contribution to ribosome biogenesis and cell growth in Staphylococcus aureus. We found that deletion of ksgA in S. aureus led to a cold-sensitive growth phenotype, although KsgA was not as critical for ribosome biogenesis as it was shown to be in E. coli. Additionally, the ksgA knockout strain showed an increased sensitivity to aminoglycoside antibiotics. Overexpression of a catalytically inactive KsgA mutant was deleterious in the knockout strain but not the wild-type strain; this negative phenotype disappeared at low temperature. Conclusions This work extends the study of KsgA, allowing comparison of this aspect of ribosome biogenesis between a Gram-negative and a Gram-positive organism. Our results in S. aureus are in contrast to results previously described in E. coli, where the catalytically inactive protein showed a negative phenotype in the presence or absence of endogenous KsgA.

  4. High-throughput identification of chemical inhibitors of E. coli Group 2 capsule biogenesis as anti-virulence agents.

    Directory of Open Access Journals (Sweden)

    Carlos C Goller

    Full Text Available Rising antibiotic resistance among Escherichia coli, the leading cause of urinary tract infections (UTIs, has placed a new focus on molecular pathogenesis studies, aiming to identify new therapeutic targets. Anti-virulence agents are attractive as chemotherapeutics to attenuate an organism during disease but not necessarily during benign commensalism, thus decreasing the stress on beneficial microbial communities and lessening the emergence of resistance. We and others have demonstrated that the K antigen capsule of E. coli is a preeminent virulence determinant during UTI and more invasive diseases. Components of assembly and export are highly conserved among the major K antigen capsular types associated with UTI-causing E. coli and are distinct from the capsule biogenesis machinery of many commensal E. coli, making these attractive therapeutic targets. We conducted a screen for anti-capsular small molecules and identified an agent designated "C7" that blocks the production of K1 and K5 capsules, unrelated polysaccharide types among the Group 2-3 capsules. Herein lies proof-of-concept that this screen may be implemented with larger chemical libraries to identify second-generation small-molecule inhibitors of capsule biogenesis. These inhibitors will lead to a better understanding of capsule biogenesis and may represent a new class of therapeutics.

  5. Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli.

    Science.gov (United States)

    Bogdanov, Mikhail; Aboulwafa, Mohammad; Saier, Milton H

    2013-01-01

    Transporters catalyze entry and exit of molecules into and out of cells and organelles, and protein-lipid interactions influence their activities. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) catalyzes transport-coupled sugar phosphorylation as well as nonvectorial sugar phosphorylation in the cytoplasm. The vectorial process is much more sensitive to the lipid environment than the nonvectorial process. Moreover, cytoplasmic micellar forms of these enzyme-porters have been identified, and non-PTS permeases have similarly been shown to exist in 'soluble' forms. The latter porters exhibit lipid-dependent activities and can adopt altered topologies by simply changing the lipid composition. Finally, intracellular membranes and vesicles exist in Escherichia coli leading to the following unanswered questions: (1) what determines whether a PTS permease catalyzes vectorial or nonvectorial sugar phosphorylation? (2) How do phospholipids influence relative amounts of the plasma membrane, intracellular membrane, inner membrane-derived vesicles and cytoplasmic micelles? (3) What regulates the route(s) of permease insertion and transfer into and between the different subcellular sites? (4) Do these various membranous forms have distinct physiological functions? (5) What methods should be utilized to study the biogenesis and interconversion of these membranous structures? While research concerning these questions is still in its infancy, answers will greatly enhance our understanding of protein-lipid interactions and how they control the activities, conformations, cellular locations and biogenesis of integral membrane proteins. Copyright © 2013 S. Karger AG, Basel.

  6. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Susannah ePiek

    2012-12-01

    Full Text Available The Gram-negative bacterial cell envelope consists of an inner membrane (IM that surrounds the cytoplasm, and an asymmetrical outer-membrane (OM that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS, phospholipids, outer membrane proteins (OMPs and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the correct biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation and isomerisation pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, these conserved pathways have been modified to suit the lifestyle of each organism.

  7. Lifting the mask: identification of new small molecule inhibitors of uropathogenic Escherichia coli group 2 capsule biogenesis.

    Directory of Open Access Journals (Sweden)

    Carlos C Goller

    Full Text Available Uropathogenic Escherichia coli (UPEC is the leading cause of community-acquired urinary tract infections (UTIs, with over 100 million UTIs occurring annually throughout the world. Increasing antimicrobial resistance among UPEC limits ambulatory care options, delays effective treatment, and may increase overall morbidity and mortality from complications such as urosepsis. The polysaccharide capsules of UPEC are an attractive target a therapeutic, based on their importance in defense against the host immune responses; however, the large number of antigenic types has limited their incorporation into vaccine development. The objective of this study was to identify small-molecule inhibitors of UPEC capsule biogenesis. A large-scale screening effort entailing 338,740 compounds was conducted in a cell-based, phenotypic screen for inhibition of capsule biogenesis in UPEC. The primary and concentration-response assays yielded 29 putative inhibitors of capsule biogenesis, of which 6 were selected for further studies. Secondary confirmatory assays identified two highly active agents, named DU003 and DU011, with 50% inhibitory concentrations of 1.0 µM and 0.69 µM, respectively. Confirmatory assays for capsular antigen and biochemical measurement of capsular sugars verified the inhibitory action of both compounds and demonstrated minimal toxicity and off-target effects. Serum sensitivity assays demonstrated that both compounds produced significant bacterial death upon exposure to active human serum. DU011 administration in mice provided near complete protection against a lethal systemic infection with the prototypic UPEC K1 isolate UTI89. This work has provided a conceptually new class of molecules to combat UPEC infection, and future studies will establish the molecular basis for their action along with efficacy in UTI and other UPEC infections.

  8. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease.

    Science.gov (United States)

    Lee, Jong Kil; Jin, Hee Kyung; Park, Min Hee; Kim, Bo-ra; Lee, Phil Hyu; Nakauchi, Hiromitsu; Carter, Janet E; He, Xingxuan; Schuchman, Edward H; Bae, Jae-sung

    2014-07-28

    In Alzheimer's disease (AD), abnormal sphingolipid metabolism has been reported, although the pathogenic consequences of these changes have not been fully characterized. We show that acid sphingomyelinase (ASM) is increased in fibroblasts, brain, and/or plasma from patients with AD and in AD mice, leading to defective autophagic degradation due to lysosomal depletion. Partial genetic inhibition of ASM (ASM(+/-)) in a mouse model of familial AD (FAD; amyloid precursor protein [APP]/presenilin 1 [PS1]) ameliorated the autophagocytic defect by restoring lysosomal biogenesis, resulting in improved AD clinical and pathological findings, including reduction of amyloid-β (Aβ) deposition and improvement of memory impairment. Similar effects were noted after pharmacologic restoration of ASM to the normal range in APP/PS1 mice. Autophagic dysfunction in neurons derived from FAD patient induced pluripotent stem cells (iPSCs) was restored by partial ASM inhibition. Overall, these results reveal a novel mechanism of ASM pathogenesis in AD that leads to defective autophagy due to impaired lysosomal biogenesis and suggests that partial ASM inhibition is a potential new therapeutic intervention for the disease. © 2014 Lee et al.

  9. Kinetics of local and systemic isoforms of serum amyloid A in bovine mastitic milk

    DEFF Research Database (Denmark)

    Jacobsen, Stine; Niewold, T.A.; Kornalijnslijper, E.

    2005-01-01

    The aim of the present study was to characterise the serum amyloid A (SAA) response to intramammary inoculation of Escherichia coli and to examine the distribution of hepatically and extrahepatically pruduced SAA isoforms in plasma and milk fra cows with mastitis.......The aim of the present study was to characterise the serum amyloid A (SAA) response to intramammary inoculation of Escherichia coli and to examine the distribution of hepatically and extrahepatically pruduced SAA isoforms in plasma and milk fra cows with mastitis....

  10. Biofilm inhibitors that target amyloid proteins.

    Science.gov (United States)

    Romero, Diego; Sanabria-Valentín, Edgardo; Vlamakis, Hera; Kolter, Roberto

    2013-01-24

    Bacteria establish stable communities, known as biofilms, that are resistant to antimicrobials. Biofilm robustness is due to the presence of an extracellular matrix, which for several species-among them Bacillus subtilis-includes amyloid-like protein fibers. In this work, we show that B. subtilis biofilms can be a simple and reliable tool for screening of molecules with antiamyloid activity. We identified two molecules, AA-861 and parthenolide, which efficiently inhibited biofilms by preventing the formation of amyloid-like fibers. Parthenolide also disrupted pre-established biofilms. These molecules also impeded the formation of biofilms of other bacterial species that secrete amyloid proteins, such as Bacillus cereus and Escherichia coli. Furthermore, the identified molecules decreased the conversion of the yeast protein New1 to the prion state in a heterologous host, indicating the broad range of activity of the molecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A potential amyloid-imaging probe for Alzheimer's disease

    International Nuclear Information System (INIS)

    Cai Jiong; Wang Shizhen; Yuan Jiangang; Qiang Boqin

    2004-01-01

    Purpose: To screen out the human single-chain fragment variable (scFv) against amyloid β peptide 40 from a human synthetic antibody library, sub-clone its gene into E. coli expression system, and express and purify it for amyloid peptide imaging research. The overload of amyloid β peptide and the appearance of senile plaques in the human brain tissue is one of the hallmark of the Alzheimer's disease, and in vivo imaging of amyloidβ peptide is valuable for the earlier diagnosis of Alzheimer's disease. Methods: Amyloid β peptide 40 was bound on the solid surface of Nunc plates as antigen and a human antibody library constructed with human antibody heavy and light chain variable gene and nucleotides sequence coded (Gly4Ser)3 linker and displayed on the protein surface of filamentous phage was used to screen the binding clones. After five rounds of bio-panning, the host E. coli TG1 was infected with eluted filamentous phage from the last turn of selection. 55 well-separated colonies were picked randomly from the plates and several specific positive clones were identified by ELISA testing, and their binding sites were determined by competitive ELISA with amyloid 13 peptide 40, 1-16, 25-35. The single-chain Fv antibody gene was sequenced and their amino acids sequence was deduced. The scFv antibody gene was sub-cloned into a protokayotic expression vector pET-22b(+) and transformed into bacteria strain BL21 to express the His6-tagged single-chain antibody and the whole cell culture was subjected to SDS-PAGE analysis. The antibody was expressed in inclusion bodies and purified with serial buffers and verified with western blotting and their activity was tested by ELISA against amyloid β peptide 40. Results: ELISA testing showed that 33 clones could bind amyloid β peptide 40 and 10 of these clones could be inhibited by amyloid β peptide 40 itself to below 50% of its original binding activities. Five clones could also be inhibited by amyloid β peptide 1-16. DNA

  12. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori.

    Science.gov (United States)

    Liechti, George; Goldberg, Joanna B

    2012-01-01

    The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM). Lipopolysaccharide (LPS) and numerous OM proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its OM profile limits the effectiveness of vaccines or therapeutics that target any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins (OMPs) are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε proteobacteria, while the inner and OM associated apparatus of LPS, lipoprotein, and OMP transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to their E. coli counterparts. Eventual

  13. Role of IscX in Iron-Sulfur Cluster Biogenesis in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hae; Bothe, Jameson R.; Frederick, Ronnie O.; Holder, Johneisa C.; Markley, John L. [UW

    2014-08-20

    The Escherichia coli isc operon encodes key proteins involved in the biosynthesis of iron–sulfur (Fe–S) clusters. Whereas extensive studies of most ISC proteins have revealed their functional properties, the role of IscX (also dubbed YfhJ), a small acidic protein encoded by the last gene in the operon, has remained in question. Previous studies showed that IscX binds iron ions and interacts with the cysteine desulfurase (IscS) and the scaffold protein for cluster assembly (IscU), and it has been proposed that IscX functions either as an iron supplier or a regulator of Fe–S cluster biogenesis. We have used a combination of NMR spectroscopy, small-angle X-ray scattering (SAXS), chemical cross-linking, and enzymatic assays to enlarge our understanding of the interactions of IscX with iron ions, IscU, and IscS. We used chemical shift perturbation to identify the binding interfaces of IscX and IscU in their complex. NMR studies showed that Fe2+ from added ferrous ammonium sulfate binds IscX much more avidly than does Fe3+ from added ferric ammonium citrate and that Fe2+ strengthens the interaction between IscX and IscU. We found that the addition of IscX to the IscU–IscS binary complex led to the formation of a ternary complex with reduced cysteine desulfurase activity, and we determined a low-resolution model for that complex from a combination of NMR and SAXS data. We postulate that the inhibition of cysteine desulfurase activity by IscX serves to reduce unproductive conversion of cysteine to alanine. By incorporating these new findings with results from prior studies, we propose a detailed mechanism for Fe–S cluster assembly in which IscX serves both as a donor of Fe2+ and as a regulator of cysteine desulfurase activity.

  14. Tailoring Escherichia coli for the L-rhamnose PBAD promoter-based production of membrane and secretory proteins

    NARCIS (Netherlands)

    Hjelm, Anna; Karyolaimos, Alexandros; Zhang, Zhe; Rujas, Edurne; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    Membrane and secretory protein production in Escherichia coli requires precisely controlled production rates to avoid the deleterious saturation of their biogenesis pathways. Based on this requirement, the E. coli L-rhamnose PBAD promoter (PrhaBAD) is often used for membrane and secretory protein

  15. Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation

    Directory of Open Access Journals (Sweden)

    Paulina eAguilera

    2016-01-01

    Full Text Available Microcin E492 (MccE492 is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril’s morphology and formation kinetics in vitro have been well characterized, however it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in E. coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophillic probes, 2-4´-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54-63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59, which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54-63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although

  16. In vivo roles of BamA, BamB and BamD in the biogenesis of BamA, a core protein of the β-barrel assembly machine of Escherichia coli

    Science.gov (United States)

    Misra, Rajeev; Stikeleather, Ryan; Gabriele, Rebecca

    2014-01-01

    Assembly of the β-barrel outer membrane proteins (OMPs) is an essential cellular process in Gram negative bacteria and in the mitochondria and chloroplasts of eukaryotes—two organelles of bacterial origin. Central to this process is the conserved β-barrel OMP that belongs to the Omp85 superfamily. In Escherichia coli, BamA is the core β-barrel OMP, and together with four outer membrane lipoproteins, BamBCDE, constitute the β-barrel assembly machine (BAM). In this paper, we investigated the roles of BamD, an essential lipoprotein, and BamB in BamA biogenesis. Depletion of BamD caused impairment in BamA biogenesis and cessation of cell growth. These defects of BamD depletion were partly reversed by single amino acid substitutions mapping within the β-barrel domain of BamA. However, in the absence of BamB, the positive effects of the β-barrel substitutions on BamA biogenesis under BamD depletion conditions were nullified. By employing a BamA protein bearing one such substitution, F494L, it was demonstrated that the mutant BamA protein could not only assemble without BamD, but it could also facilitate the assembly of wild-type BamA expressed in trans. Based on these data, we propose a model in which the Bam lipoproteins, which are localized to the outer membrane by the BAM-independent Lol pathway, aid in the creation of new BAM complexes by serving as outer membrane receptors and folding factors for nascent BamA molecules. The newly assembled BAM holocomplex then catalyzes the assembly of substrate OMPs and BamA. These in vivo findings are corroborated by recently published in vitro data. PMID:24792419

  17. In vivo roles of BamA, BamB and BamD in the biogenesis of BamA, a core protein of the β-barrel assembly machine of Escherichia coli.

    Science.gov (United States)

    Misra, Rajeev; Stikeleather, Ryan; Gabriele, Rebecca

    2015-03-13

    Assembly of the β-barrel outer membrane proteins (OMPs) is an essential cellular process in Gram-negative bacteria and in the mitochondria and chloroplasts of eukaryotes--two organelles of bacterial origin. Central to this process is the conserved β-barrel OMP that belongs to the Omp85 superfamily. In Escherichia coli, BamA is the core β-barrel OMP and, together with four outer membrane lipoproteins, BamBCDE, constitutes the β-barrel assembly machine (BAM). In this paper, we investigated the roles of BamD, an essential lipoprotein, and BamB in BamA biogenesis. Depletion of BamD caused impairment in BamA biogenesis and cessation of cell growth. These defects of BamD depletion were partly reversed by single-amino-acid substitutions mapping within the β-barrel domain of BamA. However, in the absence of BamB, the positive effects of the β-barrel substitutions on BamA biogenesis under BamD depletion conditions were nullified. By employing a BamA protein bearing one such substitution, F474L, it was demonstrated that the mutant BamA protein could not only assemble without BamD but also facilitate the assembly of wild-type BamA expressed in trans. Based on these data, we propose a model in which the Bam lipoproteins, which are localized to the outer membrane by the BAM-independent Lol pathway, aid in the creation of new BAM complexes by serving as outer membrane receptors and folding factors for nascent BamA molecules. The newly assembled BAM holocomplex then catalyzes the assembly of substrate OMPs and BamA. These in vivo findings are corroborated by recently published in vitro data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  19. Erythrocyte nanovesicles: Biogenesis, biolo

    Directory of Open Access Journals (Sweden)

    Gamaleldin I. Harisa

    2017-01-01

    Full Text Available Nanovesicles (NVs represent a novel transporter for cell signals to modify functions of target cells. Therefore, NVs play many roles in both physiological and pathological processes. This report highlights biogenesis, composition and biological roles of erythrocytes derived nanovesicles (EDNVs. Furthermore, we address utilization of EDNVs as novel drug delivery cargo as well as therapeutic target. EDNVs are lipid bilayer vesicles rich in phospholipids, proteins, lipid raft, and hemoglobin. In vivo EDNVs biogenesis is triggered by an increase of intracellular calcium levels, ATP depletion and under effect of oxidative stress conditions. However, in vitro production of EDNVs can be achieved via hypotonic treatment and extrusion of erythrocyte. NVs can be used as biomarkers for diagnosis, monitoring of therapy and drug delivery system. Many therapeutic agents are suggested to decrease NVs biogenesis.

  20. Cross-interactions between the Alzheimer Disease Amyloid-β Peptide and Other Amyloid Proteins: A Further Aspect of the Amyloid Cascade Hypothesis.

    Science.gov (United States)

    Luo, Jinghui; Wärmländer, Sebastian K T S; Gräslund, Astrid; Abrahams, Jan Pieter

    2016-08-05

    Many protein folding diseases are intimately associated with accumulation of amyloid aggregates. The amyloid materials formed by different proteins/peptides share many structural similarities, despite sometimes large amino acid sequence differences. Some amyloid diseases constitute risk factors for others, and the progression of one amyloid disease may affect the progression of another. These connections are arguably related to amyloid aggregates of one protein being able to directly nucleate amyloid formation of another, different protein: the amyloid cross-interaction. Here, we discuss such cross-interactions between the Alzheimer disease amyloid-β (Aβ) peptide and other amyloid proteins in the context of what is known from in vitro and in vivo experiments, and of what might be learned from clinical studies. The aim is to clarify potential molecular associations between different amyloid diseases. We argue that the amyloid cascade hypothesis in Alzheimer disease should be expanded to include cross-interactions between Aβ and other amyloid proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Amyloid and immune homeostasis.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2018-03-01

    Extracellular amyloid deposition defines a range of amyloidosis and amyloid-related disease. Addition to primary and secondary amyloidosis, amyloid-related disease can be observed in different tissue/organ that sharing the common pathogenesis based on the formation of amyloid deposition. Currently, both Alzheimer's disease and type 2 diabetes can be diagnosed with certainly only based on the autopsy results, by which amyloidosis of the associative tissue/organ is observed. Intriguingly, since it demonstrated that amyloid deposits trigger inflammatory reaction through the activation of cascaded immune response, wherein several lines of evidence implies a protective role of amyloid in preventing autoimmunity. Furthermore, attempts for preventing amyloid formation and/or removing amyloid deposits from the brain have caused meningoencephalitis and consequent deaths among the subjects. Hence, it is important to note that amyloid positively participates in maintaining immune homeostasis and contributes to irreversible inflammatory response. In this review, we will focus on the interactive relationship between amyloid and the immune system, discussing the potential functional roles of amyloid in immune tolerance and homeostasis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Bacterial lipoproteins; biogenesis, sorting and quality control.

    Science.gov (United States)

    Narita, Shin-Ichiro; Tokuda, Hajime

    2017-11-01

    Bacterial lipoproteins are a subset of membrane proteins localized on either leaflet of the lipid bilayer. These proteins are anchored to membranes through their N-terminal lipid moiety attached to a conserved Cys. Since the protein moiety of most lipoproteins is hydrophilic, they are expected to play various roles in a hydrophilic environment outside the cytoplasmic membrane. Gram-negative bacteria such as Escherichia coli possess an outer membrane, to which most lipoproteins are sorted. The Lol pathway plays a central role in the sorting of lipoproteins to the outer membrane after lipoprotein precursors are processed to mature forms in the cytoplasmic membrane. Most lipoproteins are anchored to the inner leaflet of the outer membrane with their protein moiety in the periplasm. However, recent studies indicated that some lipoproteins further undergo topology change in the outer membrane, and play critical roles in the biogenesis and quality control of the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Components of SurA required for outer membrane biogenesis in uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Kristin M Watts

    2008-10-01

    Full Text Available SurA is a periplasmic peptidyl-prolyl isomerase (PPIase and chaperone of Escherichia coli and other Gram-negative bacteria. In contrast to other PPIases, SurA appears to have a distinct role in chaperoning newly synthesized porins destined for insertion into the outer membrane. Previous studies have indicated that the chaperone activity of SurA rests in its "core module" (the N- plus C-terminal domains, based on in vivo envelope phenotypes and in vitro binding and protection of non-native substrates.In this study, we determined the components of SurA required for chaperone activity using in vivo phenotypes relevant to disease causation by uropathogenic E. coli (UPEC, namely membrane resistance to permeation by antimicrobials and maturation of the type 1 pilus usher FimD. FimD is a SurA-dependent, integral outer membrane protein through which heteropolymeric type 1 pili, which confer bladder epithelial binding and invasion capacity upon uropathogenic E. coli, are assembled and extruded. Consistent with prior results, the in vivo chaperone activity of SurA in UPEC rested primarily in the core module. However, the PPIase domains I and II were not expendable for wild-type resistance to novobiocin in broth culture. Steady-state levels of FimD were substantially restored in the UPEC surA mutant complemented with the SurA N- plus C-terminal domains. The addition of PPIase domain I augmented FimD maturation into the outer membrane, consistent with a model in which domain I enhances stability of and/or substrate binding by the core module.Our results confirm the core module of E. coli SurA as a potential target for novel anti-infective development.

  4. Engineered aggregation inhibitor fusion for production of highly amyloidogenic human islet amyloid polypeptide.

    Science.gov (United States)

    Mirecka, Ewa Agnieszka; Gremer, Lothar; Schiefer, Stephanie; Oesterhelt, Filipp; Stoldt, Matthias; Willbold, Dieter; Hoyer, Wolfgang

    2014-12-10

    Human islet amyloid polypeptide (IAPP) is the major component of pancreatic amyloid deposits in type 2 diabetes. The structural conversion of IAPP from a monomeric state into amyloid assemblies is the subject of intense research. Recombinant production of IAPP is, however, difficult due to its extreme aggregation propensity. Here we describe a novel strategy for expression of IAPP in Escherichia coli, based on an engineered protein tag, which sequesters IAPP monomers and prevents IAPP aggregation. The IAPP-binding protein HI18 was selected by phage display from a β-wrapin library. Fusion of HI18 to IAPP enabled the soluble expression of the construct. IAPP was cleaved from the fusion construct and purified to homogeneity with a yield of 3mg of isotopically labeled peptide per liter of culture. In the monomeric state, IAPP was largely disordered as evidenced by far-UV CD and liquid-state NMR spectroscopy but competent to form amyloid fibrils according to atomic force microscopy. These results demonstrate the ability of the engineered β-wrapin HI18 for shielding the hydrophobic sequence of IAPP during expression and purification. Fusion of aggregation-inhibiting β-wrapins is a suitable approach for the recombinant production of aggregation-prone proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    Science.gov (United States)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  6. Functional Amyloids in Reproduction.

    Science.gov (United States)

    Hewetson, Aveline; Do, Hoa Quynh; Myers, Caitlyn; Muthusubramanian, Archana; Sutton, Roger Bryan; Wylie, Benjamin J; Cornwall, Gail A

    2017-06-29

    Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.

  7. Amyloid Imaging in Aging and Dementia: Testing the Amyloid Hypothesis In Vivo

    Directory of Open Access Journals (Sweden)

    G. D. Rabinovici

    2009-01-01

    Full Text Available Amyloid imaging represents a major advance in neuroscience, enabling the detection and quantification of pathologic protein aggregations in the brain. In this review we survey current amyloid imaging techniques, focusing on positron emission tomography (PET with ^{11}carbon-labelled Pittsburgh Compound-B (11C-PIB, the most extensively studied and best validated tracer. PIB binds specifically to fibrillar beta-amyloid (Aβ deposits, and is a sensitive marker for Aβ pathology in cognitively normal older individuals and patients with mild cognitive impairment (MCI and Alzheimer’s disease (AD. PIB-PET provides us with a powerful tool to examine in vivo the relationship between amyloid deposition, clinical symptoms, and structural and functional brain changes in the continuum between normal aging and AD. Amyloid imaging studies support a model in which amyloid deposition is an early event on the path to dementia, beginning insidiously in cognitively normal individuals, and accompanied by subtle cognitive decline and functional and structural brain changes suggestive of incipient AD. As patients progress to dementia, clinical decline and neurodegeneration accelerate and proceed independently of amyloid accumulation. In the future, amyloid imaging is likely to supplement clinical evaluation in selecting patients for anti-amyloid therapies, while MRI and FDG-PET may be more appropriate markers of clinical progression.

  8. Functional amyloids in bacteria.

    Science.gov (United States)

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  9. Cloning, purification, crystallization and preliminary X-ray diffraction studies of Escherichia coli PapD-like protein (EcpD)

    International Nuclear Information System (INIS)

    Pandey, Nishant Kumar; Pal, Ravi Kant; Kashyap, Maruthi; Bhavesh, Neel Sarovar

    2012-01-01

    The Escherichia coli PapD-like protein (EcpD), from uropathogenic Escherichia coli (UPEC), which is a periplasmic chaperon of Yad fimbriae was cloned, overexpressed, purified and crystallized. The crystals obtained diffracted X-rays to 1.67 Å resolution and belonged to space group C222 1 . Many Gram-negative bacteria are characterized by hair-like proteinaceous appendages on their surface known as fimbriae. In uropathogenic strains of Escherichia coli, fimbriae mediate attachment by binding to receptors on the host cell, often contributing to virulence and disease. E. coli PapD-like protein (EcpD) is a periplasmic chaperone that plays an important role in the proper folding and guiding of Yad fimbrial proteins to the outer membrane usher protein in a process known as pilus biogenesis. EcpD is essential for pilus biogenesis in uropathogenic E. coli and plays an important role in virulence. In the present study, EcpD was cloned, overexpressed, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to 1.67 Å resolution and belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 100.3, b = 127.6, c = 45.9 Å. There was a single molecule in the asymmetric unit and the corresponding Matthews coefficient was calculated to be 3.02 Å 3 Da −1 , with 59% solvent content. Initial phases were determined by molecular replacement

  10. ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in E.coli.

    NARCIS (Netherlands)

    Loiseau, L.; Gerez, C.; Bekker, M.; Ollagnier-de Choudens, S.; Py, B.; Sanakis, Y.; Teixeira De Mattos, M.J.; Fontecave, M.; Barras, F.

    2007-01-01

    Understanding the biogenesis of iron-sulfur (Fe-S) proteins is relevant to many fields, including bioenergetics, gene regulation, and cancer research. Several multiprotein complexes assisting Fe-S assembly have been identified in both prokaryotes and eukaryotes. Here, we identify in Escherichia coli

  11. crRNA biogenesis

    NARCIS (Netherlands)

    Charpentier, E.; Oost, van der J.; White, M.

    2013-01-01

    Mature crRNAs are key elements in CRISPR-Cas defense against genome invaders. These short RNAs are composed of unique repeat/spacer sequences that guide the Cas protein(s) to the cognate invading nucleic acids for their destruction. The biogenesis of mature crRNAs involves highly precise processing

  12. Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane.

    Science.gov (United States)

    Chahales, Peter; Hoffman, Paul S; Thanassi, David G

    2016-04-01

    Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregativeEscherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenicE. coli(UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Reactive Oxygen Species-Mediated Control of Mitochondrial Biogenesis

    Directory of Open Access Journals (Sweden)

    Edgar D. Yoboue

    2012-01-01

    Full Text Available Mitochondrial biogenesis is a complex process. It necessitates the contribution of both the nuclear and the mitochondrial genomes and therefore crosstalk between the nucleus and mitochondria. It is now well established that cellular mitochondrial content can vary according to a number of stimuli and physiological states in eukaryotes. The knowledge of the actors and signals regulating the mitochondrial biogenesis is thus of high importance. The cellular redox state has been considered for a long time as a key element in the regulation of various processes. In this paper, we report the involvement of the oxidative stress in the regulation of some actors of mitochondrial biogenesis.

  14. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.

    Science.gov (United States)

    del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme

    2011-01-01

    Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.

  15. MiRNA Biogenesis and Intersecting Pathways

    DEFF Research Database (Denmark)

    Ben Chaabane, Samir

    MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA silencing. Plant miRNAs are critical for plant growth, development and stress response, and are processed in Arabidopsis from primary miRNA transcripts (pri-miRNAs) by the endonuclease activity of the DICER-LIKE1...... questions need to be addressed to establish a valid link, we provide encouraging evidence of the involvement of chromatin remodeling factors FAS1 and FAS2 in miRNA biogenesis. Together, we have expanded our understanding of the intersections between miRNA biogenesis and other pathways....

  16. Diagnostic radionuclide imaging of amyloid: biological targeting by circulating human serum amyloid P component

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, P.N.; Lavender, J.P.; Myers, M.J.; Pepys, M.B.

    1988-06-25

    The specific molecular affinity of the normal plasma protein, serum amyloid P component (SAP), for all known types of amyloid fibrils was used to develop a new general diagnostic method for in-vivo radionuclide imaging of amyloid deposits. After intravenous injection of /sup 123/I-labelled purified human SAP there was specific uptake into amyloid deposits in all affected patients, 7 with systematic AL amyloid, 5 with AA amyloid, and 2 with ..beta../sub 2/M amyloid, in contrast to the complete absence of any tissue localisation in 5 control subjects. Distinctive high-resolution scintigraphic images, even of minor deposits in the carpal regions, bone marrow, or adrenals, were obtained. This procedure should yield much information on the natural history and the management of amyloidosis, the presence of which has hitherto been confirmed only by biopsy. Clearance and metabolic studies indicated that, in the presence of extensive amyloidosis, the rate of synthesis of SAP was greatly increased despite maintenance of normal plasma levels. Futhermore, once localised to amyloid deposits the /sup 123/I-SAP persisted for long periods and was apparently protected from its normal rapid degradation. These findings shed new light on the pathophysiology of amyloid and may have implications for therapeutic strategies based upon specific molecular targeting with SAP.

  17. Periplasmic quality control in biogenesis of outer membrane proteins.

    Science.gov (United States)

    Lyu, Zhi Xin; Zhao, Xin Sheng

    2015-04-01

    The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.

  18. PLK4 trans-Autoactivation Controls Centriole Biogenesis in Space.

    Science.gov (United States)

    Lopes, Carla A M; Jana, Swadhin Chandra; Cunha-Ferreira, Inês; Zitouni, Sihem; Bento, Inês; Duarte, Paulo; Gilberto, Samuel; Freixo, Francisco; Guerrero, Adán; Francia, Maria; Lince-Faria, Mariana; Carneiro, Jorge; Bettencourt-Dias, Mónica

    2015-10-26

    Centrioles are essential for cilia and centrosome assembly. In centriole-containing cells, centrioles always form juxtaposed to pre-existing ones, motivating a century-old debate on centriole biogenesis control. Here, we show that trans-autoactivation of Polo-like kinase 4 (PLK4), the trigger of centriole biogenesis, is a critical event in the spatial control of that process. We demonstrate that centrioles promote PLK4 activation through its recruitment and local accumulation. Though centriole removal reduces the proportion of active PLK4, this is rescued by concentrating PLK4 to the peroxisome lumen. Moreover, while mild overexpression of PLK4 only triggers centriole amplification at the existing centriole, higher PLK4 levels trigger both centriolar and cytoplasmatic (de novo) biogenesis. Hence, centrioles promote their assembly locally and disfavor de novo synthesis. Similar mechanisms enforcing the local concentration and/or activity of other centriole components are likely to contribute to the spatial control of centriole biogenesis under physiological conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin

    Directory of Open Access Journals (Sweden)

    Langen Ralf

    2008-10-01

    Full Text Available Abstract Background The multifunctional protein vitronectin is present within the deposits associated with Alzheimer disease (AD, age-related macular degeneration (AMD, atherosclerosis, systemic amyloidoses, and glomerulonephritis. The extent to which vitronectin contributes to amyloid formation within these plaques, which contain misfolded, amyloidogenic proteins, and the role of vitronectin in the pathophysiology of the aforementioned diseases is currently unknown. The investigation of vitronectin aggregation is significant since the formation of oligomeric and fibrillar structures are common features of amyloid proteins. Results We observed vitronectin immunoreactivity in senile plaques of AD brain, which exhibited overlap with the amyloid fibril-specific OC antibody, suggesting that vitronectin is deposited at sites of amyloid formation. Of particular interest is the growing body of evidence indicating that soluble nonfibrillar oligomers may be responsible for the development and progression of amyloid diseases. In this study we demonstrate that both plasma-purified and recombinant human vitronectin readily form spherical oligomers and typical amyloid fibrils. Vitronectin oligomers are toxic to cultured neuroblastoma and retinal pigment epithelium (RPE cells, possibly via a membrane-dependent mechanism, as they cause leakage of synthetic vesicles. Oligomer toxicity was attenuated in RPE cells by the anti-oligomer A11 antibody. Vitronectin fibrils contain a C-terminal protease-resistant fragment, which may approximate the core region of residues essential to amyloid formation. Conclusion These data reveal the propensity of vitronectin to behave as an amyloid protein and put forth the possibilities that accumulation of misfolded vitronectin may contribute to aggregate formation seen in age-related amyloid diseases.

  20. Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer's amyloid-beta-deposits.

    Science.gov (United States)

    Dinamarca, M C; Cerpa, W; Garrido, J; Hancke, J L; Inestrosa, N C

    2006-11-01

    The major protein constituent of amyloid deposits in Alzheimer's disease (AD) is the amyloid beta-peptide (Abeta). In the present work, we have determined the effect of hyperforin an acylphloroglucinol compound isolated from Hypericum perforatum (St John's Wort), on Abeta-induced spatial memory impairments and on Abeta neurotoxicity. We report here that hyperforin: (1) decreases amyloid deposit formation in rats injected with amyloid fibrils in the hippocampus; (2) decreases the neuropathological changes and behavioral impairments in a rat model of amyloidosis; (3) prevents Abeta-induced neurotoxicity in hippocampal neurons both from amyloid fibrils and Abeta oligomers, avoiding the increase in reactive oxidative species associated with amyloid toxicity. Both effects could be explained by the capacity of hyperforin to disaggregate amyloid deposits in a dose and time-dependent manner and to decrease Abeta aggregation and amyloid formation. Altogether these evidences suggest that hyperforin may be useful to decrease amyloid burden and toxicity in AD patients, and may be a putative therapeutic agent to fight the disease.

  1. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update

    Directory of Open Access Journals (Sweden)

    Karim Farid

    2017-01-01

    Full Text Available Sporadic cerebral amyloid angiopathy (CAA is a very common small vessel disease of the brain, showing preferential and progressive amyloid-βdeposition in the wall of small arterioles and capillaries of the leptomeninges and cerebral cortex. CAA now encompasses not only a specific cerebrovascular pathological trait, but also different clinical syndromes - including spontaneous lobar intracerebral haemorrhage (ICH, dementia and ‘amyloid spells’ - an expanding spectrum of brain parenchymal MRI lesions and a set of diagnostic criteria – the Boston criteria, which have resulted in increasingly detecting CAA during life. Although currently available validated diagnostic criteria perform well in multiple lobar ICH, a formal diagnosis is currently lacking unless a brain biopsy is performed. This is partly because in practice CAA MRI biomarkers provide only indirect evidence for the disease. An accurate diagnosis of CAA in different clinical settings would have substantial impact for ICH risk stratification and antithrombotic drug use in elderly people, but also for sample homogeneity in drug trials. It has recently been demonstrated that vascular (in addition to parenchymal amyloid-βdeposition can be detected and quantified in vivo by positron emission tomography (PET amyloid tracers. This non-invasive approach has the potential to provide a molecular signature of CAA, and could in turn have major clinical impact. However, several issues around amyloid-PET in CAA remain unsettled and hence its diagnostic utility is limited. In this article we systematically review and critically appraise the published literature on amyloid-PET (PiB and other tracers in sporadic CAA. We focus on two key areas: (a the diagnostic utility of amyloid-PET in CAA and (b the use of amyloid-PET as a window to understand pathophysiological mechanism of the disease. Key issues around amyloid-PET imaging in CAA, including relevant technical aspects are also covered in depth

  2. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  3. β - amyloid imaging probes

    International Nuclear Information System (INIS)

    Jeong, Jae Min

    2007-01-01

    Imaging distribution of β - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the β -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral β - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging β - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for β - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for β - amyloid imaging agent

  4. Role of AAA(+)-proteins in peroxisome biogenesis and function.

    Science.gov (United States)

    Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang

    2016-05-01

    Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.

  5. General amyloid inhibitors? A critical examination of the inhibition of IAPP amyloid formation by inositol stereoisomers.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Islet amyloid polypeptide (IAPP or amylin forms amyloid deposits in the islets of Langerhans; a process that is believed to contribute to the progression of type 2 diabetes and to the failure of islet transplants. An emerging theme in amyloid research is the hypothesis that the toxic species produced during amyloid formation by different polypeptides share common features and exert their effects by common mechanisms. If correct, this suggests that inhibitors of amyloid formation by one polypeptide might be effective against other amyloidogenic sequences. IAPP and Aβ, the peptide responsible for amyloid formation in Alzheimer's disease, are particularly interesting in this regard as they are both natively unfolded in their monomeric states and share some common characteristics. Comparatively little effort has been expended on the design of IAPP amyloid inhibitors, thus it is natural to inquire if Aβ inhibitors are effective against IAPP, especially since no IAPP inhibitors have been clinically approved. A range of compounds inhibit Aβ amyloid formation, including various stereoisomers of inositol. Myo-, scyllo-, and epi-inositol have been shown to induce conformational changes in Aβ and prevent Aβ amyloid fibril formation by stabilizing non-fibrillar β-sheet structures. We investigate the ability of inositol stereoisomers to inhibit amyloid formation by IAPP. The compounds do not induce a conformational change in IAPP and are ineffective inhibitors of IAPP amyloid formation, although some do lead to modest apparent changes in IAPP amyloid fibril morphology. Thus not all classes of Aβ inhibitors are effective against IAPP. This work provides a basis of comparison to work on polyphenol based inhibitors of IAPP amyloid formation and helps provide clues as to the features which render them effective. The study also helps provide information for further efforts in rational inhibitor design.

  6. Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer’s Disease Brain: A Review

    Directory of Open Access Journals (Sweden)

    Xinhua Zhan

    2018-02-01

    Full Text Available This review proposes that lipopolysaccharide (LPS, found in the wall of all Gram-negative bacteria could play a role in causing sporadic Alzheimer’s disease (AD. This is based in part upon recent studies showing that: Gram-negative E. coli bacteria can form extracellular amyloid; bacterial-encoded 16S rRNA is present in all human brains with over 70% being Gram-negative bacteria; ultrastructural analyses have shown microbes in erythrocytes of AD patients; blood LPS levels in AD patients are 3-fold the levels in control; LPS combined with focal cerebral ischemia and hypoxia produced amyloid-like plaques and myelin injury in adult rat cortex. Moreover, Gram-negative bacterial LPS was found in aging control and AD brains, though LPS levels were much higher in AD brains. In addition, LPS co-localized with amyloid plaques, peri-vascular amyloid, neurons, and oligodendrocytes in AD brains. Based upon the postulate LPS caused oligodendrocyte injury, degraded Myelin Basic Protein (dMBP levels were found to be much higher in AD compared to control brains. Immunofluorescence showed that the dMBP co-localized with β amyloid (Aβ and LPS in amyloid plaques in AD brain, and dMBP and other myelin molecules were found in the walls of vesicles in periventricular White Matter (WM. These data led to the hypothesis that LPS acts on leukocyte and microglial TLR4-CD14/TLR2 receptors to produce NFkB mediated increases of cytokines which increase Aβ levels, damage oligodendrocytes and produce myelin injury found in AD brain. Since Aβ1–42 is also an agonist for TLR4 receptors, this could produce a vicious cycle that accounts for the relentless progression of AD. Thus, LPS, the TLR4 receptor complex, and Gram-negative bacteria might be treatment or prevention targets for sporadic AD.

  7. Molecular basis of usher pore gating in Escherichia coli pilus biogenesis.

    Science.gov (United States)

    Volkan, Ender; Kalas, Vasilios; Pinkner, Jerome S; Dodson, Karen W; Henderson, Nadine S; Pham, Thieng; Waksman, Gabriel; Delcour, Anne H; Thanassi, David G; Hultgren, Scott J

    2013-12-17

    Extracellular fibers called chaperone-usher pathway pili are critical virulence factors in a wide range of Gram-negative pathogenic bacteria that facilitate binding and invasion into host tissues and mediate biofilm formation. Chaperone-usher pathway ushers, which catalyze pilus assembly, contain five functional domains: a 24-stranded transmembrane β-barrel translocation domain (TD), a β-sandwich plug domain (PLUG), an N-terminal periplasmic domain, and two C-terminal periplasmic domains (CTD1 and 2). Pore gating occurs by a mechanism whereby the PLUG resides stably within the TD pore when the usher is inactive and then upon activation is translocated into the periplasmic space, where it functions in pilus assembly. Using antibiotic sensitivity and electrophysiology experiments, a single salt bridge was shown to function in maintaining the PLUG in the TD channel of the P pilus usher PapC, and a loop between the 12th and 13th beta strands of the TD (β12-13 loop) was found to facilitate pore opening. Mutation of the β12-13 loop resulted in a closed PapC pore, which was unable to efficiently mediate pilus assembly. Deletion of the PapH terminator/anchor resulted in increased OM permeability, suggesting a role for the proper anchoring of pili in retaining OM integrity. Further, we introduced cysteine residues in the PLUG and N-terminal periplasmic domains that resulted in a FimD usher with a greater propensity to exist in an open conformation, resulting in increased OM permeability but no loss in type 1 pilus assembly. These studies provide insights into the molecular basis of usher pore gating and its roles in pilus biogenesis and OM permeability.

  8. Nanomechanical properties of single amyloid fibrils

    International Nuclear Information System (INIS)

    Sweers, K K M; Bennink, M L; Subramaniam, V

    2012-01-01

    Amyloid fibrils are traditionally associated with neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease or Creutzfeldt-Jakob disease. However, the ability to form amyloid fibrils appears to be a more generic property of proteins. While disease-related, or pathological, amyloid fibrils are relevant for understanding the pathology and course of the disease, functional amyloids are involved, for example, in the exceptionally strong adhesive properties of natural adhesives. Amyloid fibrils are thus becoming increasingly interesting as versatile nanobiomaterials for applications in biotechnology. In the last decade a number of studies have reported on the intriguing mechanical characteristics of amyloid fibrils. In most of these studies atomic force microscopy (AFM) and atomic force spectroscopy play a central role. AFM techniques make it possible to probe, at nanometer length scales, and with exquisite control over the applied forces, biological samples in different environmental conditions. In this review we describe the different AFM techniques used for probing mechanical properties of single amyloid fibrils on the nanoscale. An overview is given of the existing mechanical studies on amyloid. We discuss the difficulties encountered with respect to the small fibril sizes and polymorphic behavior of amyloid fibrils. In particular, the different conformational packing of monomers within the fibrils leads to a heterogeneity in mechanical properties. We conclude with a brief outlook on how our knowledge of these mechanical properties of the amyloid fibrils can be exploited in the construction of nanomaterials from amyloid fibrils. (topical review)

  9. Functional Amyloid Formation within Mammalian Tissue.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  10. Functional amyloid formation within mammalian tissue.

    Directory of Open Access Journals (Sweden)

    Douglas M Fowler

    2006-01-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  11. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Min [Galactophore Department, JingZhou Central Hospital, JingZhou (China); Li, Ruishu, E-mail: liruishu2016@yahoo.com [Forensic Surgery Department, JingZhou Traditional Chinese Medicine Hospital, JingZhou (China); Zhang, Juan [Endocrinology Department, JingZhou Central Hospital, JingZhou (China)

    2016-03-18

    Targeting mitochondrial biogenesis has become a potential therapeutic strategy in cancer due to their unique metabolic dependencies. In this study, we show that levofloxacin, a FDA-approved antibiotic, is an attractive candidate for breast cancer treatment. This is achieved by the inhibition of proliferation and induction of apoptosis in a panel of breast cancer cell lines while sparing normal breast cells. It also acts synergistically with conventional chemo drug in two independent in vivo breast xenograft mouse models. Importantly, levofloxacin inhibits mitochondrial biogenesis as shown by the decreased level of mitochondrial respiration, membrane potential and ATP. In addition, the anti-proliferative and pro-apoptotic effects of levofloxacin are reversed by acetyl-L-Carnitine (ALCAR, a mitochondrial fuel), confirming that levofloxacin's action in breast cancer cells is through inhibition of mitochondrial biogenesis. A consequence of mitochondrial biogenesis inhibition by levofloxacin in breast cancer cells is the deactivation of PI3K/Akt/mTOR and MAPK/ERK pathways. We further demonstrate that breast cancer cells have increased mitochondrial biogenesis than normal breast cells, and this explains their different sensitivity to levofloxacin. Our work suggest that levofloxacin is a useful addition to breast cancer treatment. Our work also establish the essential role of mitochondrial biogenesis on the activation of PI3K/Akt/mTOR and MAPK/ERK pathways in breast cancer cells. - Highlights: • Levofloxacin targets a panel of breast cancer cell lines in vitro and in vivo. • Levofloxacin acts synergistically with 5-Fluorouracil in breast cancer. • Levofloxacin targets breast cancer cells via inhibiting mitochondrial biogenesis. • Breast cancer cells have increased mitochondrial biogenesis than normal cells. • Mitochondrial biogenesis inhibition lead to deactivation of PI3K/Akt/mTOR pathway.

  12. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer

    International Nuclear Information System (INIS)

    Yu, Min; Li, Ruishu; Zhang, Juan

    2016-01-01

    Targeting mitochondrial biogenesis has become a potential therapeutic strategy in cancer due to their unique metabolic dependencies. In this study, we show that levofloxacin, a FDA-approved antibiotic, is an attractive candidate for breast cancer treatment. This is achieved by the inhibition of proliferation and induction of apoptosis in a panel of breast cancer cell lines while sparing normal breast cells. It also acts synergistically with conventional chemo drug in two independent in vivo breast xenograft mouse models. Importantly, levofloxacin inhibits mitochondrial biogenesis as shown by the decreased level of mitochondrial respiration, membrane potential and ATP. In addition, the anti-proliferative and pro-apoptotic effects of levofloxacin are reversed by acetyl-L-Carnitine (ALCAR, a mitochondrial fuel), confirming that levofloxacin's action in breast cancer cells is through inhibition of mitochondrial biogenesis. A consequence of mitochondrial biogenesis inhibition by levofloxacin in breast cancer cells is the deactivation of PI3K/Akt/mTOR and MAPK/ERK pathways. We further demonstrate that breast cancer cells have increased mitochondrial biogenesis than normal breast cells, and this explains their different sensitivity to levofloxacin. Our work suggest that levofloxacin is a useful addition to breast cancer treatment. Our work also establish the essential role of mitochondrial biogenesis on the activation of PI3K/Akt/mTOR and MAPK/ERK pathways in breast cancer cells. - Highlights: • Levofloxacin targets a panel of breast cancer cell lines in vitro and in vivo. • Levofloxacin acts synergistically with 5-Fluorouracil in breast cancer. • Levofloxacin targets breast cancer cells via inhibiting mitochondrial biogenesis. • Breast cancer cells have increased mitochondrial biogenesis than normal cells. • Mitochondrial biogenesis inhibition lead to deactivation of PI3K/Akt/mTOR pathway.

  13. Post-transcriptional regulation of ribosome biogenesis in yeast

    Directory of Open Access Journals (Sweden)

    Isabelle C. Kos-Braun

    2017-05-01

    Full Text Available Most microorganisms are exposed to the constantly and often rapidly changing environment. As such they evolved mechanisms to balance their metabolism and energy expenditure with the resources available to them. When resources become scarce or conditions turn out to be unfavourable for growth, cells reduce their metabolism and energy usage to survive. One of the major energy consuming processes in the cell is ribosome biogenesis. Unsurprisingly, cells encountering adverse conditions immediately shut down production of new ribosomes. It is well established that nutrient depletion leads to a rapid repression of transcription of the genes encoding ribosomal proteins, ribosome biogenesis factors as well as ribosomal RNA (rRNA. However, if pre-rRNA processing and ribosome assembly are regulated post-transcriptionally remains largely unclear. We have recently uncovered that the yeast Saccharomyces cerevisiae rapidly switches between two alternative pre-rRNA processing pathways depending on the environmental conditions. Our findings reveal a new level of complexity in the regulation of ribosome biogenesis.

  14. Anti-amyloid treatments in Alzheimer's disease.

    Science.gov (United States)

    Sapra, Mamta; Kim, Kye Y

    2009-06-01

    Alzheimer's disease is one of the most challenging threats to the healthcare system in society. One of the main characteristic of Alzheimer's disease (AD) pathology is formation of amyloid plaques from accumulation of amyloid beta peptide. The therapeutic agents that are currently available for AD including acetylcholinesterase inhibitors (AchEIs) and the N-methyl-D-aspartate (NMDA) antagonist are focused on improving the symptoms and do not revert the progression of the disease. This limitation coupled with the burgeoning increase in the prevalence of AD and resultant impact on healthcare economics calls for more substantial treatments for AD. According to the leading amyloid hypothesis, cleavage of amyloid precursor protein to release amyloid beta peptide is the critical event in pathogenesis of Alzheimer's disease. Recently treatment strategies have been focused on modifying the formation, clearance and accumulation of neurotoxic amyloid beta peptide. This article reviews different therapeutic approaches that have been investigated to target amyloid beta ranging from secretase modulators, antiaggregation agents to amyloid immunotherapy. Authors review the different novel drugs which are in clinical trials.

  15. The miRNA biogenesis in marine bivalves

    Directory of Open Access Journals (Sweden)

    Umberto Rosani

    2016-03-01

    Full Text Available Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves.

  16. Characterization of the consequences of YidC depletion on the inner membrane proteome of E. coli using 2D blue native/SDS-PAGE

    NARCIS (Netherlands)

    Wickstrom, D.; Wagner, S.; Simonsson, P.; Pop, O.; Baars, L; Ytterberg, A.J.; van Wijk, K.J.; Luirink, J.; de Gier, J.W.

    2011-01-01

    In the bacterium Escherichia coli, the essential inner membrane protein (IMP) YidC assists in the biogenesis of IMPs and IMP complexes. Our current ideas about the function of YidC are based on targeted approaches using only a handful of model IMPs. Proteome-wide approaches are required to further

  17. Extracellular vesicles from human pancreatic islets suppress human islet amyloid polypeptide amyloid formation

    OpenAIRE

    Ribeiro, Diana; Horvath, Istvan; Heath, Nikki; Hicks, Ryan; Forslöw, Anna; Wittung-Stafshede, Pernilla

    2017-01-01

    Protein assembly into amyloid fibers underlies such neurodegenerative disorders as Alzheimer’s disease and Parkinson’s disease. Type 2 diabetes (T2D) also involves amyloid formation, although in the pancreas. Because there are no cures for amyloid diseases and T2D is on the rise due to an increasing prevalence of obesity, identifying involved mechanisms and control processes is of utmost importance. Extracellular vesicles (EVs) can mediate physiological and pathological communication both loc...

  18. Minotaur is critical for primary piRNA biogenesis.

    Science.gov (United States)

    Vagin, Vasily V; Yu, Yang; Jankowska, Anna; Luo, Yicheng; Wasik, Kaja A; Malone, Colin D; Harrison, Emily; Rosebrock, Adam; Wakimoto, Barbara T; Fagegaltier, Delphine; Muerdter, Felix; Hannon, Gregory J

    2013-08-01

    Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur.

  19. Minotaur is critical for primary piRNA biogenesis

    Science.gov (United States)

    Vagin, Vasily V.; Yu, Yang; Jankowska, Anna; Luo, Yicheng; Wasik, Kaja A.; Malone, Colin D.; Harrison, Emily; Rosebrock, Adam; Wakimoto, Barbara T.; Fagegaltier, Delphine; Muerdter, Felix; Hannon, Gregory J.

    2013-01-01

    Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur. PMID:23788724

  20. Towards a Pharmacophore for Amyloid

    Energy Technology Data Exchange (ETDEWEB)

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.; Laganowsky, Arthur; Jiang, Lin; Sievers, Stuart A.; Liu, Jie; Barrio, Jorge R.; Eisenberg, David (UCLA)

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a

  1. Turning Escherichia coli into a Frataxin-Dependent Organism.

    Directory of Open Access Journals (Sweden)

    Béatrice Roche

    2015-05-01

    Full Text Available Fe-S bound proteins are ubiquitous and contribute to most basic cellular processes. A defect in the ISC components catalyzing Fe-S cluster biogenesis leads to drastic phenotypes in both eukaryotes and prokaryotes. In this context, the Frataxin protein (FXN stands out as an exception. In eukaryotes, a defect in FXN results in severe defects in Fe-S cluster biogenesis, and in humans, this is associated with Friedreich's ataxia, a neurodegenerative disease. In contrast, prokaryotes deficient in the FXN homolog CyaY are fully viable, despite the clear involvement of CyaY in ISC-catalyzed Fe-S cluster formation. The molecular basis of the differing importance in the contribution of FXN remains enigmatic. Here, we have demonstrated that a single mutation in the scaffold protein IscU rendered E. coli viability strictly dependent upon a functional CyaY. Remarkably, this mutation changed an Ile residue, conserved in prokaryotes at position 108, into a Met residue, conserved in eukaryotes. We found that in the double mutant IscUIM ΔcyaY, the ISC pathway was completely abolished, becoming equivalent to the ΔiscU deletion strain and recapitulating the drastic phenotype caused by FXN deletion in eukaryotes. Biochemical analyses of the "eukaryotic-like" IscUIM scaffold revealed that it exhibited a reduced capacity to form Fe-S clusters. Finally, bioinformatic studies of prokaryotic IscU proteins allowed us to trace back the source of FXN-dependency as it occurs in present-day eukaryotes. We propose an evolutionary scenario in which the current mitochondrial Isu proteins originated from the IscUIM version present in the ancestor of the Rickettsiae. Subsequent acquisition of SUF, the second Fe-S cluster biogenesis system, in bacteria, was accompanied by diminished contribution of CyaY in prokaryotic Fe-S cluster biogenesis, and increased tolerance to change in the amino acid present at the 108th position of the scaffold.

  2. Why are Functional Amyloids Non-Toxic in Humans?

    Directory of Open Access Journals (Sweden)

    Matthew P. Jackson

    2017-09-01

    Full Text Available Amyloids were first identified in association with amyloidoses, human diseases in which proteins and peptides misfold into amyloid fibrils. Subsequent studies have identified an array of functional amyloid fibrils that perform physiological roles in humans. Given the potential for the production of toxic species in amyloid assembly reactions, it is remarkable that cells can produce these functional amyloids without suffering any obvious ill effect. Although the precise mechanisms are unclear, there are a number of ways in which amyloid toxicity may be prevented. These include regulating the level of the amyloidogenic peptides and proteins, minimising the production of prefibrillar oligomers in amyloid assembly reactions, sequestrating amyloids within membrane bound organelles, controlling amyloid assembly by other molecules, and disassembling the fibrils under physiological conditions. Crucially, a better understanding of how toxicity is avoided in the production of functional amyloids may provide insights into the prevention of amyloid toxicity in amyloidoses.

  3. Genome-wide analysis of effectors of peroxisome biogenesis.

    Directory of Open Access Journals (Sweden)

    Ramsey A Saleem

    2010-08-01

    Full Text Available Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for beta-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function.

  4. Role of ATP in the regulation of cholesterol biogenesis

    International Nuclear Information System (INIS)

    Subba Rao, G.; Ramasarma, T.

    1974-01-01

    Intraperitoneal administration of glucose (4oomg/rat) stimulated the biogenesis of sterols in starved rats while citrate or pyruvate (20mg/rat) did not have any effect. ATP (10mg/ rat) administered intraperitoneally stimulated the incorporation of acetate-1- 14 C into sterols but not of mevalonate-2- 14 C into sterols in starved rats. The results indicate that ATP may play a role in regulating cholesterol biogenesis and it is not acting merely as an energy source. (author)

  5. Crowning: a novel Escherichia coli colonizing behaviour generating a self-organized corona

    OpenAIRE

    Gómez-Gómez, José María; Amils, Ricardo

    2014-01-01

    Background: Encased in a matrix of extracellular polymeric substances (EPS) composed of flagella, adhesins, amyloid fibers (curli), and exopolysaccharides (cellulose, β-1,6-N-acetyl-D-glucosamine polymer-PGA-, colanic acid), the bacteria Escherichia coli is able to attach to and colonize different types of biotic and abiotic surfaces forming biofilms and colonies of intricate morphological architectures. Many of the biological aspects that underlie the generation and development o...

  6. A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies.

    Science.gov (United States)

    Lathuilière, Aurélien; Laversenne, Vanessa; Astolfo, Alberto; Kopetzki, Erhard; Jacobsen, Helmut; Stampanoni, Marco; Bohrmann, Bernd; Schneider, Bernard L; Aebischer, Patrick

    2016-05-01

    Passive immunization against misfolded toxic proteins is a promising approach to treat neurodegenerative disorders. For effective immunotherapy against Alzheimer's disease, recent clinical data indicate that monoclonal antibodies directed against the amyloid-β peptide should be administered before the onset of symptoms associated with irreversible brain damage. It is therefore critical to develop technologies for continuous antibody delivery applicable to disease prevention. Here, we addressed this question using a bioactive cellular implant to deliver recombinant anti-amyloid-β antibodies in the subcutaneous tissue. An encapsulating device permeable to macromolecules supports the long-term survival of myogenic cells over more than 10 months in immunocompetent allogeneic recipients. The encapsulated cells are genetically engineered to secrete high levels of anti-amyloid-β antibodies. Peripheral implantation leads to continuous antibody delivery to reach plasma levels that exceed 50 µg/ml. In a proof-of-concept study, we show that the recombinant antibodies produced by this system penetrate the brain and bind amyloid plaques in two mouse models of the Alzheimer's pathology. When encapsulated cells are implanted before the onset of amyloid plaque deposition in TauPS2APP mice, chronic exposure to anti-amyloid-β antibodies dramatically reduces amyloid-β40 and amyloid-β42 levels in the brain, decreases amyloid plaque burden, and most notably, prevents phospho-tau pathology in the hippocampus. These results support the use of encapsulated cell implants for passive immunotherapy against the misfolded proteins, which accumulate in Alzheimer's disease and other neurodegenerative disorders. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Amyloid Goiter Secondary to Ulcerative Colitis

    Directory of Open Access Journals (Sweden)

    Bunyamin Aydin

    2016-01-01

    Full Text Available Diffuse amyloid goiter (AG is an entity characterized by the deposition of amyloid in the thyroid gland. AG may be associated with either primary or secondary amyloidosis. Secondary amyloidosis is rarely caused by inflammatory bowel diseases. Secondary amyloidosis is relatively more common in the patients with Crohn’s disease, whereas it is highly rare in patients with ulcerative colitis. Diffuse amyloid goiter caused by ulcerative colitis is also a rare condition. In the presence of amyloid in the thyroid gland, medullary thyroid cancer should be kept in mind in the differential diagnosis. Imaging techniques and biochemical tests are not very helpful in the diagnosis of secondary amyloid goiter and the definitive diagnosis is established based on the histopathologic analysis and histochemical staining techniques. In this report, we present a 35-year-old male patient with diffuse amyloid goiter caused by secondary amyloidosis associated with ulcerative colitis.

  8. Chiral recognition in amyloid fiber growth.

    Science.gov (United States)

    Torbeev, Vladimir; Grogg, Marcel; Ruiz, Jérémy; Boehringer, Régis; Schirer, Alicia; Hellwig, Petra; Jeschke, Gunnar; Hilvert, Donald

    2016-05-01

    Insoluble amyloid fibers represent a pathological signature of many human diseases. To treat such diseases, inhibition of amyloid formation has been proposed as a possible therapeutic strategy. d-Peptides, which possess high proteolytic stability and lessened immunogenicity, are attractive candidates in this context. However, a molecular understanding of chiral recognition phenomena for d-peptides and l-amyloids is currently incomplete. Here we report experiments on amyloid growth of individual enantiomers and their mixtures for two distinct polypeptide systems of different length and structural organization: a 44-residue covalently-linked dimer derived from a peptide corresponding to the [20-41]-fragment of human β2-microglobulin (β2m) and the 99-residue full-length protein. For the dimeric [20-41]β2m construct, a combination of electron paramagnetic resonance of nitroxide-labeled constructs and (13) C-isotope edited FT-IR spectroscopy of (13) C-labeled preparations was used to show that racemic mixtures precipitate as intact homochiral fibers, i.e. undergo spontaneous Pasteur-like resolution into a mixture of left- and right-handed amyloids. In the case of full-length β2m, the presence of the mirror-image d-protein affords morphologically distinct amyloids that are composed largely of enantiopure domains. Removal of the l-component from hybrid amyloids by proteolytic digestion results in their rapid transformation into characteristic long straight d-β2m amyloids. Furthermore, the full-length d-enantiomer of β2m was found to be an efficient inhibitor of l-β2m amyloid growth. This observation highlights the potential of longer d-polypeptides for future development into inhibitors of amyloid propagation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  9. Mitochondrial biogenesis in the pulmonary vasculature during inhalation lung injury and fibrosis

    Science.gov (United States)

    Cell survival and injury repair is facilitated by mitochondrial biogenesis; however, the role of this process in lung repair is unknown. We evaluated mitochondrial biogenesis in the mouse lung in two injuries that cause acute inflammation and in two that cause chronic inflammatio...

  10. Mitochondrial iron-sulfur cluster biogenesis from molecular understanding to clinical disease

    Science.gov (United States)

    Alfadhel, Majid; Nashabat, Marwan; Ali, Qais Abu; Hundallah, Khalid

    2017-01-01

    Iron–sulfur clusters (ISCs) are known to play a major role in various protein functions. Located in the mitochondria, cytosol, endoplasmic reticulum and nucleus, they contribute to various core cellular functions. Until recently, only a few human diseases related to mitochondrial ISC biogenesis defects have been described. Such diseases include Friedreich ataxia, combined oxidative phosphorylation deficiency 19, infantile complex II/III deficiency defect, hereditary myopathy with lactic acidosis and mitochondrial muscle myopathy, lipoic acid biosynthesis defects, multiple mitochondrial dysfunctions syndromes and non ketotic hyperglycinemia due to glutaredoxin 5 gene defect. Disorders of mitochondrial import, export and translation, including sideroblastic anemia with ataxia, EVEN-PLUS syndrome and mitochondrial complex I deficiency due to nucleotide-binding protein-like protein gene defect, have also been implicated in ISC biogenesis defects. With advances in next generation sequencing technologies, more disorders related to ISC biogenesis defects are expected to be elucidated. In this article, we aim to shed the light on mitochondrial ISC biogenesis, related proteins and their function, pathophysiology, clinical phenotypes of related disorders, diagnostic approach, and future implications. PMID:28064324

  11. Proteomic screening for amyloid proteins.

    Directory of Open Access Journals (Sweden)

    Anton A Nizhnikov

    Full Text Available Despite extensive study, progress in elucidation of biological functions of amyloids and their role in pathology is largely restrained due to the lack of universal and reliable biochemical methods for their discovery. All biochemical methods developed so far allowed only identification of glutamine/asparagine-rich amyloid-forming proteins or proteins comprising amyloids that form large deposits. In this article we present a proteomic approach which may enable identification of a broad range of amyloid-forming proteins independently of specific features of their sequences or levels of expression. This approach is based on the isolation of protein fractions enriched with amyloid aggregates via sedimentation by ultracentrifugation in the presence of strong ionic detergents, such as sarkosyl or SDS. Sedimented proteins are then separated either by 2D difference gel electrophoresis or by SDS-PAGE, if they are insoluble in the buffer used for 2D difference gel electrophoresis, after which they are identified by mass-spectrometry. We validated this approach by detection of known yeast prions and mammalian proteins with established capacity for amyloid formation and also revealed yeast proteins forming detergent-insoluble aggregates in the presence of human huntingtin with expanded polyglutamine domain. Notably, with one exception, all these proteins contained glutamine/asparagine-rich stretches suggesting that their aggregates arose due to polymerization cross-seeding by human huntingtin. Importantly, though the approach was developed in a yeast model, it can easily be applied to any organism thus representing an efficient and universal tool for screening for amyloid proteins.

  12. Interaction of magnetic nanoparticles with lysozyme amyloid fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Gdovinová, Veronika [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia); Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Tomašovičová, Natália, E-mail: nhudak@saske.sk [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia); Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Batko, Ivan; Batková, Marianna; Balejčíková, Lucia [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia); Garamus, Vasyl M. [Helmholtz-Zentrum Geesthacht: Zentrum fr Material, und Kstenforschung GmbH, Max-Plank-Strae 1, Geesthacht 216502 (Germany); Petrenko, Viktor I. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Physics Department, Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Avdeev, Mikhail V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Kopčanský, Peter [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia)

    2017-06-01

    This work is devoted to the structural study of complex solutions of magnetic nanoparticles with lysozyme amyloid fibrils due to possible ordering of such system by applying the external magnetic field. The interaction of magnetic nanoparticles with amyloid fibrils has been followed by atomic force microscopy and small-angle X-ray scattering. It has been observed that magnetic nanoparticles (MNPs) adsorb to lysozyme amyloid fibrils. It was found that MNPs alter amyloids structures, namely the diameter of lysozyme amyloid fibrils is increased whereas the length of fibrils is decreased. In the same time MNPs do not change the helical pitch significantly. - Highlights: • Solution of MNPs with lysozyme amyloid fibrils was characterized by AFM and SAXS. • MNPs adsorb to lysozyme amyloid fibrils. • Diameter and size of lysozyme amyloid fibrils change due to doping with MNPs.

  13. Yeast prions form infectious amyloid inclusion bodies in bacteria

    Directory of Open Access Journals (Sweden)

    Espargaró Alba

    2012-06-01

    Full Text Available Abstract Background Prions were first identified as infectious proteins associated with fatal brain diseases in mammals. However, fungal prions behave as epigenetic regulators that can alter a range of cellular processes. These proteins propagate as self-perpetuating amyloid aggregates being an example of structural inheritance. The best-characterized examples are the Sup35 and Ure2 yeast proteins, corresponding to [PSI+] and [URE3] phenotypes, respectively. Results Here we show that both the prion domain of Sup35 (Sup35-NM and the Ure2 protein (Ure2p form inclusion bodies (IBs displaying amyloid-like properties when expressed in bacteria. These intracellular aggregates template the conformational change and promote the aggregation of homologous, but not heterologous, soluble prionogenic molecules. Moreover, in the case of Sup35-NM, purified IBs are able to induce different [PSI+] phenotypes in yeast, indicating that at least a fraction of the protein embedded in these deposits adopts an infectious prion fold. Conclusions An important feature of prion inheritance is the existence of strains, which are phenotypic variants encoded by different conformations of the same polypeptide. We show here that the proportion of infected yeast cells displaying strong and weak [PSI+] phenotypes depends on the conditions under which the prionogenic aggregates are formed in E. coli, suggesting that bacterial systems might become useful tools to generate prion strain diversity.

  14. Diverse Regulators of Human Ribosome Biogenesis Discovered by Changes in Nucleolar Number

    Directory of Open Access Journals (Sweden)

    Katherine I. Farley-Barnes

    2018-02-01

    Full Text Available Ribosome biogenesis is a highly regulated, essential cellular process. Although studies in yeast have established some of the biological principles of ribosome biogenesis, many of the intricacies of its regulation in higher eukaryotes remain unknown. To understand how ribosome biogenesis is globally integrated in human cells, we conducted a genome-wide siRNA screen for regulators of nucleolar number. We found 139 proteins whose depletion changed the number of nucleoli per nucleus from 2–3 to only 1 in human MCF10A cells. Follow-up analyses on 20 hits found many (90% to be essential for the nucleolar functions of rDNA transcription (7, pre-ribosomal RNA (pre-rRNA processing (16, and/or global protein synthesis (14. This genome-wide analysis exploits the relationship between nucleolar number and function to discover diverse cellular pathways that regulate the making of ribosomes and paves the way for further exploration of the links between ribosome biogenesis and human disease.

  15. Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction versus amyloid self-assembly.

    Science.gov (United States)

    Bakou, Maria; Hille, Kathleen; Kracklauer, Michael; Spanopoulou, Anna; Frost, Christina V; Malideli, Eleni; Yan, Li-Mei; Caporale, Andrea; Zacharias, Martin; Kapurniotu, Aphrodite

    2017-09-01

    The interaction of the intrinsically disordered polypeptide islet amyloid polypeptide (IAPP), which is associated with type 2 diabetes (T2D), with the Alzheimer's disease amyloid-β (Aβ) peptide modulates their self-assembly into amyloid fibrils and may link the pathogeneses of these two cell-degenerative diseases. However, the molecular determinants of this interaction remain elusive. Using a systematic alanine scan approach, fluorescence spectroscopy, and other biophysical methods, including heterocomplex pulldown assays, far-UV CD spectroscopy, the thioflavin T binding assay, transmission EM, and molecular dynamics simulations, here we identified single aromatic/hydrophobic residues within the amyloid core IAPP region as hot spots or key residues of its cross-interaction with Aβ40(42) peptide. Importantly, we also find that none of these residues in isolation plays a key role in IAPP self-assembly, whereas simultaneous substitution of four aromatic/hydrophobic residues with Ala dramatically impairs both IAPP self-assembly and hetero-assembly with Aβ40(42). Furthermore, our experiments yielded several novel IAPP analogs, whose sequences are highly similar to that of IAPP but have distinct amyloid self- or cross-interaction potentials. The identified similarities and major differences controlling IAPP cross-peptide interaction with Aβ40(42) versus its amyloid self-assembly offer a molecular basis for understanding the underlying mechanisms. We propose that these insights will aid in designing intervention strategies and novel IAPP analogs for the management of type 2 diabetes, Alzheimer's disease, or other diseases related to IAPP dysfunction or cross-amyloid interactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Selenium supplementation induces mitochondrial biogenesis in trophoblasts

    Czech Academy of Sciences Publication Activity Database

    Khera, A.; Dong, L. F.; Holland, O.; Vanderlelie, J.; Pasdar, E.A.; Neužil, Jiří; Perkins, A.V.

    2015-01-01

    Roč. 36, č. 8 (2015), s. 363-369 ISSN 0143-4004 Institutional support: RVO:86652036 Keywords : Selenium * Reactive oxygen species * Mitochondrial biogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.972, year: 2015

  17. AL amyloid imaging and therapy with a monoclonal antibody to a cryptic epitope on amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available The monoclonal antibody 2A4 binds an epitope derived from a cleavage site of serum amyloid protein A (sAA containing a -Glu-Asp- amino acid pairing. In addition to its reactivity with sAA amyloid deposits, the antibody was also found to bind amyloid fibrils composed of immunoglobulin light chains. The antibody binds to synthetic fibrils and human light chain (AL amyloid extracts with high affinity even in the presence of soluble light chain proteins. Immunohistochemistry with biotinylated 2A4 demonstrated positive reaction with ALκ and ALλ human amyloid deposits in various organs. Surface plasmon resonance analyses using synthetic AL fibrils as a substrate revealed that 2A4 bound with a K(D of ∼10 nM. Binding was inhibited in the presence of the -Glu-Asp- containing immunogen peptide. Radiolabeled 2A4 specifically localized with human AL amyloid extracts implanted in mice (amyloidomas as evidenced by single photon emission (SPECT imaging. Furthermore, co-localization of the radiolabeled mAb with amyloid was shown in biodistribution and micro-autoradiography studies. Treatment with 2A4 expedited regression of ALκ amyloidomas in mice, likely mediated by the action of macrophages and neutrophils, relative to animals that received a control antibody. These data indicate that the 2A4 mAb might be of interest for potential imaging and immunotherapy in patients with AL amyloidosis.

  18. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli.

    Science.gov (United States)

    Lai, Ghee Chuan; Cho, Hongbaek; Bernhardt, Thomas G

    2017-07-01

    Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG). Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs), preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq) as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi-enzyme complexes

  19. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ghee Chuan Lai

    2017-07-01

    Full Text Available Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG. Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs, preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi

  20. Amyloid-β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect.

    Science.gov (United States)

    Honda, Ryo

    2018-04-12

    Transmissible spongiform encephalopathy is associated with misfolding of prion protein (PrP) into an amyloid β-rich aggregate. Previous studies have indicated that PrP interacts with Alzheimer's disease amyloid-β peptide (Aβ), but it remains elusive how this interaction impacts on the misfolding of PrP. This study presents the first in vitro evidence that Aβ induces PrP-amyloid formation at submicromolar concentrations. Interestingly, systematic mutagenesis of PrP revealed that Aβ requires no specific amino acid sequences in PrP, and induces the misfolding of other unrelated proteins (insulin and lysozyme) into amyloid fibrils in a manner analogous to PrP. This unanticipated nonspecific amyloidogenic effect of Aβ indicates that this peptide might be involved in widespread protein aggregation, regardless of the amino acid sequences of target proteins, and exacerbate the pathology of many neurodegenerative diseases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  2. Functional amyloid formation by Streptococcus mutans

    Science.gov (United States)

    Oli, M. W.; Otoo, H. N.; Crowley, P. J.; Heim, K. P.; Nascimento, M. M.; Ramsook, C. B.; Lipke, P. N.

    2012-01-01

    Dental caries is a common infectious disease associated with acidogenic and aciduric bacteria, including Streptococcus mutans. Organisms that cause cavities form recalcitrant biofilms, generate acids from dietary sugars and tolerate acid end products. It has recently been recognized that micro-organisms can produce functional amyloids that are integral to biofilm development. We now show that the S. mutans cell-surface-localized adhesin P1 (antigen I/II, PAc) is an amyloid-forming protein. This conclusion is based on the defining properties of amyloids, including binding by the amyloidophilic dyes Congo red (CR) and Thioflavin T (ThT), visualization of amyloid fibres by transmission electron microscopy and the green birefringent properties of CR-stained protein aggregates when viewed under cross-polarized light. We provide evidence that amyloid is present in human dental plaque and is produced by both laboratory strains and clinical isolates of S. mutans. We provide further evidence that amyloid formation is not limited to P1, since bacterial colonies without this adhesin demonstrate residual green birefringence. However, S. mutans lacking sortase, the transpeptidase enzyme that mediates the covalent linkage of its substrates to the cell-wall peptidoglycan, including P1 and five other proteins, is not birefringent when stained with CR and does not form biofilms. Biofilm formation is inhibited when S. mutans is cultured in the presence of known inhibitors of amyloid fibrillization, including CR, Thioflavin S and epigallocatechin-3-gallate, which also inhibited ThT uptake by S. mutans extracellular proteins. Taken together, these results indicate that S. mutans is an amyloid-forming organism and suggest that amyloidogenesis contributes to biofilm formation by this oral microbe. PMID:23082034

  3. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto.

    Science.gov (United States)

    Hsu, Ruei-Lin; Lee, Kung-Ta; Wang, Jung-Hao; Lee, Lily Y-L; Chen, Rita P-Y

    2009-01-28

    More than 20 unrelated proteins can form amyloid fibrils in vivo which are related to various diseases, such as Alzheimer's disease, prion disease, and systematic amyloidosis. Amyloid fibrils are an ordered protein aggregate with a lamellar cross-beta structure. Enhancing amyloid clearance is one of the targets of the therapy of these amyloid-related diseases. Although there is debate on whether the toxicity is due to amyloids or their precursors, research on the degradation of amyloids may help prevent or alleviate these diseases. In this study, we explored the amyloid-degrading ability of nattokinase, a fibrinolytic subtilisin-like serine protease, and determined the optimal conditions for amyloid hydrolysis. This ability is shared by proteinase K and subtilisin Carlsberg, but not by trypsin or plasmin.

  4. Amyloid beta peptide immunotherapy in Alzheimer disease.

    Science.gov (United States)

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Chemical Methods to Knock Down the Amyloid Proteins

    Directory of Open Access Journals (Sweden)

    Na Gao

    2017-06-01

    Full Text Available Amyloid proteins are closely related with amyloid diseases and do tremendous harm to human health. However, there is still a lack of effective strategies to treat these amyloid diseases, so it is important to develop novel methods. Accelerating the clearance of amyloid proteins is a favorable method for amyloid disease treatment. Recently, chemical methods for protein reduction have been developed and have attracted much attention. In this review, we focus on the latest progress of chemical methods that knock down amyloid proteins, including the proteolysis-targeting chimera (PROTAC strategy, the “recognition-cleavage” strategy, the chaperone-mediated autophagy (CMA strategy, the selectively light-activatable organic and inorganic molecules strategy and other chemical strategies.

  6. Nuclear imaging of amyloid deposits based upon thioflavins

    International Nuclear Information System (INIS)

    Wang Yanming; Wu Chunying; Wei Jinjun

    2005-01-01

    Alzheimer's Disease (AD) is a chronic neurodegenerative disorders characterized by the presence of amyloid deposits and neurofibrillar tangles in the brain. Direct assessment of local changes of amyloid deposits in vivo would greatly facilitate the diagnosis and therapeutic treatments of AD. The goal of this study is to develop small-molecule probes that can be used to follow amyloid deposition in vivo in patients with neurodegenerative diseases. Over the past years, we set out to develop a series of small molecules based on thioflavins as radiotracers for use in nuclear imaging modalities such as positron emission tomography and single photon emission computed tomography. The potential of these amyloid-imaging agents for in vivo studies of amyloid deposition has been evaluated based on the following methods: 1) spectrophotometric binding. assays with synthetic amyloid-β (Aβ) fibrils and AD brain homogenates; 2) fluorescent staining of brain tissue sections to evaluate specificity of binding to amyloid deposits; 3) fluorescent microscopy in mouse models to determine the brain permeability and characterize the binding specificity in vivo, and 4) PET studies in human subjects diagnosed with AD and age-matched control subjects. To date, we have identified some lead compounds as molecular probes with specificity towards amyloid deposits. The in vitro and in vivo binding properties of these compounds have been demonstrated in the following ways: 1) they selectively binds to Aβ fibrils; 2) they selectively stains amyloid deposits in AD brain tissue sections; 3) they readily penetrates the blood-brain barrier, selectively detects amyloid deposits in vivo iri living mice; and 4) One of these compounds, termed PIB, has been successfully used in PET studies in human subjects. In conclusion, amyloid-imaging probes have been developed that could be used to monitor amyloid load in vivo. Applications of the probes are under investigation for potential pathophysiology studies

  7. Specific localization and imaging of amyloid deposits in vivo using 123I-labeled serum amyloid P component

    International Nuclear Information System (INIS)

    Hawkins, P.N.; Myers, M.J.; Epenetos, A.A.; Caspi, D.; Pepys, M.B.

    1988-01-01

    Highly specific, high-resolution scintigraphic images of amyloid-laden organs in mice with experimentally induced amyloid A protein (AA) amyloidosis were obtained after intravenous injection of 123 I-labeled serum amyloid P component (SAP). Interestingly, a much higher proportion (up to 40%) of the injected dose of heterologous human SAP localized to amyloid and was retained there than was the case with isologous mouse SAP, indicating that human SAP binds more avidly to mouse AA fibrils than does mouse SAP. Specificity of SAP localization was established by the failure of the related proteins, human C-reactive protein and Limulus C-reactive protein, to deposit significantly in amyloid and by the absence of human SAP deposition in nonamyloidotic organs. However, only partial correlations were observed between the quantity of SAP localized and two independent estimates, histology and RIA for AA of the amount of amyloid in particular organs. It is not clear which of the three methods used reflects better the extent or clinical significance of the amyloid deposits but in vivo localization of radiolabeled SAP, detectable and quantifiable by gamma camera imaging, is apparently extremely sensitive. These findings establish the use of labeled SAP as a noninvasive in vivo diagnostic probe in experimental amyloidosis, potentially capable of revealing the natural history of the condition, and suggest that it may also be applicable generally as a specific targeting agent for diagnostic and even therapeutic purposes in clinical amyloidosis

  8. Overproduction, purification, crystallization and preliminary X-ray analysis of human Fe65-PTB2 in complex with the amyloid precursor protein intracellular domain

    Energy Technology Data Exchange (ETDEWEB)

    Radzimanowski, Jens [Heidelberg University Biochemistry Center, INF328, D-69120 Heidelberg (Germany); Beyreuther, Konrad [Center for Molecular Biology, University Heidelberg, INF282, D-69120 Heidelberg (Germany); Sinning, Irmgard; Wild, Klemens, E-mail: klemens.wild@bzh.uni-heidelberg.de [Heidelberg University Biochemistry Center, INF328, D-69120 Heidelberg (Germany)

    2008-05-01

    Alzheimer’s disease is characterized by proteolytic processing of the amyloid precursor protein (APP), which releases the aggregation-prone amyloid-β (Aβ) peptide and liberates the intracellular domain (AICD) that interacts with various adaptor proteins. The crystallized AICD–Fe65-PTB2 complex is of central importance for APP translocation, nuclear signalling, processing and Aβ generation. Alzheimer’s disease is associated with typical brain deposits (senile plaques) that mainly contain the neurotoxic amyloid β peptide. This peptide results from proteolytic processing of the type I transmembrane protein amyloid precursor protein (APP). During this proteolytic pathway the APP intracellular domain (AICD) is released into the cytosol, where it associates with various adaptor proteins. The interaction of the AICD with the C-terminal phosphotyrosine-binding domain of Fe65 (Fe65-PTB2) regulates APP translocation, signalling and processing. Human AICD and Fe65-PTB2 have been cloned, overproduced and purified in large amounts in Escherichia coli. A complex of Fe65-PTB2 with the C-terminal 32 amino acids of the AICD gave well diffracting hexagonal crystals and data have been collected to 2.1 Å resolution. Initial phases obtained by the molecular-replacement method are of good quality and revealed well defined electron density for the substrate peptide.

  9. Towards Alzheimer's beta-amyloid vaccination.

    Science.gov (United States)

    Frenkel, D; Solomon, B

    2001-01-01

    Beta-amyloid pathology, the main hallmark of Alzheimer's disease (AD), has been linked to its conformational status and aggregation. We recently showed that site-directed monoclonal antibodies (mAbs) towards the N-terminal region of the human beta-amyloid peptide bind to preformed beta-amyloid fibrils (Abeta), leading to disaggregation and inhibition of their neurotoxic effect. Here we report the development of a novel immunization procedure to raise effective anti-aggregating amyloid beta-protein (AbetaP) antibodies, using as antigen filamentous phages displaying the only EFRH peptide found to be the epitope of these antibodies. Due to the high antigenicity of the phage no adjuvant is required to obtain high affinity anti-aggregating IgG antibodies in animals model, that exhibit identity to human AbetaP. Such antibodies are able to sequester peripheral AbetaP, thus avoiding passage through the blood brain barrier (BBB) and, as recently shown in a transgenic mouse model, to cross the BBB and dissolve already formed beta-amyloid plaques. To our knowledge, this is the first attempt to use as a vaccine a self-anti-aggregating epitope displayed on a phage, and this may pave the way to treat abnormal accumulation-peptide diseases, such as Alzheimer's disease or other amyloidogenic diseases. Copyright 2001 The International Association for Biologicals.

  10. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    Science.gov (United States)

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Kosicka, Iga

    2014-01-01

    Diabetes mellitus type II is a metabolic disease affecting millions of people worldwide. The disease is associated with occurence of insoluble, fibrillar, protein aggregates in islets of Langerhans in the pancreas - islet amyloid. The main constituent of these protein fibers is the human islet...... of diabetes type II, while revealing the structure(s) of islet amyloid fibrils is necessary for potential design of therapeutic agents....

  12. Strong transthyretin immunostaining: potential pitfall in cardiac amyloid typing.

    Science.gov (United States)

    Satoskar, Anjali A; Efebera, Yvonne; Hasan, Ayesha; Brodsky, Sergey; Nadasdy, Gyongyi; Dogan, Ahmet; Nadasdy, Tibor

    2011-11-01

    Although systemic amyloidosis commonly presents with renal disease, cardiac involvement usually determines the patient's prognosis. Cardiac involvement is seen in light chain amyloid and transthyretin amyloidosis. Distinguishing between these two is critical because prognosis and treatment differ. Our study demonstrates the unreliability of transthyretin immunostaining in subtyping cardiac amyloid. Between January 2003 and August 2010, we retrieved 229 native endomyocardial biopsies, of which 24 had amyloid. Immunohistochemistry for κ, λ, transthyretin, and serum amyloid A protein was performed on formalin-fixed, paraffin-embedded sections. Staining was graded as weak (trace to 1+) or strong (2 to 3+). Mass spectrometry (MS)-based proteomic typing of microdissected amyloid material was performed on selected cases. Fifteen patients had monoclonal gammopathy/plasma cell dyscrasia with cardiac amyloid. Eight of them (53%) showed strong transthyretin staining in the cardiac amyloid deposits. MS was performed in 5 of these 8 biopsies, and all 5 biopsies revealed light chain amyloid-type amyloid. Two of these 5 light chain amyloid biopsies did not even have concomitant strong staining for the appropriate light chain. Among the 15 cases with plasma cell dyscrasia, only 7 biopsies showed strong staining for the corresponding monoclonal light chain. Strong, false-positive immunostaining for transthyretin in cardiac amyloid is a potential pitfall, augmented by the frequent lack of staining for immunoglobulin light chains. Therefore, the presence of amyloid in the cardiac biopsy should prompt a search for plasma cell dyscrasia irrespective of transthyretin staining. Confirmation with MS should be sought, particularly if there is any discrepancy between κ/λ staining and serum immunofixation results.

  13. Cholesterol and myelin biogenesis.

    Science.gov (United States)

    Saher, Gesine; Simons, Mikael

    2010-01-01

    Myelin consists of several layers of tightly compacted membranes wrapped around axons in the nervous system. The main function of myelin is to provide electrical insulation around the axon to ensure the rapid propagation of nerve conduction. As the myelinating glia terminally differentiates, they begin to produce myelin membranes on a remarkable scale. This membrane is unique in its composition being highly enriched in lipids, in particular galactosylceramide and cholesterol. In this review we will summarize the role of cholesterol in myelin biogenesis in the central and peripheral nervous system.

  14. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Claudia Capitini

    Full Text Available Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.

  15. Bilateral metachronous periosteal tibial amyloid tumors

    International Nuclear Information System (INIS)

    Murata, H.; Kusuzaki, Katsuyuki; Hashiguchi, S.; Ueda, Hidetaka; Hirasawa, Yasusuke

    2000-01-01

    Localized primary periosteal amyloid tumors are extremely rare. A case of bilateral tibial amyloid tumor is presented. A 62-year-old woman initially presented with a painful mass in the anterior aspect of the right leg. There was no evidence of underlying systemic disease, including chronic infection or malignancy. Based on the results of resistance with Congo red staining to treatment with potassium permanganate and positivity for kappa light chain, we classified this particular case as AL-type amyloidosis. The patient noticed a swelling in the opposite leg 2 years later. The second tumor was also an AL-type amyloidoma. Amyloid tumors are generally solitary. This is the first case of bilateral periosteal amyloid tumors of the AL-type occurring in the tibiae. (orig.)

  16. Imaging β-amyloid fibrils in Alzheimer's disease: a critical analysis through simulation of amyloid fibril polymerization

    International Nuclear Information System (INIS)

    Shoghi-Jadid, Kooresh; Barrio, Jorge R.; Kepe, Vladimir; Wu, H.-M.; Small, Gary W.; Phelps, Michael E.; Huang, S.-C.

    2005-01-01

    The polymerization of β-amyloid (Aβ) peptides into fibrillary plaques is implicated, in part, in the pathogenesis of Alzheimer's disease. Aβ molecular imaging probes (Aβ-MIPs) have been introduced in an effort to quantify amyloid burden or load, in subjects afflicted with AD by invoking the classic PET receptor model for the quantitation of neuronal receptor density. In this communication, we explore conceptual differences between imaging the density of amyloid fibril polymers and neuronal receptors. We formulate a mathematical model for the polymerization of Aβ with parameters that are mapped to biological modulators of fibrillogenesis and introduce a universal measure for amyloid load to accommodate various interactions of Aβ-MIPs with fibrils. Subsequently, we hypothesize four Aβ-MIPs and utilize the fibrillogenesis model to simulate PET tissue time activity curves (TACs). Given the unique nature of polymer growth and resulting PET TAC, the four probes report differing amyloid burdens for a given brain pathology, thus complicating the interpretation of PET images. In addition, we introduce the notion of an MIP's resolution, apparent maximal binding site concentration, optimal kinetic topology and its resolving power in characterizing the pathological progression of AD and the effectiveness of drug therapy. The concepts introduced in this work call for a new paradigm that goes beyond the classic parameters B max and K D to include binding characteristics to polymeric peptide aggregates such as amyloid fibrils, neurofibrillary tangles and prions

  17. Outer membrane biogenesis in Helicobacter pylori: A deviation from the paradigm

    Directory of Open Access Journals (Sweden)

    George W. Liechti

    2012-04-01

    Full Text Available The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM. Lipopolysaccharide (LPS and numerous outer membrane proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its outer membrane profile limits the effectiveness of vaccines that use any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε- proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε-proteobacteria, while the inner and outer membrane associated apparatus of LPS, lipoprotein, and OM protein transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to

  18. Microprocessor Activity Controls Differential miRNA Biogenesis In Vivo

    Directory of Open Access Journals (Sweden)

    Thomas Conrad

    2014-10-01

    Full Text Available In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression.

  19. Mitochondrial cytochrome c biogenesis: no longer an enigma.

    Science.gov (United States)

    Babbitt, Shalon E; Sutherland, Molly C; San Francisco, Brian; Mendez, Deanna L; Kranz, Robert G

    2015-08-01

    Cytochromes c (cyt c) and c1 are heme proteins that are essential for aerobic respiration. Release of cyt c from mitochondria is an important signal in apoptosis initiation. Biogenesis of c-type cytochromes involves covalent attachment of heme to two cysteines (at a conserved CXXCH sequence) in the apocytochrome. Heme attachment is catalyzed in most mitochondria by holocytochrome c synthase (HCCS), which is also necessary for the import of apocytochrome c (apocyt c). Thus, HCCS affects cellular levels of cyt c, impacting mitochondrial physiology and cell death. Here, we review the mechanisms of HCCS function and the roles of heme and residues in the CXXCH motif. Additionally, we consider concepts emerging within the two prokaryotic cytochrome c biogenesis pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Halogenation dictates the architecture of amyloid peptide nanostructures.

    Science.gov (United States)

    Pizzi, Andrea; Pigliacelli, Claudia; Gori, Alessandro; Nonappa; Ikkala, Olli; Demitri, Nicola; Terraneo, Giancarlo; Castelletto, Valeria; Hamley, Ian W; Baldelli Bombelli, Francesca; Metrangolo, Pierangelo

    2017-07-20

    Amyloid peptides yield a plethora of interesting nanostructures though difficult to control. Here we report that depending on the number, position, and nature of the halogen atoms introduced into either one or both phenylalanine benzene rings of the amyloid β peptide-derived core-sequence KLVFF, four different architectures were obtained in a controlled manner. Our findings demonstrate that halogenation may develop as a general strategy to engineer amyloidal peptide self-assembly and obtain new amyloidal nanostructures.

  1. Amyloid PET in neurodegenerative diseases with dementia.

    Science.gov (United States)

    Camacho, V; Gómez-Grande, A; Sopena, P; García-Solís, D; Gómez Río, M; Lorenzo, C; Rubí, S; Arbizu, J

    2018-05-15

    Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive decline and memory loss, and is the most common form of dementia. Amyloid plaques with neurofibrillary tangles are a neuropathological hallmark of AD that produces synaptic dysfunction and culminates later in neuronal loss. Amyloid PET is a useful, available and non-invasive technique that provides in vivo information about the cortical amyloid burden. In the latest revised criteria for the diagnosis of AD biomarkers were defined and integrated: pathological and diagnostic biomarkers (increased retention on fibrillar amyloid PET or decreased Aβ 1-42 and increased T-Tau or P-Tau in CSF) and neurodegeneration or topographical biomarkers (temporoparietal hypometabolism on 18 F-FDG PET and temporal atrophy on MRI). Recently specific recommendations have been created as a consensus statement on the appropriate use of the imaging biomarkers, including amyloid PET: early-onset cognitive impairment/dementia, atypical forms of AD, mild cognitive impairment with early age of onset, and to differentiate between AD and other neurodegenerative diseases that occur with dementia. Amyloid PET is also contributing to the development of new therapies for AD, as well as in research studies for the study of other neurodegenerative diseases that occur with dementia where the deposition of Aβ amyloid is involved in its pathogenesis. In this paper, we review some general concepts and study the use of amyloid PET in depth and its relationship with neurodegenerative diseases and other diagnostic techniques. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. A Peptide-Fc Opsonin with Pan-Amyloid Reactivity

    Directory of Open Access Journals (Sweden)

    James S. Foster

    2017-09-01

    Full Text Available There is a continuing need for therapeutic interventions for patients with the protein misfolding disorders that result in systemic amyloidosis. Recently, specific antibodies have been employed to treat AL amyloidosis by opsonizing tissue amyloid deposits thereby inducing cell-mediated dissolution and organ improvement. To develop a pan-amyloid therapeutic agent, we have produced an Fc-fusion product incorporating a peptide, p5, which binds many if not all forms of amyloid. This protein, designated Fcp5, expressed in mammalian cells, forms the desired bivalent dimer structure and retains pan-amyloid reactivity similar to the p5 peptide as measured by immunosorbent assays, immunohistochemistry, surface plasmon resonance, and pulldown assays using radioiodinated Fcp5. Additionally, Fcp5 was capable of opsonizing amyloid fibrils in vitro using a pH-sensitive fluorescence assay of phagocytosis. In mice,125 I-labeled Fcp5 exhibited an extended serum circulation time, relative to the p5 peptide. It specifically bound AA amyloid deposits in diseased mice, as evidenced by biodistribution and microautoradiographic methods, which coincided with an increase in active, Iba-1-positive macrophages in the liver at 48 h postinjection of Fcp5. In healthy mice, no specific tissue accumulation was observed. The data indicate that polybasic, pan-amyloid-targeting peptides, in the context of an Fc fusion, can yield amyloid reactive, opsonizing reagents that may serve as next-generation immunotherapeutics.

  3. Stable, metastable, and kinetically trapped amyloid aggregate phases.

    Science.gov (United States)

    Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy D; Muschol, Martin

    2015-01-12

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer's disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid-liquid phase separation of proteins and to surfactant aggregation are discussed.

  4. A method for probing the mutational landscape of amyloid structure.

    Science.gov (United States)

    O'Donnell, Charles W; Waldispühl, Jérôme; Lis, Mieszko; Halfmann, Randal; Devadas, Srinivas; Lindquist, Susan; Berger, Bonnie

    2011-07-01

    Proteins of all kinds can self-assemble into highly ordered β-sheet aggregates known as amyloid fibrils, important both biologically and clinically. However, the specific molecular structure of a fibril can vary dramatically depending on sequence and environmental conditions, and mutations can drastically alter amyloid function and pathogenicity. Experimental structure determination has proven extremely difficult with only a handful of NMR-based models proposed, suggesting a need for computational methods. We present AmyloidMutants, a statistical mechanics approach for de novo prediction and analysis of wild-type and mutant amyloid structures. Based on the premise of protein mutational landscapes, AmyloidMutants energetically quantifies the effects of sequence mutation on fibril conformation and stability. Tested on non-mutant, full-length amyloid structures with known chemical shift data, AmyloidMutants offers roughly 2-fold improvement in prediction accuracy over existing tools. Moreover, AmyloidMutants is the only method to predict complete super-secondary structures, enabling accurate discrimination of topologically dissimilar amyloid conformations that correspond to the same sequence locations. Applied to mutant prediction, AmyloidMutants identifies a global conformational switch between Aβ and its highly-toxic 'Iowa' mutant in agreement with a recent experimental model based on partial chemical shift data. Predictions on mutant, yeast-toxic strains of HET-s suggest similar alternate folds. When applied to HET-s and a HET-s mutant with core asparagines replaced by glutamines (both highly amyloidogenic chemically similar residues abundant in many amyloids), AmyloidMutants surprisingly predicts a greatly reduced capacity of the glutamine mutant to form amyloid. We confirm this finding by conducting mutagenesis experiments. Our tool is publically available on the web at http://amyloid.csail.mit.edu/. lindquist_admin@wi.mit.edu; bab@csail.mit.edu.

  5. Amyloid-PET burden and regional distribution in cerebral amyloid angiopathy: a systematic review and meta-analysis of biomarker performance.

    Science.gov (United States)

    Charidimou, Andreas; Farid, Karim; Tsai, Hsin-Hsi; Tsai, Li-Kai; Yen, Rouh-Fang; Baron, Jean-Claude

    2018-04-01

    We performed a meta-analysis to synthesise current evidence on amyloid-positron emission tomography (PET) burden and presumed preferential occipital distribution in sporadic cerebral amyloid angiopathy (CAA). In a PubMed systematic search, we identified case-control studies with extractable data on global and occipital-to-global amyloid-PET uptake in symptomatic patients with CAA (per Boston criteria) versus control groups (healthy participants or patients with non-CAA deep intracerebral haemorrhage) and patients with Alzheimer's disease. To circumvent PET studies' methodological variation, we generated and used 'fold change', that is, ratio of mean amyloid uptake (global and occipital-to-global) of CAA relative to comparison groups. Amyloid-PET uptake biomarker performance was then quantified by random-effects meta-analysis on the ratios of the means. A ratio >1 indicates that amyloid-PET uptake (global or occipital/global) is higher in CAA than comparison groups, and a ratio 90% with probable CAA) and 138 controls (96 healthy elderly, 42 deep intracerebral haemorrhage controls) and 72 patients with Alzheimer's disease, were included. Global amyloid-PET ratio between patients with CAA and controls was above 1, with an average effect size of 1.18 (95% CI 1.08 to 1.28; pPET uptake ratio did not differ between patients with CAA versus patients with deep intracerebral haemorrhage or healthy controls. By contrast, occipital-to-global amyloid-PET uptake ratio was above 1 in patients with CAA versus those with Alzheimer's disease, with an average ratio of 1.10 (95% CI 1.03 to 1.19; p=0.009) and high statistical heterogeneity. Our analysis provides exploratory actionable data on the overall effect sizes and strength of amyloid-PET burden and distribution in patients with CAA, useful for future larger studies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless

  6. Amyloid in basal cell carcinoma and seborrheic keratosis

    DEFF Research Database (Denmark)

    Olsen, K E; Westermark, Per

    1994-01-01

    The frequency of amyloid substance was studied in two different types of skin tumours: basal cell carcinoma and seborrheic keratosis. In 9 out of 49 cases of seborrheic keratosis amyloid substance was found. In the basal cell carcinomas, 194 out of 260 cases showed amyloid deposits, a rate...

  7. Amyloid-like protein inclusions in tobacco transgenic plants.

    Directory of Open Access Journals (Sweden)

    Anna Villar-Piqué

    Full Text Available The formation of insoluble protein deposits in human tissues is linked to the onset of more than 40 different disorders, ranging from dementia to diabetes. In these diseases, the proteins usually self-assemble into ordered β-sheet enriched aggregates known as amyloid fibrils. Here we study the structure of the inclusions formed by maize transglutaminase (TGZ in the chloroplasts of tobacco transplastomic plants and demonstrate that they have an amyloid-like nature. Together with the evidence of amyloid structures in bacteria and fungi our data argue that amyloid formation is likely a ubiquitous process occurring across the different kingdoms of life. The discovery of amyloid conformations inside inclusions of genetically modified plants might have implications regarding their use for human applications.

  8. Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity.

    Science.gov (United States)

    Bellance, N; Benard, G; Furt, F; Begueret, H; Smolková, K; Passerieux, E; Delage, J P; Baste, J M; Moreau, P; Rossignol, R

    2009-12-01

    Little is known on the metabolic profile of lung tumors and the reminiscence of embryonic features. Herein, we determined the bioenergetic profiles of human fibroblasts taken from lung epidermoid carcinoma (HLF-a) and fetal lung (MRC5). We also analysed human lung tumors and their surrounding healthy tissue from four patients with adenocarcinoma. On these different models, we measured functional parameters (cell growth rates in oxidative and glycolytic media, respiration, ATP synthesis and PDH activity) as well as compositional features (expression level of various energy proteins and upstream transcription factors). The results demonstrate that both the lung fetal and cancer cell lines produced their ATP predominantly by glycolysis, while oxidative phosphorylation was only capable of poor ATP delivery. This was explained by a decreased mitochondrial biogenesis caused by a lowered expression of PGC1alpha (as shown by RT-PCR and Western blot) and mtTFA. Consequently, the relative expression of glycolytic versus OXPHOS markers was high in these cells. Moreover, the re-activation of mitochondrial biogenesis with resveratrol induced cell death specifically in cancer cells. A consistent reduction of mitochondrial biogenesis and the subsequent alteration of respiratory capacity was also observed in lung tumors, associated with a lower expression level of bcl2. Our data give a better characterization of lung cancer cells' metabolic alterations which are essential for growth and survival. They designate mitochondrial biogenesis as a possible target for anti-cancer therapy.

  9. Amyloid-β and Astrocytes Interplay in Amyloid-β Related Disorders

    Directory of Open Access Journals (Sweden)

    Yazan S. Batarseh

    2016-03-01

    Full Text Available Amyloid-β (Aβ pathology is known to promote chronic inflammatory responses in the brain. It was thought previously that Aβ is only associated with Alzheimer’s disease and Down syndrome. However, studies have shown its involvement in many other neurological disorders. The role of astrocytes in handling the excess levels of Aβ has been highlighted in the literature. Astrocytes have a distinctive function in both neuronal support and protection, thus its involvement in Aβ pathological process may tip the balance toward chronic inflammation and neuronal death. In this review we describe the involvement of astrocytes in Aβ related disorders including Alzheimer’s disease, Down syndrome, cerebral amyloid angiopathy, and frontotemporal dementia.

  10. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells

    Directory of Open Access Journals (Sweden)

    Guillaume van Niel

    2015-10-01

    Full Text Available Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.

  11. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  12. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian S; Dueholm, Morten S

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...... hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm...

  13. Establishing and validating the fluorescent amyloid ligand h-FTAA (heptamer formyl thiophene acetic acid) to identify transthyretin amyloid deposits in carpal tunnel syndrome.

    Science.gov (United States)

    Hahn, Katharina; Nilsson, K Peter R; Hammarström, Per; Urban, Peter; Meliss, Rolf Rüdiger; Behrens, Hans-Michael; Krüger, Sandra; Röcken, Christoph

    2017-06-01

    Transthyretin-derived (ATTR) amyloidosis is a frequent finding in carpal tunnel syndrome. We tested the following hypotheses: the novel fluorescent amyloid ligand heptameric formic thiophene acetic acid (h-FTAA) has a superior sensitivity for the detection of amyloid compared with Congo red-staining; Amyloid load correlates with patient gender and/or patient age. We retrieved 208 resection specimens obtained from 184 patients with ATTR amyloid in the carpal tunnel. Serial sections were stained with Congo red, h-FTAA and an antibody directed against transthyretin (TTR). Stained sections were digitalized and forwarded to computational analyses. The amount of amyloid was correlated with patient demographics. Amyloid stained intensely with h-FTAA and an anti-TTR-antibody. Congo red-staining combined with fluorescence microscopy was significantly less sensitive than h-FTAA-fluorescence and TTR-immunostaining: the highest percentage area was found in TTR-immunostained sections, followed by h-FTAA and Congo red. The Pearson correlation coefficient was .8 (Congo red vs. h-FTAA) and .9 (TTR vs. h-FTAA). Amyloid load correlated with patient gender, anatomical site and patient age. h-FTAA is a highly sensitive method to detect even small amounts of ATTR amyloid in the carpal tunnel. The staining protocol is easy and h-FTAA may be a much more sensitive procedure to detect amyloid at an earlier stage.

  14. Formation of amyloid fibers by monomeric light chain variable domains.

    Science.gov (United States)

    Brumshtein, Boris; Esswein, Shannon R; Landau, Meytal; Ryan, Christopher M; Whitelegge, Julian P; Phillips, Martin L; Cascio, Duilio; Sawaya, Michael R; Eisenberg, David S

    2014-10-03

    Systemic light chain amyloidosis is a lethal disease characterized by excess immunoglobulin light chains and light chain fragments composed of variable domains, which aggregate into amyloid fibers. These fibers accumulate and damage organs. Some light chains induce formation of amyloid fibers, whereas others do not, making it unclear what distinguishes amyloid formers from non-formers. One mechanism by which sequence variation may reduce propensity to form amyloid fibers is by shifting the equilibrium toward an amyloid-resistant quaternary structure. Here we identify the monomeric form of the Mcg immunoglobulin light chain variable domain as the quaternary unit required for amyloid fiber assembly. Dimers of Mcg variable domains remain stable and soluble, yet become prone to assemble into amyloid fibers upon disassociation into monomers. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Amyloid Imaging: Poised for Integration into Medical Practice.

    Science.gov (United States)

    Anand, Keshav; Sabbagh, Marwan

    2017-01-01

    Amyloid imaging represents a significant advance as an adjunct in the diagnosis of Alzheimer's disease (AD) because it is the first imaging modality that identifies in vivo changes known to be associated with the pathogenesis. Initially, 11 C-PIB was developed, which was the prototype for many 18 F compounds, including florbetapir, florbetaben, and flutemetamol, among others. Despite the high sensitivity and specificity of amyloid imaging, it is not commonly used in clinical practice, mainly because it is not reimbursed under current Center for Medicare and Medicaid Services guidelines in the USA. To guide the field in who would be most appropriate for the utility of amyloid positron emission tomography, current studies are underway [Imaging Dementia Evidence for Amyloid Scanning (IDEAS) Study] that will inform the field on the utilization of amyloid positron emission tomography in clinical practice. With the advent of monoclonal antibodies that specifically target amyloid antibody, there is an interest, possibly a mandate, to screen potential treatment recipients to ensure that they are suitable for treatment. In this review, we summarize progress in the field to date.

  16. Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis.

    Science.gov (United States)

    Cerqueira, Fernanda M; Laurindo, Francisco R M; Kowaltowski, Alicia J

    2011-03-31

    Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR). Since treatment of mice with dinitrophenol (DNP) promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found that DNP and CR increase citrate synthase activity, PGC-1α, cytochrome c oxidase and mitofusin-2 expression, as well as fasting plasma levels of NO• products. In addition, eNOS and Akt phosphorylation in skeletal muscle and visceral adipose tissue was activated in fasting CR and DNP animals. Overall, our results indicate that systemic mild uncoupling activates eNOS and Akt-dependent pathways leading to mitochondrial biogenesis.

  17. CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis.

    Science.gov (United States)

    Zitouni, Sihem; Francia, Maria E; Leal, Filipe; Montenegro Gouveia, Susana; Nabais, Catarina; Duarte, Paulo; Gilberto, Samuel; Brito, Daniela; Moyer, Tyler; Kandels-Lewis, Steffi; Ohta, Midori; Kitagawa, Daiju; Holland, Andrew J; Karsenti, Eric; Lorca, Thierry; Lince-Faria, Mariana; Bettencourt-Dias, Mónica

    2016-05-09

    Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Purification and Characterization of Recombinant N-Terminally Pyroglutamate-Modified Amyloid-β Variants and Structural Analysis by Solution NMR Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Christina Dammers

    Full Text Available Alzheimer's disease (AD is the leading cause of dementia in the elderly and is characterized by memory loss and cognitive decline. Pathological hallmark of AD brains are intracellular neurofibrillary tangles and extracellular amyloid plaques. The major component of these plaques is the highly heterogeneous amyloid-β (Aβ peptide, varying in length and modification. In recent years pyroglutamate-modified amyloid-β (pEAβ peptides have increasingly moved into the focus since they have been described to be the predominant species of all N-terminally truncated Aβ. Compared to unmodified Aβ, pEAβ is known to show increased hydrophobicity, higher toxicity, faster aggregation and β-sheet stabilization and is more resistant to degradation. Nuclear magnetic resonance (NMR spectroscopy is a particularly powerful method to investigate the conformations of pEAβ isoforms in solution and to study peptide/ligand interactions for drug development. However, biophysical characterization of pEAβ and comparison to its non-modified variant has so far been seriously hampered by the lack of highly pure recombinant and isotope-enriched protein. Here we present, to our knowledge, for the first time a reproducible protocol for the production of pEAβ from a recombinant precursor expressed in E. coli in natural isotope abundance as well as in uniformly [U-15N]- or [U-13C, 15N]-labeled form, with yields of up to 15 mg/l E. coli culture broth. The chemical state of the purified protein was evaluated by RP-HPLC and formation of pyroglutamate was verified by mass spectroscopy. The recombinant pyroglutamate-modified Aβ peptides showed characteristic sigmoidal aggregation kinetics as monitored by thioflavin-T assays. The quality and quantity of produced pEAβ40 and pEAβ42 allowed us to perform heteronuclear multidimensional NMR spectroscopy in solution and to sequence-specifically assign the backbone resonances under near-physiological conditions. Our results suggest

  19. Lack of evidence for protein AA reactivity in amyloid deposits of lattice corneal dystrophy and amyloid corneal degeneration.

    Science.gov (United States)

    Gorevic, P D; Rodrigues, M M; Krachmer, J H; Green, C; Fujihara, S; Glenner, G G

    1984-08-15

    Amyloid fibrils occurring in primary and myeloma-associated (AL), secondary (AA), and certain neuropathic hereditary forms of systemic amyloidosis can be distinguished biochemically or immunohistologically as being composed of immunoglobulin light chain, protein AA, or prealbumin respectively. All types of systemic and several localized forms of amyloidosis contain amyloid P component (protein AP). We studied formalin-fixed tissue from eight cases of lattice corneal dystrophy by the immunoperoxidase method using antisera to proteins AA and AP, to normal serum prealbumin and prealbumin isolated from a case of hereditary amyloidosis, and to light-chain determinants; additional cases were examined by indirect immunofluorescence of fresh-frozen material. We found weak (1:10 dilution) staining with anti-AP, but no reactivity with other antisera. Congo red staining was resistant to pretreatment of sections with potassium permanganate, a characteristic of non-AA amyloid. Two-dimensional gels of solubilized proteins from frozen tissue from two cases of lattice corneal dystrophy resembled those obtained from normal human cornea. Western blots of two cases of polymorphous amyloid degeneration and solubilized protein from normal cornea did not react with radioactive iodine-labeled anti-AA or anti-AP with purified protein AP and unfixed protein AA amyloid tissue as controls. We were unable to corroborate the presence of protein AA in the amyloid deposits of lattice corneal dystrophy. Although staining with antiserum to protein AP was demonstrable, the molecular configuration of this protein in stromal deposits remains to be defined.

  20. Pumping up the volume - vacuole biogenesis in Arabidopsis thaliana.

    Science.gov (United States)

    Krüger, Falco; Schumacher, Karin

    2017-07-08

    Plant architecture follows the need to collect CO 2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Perfluorooctanoic acid stimulated mitochondrial biogenesis and gene transcription in rats

    International Nuclear Information System (INIS)

    Walters, M.W.; Bjork, J.A.; Wallace, K.B.

    2009-01-01

    Perfluorooctanoic acid (PFOA), used in the production of non-stick surface compounds, exhibits a worldwide distribution in the serum of humans and wildlife. In rodents PFOA transactivates PPARα and PPARγ nuclear receptors and increases mitochondrial DNA (mtDNA) copy number, which may be critical to the altered metabolic state of affected animals. A key regulator of mitochondrial biogenesis and transcription of mitochondrial genes is the PPARγ coactivator-1α (Pgc-1α) protein. The purpose of this study was to determine if Pgc-1α is implicated in the stimulation of mitochondrial biogenesis that occurs following the treatment of rats with PFOA. Livers from adult male Sprague-Dawley rats that received a 30 mg/kg daily oral dose of PFOA for 28 days were used for all experiments. Analysis of mitochondrial replication and transcription was performed by real time PCR, and proteins were detected using western blotting. PFOA treatment caused a transcriptional activation of the mitochondrial biogenesis pathway leading to a doubling of mtDNA copy number. Further, transcription of OXPHOS genes encoded by mtDNA was 3-4 times greater than that of nuclear encoded genes, suggestive of a preferential induction of mtDNA transcription. Western blot analysis revealed an increase in Pgc-1α, unchanged Tfam and decreased Cox II and Cox IV subunit protein expression. We conclude that PFOA treatment in rats induces mitochondrial biogenesis at the transcriptional level with a preferential stimulation of mtDNA transcription and that this occurs by way of activation of the Pgc-1α pathway. Implication of the Pgc-1α pathway is consistent with PPARγ transactivation by PFOA and reveals new understanding and possibly new critical targets for assessing or averting the associated metabolic disease.

  2. Melanosomal formation of PMEL core amyloid is driven by aromatic residues.

    Science.gov (United States)

    Hee, Jia Shee; Mitchell, Susan M; Liu, Xinran; Leonhardt, Ralf M

    2017-03-08

    PMEL is a pigment cell protein that forms physiological amyloid in melanosomes. Many amyloids and/or their oligomeric precursors are toxic, causing or contributing to severe, incurable diseases including Alzheimer's and prion diseases. Striking similarities in intracellular formation pathways between PMEL and various pathological amyloids including Aβ and PrP Sc suggest PMEL is an excellent model system to study endocytic amyloid. Learning how PMEL fibrils assemble without apparent toxicity may help developing novel therapies for amyloid diseases. Here we identify the critical PMEL domain that forms the melanosomal amyloid core (CAF). An unbiased alanine-scanning screen covering the entire region combined with quantitative electron microscopy analysis of the full set of mutants uncovers numerous essential residues. Many of these rely on aromaticity for function suggesting a role for π-stacking in melanosomal amyloid assembly. Various mutants are defective in amyloid nucleation. This extensive data set informs the first structural model of the CAF and provides insights into how the melanosomal amyloid core forms.

  3. Conformational dynamics of amyloid proteins at the aqueous interface

    Science.gov (United States)

    Armbruster, Matthew; Horst, Nathan; Aoki, Brendy; Malik, Saad; Soto, Patricia

    2013-03-01

    Amyloid proteins is a class of proteins that exhibit distinct monomeric and oligomeric conformational states hallmark of deleterious neurological diseases for which there are not yet cures. Our goal is to examine the extent of which the aqueous/membrane interface modulates the folding energy landscape of amyloid proteins. To this end, we probe the dynamic conformational ensemble of amyloids (monomer prion protein and Alzheimer's Ab protofilaments) interacting with model bilayers. We will present the results of our coarse grain molecular modeling study in terms of the existence of preferential binding spots of the amyloid to the bilayer and the response of the bilayer to the interaction with the amyloid. NSF Nebraska EPSCoR First Award

  4. Acute phase response in two consecutive experimentally induced E. coli intramammary infections in dairy cows

    Directory of Open Access Journals (Sweden)

    Saatsi Johanna

    2008-06-01

    Full Text Available Abstract Background Acute phase proteins haptoglobin (Hp, serum amyloid A (SAA and lipopolysaccharide binding protein (LBP have suggested to be suitable inflammatory markers for bovine mastitis. The aim of the study was to investigate acute phase markers along with clinical parameters in two consecutive intramammary challenges with Escherichia coli and to evaluate the possible carry-over effect when same animals are used in an experimental model. Methods Mastitis was induced with a dose of 1500 cfu of E. coli in one quarter of six cows and inoculation repeated in another quarter after an interval of 14 days. Concentrations of acute phase proteins haptoglobin (Hp, serum amyloid A (SAA and lipopolysaccharide binding protein (LBP were determined in serum and milk. Results In both challenges all cows became infected and developed clinical mastitis within 12 hours of inoculation. Clinical disease and acute phase response was generally milder in the second challenge. Concentrations of SAA in milk started to increase 12 hours after inoculation and peaked at 60 hours after the first challenge and at 44 hours after the second challenge. Concentrations of SAA in serum increased more slowly and peaked at the same times as in milk; concentrations in serum were about one third of those in milk. Hp started to increase in milk similarly and peaked at 36–44 hours. In serum, the concentration of Hp peaked at 60–68 hours and was twice as high as in milk. LBP concentrations in milk and serum started to increase after 12 hours and peaked at 36 hours, being higher in milk. The concentrations of acute phase proteins in serum and milk in the E. coli infection model were much higher than those recorded in experiments using Gram-positive pathogens, indicating the severe inflammation induced by E. coli. Conclusion Acute phase proteins would be useful parameters as mastitis indicators and to assess the severity of mastitis. If repeated experimental intramammary

  5. Multiple Myeloma Presenting as Massive Amyloid Deposition in a Parathyroid Gland Associated with Amyloid Goiter: A Medullary Thyroid Carcinoma Mimic on Intra-operative Frozen Section.

    Science.gov (United States)

    Hill, Kirk; Diaz, Jason; Hagemann, Ian S; Chernock, Rebecca D

    2018-06-01

    Clinical examples of amyloid deposition in parathyroid glands are exceedingly rare and usually present as an incidental finding in a patient with amyloid goiter. Here, we present the first histologically documented case of parathyroid amyloid deposition that presented as a mass. The patient did not have hyperparathyroidism. The parathyroid gland was submitted for intra-operative frozen section and concern for medullary thyroid carcinoma was raised. An important histologic clue arguing against medullary thyroid carcinoma was the evenly dispersed nature of the amyloid. Histologic perinuclear clearing and parathyroid hormone immunohistochemistry confirmed parathyroid origin on permanent sections. The patient was also found to have associated amyloid goiter. Mass spectrometry of the amyloid showed it to be composed of kappa light chains. On further work-up, the patient was diagnosed with multiple myeloma. Awareness of parathyroid amyloid deposition is important as it is a histologic mimic of medullary thyroid carcinoma, especially on frozen section. Amyloid typing with evaluation for multiple myeloma in any patient with kappa or lambda light chain restriction is also important.

  6. The prion protein as a receptor for amyloid-beta

    NARCIS (Netherlands)

    Kessels, Helmut W.; Nguyen, Louis N.; Nabavi, Sadegh; Malinow, Roberto

    2010-01-01

    Increased levels of brain amyloid-beta, a secreted peptide cleavage product of amyloid precursor protein (APP), is believed to be critical in the aetiology of Alzheimer's disease. Increased amyloid-beta can cause synaptic depression, reduce the number of spine protrusions (that is, sites of synaptic

  7. Stabilization of a β-hairpin in monomeric Alzheimer's amyloid-β peptide inhibits amyloid formation

    OpenAIRE

    Hoyer, Wolfgang; Grönwall, Caroline; Jonsson, Andreas; Ståhl, Stefan; Härd, Torleif

    2008-01-01

    According to the amyloid hypothesis, the pathogenesis of Alzheimer's disease is triggered by the oligomerization and aggregation of the amyloid-β (Aβ) peptide into protein plaques. Formation of the potentially toxic oligomeric and fibrillar Aβ assemblies is accompanied by a conformational change toward a high content of β-structure. Here, we report the solution structure of Aβ(1–40) in complex with the phage-display selected affibody protein ZAβ3, a binding protein of nanomolar affinity. Boun...

  8. Recent progress on understanding the mechanisms of amyloid nucleation.

    Science.gov (United States)

    Chatani, Eri; Yamamoto, Naoki

    2018-04-01

    Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.

  9. Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis.

    Directory of Open Access Journals (Sweden)

    Fernanda M Cerqueira

    2011-03-01

    Full Text Available Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR. Since treatment of mice with dinitrophenol (DNP promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found that DNP and CR increase citrate synthase activity, PGC-1α, cytochrome c oxidase and mitofusin-2 expression, as well as fasting plasma levels of NO• products. In addition, eNOS and Akt phosphorylation in skeletal muscle and visceral adipose tissue was activated in fasting CR and DNP animals. Overall, our results indicate that systemic mild uncoupling activates eNOS and Akt-dependent pathways leading to mitochondrial biogenesis.

  10. In vivo detection of amyloid plaques by gadolinium-stained MRI can be used to demonstrate the efficacy of an anti-amyloid immunotherapy

    Directory of Open Access Journals (Sweden)

    Mathieu D. Santin

    2016-03-01

    Full Text Available Extracellular deposition of β amyloid plaques is an early event associated to Alzheimer's disease. Here we have used in vivo gadolinium-stained high resolution (29*29*117µm3 MRI to follow-up in a longitudinal way individual amyloid plaques in APP/PS1 mice and evaluate the efficacy of a new immunotherapy (SAR255952 directed against protofibrillar and fibrillary forms of Aβ. APP/PS1 mice were treated for 5 months between the age of 3.5 and 8.5 months. SAR255952 reduced amyloid load in 8.5-month-old animals, but not in 5.5-month animals compared to mice treated with a control antibody (DM4. Histological evaluation confirmed the reduction of amyloid load and revealed a lower density of amyloid plaques in 8.5-month SAR255952-treated animals. The longitudinal follow-up of individual amyloid plaques by MRI revealed that plaques that were visible at 5.5 months were still visible at 8.5 months in both SAR255952 and DM4-treated mice. This suggests that the amyloid load reduction induced by SAR255952 is related to a slowing down in the formation of new plaques rather than to the clearance of already formed plaques.

  11. Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation.

    Science.gov (United States)

    Pilkington, Emily H; Lai, May; Ge, Xinwei; Stanley, William J; Wang, Bo; Wang, Miaoyi; Kakinen, Aleksandr; Sani, Marc-Antonie; Whittaker, Michael R; Gurzov, Esteban N; Ding, Feng; Quinn, John F; Davis, Thomas P; Ke, Pu Chun

    2017-12-11

    Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.

  12. Amyloid plaque imaging in vivo: current achievement and future prospects

    International Nuclear Information System (INIS)

    Nordberg, Agneta

    2008-01-01

    Alzheimer's disease (AD) is a very complex neurodegenerative disorder, the exact cause of which is still not known. The major histopathological features, amyloid plaques and neurofibrillary tangles, already described by Alois Alzheimer, have been the focus in research for decades. Despite a probable whole cascade of events in the brain leading to impairment of cognition, amyloid is still the target for diagnosis and treatment. The rapid development of molecular imaging techniques now allows imaging of amyloid plaques in vivo in Alzheimer patients by PET amyloid ligands such as Pittsburgh compound B (PIB). Studies so far have revealed high 11 C-PIB retention in brain at prodromal stages of AD and a possibility to discriminate AD from other dementia disorders by 11 C-PIB. Ongoing studies are focussing to understand the relationship between brain and CSF amyloid processes and cognitive processes. In vivo imaging of amyloid will be important for early diagnosis and evaluation of new anti-amyloid therapies in AD. (orig.)

  13. Cooperative structural transitions in amyloid-like aggregation

    Science.gov (United States)

    Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2017-04-01

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.

  14. Chirality and chiroptical properties of amyloid fibrils.

    Science.gov (United States)

    Dzwolak, Wojciech

    2014-09-01

    Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties. © 2014 Wiley Periodicals, Inc.

  15. The Role of Chaperone-subunit Usher Domain Interactions in the Mechanism of Bacterial Pilus Biogenesis Revealed by ESI-MS*

    Science.gov (United States)

    Morrissey, Bethny; Leney, Aneika C.; Toste Rêgo, Ana; Phan, Gilles; Allen, William J.; Verger, Denis; Waksman, Gabriel; Ashcroft, Alison E.; Radford, Sheena E.

    2012-01-01

    The PapC usher is a β-barrel outer membrane protein essential for assembly and secretion of P pili that are required for adhesion of pathogenic E. coli, which cause the development of pyelonephritis. Multiple protein subunits form the P pilus, the highly specific assembly of which is coordinated by the usher. Despite a wealth of structural knowledge, how the usher catalyzes subunit polymerization and orchestrates a correct and functional order of subunit assembly remain unclear. Here, the ability of the soluble N-terminal (UsherN), C-terminal (UsherC2), and Plug (UsherP) domains of the usher to bind different chaperone-subunit (PapDPapX) complexes is investigated using noncovalent electrospray ionization mass spectrometry. The results reveal that each usher domain is able to bind all six PapDPapX complexes, consistent with an active role of all three usher domains in pilus biogenesis. Using collision induced dissociation, combined with competition binding experiments and dissection of the adhesin subunit, PapG, into separate pilin and adhesin domains, the results reveal why PapG has a uniquely high affinity for the usher, which is consistent with this subunit always being displayed at the pilus tip. In addition, we show how the different soluble usher domains cooperate to coordinate and control efficient pilus assembly at the usher platform. As well as providing new information about the protein-protein interactions that determine pilus biogenesis, the results highlight the power of noncovalent MS to interrogate biological mechanisms, especially in complex mixtures of species. PMID:22371487

  16. The role of chaperone-subunit usher domain interactions in the mechanism of bacterial pilus biogenesis revealed by ESI-MS.

    Science.gov (United States)

    Morrissey, Bethny; Leney, Aneika C; Toste Rêgo, Ana; Phan, Gilles; Allen, William J; Verger, Denis; Waksman, Gabriel; Ashcroft, Alison E; Radford, Sheena E

    2012-07-01

    The PapC usher is a β-barrel outer membrane protein essential for assembly and secretion of P pili that are required for adhesion of pathogenic E. coli, which cause the development of pyelonephritis. Multiple protein subunits form the P pilus, the highly specific assembly of which is coordinated by the usher. Despite a wealth of structural knowledge, how the usher catalyzes subunit polymerization and orchestrates a correct and functional order of subunit assembly remain unclear. Here, the ability of the soluble N-terminal (UsherN), C-terminal (UsherC2), and Plug (UsherP) domains of the usher to bind different chaperone-subunit (PapDPapX) complexes is investigated using noncovalent electrospray ionization mass spectrometry. The results reveal that each usher domain is able to bind all six PapDPapX complexes, consistent with an active role of all three usher domains in pilus biogenesis. Using collision induced dissociation, combined with competition binding experiments and dissection of the adhesin subunit, PapG, into separate pilin and adhesin domains, the results reveal why PapG has a uniquely high affinity for the usher, which is consistent with this subunit always being displayed at the pilus tip. In addition, we show how the different soluble usher domains cooperate to coordinate and control efficient pilus assembly at the usher platform. As well as providing new information about the protein-protein interactions that determine pilus biogenesis, the results highlight the power of noncovalent MS to interrogate biological mechanisms, especially in complex mixtures of species.

  17. A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium

    Science.gov (United States)

    Ramsay, Joshua P.; Williamson, Neil R.; Spring, David R.; Salmond, George P. C.

    2011-01-01

    Gas vesicles are hollow intracellular proteinaceous organelles produced by aquatic Eubacteria and Archaea, including cyanobacteria and halobacteria. Gas vesicles increase buoyancy and allow taxis toward air–liquid interfaces, enabling subsequent niche colonization. Here we report a unique example of gas vesicle-mediated flotation in an enterobacterium; Serratia sp. strain ATCC39006. This strain is a member of the Enterobacteriaceae previously studied for its production of prodigiosin and carbapenem antibiotics. Genes required for gas vesicle synthesis mapped to a 16.6-kb gene cluster encoding three distinct homologs of the main structural protein, GvpA. Heterologous expression of this locus in Escherichia coli induced copious vesicle production and efficient cell buoyancy. Gas vesicle morphogenesis in Serratia enabled formation of a pellicle-like layer of highly vacuolated cells, which was dependent on oxygen limitation and the expression of ntrB/C and cheY-like regulatory genes within the gas-vesicle gene cluster. Gas vesicle biogenesis was strictly controlled by intercellular chemical signaling, through an N-acyl homoserine lactone, indicating that in this system the quorum-sensing molecule acts as a morphogen initiating organelle development. Flagella-based motility and gas vesicle morphogenesis were also oppositely regulated by the small RNA-binding protein, RsmA, suggesting environmental adaptation through physiological control of the choice between motility and flotation as alternative taxis modes. We propose that gas vesicle biogenesis in this strain represents a distinct mechanism of mobility, regulated by oxygen availability, nutritional status, the RsmA global regulatory system, and the quorum-sensing morphogen. PMID:21873216

  18. A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium.

    Science.gov (United States)

    Ramsay, Joshua P; Williamson, Neil R; Spring, David R; Salmond, George P C

    2011-09-06

    Gas vesicles are hollow intracellular proteinaceous organelles produced by aquatic Eubacteria and Archaea, including cyanobacteria and halobacteria. Gas vesicles increase buoyancy and allow taxis toward air-liquid interfaces, enabling subsequent niche colonization. Here we report a unique example of gas vesicle-mediated flotation in an enterobacterium; Serratia sp. strain ATCC39006. This strain is a member of the Enterobacteriaceae previously studied for its production of prodigiosin and carbapenem antibiotics. Genes required for gas vesicle synthesis mapped to a 16.6-kb gene cluster encoding three distinct homologs of the main structural protein, GvpA. Heterologous expression of this locus in Escherichia coli induced copious vesicle production and efficient cell buoyancy. Gas vesicle morphogenesis in Serratia enabled formation of a pellicle-like layer of highly vacuolated cells, which was dependent on oxygen limitation and the expression of ntrB/C and cheY-like regulatory genes within the gas-vesicle gene cluster. Gas vesicle biogenesis was strictly controlled by intercellular chemical signaling, through an N-acyl homoserine lactone, indicating that in this system the quorum-sensing molecule acts as a morphogen initiating organelle development. Flagella-based motility and gas vesicle morphogenesis were also oppositely regulated by the small RNA-binding protein, RsmA, suggesting environmental adaptation through physiological control of the choice between motility and flotation as alternative taxis modes. We propose that gas vesicle biogenesis in this strain represents a distinct mechanism of mobility, regulated by oxygen availability, nutritional status, the RsmA global regulatory system, and the quorum-sensing morphogen.

  19. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.

    Science.gov (United States)

    Wickner, R B; Edskes, H K; Gorkovskiy, A; Bezsonov, E E; Stroobant, E E

    2016-01-01

    Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Adipose tissue conditioned media support macrophage lipid-droplet biogenesis by interfering with autophagic flux.

    Science.gov (United States)

    Bechor, Sapir; Nachmias, Dikla; Elia, Natalie; Haim, Yulia; Vatarescu, Maayan; Leikin-Frenkel, Alicia; Gericke, Martin; Tarnovscki, Tanya; Las, Guy; Rudich, Assaf

    2017-09-01

    Obesity promotes the biogenesis of adipose tissue (AT) foam cells (FC), which contribute to AT insulin resistance. Autophagy, an evolutionarily-conserved house-keeping process, was implicated in cellular lipid handling by either feeding and/or degrading lipid-droplets (LDs). We hypothesized that beyond phagocytosis of dead adipocytes, AT-FC biogenesis is supported by the AT microenvironment by regulating autophagy. Non-polarized ("M0") RAW264.7 macrophages exposed to AT conditioned media (AT-CM) exhibited a markedly enhanced LDs biogenesis rate compared to control cells (8.3 Vs 0.3 LDs/cells/h, p<0.005). Autophagic flux was decreased by AT-CM, and fluorescently following autophagosomes over time revealed ~20% decline in new autophagic vesicles' formation rate, and 60-70% decrease in autophagosomal growth rate, without marked alternations in the acidic lysosomal compartment. Suppressing autophagy by either targeting autophagosome formation (pharmacologically, with 3-methyladenine or genetically, with Atg12±Atg7-siRNA), decreased the rate of LD formation induced by oleic acid. Conversely, interfering with late autophago-lysosomal function, either pharmacologically with bafilomycin-A1, chloroquine or leupeptin, enhanced LD formation in macrophages without affecting LD degradation rate. Similarly enhanced LD biogenesis rate was induced by siRNA targeting Lamp-1 or the V-ATPase. Collectively, we propose that secreted products from AT interrupt late autophagosome maturation in macrophages, supporting enhanced LDs biogenesis and AT-FC formation, thereby contributing to AT dysfunction in obesity. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Exercise-mediated wall shear stress increases mitochondrial biogenesis in vascular endothelium.

    Directory of Open Access Journals (Sweden)

    Boa Kim

    Full Text Available Enhancing structural and functional integrity of mitochondria is an emerging therapeutic option against endothelial dysfunction. In this study, we sought to investigate the effect of fluid shear stress on mitochondrial biogenesis and mitochondrial respiratory function in endothelial cells (ECs using in vitro and in vivo complementary studies.Human aortic- or umbilical vein-derived ECs were exposed to laminar shear stress (20 dyne/cm2 for various durations using a cone-and-plate shear apparatus. We observed significant increases in the expression of key genes related to mitochondrial biogenesis and mitochondrial quality control as well as mtDNA content and mitochondrial mass under the shear stress conditions. Mitochondrial respiratory function was enhanced when cells were intermittently exposed to laminar shear stress for 72 hrs. Also, shear-exposed cells showed diminished glycolysis and decreased mitochondrial membrane potential (ΔΨm. Likewise, in in vivo experiments, mice that were subjected to a voluntary wheel running exercise for 5 weeks showed significantly higher mitochondrial content determined by en face staining in the conduit (greater and lesser curvature of the aortic arch and thoracic aorta and muscle feed (femoral artery arteries compared to the sedentary control mice. Interestingly, however, the mitochondrial biogenesis was not observed in the mesenteric artery. This region-specific adaptation is likely due to the differential blood flow redistribution during exercise in the different vessel beds.Taken together, our findings suggest that exercise enhances mitochondrial biogenesis in vascular endothelium through a shear stress-dependent mechanism. Our findings may suggest a novel mitochondrial pathway by which a chronic exercise may be beneficial for vascular function.

  2. Cephem Potentiation by Inactivation of Nonessential Genes Involved in Cell Wall Biogenesis of beta-Lactamase-Producing Escherichia coli

    DEFF Research Database (Denmark)

    Baker, Kristin R.; Sigurdardottir, Helga Høeg; Jana, Bimal

    2017-01-01

    Reversal of antimicrobial resistance is an appealing and largely unexplored strategy in drug discovery. The objective of this study was to identify potential targets for “helper” drugs reversing cephem resistance in Escherichia coli strains producing β-lactamases. A CMY-2-encoding plasmid...... was transferred by conjugation to seven isogenic deletion mutants exhibiting cephem hypersusceptibility. The effect of each mutation was evaluated by comparing the MICs in the wild type and the mutant harboring the same plasmid. Mutation of two genes encoding proteins involved in cell wall biosynthesis, dap...... for all three drugs. Individual deletion of dapF and mrcB in a clinical isolate of CTX-M-15-producing E. coli sequence type 131 (ST131) resulted in partial reversal of ceftazidime and cefepime resistance but did not reduce MICs below susceptibility breakpoints. Growth curve analysis indicated no fitness...

  3. The Role of Exportin-5 in MicroRNA Biogenesis and Cancer

    Directory of Open Access Journals (Sweden)

    Ke Wu

    2018-04-01

    Full Text Available MicroRNAs (miRNAs are conserved small non-coding RNAs that play an important role in the regulation of gene expression and participate in a variety of biological processes. The biogenesis of miRNAs is tightly controlled at multiple steps, such as transcription of miRNA genes, processing by Drosha and Dicer, and transportation of precursor miRNAs (pre-miRNAs from the nucleus to the cytoplasm by exportin-5 (XPO5. Given the critical role of nuclear export of pre-miRNAs in miRNA biogenesis, any alterations of XPO5, resulting from either genetic mutation, epigenetic change, abnormal expression level or posttranslational modification, could affect miRNA expression and thus have profound effects on tumorigenesis. Importantly, XPO5 phosphorylation by ERK kinase and its cis/trans isomerization by the prolyl isomerase Pin1 impair XPO5′s nucleo-to-cytoplasmic transport ability of pre-miRNAs, leading to downregulation of mature miRNAs in hepatocellular carcinoma. In this review, we focus on how XPO5 transports pre-miRNAs in the cells and summarize the dysregulation of XPO5 in human tumors. Keywords: Exportin-5, MicroRNA, Biogenesis, Dysregulation, Cancer

  4. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants

    International Nuclear Information System (INIS)

    Perez-de-Arce, Karen; Foncea, Rocio; Leighton, Federico

    2005-01-01

    It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial cells may lead to increased mitochondrial biogenesis. We found that Hcy-induced ROS (1.85-fold), leading to a NF-κB activation and increase the formation of 3-nitrotyrosine. Furthermore, expression of the mitochondrial biogenesis factors, nuclear respiratory factor-1 and mitochondrial transcription factor A, was significantly elevated in Hcy-treated cells. These changes were accompanied by increase in mitochondrial mass and higher mRNA and protein expression of the subunit III of cytochrome c oxidase. These effects were significantly prevented by pretreatment with the antioxidants, catechin and trolox. Taken together, our results suggest that ROS is an important mediator of mitochondrial biogenesis induced by Hcy, and that modulation of oxidative stress by antioxidants may protect against the adverse vascular effects of Hcy

  5. Insertion of the Biogenesis Factor Rei1 Probes the Ribosomal Tunnel during 60S Maturation.

    Science.gov (United States)

    Greber, Basil Johannes; Gerhardy, Stefan; Leitner, Alexander; Leibundgut, Marc; Salem, Michèle; Boehringer, Daniel; Leulliot, Nicolas; Aebersold, Ruedi; Panse, Vikram Govind; Ban, Nenad

    2016-01-14

    Eukaryotic ribosome biogenesis depends on several hundred assembly factors to produce functional 40S and 60S ribosomal subunits. The final phase of 60S subunit biogenesis is cytoplasmic maturation, which includes the proofreading of functional centers of the 60S subunit and the release of several ribosome biogenesis factors. We report the cryo-electron microscopy (cryo-EM) structure of the yeast 60S subunit in complex with the biogenesis factors Rei1, Arx1, and Alb1 at 3.4 Å resolution. In addition to the network of interactions formed by Alb1, the structure reveals a mechanism for ensuring the integrity of the ribosomal polypeptide exit tunnel. Arx1 probes the entire set of inner-ring proteins surrounding the tunnel exit, and the C terminus of Rei1 is deeply inserted into the ribosomal tunnel, where it forms specific contacts along almost its entire length. We provide genetic and biochemical evidence that failure to insert the C terminus of Rei1 precludes subsequent steps of 60S maturation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. [Amyloid goiter].

    Science.gov (United States)

    Hrívó, A; Péter, I; Bánkúti, B; Péley, G; Baska, F; Besznyák, I

    1999-03-21

    Amyloid goitre is at an extremely rare occurrence. Authors review the origin of disease and its symptoms, diagnostic and therapeutic tools. The disease may be due to either primary or secondary systemic or local amyloidosis. Diagnosis may be made even before surgery on anamnestic data, on very rapid growth of thyroid glands, on diffuse appearance, on other symptoms of systemic amyloidosis, on findings of iconographic procedures and on detection of amyloid in aspirates. Final diagnosis is based on histology. Surgical therapy is aiming at avoidance of the existing and the threatening consequences of expanding mass. The outcome is independent from thyroid surgery, it is related to other manifestations of amyloidosis. Concerning with the present case the chronic superior vena cava syndrome and chylous pleural effusion as first described symptoms and asymptomatic hyperthyroxinaemia is emphasised. Neither other organ involvement, nor primary amyloidogenous molecula was found during the 18 months follow up, so patient has secondary and localised amyloidosis.

  7. Synergistic effects of high fat feeding and apolipoprotein E deletion on enterocytic amyloid-beta abundance

    Directory of Open Access Journals (Sweden)

    Dhaliwal Satvinder S

    2008-04-01

    Full Text Available Abstract Background Amyloid-β (Aβ, a key protein found in amyloid plaques of subjects with Alzheimer's disease is expressed in the absorptive epithelial cells of the small intestine. Ingestion of saturated fat significantly enhances enterocytic Aβ abundance whereas fasting abolishes expression. Apolipoprotein (apo E has been shown to directly modulate Aβ biogenesis in liver and neuronal cells but it's effect in enterocytes is not known. In addition, apo E modulates villi length, which may indirectly modulate Aβ as a consequence of differences in lipid absorption. This study compared Aβ abundance and villi length in wild-type (WT and apo E knockout (KO mice maintained on either a low-fat or high-fat diet. Wild-type C57BL/6J and apo E KO mice were randomised for six-months to a diet containing either 4% (w/w unsaturated fats, or chow comprising 16% saturated fats and 1% cholesterol. Quantitative immunohistochemistry was used to assess Aβ abundance in small intestinal enterocytes. Apo E KO mice given the low-fat diet had similar enterocytic Aβ abundance compared to WT controls. Results The saturated fat diet substantially increased enterocytic Aβ in WT and in apo E KO mice, however the effect was greater in the latter. Villi height was significantly greater in apo E KO mice than for WT controls when given the low-fat diet. However, WT mice had comparable villi length to apo E KO when fed the saturated fat and cholesterol enriched diet. There was no effect of the high-fat diet on villi length in apo E KO mice. Conclusion The findings of this study are consistent with the notion that lipid substrate availability modulates enterocytic Aβ. Apo E may influence enterocytic lipid availability by modulating absorptive capacity.

  8. Associations Between β-Amyloid Kinetics and the β-Amyloid Diurnal Pattern in the Central Nervous System.

    Science.gov (United States)

    Lucey, Brendan P; Mawuenyega, Kwasi G; Patterson, Bruce W; Elbert, Donald L; Ovod, Vitaliy; Kasten, Tom; Morris, John C; Bateman, Randall J

    2017-02-01

    Recent studies found that the concentration of amyloid-β (Aβ) fluctuates with the sleep-wake cycle. Although the amplitude of this day/night pattern attenuates with age and amyloid deposition, to our knowledge, the association of Aβ kinetics (ie, production, turnover, and clearance) with this oscillation has not been studied. To determine the association between Aβ kinetics, age, amyloid levels, and the Aβ day/night pattern in humans. We measured Aβ concentrations and kinetics in 77 adults aged 60 to 87 years with and without amyloid deposition by a novel precise mass spectrometry method at the Washington University School of Medicine in St Louis, Missouri. We compared findings of 2 orthogonal methods, enzyme-linked immunosorbent assay and mass spectrometry, to validate the day/night patterns and determine more precise estimates of the cosinor parameters. In vivo labeling of central nervous system proteins with stable isotopically labeled leucine was performed, and kinetics of Aβ40 and Aβ42 were measured. Serial cerebrospinal fluid collection via indwelling lumbar catheter over 36 to 48 hours before, during, and after in vivo labeling, with a 9-hour primed constant infusion of 13C6-leucine. The amplitude, linear increase, and other cosinor measures of each participant's serial cerebrospinal fluid Aβ concentrations and Aβ turnover rates. Of the 77 participants studied, 46 (59.7%) were men, and the mean (range) age was 72.6 (60.4-87.7) years. Day/night patterns in Aβ concentrations were more sharply defined by the precise mass spectrometry method than by enzyme-linked immunosorbent assay (mean difference of SD of residuals: Aβ40, -7.42 pM; P effects of age and amyloid on Aβ42 amplitude at least partially affect each other. Production and turnover rates suggest that day/night Aβ patterns are modulated by both production and clearance mechanisms active in sleep-wake cycles and that amyloid deposition may impair normal circadian patterns. These findings

  9. beta. -Amyloid gene dosage in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, G H; Manuelidis, L; Kim, J H; Manuelidis, E E

    1988-01-11

    The 4-5 kd amyloid ..beta..-peptide is a major constituent of the characteristic amyloid plaque of Alzheimer's disease. It has been reported that some cases of sporatic Alzheimer's disease are associated with at least a partial duplication of chromosome 21 containing the gene corresponding to the 695 residue precursor of this peptide. To contribute to an understanding of the frequency to such a duplication event in the overall Alzheimer's population, the authors have determined the gene dosage of the ..beta..-amyloid gene in this collection of cases. All cases had a clinical diagnosis of Alzheimer's confirmed neuropathologically. Each Alzheimer's case had an apparent normal diploid ..beta..-amyloid gene dosage, while control Down's cases had the expected triploid dosage. Thus partial duplication of chromosome 21 may be a rare finding in Alzheimer's disease. Similar conclusions were just reported in several studies of the Harvard Alzheimer collection.

  10. Collapsed state of polyglutamic acid results in amyloid spherulite formation.

    Science.gov (United States)

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly.

  11. Collapsed state of polyglutamic acid results in amyloid spherulite formation

    Science.gov (United States)

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly. PMID:28232889

  12. The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids.

    Science.gov (United States)

    Dueholm, Morten S; Larsen, Poul; Finster, Kai; Stenvang, Marcel R; Christiansen, Gunna; Vad, Brian S; Bøggild, Andreas; Otzen, Daniel E; Nielsen, Per Halkjær

    2015-08-14

    Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Germ Plasm Biogenesis--An Oskar-Centric Perspective.

    Science.gov (United States)

    Lehmann, Ruth

    2016-01-01

    Germ granules are the hallmark of all germ cells. These membrane-less, electron-dense structures were first observed over 100 years ago. Today, their role in regulating and processing transcripts critical for the establishment, maintenance, and protection of germ cells is well established, and pathways outlining the biochemical mechanisms and physical properties associated with their biogenesis are emerging. © 2016 Elsevier Inc. All rights reserved.

  14. Bone marrow amyloid spherulites in a case of AL amyloidosis.

    Science.gov (United States)

    Bommannan B K, Karthik; Sonai, Mukinkumar; Sachdeva, Man Updesh Singh

    2016-05-01

    Parallel arrangement of β-pleated sheets by amyloidogenic proteins is a well known phenomenon. Rarely, amyloid fibrils undergo radial orientation to form globular structures called spherulites. These amyloid spherulites show Maltese cross pattern under polarized microscopy. The clinical significance of amyloid spherulites is undetermined. Amyloidogenic proteins like insulin and β-lactoglobulin form spherulites in vitro. The senile plaques of Alzheimer's disease rarely form in vivo spherulites. Amyloid spherulites have been described in the liver and small intestine. For the first time, we document amyloid spherulite formation in the bone marrow biopsy of an AL amyloidosis patient. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Lipoprotein Transport: Greasing the Machines of Outer Membrane Biogenesis: Re-Examining Lipoprotein Transport Mechanisms Among Diverse Gram-Negative Bacteria While Exploring New Discoveries and Questions.

    Science.gov (United States)

    Grabowicz, Marcin

    2018-04-01

    The Gram-negative outer membrane (OM) is a potent permeability barrier against antibiotics, limiting clinical options amid mounting rates of resistance. The Lol transport pathway delivers lipoproteins to the OM. All the OM assembly machines require one or more OM lipoprotein to function, making the Lol pathway central for all aspects of OM biogenesis. The Lol pathways of many medically important species clearly deviate from the Escherichia coli paradigm, perhaps with implications for efforts to develop novel antibiotics. Moreover, recent work reveals the existence of an undiscovered alternate route for bringing lipoproteins to the OM. Here, lipoprotein transport mechanisms, and the quality control systems that underpin them, is re-examined in context of their diversity. © 2018 WILEY Periodicals, Inc.

  16. Preparation of Amyloid Fibrils Seeded from Brain and Meninges.

    Science.gov (United States)

    Scherpelz, Kathryn P; Lu, Jun-Xia; Tycko, Robert; Meredith, Stephen C

    2016-01-01

    Seeding of amyloid fibrils into fresh solutions of the same peptide or protein in disaggregated form leads to the formation of replicate fibrils, with close structural similarity or identity to the original fibrillar seeds. Here we describe procedures for isolating fibrils composed mainly of β-amyloid (Aβ) from human brain and from leptomeninges, a source of cerebral blood vessels, for investigating Alzheimer's disease and cerebral amyloid angiopathy. We also describe methods for seeding isotopically labeled, disaggregated Aβ peptide solutions for study using solid-state NMR and other techniques. These methods should be applicable to other types of amyloid fibrils, to Aβ fibrils from mice or other species, tissues other than brain, and to some non-fibrillar aggregates. These procedures allow for the examination of authentic amyloid fibrils and other protein aggregates from biological tissues without the need for labeling the tissue.

  17. secHsp70 as a tool to approach amyloid-β42 and other extracellular amyloids.

    Science.gov (United States)

    De Mena, Lorena; Chhangani, Deepak; Fernandez-Funez, Pedro; Rincon-Limas, Diego E

    2017-07-03

    Self-association of amyloidogenic proteins is the main pathological trigger in a wide variety of neurodegenerative disorders. These aggregates are deposited inside or outside the cell due to hereditary mutations, environmental exposures or even normal aging. Cumulative evidence indicates that the heat shock chaperone Hsp70 possesses robust neuroprotection against various intracellular amyloids in Drosophila and mouse models. However, its protective role against extracellular amyloids was largely unknown as its presence outside the cells is very limited. Our recent manuscript in PNAS revealed that an engineered form of secreted Hsp70 (secHsp70) is highly protective against toxicity induced by extracellular deposition of the amyloid-β42 (Aβ42) peptide. In this Extra View article, we extend our analysis to other members of the heat shock protein family. We created PhiC31-based transgenic lines for human Hsp27, Hsp40, Hsp60 and Hsp70 and compared their activities in parallel against extracellular Aβ42. Strikingly, only secreted Hsp70 exhibits robust protection against Aβ42-triggered toxicity in the extracellular milieu. These observations indicate that the ability of secHsp70 to suppress Aβ42 insults is quite unique and suggest that targeted secretion of Hsp70 may represent a new therapeutic approach against Aβ42 and other extracellular amyloids. The potential applications of this engineered chaperone are discussed.

  18. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants

    DEFF Research Database (Denmark)

    Tiwari, Manish Kumar; Kepp, Kasper Planeta

    2015-01-01

    Protein aggregation is a hallmark of many neurodegenerative disorders. Alzheimer’s disease (AD) is directly linked to deposits of amyloid-β (Aβ) derived from the amyloid-β protein precursor (AβPP), and multiple experimental studies have investigated the aggregation behavior of these amyloids...

  19. Fish β-parvalbumin acquires allergenic properties by amyloid assembly.

    Science.gov (United States)

    Martínez, Javier; Sánchez, Rosa; Castellanos, Milagros; Fernández-Escamilla, Ana M; Vázquez-Cortés, Sonia; Fernández-Rivas, Montserrat; Gasset, María

    2015-01-01

    Amyloids are highly cross-β-sheet-rich aggregated states that confer protease resistance, membrane activity and multivalence properties to proteins, all essential features for the undesired preservation of food proteins transiting the gastrointestinal tract and causing type I allergy. Amyloid propensity of β-parvalbumin, the major fish allergen, was theoretically analysed and assayed under gastrointestinal-relevant conditions using the binding of thioflavin T, the formation of sodium dodecyl sulphate- (SDS-) resistant aggregates, circular dichroism spectroscopy and atomic force microscopy fibril imaging. Impact of amyloid aggregates on allergenicity was assessed with dot blot. Sequences of β-parvalbumin from species with commercial value contain several adhesive hexapeptides capable of driving amyloid formation. Using Atlantic cod β-parvalbumin (rGad m 1) displaying high IgE cross-reactivity, we found that formation of amyloid fibres under simulated gastrointestinal conditions accounts for the resistance to acid and neutral proteases, for the presence of membrane active species under gastrointestinal relevant conditions and for the IgE-recognition in the sera of allergic patients. Incorporation of the anti-amyloid compound epigallocatechin gallate prevents rGad m 1 fibrillation, facilitates its protease digestion and impairs its recognition by IgE. the formation of amyloid by rGad m 1 explains its degradation resistance, its facilitated passage across the intestinal epithelial barrier and its epitope architecture as allergen.

  20. Towards Prebiotic Catalytic Amyloids Using High Throughput Screening.

    Directory of Open Access Journals (Sweden)

    Michael P Friedmann

    Full Text Available Enzymes are capable of directing complex stereospecific transformations and of accelerating reaction rates many orders of magnitude. As even the simplest known enzymes comprise thousands of atoms, the question arises as to how such exquisite catalysts evolved. A logical predecessor would be shorter peptides, but they lack the defined structure and size that are apparently necessary for enzyme functions. However, some very short peptides are able to assemble into amyloids, thereby forming a well-defined tertiary structure called the cross-β-sheet, which bestows unique properties upon the peptides. We have hypothesized that amyloids could have been the catalytically active precursor to modern enzymes. To test this hypothesis, we designed an amyloid peptide library that could be screened for catalytic activity. Our approach, amenable to high-throughput methodologies, allowed us to find several peptides and peptide mixtures that form amyloids with esterase activity. These results indicate that amyloids, with their stability in a wide range of conditions and their potential as catalysts with low sequence specificity, would indeed be fitting precursors to modern enzymes. Furthermore, our approach can be efficiently expanded upon in library size, screening conditions, and target activity to yield novel amyloid catalysts with potential applications in aqueous-organic mixtures, at high temperature and in other extreme conditions that could be advantageous for industrial applications.

  1. Amyloid PET in European and North American cohorts; and exploring age as a limit to clinical use of amyloid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chiotis, Konstantinos [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Carter, Stephen F. [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); University of Manchester, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviour and Mental Health, Manchester (United Kingdom); Farid, Karim [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); APHP, Hotel-Dieu Hospital, Department of Nuclear Medicine, Paris (France); Savitcheva, Irina [Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden); Nordberg, Agneta [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden); Collaboration: for the Diagnostic Molecular Imaging (DiMI) network and the Alzheimer' s Disease Neuroimaging Initiative

    2015-09-15

    Several radiotracers that bind to fibrillar amyloid-beta in the brain have been developed and used in various patient cohorts. This study aimed to investigate the comparability of two amyloid positron emission tomography (PET) tracers as well as examine how age affects the discriminative properties of amyloid PET imaging. Fifty-one healthy controls (HCs), 72 patients with mild cognitive impairment (MCI) and 90 patients with Alzheimer's disease (AD) from a European cohort were scanned with [11C]Pittsburgh compound-B (PIB) and compared with an age-, sex- and disease severity-matched population of 51 HC, 72 MCI and 84 AD patients from a North American cohort who were scanned with [18F]Florbetapir. An additional North American population of 246 HC, 342 MCI and 138 AD patients with a Florbetapir scan was split by age (55-75 vs 76-93 y) into groups matched for gender and disease severity. PET template-based analyses were used to quantify regional tracer uptake. The mean regional uptake patterns were similar and strong correlations were found between the two tracers across the regions of interest in HC (ρ = 0.671, p = 0.02), amyloid-positive MCI (ρ = 0.902, p < 0.001) and AD patients (ρ = 0.853, p < 0.001). The application of the Florbetapir cut-off point resulted in a higher proportion of amyloid-positive HC and a lower proportion of amyloid-positive AD patients in the older group (28 and 30 %, respectively) than in the younger group (19 and 20 %, respectively). These results illustrate the comparability of Florbetapir and PIB in unrelated but matched patient populations. The role of amyloid PET imaging becomes increasingly important with increasing age in the diagnostic assessment of clinically impaired patients. (orig.)

  2. Amyloid PET in European and North American cohorts; and exploring age as a limit to clinical use of amyloid imaging

    International Nuclear Information System (INIS)

    Chiotis, Konstantinos; Carter, Stephen F.; Farid, Karim; Savitcheva, Irina; Nordberg, Agneta

    2015-01-01

    Several radiotracers that bind to fibrillar amyloid-beta in the brain have been developed and used in various patient cohorts. This study aimed to investigate the comparability of two amyloid positron emission tomography (PET) tracers as well as examine how age affects the discriminative properties of amyloid PET imaging. Fifty-one healthy controls (HCs), 72 patients with mild cognitive impairment (MCI) and 90 patients with Alzheimer's disease (AD) from a European cohort were scanned with [11C]Pittsburgh compound-B (PIB) and compared with an age-, sex- and disease severity-matched population of 51 HC, 72 MCI and 84 AD patients from a North American cohort who were scanned with [18F]Florbetapir. An additional North American population of 246 HC, 342 MCI and 138 AD patients with a Florbetapir scan was split by age (55-75 vs 76-93 y) into groups matched for gender and disease severity. PET template-based analyses were used to quantify regional tracer uptake. The mean regional uptake patterns were similar and strong correlations were found between the two tracers across the regions of interest in HC (ρ = 0.671, p = 0.02), amyloid-positive MCI (ρ = 0.902, p < 0.001) and AD patients (ρ = 0.853, p < 0.001). The application of the Florbetapir cut-off point resulted in a higher proportion of amyloid-positive HC and a lower proportion of amyloid-positive AD patients in the older group (28 and 30 %, respectively) than in the younger group (19 and 20 %, respectively). These results illustrate the comparability of Florbetapir and PIB in unrelated but matched patient populations. The role of amyloid PET imaging becomes increasingly important with increasing age in the diagnostic assessment of clinically impaired patients. (orig.)

  3. Key points concerning amyloid infectivity and prion-like neuronal invasion

    Directory of Open Access Journals (Sweden)

    Alba eEspargaró

    2016-04-01

    Full Text Available Amyloid aggregation has been related to an increasing number of human illnesses, from Alzheimer and Parkinson’s diseases to Creutzfeldt-Jakob disease. Traditionally only prions have been considered as infectious agents with a high capacity of propagation. Although recent publications have showed that many amyloid proteins, including amyloid β-peptide, α-synuclein and tau protein, also propagate in a prion-like manner, the link between propagation of pathological proteins and neurotoxicity has not been evidenced. The extremely low infectivity in natural conditions of the most of non-prion amyloids is far from the spreading capacity displayed by the prions. However, it is important to elucidate the key factors that cause non-prion amyloids become infectious agents. In recent years, important advances in the understanding of the amyloid processes of amyloid-like proteins and unrelated prions (i.e., yeast and fungal prions have yielded essential information that can be applied to shed light on the prion phenomenon in mammals and humans. As shown in this review, recent evidences suggest that there are key factors that could dramatically modulate the prion capacity of proteins in the amyloid conformation. The concentration of nuclei, the presence of oligomers, and the toxicity, resistance and localization of these aggregates could be key factors affecting their spreading. In short, those factors that favor the high concentration of extracellular nuclei or oligomers, characterized by a small size, with a low toxicity could dramatically increase prion propensity; whereas low concentrations of highly toxic intracellular amyloids, with a large size, would prevent infectivity.

  4. Early stages in the biogenesis of eukaryotic β-barrel proteins.

    Science.gov (United States)

    Jores, Tobias; Rapaport, Doron

    2017-09-01

    The endosymbiotic organelles mitochondria and chloroplasts harbour, similarly to their prokaryotic progenitors, β-barrel proteins in their outer membrane. These proteins are encoded on nuclear DNA, translated on cytosolic ribosomes and imported into their target organelles by a dedicated machinery. Recent studies have provided insights into the import into the organelles and the membrane insertion of these proteins. Although the cytosolic stages of their biogenesis are less well defined, it is speculated that upon their synthesis, chaperones prevent β-barrel proteins from aggregation and keep them in an import-competent conformation. In this Review, we summarize the current knowledge about the biogenesis of β-barrel proteins, focusing on the early stages from the translation on cytosolic ribosomes to the recognition on the surface of the organelle. © 2017 Federation of European Biochemical Societies.

  5. Curcumin Decreases Amyloid-β Peptide Levels by Attenuating the Maturation of Amyloid-β Precursor Protein*

    Science.gov (United States)

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E.

    2010-01-01

    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-β (Aβ), the principal component of senile plaques. Aβ is an ∼4-kDa peptide generated via cleavage of the amyloid-β precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Aβ-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Aβ levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Aβ levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-β pathology. PMID:20622013

  6. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein.

    Science.gov (United States)

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E

    2010-09-10

    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-beta (Abeta), the principal component of senile plaques. Abeta is an approximately 4-kDa peptide generated via cleavage of the amyloid-beta precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Abeta-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Abeta levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Abeta levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-beta pathology.

  7. Mutant APP and Amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer's disease.

    Science.gov (United States)

    Reddy, P Hemachandra; Yin, XiangLin; Manczak, Maria; Kumar, Subodh; Jangampalli Adi, Pradeepkiran; Vijayan, Murali; Reddy, Arubala P

    2018-04-25

    The purpose of our study was to determine the toxic effects of hippocampal mutant APP and amyloid beta (Aβ) in human mutant APP (mAPP) cDNA transfected with primary mouse hippocampal neurons (HT22). Hippocampal tissues are the best source of studying learning and memory functions in patients with Alzheimer's disease (AD) and healthy controls. However, investigating immortalized hippocampal neurons that express AD proteins provide an excellent opportunity for drug testing. Using quantitative RT-PCR, immunoblotting & immunofluorescence, and transmission electron microscopy, we assessed mRNA and protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2, and assessed mitochondrial number and length in mAPP-HT22 cells that express Swedish/Indiana mutations. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. Increased levels of mRNA and protein levels of mitochondrial fission genes, Drp1 and Fis1 and decreased levels fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 & TFAM), autophagy (ATG5 & LC3BI, LC3BII), mitophagy (PINK1 & TERT, BCL2 & BNIPBL), synaptic (synaptophysin & PSD95) and dendritic (MAP2) genes were found in mAPP-HT22 cells relative to WT-HT22 cells. Cell survival was significantly reduced mAPP-HT22 cells. GTPase-Dp1 enzymatic activity was increased in mAPP-HT22 cells. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in mAPP-HT22 cells. These findings suggest that hippocampal accumulation of mutant APP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins & reduced dendritic spines and mitochondrial structural and functional changes in mutant APP hippocampal cells. These observations strongly suggest that accumulation of mAPP and A

  8. Stabilization of a β-hairpin in monomeric Alzheimer's amyloid-β peptide inhibits amyloid formation

    Science.gov (United States)

    Hoyer, Wolfgang; Grönwall, Caroline; Jonsson, Andreas; Ståhl, Stefan; Härd, Torleif

    2008-01-01

    According to the amyloid hypothesis, the pathogenesis of Alzheimer's disease is triggered by the oligomerization and aggregation of the amyloid-β (Aβ) peptide into protein plaques. Formation of the potentially toxic oligomeric and fibrillar Aβ assemblies is accompanied by a conformational change toward a high content of β-structure. Here, we report the solution structure of Aβ(1–40) in complex with the phage-display selected affibody protein ZAβ3, a binding protein of nanomolar affinity. Bound Aβ(1–40) features a β-hairpin comprising residues 17–36, providing the first high-resolution structure of Aβ in β conformation. The positions of the secondary structure elements strongly resemble those observed for fibrillar Aβ. ZAβ3 stabilizes the β-sheet by extending it intermolecularly and by burying both of the mostly nonpolar faces of the Aβ hairpin within a large hydrophobic tunnel-like cavity. Consequently, ZAβ3 acts as a stoichiometric inhibitor of Aβ fibrillation. The selected Aβ conformation allows us to suggest a structural mechanism for amyloid formation based on soluble oligomeric hairpin intermediates. PMID:18375754

  9. Metastable Amyloid Phases and their Conversion to Mature Fibrils

    Science.gov (United States)

    Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy

    Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.

  10. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    Science.gov (United States)

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  11. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    Science.gov (United States)

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-02-23

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  12. Accumulation of murine amyloid-β mimics early Alzheimer's disease.

    Science.gov (United States)

    Krohn, Markus; Bracke, Alexander; Avchalumov, Yosef; Schumacher, Toni; Hofrichter, Jacqueline; Paarmann, Kristin; Fröhlich, Christina; Lange, Cathleen; Brüning, Thomas; von Bohlen Und Halbach, Oliver; Pahnke, Jens

    2015-08-01

    Amyloidosis mouse models of Alzheimer's disease are generally established by transgenic approaches leading to an overexpression of mutated human genes that are known to be involved in the generation of amyloid-β in Alzheimer's families. Although these models made substantial contributions to the current knowledge about the 'amyloid hypothesis' of Alzheimer's disease, the overproduction of amyloid-β peptides mimics only inherited (familiar) Alzheimer's disease, which accounts for patients with Alzheimer's disease. The inherited form is even regarded a 'rare' disease according to the regulations for funding of the European Union (www.erare.eu). Here, we show that mice that are double-deficient for neprilysin (encoded by Mme), one major amyloid-β-degrading enzyme, and the ABC transporter ABCC1, a major contributor to amyloid-β clearance from the brain, develop various aspects of sporadic Alzheimer's disease mimicking the clinical stage of mild cognitive impairment. Using behavioural tests, electrophysiology and morphological analyses, we compared different ABC transporter-deficient animals and found that alterations are most prominent in neprilysin × ABCC1 double-deficient mice. We show that these mice have a reduced probability to survive, show increased anxiety in new environments, and have a reduced working memory performance. Furthermore, we detected morphological changes in the hippocampus and amygdala, e.g. astrogliosis and reduced numbers of synapses, leading to defective long-term potentiation in functional measurements. Compared to human, murine amyloid-β is poorly aggregating, due to changes in three amino acids at N-terminal positions 5, 10, and 13. Interestingly, our findings account for the action of early occurring amyloid-β species/aggregates, i.e. monomers and small amyloid-β oligomers. Thus, neprilysin × ABCC1 double-deficient mice present a new model for early effects of amyloid-β-related mild cognitive impairment that allows investigations

  13. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    International Nuclear Information System (INIS)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-01-01

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1

  14. Targeting Pin1 by inhibitor API-1 regulates microRNA biogenesis and suppresses hepatocellular carcinoma development.

    Science.gov (United States)

    Pu, Wenchen; Li, Jiao; Zheng, Yuanyuan; Shen, Xianyan; Fan, Xin; Zhou, Jian-Kang; He, Juan; Deng, Yulan; Liu, Xuesha; Wang, Chun; Yang, Shengyong; Chen, Qiang; Liu, Lunxu; Zhang, Guolin; Wei, Yu-Quan; Peng, Yong

    2018-01-30

    Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, but there are few effective treatments. Aberrant microRNA (miRNA) biogenesis is correlated with HCC development. We previously demonstrated that peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) participates in miRNA biogenesis and is a potential HCC treatment target. However, how Pin1 modulates miRNA biogenesis remains obscure. Here, we present in vivo evidence that Pin1 overexpression is directly linked to the development of HCC. Administration with the Pin1 inhibitor (API-1), a specific small molecule targeting Pin1 peptidyl-prolyl isomerase domain and inhibiting Pin1 cis-trans isomerizing activity, suppresses in vitro cell proliferation and migration of HCC cells. But API-1-induced Pin1 inhibition is insensitive to HCC cells with low Pin1 expression and/or low exportin-5 (XPO5) phosphorylation. Mechanistically, Pin1 recognizes and isomerizes the phosphorylated serine-proline motif of phosphorylated XPO5 and passivates phosphorylated XPO5. Pin1 inhibition by API-1 maintains the active conformation of phosphorylated XPO5 and restores XPO5-driven precursor miRNA nuclear-to-cytoplasm export, activating anticancer miRNA biogenesis and leading to both in vitro HCC suppression and HCC suppression in xenograft mice. Experimental evidence suggests that Pin1 inhibition by API-1 up-regulates miRNA biogenesis by retaining active XPO5 conformation and suppresses HCC development, revealing the mechanism of Pin1-mediated miRNA biogenesis and unequivocally supporting API-1 as a drug candidate for HCC therapy, especially for Pin1-overexpressing, extracellular signal-regulated kinase-activated HCC. (Hepatology 2018). © 2018 by the American Association for the Study of Liver Diseases.

  15. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zheng, Ruimao, E-mail: rmzheng@pku.edu.cn [Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zhu, Shigong, E-mail: sgzhu@bjmu.edu.cn [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China)

    2014-07-18

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.

  16. Whole body amyloid deposition imaging by 123I-SAP scintigraphy

    NARCIS (Netherlands)

    van Rheenen, Ronald; Glaudemans, Andor; Hazenberg, Bouke

    2011-01-01

    Amyloidosis is the name of a group of diseases characterized by extracellular deposition of amyloid fibrils. Deposition of amyloid can be localized or systemic. The 123I-SAP-scan can be used to image extent and distribution of amyloid deposition in patients with systemic AA, AL and ATTR amyloidosis.

  17. Development of (F-18)-Labeled Amyloid Imaging Agents for PET

    International Nuclear Information System (INIS)

    Mathis, C.A.

    2007-01-01

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the 'amyloid cascade hypothesis' which holds that amyloid accumulation is the primary cause of AD.

  18. Biogenesis of light harvesting proteins.

    Science.gov (United States)

    Dall'Osto, Luca; Bressan, Mauro; Bassi, Roberto

    2015-09-01

    The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cilostazol promotes mitochondrial biogenesis in human umbilical vein endothelial cells through activating the expression of PGC-1α

    International Nuclear Information System (INIS)

    Zuo, Luning; Li, Qiang; Sun, Bei; Xu, Zhiying; Ge, Zhiming

    2013-01-01

    Highlights: ► First time to show that cilostazol promotes the expressions of PGC-1α. ► First time to show that cilostazol stimulates mitochondrial biogenesis in HUVECs. ► PKA/CREB pathway mediates the effect of cilostazol on PGC-1α expression. ► Suggesting the roles of cilostazol in mitochondrial dysfunction related disease. -- Abstract: Mitochondrial dysfunction is frequently observed in vascular diseases. Cilostazol is a drug approved by the US Food and Drug Administration for the treatment of intermittent claudication. Cilostazol increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibition of type III phosphodiesterase. The effects of cilostazol in mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study. Cilostazol treated HUVECs displayed increased levels of ATP, mitochondrial DNA/nuclear DNA ratio, expressions of cytochrome B, and mitochondrial mass, suggesting an enhanced mitochondrial biogenesis induced by cilostazol. The promoted mitochondrial biogenesis could be abolished by Protein kinase A (PKA) specific inhibitor H-89, implying that PKA pathway played a critical role in increased mitochondrial biogenesis after cilostazol treatment. Indeed, expression levels of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), NRF 1 and mitochondrial transcription factor A (TFAM) were significantly increased in HUVECs after incubation with cilostazol at both mRNA levels and protein levels. Importantly, knockdown of PGC-1α could abolish cilostazol-induced mitochondrial biogenesis. Enhanced expression of p-CREB and PGC-1α induced by cilostazol could be inhibited by H-89. Moreover, the increased expression of PGC-1α induced by cilostazol could be inhibited by downregulation of CREB using CREB siRNA at both mRNA and protein levels. All the results indicated that cilostazol promoted mitochondrial biogenesis through activating the expression of PGC-1α in

  20. Spectroscopic study of Alzheimer's amyloid fibrils using terahertz time domain spectroscopy

    International Nuclear Information System (INIS)

    Jung, Euna; Kim, Jeonghoi; Han, Younho; Moon, Kiwon; Lim, Meehyun; Han, Haewook; Park, Joonhyuck; Kim, Sungjee

    2008-01-01

    Alzheimer's disease, one of the most common neurodegenerative diseases, is characterized by extensive amyloid deposition. Amyloid deposits contain the abundant fibrils formed by amyloid β protein (Aβ). Because amyloid fibrils are associated with amyloid diseases, including Alzheimer's disease, type 2 diabetes, prion disease, Parkinson's disease, senile systemic amyloidosis and Huntington's disease, there has been considerable interest within the biomedical and biochemical research communities. In transmission electron microscopic (TEM)images, amyloid firils are 0.1∼10μm long and approximately 10nm wide. Amyloid fibrils commonly exhibit self assembled filaments, often described as twisted or parallel assemblies of finer protofilaments. They are formed by the spontaneous aggregation of a wide variety of peptides and proteins. Structural studies of amyloid fibrils have revealed that the common structural motif of virtually all amyloid fibrils consists of cross β sheets in which the peptide strands are arranged perpendicular to the long axis of the fiber. But little was known until recently about the molecular level structures of amyloid fibils. Therefore, spectroscopic investigation of both amyloid fibrils and Aβ at the molecular level can provide the significant evidence for the molecular understanding of amyloidogenesis and for the development of innovative therapeutic and diagnostic approaches. We used terahertz time domain spectroscopy (THz TDS)to investigate both Aβ and amyloid fibril. THz TDS, developed over the last two decades, is a powerful tool to extract the properties of biomaterials and provides unique spectral signatures of biomolecules within 0.1∼10THz, which exists between microwave and infrared frequency range. Current interest in THz radiation arises from its capability of probing the delocalized collective vibrational modes in proteins. Studying the collective modes of proteins in THz frequency range can play an important role in

  1. Maintaining ancient organelles: mitochondrial biogenesis and maturation.

    Science.gov (United States)

    Vega, Rick B; Horton, Julie L; Kelly, Daniel P

    2015-05-22

    The ultrastructure of the cardiac myocyte is remarkable for the high density of mitochondria tightly packed between sarcomeres. This structural organization is designed to provide energy in the form of ATP to fuel normal pump function of the heart. A complex system comprised of regulatory factors and energy metabolic machinery, encoded by both mitochondrial and nuclear genomes, is required for the coordinate control of cardiac mitochondrial biogenesis, maturation, and high-capacity function. This process involves the action of a transcriptional regulatory network that builds and maintains the mitochondrial genome and drives the expression of the energy transduction machinery. This finely tuned system is responsive to developmental and physiological cues, as well as changes in fuel substrate availability. Deficiency of components critical for mitochondrial energy production frequently manifests as a cardiomyopathic phenotype, underscoring the requirement to maintain high respiration rates in the heart. Although a precise causative role is not clear, there is increasing evidence that perturbations in this regulatory system occur in the hypertrophied and failing heart. This review summarizes current knowledge and highlights recent advances in our understanding of the transcriptional regulatory factors and signaling networks that serve to regulate mitochondrial biogenesis and function in the mammalian heart. © 2015 American Heart Association, Inc.

  2. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements

    Science.gov (United States)

    Welchen, Elina; García, Lucila; Mansilla, Natanael; Gonzalez, Daniel H.

    2014-01-01

    Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number, and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light–dark cycles, and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands. PMID:24409193

  3. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements.

    Directory of Open Access Journals (Sweden)

    Elina eWelchen

    2014-01-01

    Full Text Available Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light-dark cycles and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands.

  4. Small heat shock protein HspB8: its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity.

    NARCIS (Netherlands)

    Wilhelmus, M.M.M.; Boelens, W.C.; Otte-Holler, I.; Kamps, B.; Kusters, B.; Maat-Schieman, M.L.; Waal, R.M.W. de; Verbeek, M.M.

    2006-01-01

    Alzheimer's disease (AD) is characterized by pathological lesions, such as senile plaques (SPs) and cerebral amyloid angiopathy (CAA), both predominantly consisting of a proteolytic cleavage product of the amyloid-beta precursor protein (APP), the amyloid-beta peptide (Abeta). CAA is also the major

  5. Kinetically controlled thermal response of beta2-microglobulin amyloid fibrils.

    Science.gov (United States)

    Sasahara, Kenji; Naiki, Hironobu; Goto, Yuji

    2005-09-23

    Calorimetric measurements were carried out using a differential scanning calorimeter in the temperature range from 10 to 120 degrees C for characterizing the thermal response of beta2-microglobulin amyloid fibrils. The thermograms of amyloid fibril solution showed a remarkably large decrease in heat capacity that was essentially released upon the thermal unfolding of the fibrils, in which the magnitude of negative heat capacity change was not explicable in terms of the current accessible surface area model of protein structural thermodynamics. The heat capacity-temperature curve of amyloid fibrils prior to the fibril unfolding exhibited an unusual dependence on the fibril concentration and the heating rate. Particularly, the heat needed to induce the thermal response was found to be linearly dependent on the heating rate, indicating that its thermal response is under a kinetic control and precluding the interpretation in terms of equilibrium thermodynamics. Furthermore, amyloid fibrils of amyloid beta peptides also exhibited a heating rate-dependent exothermic process before the fibril unfolding, indicating that the kinetically controlled thermal response may be a common phenomenon to amyloid fibrils. We suggest that the heating rate-dependent negative change in heat capacity is coupled to the association of amyloid fibrils with characteristic hydration pattern.

  6. Mouse senile amyloid fibrils deposited in skeletal muscle exhibit amyloidosis-enhancing activity.

    Directory of Open Access Journals (Sweden)

    Jinze Qian

    2010-05-01

    Full Text Available Amyloidosis describes a group of protein folding diseases in which amyloid proteins are abnormally deposited in organs and/or tissues as fine fibrils. Mouse senile amyloidosis is a disorder in which apolipoprotein A-II (apoA-II deposits as amyloid fibrils (AApoAII and can be transmitted from one animal to another both by the feces and milk excreted by mice with amyloidosis. Thus, mouse AApoAII amyloidosis has been demonstrated to be a "transmissible disease". In this study, to further characterize the transmissibility of amyloidosis, AApoAII amyloid fibrils were injected into transgenic Apoa2(cTg(+/- and normal R1.P1-Apoa2(c mice to induce AApoAII systemic amyloidosis. Two months later, AApoAII amyloid deposits were found in the skeletal muscles of amyloid-affected mice, primarily in the blood vessels and in the interstitial tissues surrounding muscle fibers. When amyloid fibrils extracted from the skeletal muscles were subjected to Western blot analysis, apoA-II was detected. Amyloid fibril fractions isolated from the muscles not only demonstrated the structure of amyloid fibrils but could also induce amyloidosis in young mice depending on its fibril conformation. These findings present a possible pathogenesis of amyloidosis: transmission of amyloid fibril conformation through muscle, and shed new light on the etiology involved in amyloid disorders.

  7. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK cells

    Directory of Open Access Journals (Sweden)

    Akira Marine

    2014-01-01

    Full Text Available Superoxide is widely regarded as the primary reactive oxygen species (ROS which initiates downstream oxidative stress. Increased oxidative stress contributes, in part, to many disease conditions such as cancer, atherosclerosis, ischemia/reperfusion, diabetes, aging, and neurodegeneration. Manganese superoxide dismutase (MnSOD catalyzes the dismutation of superoxide into hydrogen peroxide which can then be further detoxified by other antioxidant enzymes. MnSOD is critical in maintaining the normal function of mitochondria, thus its inactivation is thought to lead to compromised mitochondria. Previously, our laboratory observed increased mitochondrial biogenesis in a novel kidney-specific MnSOD knockout mouse. The current study used transient siRNA mediated MnSOD knockdown of normal rat kidney (NRK cells as the in vitro model, and confirmed functional mitochondrial biogenesis evidenced by increased PGC1α expression, mitochondrial DNA copy numbers and integrity, electron transport chain protein CORE II, mitochondrial mass, oxygen consumption rate, and overall ATP production. Further mechanistic studies using mitoquinone (MitoQ, a mitochondria-targeted antioxidant and L-NAME, a nitric oxide synthase (NOS inhibitor demonstrated that peroxynitrite (at low micromolar levels induced mitochondrial biogenesis. These findings provide the first evidence that low levels of peroxynitrite can initiate a protective signaling cascade involving mitochondrial biogenesis which may help to restore mitochondrial function following transient MnSOD inactivation.

  9. Identification of a new complementation group of the peroxisome biogenesis disorders and PEX14 as the mutated gene

    NARCIS (Netherlands)

    Shimozawa, Nobuyuki; Tsukamoto, Toshiro; Nagase, Tomoko; Takemoto, Yasuhiko; Koyama, Naoki; Suzuki, Yasuyuki; Komori, Masayuki; Osumi, Takashi; Jeannette, Gootjes; Wanders, Ronald J. A.; Kondo, Naomi

    2004-01-01

    Peroxisome biogenesis disorders (PBD) are lethal hereditary diseases caused by abnormalities in the biogenesis of peroxisomes. At present, 12 different complementation groups have been identified and to date, all genes responsible for each of these complementation groups have been identified. The

  10. Novel β-amyloid aggregation inhibitors possessing a turn mimic.

    Science.gov (United States)

    Hamada, Yoshio; Miyamoto, Naoko; Kiso, Yoshiaki

    2015-04-01

    Amyloid β peptide, the main component of senile plaques found in the brain of Alzheimer disease (AD) patients, is a molecular target for AD therapeutic intervention. A number of potential AD therapeutics have been reported, including inhibitors of β-secretase, γ-secretase, and Aβ aggregation, and anti-amyloid agents, such as neprilysin, insulin degrading enzyme (IDE), and Aβ antibodies. Recently, we reported potent small-sized β-secretase (BACE1) inhibitors, which could serve as anti-AD drugs. However AD is a progressive disorder, where dementia symptoms gradually worsen over several decades, and therefore may require many years to get cured. One possible way to achieve a greater therapeutic effect is through simultaneous administration of multiple drugs, similar to those used in Highly Active Anti-Retroviral Therapy (HAART) used to treat AIDS. In order to overcome AD, we took a drug discovery approach to evaluate, novel β-amyloid aggregation inhibitors. Previously, we reported that a tong-type compound possessing a turn mimic as the inhibitor of HIV-1 protease dimerization. Oligomerized amyloid β peptides contain a turn structure within the molecule. Here, we designed and synthesized novel β-amyloid aggregation inhibitors with a turn-mimic template, based on the turn conformer of the oligomerized amyloid β peptides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. THE REDOX PATHWAY OF Pseudomonas aeruginosa CYTOCHROME C BIOGENESIS

    Directory of Open Access Journals (Sweden)

    Eva Di Silvio

    2012-06-01

    Full Text Available Cytochrome c contains heme covalently bound to the polypeptide chain through two thioether bonds between the heme vinyl groups and the two cysteines of the conserved heme- binding motif of the apoprotein. Surprisingly, the biochemical events leading to the synthesis of the functional holoprotein in the cell are largely unknown. In the human pathogen Pseudomonas aeruginosa, the biogenesis of Cytc is mediated by a group of membrane or membrane-anchored proteins (CcmABCDEFGHI, exposing their active site to the periplasm. The Ccm proteins involved in the necessary reduction of apoCyt disulfide bond are CcmG and CcmH. Here we present the structural and functional characterization of these two redox-active proteins. We determined the crystal structure of CcmG, both in the oxidized and the reduced state. CcmG is a membrane-anchored thioredoxinlike protein acting as a mild reductant in the redox pathway of Cytc biogenesis. The 3D structure of the soluble periplasmic domain of CcmH revealed that it adopts a peculiar three-helix bundle fold that is different from that of canonical thiol-oxidoreductases. Moreover, we present protein-protein interaction experiments aiming at elucidating the molecular mechanism of the reduction of apoCyt disulfide bond for heme attachment in vivo. On the basis of the structural and functional data on CcmG, CcmH and their interactions, we propose an assembly line for Cytc biogenesis in P. aeruginosa in which reduced CcmH specifically recognizes, binds and reduces oxidized apoCyt via the formation of a mixed disulfide complex, which is subsequently resolved by CcmG.

  12. Depressive symptoms accelerate cognitive decline in amyloid-positive MCI patients

    Energy Technology Data Exchange (ETDEWEB)

    Brendel, Matthias; Xiong, Guoming; Delker, Andreas [University of Munich, Department of Nuclear Medicine, Munich (Germany); Pogarell, Oliver [University of Munich, Department of Psychiatry, Munich (Germany); Bartenstein, Peter; Rominger, Axel [University of Munich, Department of Nuclear Medicine, Munich (Germany); Munich Cluster for Systems Neurology (SyNergy), Munich (Germany); Collaboration: for the Alzheimer' s Disease Neuroimaging Initiative

    2015-04-01

    Late-life depression even in subsyndromal stages is strongly associated with Alzheimer's disease (AD). Furthermore, brain amyloidosis is an early biomarker in subjects who subsequently suffer from AD and can be sensitively detected by amyloid PET. Therefore, we aimed to compare amyloid load and glucose metabolism in subsyndromally depressed subjects with mild cognitive impairment (MCI). [{sup 18}F]AV45 PET, [{sup 18}F]FDG PET and MRI were performed in 371 MCI subjects from the Alzheimer's Disease Neuroimaging Initiative Subjects were judged β-amyloid-positive (Aβ+; 206 patients) or β-amyloid-negative (Aβ-; 165 patients) according to [{sup 18}F]AV45 PET. Depressive symptoms were assessed by the Neuropsychiatric Inventory Questionnaire depression item 4. Subjects with depressive symptoms (65 Aβ+, 41 Aβ-) were compared with their nondepressed counterparts. Conversion rates to AD were analysed (mean follow-up time 21.5 ± 9.1 months) with regard to coexisting depressive symptoms and brain amyloid load. Aβ+ depressed subjects showed large clusters with a higher amyloid load in the frontotemporal and insular cortices (p < 0.001) with coincident hypermetabolism (p < 0.001) in the frontal cortices than nondepressed subjects. Faster progression to AD was observed in subjects with depressive symptoms (p < 0.005) and in Aβ+ subjects (p < 0.001). Coincident depressive symptoms additionally shortened the conversion time in all Aβ+ subjects (p < 0.005) and to a greater extent in those with a high amyloid load (p < 0.001). Our results clearly indicate that Aβ+ MCI subjects with depressive symptoms have an elevated amyloid load together with relative hypermetabolism of connected brain areas compared with cognitively matched nondepressed individuals. MCI subjects with high amyloid load and coexistent depressive symptoms are at high risk of faster conversion to AD. (orig.)

  13. Depressive symptoms accelerate cognitive decline in amyloid-positive MCI patients

    International Nuclear Information System (INIS)

    Brendel, Matthias; Xiong, Guoming; Delker, Andreas; Pogarell, Oliver; Bartenstein, Peter; Rominger, Axel

    2015-01-01

    Late-life depression even in subsyndromal stages is strongly associated with Alzheimer's disease (AD). Furthermore, brain amyloidosis is an early biomarker in subjects who subsequently suffer from AD and can be sensitively detected by amyloid PET. Therefore, we aimed to compare amyloid load and glucose metabolism in subsyndromally depressed subjects with mild cognitive impairment (MCI). [ 18 F]AV45 PET, [ 18 F]FDG PET and MRI were performed in 371 MCI subjects from the Alzheimer's Disease Neuroimaging Initiative Subjects were judged β-amyloid-positive (Aβ+; 206 patients) or β-amyloid-negative (Aβ-; 165 patients) according to [ 18 F]AV45 PET. Depressive symptoms were assessed by the Neuropsychiatric Inventory Questionnaire depression item 4. Subjects with depressive symptoms (65 Aβ+, 41 Aβ-) were compared with their nondepressed counterparts. Conversion rates to AD were analysed (mean follow-up time 21.5 ± 9.1 months) with regard to coexisting depressive symptoms and brain amyloid load. Aβ+ depressed subjects showed large clusters with a higher amyloid load in the frontotemporal and insular cortices (p < 0.001) with coincident hypermetabolism (p < 0.001) in the frontal cortices than nondepressed subjects. Faster progression to AD was observed in subjects with depressive symptoms (p < 0.005) and in Aβ+ subjects (p < 0.001). Coincident depressive symptoms additionally shortened the conversion time in all Aβ+ subjects (p < 0.005) and to a greater extent in those with a high amyloid load (p < 0.001). Our results clearly indicate that Aβ+ MCI subjects with depressive symptoms have an elevated amyloid load together with relative hypermetabolism of connected brain areas compared with cognitively matched nondepressed individuals. MCI subjects with high amyloid load and coexistent depressive symptoms are at high risk of faster conversion to AD. (orig.)

  14. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Helen P McWilliams-Koeppen

    Full Text Available Light chain (AL amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(PH-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.

  15. Effects of the deletion of the Escherichia coli frataxin homologue CyaY on the respiratory NADH:ubiquinone oxidoreductase

    Directory of Open Access Journals (Sweden)

    Grauman Peter L

    2007-07-01

    Full Text Available Abstract Background Frataxin is discussed as involved in the biogenesis of iron-sulfur clusters. Recently it was discovered that a frataxin homologue is a structural component of the respiratory NADH:ubiquinone oxidoreductase (complex I in Thermus thermophilus. It was not clear whether frataxin is in general a component of complex I from bacteria. The Escherichia coli homologue of frataxin is coined CyaY. Results We report that complex I is completely assembled to a stable and active enzyme complex equipped with all known iron-sulfur clusters in a cyaY mutant of E. coli. However, the amount of complex I is reduced by one third compared to the parental strain. Western blot analysis and live cell imaging of CyaY engineered with a GFP demonstrated that CyaY is located in the cytoplasm and not attached to the membrane as to be expected if it were a component of complex I. Conclusion CyaY plays a non-essential role in the assembly of complex I in E. coli. It is not a structural component but may transiently interact with the complex.

  16. Prevalence of amyloid PET positivity in dementia syndromes

    DEFF Research Database (Denmark)

    Ossenkoppele, Rik; Jansen, Willemijn J; Rabinovici, Gil D

    2015-01-01

    IMPORTANCE: Amyloid-β positron emission tomography (PET) imaging allows in vivo detection of fibrillar plaques, a core neuropathological feature of Alzheimer disease (AD). Its diagnostic utility is still unclear because amyloid plaques also occur in patients with non-AD dementia. OBJECTIVE: To use...

  17. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan; Fischetti, Robert F.; Hyman, Bradley; Frosch, Matthew; Gomez-Isla, Teresa; Makowski, Lee

    2016-09-15

    Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinct clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. We demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single individual and suggest

  18. A Novel Non-Apoptotic Role of Procaspase-3 in the Regulation of Mitochondrial Biogenesis Activators.

    Science.gov (United States)

    Kim, Ji-Soo; Ha, Ji-Young; Yang, Sol-Ji; Son, Jin H

    2018-01-01

    The executioner caspase-3 has been proposed as a pharmacological intervention target to preserve degenerating dopaminergic (DA) neurons because apoptotic mechanisms involving caspase-3 contribute, at least in part, to the loss of DA neurons in patients and experimental models of Parkinson's disease (PD). Here, we determined that genetic intervention of caspase-3 was sufficient to prevent cell death against oxidative stress (OS), accompanied by unexpected severe mitochondrial dysfunction. Specifically, as we expected, caspase-3-deficient DA neuronal cells were very significantly resistant to OS-induced cell death, while the activation of the initiator caspase-9 by OS was preserved. Moreover, detailed phenotypic characterization of caspase-3-deficient DA cells revealed severe mitochondrial dysfunction, including an accumulation of damaged mitochondria with a characteristic swollen structure and broken cristae, reduced membrane potential, increased levels of reactive oxygen species (ROS), and deficits in mitochondrial oxidative phosphorylation (OXPHOS) enzymes. Of great interest, we found that mitochondrial biogenesis was dramatically decreased in caspase-3-deficient DA cells, whereas their capability of mitophagy was normal. In accordance with this observation, caspase-3 gene knock down (KD) resulted in dramatically decreased expression of the key transcriptional activators of mitochondrial biogenesis, such as Tfam and Nrf-1, implicating a non-apoptotic role of procaspase-3 in mitochondrial biogenesis. Therefore, a prolonged anti-apoptotic intervention targeting caspase-3 should be considered with caution due to the potential adverse effects in mitochondria dynamics resulting from a novel potential functional role of procaspase-3 in mitochondrial biogenesis via regulating the expression of mitochondrial biogenesis activators. J. Cell. Biochem. 119: 347-357, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. PB1-F2 influenza A virus protein adopts a beta-sheet conformation and forms amyloid fibers in membrane environments.

    Science.gov (United States)

    Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard

    2010-04-23

    The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an alpha-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display beta-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a beta-sheet structure. Dynamic light scattering revealed that the presence of beta-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation.

  20. PB1-F2 Influenza A Virus Protein Adopts a β-Sheet Conformation and Forms Amyloid Fibers in Membrane Environments

    Science.gov (United States)

    Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard

    2010-01-01

    The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an α-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display β-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a β-sheet structure. Dynamic light scattering revealed that the presence of β-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation. PMID:20172856

  1. Biogenesis and function of T cell-derived exosomes

    Directory of Open Access Journals (Sweden)

    Miguel Angel Alonso

    2016-08-01

    Full Text Available Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins and nucleic acids confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes.

  2. Resveratrol and Amyloid-Beta: Mechanistic Insights

    Directory of Open Access Journals (Sweden)

    Yongming Jia

    2017-10-01

    Full Text Available The amyloid-beta (Aβ hypothesis that dyshomeostasis between Aβ production and clearance is a very early, key molecular factor in the etiology of Alzheimer’s disease (AD has been proposed and examined in the AD research field. Scientists have focused on seeking natural products or drugs to influence the dynamic equilibrium of Aβ, targeting production and clearance of Aβ. There is emerging evidence that resveratrol (Res, a naturally occurring polyphenol mainly found in grapes and red wine, acts on AD in numerous in vivo and in vitro models. Res decreases the amyloidogenic cleavage of the amyloid precursor protein (APP, enhances clearance of amyloid beta-peptides, and reduces Aβ aggregation. Moreover, Res also protects neuronal functions through its antioxidant properties. This review discusses the action of Res on Aβ production, clearance and aggregation and multiple potential mechanisms, providing evidence of the useful of Res for AD treatment.

  3. Reduced vascular amyloid burden at microhemorrhage sites in cerebral amyloid angiopathy

    NARCIS (Netherlands)

    van Veluw, Susanne J.; Kuijf, Hugo J.; Charidimou, Andreas; Viswanathan, Anand; Biessels, Geert Jan; Rozemuller, Annemieke J M; Frosch, Matthew P.; Greenberg, Steven M.

    Microhemorrhages are strongly associated with advanced cerebral amyloid angiopathy (CAA). Although it has been frequently proposed that the deposition of Aβ in the walls of cortical vessels directly causes microhemorrhages, this has not been studied in great detail, mainly because the ruptured

  4. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    Directory of Open Access Journals (Sweden)

    Jelena Ostojić

    2014-01-01

    Full Text Available Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS, which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria.

  5. Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution

    DEFF Research Database (Denmark)

    Di Carlo, Maria Giovanna; Vetri, Valeria; Buscarino, Gianpiero

    2016-01-01

    The conversion of proteins into amyloid fibrils and other amyloid-like aggregates is closely connected to the onset of a series of age-related pathologies. Upon changes in environmental conditions, amyloid-like aggregates may also undergo disassembly into oligomeric aggregates, the latter being r...

  6. Bioenergetics of lung tumors: Alteration of mitochondrial biogenesis and respiratory kapacity

    Czech Academy of Sciences Publication Activity Database

    Bellance, N.; Benard, G.; Furt, F.; Begueret, H.; Smolková, Katarína; Passerieux, E.; Delage, J.P.; Baste, J.M.; Moreau, P.; Rossignol, R.

    2009-01-01

    Roč. 41, č. 12 (2009), s. 2566-2577 ISSN 1357-2725 Institutional research plan: CEZ:AV0Z50110509 Keywords : tumors * bioenergetics * biogenesis Subject RIV: ED - Physiology Impact factor: 4.887, year: 2009

  7. Elasticity in Physically Cross-Linked Amyloid Fibril Networks

    Science.gov (United States)

    Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele

    2018-04-01

    We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β -lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G ˜c2.2 and G ˜c2.5 for semiflexible and rigid fibrils, respectively) and ionic strength (G ˜I4.4 and G ˜I3.8 for β -lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.

  8. Curli Fibers Are Highly Conserved between Salmonella typhimurium and Escherichia coli with Respect to Operon Structure and Regulation

    Science.gov (United States)

    Römling, Ute; Bian, Zhao; Hammar, Mårten; Sierralta, Walter D.; Normark, Staffan

    1998-01-01

    Mouse-virulent Salmonella typhimurium strains SR-11 and ATCC 14028-1s express curli fibers, thin aggregative fibers, at ambient temperature on plates as judged by Western blot analysis and electron microscopy. Concomitantly with curli expression, cells develop a rough and dry colony morphology and bind the dye Congo red (called the rdar morphotype). Cloning and characterization of the two divergently transcribed operons required for curli biogenesis, csgBA(C) and csgDEFG, from S. typhimurium SR-11 revealed the same gene order and flanking genes as in Escherichia coli. The divergence of the curli region between S. typhimurium and E. coli at the nucleotide level is above average (22.4%). However, a high level of conservation at the protein level, which ranged from 86% amino acid homology for the fiber subunit CsgA to 99% homology for the lipoprotein CsgG, implies functional constraints on the gene products. Consequently, S. typhimurium genes on low-copy-number plasmids were able to complement respective E. coli mutants, although not always to wild-type levels. rpoS and ompR are required for transcriptional activation of (at least) the csgD promoter. The high degree of conservation at the protein level and the identical regulation patterns in E. coli and S. typhimurium suggest similar roles of curli fibers in the same ecological niche in the two species. PMID:9457880

  9. Inhibition of Alzheimer amyloid {beta} aggregation by polyvalent trehalose

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yoshiko; You, Chouga [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Ohnishi, Reiko [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)], E-mail: miuray@jaist.ac.jp

    2008-04-15

    A glycopolymer carrying trehalose was found to suppress the formation of amyloid fibrils from the amyloid {beta} peptide (1-42) (A{beta}), as evaluated by thioflavin T assay and atomic force microscopy. Glycopolymers carrying sugar alcohols also changed the aggregation properties of A{beta}, and the inhibitory effect depended on the type of sugar and alkyl side chain. Neutralization activity was confirmed by in vitro assay using HeLa cells. The glycopolymer carrying trehalose strongly inhibited amyloid formation and neutralized cytotoxicity.

  10. Thermal Stability Threshold for Amyloid Formation in Light Chain Amyloidosis

    Directory of Open Access Journals (Sweden)

    Tanya L. Poshusta

    2013-11-01

    Full Text Available Light chain (AL amyloidosis is a devastating disease characterized by amyloid deposits formed by immunoglobulin light chains. Current available treatments involve conventional chemotherapy and autologous stem cell transplant. We have recently concluded a phase III trial comparing these two treatments. AL amyloidosis patients who achieve hematological complete response (CR do not necessarily achieve organ response regardless of the treatment they received. In order to investigate the possible correlation between amyloid formation kinetics and organ response, we selected AL amyloidosis patients from the trial with kidney involvement and CR after treatment. Six patients were selected and their monoclonal immunoglobulin light chains were characterized. The proteins showed differences in their stability and their kinetics of amyloid formation. A correlation was detected at pH 7.4, showing that less stable proteins are more likely to form amyloid fibrils. AL-T03 is too unstable to form amyloid fibrils at pH 7.4. This protein was found in the only patient in the study that had organ response, suggesting that partially folded species are required for amyloid formation to occur in AL amyloidosis.

  11. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Saurabh [Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 (India); Shukla, Dhananjay [Department of Biotechnology, Gitam University, Gandhi Nagar, Rushikonda, Visakhapatnam-530 045 Andhra Pradesh (India); Bansal, Anju, E-mail: anjubansaldipas@gmail.com [Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 (India)

    2012-11-01

    High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl{sub 2}), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl{sub 2} supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl{sub 2} supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl{sub 2} supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning. -- Highlights: ► We supplemented rats with CoCl{sub 2} for 15 days along with training. ► Co

  12. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride

    International Nuclear Information System (INIS)

    Saxena, Saurabh; Shukla, Dhananjay; Bansal, Anju

    2012-01-01

    High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl 2 ), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl 2 supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl 2 supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl 2 supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning. -- Highlights: ► We supplemented rats with CoCl 2 for 15 days along with training. ► CoCl 2 supplementation

  13. Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

    Science.gov (United States)

    Vlasblom, James; Gagarinova, Alla; Phanse, Sadhna; Graham, Chris; Yousif, Fouad; Ding, Huiming; Xiong, Xuejian; Nazarians-Armavil, Anaies; Alamgir, Md; Ali, Mehrab; Pogoutse, Oxana; Pe'er, Asaf; Arnold, Roland; Michaut, Magali; Parkinson, John; Golshani, Ashkan; Whitfield, Chris; Wodak, Shoshana J.; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack F.; Emili, Andrew

    2011-01-01

    As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target. PMID:22125496

  14. Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2011-11-01

    Full Text Available As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium and prototrophic (minimal medium culture conditions. The differential patterns of genetic interactions detected among > 235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens and an important target.

  15. Nanoparticles and amyloid systems: A fatal encounter?

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Bernd [Leibniz Institute of Surface Modification, Chemical Department, Permoserstr. 15, D-04318 Leipzig, Germany and Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Linnéstr. 3, D-04103 Leipzig (Germany)

    2014-10-06

    Nanoparticles (NPs) are used in many products of our daily life, however, there has been concern that they may also be harmful to human health. Recently NPs have been found to accelerate the fibrillation kinetics of amyloid systems. In the past this has been preliminarily attributed to a nucleation effect. Nanoparticle surfaces and interfaces appear to limit the degrees of freedom of amyloid systems (i.e., peptides and proteins) due to a phase space constraint such that rapid cross-beta structures are formed faster than without interface interactions and in turn fibril formation is enhanced significantly. Here we explore if lipid bilayers in the form of liposomes (140nm) also accelerate fibril formation for amyloid systems. We have investigated a fragment NNFGAIL of the Human islet amyloid polypeptide (hIAPP) in contact with 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) liposomes in aqueous solution. We found that the lipid bilayer vesicles do accelerate fibril formation in time-resolved off-line detected atomic force microscopy experiments. Characteristic Thioflavine-T fluorescence on the same structures verify that the structures consist of aggregated peptides in a typical cross-β-structure arrangement.

  16. Direct identification of amyloids by label-free quantitative LC-MS

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; Danielsen, Heidi Nolsøe; Hansen, Susan Hove

    adhesive and therefore bind to pipette tips and other consumables. Pure cultures, large sample volumes and high productivity of amyloids are therefore required for successful purification. We here present a quantitative proteomics technique that allow direct identification of functional amyloid candidates......Direct identification of amyloids by label-free quantitative LC-MS H. N. Danielsen, S. H. Hansen, F.-A. Herbst, P. H. Nielsen, M. S. Dueholm Amyloids are highly ordered fibrillar protein polymers used by organisms from all domains of life due to their exceptional properties. We have previously...... in complex samples based on their structural stability in the presence of increasing concentrations of formic acid....

  17. Clinical and imaging correlates of amyloid deposition in dementia with Lewy bodies.

    Science.gov (United States)

    Donaghy, Paul C; Firbank, Michael J; Thomas, Alan J; Lloyd, Jim; Petrides, George; Barnett, Nicola; Olsen, Kirsty; O'Brien, John T

    2018-04-19

    Amyloid deposition is common in dementia with Lewy bodies, but its pathophysiological significance is unclear. The objective of this study was to investigate the relationship between amyloid deposition and clinical profile, gray matter volume, and brain perfusion in dementia with Lewy bodies. Dementia with Lewy bodies (n = 37), Alzheimer's disease (n = 20), and controls (n = 20) underwent a thorough clinical assessment, 3T MRI, and early- and late-phase 18 F-Florbetapir PET-CT to assess cortical perfusion and amyloid deposition, respectively. Amyloid scans were visually categorized as positive or negative. Image analysis was carried out using statistical parametric mapping (SPM) 8. There were no significant differences between amyloid-positive and amyloid-negative dementia with Lewy bodies cases in age (P = .78), overall cognitive impairment (P = .83), level of functional impairment (P = .80), or any other clinical or cognitive scale. There were also no significant differences in hippocampal or gray matter volumes. However, amyloid-positive dementia with Lewy bodies cases had lower medial temporal lobe perfusion (P = .03) than amyloid-negative cases, although a combination of medial temporal lobe perfusion, hippocampal volume, and cognitive measures was unable to accurately predict amyloid status in dementia with Lewy bodies. Amyloid deposition was not associated with differences in clinical or neuropsychological profiles in dementia with Lewy bodies, but was associated with imaging evidence of medial temporal lobe dysfunction. The presence of amyloid in dementia with Lewy bodies cannot be identified on the basis of clinical and other imaging features and will require direct assessment via PET imaging or CSF. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf

  18. Amyloid goitre following chronic osteomyelitis: case report and ...

    African Journals Online (AJOL)

    Amyloid goitre following chronic osteomyelitis: case report and review of literature. AZ Mohammed, ST Edino, O Ochicha. Abstract. Amyloid Goitre is a rare clinical entity associated with systemic amyloidosis. It poses a significant diagnostic and therapeutic challenge and may be confused with a neoplastic goiter. We present ...

  19. The Potential of Targeting Ribosome Biogenesis in High-Grade Serous Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Shunfei Yan

    2017-01-01

    Full Text Available Overall survival for patients with ovarian cancer (OC has shown little improvement for decades meaning new therapeutic options are critical. OC comprises multiple histological subtypes, of which the most common and aggressive subtype is high-grade serous ovarian cancer (HGSOC. HGSOC is characterized by genomic structural variations with relatively few recurrent somatic mutations or dominantly acting oncogenes that can be targeted for the development of novel therapies. However, deregulation of pathways controlling homologous recombination (HR and ribosome biogenesis has been observed in a high proportion of HGSOC, raising the possibility that targeting these basic cellular processes may provide improved patient outcomes. The poly (ADP-ribose polymerase (PARP inhibitor olaparib has been approved to treat women with defects in HR due to germline BRCA mutations. Recent evidence demonstrated the efficacy of targeting ribosome biogenesis with the specific inhibitor of ribosomal RNA synthesis, CX-5461 in v-myc avian myelocytomatosis viral oncogene homolog (MYC-driven haematological and prostate cancers. CX-5461 has now progressed to a phase I clinical trial in patients with haematological malignancies and phase I/II trial in breast cancer. Here we review the currently available targeted therapies for HGSOC and discuss the potential of targeting ribosome biogenesis as a novel therapeutic approach against HGSOC.

  20. A new integrated dual time-point amyloid PET/MRI data analysis method

    International Nuclear Information System (INIS)

    Cecchin, Diego; Zucchetta, Pietro; Turco, Paolo; Bui, Franco; Barthel, Henryk; Tiepolt, Solveig; Sabri, Osama; Poggiali, Davide; Cagnin, Annachiara; Gallo, Paolo; Frigo, Anna Chiara

    2017-01-01

    In the initial evaluation of patients with suspected dementia and Alzheimer's disease, there is no consensus on how to perform semiquantification of amyloid in such a way that it: (1) facilitates visual qualitative interpretation, (2) takes the kinetic behaviour of the tracer into consideration particularly with regard to at least partially correcting for blood flow dependence, (3) analyses the amyloid load based on accurate parcellation of cortical and subcortical areas, (4) includes partial volume effect correction (PVEC), (5) includes MRI-derived topographical indexes, (6) enables application to PET/MRI images and PET/CT images with separately acquired MR images, and (7) allows automation. A method with all of these characteristics was retrospectively tested in 86 subjects who underwent amyloid ( 18 F-florbetaben) PET/MRI in a clinical setting (using images acquired 90-110 min after injection, 53 were classified visually as amyloid-negative and 33 as amyloid-positive). Early images after tracer administration were acquired between 0 and 10 min after injection, and later images were acquired between 90 and 110 min after injection. PVEC of the PET data was carried out using the geometric transfer matrix method. Parametric images and some regional output parameters, including two innovative ''dual time-point'' indexes, were obtained. Subjects classified visually as amyloid-positive showed a sparse tracer uptake in the primary sensory, motor and visual areas in accordance with the isocortical stage of the topographic distribution of the amyloid plaque (Braak stages V/VI). In patients classified visually as amyloid-negative, the method revealed detectable levels of tracer uptake in the basal portions of the frontal and temporal lobes, areas that are known to be sites of early deposition of amyloid plaques that probably represented early accumulation (Braak stage A) that is typical of normal ageing. There was a strong correlation between age

  1. A new integrated dual time-point amyloid PET/MRI data analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Cecchin, Diego; Zucchetta, Pietro; Turco, Paolo; Bui, Franco [University Hospital of Padua, Nuclear Medicine Unit, Department of Medicine - DIMED, Padua (Italy); Barthel, Henryk; Tiepolt, Solveig; Sabri, Osama [Leipzig University, Department of Nuclear Medicine, Leipzig (Germany); Poggiali, Davide; Cagnin, Annachiara; Gallo, Paolo [University Hospital of Padua, Neurology, Department of Neurosciences (DNS), Padua (Italy); Frigo, Anna Chiara [University Hospital of Padua, Biostatistics, Epidemiology and Public Health Unit, Department of Cardiac, Thoracic and Vascular Sciences, Padua (Italy)

    2017-11-15

    In the initial evaluation of patients with suspected dementia and Alzheimer's disease, there is no consensus on how to perform semiquantification of amyloid in such a way that it: (1) facilitates visual qualitative interpretation, (2) takes the kinetic behaviour of the tracer into consideration particularly with regard to at least partially correcting for blood flow dependence, (3) analyses the amyloid load based on accurate parcellation of cortical and subcortical areas, (4) includes partial volume effect correction (PVEC), (5) includes MRI-derived topographical indexes, (6) enables application to PET/MRI images and PET/CT images with separately acquired MR images, and (7) allows automation. A method with all of these characteristics was retrospectively tested in 86 subjects who underwent amyloid ({sup 18}F-florbetaben) PET/MRI in a clinical setting (using images acquired 90-110 min after injection, 53 were classified visually as amyloid-negative and 33 as amyloid-positive). Early images after tracer administration were acquired between 0 and 10 min after injection, and later images were acquired between 90 and 110 min after injection. PVEC of the PET data was carried out using the geometric transfer matrix method. Parametric images and some regional output parameters, including two innovative ''dual time-point'' indexes, were obtained. Subjects classified visually as amyloid-positive showed a sparse tracer uptake in the primary sensory, motor and visual areas in accordance with the isocortical stage of the topographic distribution of the amyloid plaque (Braak stages V/VI). In patients classified visually as amyloid-negative, the method revealed detectable levels of tracer uptake in the basal portions of the frontal and temporal lobes, areas that are known to be sites of early deposition of amyloid plaques that probably represented early accumulation (Braak stage A) that is typical of normal ageing. There was a strong correlation between

  2. Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen

    Science.gov (United States)

    Usmani, Shariq M.; Zirafi, Onofrio; Müller, Janis; Sandi-Monroy, Nathallie; Yadav, Jay K.; Meier, Christoph; Weil, Tanja; Roan, Nadia R.; Greene, Warner C.; Walther, Paul; Nilsson, K. Peter R.; Hammarström, Per; Wetzel, Ronald; Pilcher, Christopher D.; Gagsteiger, Friedrich; Fändrich, Marcus; Kirchhoff, Frank; Münch, Jan

    2014-01-01

    Naturally occurring fragments of the abundant semen proteins prostatic acid phosphatase (PAP) and semenogelins form amyloid fibrils in vitro. These fibrils boost HIV infection and may play a key role in the spread of the AIDS pandemic. However, the presence of amyloid fibrils in semen remained to be demonstrated. Here, we use state of the art confocal and electron microscopy techniques for direct imaging of amyloid fibrils in human ejaculates. We detect amyloid aggregates in all semen samples and find that they partially consist of PAP fragments, interact with HIV particles and increase viral infectivity. Our results establish semen as a body fluid that naturally contains amyloid fibrils that are exploited by HIV to promote its sexual transmission. PMID:24691351

  3. Cerebral hemorrhage caused by amyloid angiopathy

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Tomonaga, Masanori; Yoshimura, Masahiro; Yamanouchi, Hiroshi; Shimada, Hiroyuki.

    1985-01-01

    Cerebral hemorrhage caused by amyloid angiopathy was studied clinicopathologically, with special attention given to the CT images. Cerebral hemorrhage caused by amyloid angiopathy is characterized, by a lobar-type hemorrhage involving the cortex, with direct extension into the subarachnoid space. Multiple hemorrhages are frequent, and cortical infarctions are present as complications in elderly patients without risk factors. CT scans taken in 5 cases demonstrated lobar hemorrhages in superficial locations, frequently in multiple sites or recurrently, with surrounding edema and mass effect. A subarachnoid extension of the hemorrhage through the superficial cortex, proven pathologically in all cases, was noted by CT in 4 of the 5 cases. However, cortical infarction was not detected by CT in any case. Therefore, CT is of value in the diagnosis of cerebral hemorrhage due to amyloid angiopathy based on distinctive findings such as a lobar hemorrhage in superficial regions, with extension into the subarachnoid space, frequently in multiple sites or recurrently. (author)

  4. Detection of AA-type amyloid protein in labial salivary glands.

    Science.gov (United States)

    Sacsaquispe, Sonia-Julia; Antúnez-de Mayolo, Eleazar-Antonio; Vicetti, Rodolfo; Delgado, Wilson-Alejandro

    2011-03-01

    Among the diverse forms of amyloidosis, secondary type is the most frequent one. Diagnosis of amyloid deposition is based on the identification of the fibrillary protein amyloid by means of Congo Red (CR) or crystal violet (CV) stains, but these techniques do not differentiate between the different types of amyloid fibrils. The aim of this study was to identify by immunofluorescence (IF) AA amyloid a pathological fibrillar low-molecular-weight protein formed by cleavage of serum amyloid A (SAA) protein in labial salivary gland (LSG) biopsies from patients with secondary amyloidosis. 98 LSG were studied, 65 were from patients with secondary amyloidosis and 33 from subjects with chronic inflammatory diseases without evidence of this anomaly. All sections were stained with hematoxylin and eosin (H &E), CV, CR and IF using anti-AA antibodies. Positive and negative controls were used for all techniques. CV and CR demonstrated that the amyloid substance was found mainly distributed periductally (93.8%), followed by periacinar and perivascular locations (p <0.001); however, the IF demonstrated that amyloid AA substance predominates in the periacinar area (73.8%), followed by periductal and perivascular locations (p <0.001). IF has a sensitivity of 83%, 100% of specificity, 100% of predictive positive value and 75% of predictive negative value. The results of this study confirm the efficacy of the LSG biopsy as a highly reliable method for diagnosis of secondary amyloidosis.

  5. Proteomics with Mass Spectrometry Imaging: Beyond Amyloid Typing.

    Science.gov (United States)

    Lavatelli, Francesca; Merlini, Giampaolo

    2018-04-01

    Detection and typing of amyloid deposits in tissues are two crucial steps in the management of systemic amyloidoses. The presence of amyloid deposits is routinely evaluated through Congo red staining, whereas proteomics is now a mainstay in the identification of the deposited proteins. In article number 1700236, Winter et al. [Proteomics 2017, 17, Issue 22] describe a novel method based on MALDI-MS imaging coupled to ion mobility separation and peptide filtering, to detect the presence of amyloid in histology samples and to identify its composition, while preserving the spatial distribution of proteins in tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dual localized AtHscB involved in iron sulfur protein biogenesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiang Ming Xu

    2009-10-01

    Full Text Available Iron-sulfur clusters are ubiquitous structures which act as prosthetic groups for numerous proteins involved in several fundamental biological processes including respiration and photosynthesis. Although simple in structure both the assembly and insertion of clusters into apoproteins requires complex biochemical pathways involving a diverse set of proteins. In yeast, the J-type chaperone Jac1 plays a key role in the biogenesis of iron sulfur clusters in mitochondria.In this study we demonstrate that AtHscB from Arabidopsis can rescue the Jac1 yeast knockout mutant suggesting a role for AtHscB in iron sulfur protein biogenesis in plants. In contrast to mitochondrial Jac1, AtHscB localizes to both mitochondria and the cytosol. AtHscB interacts with AtIscU1, an Isu-like scaffold protein involved in iron-sulfur cluster biogenesis, and through this interaction AtIscU1 is most probably retained in the cytosol. The chaperone AtHscA can functionally complement the yeast Ssq1knockout mutant and its ATPase activity is enhanced by AtHscB and AtIscU1. Interestingly, AtHscA is also localized in both mitochondria and the cytosol. Furthermore, AtHscB is highly expressed in anthers and trichomes and an AtHscB T-DNA insertion mutant shows reduced seed set, a waxless phenotype and inappropriate trichome development as well as dramatically reduced activities of the iron-sulfur enzymes aconitase and succinate dehydrogenase.Our data suggest that AtHscB together with AtHscA and AtIscU1 plays an important role in the biogenesis of iron-sulfur proteins in both mitochondria and the cytosol.

  7. Use of amyloid-PET to determine cutpoints for CSF markers

    DEFF Research Database (Denmark)

    Zwan, Marissa D; Rinne, Juha O; Hasselbalch, Steen G

    2016-01-01

    OBJECTIVES: To define CSF β-amyloid 1-42 (Aβ42) cutpoints to detect cortical amyloid deposition as assessed by 11C-Pittsburgh compound B ([11C]PiB)-PET and to compare these calculated cutpoints with cutpoints currently used in clinical practice. METHODS: We included 433 participants (57 controls......, 99 with mild cognitive impairment, 195 with Alzheimer disease [AD] dementia, and 82 with non-AD dementia) from 5 European centers. We calculated for each center and for the pooled cohort CSF Aβ42 and Aβ42/tau ratio cutpoints for cortical amyloid deposition based on visual interpretation of [11C......]PiB-PET images. RESULTS: Amyloid-PET-based calculated CSF Aβ42 cutpoints ranged from 521 to 616 pg/mL, whereas existing clinical-based cutpoints ranged from 400 to 550 pg/mL. Using the calculated cutpoint from the pooled sample (557 pg/mL), concordance between CSF Aβ42 and amyloid-PET was 84%. Similar...

  8. MR Microimaging of amyloid plaques in Alzheimer's disease transgenic mice

    International Nuclear Information System (INIS)

    Wengenack, Thomas M.; Poduslo, Joseph F.; Jack, Clifford R.; Garwood, Michael

    2008-01-01

    Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas. (orig.)

  9. A Novel Small Molecule Modulator of Amyloid Pathology.

    Science.gov (United States)

    Lovell, Mark A; Lynn, Bert C; Fister, Shuling; Bradley-Whitman, Melissa; Murphy, M Paul; Beckett, Tina L; Norris, Christopher M

    2016-05-04

    Because traditional approaches to drug development for Alzheimer's disease are becoming increasingly expensive and in many cases disappointingly unsuccessful, alternative approaches are required to shift the paradigm. Following leads from investigations of dihydropyridine calcium channel blockers, we observed unique properties from a class of functionalized naphthyridines and sought to develop these as novel therapeutics that minimize amyloid pathology without the adverse effects associated with current therapeutics. Our data show methyl 2,4-dimethyl-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridine-1-carboxylate (BNC-1) significantly decreases amyloid burden in a well-established mouse model of amyloid pathology through a unique mechanism mediated by Elk-1, a transcriptional repressor of presenilin-1. Additionally, BNC-1 treatment leads to increased levels of synaptophysin and synapsin, markers of synaptic integrity, but does not adversely impact presenilin-2 or processing of Notch-1, thus avoiding negative off target effects associated with pan-gamma secretase inhibition. Overall, our data show BNC-1 significantly decreases amyloid burden and improves markers of synaptic integrity in a well-established mouse model of amyloid deposition by promoting phosphorylation and activation of Elk-1, a transcriptional repressor of presenilin-1 but not presenilin-2. These data suggest BNC-1 might be a novel, disease-modifying therapeutic that will alter the pathogenesis of Alzheimer's disease.

  10. Protein Folding and Aggregation into Amyloid: The Interference by Natural Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Massimo Stefani

    2013-06-01

    Full Text Available Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i to stabilize toxic amyloid precursors; (ii to prevent the growth of toxic oligomers or speed that of fibrils; (iii to inhibit fibril growth and deposition; (iv to disassemble preformed fibrils; and (v to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols.

  11. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Payel Das

    Full Text Available Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.

  12. TLR-activated repression of Fe-S cluster biogenesis drives a metabolic shift and alters histone and tubulin acetylation.

    Science.gov (United States)

    Tong, Wing-Hang; Maio, Nunziata; Zhang, De-Liang; Palmieri, Erika M; Ollivierre, Hayden; Ghosh, Manik C; McVicar, Daniel W; Rouault, Tracey A

    2018-05-22

    Given the essential roles of iron-sulfur (Fe-S) cofactors in mediating electron transfer in the mitochondrial respiratory chain and supporting heme biosynthesis, mitochondrial dysfunction is a common feature in a growing list of human Fe-S cluster biogenesis disorders, including Friedreich ataxia and GLRX5-related sideroblastic anemia. Here, our studies showed that restriction of Fe-S cluster biogenesis not only compromised mitochondrial oxidative metabolism but also resulted in decreased overall histone acetylation and increased H3K9me3 levels in the nucleus and increased acetylation of α-tubulin in the cytosol by decreasing the lipoylation of the pyruvate dehydrogenase complex, decreasing levels of succinate dehydrogenase and the histone acetyltransferase ELP3, and increasing levels of the tubulin acetyltransferase MEC17. Previous studies have shown that the metabolic shift in Toll-like receptor (TLR)-activated myeloid cells involves rapid activation of glycolysis and subsequent mitochondrial respiratory failure due to nitric oxide (NO)-mediated damage to Fe-S proteins. Our studies indicated that TLR activation also actively suppresses many components of the Fe-S cluster biogenesis machinery, which exacerbates NO-mediated damage to Fe-S proteins by interfering with cluster recovery. These results reveal new regulatory pathways and novel roles of the Fe-S cluster biogenesis machinery in modifying the epigenome and acetylome and provide new insights into the etiology of Fe-S cluster biogenesis disorders.

  13. The proton-pump inhibitor lansoprazole enhances amyloid beta production.

    Science.gov (United States)

    Badiola, Nahuai; Alcalde, Victor; Pujol, Albert; Münter, Lisa-Marie; Multhaup, Gerd; Lleó, Alberto; Coma, Mireia; Soler-López, Montserrat; Aloy, Patrick

    2013-01-01

    A key event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of amyloid-β (Aβ) species in the brain, derived from the sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. Based on a systems biology study to repurpose drugs for AD, we explore the effect of lansoprazole, and other proton-pump inhibitors (PPIs), on Aβ production in AD cellular and animal models. We found that lansoprazole enhances Aβ37, Aβ40 and Aβ42 production and lowers Aβ38 levels on amyloid cell models. Interestingly, acute lansoprazole treatment in wild type and AD transgenic mice promoted higher Aβ40 levels in brain, indicating that lansoprazole may also exacerbate Aβ production in vivo. Overall, our data presents for the first time that PPIs can affect amyloid metabolism, both in vitro and in vivo.

  14. Variation of amino acid sequences of serum amyloid a (SAA) and immunohistochemical analysis of amyloid a (AA) in Japanese domestic cats.

    Science.gov (United States)

    Tei, Meina; Uchida, Kazuyuki; Chambers, James K; Watanabe, Ken-Ichi; Tamamoto, Takashi; Ohno, Koichi; Nakayama, Hiroyuki

    2018-02-02

    Amyloid A (AA) amyloidosis, a fatal systemic amyloid disease, occurs secondary to chronic inflammatory conditions in humans. Although persistently elevated serum amyloid A (SAA) levels are required for its pathogenesis, not all individuals with chronic inflammation necessarily develop AA amyloidosis. Furthermore, many diseases in cats are associated with the elevated production of SAA, whereas only a small number actually develop AA amyloidosis. We hypothesized that a genetic mutation in the SAA gene may strongly contribute to the pathogenesis of feline AA amyloidosis. In the present study, genomic DNA from four Japanese domestic cats (JDCs) with AA amyloidosis and from five without amyloidosis was analyzed using polymerase chain reaction (PCR) amplification and direct sequencing. We identified the novel variation combination of 45R-51A in the deduced amino acid sequences of four JDCs with amyloidosis and five without. However, there was no relationship between amino acid variations and the distribution of AA amyloid deposits, indicating that differences in SAA sequences do not contribute to the pathogenesis of AA amyloidosis. Immunohistochemical analysis using antisera against the three different parts of the feline SAA protein-i.e., the N-terminal, central, and C-terminal regions-revealed that feline AA contained the C-terminus, unlike human AA. These results indicate that the cleavage and degradation of the C-terminus are not essential for amyloid fibril formation in JDCs.

  15. The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity

    Science.gov (United States)

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-01-01

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke. PMID:25387075

  16. Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates

    Science.gov (United States)

    Castello, Fabio; Paredes, Jose M.; Ruedas-Rama, Maria J.; Martin, Miguel; Roldan, Mar; Casares, Salvador; Orte, Angel

    2017-01-01

    The self-assembly of proteins into fibrillar structures called amyloid fibrils underlies the onset and symptoms of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. However, the molecular basis and mechanism of amyloid aggregation are not completely understood. For many amyloidogenic proteins, certain oligomeric intermediates that form in the early aggregation phase appear to be the principal cause of cellular toxicity. Recent computational studies have suggested the importance of nonspecific interactions for the initiation of the oligomerization process prior to the structural conversion steps and template seeding, particularly at low protein concentrations. Here, using advanced single-molecule fluorescence spectroscopy and imaging of a model SH3 domain, we obtained direct evidence that nonspecific aggregates are required in a two-step nucleation mechanism of amyloid aggregation. We identified three different oligomeric types according to their sizes and compactness and performed a full mechanistic study that revealed a mandatory rate-limiting conformational conversion step. We also identified the most cytotoxic species, which may be possible targets for inhibiting and preventing amyloid aggregation.

  17. ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis.

    Science.gov (United States)

    Nascimbeni, Anna Chiara; Giordano, Francesca; Dupont, Nicolas; Grasso, Daniel; Vaccaro, Maria I; Codogno, Patrice; Morel, Etienne

    2017-07-14

    The double-membrane-bound autophagosome is formed by the closure of a structure called the phagophore, origin of which is still unclear. The endoplasmic reticulum (ER) is clearly implicated in autophagosome biogenesis due to the presence of the omegasome subdomain positive for DFCP1, a phosphatidyl-inositol-3-phosphate (PI3P) binding protein. Contribution of other membrane sources, like the plasma membrane (PM), is still difficult to integrate in a global picture. Here we show that ER-plasma membrane contact sites are mobilized for autophagosome biogenesis, by direct implication of the tethering extended synaptotagmins (E-Syts) proteins. Imaging data revealed that early autophagic markers are recruited to E-Syt-containing domains during autophagy and that inhibition of E-Syts expression leads to a reduction in autophagosome biogenesis. Furthermore, we demonstrate that E-Syts are essential for autophagy-associated PI3P synthesis at the cortical ER membrane via the recruitment of VMP1, the stabilizing ER partner of the PI3KC3 complex. These results highlight the contribution of ER-plasma membrane tethers to autophagosome biogenesis regulation and support the importance of membrane contact sites in autophagy. © 2017 The Authors.

  18. Prevalence of cerebral amyloid pathology in persons without dementia

    DEFF Research Database (Denmark)

    Jansen, Willemijn J; Ossenkoppele, Rik; Knol, Dirk L

    2015-01-01

    IMPORTANCE: Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies...

  19. Nonequilibrium and generalized-ensemble molecular dynamics simulations for amyloid fibril

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Hisashi [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585 (Japan)

    2015-12-31

    Amyloids are insoluble and misfolded fibrous protein aggregates and associated with more than 20 serious human diseases. We perform all-atom molecular dynamics simulations of amyloid fibril assembly and disassembly.

  20. Calumenin interacts with serum amyloid P component

    DEFF Research Database (Denmark)

    Vorum, H; Jacobsen, Christian; Honoré, Bent

    2000-01-01

    with calumenin in the presence of Ca(2+). Amino acid sequencing identified this protein as serum amyloid P component (SAP). Furthermore, we verified and characterized the calumenin-SAP interaction by the surface plasmon resonance technique. The findings indicate that calumenin may participate...... in the immunological defense system and could be involved in the pathological process of amyloidosis that leads to formation of amyloid deposits seen in different types of tissues. Udgivelsesdato: 2000-Jan-14...

  1. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Weiner, H L; Lemere, C A; Maron, R

    2000-01-01

    Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease-implicated ......Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease...... cerebral Abeta deposition, suggesting a novel mucosal immunological approach for the treatment and prevention of AD....

  2. Amyloid myopathy: a diagnostic challenge

    Directory of Open Access Journals (Sweden)

    Heli Tuomaala

    2009-08-01

    Full Text Available Amyloid myopathy (AM is a rare manifestation of primary systemic amyloidosis (AL. Like inflammatory myopathies, it presents with proximal muscle weakness and an increased creatine kinase level. We describe a case of AL with severe, rapidly progressive myopathy as the initial symptom. The clinical manifestation and muscle biopsy were suggestive of inclusion body myositis. AM was not suspected until amyloidosis was seen in the gastric mucosal biopsy. The muscle biopsy was then re-examined more specifically, and Congo red staining eventually showed vascular and interstitial amyloid accumulation, which led to a diagnosis of AM. The present case illustrates the fact that the clinical picture of AM can mimic that of inclusion body myositis.

  3. Safety of disclosing amyloid status in cognitively normal older adults.

    Science.gov (United States)

    Burns, Jeffrey M; Johnson, David K; Liebmann, Edward P; Bothwell, Rebecca J; Morris, Jill K; Vidoni, Eric D

    2017-09-01

    Disclosing amyloid status to cognitively normal individuals remains controversial given our lack of understanding the test's clinical significance and unknown psychological risk. We assessed the effect of amyloid status disclosure on anxiety and depression before disclosure, at disclosure, and 6 weeks and 6 months postdisclosure and test-related distress after disclosure. Clinicians disclosed amyloid status to 97 cognitively normal older adults (27 had elevated cerebral amyloid). There was no difference in depressive symptoms across groups over time. There was a significant group by time interaction in anxiety, although post hoc analyses revealed no group differences at any time point, suggesting a minimal nonsustained increase in anxiety symptoms immediately postdisclosure in the elevated group. Slight but measureable increases in test-related distress were present after disclosure and were related to greater baseline levels of anxiety and depression. Disclosing amyloid imaging results to cognitively normal adults in the clinical research setting with pre- and postdisclosure counseling has a low risk of psychological harm. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  4. Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice.

    Science.gov (United States)

    Pan, Xiaoli; Gong, Neng; Zhao, Jing; Yu, Zhe; Gu, Fenghua; Chen, Jia; Sun, Xiaojing; Zhao, Lei; Yu, Meijing; Xu, Zhiru; Dong, Wenxin; Qin, Yan; Fei, Guoqiang; Zhong, Chunjiu; Xu, Tian-Le

    2010-05-01

    Reduction of glucose metabolism in brain is one of the main features of Alzheimer's disease. Thiamine (vitamin B1)-dependent processes are critical in glucose metabolism and have been found to be impaired in brains from patients with Alzheimer's disease. However, thiamine treatment exerts little beneficial effect in these patients. Here, we tested the effect of benfotiamine, a thiamine derivative with better bioavailability than thiamine, on cognitive impairment and pathology alterations in a mouse model of Alzheimer's disease, the amyloid precursor protein/presenilin-1 transgenic mouse. We show that after a chronic 8 week treatment, benfotiamine dose-dependently enhanced the spatial memory of amyloid precursor protein/presenilin-1 mice in the Morris water maze test. Furthermore, benfotiamine effectively reduced both amyloid plaque numbers and phosphorylated tau levels in cortical areas of the transgenic mice brains. Unexpectedly, these effects were not mimicked by another lipophilic thiamine derivative, fursultiamine, although both benfotiamine and fursultiamine were effective in increasing the levels of free thiamine in the brain. Most notably, benfotiamine, but not fursultiamine, significantly elevated the phosphorylation level of glycogen synthase kinase-3alpha and -3beta, and reduced their enzymatic activities in the amyloid precursor protein/presenilin-1 transgenic brain. Therefore, in the animal Alzheimer's disease model, benfotiamine appears to improve the cognitive function and reduce amyloid deposition via thiamine-independent mechanisms, which are likely to include the suppression of glycogen synthase kinase-3 activities. These results suggest that, unlike many other thiamine-related drugs, benfotiamine may be beneficial for clinical Alzheimer's disease treatment.

  5. New Insights in the Amyloid-Beta Interaction with Mitochondria

    Directory of Open Access Journals (Sweden)

    Carlos Spuch

    2012-01-01

    Full Text Available Biochemical and morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer’s disease (AD. Particularly, mitochondrial dysfunction is a hallmark of amyloid-beta-induced neuronal toxicity in Alzheimer’s disease. The recent emphasis on the intracellular biology of amyloid-beta and its precursor protein (APP has led researchers to consider the possibility that mitochondria-associated and mitochondrial amyloid-beta may directly cause neurotoxicity. Both proteins are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species production, cause mitochondrial damage, and prevent neurons from functioning normally. In this paper, we will outline current knowledge of the intracellular localization of amyloid-beta. Moreover, we summarize evidence from AD postmortem brain as well as animal AD models showing that amyloid-beta triggers mitochondrial dysfunction through a number of pathways such as impairment of oxidative phosphorylation, elevation of reactive oxygen species production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. Thus, this paper supports the Alzheimer cascade mitochondrial hypothesis such as the most important early events in this disease, and probably one of the future strategies on the therapy of this neurodegenerative disease.

  6. Proteome distribution between nucleoplasm and nucleolus and its relation to ribosome biogenesis in Arabidopsis thaliana.

    Science.gov (United States)

    Palm, Denise; Simm, Stefan; Darm, Katrin; Weis, Benjamin L; Ruprecht, Maike; Schleiff, Enrico; Scharf, Christian

    2016-01-01

    Ribosome biogenesis is an essential process initiated in the nucleolus. In eukaryotes, multiple ribosome biogenesis factors (RBFs) can be found in the nucleolus, the nucleus and in the cytoplasm. They act in processing, folding and modification of the pre-ribosomal (r)RNAs, incorporation of ribosomal proteins (RPs), export of pre-ribosomal particles to the cytoplasm, and quality control mechanisms. Ribosome biogenesis is best established for Saccharomyces cerevisiae. Plant ortholog assignment to yeast RBFs revealed the absence of about 30% of the yeast RBFs in plants. In turn, few plant specific proteins have been identified by biochemical experiments to act in plant ribosome biogenesis. Nevertheless, a complete inventory of plant RBFs has not been established yet. We analyzed the proteome of the nucleus and nucleolus of Arabidopsis thaliana and the post-translational modifications of these proteins. We identified 1602 proteins in the nucleolar and 2544 proteins in the nuclear fraction with an overlap of 1429 proteins. For a randomly selected set of proteins identified by the proteomic approach we confirmed the localization inferred from the proteomics data by the localization of GFP fusion proteins. We assigned the identified proteins to various complexes and functions and found about 519 plant proteins that have a potential to act as a RBFs, but which have not been experimentally characterized yet. Last, we compared the distribution of RBFs and RPs in the various fractions with the distribution established for yeast.

  7. Glycation induces formation of amyloid cross-beta structure in albumin.

    Science.gov (United States)

    Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G

    2003-10-24

    Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.

  8. Spectroscopic study of Alzheimer's amyloid fibrils using terahertz time domain spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Euna; Kim, Jeonghoi; Han, Younho; Moon, Kiwon; Lim, Meehyun; Han, Haewook; Park, Joonhyuck; Kim, Sungjee [POSTECH, Pohang (Korea, Republic of)

    2008-11-15

    Alzheimer's disease, one of the most common neurodegenerative diseases, is characterized by extensive amyloid deposition. Amyloid deposits contain the abundant fibrils formed by amyloid β protein (Aβ). Because amyloid fibrils are associated with amyloid diseases, including Alzheimer's disease, type 2 diabetes, prion disease, Parkinson's disease, senile systemic amyloidosis and Huntington's disease, there has been considerable interest within the biomedical and biochemical research communities. In transmission electron microscopic (TEM)images, amyloid firils are 0.1∼10μm long and approximately 10nm wide. Amyloid fibrils commonly exhibit self assembled filaments, often described as twisted or parallel assemblies of finer protofilaments. They are formed by the spontaneous aggregation of a wide variety of peptides and proteins. Structural studies of amyloid fibrils have revealed that the common structural motif of virtually all amyloid fibrils consists of cross β sheets in which the peptide strands are arranged perpendicular to the long axis of the fiber. But little was known until recently about the molecular level structures of amyloid fibils. Therefore, spectroscopic investigation of both amyloid fibrils and Aβ at the molecular level can provide the significant evidence for the molecular understanding of amyloidogenesis and for the development of innovative therapeutic and diagnostic approaches. We used terahertz time domain spectroscopy (THz TDS)to investigate both Aβ and amyloid fibril. THz TDS, developed over the last two decades, is a powerful tool to extract the properties of biomaterials and provides unique spectral signatures of biomolecules within 0.1∼10THz, which exists between microwave and infrared frequency range. Current interest in THz radiation arises from its capability of probing the delocalized collective vibrational modes in proteins. Studying the collective modes of proteins in THz frequency range can play an

  9. Repurposing Hsp104 to Antagonize Seminal Amyloid and Counter HIV Infection.

    Science.gov (United States)

    Castellano, Laura M; Bart, Stephen M; Holmes, Veronica M; Weissman, Drew; Shorter, James

    2015-08-20

    Naturally occurring proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) form amyloid fibrils in seminal fluid, which capture HIV virions and promote infection. For example, PAP248-286 fibrils, termed SEVI (semen-derived enhancer of viral infection), can potentiate HIV infection by several orders of magnitude. Here, we design three disruptive technologies to rapidly antagonize seminal amyloid by repurposing Hsp104, an amyloid-remodeling nanomachine from yeast. First, Hsp104 and an enhanced engineered variant, Hsp104(A503V), directly remodel SEVI and PAP85-120 fibrils into non-amyloid forms. Second, we elucidate catalytically inactive Hsp104 scaffolds that do not remodel amyloid structure, but cluster SEVI, PAP85-120, and SEM1(45-107) fibrils into larger assemblies. Third, we modify Hsp104 to interact with the chambered protease ClpP, which enables coupled remodeling and degradation to irreversibly clear SEVI and PAP85-120 fibrils. Each strategy diminished the ability of seminal amyloid to promote HIV infection, and could have therapeutic utility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Stop-and-go kinetics in amyloid fibrillation

    DEFF Research Database (Denmark)

    Ferkinghoff-Borg, Jesper; Fonslet, Jesper; Andersen, Christian Beyschau

    2010-01-01

    Many human diseases are associated with protein aggregation and fibrillation. We present experiments on in vitro glucagon fibrillation using total internal reflection fluorescence microscopy, providing real-time measurements of single-fibril growth. We find that amyloid fibrils grow in an intermi......Many human diseases are associated with protein aggregation and fibrillation. We present experiments on in vitro glucagon fibrillation using total internal reflection fluorescence microscopy, providing real-time measurements of single-fibril growth. We find that amyloid fibrils grow...

  11. Interaction between amyloid beta peptide and an aggregation blocker peptide mimicking islet amyloid polypeptide.

    Directory of Open Access Journals (Sweden)

    Nasrollah Rezaei-Ghaleh

    Full Text Available Assembly of amyloid-beta peptide (Aβ into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in Alzheimer's disease (AD and interfering with Aβ aggregation is an important strategy in the development of novel therapeutic approaches. Prior studies have shown that the double N-methylated analogue of islet amyloid polypeptide (IAPP IAPP-GI, which is a conformationally constrained IAPP analogue mimicking a non-amyloidogenic IAPP conformation, is capable of blocking cytotoxic self-assembly of Aβ. Here we investigate the interaction of IAPP-GI with Aβ40 and Aβ42 using NMR spectroscopy. The most pronounced NMR chemical shift changes were observed for residues 13-20, while residues 7-9, 15-16 as well as the C-terminal half of Aβ--that is both regions of the Aβ sequence that are converted into β-strands in amyloid fibrils--were less accessible to solvent in the presence of IAPP-GI. At the same time, interaction of IAPP-GI with Aβ resulted in a concentration-dependent co-aggregation of Aβ and IAPP-GI that was enhanced for the more aggregation prone Aβ42 peptide. On the basis of the reduced toxicity of the Aβ peptide in the presence of IAPP-GI, our data are consistent with the suggestion that IAPP-GI redirects Aβ into nontoxic "off-pathway" aggregates.

  12. Outer membrane lipoprotein biogenesis: Lol is not the end.

    Science.gov (United States)

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-05

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology. © 2015 The Author(s).

  13. Amyloid PET in pseudotumoral multiple sclerosis.

    Science.gov (United States)

    Matías-Guiu, Jordi A; Cabrera-Martín, María Nieves; Cortés-Martínez, Ana; Pytel, Vanesa; Moreno-Ramos, Teresa; Oreja-Guevara, Celia; Carreras, José Luis; Matías-Guiu, Jorge

    2017-07-01

    Pseudotumoral multiple sclerosis is a rare form of demyelinating disease of the central nervous system. Positron emission tomography (PET) using amyloid-tracers has also been suggested as a marker of damage in white matter lesions in multiple sclerosis due to the nonspecific uptake of these tracers in white matter. We present the case of a 59 year-old woman with a pathological-confirmed pseudotumoral multiple sclerosis, who was studied with the amyloid tracer 18 F-florbetaben. The patient had developed word-finding difficulties and right hemianopia twelve years ago. In that time, MRI showed a lesion on the left hemisphere with an infiltrating aspect in frontotemporal lobes. Brain biopsy showed demyelinating areas and inflammation. During the following years, two new clinical relapses occurred. 18 F-florbetaben PET showed lower uptake in the white matter lesion visualized in the CT and MRI images. Decreased tracer uptake was also observed in a larger area of the left hemisphere beyond the lesions observed on MRI or CT. White matter lesion volume on FLAIR was 44.2mL, and tracer uptake change between damaged white matter and normal appearing white matter was - 40.5%. Standardized uptake value was inferior in the pseudotumoral lesion than in the other white matter lesions. We report the findings of amyloid PET in a patient with pseudotumoral multiple sclerosis. This case provides further evidence on the role of amyloid PET in the assessment of white matter and demyelinating diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ultrafast Hydrogen-Bonding Dynamics in Amyloid Fibrils.

    Science.gov (United States)

    Pazos, Ileana M; Ma, Jianqiang; Mukherjee, Debopreeti; Gai, Feng

    2018-06-08

    While there are many studies on the subject of hydrogen bonding dynamics in biological systems, few, if any, have investigated this fundamental process in amyloid fibrils. Herein, we seek to add insight into this topic by assessing the dynamics of a hydrogen bond buried in the dry interface of amyloid fibrils. To prepare a suitable model peptide system for this purpose, we introduce two mutations into the amyloid-forming Aβ(16-22) peptide. The first one is a lysine analog at position 19, which is used to help form structurally homogeneous fibrils, and the second one is an aspartic acid derivative (DM) at position 17, which is intended (1) to be used as a site-specific infrared probe and (2) to serve as a hydrogen-bond acceptor to lysine so that an inter-β-sheet hydrogen bond can be formed in the fibrils. Using both infrared spectroscopy and atomic force microscopy, we show that (1) this mutant peptide indeed forms well defined fibrils, (2) when bulk solvent is removed, there is no detectable water present in the fibrils, (3) infrared results obtained with the DM probe are consistent with a protofibril structure that is composed of two antiparallel β-sheets stacked in a parallel fashion, leading to formation of the expected hydrogen bond. Using two-dimensional infrared spectroscopy, we further show that the dynamics of this hydrogen bond occur on a timescale of ~2.3 ps, which is attributed to the rapid rotation of the -NH3+ group of lysine around its Cε-Nζ bond. Taken together, these results suggest that (1) DM is a useful infrared marker in facilitating structure determination of amyloid fibrils and (2) even in the tightly packed core of amyloid fibrils certain amino acid sidechains can undergo ultrafast motions, hence contributing to the thermodynamic stability of the system.

  15. Surface Mediated Self-Assembly of Amyloid Peptides

    Science.gov (United States)

    Fakhraai, Zahra

    2015-03-01

    Amyloid fibrils have been considered as causative agents in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes and amyloidosis. Amyloid fibrils form when proteins or peptides misfold into one dimensional crystals of stacked beta-sheets. In solution, amyloid fibrils form through a nucleation and growth mechanism. The rate limiting nucleation step requires a critical concentration much larger than those measured in physiological conditions. As such the exact origins of the seeds or oligomers that result in the formation of fully mature fibrils in the body remain topic intense studies. It has been suggested that surfaces and interfaces can enhance the fibrillization rate. However, studies of the mechanism and kinetics of the surface-mediated fibrillization are technologically challenging due to the small size of the oligomer and protofibril species. Using smart sample preparation technique to dry the samples after various incubation times we are able to study the kinetics of fibril formation both in solution and in the vicinity of various surfaces using high-resolution atomic force microscopy. These studies elucidate the role of surfaces in catalyzing amyloid peptide formation through a nucleation-free process. The nucleation free self-assembly is rapid and requires much smaller concentrations of peptides or proteins. We show that this process resembles diffusion limited aggregation and is governed by the peptide adhesion rate, two -dimensional diffusion of the peptides on the surface, and preferential interactions between the peptides. These studies suggest an alternative pathway for amyloid formation may exist, which could lead to new criteria for disease prevention and alternative therapies. Research was partially supported by a seed grant from the National Institute of Aging of the National Institutes of Health (NIH) under Award Number P30AG010124 (PI: John Trojanowski) and the University of Pennsylvania.

  16. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    International Nuclear Information System (INIS)

    Siposova, Katarina; Pospiskova, Kristyna; Bednarikova, Zuzana; Safarik, Ivo; Safarikova, Mirka; Kubovcikova, Martina; Kopcansky, Peter; Gazova, Zuzana

    2017-01-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe 3 O 4 -based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15–20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15–20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran). - Highlights: • Interference of dextran- magnetite nanoparticles with insulin amyloid aggregation. • Nanoparticles inhibited insulin fibrillization and depolymerized insulin amyloid fibrils. • Size of nanoparticles significantly influences their anti-amyloid activities. • The most effective inhibition of insulin amyloid fibrillization was detected for the smallest nanoparticles. • Contrary, DC 50 values decreased with increasing size of nanoparticles.

  17. Case report 480: Periosteal amyloid tumor

    International Nuclear Information System (INIS)

    Yoshida, S.O.; Karjoo, R.; Johnstone, M.R.

    1988-01-01

    In summary, a 66-year-old woman presented with an asymptomatic left pretibial tumor of 7 years duration. Serial radiographs over this period demonstrated a slowly enlarging periosteal tumor with focal and increasing calcifications/ossifications. No involvement of the underlying medullary bone, as demonstrated by computed tomography was noted. Following the diagnosis by biopsy of an amyloid tumor, serum and urine electrophoreses, complete blood count, SMAC panel, erythrocyte sedimentation rate, and serum rheumatoid factor level were found to be within reference ranges. A needle biopsy of the abdominal wall failed to reveal amyloid in the fat by Congo-red staining. (orig.)

  18. Concordance Between Different Amyloid Immunoassays and Visual Amyloid Positron Emission Tomographic Assessment.

    Science.gov (United States)

    Janelidze, Shorena; Pannee, Josef; Mikulskis, Alvydas; Chiao, Ping; Zetterberg, Henrik; Blennow, Kaj; Hansson, Oskar

    2017-12-01

    Visual assessment of amyloid positron emission tomographic (PET) images has been approved by regulatory authorities for clinical use. Several immunoassays have been developed to measure β-amyloid (Aβ) 42 in cerebrospinal fluid (CSF). The agreement between CSF Aβ42 measures from different immunoassays and visual PET readings may influence the use of CSF biomarkers and/or amyloid PET assessment in clinical practice and trials. To determine the concordance between CSF Aβ42 levels measured using 5 different immunoassays and visual amyloid PET analysis. The study included 262 patients with mild cognitive impairment or subjective cognitive decline from the Swedish BioFINDER (Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably) cohort (recruited from September 1, 2010, through December 31, 2014) who had undergone flutemetamol F 18 ([18F]flutemetamol)-labeled PET. Levels of CSF Aβ42 were analyzed using the classic INNOTEST and the newer modified INNOTEST, fully automated Lumipulse (FL), EUROIMMUN (EI), and Meso Scale Discovery (MSD) assays. Concentrations of CSF Aβ were assessed using an antibody-independent mass spectrometry-based reference measurement procedure. The concordance of CSF Aβ42 levels and Aβ42:Aβ40 and Aβ42:tau ratios with visual [18F]flutemetamol PET status. Of 262 participants (mean [SD] age, 70.9 [5.5] years), 108 were women (41.2%) and 154 were men (58.8%). The mass spectrometry-derived Aβ42 values showed higher correlations with the modified Aβ42-INNOTEST (r = 0.97), Aβ42-FL (r = 0.93), Aβ42-EI (r = 0.93), and Aβ42-MSD (r = 0.95) assays compared with the classic Aβ42-INNOTEST assay (r = 0.88; P ≤ .01). The signal in the classic Aβ42-INNOTEST assay was partly quenched by recombinant Aβ1-40 peptide. However, the classic Aβ42-INNOTEST assay showed better concordance with visual [18F]flutemetamol PET status (area under the receiver operating characteristic curve [AUC], 0.92) compared with the

  19. FKBP12 regulates the localization and processing of amyloid ...

    Indian Academy of Sciences (India)

    2014-01-27

    Jan 27, 2014 ... One of the pathological hallmarks of Alzheimer's disease is the presence of insoluble extracellular amyloid plaques. These plaques ... The proteolytic cleavage of amyloid precursor protein (APP) ..... lower sAPPα/sAPPs ratio, which may lead to an increase in ..... spine density in healthy adult mouse brain.

  20. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly...

  1. Troxerutin attenuates diet-induced oxidative stress, impairment of mitochondrial biogenesis and respiratory chain complexes in mice heart.

    Science.gov (United States)

    Rajagopalan, Geetha; Chandrasekaran, Sathiya Priya; Carani Venkatraman, Anuradha

    2017-01-01

    Mitochondrial abnormality is thought to play a key role in cardiac disease originating from the metabolic syndrome (MS). We evaluated the effect of troxerutin (TX), a semi-synthetic derivative of the natural bioflavanoid rutin, on the respiratory chain complex activity, oxidative stress, mitochondrial biogenesis and dynamics in heart of high fat, high fructose diet (HFFD) -induced mouse model of MS. Adult male Mus musculus mice of body weight 25-30 g were fed either control diet or HFFD for 60 days. Mice from each dietary regimen were divided into two groups on the 16th day and were treated or untreated with TX (150 mg/kg body weight [bw], per oral) for the next 45 days. At the end of experimental period, respiratory chain complex activity, uncoupling proteins (UCP)-2 and -3, mtDNA content, mitochondrial biogenesis and dynamics, oxidative stress markers and reactive oxygen species (ROS) generation were analyzed. Reduced mtDNA abundance with alterations in the expression of genes related to mitochondrial biogenesis and fission and fusion processes were observed in HFFD-fed mice. Disorganized and smaller mitochondria, reduction in complexes I, III and IV activities (by about 55%) and protein levels of UCP-2 (52%) and UCP-3 (46%) were noted in these mice. TX administration suppressed oxidative stress, improved the oxidative capacity and biogenesis and restored fission/fusion imbalance in the cardiac mitochondria of HFFD-fed mice. TX protects the myocardium by modulating the putative molecules of mitochondrial biogenesis and dynamics and by its anti-oxidant function in a mouse model of MS. © 2016 John Wiley & Sons Australia, Ltd.

  2. Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials.

    Science.gov (United States)

    Knowles, Tuomas P J; Mezzenga, Raffaele

    2016-08-01

    Proteinaceous materials based on the amyloid core structure have recently been discovered at the origin of biological functionality in a remarkably diverse set of roles, and attention is increasingly turning towards such structures as the basis of artificial self-assembling materials. These roles contrast markedly with the original picture of amyloid fibrils as inherently pathological structures. Here we outline the salient features of this class of functional materials, both in the context of the functional roles that have been revealed for amyloid fibrils in nature, as well as in relation to their potential as artificial materials. We discuss how amyloid materials exemplify the emergence of function from protein self-assembly at multiple length scales. We focus on the connections between mesoscale structure and material function, and demonstrate how the natural examples of functional amyloids illuminate the potential applications for future artificial protein based materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Technical considerations on scanning and image analysis for amyloid PET in dementia

    International Nuclear Information System (INIS)

    Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Senda, Michio; Yamamoto, Yasuji

    2017-01-01

    Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice. (author)

  4. Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia.

    Science.gov (United States)

    Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Yamamoto, Yasuji; Senda, Michio

    2017-01-01

    Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.

  5. Differential regulation of amyloid precursor protein sorting with pathological mutations results in a distinct effect on amyloid-β production.

    Science.gov (United States)

    Lin, Yen-Chen; Wang, Jia-Yi; Wang, Kai-Chen; Liao, Jhih-Ying; Cheng, Irene H

    2014-11-01

    The deposition of amyloid-β (Aβ) peptide, which is generated from amyloid precursor protein (APP), is the pathological hallmark of Alzheimer's disease (AD). Three APP familial AD mutations (D678H, D678N, and H677R) located at the sixth and seventh amino acid of Aβ have distinct effect on Aβ aggregation, but their influence on the physiological and pathological roles of APP remain unclear. We found that the D678H mutation strongly enhances amyloidogenic cleavage of APP, thus increasing the production of Aβ. This enhancement of amyloidogenic cleavage is likely because of the acceleration of APPD678H sorting into the endosomal-lysosomal pathway. In contrast, the APPD678N and APPH677R mutants do not cause the same effects. Therefore, this study indicates a regulatory role of D678H in APP sorting and processing, and provides genetic evidence for the importance of APP sorting in AD pathogenesis. The internalization of amyloid precursor protein (APP) increases its opportunity to be processed by β-secretase and to produce Amyloid-β (Aβ) that causes Alzheimer's disease (AD). We report a pathogenic APPD678H mutant that enhances APP internalization into the endosomal-lysosomal pathway and thus promotes the β-secretase cleavage and Aβ production. This study provides genetic evidence for the importance of APP sorting in AD pathogenesis. © 2014 International Society for Neurochemistry.

  6. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Siposova, Katarina [Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc (Czech Republic); Bednarikova, Zuzana [Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Department of Biochemistry, Faculty of Science, Safarik University, Kosice (Slovakia); Safarik, Ivo [Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Ceske Budejovice (Czech Republic); Safarikova, Mirka [Department of Nanobiotechnology, Biology Centre, ISB, CAS, Ceske Budejovice (Czech Republic); Kubovcikova, Martina; Kopcansky, Peter [Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Gazova, Zuzana, E-mail: gazova@saske.sk [Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia)

    2017-04-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe{sub 3}O{sub 4}-based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15–20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15–20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran). - Highlights: • Interference of dextran- magnetite nanoparticles with insulin amyloid aggregation. • Nanoparticles inhibited insulin fibrillization and depolymerized insulin amyloid fibrils. • Size of nanoparticles significantly influences their anti-amyloid activities. • The most effective inhibition of insulin amyloid fibrillization was detected for the smallest nanoparticles. • Contrary, DC{sub 50} values decreased with increasing size of nanoparticles.

  7. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  8. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  9. Fibrillar dimer formation of islet amyloid polypeptides

    Directory of Open Access Journals (Sweden)

    Chi-cheng Chiu

    2015-09-01

    Full Text Available Amyloid deposits of human islet amyloid polypeptide (hIAPP, a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  10. Regulatory Multidimensionality of Gas Vesicle Biogenesis in Halobacterium salinarum NRC-1

    Directory of Open Access Journals (Sweden)

    Andrew I. Yao

    2011-01-01

    Full Text Available It is becoming clear that the regulation of gas vesicle biogenesis in Halobacterium salinarum NRC-1 is multifaceted and appears to integrate environmental and metabolic cues at both the transcriptional and posttranscriptional levels. The mechanistic details underlying this process, however, remain unclear. In this manuscript, we quantify the contribution of light scattering made by both intracellular and released gas vesicles isolated from Halobacterium salinarum NRC-1, demonstrating that each form can lead to distinct features in growth curves determined by optical density measured at 600 nm (OD600. In the course of the study, we also demonstrate the sensitivity of gas vesicle accumulation in Halobacterium salinarum NRC-1 on small differences in growth conditions and reevaluate published works in the context of our results to present a hypothesis regarding the roles of the general transcription factor tbpD and the TCA cycle enzyme aconitase on the regulation of gas vesicle biogenesis.

  11. Ginkgolide B inhibits the neurotoxicity of prions or amyloid-β1-42

    Directory of Open Access Journals (Sweden)

    Williams Alun

    2004-05-01

    Full Text Available Abstract Background Neuronal loss in Alzheimer's or prion diseases is preceded by the accumulation of fibrillar aggregates of toxic proteins (amyloid-β1-42 or the prion protein. Since some epidemiological studies have demonstrated that the EGb 761 extract, from the leaves of the Ginkgo biloba tree, has a beneficial effect on Alzheimer's disease, the effect of some of the major components of the EGb 761 extract on neuronal responses to amyloid-β1-42, or to a synthetic miniprion (sPrP106, were investigated. Methods Components of the EGb 761 extract were tested in 2 models of neurodegeneration. SH-SY5Y neuroblastoma cells were pre-treated with ginkgolides A or B, quercetin or myricetin, and incubated with amyloid-β1-42, sPrP106, or other neurotoxins. After 24 hours neuronal survival and the production of prostaglandin E2 that is closely associated with neuronal death was measured. In primary cortical neurons apoptosis (caspase-3 in response to amyloid-β1-42 or sPrP106 was measured, and in co-cultures the effects of the ginkgolides on the killing of amyloid-β1-42 or sPrP106 damaged neurons by microglia was tested. Results Neurons treated with ginkgolides A or B were resistant to amyloid-β1-42 or sPrP106. Ginkgolide-treated cells were also resistant to platelet activating factor or arachidonic acid, but remained susceptible to hydrogen peroxide or staurosporine. The ginkgolides reduced the production of prostaglandin E2 in response to amyloid-β1-42 or sPrP106. In primary cortical neurons, the ginkgolides reduced caspase-3 responses to amyloid-β1-42 or sPrP106, and in co-culture studies the ginkgolides reduced the killing of amyloid-β1-42 or sPrP106 damaged neurons by microglia. Conclusion Nanomolar concentrations of the ginkgolides protect neurons against the otherwise toxic effects of amyloid-β1-42 or sPrP106. The ginkgolides also prevented the neurotoxicity of platelet activating factor and reduced the production of prostaglandin E2 in

  12. BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis.

    Directory of Open Access Journals (Sweden)

    Allen W Bryan

    2009-03-01

    Full Text Available Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s, there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid

  13. Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains.

    Science.gov (United States)

    Beilin, Orit; Karussis, Dimitrios M; Korczyn, Amos D; Gurwitz, David; Aronovich, Ramona; Mizrachi-Kol, Rachel; Chapman, Joab

    2007-04-16

    Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls. At the recovery phase, no differences were observed between the groups. The early and isoform-specific elevation of KPIAPP in autoimmune encephalomyelitis mice suggests a possible role for amyloid precursor protein in the immune response mediating the disease.

  14. Molecular mechanism of a temperature-sensitive phenotype in peroxisomal biogenesis disorder

    NARCIS (Netherlands)

    Hashimoto, Kazuyuki; Kato, Zenichiro; Nagase, Tomoko; Shimozawa, Nobuyuki; Kuwata, Kazuo; Omoya, Kentaro; Li, Ailian; Matsukuma, Eiji; Yamamoto, Yutaka; Ohnishi, Hidenori; Tochio, Hidehito; Shirakawa, Masahiro; Suzuki, Yasuyuki; Wanders, Ronald J. A.; Kondo, Naomi

    2005-01-01

    Peroxisomal biogenesis disorders include Zellweger syndrome and milder phenotypes, such as neonatal adrenoleukodystrophy (NALD). Our previous study of a NALD patient with a marked deterioration by a fever revealed a mutation (Ile326Thr) within a SH3 domain of PEX13 protein (Pex13p), showing a

  15. Molecular interpretation of ACTH-β-endorphin coaggregation: relevance to secretory granule biogenesis.

    Directory of Open Access Journals (Sweden)

    Srivastav Ranganathan

    Full Text Available Peptide/protein hormones could be stored as non-toxic amyloid-like structures in pituitary secretory granules. ACTH and β-endorphin are two of the important peptide hormones that get co-stored in the pituitary secretory granules. Here, we study molecular interactions between ACTH and β-endorphin and their colocalization in the form of amyloid aggregates. Although ACTH is known to be a part of ACTH-β-endorphin aggregate, ACTH alone cannot aggregate into amyloid under various plausible conditions. Using all atom molecular dynamics simulation we investigate the early molecular interaction events in the ACTH-β-endorphin system, β-endorphin-only system and ACTH-only system. We find that β-endorphin and ACTH formed an interacting unit, whereas negligible interactions were observed between ACTH molecules in ACTH-only system. Our data suggest that ACTH is not only involved in interaction with β-endorphin but also enhances the stability of mixed oligomers of the entire system.

  16. Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery

    Science.gov (United States)

    Maio, Nunziata; Rouault, Tracey. A.

    2014-01-01

    Iron-sulfur (Fe-S) clusters are ancient, ubiquitous cofactors composed of iron and inorganic sulfur. The combination of the chemical reactivity of iron and sulfur, together with many variations of cluster composition, oxidation states and protein environments, enables Fe-S clusters to participate in numerous biological processes. Fe-S clusters are essential to redox catalysis in nitrogen fixation, mitochondrial respiration and photosynthesis, to regulatory sensing in key metabolic pathways (i. e. cellular iron homeostasis and oxidative stress response), and to the replication and maintenance of the nuclear genome. Fe-S cluster biogenesis is a multistep process that involves a complex sequence of catalyzed protein- protein interactions and coupled conformational changes between the components of several dedicated multimeric complexes. Intensive studies of the assembly process have clarified key points in the biogenesis of Fe-S proteins. However several critical questions still remain, such as: what is the role of frataxin? Why do some defects of Fe-S cluster biogenesis cause mitochondrial iron overload? How are specific Fe-S recipient proteins recognized in the process of Fe-S transfer? This review focuses on the basic steps of Fe-S cluster biogenesis, drawing attention to recent advances achieved on the identification of molecular features that guide selection of specific subsets of nascent Fe-S recipients by the cochaperone HSC20. Additionally, it outlines the distinctive phenotypes of human diseases due to mutations in the components of the basic pathway. PMID:25245479

  17. Rational heterodoxy: cholesterol reformation of the amyloid doctrine.

    Science.gov (United States)

    Castello, Michael A; Soriano, Salvador

    2013-01-01

    According to the amyloid cascade hypothesis, accumulation of the amyloid peptide Aβ, derived by proteolytic processing from the amyloid precursor protein (APP), is the key pathogenic trigger in Alzheimer's disease (AD). This view has led researchers for more than two decades and continues to be the most influential model of neurodegeneration. Nevertheless, close scrutiny of the current evidence does not support a central pathogenic role for Aβ in late-onset AD. Furthermore, the amyloid cascade hypothesis lacks a theoretical foundation from which the physiological generation of Aβ can be understood, and therapeutic approaches based on its premises have failed. We present an alternative model of neurodegeneration, in which sustained cholesterol-associated neuronal distress is the most likely pathogenic trigger in late-onset AD, directly causing oxidative stress, inflammation and tau hyperphosphorylation. In this scenario, Aβ generation is part of an APP-driven adaptive response to the initial cholesterol distress, and its accumulation is neither central to, nor a requirement for, the initiation of the disease. Our model provides a theoretical framework that places APP as a regulator of cholesterol homeostasis, accounts for the generation of Aβ in both healthy and demented brains, and provides suitable targets for therapeutic intervention. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Association of Higher Cortical Amyloid Burden With Loneliness in Cognitively Normal Older Adults.

    Science.gov (United States)

    Donovan, Nancy J; Okereke, Olivia I; Vannini, Patrizia; Amariglio, Rebecca E; Rentz, Dorene M; Marshall, Gad A; Johnson, Keith A; Sperling, Reisa A

    2016-12-01

    Emotional and behavioral symptoms in cognitively normal older people may be direct manifestations of Alzheimer disease (AD) pathophysiology at the preclinical stage, prior to the onset of mild cognitive impairment. Loneliness is a perceived state of social and emotional isolation that has been associated with cognitive and functional decline and an increased risk of incident AD dementia. We hypothesized that loneliness might occur in association with elevated cortical amyloid burden, an in vivo research biomarker of AD. To determine whether cortical amyloid burden is associated with greater loneliness in cognitively normal older adults. Cross-sectional analyses using data from the Harvard Aging Brain Study of 79 cognitively normal, community-dwelling participants. A continuous, aggregate measure of cortical amyloid burden, determined by Pittsburgh Compound B-positron emission tomography (PiB-PET), was examined in association with loneliness in linear regression models adjusting for age, sex, apolipoprotein E ε4 (APOEε4), socioeconomic status, depression, anxiety, and social network (without and with the interaction of amyloid and APOEε4). We also quantified the association of high amyloid burden (amyloid-positive group) to loneliness (lonely group) using logistic regression, controlling for the same covariates, with the amyloid-positive group and the lonely group, each composing 32% of the sample (n = 25). Loneliness, as determined by the 3-item UCLA Loneliness Scale (possible range, 3-12, with higher score indicating greater loneliness). The 79 participants included 43 women and 36 men with a mean (SD) age of 76.4 (6.2) years. Mean (SD) cortical amyloid burden via PiB-PET was 1.230 (0.209), and the mean (SD) UCLA-3 loneliness score was 5.3 (1.8). Twenty-two (28%) had positive APOEε4 carrier status, and 25 (32%) were in the amyloid-positive group with cortical PiB distribution volume ratio greater than 1.2. Controlling for age, sex, APOEε4, socioeconomic

  19. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Emily B.; Williams, Angela [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Heidel, Eric [Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Macy, Sallie [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Kennel, Stephen J. [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Wall, Jonathan S., E-mail: jwall@utmck.edu [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States)

    2013-06-21

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as

  20. Biogenesis of the demarcation membrane system (DMS) in megakaryocytes.

    Science.gov (United States)

    Eckly, Anita; Heijnen, Harry; Pertuy, Fabien; Geerts, Willie; Proamer, Fabienne; Rinckel, Jean-Yves; Léon, Catherine; Lanza, François; Gachet, Christian

    2014-02-06

    The demarcation membrane system (DMS) in megakaryocytes forms the plasma membrane (PM) of future platelets. Using confocal microscopy, electron tomography, and large volume focused ion beam/scanning electron microscopy (FIB/SEM), we determined the sequential steps of DMS formation. We identified a pre-DMS that initiated at the cell periphery and was precisely located between the nuclear lobes. At all developmental stages, the DMS remained continuous with the cell surface. The number of these connections correlated well with the nuclear lobulation, suggesting a relationship with cleavage furrow formation and abortive cytokinesis. On DMS expansion, Golgi complexes assembled around the pre-DMS, and fusion profiles between trans-golgi network-derived vesicles and the DMS were observed. Brefeldin-A reduced DMS expansion, indicating that the exocytic pathway is essential for DMS biogenesis. Close contacts between the endoplasmic reticulum (ER) and the DMS were detected, suggesting physical interaction between the 2 membrane systems. FIB/SEM revealed that the DMS forms an intertwined tubular membrane network resembling the platelet open canalicular system. We thus propose the following steps in DMS biogenesis: (1) focal membrane assembly at the cell periphery; (2) PM invagination and formation of a perinuclear pre-DMS; (3) expansion through membrane delivery from Golgi complexes; and (4) ER-mediated lipid transfer.

  1. Genes Involved in Human Ribosome Biogenesis areTranscriptionally Upregulated in Colorectal Cancer

    DEFF Research Database (Denmark)

    Mansilla, Francisco; Lamy, Philippe; Ørntoft, Torben Falck

    2009-01-01

    Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p<10-3) when compared to normal mucosa. Overexpression was independent of microsate......Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p... of microsatellite status. The promoters of the genes studied showed a significant enrichment for several transcription factor binding sites. There was a significant correlation between the number of binding site targets for these transcription factors and the observed gene transcript upregulation. The upregulation...

  2. Imaging and quantification of amyloid fibrillation in the cell nucleus.

    Science.gov (United States)

    Arnhold, Florian; Scharf, Andrea; von Mikecz, Anna

    2015-01-01

    Xenobiotics, as well as intrinsic processes such as cellular aging, contribute to an environment that constantly challenges nuclear organization and function. While it becomes increasingly clear that proteasome-dependent proteolysis is a major player, the topology and molecular mechanisms of nuclear protein homeostasis remain largely unknown. We have shown previously that (1) proteasome-dependent protein degradation is organized in focal microenvironments throughout the nucleoplasm and (2) heavy metals as well as nanoparticles induce nuclear protein fibrillation with amyloid characteristics. Here, we describe methods to characterize the landscape of intranuclear amyloid on the global and local level in different systems such as cultures of mammalian cells and the soil nematode Caenorhabditis elegans. Application of discrete mathematics to imaging data is introduced as a tool to develop pattern recognition of intracellular protein fibrillation. Since stepwise fibrillation of otherwise soluble proteins to insoluble amyloid-like protein aggregates is a hallmark of neurodegenerative protein-misfolding disorders including Alzheimer's disease, CAG repeat diseases, and the prion encephalopathies, investigation of intracellular amyloid may likewise aid to a better understanding of the pathomechanisms involved. We consider aggregate profiling as an important experimental approach to determine if nuclear amyloid has toxic or protective roles in various disease processes.

  3. Cerebral Amyloid Angiopathy

    Directory of Open Access Journals (Sweden)

    Mahmut Edip Gürol

    2009-03-01

    Full Text Available Cerebral amyloid angiopathy (CAA is characterized by the accumulation of amyloid beta-peptides (Ab in the walls of leptomeningeal arteries, arterioles, and veins. Despite the fact that these pathological changes were first described in 1909, major advancement in our understanding of the clinicoradiological manifestations, neurobiology, and course of CAA has occurred only during the last 30 years. No significant associations have been shown between CAA and other systemic/visceral amyloidoses or vascular risk factors, including hypertension. CAA is well known as the most common cause of spontaneous and anticoagulant-related lobar parenchymal ICH in the elderly. It also causes lobar cerebral microbleeds (CMBs, small dot-like dark susceptibility artifacts visible with gradient recalled echo (GRE-magnetic resonance imaging (MRI. CMBs are important markers of disease severity and predictors of CAA progression. Amyloid angiopathy is also a common cause of ischemic microvascular white matter disease (WMD and deep cerebral infarctions. Such WMD is defined as subcortical and periventricular white matter changes without obvious infarction, as well as a dark appearance on computerized tomography (CT and a bright appearance on fluid attenuated inversion recovery (FLAIR-MRI. CAA-related vascular dysfunction, with its hemorrhagic and ischemic complications, is a recognized contributor to vascular cognitive impairment in the elderly, an independent effect that is synergistically increased by Alzheimer pathologies, such as plaques and tangles. A set of clinicoradiological criteria was established for the accurate diagnosis of CAA. According to the Boston Criteria, patients aged 55 years and older with multiple hemorrhages (on CT or GRE-MRI restricted to the lobar, cortical, or corticosubcortical regions (cerebellar hemorrhage allowed are diagnosed as probable CAA when no other etiology is found; a single hemorrhage in the same region is classified as possible

  4. Comparison of the amyloid pore forming properties of rat and human Alzheimer’s beta-amyloid peptide 1-42: Calcium imaging data

    Directory of Open Access Journals (Sweden)

    Coralie Di Scala

    2016-03-01

    Full Text Available The data here consists of calcium imaging of human neuroblastoma SH-SY5Y cells treated with the calcium-sensitive dye Fluo-4AM and then incubated with nanomolar concentrations of either human or rat Alzheimer’s β-amyloid peptide Aβ1-42. These data are both of a qualitative (fluorescence micrographs and semi-quantitative nature (estimation of intracellular calcium concentrations of cells probed by Aβ1-42 peptides vs. control untreated cells. Since rat Aβ1-42 differs from its human counterpart at only three amino acid positions, this comparative study is a good assessment of the specificity of the amyloid pore forming assay. The interpretation of this dataset is presented in the accompanying study “Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides” [1].

  5. Significant association between renal function and amyloid-positive area in renal biopsy specimens in AL amyloidosis

    Directory of Open Access Journals (Sweden)

    Kuroda Takeshi

    2012-09-01

    Full Text Available Abstract Background The kidney is a major target organ for systemic amyloidosis that often affects the kidney including proteinura, and elevated serum creatinine (Cr. The correlation between amount of amyloid deposits and clinical parameters is not known. The aim of this study was to clarify correlation the amyloid area in all renal biopsy specimen and clinical parameters. Methods Fifty-eight patients with an established diagnosis of AL amyloidosis participated in the study. All patients showed amyloid deposits in renal biopsies. We retrospectively investigated the correlation between clinical data and amyloid occupied area in whole renal biopsy specimens. Results The area occupied by amyloid was less than 10% in 57 of the 58 patients, and was under 2% in 40. For statistical analyses, %amyloid-positive areas were transformed to common logarithmic values (Log10%amyloid. Cr showed significant correlation with Log10%amyloid and estimated glomerular filtration rate (eGFR showed the significant negative correlation. Patient age, cleatinine clearance (Ccr, blood urea nitorogen, and urinary protein was not significantly correlated with Log10%amyloid. The correlation with other clinical factors such as sex, and serum concentrations of total protein, albumin, immunoglobulins, compliments was evaluated. None of these factors significantly correlated with Log10%amyloid. According to sex- and age- adjusted multiple linear regression analysis, Log10%amyloid had significant positive association with Cr and significant negative association with eGFR. Conclusion There is significant association between amyloid-positive area in renal tissue and renal function, especially Cr and eGFR. The level of Cr and eGFR may be a marker of amount of amyloid in renal tissue.

  6. The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus.

    Directory of Open Access Journals (Sweden)

    John N Griffin

    2015-03-01

    Full Text Available The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival.

  7. Structure activity relationship study of curcumin analogues toward the amyloid-beta aggregation inhibitor.

    Science.gov (United States)

    Endo, Hitoshi; Nikaido, Yuri; Nakadate, Mamiko; Ise, Satomi; Konno, Hiroyuki

    2014-12-15

    Inhibition of the amyloid β aggregation process could possibly prevent the onset of Alzheimer's disease. In this article, we report a structure-activity relationship study of curcumin analogues for anti amyloid β aggregation activity. Compound 7, the ideal amyloid β aggregation inhibitor in vitro among synthesized curcumin analogues, has not only potent anti amyloid β aggregation effects, but also water solubility more than 160 times that of curcumin. In addition, new approaches to improve water solubility of curcumin-type compounds are proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis are mediated by reactive oxygen species in ionizing radiation-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee [Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Young Sang [College of Natural Sciences, Chungnam National University, Daejeon (Korea, Republic of)

    2011-09-15

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated {beta}-galactosidase (SA-{beta}-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and H{sub 2}O{sub 2}-treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and H{sub 2}O{sub 2}-treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-{beta}-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

  9. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis are mediated by reactive oxygen species in ionizing radiation-induced premature senescence

    International Nuclear Information System (INIS)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee; Kim, Young Sang

    2011-01-01

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated β-galactosidase (SA-β-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and H 2 O 2 -treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and H 2 O 2 -treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-β-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

  10. Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber.

    Science.gov (United States)

    Papanikolopoulou, Katerina; Schoehn, Guy; Forge, Vincent; Forsyth, V Trevor; Riekel, Christian; Hernandez, Jean-François; Ruigrok, Rob W H; Mitraki, Anna

    2005-01-28

    Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.

  11. Cardiac resynchronization therapy in a patient with amyloid cardiomyopathy.

    Science.gov (United States)

    Zizek, David; Cvijić, Marta; Zupan, Igor

    2013-06-01

    Cardiac involvement in systemic light chain amyloidosis carries poor prognosis. Amyloid deposition in the myocardium can alter regional left ventricular contraction and cause dyssynchrony. Cardiac resynchronization therapy (CRT) is an effective treatment strategy for patients with advanced heart failure and echocardiographic dyssynchrony. We report a clinical and echocardiographic response of a patient with amyloid cardiomyopathy, treated with a combination of chemotherapy and CRT.

  12. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  13. MR Microimaging of amyloid plaques in Alzheimer's disease transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wengenack, Thomas M.; Poduslo, Joseph F. [Mayo Clinic, Molecular Neurobiology Laboratory, Departments of Neurology, Neuroscience, and Biochemistry/Molecular Biology, Rochester, MN (United States); Jack, Clifford R. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Garwood, Michael [University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN (United States); University of Minnesota Medical School, Department of Radiology, Minneapolis, MN (United States)

    2008-03-15

    Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas. (orig.)

  14. The energetic state of mitochondria modulates complex III biogenesis through the ATP-dependent activity of Bcs1.

    Science.gov (United States)

    Ostojić, Jelena; Panozzo, Cristina; Lasserre, Jean-Paul; Nouet, Cécile; Courtin, Florence; Blancard, Corinne; di Rago, Jean-Paul; Dujardin, Geneviève

    2013-10-01

    Our understanding of the mechanisms involved in mitochondrial biogenesis has continuously expanded during the last decades, yet little is known about how they are modulated to optimize the functioning of mitochondria. Here, we show that mutations in the ATP binding domain of Bcs1, a chaperone involved in the assembly of complex III, can be rescued by mutations that decrease the ATP hydrolytic activity of the ATP synthase. Our results reveal a Bcs1-mediated control loop in which the biogenesis of complex III is modulated by the energy-transducing activity of mitochondria. Although ATP is well known as a regulator of a number of cellular activities, we show here that ATP can be also used to modulate the biogenesis of an enzyme by controlling a specific chaperone involved in its assembly. Our study further highlights the intramitochondrial adenine nucleotide pool as a potential target for the treatment of Bcs1-based disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Expression Profiling of Ribosome Biogenesis Factors Reveals Nucleolin as a Novel Potential Marker to Predict Outcome in AML Patients.

    Directory of Open Access Journals (Sweden)

    Virginie Marcel

    Full Text Available Acute myeloid leukemia (AML is a heterogeneous disease. Prognosis is mainly influenced by patient age at diagnosis and cytogenetic alterations, two of the main factors currently used in AML patient risk stratification. However, additional criteria are required to improve the current risk classification and better adapt patient care. In neoplastic cells, ribosome biogenesis is increased to sustain the high proliferation rate and ribosome composition is altered to modulate specific gene expression driving tumorigenesis. Here, we investigated the usage of ribosome biogenesis factors as clinical markers in adult patients with AML. We showed that nucleoli, the nucleus compartments where ribosome production takes place, are modified in AML by analyzing a panel of AML and healthy donor cells using immunofluorescence staining. Using four AML series, including the TCGA dataset, altogether representing a total of about 270 samples, we showed that not all factors involved in ribosome biogenesis have clinical values although ribosome biogenesis is increased in AML. Interestingly, we identified the regulator of ribosome production nucleolin (NCL as over-expressed in AML blasts. Moreover, we found in two series that high NCL mRNA expression level was associated with a poor overall survival, particular in elderly patients. Multivariate analyses taking into account age and cytogenetic risk indicated that NCL expression in blast cells is an independent marker of reduced survival. Our study identifies NCL as a potential novel prognostic factor in AML. Altogether, our results suggest that the ribosome biogenesis pathway may be of interest as clinical markers in AML.

  16. Dynamics of miRNA biogenesis and nuclear transport

    Directory of Open Access Journals (Sweden)

    Kotipalli Aneesh

    2016-12-01

    Full Text Available MicroRNAs (miRNAs are short noncoding RNA sequences ~22 nucleotides in length that play an important role in gene regulation-transcription and translation. The processing of these miRNAs takes place in both the nucleus and the cytoplasm while the final maturation occurs in the cytoplasm. Some mature miRNAs with nuclear localisation signals (NLS are transported back to the nucleus and some remain in the cytoplasm. The functional roles of these miRNAs are seen in both the nucleus and the cytoplasm. In the nucleus, miRNAs regulate gene expression by binding to the targeted promoter sequences and affect either the transcriptional gene silencing (TGS or transcriptional gene activation (TGA. In the cytoplasm, targeted mRNAs are translationally repressed or cleaved based on the complementarity between the two sequences at the seed region of miRNA and mRNA. The selective transport of mature miRNAs to the nucleus follows the classical nuclear import mechanism. The classical nuclear import mechanism is a highly regulated process, involving exportins and importins. The nuclear pore complex (NPC regulates all these transport events like a gate keeper. The half-life of miRNAs is rather low, so within a short time miRNAs perform their function. Temporal studies of miRNA biogenesis are, therefore, useful. We have carried out simulation studies for important miRNA biogenesis steps and also classical nuclear import mechanism using ordinary differential equation (ODE solver in the Octave software.

  17. Computational Modelling of the Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Skeby, Katrine Kirkeby

    2014-01-01

    to interpret results correctly. Computational studies and molecular dynamics (MD) simulations in particular have become important tools in the effort to understand biological mechanisms. The strength of these methods is the high resolution in time and space, and the ability to specifically design the system....... Using MD simulations we have investigated the binding of 13 different imaging agents to a fibril segment. Using clustering analysis and binding energy calculations we have identified a common binding mode for the 13 agents in the surface grooves of the fibril, which are present on all amyloid fibrils....... This information combined with specific knowledge about the AD amyloid fibril is the building block for the design of highly specific amyloid imaging agents. We have also used MD simulations to study the interaction between hIAPP and a phospholipid membrane. At neutral pH, we find that the attraction is mainly...

  18. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species.

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W B; Kabia, Omaru M; Do, Dung T; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M; Ghandi, Sonia; Bohndiek, Sarah E; Snaddon, Thomas N; Lee, Steven F

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H 2 O 2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H 2 O 2 . We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H 2 O 2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  19. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.; Lee, Steven F.

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  20. Transbronchial biopsies safely diagnose amyloid lung disease

    Science.gov (United States)

    Govender, Praveen; Keyes, Colleen M.; Hankinson, Elizabeth A.; O’Hara, Carl J.; Sanchorawala, Vaishali; Berk, John L.

    2018-01-01

    Background Autopsy identifies lung involvement in 58–92% of patients with the most prevalent forms of systemic amyloidoses. In the absence of lung biopsies, amyloid lung disease often goes unrecognized. Report of a death following transbronchial biopsies in a patient with systemic amyloidosis cautioned against the procedure in this patient cohort. We reviewed our experience with transbronchial biopsies in patients with amyloidosis to determine the safety and utility of bronchoscopic lung biopsies. Methods We identified patients referred to the Amyloidosis Center at Boston Medical Center with lung amyloidosis diagnosed by transbronchial lung biopsies (TBBX). Amyloid typing was determined by immunohistochemistry or mass spectrometry. Standard end organ assessments, including pulmonary function test (PFT) and chest tomography (CT) imaging, and extra-thoracic biopsies established the extent of disease. Results Twenty-five (21.7%) of 115 patients with lung amyloidosis were diagnosed by TBBX. PFT classified 33.3% with restrictive physiology, 28.6% with obstructive disease, and 9.5% mixed physiology; 9.5% exhibited isolated diffusion defects while 19% had normal pulmonary testing. Two view chest or CT imaging identified focal opacities in 52% of cases and diffuse interstitial disease in 48%. Amyloid type and disease extent included 68% systemic AL disease, 16% localized (lung limited) AL disease, 12% ATTR disease, and 4% AA amyloidosis. Fluoroscopy was not used during biopsy. No procedure complications were reported. Conclusions Our case series of 25 patients supports the use of bronchoscopic transbronchial biopsies for diagnosis of parenchymal lung amyloidosis. Normal PFTs do not rule out the histologic presence of amyloid lung disease. PMID:28393574

  1. Morphology and mechanical properties of multi-stranded amyloid fibrils probed by atomistic and coarse-grained simulations

    International Nuclear Information System (INIS)

    Yoon, Gwonchan; Lee, Myeongsang; Kim, Kyungwoo; In Kim, Jae; Joon Chang, Hyun; Baek, Inchul; Na, Sungsoo; Eom, Kilho

    2015-01-01

    Amyloid fibrils are responsible for pathogenesis of various diseases and exhibit the structural feature of an ordered, hierarchical structure such as multi-stranded helical structure. As the multi-strandedness of amyloid fibrils has recently been found to be highly correlated with their toxicity and infectivity, it is necessary to study how the hierarchical (i.e. multi-stranded) structure of amyloid fibril is formed. Moreover, although it has recently been reported that the nanomechanics of amyloid proteins plays a key role on the amyloid-induced pathogenesis, a critical role that the multi-stranded helical structure of the fibrils plays in their nanomechanical properties has not fully characterized. In this work, we characterize the morphology and mechanical properties of multi-stranded amyloid fibrils by using equilibrium molecular dynamics simulation and elastic network model. It is shown that the helical pitch of multi-stranded amyloid fibril is linearly proportional to the number of filaments comprising the amyloid fibril, and that multi-strandedness gives rise to improving the bending rigidity of the fibril. Moreover, we have also studied the morphology and mechanical properties of a single protofilament (filament) in order to understand the effect of cross-β structure and mutation on the structures and mechanical properties of amyloid fibrils. Our study sheds light on the underlying design principles showing how the multi-stranded amyloid fibril is formed and how the structure of amyloid fibrils governs their nanomechanical properties. (paper)

  2. Amyloid oligomers and protofibrils, but not filaments, self-replicate from native lysozyme.

    Science.gov (United States)

    Mulaj, Mentor; Foley, Joseph; Muschol, Martin

    2014-06-25

    Self-assembly of amyloid fibrils is the molecular mechanism best known for its connection with debilitating human disorders such as Alzheimer's disease but is also associated with various functional cellular responses. There is increasing evidence that amyloid formation proceeds along two distinct assembly pathways involving either globular oligomers and protofibrils or rigid monomeric filaments. Oligomers, in particular, have been implicated as the dominant molecular species responsible for pathogenesis. Yet the molecular mechanisms regulating their self-assembly have remained elusive. Here we show that oligomers/protofibrils and monomeric filaments, formed along distinct assembly pathways, display critical differences in their ability to template amyloid growth at physiological vs denaturing temperatures. At physiological temperatures, amyloid filaments remained stable but could not seed growth of native monomers. In contrast, oligomers and protofibrils not only remained intact but were capable of self-replication using native monomers as the substrate. Kinetic data further suggested that this prion-like growth mode of oligomers/protofibrils involved two distinct activities operating orthogonal from each other: autocatalytic self-replication of oligomers from native monomers and nucleated polymerization of oligomers into protofibrils. The environmental changes to stability and templating competence of these different amyloid species in different environments are likely to be important for understanding the molecular mechanisms underlying both pathogenic and functional amyloid self-assembly.

  3. The Biogenesis of Lysosomes and Lysosome-Related Organelles

    Science.gov (United States)

    Luzio, J. Paul; Hackmann, Yvonne; Dieckmann, Nele M.G.; Griffiths, Gillian M.

    2014-01-01

    Lysosomes were once considered the end point of endocytosis, simply used for macromolecule degradation. They are now recognized to be dynamic organelles, able to fuse with a variety of targets and to be re-formed after fusion events. They are also now known to be the site of nutrient sensing and signaling to the cell nucleus. In addition, lysosomes are secretory organelles, with specialized machinery for regulated secretion of proteins in some cell types. The biogenesis of lysosomes and lysosome-related organelles is discussed, taking into account their dynamic nature and multiple roles. PMID:25183830

  4. Calcium-dependent and -independent binding of the pentraxin serum amyloid P component to glycosaminoglycans and amyloid proteins

    DEFF Research Database (Denmark)

    Danielsen, B; Sørensen, I J; Nybo, Mads

    1997-01-01

    precursor protein beta2M was observed. This binding was also enhanced at slightly acid pH, most pronounced at pH 5.0. The results of this study indicate that SAP can exhibit both Ca2(+)-dependent and -independent binding to ligands involved in amyloid fibril formation and that the binding is enhanced under...... and beta2M) by ELISA. An increase in the dose-dependent binding of SAP to heparan sulfate, AA-protein and beta2M was observed as the pH decreased from 8.0 to 5.0. Furthermore, a lower, but significant Ca2(+)-independent binding of SAP to heparan sulfate, dermatan sulfate, AA protein and the amyloid...

  5. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis.

    Science.gov (United States)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-07-18

    14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen-glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density.

    Science.gov (United States)

    Zhang, Can; Browne, Andrew; Divito, Jason R; Stevenson, Jesse A; Romano, Donna; Dong, Yuanlin; Xie, Zhongcong; Tanzi, Rudolph E

    2010-01-01

    Mounting evidence suggests that Alzheimer's disease (AD) is caused by the accumulation of the small peptide, amyloid-β (Aβ), a proteolytic cleavage product of amyloid-β protein precursor (AβPP). Aβ is generated through a serial cleavage of AβPP by β- and γ-secretase. Aβ40 and Aβ42 are the two main components of amyloid plaques in AD brains, with Aβ42 being more prone to aggregation. AβPP can also be processed by α-secretase, which cleaves AβPP within the Aβ sequence, thereby preventing the generation of Aβ. Little is currently known regarding the effects of cell density on AβPP processing and Aβ generation. Here we assessed the effects of cell density on AβPP processing in neuronal and non-neuronal cell lines, as well as mouse primary cortical neurons. We found that decreased cell density significantly increases levels of Aβ40, Aβ42, total Aβ, and the ratio of Aβ42: Aβ40. These results also indicate that cell density is a significant modulator of AβPP processing. Overall, these findings carry profound implications for both previous and forthcoming studies aiming to assess the effects of various conditions and genetic/chemical factors, e.g., novel drugs on AβPP processing and Aβ generation in cell-based systems. Moreover, it is interesting to speculate whether cell density changes in vivo may also affect AβPP processing and Aβ levels in the AD brain.

  7. The Tubular Sheaths Encasing Methanosaeta and Methanospirillum Filaments are Functional Amyloids

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; Larsen, Poul; Nielsen, Per Halkjær

    Archaea are well-recognized for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes, which often display extremely resistant to chemical and thermal denaturation and resist proteolysis...... techniques to show that the extracellular cell wall sheaths of the methanogenic archaea Methanosaeta and Methanospirillum are functional amyloid structures. Depolymerization of sheaths with formic acid and reducing agents and subsequent MS/MS analysis revealed that the sheaths are composed of a single major...... sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid properties explain the extreme resistance...

  8. [Clinical Laboratory Test Using Proteomics: The Usefulness of Proteomic Techniques for Amyloid Typing].

    Science.gov (United States)

    Tasaki, Masayoshi; Obayashi, Konen; Ando, Yukio

    2015-08-01

    Amyloidosis is a heterogeneous group of disorders characterized by the deposition of amyloid fibrils. To diagnose amyloidosis, it is important to detect amyloid deposits and identify the amyloid precursor protein in specimens, such as tissues and serum. Mass spectrometry is a powerful tool to measure the molecular weight and identify the protein. Recently, mass spectrometries such as liquid chromatography/tandem mass spectrometry and surface-enhanced laser desorption/ionization time of flight mass spectrometry, have made a contribution to amyloid typing. In the paper, we describe the usefulness of mass spectrometric analyses for the typing of amyloidosis.

  9. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chenglin; Chen, Dongrui; Xie, Qihai [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Yang, Ying, E-mail: yangying_sh@yahoo.com [Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Shen, Weili, E-mail: weili_shen@hotmail.com [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China)

    2013-08-16

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.

  10. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments.

    Science.gov (United States)

    Narayan, Priya; Krishnarjuna, Bankala; Vishwanathan, Vinaya; Jagadeesh Kumar, Dasappa; Babu, Sudhir; Ramanathan, Krishna Venkatachala; Easwaran, Kalpathy Ramaier Katchap; Nagendra, Holenarasipur Gundurao; Raghothama, Srinivasarao

    2013-07-01

    Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in Aβ (amyloid β) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal Aβ fragments, DAEFRHDSGYEV (Aβ12) and DAEFRHDSGYEVHHQK (Aβ16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with Aβ12 and Aβ16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in Aβ12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets. © 2013 John Wiley & Sons A/S.

  11. α-Iso-cubebene exerts neuroprotective effects in amyloid beta stimulated microglia activation.

    Science.gov (United States)

    Park, Sun Young; Park, Se Jin; Park, Nan Jeong; Joo, Woo Hong; Lee, Sang-Joon; Choi, Young-Whan

    2013-10-25

    Schisandra chinensis is commonly used for food and as a traditional remedy for the treatment of neuronal disorders. However, it is unclear which component of S. chinensis is responsible for its neuropharmacological effects. To answer this question, we isolated α-iso-cubebene, a dibenzocyclooctadiene lignin, from S. chinensis and determined if it has any anti-neuroinflammatory and neuroprotective properties against amyloid β-induced neuroinflammation in microglia. Microglia that are stimulated by amyloid β increased their production of pro-inflammatory cytokines and chemokines, prostaglandin E2 (PGE2), nitric oxide (NO) and reactive oxygen species (ROS) and the enzymatic activity of matrix metalloproteinase 9 (MMP-9). We found this was all inhibited by α-iso-cubebene. Consistent with these results, α-iso-cubebene inhibited the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and MMP-9 in amyloid β-stimulated microglia. Subsequent mechanistic studies revealed that α-iso-cubebene inhibited the phosphorylation and degradation of IκB-α, the phosphorylation and transactivity of NF-κB, and the phosphorylation of MAPK in amyloid β-stimulated microglia. These results suggest that α-iso-cubebene impairs the amyloid β-induced neuroinflammatory response of microglia by inhibiting the NF-κB and MAPK signaling pathways. Importantly, α-iso-cubebene can provide critical neuroprotection for primary cortical neurons against amyloid β-stimulated microglia-mediated neurotoxicity. To the best of our knowledge, this is the first report showing that α-iso-cubebene can provide neuroprotection against, and influence neuroinflammation triggered by, amyloid β activation of microglia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Complete topology inversion can be part of normal membrane protein biogenesis.

    Science.gov (United States)

    Woodall, Nicholas B; Hadley, Sarah; Yin, Ying; Bowie, James U

    2017-04-01

    The topology of helical membrane proteins is generally defined during insertion of the transmembrane helices, yet it is now clear that it is possible for topology to change under unusual circumstances. It remains unclear, however, if topology reorientation is part of normal biogenesis. For dual topology dimer proteins such as the multidrug transporter EmrE, there may be evolutionary pressure to allow topology flipping so that the populations of both orientations can be equalized. We previously demonstrated that when EmrE is forced to insert in a distorted topology, topology flipping of the first transmembrane helix can occur during translation. Here, we show that topological malleability also extends to the C-terminal helix and that even complete topology inversion of the entire EmrE protein can occur after the full protein is translated and inserted. Thus, topology rearrangements are possible during normal biogenesis. Wholesale topology flipping is remarkable given the physical constraints of the membrane and expands the range of possible membrane protein folding pathways, both productive and detrimental. © 2017 The Protein Society.

  13. In situ hybridization of nucleus basalis neurons shows increased β-amyloid mRNA in Alzheimer disease

    International Nuclear Information System (INIS)

    Cohen, M.L.; Golde, T.E.; Usiak, M.F.; Younkin, L.H.; Younkin, S.G.

    1988-01-01

    To determine which cells within the brain produce β-amyloid mRNA and to assess expression of the β-amyloid gene in Alzheimer disease, the authors analyzed brain tissue from Alzheimer and control patients by in situ hybridization. The results demonstrate that β-amyloid mRNA is produced by neurons in the nucleus basalis of Meynert and cerebral cortex and that nuclues basalis perikarya from Alzheimer patients consistently hybridize more β-amyloid probe than those from controls. These observations support the hypothesis that increased expression of the β-amyloid gene plays an important role in the deposition of amyloid in the brains of patients with Alzheimer disease

  14. Proteomic analysis of highly prevalent amyloid A amyloidosis endemic to endangered island foxes.

    Directory of Open Access Journals (Sweden)

    Patricia M Gaffney

    Full Text Available Amyloid A (AA amyloidosis is a debilitating, often fatal, systemic amyloid disease associated with chronic inflammation and persistently elevated serum amyloid A (SAA. Elevated SAA is necessary but not sufficient to cause disease and the risk factors for AA amyloidosis remain poorly understood. Here we identify an extraordinarily high prevalence of AA amyloidosis (34% in a genetically isolated population of island foxes (Urocyon littoralis with concurrent chronic inflammatory diseases. Amyloid deposits were most common in kidney (76%, spleen (58%, oral cavity (45%, and vasculature (44% and were composed of unbranching, 10 nm in diameter fibrils. Peptide sequencing by mass spectrometry revealed that SAA peptides were dominant in amyloid-laden kidney, together with high levels of apolipoprotein E, apolipoprotein A-IV, fibrinogen-α chain, and complement C3 and C4 (false discovery rate ≤ 0.05. Reassembled peptide sequences showed island fox SAA as an 111 amino acid protein, most similar to dog and artic fox, with 5 unique amino acid variants among carnivores. SAA peptides extended to the last two C-terminal amino acids in 5 of 9 samples, indicating that near full length SAA was often present in amyloid aggregates. These studies define a remarkably prevalent AA amyloidosis in island foxes with widespread systemic amyloid deposition, a unique SAA sequence, and the co-occurrence of AA with apolipoproteins.

  15. Terapeutika amyloidóz

    Czech Academy of Sciences Publication Activity Database

    Holubová, Monika; Hrubý, Martin

    2016-01-01

    Roč. 110, č. 12 (2016), s. 851-859 ISSN 0009-2770 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : amyloidosis * amyloid * Alzheimer's disease Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.387, year: 2016 http://www.chemicke-listy.cz/common/article-vol_110-issue_12-page_851.html

  16. Unwinding fibril formation of medin, the peptide of the most common form of human amyloid

    International Nuclear Information System (INIS)

    Larsson, Annika; Soederberg, Linda; Westermark, Gunilla T.; Sletten, Knut; Engstroem, Ulla; Tjernberg, Lars O.; Naeslund, Jan; Westermark, Per

    2007-01-01

    Medin amyloid affects the medial layer of the thoracic aorta of most people above 50 years of age. The consequences of this amyloid are not completely known but the deposits may contribute to diseases such as thoracic aortic aneurysm and dissection or to the general diminished elasticity of blood vessels seen in elderly people. We show that the 50-amino acid residue peptide medin forms amyloid-like fibrils in vitro. With the use of Congo red staining, Thioflavin T fluorescence, electron microscopy, and a solid-phase binding assay on different synthetic peptides, we identified the last 18-19 amino acid residues to constitute the amyloid-promoting region of medin. We also demonstrate that the two C-terminal phenylalanines, previously suggested to be of importance for amyloid formation, are not required for medin amyloid formation

  17. The effects of white matter hyperintensities and amyloid deposition on Alzheimer dementia

    Directory of Open Access Journals (Sweden)

    Brian A. Gordon

    2015-01-01

    Conclusions: The amount of amyloid deposition and white matter damage independently predicts cognitive impairment. This suggests a diagnostic utility of qualitative white matter scales in addition to measuring amyloid levels.

  18. Mechanical properties of amyloid-like fibrils defined by secondary structures

    Science.gov (United States)

    Bortolini, C.; Jones, N. C.; Hoffmann, S. V.; Wang, C.; Besenbacher, F.; Dong, M.

    2015-04-01

    Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils.Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology

  19. Lowering beta-amyloid levels rescues learning and memory in a Down syndrome mouse model.

    Directory of Open Access Journals (Sweden)

    William J Netzer

    Full Text Available beta-amyloid levels are elevated in Down syndrome (DS patients throughout life and are believed to cause Alzheimer's disease (AD in adult members of this population. However, it is not known if beta-amyloid contributes to intellectual disability in younger individuals. We used a gamma-secretase inhibitor to lower beta-amyloid levels in young mice that model DS. This treatment corrected learning deficits characteristic of these mice, suggesting that beta-amyloid-lowering therapies might improve cognitive function in young DS patients.

  20. Minocycline does not affect amyloid beta phagocytosis by human microglial cells

    NARCIS (Netherlands)

    Familian, Atoosa; Eikelenboom, Piet; Veerhuis, Robert

    2007-01-01

    Activated microglia accumulate in amyloid beta (Abeta) plaques containing amyloid associated factors SAP and C1q in Alzheimer's disease (AD) brain. Microglia are involved in AD pathogenesis by promoting Abeta plaque formation and production of pro-inflammatory cytokines. On the other hand,

  1. Neuroprotective and nootropic drug noopept rescues α-synuclein amyloid cytotoxicity.

    Science.gov (United States)

    Jia, Xueen; Gharibyan, Anna L; Öhman, Anders; Liu, Yonggang; Olofsson, Anders; Morozova-Roche, Ludmilla A

    2011-12-16

    Parkinson's disease is a common neurodegenerative disorder characterized by α-synuclein (α-Syn)-containing Lewy body formation and selective loss of dopaminergic neurons in the substantia nigra. We have demonstrated the modulating effect of noopept, a novel proline-containing dipeptide drug with nootropic and neuroprotective properties, on α-Syn oligomerization and fibrillation by using thioflavin T fluorescence, far-UV CD, and atomic force microscopy techniques. Noopept does not bind to a sterically specific site in the α-Syn molecule as revealed by heteronuclear two-dimensional NMR analysis, but due to hydrophobic interactions with toxic amyloid oligomers, it prompts their rapid sequestration into larger fibrillar amyloid aggregates. Consequently, this process rescues the cytotoxic effect of amyloid oligomers on neuroblastoma SH-SY5Y cells as demonstrated by using cell viability assays and fluorescent staining of apoptotic and necrotic cells and by assessing the level of intracellular oxidative stress. The mitigating effect of noopept against amyloid oligomeric cytotoxicity may offer additional benefits to the already well-established therapeutic functions of this new pharmaceutical. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Impact of amyloid imaging on drug development in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, Chester A. [Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States)], E-mail: mathisca@upmc.edu; Lopresti, Brian J. [Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Klunk, William E. [Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2007-10-15

    Imaging agents capable of assessing amyloid-beta (A{beta}) content in vivo in the brains of Alzheimer's disease (AD) subjects likely will be important as diagnostic agents to detect A{beta} plaques in the brain as well as to help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of anti-amyloid therapeutics currently under development and in clinical trials. Positron emission tomography (PET) imaging studies of amyloid deposition in human subjects with several A{beta} imaging agents are currently underway. We reported the first PET studies of the carbon 11-labeled thioflavin-T derivative Pittsburgh Compound B in 2004, and this work has subsequently been extended to include a variety of subject groups, including AD patients, mild cognitive impairment patients and healthy controls. The ability to quantify regional A{beta} plaque load in the brains of living human subjects has provided a means to begin to apply this technology as a diagnostic agent to detect regional concentrations of A{beta} plaques and as a surrogate marker of therapeutic efficacy in anti-amyloid drug trials.

  3. Neuronal Cx3cr1 Deficiency Protects against Amyloid β-Induced Neurotoxicity

    Science.gov (United States)

    Dworzak, Jenny; Renvoisé, Benoît; Habchi, Johnny; Yates, Emma V.; Combadière, Christophe; Knowles, Tuomas P.; Dobson, Christopher M.; Blackstone, Craig; Paulsen, Ole; Murphy, Philip M.

    2015-01-01

    Cx3cr1, the receptor for the chemokine Cx3cl1 (fractalkine), has been implicated in the progression and severity of Alzheimer’s disease-like pathology in mice, but the underlying mechanisms remain unclear. A complicating factor is that Cx3cr1 has been demonstrated in both neurons and microglia. Here, we have dissected the differences between neuronal and microglial Cx3cr1, specifically by comparing direct amyloid-β-induced toxicity in cultured, mature, microglia-depleted hippocampal neurons from wild-type and Cx3cr1-/- mice. Wild-type neurons expressed both Cx3cl1 and Cx3cr1 and released Cx3cl1 in response to amyloid-β. Knockout of neuronal Cx3cr1 abated amyloid-β-induced lactate dehydrogenase release. Furthermore, amyloid-β differentially induced depression of pre- and postsynaptic components of miniature excitatory postsynaptic currents, in a peptide conformation-dependent manner. Knockout of neuronal Cx3cr1 abated effects of both amyloid-β conformational states, which were differentiable by aggregation kinetics and peptide morphology. We obtained similar results after both acute and chronic treatment of cultured neurons with the Cx3cr1 antagonist F1. Thus, neuronal Cx3cr1 may impact Alzheimer’s disease-like pathology by modulating conformational state-dependent amyloid-β-induced synaptotoxicity. PMID:26038823

  4. Neuronal Cx3cr1 Deficiency Protects against Amyloid β-Induced Neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Jenny Dworzak

    Full Text Available Cx3cr1, the receptor for the chemokine Cx3cl1 (fractalkine, has been implicated in the progression and severity of Alzheimer's disease-like pathology in mice, but the underlying mechanisms remain unclear. A complicating factor is that Cx3cr1 has been demonstrated in both neurons and microglia. Here, we have dissected the differences between neuronal and microglial Cx3cr1, specifically by comparing direct amyloid-β-induced toxicity in cultured, mature, microglia-depleted hippocampal neurons from wild-type and Cx3cr1-/- mice. Wild-type neurons expressed both Cx3cl1 and Cx3cr1 and released Cx3cl1 in response to amyloid-β. Knockout of neuronal Cx3cr1 abated amyloid-β-induced lactate dehydrogenase release. Furthermore, amyloid-β differentially induced depression of pre- and postsynaptic components of miniature excitatory postsynaptic currents, in a peptide conformation-dependent manner. Knockout of neuronal Cx3cr1 abated effects of both amyloid-β conformational states, which were differentiable by aggregation kinetics and peptide morphology. We obtained similar results after both acute and chronic treatment of cultured neurons with the Cx3cr1 antagonist F1. Thus, neuronal Cx3cr1 may impact Alzheimer's disease-like pathology by modulating conformational state-dependent amyloid-β-induced synaptotoxicity.

  5. Purification, crystallization and preliminary X-ray diffraction analysis of the Escherichia coli common pilus chaperone EcpB

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, James A.; Diallo, Mamou; Matthews, Steve J., E-mail: s.j.matthews@imperial.ac.uk [Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)

    2015-05-20

    In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher pathway that plays a major role in both early biofilm formation and host-cell adhesion. Initial attempts at crystallizing the chaperone EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. This is the first time that this refolding strategy has been used to purify CU chaperones. Pili are key cell-surface components that allow the attachment of bacteria to both biological and abiotic solid surfaces, whilst also mediating interactions between themselves. In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher (CU) pathway that plays a major role in both early biofilm formation and host-cell adhesion. The chaperone EcpB is involved in the biogenesis of the filament, which is composed of EcpA and EcpD. Initial attempts at crystallizing EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.4 Å resolution. These crystals belonged to the trigonal space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 62.65, c = 121.14 Å and one monomer in the asymmetric unit. Molecular replacement was unsuccessful, but selenomethionine-substituted protein and heavy-atom derivatives are being prepared for phasing. The three-dimensional structure of EcpB will provide invaluable information on the subtle mechanistic differences in biogenesis between the alternative and classical CU pathways. Furthermore, this is the first time that this refolding strategy has been used to purify CU chaperones, and it

  6. Purification, crystallization and preliminary X-ray diffraction analysis of the Escherichia coli common pilus chaperone EcpB

    International Nuclear Information System (INIS)

    Garnett, James A.; Diallo, Mamou; Matthews, Steve J.

    2015-01-01

    In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher pathway that plays a major role in both early biofilm formation and host-cell adhesion. Initial attempts at crystallizing the chaperone EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. This is the first time that this refolding strategy has been used to purify CU chaperones. Pili are key cell-surface components that allow the attachment of bacteria to both biological and abiotic solid surfaces, whilst also mediating interactions between themselves. In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher (CU) pathway that plays a major role in both early biofilm formation and host-cell adhesion. The chaperone EcpB is involved in the biogenesis of the filament, which is composed of EcpA and EcpD. Initial attempts at crystallizing EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.4 Å resolution. These crystals belonged to the trigonal space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 62.65, c = 121.14 Å and one monomer in the asymmetric unit. Molecular replacement was unsuccessful, but selenomethionine-substituted protein and heavy-atom derivatives are being prepared for phasing. The three-dimensional structure of EcpB will provide invaluable information on the subtle mechanistic differences in biogenesis between the alternative and classical CU pathways. Furthermore, this is the first time that this refolding strategy has been used to purify CU chaperones, and it could be

  7. Plasma based markers of [11C] PiB-PET brain amyloid burden.

    Directory of Open Access Journals (Sweden)

    Steven John Kiddle

    Full Text Available Changes in brain amyloid burden have been shown to relate to Alzheimer's disease pathology, and are believed to precede the development of cognitive decline. There is thus a need for inexpensive and non-invasive screening methods that are able to accurately estimate brain amyloid burden as a marker of Alzheimer's disease. One potential method would involve using demographic information and measurements on plasma samples to establish biomarkers of brain amyloid burden; in this study data from the Alzheimer's Disease Neuroimaging Initiative was used to explore this possibility. Sixteen of the analytes on the Rules Based Medicine Human Discovery Multi-Analyte Profile 1.0 panel were found to associate with [(11C]-PiB PET measurements. Some of these markers of brain amyloid burden were also found to associate with other AD related phenotypes. Thirteen of these markers of brain amyloid burden--c-peptide, fibrinogen, alpha-1-antitrypsin, pancreatic polypeptide, complement C3, vitronectin, cortisol, AXL receptor kinase, interleukin-3, interleukin-13, matrix metalloproteinase-9 total, apolipoprotein E and immunoglobulin E--were used along with co-variates in multiple linear regression, and were shown by cross-validation to explain >30% of the variance of brain amyloid burden. When a threshold was used to classify subjects as PiB positive, the regression model was found to predict actual PiB positive individuals with a sensitivity of 0.918 and a specificity of 0.545. The number of APOE [Symbol: see text] 4 alleles and plasma apolipoprotein E level were found to contribute most to this model, and the relationship between these variables and brain amyloid burden was explored.

  8. Globular hepatic amyloid is highly sensitive and specific for LECT2 amyloidosis.

    Science.gov (United States)

    Chandan, Vishal S; Shah, Sejal S; Lam-Himlin, Dora M; Petris, Giovanni De; Mereuta, Oana M; Dogan, Ahmet; Torbenson, Michael S; Wu, Tsung-Teh

    2015-04-01

    Globular hepatic amyloid (GHA) is rare, and its clinical significance remains unclear. Recently, leukocyte chemotactic factor-associated amyloidosis (ALECT2) has been reported to involve the liver, showing a globular pattern. We reviewed 70 consecutive cases of hepatic amyloidosis to determine the prevalence and morphology of hepatic amyloid subtypes, especially ALECT2 and its association with GHA. Each case was reviewed for amyloid subtype (immunohistochemistry and/or mass spectrometry), its pattern (linear or globular), and distribution (vascular, perisinusoidal, or stromal). In addition, 24 cases of confirmed hepatic ALECT2 on mass spectrometry from our consultation files were also reviewed. LECT2 immunostaining was performed in 49 cases. Of the 70 cases, immunoglobulin light chain (AL) type was most common with 41 cases (59%), followed by transthyretin (ATTR) 15 cases (22%), 3 cases each of fibrinogen A (AFib) (4%), serum amyloid A (AA) (4%), and ALECT2 (4%), 2 cases of apolipoproteins (AApoA1) (3%), and 3 cases (4%) were unclassified. Three of our 70 cases (4%), with ALECT2, and all 24 cases (100%) of mass spectrometry-confirmed hepatic ALECT2 showed only GHA deposits in the hepatic sinusoids and portal tracts. Three (4%) other cases of AL type showed a focal globular pattern admixed with prominent linear amyloid. None of the other amyloid subtypes showed GHA. LECT2 immunostain was positive in all 27 cases (100%) of ALECT2 and negative in the other 22 non-ALECT2 cases (100%) (14 AL, 5 ATTR, 1 AA, 1 AFib, 1 AApoA1). Pure GHA is uncommon (4%) but is highly specific for ALECT2, and LECT2 immunostain is helpful in confirming this amyloid type.

  9. Cerebral amyloid angiopathy: diagnosis and potential therapies.

    Science.gov (United States)

    Weber, Stewart A; Patel, Ranish K; Lutsep, Helmi L

    2018-06-01

    Cerebral amyloid angiopathy (CAA) is characterized by the pathologic deposition of amyloid-beta within cortical and leptomeningeal arteries, arterioles, capillaries and, in rare cases, the venules of the brain. It is often associated with the development of lobar intracerebral hemorrhages (ICHs) but may cause other neurologic symptoms or be asymptomatic. Magnetic resonance imaging characteristics, such as lobar microbleeds, support a diagnosis of CAA and assist with hemorrhage risk assessments. Immunosuppressants are used to treat rarer inflammatory forms of CAA. For the more common forms of CAA, the use of antihypertensive medications can prevent ICH recurrence while the use of antithrombotics may increase hemorrhage risk. Anti-amyloid approaches to treatment have not yet been investigated in phase 3 trials. Areas covered: A literature search was conducted using MEDLINE on the topics of imaging, biomarkers, ICH prevention and treatment trials in CAA, focusing on its current diagnosis and management and opportunities for future therapeutic approaches. Expert commentary: There is likely a significant unrecognized burden of CAA in the elderly population. Continued research efforts to discover biomarkers that allow the early diagnosis of CAA will enhance the opportunity to develop treatment interventions.

  10. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanli [Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei (China); Zhao, Chaoxian; Sun, Xuewen [Medical College of Hebei Engineering University, Handan, 056002, Hebei (China); Liu, Zhijun, E-mail: liuzhij1207@163.com [Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei (China); Zhang, Jianzhong, E-mail: zhangjianzhong@icdc.cn [National Institute for Communicable Disease Control and Prevention (ICDC), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206 (China)

    2015-11-06

    MicroRNAs (miRNAs) have been suggested to play critical roles in skeletal muscle in response to exercise. Previous study has shown that miR-761 was involved in a novel model regulating the mitochondrial network. However, its role in mitochondrial biogenesis remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-761 on mitochondrial biogenesis in skeletal muscle. Real-time quantitative PCR analysis demonstrated that aberrantly expressed miR-761 is involved in exercise activity and miR-761 is decreased by exercise training compared with the sedentary control mice. miR-761 suppresses mitochondrial biogenesis of C{sub 2}C{sub 12} myocytes by targeting the 3′-UTR of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1α). Overexpression of miR-761 was capable of inhibiting the protein expression levels of PGC-1α. Moreover, miR-761 overexpression suppressed the p38 MAPK signaling pathway and down-regulated the expression of phosphorylated MAPK-activated protein kinase-2 (P-MK2), a downstream kinase of p38 MAPK. The phosphorylation of activating transcription factors 2 (ATF2) that plays a functional role in linking the activation of the p38 MAPK pathway to enhanced transcription of the PGC-1α was also inhibited by the overexpression of miR-761. These findings revealed a novel regulation mechanism for miR-761 in skeletal myocytes, and contributed to a better understanding of the modulation of skeletal muscle in response to exercise. - Highlights: • Endurance exercise decreases miR-761 expression in skeletal muscle. • MiR-761 suppresses mitochondrial biogenesis in C{sub 2}C{sub 12} myocytes. • MiR-761 directly targeted PGC-1α expression. • MiR-761 suppresses p38 MAPK signaling pathways in C{sub 2}C{sub 12} myocytes. • A novel mechanism for miR-761 in skeletal myocytes is demonstrated.

  11. Analysis of amyloid fibrils in the cheetah (Acinonyx jubatus).

    Science.gov (United States)

    Bergström, Joakim; Ueda, Mitsuharu; Une, Yumi; Sun, Xuguo; Misumi, Shogo; Shoji, Shozo; Ando, Yukio

    2006-06-01

    Recently, a high prevalence of amyloid A (AA) amyloidosis has been documented among captive cheetahs worldwide. Biochemical analysis of amyloid fibrils extracted from the liver of a Japanese captive cheetah unequivocally showed that protein AA was the main fibril constituent. Further characterization of the AA fibril components by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis revealed three main protein AA bands with approximate molecular weights of 8, 10 and 12 kDa. Mass spectrometry analysis of the 12-kDa component observed in SDS-PAGE and Western blotting confirmed the molecular weight of a 12,381-Da peak. Our finding of a 12-kDa protein AA component provides evidence that the cheetah SAA sequence is longer than the previously reported 90 amino acid residues (approximately 10 kDa), and hence SAA is part of the amyloid fibril.

  12. Are Amyloid Fibrils RNA-Traps? A Molecular Dynamics Perspective

    Directory of Open Access Journals (Sweden)

    Massimiliano Meli

    2018-06-01

    Full Text Available The self-assembly of proteins and peptides into amyloids is a key feature of an increasing number of diseases. Amyloid fibrils display a unique surface reactivity endowing the sequestration of molecules such as MicroRNAs, which can be the active moiety of the toxic action. To test this hypothesis we studied the recognition between a model RNA and two different steric zipper spines using molecular dynamics simulations. We found that the interaction occurs and displays peptide-sequence dependence. Interestingly, interactions with polar zipper surfaces such as the formed by SNQNNF are more stable and favor the formation of β-barrel like complexes resembling the structures of toxic oligomers. These sequence-structure-recognition relationships of the two different assemblies may be exploited for the design of compounds targeting the fibers or competing with RNA-amyloid attachment

  13. Co-deposition of basement membrane components during the induction of murine splenic AA amyloid

    DEFF Research Database (Denmark)

    Lyon, A W; Narindrasorasak, S; Young, I D

    1991-01-01

    Past studies have demonstrated that during murine AA amyloid induction there is co-deposition of the AA amyloid peptide and the basement membrane form of heparan sulfate proteoglycan. The synthesis and accumulation of heparan sulfate proteoglycan does not usually occur in the absence of other...... basement membrane components, such as type IV collagen, laminin, and fibronectin. Using immunohistochemical techniques, the present experiments have demonstrated that in addition to the heparan sulfate proteoglycan, there are other basement membrane components present in splenic AA amyloid deposits...... and these are present as soon as AA amyloid deposits are detectable. The results indicate that within the time constraints imposed by the experiments, the basement membrane components, fibronectin, laminin, type IV collagen, and heparan sulfate proteoglycan are co-deposited 36 to 48 hours after the AgNO3 and amyloid...

  14. ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli

    OpenAIRE

    ANGGREINI, RAHAYU

    2015-01-01

    2015 RAHAYU ANGGREINI coli Penelitian ini bertujuan untuk melakukan identifikasi cemaran bakteri E. coli O157:H7 pada daging sapi di kota Makassar. Sampel pada penelitian ini sebanyak 72 sampel Kata Kunci : Daging sapi, pasar tradisional, E. coli, E. coli O157:H7, kontaminasi bakteri, identifikasi E. coli O157:H7.

  15. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    Science.gov (United States)

    Siposova, Katarina; Pospiskova, Kristyna; Bednarikova, Zuzana; Safarik, Ivo; Safarikova, Mirka; Kubovcikova, Martina; Kopcansky, Peter; Gazova, Zuzana

    2017-04-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe3O4-based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15-20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15-20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran).

  16. Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation.

    Directory of Open Access Journals (Sweden)

    Marc Torrent

    Full Text Available Antimicrobial proteins and peptides (AMPs are important effectors of the innate immune system that play a vital role in the prevention of infections. Recent advances have highlighted the similarity between AMPs and amyloid proteins. Using the Eosinophil Cationic Protein as a model, we have rationalized the structure-activity relationships between amyloid aggregation and antimicrobial activity. Our results show how protein aggregation can induce bacteria agglutination and cell death. Using confocal and total internal reflection fluorescence microscopy we have tracked the formation in situ of protein amyloid-like aggregates at the bacteria surface and on membrane models. In both cases, fibrillar aggregates able to bind to amyloid diagnostic dyes were detected. Additionally, a single point mutation (Ile13 to Ala can suppress the protein amyloid behavior, abolishing the agglutinating activity and impairing the antimicrobial action. The mutant is also defective in triggering both leakage and lipid vesicle aggregation. We conclude that ECP aggregation at the bacterial surface is essential for its cytotoxicity. Hence, we propose here a new prospective biological function for amyloid-like aggregates with potential biological relevance.

  17. Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Gwonchan Yoon

    Full Text Available Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain. Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture.

  18. Investigation of Amyloid Structures at Nanoscale via AFM based Dynamic Nanomechncial Microscopy

    DEFF Research Database (Denmark)

    Zhang, Shuai

    2014-01-01

    Amyloid structures are one important kind of protein aggregations. They are a group of stable misfolded species, other than native states, which have been found to accumulate as plaques on neuron cells. This behavior is considered to associate with tens of human neurodegenerative diseases...... summarized the main methodologies of DNM. I also utilized DNM to explore the path way of amyloid self-assembly, and the substrate effect to the conformation of amyloid structures. Furthermore, 2D peptide based material has also been characterized by DNM....

  19. No association of cortical amyloid load and EEG connectivity in older people with subjective memory complaints

    Directory of Open Access Journals (Sweden)

    Stefan Teipel

    2018-01-01

    Full Text Available Changes in functional connectivity of cortical networks have been observed in resting-state EEG studies in healthy aging as well as preclinical and clinical stages of AD. Little information, however, exists on associations between EEG connectivity and cortical amyloid load in people with subjective memory complaints. Here, we determined the association of global cortical amyloid load, as measured by florbetapir-PET, with functional connectivity based on the phase-lag index of resting state EEG data for alpha and beta frequency bands in 318 cognitively normal individuals aged 70–85 years with subjective memory complaints from the INSIGHT-preAD cohort. Within the entire group we did not find any significant associations between global amyloid load and phase-lag index in any frequency band. Assessing exclusively the subgroup of amyloid-positive participants, we found enhancement of functional connectivity with higher global amyloid load in the alpha and a reduction in the beta frequency bands. In the amyloid-negative participants, higher amyloid load was associated with lower connectivity in the low alpha band. However, these correlations failed to reach significance after controlling for multiple comparisons. The absence of a strong amyloid effect on functional connectivity may represent a selection effect, where individuals remain in the cognitively normal group only if amyloid accumulation does not impair cortical functional connectivity.

  20. Neuroinflammation and common mechanism in Alzheimer's disease and prion amyloidosis: amyloid-associated proteins, neuroinflammation and neurofibrillary degeneration

    NARCIS (Netherlands)

    Rozemuller, A.J.M.; Jansen, C.; Carrano, A.; van Haastert, E.S.; Hondius, D.; van der Vies, S.M.; Hoozemans, J.J.M.

    2012-01-01

    Background: In cases with a long (>1 year) clinical duration of prion disease, the prion protein can form amyloid deposits. These cases do not show accumulation of 4-kDa β-amyloid, which is observed in amyloid deposits in Alzheimer's disease (AD). In AD, amyloid is associated with inflammation and

  1. Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal Cells.

    Science.gov (United States)

    Hwang, Sinwoo; Lim, Joo Weon; Kim, Hyeyoung

    2017-08-16

    Alzheimer's disease (AD) is a fatal neurodegenerative disease. Brain amyloid-β deposition is a crucial feature of AD, causing neuronal cell death by inducing oxidative damage. Reactive oxygen species (ROS) activate NF-κB, which induces expression of Nucling. Nucling is a pro-apoptotic factor recruiting the apoptosome complex. Lycopene is an antioxidant protecting from oxidative stress-induced cell damage. We investigated whether lycopene inhibits amyloid-β-stimulated apoptosis through reducing ROS and inhibiting mitochondrial dysfunction and NF-κB-mediated Nucling expression in neuronal SH-SY5Y cells. We prepared cells transfected with siRNA for Nucling or nontargeting control siRNA to determine the role of Nucling in amyloid-β-induced apoptosis. The amyloid-β increased intracellular and mitochondrial ROS levels, apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), NF-kB activation and Nucling expression, while cell viability, mitochondrial membrane potential, and oxygen consumption rate decreased in SH-SY5Y cells. Lycopene inhibited these amyloid-β-induced alterations. However, amyloid-β did not induce apoptosis, determined by cell viability and apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), in the cells transfected with siRNA for Nucling. Lycopene inhibited apoptosis by reducing ROS, and by inhibiting mitochondrial dysfunction and NF-κB-target gene Nucling expression in neuronal cells. Lycopene may be beneficial for preventing oxidative stress-mediated neuronal death in patients with neurodegeneration.

  2. Uptake of raft components into amyloid β-peptide aggregates and membrane damage.

    Science.gov (United States)

    Sasahara, Kenji; Morigaki, Kenichi; Mori, Yasuko

    2015-07-15

    Amyloid aggregation and deposition of amyloid β-peptide (Aβ) are pathologic characteristics of Alzheimer's disease (AD). Recent reports have shown that the association of Aβ with membranes containing ganglioside GM1 (GM1) plays a pivotal role in amyloid deposition and the pathogenesis of AD. However, the molecular interactions responsible for membrane damage associated with Aβ deposition are not fully understood. In this study, we microscopically observed amyloid aggregation of Aβ in the presence of lipid vesicles and on a substrate-supported planar membrane containing raft components and GM1. The experimental system enabled us to observe lipid-associated aggregation of Aβ, uptake of the raft components into Aβ aggregates, and relevant membrane damage. The results indicate that uptake of raft components from the membrane into Aβ deposits induces macroscopic heterogeneity of the membrane structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis.

    Science.gov (United States)

    Niu, Shi-Hui; Liu, Chang; Yuan, Hu-Wei; Li, Pei; Li, Yue; Li, Wei

    2015-09-15

    Small RNA (sRNA) play pivotal roles in reproductive development, and their biogenesis and action mechanisms are well characterised in angiosperm plants; however, corresponding studies in conifers are very limited. To improve our understanding of the roles of sRNA pathways in the reproductive development of conifers, the genes associated with sRNA biogenesis and action pathways were identified and analysed, and sRNA sequencing and parallel analysis of RNA ends (PARE) were performed in male and female cones of the Chinese pine (Pinus tabuliformis). Based on high-quality reference transcriptomic sequences, 21 high-confidence homologues involved in sRNA biogenesis and action in P. tabuliformis were identified, including two different DCL3 genes and one AGO4 gene. More than 75 % of genes involved in sRNA biogenesis and action have higher expression levels in female than in male cones. Twenty-six microRNA (miRNA) families and 74 targets, including 46 24-nt sRNAs with a 5' A, which are specifically expressed in male cones or female cones and probably bind to AGO4, were identified. The sRNA pathways have higher activity in female than in male cones, and the miRNA pathways are the main sRNA pathways in P. tabuliformis. The low level of 24-nt short-interfering RNAs in conifers is not caused by the absence of biogenesis-related genes or AGO-binding proteins, but most likely caused by the low accumulation of these key components. The identification of sRNAs and their targets, as well as genes associated with sRNA biogenesis and action, will provide a good starting point for investigations into the roles of sRNA pathways in cone development in conifers.

  4. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer's disease amyloid plaques.

    Science.gov (United States)

    Gowrishankar, Swetha; Yuan, Peng; Wu, Yumei; Schrag, Matthew; Paradise, Summer; Grutzendler, Jaime; De Camilli, Pietro; Ferguson, Shawn M

    2015-07-14

    Through a comprehensive analysis of organellar markers in mouse models of Alzheimer's disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of β-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer's disease, β-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular β-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer's disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology.

  5. Cerebral amyloid angiopathy severity is linked to dilation of juxtacortical perivascular spaces

    NARCIS (Netherlands)

    van Veluw, Susanne J; Biessels, Geert Jan; Bouvy, Willem H; Spliet, Wim Gm; Zwanenburg, Jaco Jm; Luijten, Peter R; Macklin, Eric A; Rozemuller, Annemieke Jm; Gurol, M Edip; Greenberg, Steven M; Viswanathan, Anand; Martinez-Ramirez, Sergi

    2016-01-01

    Perivascular spaces are an emerging marker of small vessel disease. Perivascular spaces in the centrum semiovale have been associated with cerebral amyloid angiopathy. However, a direct topographical relationship between dilated perivascular spaces and cerebral amyloid angiopathy severity has not

  6. Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations as a model to study clearance of beta-amyloid plaques

    Directory of Open Access Journals (Sweden)

    Christian eHumpel

    2015-04-01

    Full Text Available Alzheimer´s disease is a severe neurodegenerative disorder of the brain, pathologically characterized by extracellular beta-amyloid plaques, intraneuronal Tau inclusions, inflammation, reactive glial cells, vascular pathology and neuronal cell death. The degradation and clearance of beta-amyloid plaques is an interesting therapeutic approach, and the proteases neprilysin (NEP, insulysin and matrix metalloproteinases (MMP are of particular interest. The aim of this project was to establish and characterize a simple in vitro model to study the degrading effects of these proteases. Organoytpic brain vibrosections (120 µm thick were sectioned from adult (9 month old wildtype and transgenic mice (expressing amyloid precursor protein (APP harboring the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations; APP_SDI and cultured for 2 weeks. Plaques were stained by immunohistochemistry for beta-amyloid and Thioflavin S. Our data show that plaques were evident in 2 week old cultures from 9 month old transgenic mice. These plaques were surrounded by reactive GFAP+ astroglia and Iba1+ microglia. Incubation of fresh slices for 2 weeks with 1-0.1-0.01 µg/ml of NEP, insulysin, MMP-2 or MMP-9 showed that NEP, insulysin and MMP-9 markedly degradeded beta-amyloid plaques but only at the highest concentration. Our data provide for the first time a potent and powerful living brain vibrosection model containing a high number of plaques, which allows to rapidly and simply study the degradation and clearance of beta-amyloid plaques in vitro.

  7. Mitochondrial biogenesis and energy production in differentiating murine stem cells: a functional metabolic study.

    Science.gov (United States)

    Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D

    2014-02-01

    The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.

  8. Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2014-02-01

    Full Text Available Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI screens can provide insights into the biological role(s of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.

  9. Cellulose as an Architectural Element in Spatially Structured Escherichia coli Biofilms

    Science.gov (United States)

    Serra, Diego O.; Richter, Anja M.

    2013-01-01

    Morphological form in multicellular aggregates emerges from the interplay of genetic constitution and environmental signals. Bacterial macrocolony biofilms, which form intricate three-dimensional structures, such as large and often radially oriented ridges, concentric rings, and elaborate wrinkles, provide a unique opportunity to understand this interplay of “nature and nurture” in morphogenesis at the molecular level. Macrocolony morphology depends on self-produced extracellular matrix components. In Escherichia coli, these are stationary phase-induced amyloid curli fibers and cellulose. While the widely used “domesticated” E. coli K-12 laboratory strains are unable to generate cellulose, we could restore cellulose production and macrocolony morphology of E. coli K-12 strain W3110 by “repairing” a single chromosomal SNP in the bcs operon. Using scanning electron and fluorescence microscopy, cellulose filaments, sheets and nanocomposites with curli fibers were localized in situ at cellular resolution within the physiologically two-layered macrocolony biofilms of this “de-domesticated” strain. As an architectural element, cellulose confers cohesion and elasticity, i.e., tissue-like properties that—together with the cell-encasing curli fiber network and geometrical constraints in a growing colony—explain the formation of long and high ridges and elaborate wrinkles of wild-type macrocolonies. In contrast, a biofilm matrix consisting of the curli fiber network only is brittle and breaks into a pattern of concentric dome-shaped rings separated by deep crevices. These studies now set the stage for clarifying how regulatory networks and in particular c-di-GMP signaling operate in the three-dimensional space of highly structured and “tissue-like” bacterial biofilms. PMID:24097954

  10. Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment.

    Science.gov (United States)

    Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A

    2014-10-22

    Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator. Copyright © 2014 the authors 0270-6474/14/3414210-09$15.00/0.

  11. Prevalence of Cerebral Amyloid Pathology in Persons Without Dementia A Meta-analysis

    NARCIS (Netherlands)

    Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.J.; Visser, P.J.

    2015-01-01

    IMPORTANCE: Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies.

  12. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis

    NARCIS (Netherlands)

    Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.J.; Verhey, F.R.J.; Visser, P.J.; Aalten, P.; Aarsland, D.; Alcolea, D.; Alexander, M.; Almdahl, I.S.; Arnold, S.E.; Baldeiras, I.; Barthel, H.; Berckel, B.N. van; Bibeau, K.; Blennow, K.; Brooks, D.J.; Buchem, M.A. van; Camus, V.; Cavedo, E.; Chen, K.; Chetelat, G.; Cohen, A.D.; Drzezga, A.; Engelborghs, S.; Fagan, A.M.; Fladby, T.; Fleisher, A.S.; Flier, W.M. van der; Ford, L.; Forster, S.; Fortea, J.; Foskett, N.; Frederiksen, K.S.; Freund-Levi, Y.; Frisoni, G.B.; Froelich, L.; Gabryelewicz, T.; Gill, K.D.; Gkatzima, O.; Gomez-Tortosa, E.; Gordon, M.F.; Grimmer, T.; Hampel, H.; Hausner, L.; Hellwig, S.; Herukka, S.K.; Hildebrandt, H.; Ishihara, L.; Ivanoiu, A.; Jagust, W.J.; Johannsen, P.; Kandimalla, R.; Kapaki, E.; Klimkowicz-Mrowiec, A.; Klunk, W.E.; Kohler, S.; Koglin, N.; Kornhuber, J.; Kramberger, M.G.; Laere, K. Van; Landau, S.M.; Lee, D.Y.; Leon, M.; Lisetti, V.; Lleo, A.; Madsen, K.; Maier, W.; Marcusson, J.; Mattsson, N.; Mendonca, A. de; Meulenbroek, O.V.; Meyer, P.T.; Mintun, M.A.; Mok, V.; Molinuevo, J.L.; Mollergard, H.M.; Morris, J.C.; Mroczko, B.; Mussele, S. Van der; Na, D.L.; Newberg, A.; Nordberg, A.; Nordlund, A.; Novak, G.P.; Paraskevas, G.P.; Parnetti, L.; Perera, G.; Peters, O.; Popp, J.; Prabhakar, S.; Rabinovici, G.D.; Ramakers, I.H.; Rami, L.; Oliveira, C.R.; Rinne, J.O.; Rodrigue, K.M.; Rodriguez-Rodriguez, E.; Verbeek, M.M.; et al.,

    2015-01-01

    IMPORTANCE: Cerebral amyloid-beta aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention

  13. Feasibility and acceptance of simultaneous amyloid PET/MRI

    International Nuclear Information System (INIS)

    Schuetz, Lisa; Tiepolt, Solveig; Werner, Peter; Jochimsen, Thies; Rullmann, Michael; Sattler, Bernhard; Patt, Marianne; Barthel, Henryk; Lobsien, Donald; Fritzsch, Dominik; Hoffmann, Karl-Titus; Schroeter, Matthias L.; Villringer, Arno; Berrouschot, Joerg; Saur, Dorothee; Classen, Joseph; Hesse, Swen; Sabri, Osama; Gertz, Hermann-Josef

    2016-01-01

    Established Alzheimer's disease (AD) biomarker concepts classify into amyloid pathology and neuronal injury biomarkers, while recent alternative concepts classify into diagnostic and progression AD biomarkers. However, combined amyloid positron emission tomography/magnetic resonance imaging (PET/MRI) offers the chance to obtain both biomarker category read-outs within one imaging session, with increased patient as well as referrer convenience. The aim of this pilot study was to investigate this matter for the first time. 100 subjects (age 70 ± 10 yrs, 46 female), n = 51 with clinically defined mild cognitive impairment (MCI), n = 44 with possible/probable AD dementia, and n = 5 with frontotemporal lobe degeneration, underwent simultaneous [ 18 F]florbetaben or [ 11 C]PIB PET/MRI (3 Tesla Siemens mMR). Brain amyloid load, mesial temporal lobe atrophy (MTLA) by means of the Scheltens scale, and other morphological brain pathologies were scored by respective experts. The patients/caregivers as well as the referrers were asked to assess on a five-point scale the convenience related to the one-stop-shop PET and MRI approach. In three subjects, MRI revealed temporal lobe abnormalities other than MTLA. According to the National Institute on Aging-Alzheimer's Association classification, the combined amyloid-beta PET/MRI evaluation resulted in 31 %, 45 %, and 24 % of the MCI subjects being categorized as ''MCI-unlikely due to AD'', ''MCI due to AD-intermediate likelihood'', and ''MCI due to AD-high likelihood'', respectively. 50 % of the probable AD dementia patients were categorized as ''High level of evidence of AD pathophysiological process'', and 56 % of the possible AD dementia patients as ''Possible AD dementia - with evidence of AD pathophysiological process''. With regard to the International Working Group 2 classification, 36 subjects had both positive

  14. Feasibility and acceptance of simultaneous amyloid PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Lisa; Tiepolt, Solveig; Werner, Peter; Jochimsen, Thies; Rullmann, Michael; Sattler, Bernhard; Patt, Marianne; Barthel, Henryk [Leipzig University Hospital, Department of Nuclear Medicine, Leipzig (Germany); Lobsien, Donald; Fritzsch, Dominik; Hoffmann, Karl-Titus [Leipzig University Hospital, Department of Neuroradiology, Leipzig (Germany); Schroeter, Matthias L.; Villringer, Arno [Leipzig University Hospital and Max Planck Institute for Human Cognitive and Brain Sciences, Day Clinic for Cognitive Neurology, Leipzig (Germany); Leipzig University Hospital, IFB Adiposity Diseases, Leipzig (Germany); Berrouschot, Joerg [Clinical Centre Altenburger Land, Altenburg (Germany); Saur, Dorothee; Classen, Joseph [Leipzig University Hospital, Department of Neurology, Leipzig (Germany); Hesse, Swen; Sabri, Osama [Leipzig University Hospital, Department of Nuclear Medicine, Leipzig (Germany); Leipzig University Hospital, IFB Adiposity Diseases, Leipzig (Germany); Gertz, Hermann-Josef [Leipzig University Hospital, Department of Psychiatry, Leipzig (Germany)

    2016-11-15

    Established Alzheimer's disease (AD) biomarker concepts classify into amyloid pathology and neuronal injury biomarkers, while recent alternative concepts classify into diagnostic and progression AD biomarkers. However, combined amyloid positron emission tomography/magnetic resonance imaging (PET/MRI) offers the chance to obtain both biomarker category read-outs within one imaging session, with increased patient as well as referrer convenience. The aim of this pilot study was to investigate this matter for the first time. 100 subjects (age 70 ± 10 yrs, 46 female), n = 51 with clinically defined mild cognitive impairment (MCI), n = 44 with possible/probable AD dementia, and n = 5 with frontotemporal lobe degeneration, underwent simultaneous [{sup 18}F]florbetaben or [{sup 11}C]PIB PET/MRI (3 Tesla Siemens mMR). Brain amyloid load, mesial temporal lobe atrophy (MTLA) by means of the Scheltens scale, and other morphological brain pathologies were scored by respective experts. The patients/caregivers as well as the referrers were asked to assess on a five-point scale the convenience related to the one-stop-shop PET and MRI approach. In three subjects, MRI revealed temporal lobe abnormalities other than MTLA. According to the National Institute on Aging-Alzheimer's Association classification, the combined amyloid-beta PET/MRI evaluation resulted in 31 %, 45 %, and 24 % of the MCI subjects being categorized as ''MCI-unlikely due to AD'', ''MCI due to AD-intermediate likelihood'', and ''MCI due to AD-high likelihood'', respectively. 50 % of the probable AD dementia patients were categorized as ''High level of evidence of AD pathophysiological process'', and 56 % of the possible AD dementia patients as ''Possible AD dementia - with evidence of AD pathophysiological process''. With regard to the International Working Group 2 classification, 36 subjects had both

  15. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    Science.gov (United States)

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  16. Synovial deposition of wild-type transthyretin-derived amyloid in knee joint osteoarthritis patients.

    Science.gov (United States)

    Takanashi, Tetsuo; Matsuda, Masayuki; Yazaki, Masahide; Yamazaki, Hideshi; Nawata, Masashi; Katagiri, Yoshiki; Ikeda, Shu-Ichi

    2013-09-01

    To investigate histological features of deposited amyloid in the synovial tissue and its clinical significance in knee joint osteoarthritis (OA) patients. We prospectively enrolled 232 consecutive patients who underwent arthroplasty or total replacement of the knee joint for treatment of OA. Congo red staining and immunohistochemistry were performed in the synovial tissue obtained at surgery. When transthyretin (TTR)-derived amyloid was positive, we analyzed all 4 exons of the TTR gene using the direct DNA sequencing method in order to detect mutations. We analyzed 322 specimens in this study. Twenty-six specimens (8.1%) obtained from 21 patients (5 men and 16 women; mean, 79.0 ± 4.6 years) showed deposition of amyloid, which was positively stained with the anti-TTR antibody. Eighteen patients showed inhomogeneous accumulations of amyloid in the loose connective tissue under the synovial epithelia sometimes with nodule formation, while in the remaining three, small vessels in the adipose tissue were involved. Medical records of these patients revealed nothing remarkable in the clinical course, laboratory data or macroscopic intraarticular findings at surgery. No mutations were detectable in the TTR gene analysis. Wild-type TTR-derived amyloid may affect the synovial tissue as a result of long-term mechanical stress or as a part of senile systemic amyloidosis in approximately 8% of knee joint OA patients. No obvious clinical significance was found in synovial deposition of amyloid.

  17. Identification of a Common Binding Mode for Imaging Agents to Amyloid Fibrils from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Skeby, Katrine Kirkeby; Sørensen, Jesper; Schiøtt, Birgit

    2013-01-01

    experimentally due to the insoluble nature of amyloid fibrils. This study uses molecular dynamics simulations to investigate the interactions between 13 aromatic amyloid imaging agents, entailing 4 different organic scaffolds, and a model of an amyloid fibril. Clustering analysis combined with free energy...

  18. Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2003-01-01

    The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that

  19. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults.

    Science.gov (United States)

    Taylor, Matthew K; Sullivan, Debra K; Swerdlow, Russell H; Vidoni, Eric D; Morris, Jill K; Mahnken, Jonathan D; Burns, Jeffrey M

    2017-12-01

    Background: Little is known about the relation between dietary intake and cerebral amyloid accumulation in aging. Objective: We assessed the association of dietary glycemic measures with cerebral amyloid burden and cognitive performance in cognitively normal older adults. Design: We performed cross-sectional analyses relating dietary glycemic measures [adherence to a high-glycemic-load diet (HGLDiet) pattern, intakes of sugar and carbohydrates, and glycemic load] with cerebral amyloid burden (measured by florbetapir F-18 positron emission tomography) and cognitive performance in 128 cognitively normal older adults who provided eligibility screening data for the University of Kansas's Alzheimer's Prevention through Exercise (APEX) Study. The study began in November 2013 and is currently ongoing. Results: Amyloid was elevated in 26% ( n = 33) of participants. HGLDiet pattern adherence ( P = 0.01), sugar intake ( P = 0.03), and carbohydrate intake ( P = 0.05) were significantly higher in participants with elevated amyloid burden. The HGLDiet pattern was positively associated with amyloid burden both globally and in all regions of interest independently of age, sex, and education (all P ≤ 0.001). Individual dietary glycemic measures (sugar intake, carbohydrate intake, and glycemic load) were also positively associated with global amyloid load and nearly all regions of interest independently of age, sex, and educational level ( P ≤ 0.05). Cognitive performance was associated only with daily sugar intake, with higher sugar consumption associated with poorer global cognitive performance (global composite measure and Mini-Mental State Examination) and performance on subtests of Digit Symbol, Trail Making Test B, and Block Design, controlling for age, sex, and education. Conclusion: A high-glycemic diet was associated with greater cerebral amyloid burden, which suggests diet as a potential modifiable behavior for cerebral amyloid accumulation and subsequent Alzheimer

  20. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells

    OpenAIRE

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M.; Eguchi, Satoru; Brown, Michael D.; Park, Joon-Young

    2015-01-01

    This study assesses effects of aerobic exercise training on the release of microparticles from endothelial cells and corroborates these findings using an in vitro experimental exercise stimulant, laminar shear stress. Furthermore, this study demonstrated that shear stress-induced mitochondrial biogenesis mediates these effects against endothelial cell activation and injury.

  1. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer's disease.

    Science.gov (United States)

    Parbo, Peter; Ismail, Rola; Hansen, Kim V; Amidi, Ali; Mårup, Frederik H; Gottrup, Hanne; Brændgaard, Hans; Eriksson, Bengt O; Eskildsen, Simon F; Lund, Torben E; Tietze, Anna; Edison, Paul; Pavese, Nicola; Stokholm, Morten G; Borghammer, Per; Hinz, Rainer; Aanerud, Joel; Brooks, David J

    2017-07-01

    See Kreisl (doi:10.1093/awx151) for a scientific commentary on this article.Subjects with mild cognitive impairment associated with cortical amyloid-β have a greatly increased risk of progressing to Alzheimer's disease. We hypothesized that neuroinflammation occurs early in Alzheimer's disease and would be present in most amyloid-positive mild cognitive impairment cases. 11C-Pittsburgh compound B and 11C-(R)-PK11195 positron emission tomography was used to determine the amyloid load and detect the extent of neuroinflammation (microglial activation) in 42 mild cognitive impairment cases. Twelve age-matched healthy control subjects had 11C-Pittsburgh compound B and 10 healthy control subjects had 11C-(R)-PK11195 positron emission tomography for comparison. Amyloid-positivity was defined as 11C-Pittsburgh compound B target-to-cerebellar ratio above 1.5 within a composite cortical volume of interest. Supervised cluster analysis was used to generate parametric maps of 11C-(R)-PK11195 binding potential. Levels of 11C-(R)-PK11195 binding potential were measured in a selection of cortical volumes of interest and at a voxel level. Twenty-six (62%) of 42 mild cognitive impairment cases showed a raised cortical amyloid load compared to healthy controls. Twenty-two (85%) of the 26 amyloid-positive mild cognitive impairment cases showed clusters of increased cortical microglial activation accompanying the amyloid. There was a positive correlation between levels of amyloid load and 11C-(R)-PK11195 binding potentials at a voxel level within subregions of frontal, parietal and temporal cortices. 11C-(R)-PK11195 positron emission tomography reveals increased inflammation in a majority of amyloid positive mild cognitive impairment cases, its cortical distribution overlapping that of amyloid deposition. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Influence of retinoic acid on mesenchymal stem cell differentiation in amyloid hydrogels

    Directory of Open Access Journals (Sweden)

    Reeba Susan Jacob

    2015-12-01

    Full Text Available This paper presents data related to the research article “Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation” [1]. Here we probed the collective influence of all-trans retinoic acid (RA and substrate properties (amyloid hydrogel on human mesenchymal stem cell (hMSC differentiation. Stem cells were cultured on soft amyloid hydrogels [1,2] in the presence and absence of matrix encapsulated RA. The cell morphology was imaged and assessed via quantification of circularity. Further immunostaining and quantitative real time PCR was used to quantify various markers of differentiation in the neuronal lineage.

  3. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Science.gov (United States)

    Wall, Jonathan S; Williams, Angela; Richey, Tina; Stuckey, Alan; Huang, Ying; Wooliver, Craig; Macy, Sallie; Heidel, Eric; Gupta, Neil; Lee, Angela; Rader, Brianna; Martin, Emily B; Kennel, Stephen J

    2013-01-01

    Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  4. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    Science.gov (United States)

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting

  5. Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden.

    Science.gov (United States)

    Rainey-Smith, Stephanie R; Mazzucchelli, Gavin N; Villemagne, Victor L; Brown, Belinda M; Porter, Tenielle; Weinborn, Michael; Bucks, Romola S; Milicic, Lidija; Sohrabi, Hamid R; Taddei, Kevin; Ames, David; Maruff, Paul; Masters, Colin L; Rowe, Christopher C; Salvado, Olivier; Martins, Ralph N; Laws, Simon M

    2018-02-26

    The glymphatic system is postulated to be a mechanism of brain Aβ-amyloid clearance and to be most effective during sleep. Ablation of the astrocytic end-feet expressed water-channel protein, Aquaporin-4, in mice, results in impairment of this clearance mechanism and increased brain Aβ-amyloid deposition, suggesting that Aquaporin-4 plays a pivotal role in glymphatic function. Currently there is a paucity of literature regarding the impact of AQP4 genetic variation on sleep, brain Aβ-amyloid burden and their relationship to each other in humans. To address this a cross-sectional observational study was undertaken in cognitively normal older adults from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. Genetic variants in AQP4 were investigated with respect to self-reported Pittsburgh Sleep Quality Index sleep parameters, positron emission tomography derived brain Aβ-amyloid burden and whether these genetic variants moderated the sleep-Aβ-amyloid burden relationship. One AQP4 variant, rs72878776, was associated with poorer overall sleep quality, while several SNPs moderated the effect of sleep latency (rs491148, rs9951307, rs7135406, rs3875089, rs151246) and duration (rs72878776, rs491148 and rs2339214) on brain Aβ-amyloid burden. This study suggests that AQP4 genetic variation moderates the relationship between sleep and brain Aβ-amyloid burden, which adds weight to the proposed glymphatic system being a potential Aβ-amyloid clearance mechanism and suggests that AQP4 genetic variation may impair this function. Further, AQP4 genetic variation should be considered when interpreting sleep-Aβ relationships.

  6. Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); He, Mingxia [College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Su, Rongxin, E-mail: surx@tju.edu.cn [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Yu, Yanjun [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Qi, Wei; He, Zhimin [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China)

    2010-01-01

    Assembly and fibrillation of amyloid proteins are believed to play a key role in the etiology of various human diseases, including Alzheimer's, Parkinson's, Huntington's and type II diabetes. Insights into conformational changes and formation processes during amyloid fibrillation are essential for the clinical diagnosis and drug discovery. To study the changes in secondary, tertiary, quaternary structures, and the alteration in the collective vibrational mode density of states during the amyloid fibrillation, bovine insulin in 20% acetic acid was incubated at 60 {sup o}C, and its multi-level structures were followed by various biophysical techniques, including circular dichroism (CD), thioflavin T fluorescence (ThT), dynamic light scattering (DLS), electron microscopy, and terahertz (THz) absorption spectroscopy. The experimental data demonstrated a transformation of {alpha}-helix into {beta}-sheet starting at 26 h. This was followed by the aggregation of insulin, as shown by ThT binding, with a transition midpoint at 41 h, and by the bulk formation of mature aggregates after about 71 h. THz is a quick and non-invasive technique, which has the advantage of allowing the study of the conformational state of biomolecules and tissues. We first applied THz spectroscopy to study the amyloid fibrillation. At the terahertz frequency range of 0.2-2.0 THz, there was an apparent increase in both the absorbance and refractive index in THz spectra. Thus, THz is expected to provide a new way of looking into amyloid fibrillation.

  7. Dynamic evolution and biogenesis of small RNAs during sex reversal.

    Science.gov (United States)

    Liu, Jie; Luo, Majing; Sheng, Yue; Hong, Qiang; Cheng, Hanhua; Zhou, Rongjia

    2015-05-06

    Understanding origin, evolution and functions of small RNA (sRNA) genes has been a great challenge in the past decade. Molecular mechanisms underlying sexual reversal in vertebrates, particularly sRNAs involved in this process, are largely unknown. By deep-sequencing of small RNA transcriptomes in combination with genomic analysis, we identified a large amount of piRNAs and miRNAs including over 1,000 novel miRNAs, which were differentially expressed during gonad reversal from ovary to testis via ovotesis. Biogenesis and expressions of miRNAs were dynamically changed during the reversal. Notably, phylogenetic analysis revealed dynamic expansions of miRNAs in vertebrates and an evolutionary trajectory of conserved miR-17-92 cluster in the Eukarya. We showed that the miR-17-92 cluster in vertebrates was generated through multiple duplications from ancestor miR-92 in invertebrates Tetranychus urticae and Daphnia pulex from the Chelicerata around 580 Mya. Moreover, we identified the sexual regulator Dmrt1 as a direct target of the members miR-19a and -19b in the cluster. These data suggested dynamic biogenesis and expressions of small RNAs during sex reversal and revealed multiple expansions and evolutionary trajectory of miRNAs from invertebrates to vertebrates, which implicate small RNAs in sexual reversal and provide new insight into evolutionary and molecular mechanisms underlying sexual reversal.

  8. A comparative analysis of the aggregation behavior of amyloid-β peptide variants

    NARCIS (Netherlands)

    Vandersteen, Annelies; Hubin, Ellen; Sarroukh, Rabia; De Baets, Greet; Schymkowitz, Joost; Rousseau, Frederic; Subramaniam, Vinod; Raussens, Vincent; Wenschuh, Holger; Wildemann, Dirk; Broersen, Kerensa

    2012-01-01

    Aggregated forms of the amyloid-β peptide are hypothesized to act as the prime toxic agents in Alzheimer disease (AD). The in vivo amyloid-β peptide pool consists of both C- and N-terminally truncated or mutated peptides, and the composition thereof significantly determines AD risk. Other

  9. The Alzheimer's Amyloid-Degrading Peptidase, Neprilysin: Can We Control It?

    Directory of Open Access Journals (Sweden)

    N. N. Nalivaeva

    2012-01-01

    Full Text Available The amyloid cascade hypothesis of Alzheimer's disease (AD postulates that accumulation in the brain of amyloid β-peptide (Aβ is the primary trigger for neuronal loss specific to this pathology. In healthy brain, Aβ levels are regulated by a dynamic equilibrium between Aβ release from the amyloid precursor protein (APP and its removal by perivascular drainage or by amyloid-degrading enzymes (ADEs. During the last decade, the ADE family was fast growing, and currently it embraces more than 20 members. There are solid data supporting involvement of each of them in Aβ clearance but a zinc metallopeptidase neprilysin (NEP is considered as a major ADE. NEP plays an important role in brain function due to its role in terminating neuropeptide signalling and its decrease during ageing or after such pathologies as hypoxia or ischemia contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP by the APP intracellular domain (AICD opens new avenues for its therapeutic manipulation and raises hope for developing preventive strategies in AD. However, consideration needs to be given to the diverse physiological roles of NEP. This paper critically evaluates general biochemical and physiological functions of NEP and their therapeutic relevance.

  10. Cerebral Amyloid Angiopathy: Diagnosis, Clinical Implications, and Management Strategies in Atrial Fibrillation.

    Science.gov (United States)

    DeSimone, Christopher V; Graff-Radford, Jonathan; El-Harasis, Majd A; Rabinstein, Alejandro A; Asirvatham, Samuel J; Holmes, David R

    2017-08-29

    With an aging population, clinicians are more frequently encountering patients with atrial fibrillation who are also at risk of intracerebral hemorrhage due to cerebral amyloid angiopathy, the result of β-amyloid deposition in cerebral vessels. Cerebral amyloid angiopathy is common among elderly patients, and is associated with an increased risk of intracerebral bleeding, especially with the use of anticoagulation. Despite this association, this entity is absent in current risk-benefit analysis models, which may result in underestimation of the chance of bleeding in the subset of patients with this disease. Determining the presence and burden of cerebral amyloid angiopathy is particularly important when planning to start or restart anticoagulation after an intracerebral hemorrhage. Given the lack of randomized trial data to guide management strategies, we discuss a heart-brain team approach that includes clinician-patient shared decision making for the use of pharmacologic and nonpharmacologic approaches to diminish stroke risk. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Calumenin interacts with serum amyloid P component

    DEFF Research Database (Denmark)

    Vorum, H; Jacobsen, Christian; Honoré, Bent

    2000-01-01

    We recently reported the identification of human calumenin, a novel Ca(2+) binding, transformation-sensitive and secreted protein [Vorum et al. (1998) Biochim. Biophys. Acta 1386, 121-131; Vorum et al. (1999) Exp. Cell Res. 248, 473-481] belonging to the family of multiple EF-hand proteins...... with calumenin in the presence of Ca(2+). Amino acid sequencing identified this protein as serum amyloid P component (SAP). Furthermore, we verified and characterized the calumenin-SAP interaction by the surface plasmon resonance technique. The findings indicate that calumenin may participate...... in the immunological defense system and could be involved in the pathological process of amyloidosis that leads to formation of amyloid deposits seen in different types of tissues. Udgivelsesdato: 2000-Jan-14...

  12. Novel squarylium dyes for detection of amyloid fibrils in vitro

    Directory of Open Access Journals (Sweden)

    K. O. Vus

    2015-04-01

    Full Text Available A series of novel symmetrical and asymmetrical squarylium dyes with the different substituents in the donor moieties have been tested for their ability to detect and characterize insulin and lysozyme amyloid fibrils prepared in acidic buffer at elevated temperature. The dye-protein binding parameters were estimated in terms of the one-site Langmuir adsorption model using the data of direct and reverse fluorimetric titrations. By comparing the dye quantum yields, binding affinities, and extents of the fluorescence enhancement in the protein-bound state, G6 and G7 were selected as the most prospective amyloid tracers. Furthermore, these probes provided evidence for the lower polarity of the lysozyme fibrillar grooves compared to insulin aggregates. The novel dyes G6 and G7 were recommended for amyloid fibril detection and characterization in the near-infrared region.

  13. Beta-amyloid and cholinergic neurons

    Czech Academy of Sciences Publication Activity Database

    Doležal, Vladimír; Kašparová, Jana

    2003-01-01

    Roč. 28, 3-4 (2003), s. 499-506 ISSN 0364-3190 R&D Projects: GA ČR GA305/01/0283; GA AV ČR IAA5011206 Institutional research plan: CEZ:AV0Z5011922 Keywords : cholinergic neurons * AlzheimerŽs disease * beta-amyloid Subject RIV: FH - Neurology Impact factor: 1.511, year: 2003

  14. Helicobacter pylori filtrate impairs spatial learning and memory in rats and increases β-amyloid by enhancing expression of presenilin-2

    Directory of Open Access Journals (Sweden)

    Xiu-Lian eWang

    2014-04-01

    Full Text Available Helicobacter pylori (H.pylori infection is related with a high risk of Alzheimer’s Disease (AD, but the intrinsic link between H.pylori infection and AD development is still missing. In the present study, we explored the effect of H.pylori infection on cognitive function and β-amyloid production in rats. We found that intraperitoneal injection of H.pylori filtrate induced spatial learning and memory deficit in rats with a simultaneous retarded dendritic spine maturation in hippocampus. Injection of H.pylori filtrate significantly increased Aβ42 both in the hippocampus and cortex, together with an increased level of presenilin-2 (PS-2, one key component of γ-secretase involved in Aβ production. Incubation of H.pylori filtrate with N2a cells which over-express APP also resulted in increased PS-2 expression and Aβ42 overproduction. Injection of Escherichia coli (E.coli filtrate, another common intestinal bacterium, had no effect on cognitive function in rats and Aβ production in rats and cells. These data suggest a specific effect of H.pylori on cognition and Aβ production. We conclude that soluble surface fractions of H.pylori may promote Aβ42 formation by enhancing the activity of γ-secretase, thus induce cognitive impairment through interrupting the synaptic function.

  15. Effect of regional muscle location but not adiposity on mitochondrial biogenesis-regulating proteins

    DEFF Research Database (Denmark)

    Ponce-González, Jesús Gustavo; Ara, Ignacio; Larsen, Steen

    2016-01-01

    PURPOSE: The aim of this study was to determine if the expression of the mitochondrial biogenesis-regulating proteins SIRT1, SIRT3 and PGC-1alpha in human skeletal muscle is influenced by adiposity. METHOD: Twenty-nine male subjects were recruited into three groups: control (n = 10), obese (n = 10...

  16. Potential roles for ubiquitin and the proteasome during ribosome biogenesis

    Czech Academy of Sciences Publication Activity Database

    Stavreva, D. A.; Kawasaki, M.; Dundr, M.; Koberna, Karel; Müller, W. G.; Tsujimura-Takahashi, T.; Komatsu, W.; Hayano, T.; Isobe, T.; Raška, Ivan; Misteli, T.; Takahashi, N.; McNally, J. G.

    2006-01-01

    Roč. 26, č. 13 (2006), s. 5131-5145 ISSN 0270-7306 R&D Projects: GA MŠk(CZ) LC535; GA ČR(CZ) GA304/05/0374; GA ČR(CZ) GA304/04/0692 Grant - others:NIH(US) Intramural Research Program; Ministry of Education(JP) Pioneer Research grant Institutional research plan: CEZ:AV0Z50110509 Keywords : the role of the ubikvitin * proteasome system in ribosome biogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.773, year: 2006

  17. Evaluation of systemic amyloidosis by scintigraphy with 123I-labeled serum amyloid P component

    International Nuclear Information System (INIS)

    Hawkins, P.N.; Lavender, J.P.; Pepys, M.B.

    1990-01-01

    In systemic amyloidosis the distribution and progression of disease have been difficult to monitor, because they can be demonstrated only by biopsy. Serum amyloid P component (SAP) is a normal circulating plasma protein that is deposited on amyloid fibrils because of its specific binding affinity for them. We investigated whether labeled SAP could be used to locate amyloid deposits. Purified human SAP labeled with iodine-123 was given intravenously to 50 patients with biopsy-proved systemic amyloidosis--25 with the AL (primary) type and 25 with the AA (secondary) type--and to 26 control patients with disease and 10 healthy subjects. Whole-body images and regional views were obtained after 24 hours and read in a blinded fashion. In the patients with amyloidosis the 123I-SAP was localized rapidly and specifically in amyloid deposits. The scintigraphic images obtained were characteristic and appeared to identify the extent of amyloid deposition in all 50 patients. There was no uptake of the 123I-SAP by the control patients and the healthy subjects. In all patients with AA amyloidosis the spleen was affected, whereas the scans showed uptake in the heart, skin, carpal region, and bone marrow only in patients with the AL type. Positive images were seen in six patients in whom biopsies had been negative or unsuccessful; in all six, amyloid was subsequently found on biopsy or at autopsy. Progressive amyloid deposition was observed in 9 of 11 patients studied serially. Scintigraphy after the injection of 123I-SAP can be used for diagnosing, locating, and monitoring the extent of systemic amyloidosis

  18. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques

    Science.gov (United States)

    Gowrishankar, Swetha; Yuan, Peng; Wu, Yumei; Schrag, Matthew; Paradise, Summer; Grutzendler, Jaime; De Camilli, Pietro; Ferguson, Shawn M.

    2015-01-01

    Through a comprehensive analysis of organellar markers in mouse models of Alzheimer’s disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of β-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer’s disease, β-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular β-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer’s disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology. PMID:26124111

  19. Pilus Biogenesis in Lactococcus lactis: Molecular Characterization and Role in Aggregation and Biofilm Formation

    Science.gov (United States)

    Oxaran, Virginie; Ledue-Clier, Florence; Dieye, Yakhya; Herry, Jean-Marie; Péchoux, Christine; Meylheuc, Thierry; Briandet, Romain; Juillard, Vincent; Piard, Jean-Christophe

    2012-01-01

    The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes (yhgD, yhgE, and yhhB), called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used. PMID:23236417

  20. Optical properties of amyloid stained by Congo red: history and mechanisms.

    Science.gov (United States)

    Howie, Alexander J; Brewer, Douglas B

    2009-04-01

    Amyloid stained by Congo red has striking optical properties that generally have been poorly described and inadequately explained, although they can be understood from principles of physical optics. Molecules of Congo red are orientated on amyloid fibrils, and so the dye becomes dichroic and birefringent. The birefringence varies with wavelength in accordance with a fundamental property of all light-transmitting materials called anomalous dispersion of the refractive index around an absorption peak. The combination of this and absorption of light, with modification by any additional birefringence in the optical system, explains the various colours that can be seen in Congo red-stained amyloid between crossed polariser and analyser, and also when the polariser and analyser are progressively uncrossed. These are called anomalous colours.

  1. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  2. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection

    Directory of Open Access Journals (Sweden)

    Rosengren Lars

    2009-12-01

    Full Text Available Abstract Background Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF biomarkers related of amyloid and tau metabolism in HIV-infected patients. Methods In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPα and sAPPβ, amyloid beta fragment 1-42 (Aβ1-42, and total and hyperphosphorylated tau (t-tau and p-tau in CSF of 86 HIV-infected (HIV+ subjects, including 21 with AIDS dementia complex (ADC, 25 with central nervous system (CNS opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV- subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease. Results CSF sAPPα and sAPPβ concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Aβ1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections. Conclusions Parallel reductions of CSF sAPPα and sAPPβ in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those

  3. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    International Nuclear Information System (INIS)

    Bayliss, D L; Walsh, J L; Iza, F; Kong, M G; Shama, G

    2009-01-01

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  4. Brain amyloid β protein and memory disruption in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Weiming Xia

    2010-09-01

    Full Text Available Weiming XiaCenter for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USAAbstract: The development of amyloid-containing neuritic plaques is an invariable characteristic of Alzheimer’s diseases (AD. The conversion from monomeric amyloid β protein (Aβ to oligomeric Aβ and finally neuritic plaques is highly dynamic. The specific Aß species that is correlated with disease severity remains to be discovered. Oligomeric Aβ has been detected in cultured cells, rodent and human brains, as well as human cerebrospinal fluid. Synthetic, cell, and brain derived Aβ oligomers have been found to inhibit hippocampal long-term potentiation (LTP and this effect can be suppressed by the blockage of Aβ oligomer formation. A large body of evidence suggests that Aβ oligomers inhibit N-methyl-D-aspartate receptor dependent LTP; additional receptors have also been found to elicit downstream pathways upon binding to Aβ oligomers. Amyloid antibodies and small molecular compounds that reduce brain Aβ levels and block Aβ oligomer formation are capable of reversing synaptic dysfunction and these approaches hold a promising therapeutic potential to rescue memory disruption.Keywords: Alzheimer, amyloid, oligomer, long-term potentiation, NMDA

  5. Characterization of amyloid beta peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein.

    Science.gov (United States)

    Pype, Stefan; Moechars, Dieder; Dillen, Lieve; Mercken, Marc

    2003-02-01

    Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.

  6. Imaging of Cerebral Amyloid Angiopathy with Bivalent (99m)Tc-Hydroxamamide Complexes.

    Science.gov (United States)

    Iikuni, Shimpei; Ono, Masahiro; Watanabe, Hiroyuki; Matsumura, Kenji; Yoshimura, Masashi; Kimura, Hiroyuki; Ishibashi-Ueda, Hatsue; Okamoto, Yoko; Ihara, Masafumi; Saji, Hideo

    2016-05-16

    Cerebral amyloid angiopathy (CAA), characterized by the deposition of amyloid aggregates in the walls of cerebral vasculature, is a major factor in intracerebral hemorrhage and vascular cognitive impairment and is also associated closely with Alzheimer's disease (AD). We previously reported (99m)Tc-hydroxamamide ((99m)Tc-Ham) complexes with a bivalent amyloid ligand showing high binding affinity for β-amyloid peptide (Aβ(1-42)) aggregates present frequently in the form in AD. In this article, we applied them to CAA-specific imaging probes, and evaluated their utility for CAA-specific imaging. In vitro inhibition assay using Aβ(1-40) aggregates deposited mainly in CAA and a brain uptake study were performed for (99m)Tc-Ham complexes, and all (99m)Tc-Ham complexes with an amyloid ligand showed binding affinity for Aβ(1-40) aggregates and very low brain uptake. In vitro autoradiography of human CAA brain sections and ex vivo autoradiography of Tg2576 mice were carried out for bivalent (99m)Tc-Ham complexes ([(99m)Tc]SB2A and [(99m)Tc]BT2B), and they displayed excellent labeling of Aβ depositions in human CAA brain sections and high affinity and selectivity to CAA in transgenic mice. These results may offer new possibilities for the development of clinically useful CAA-specific imaging probes based on the (99m)Tc-Ham complex.

  7. Leucine Modulates Mitochondrial Biogenesis and SIRT1-AMPK Signaling in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Chunzi Liang

    2014-01-01

    Full Text Available Previous studies from this laboratory demonstrate that dietary leucine protects against high fat diet-induced mitochondrial impairments and stimulates mitochondrial biogenesis and energy partitioning from adipocytes to muscle cells through SIRT1-mediated mechanisms. Moreover, β-hydroxy-β-methyl butyrate (HMB, a metabolite of leucine, has been reported to activate AMPK synergistically with resveratrol in C2C12 myotubes. Therefore, we hypothesize that leucine-induced activation of SIRT1 and AMPK is the central event that links the upregulated mitochondrial biogenesis and fatty acid oxidation in skeletal muscle. Thus, C2C12 myotubes were treated with leucine (0.5 mM, alanine (0.5 mM, valine (0.5 mM, EX527 (SIRT1 inhibitor, 25 μM, and Compound C (AMPK inhibitor, 25 μM alone or in combination to determine the roles of AMPK and SIRT1 in leucine-modulation of energy metabolism. Leucine significantly increased mitochondrial content, mitochondrial biogenesis-related genes expression, fatty acid oxidation, SIRT1 activity and gene expression, and AMPK phosphorylation in C2C12 myotubes compared to the controls, while EX527 and Compound C markedly attenuated these effects. Furthermore, leucine treatment for 24 hours resulted in time-dependent increases in cellular NAD+, SIRT1 activity, and p-AMPK level, with SIRT1 activation preceding that of AMPK, indicating that leucine activation of SIRT1, rather than AMPK, is the primary event.

  8. Alzheimer's disease: the amyloid hypothesis and the Inverse Warburg effect

    KAUST Repository

    Demetrius, Lloyd A.; Magistretti, Pierre J.; Pellerin, Luc

    2015-01-01

    Epidemiological and biochemical studies show that the sporadic forms of Alzheimer's disease (AD) are characterized by the following hallmarks: (a) An exponential increase with age; (b) Selective neuronal vulnerability; (c) Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD: the amyloid hypothesis (a neuron-centric mechanism) and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism). We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events—mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect), and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.

  9. Alzheimer's disease: the amyloid hypothesis and the Inverse Warburg effect

    KAUST Repository

    Demetrius, Lloyd A.

    2015-01-14

    Epidemiological and biochemical studies show that the sporadic forms of Alzheimer\\'s disease (AD) are characterized by the following hallmarks: (a) An exponential increase with age; (b) Selective neuronal vulnerability; (c) Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD: the amyloid hypothesis (a neuron-centric mechanism) and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism). We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events—mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect), and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.

  10. Adaptive template generation for amyloid PET using a deep learning approach.

    Science.gov (United States)

    Kang, Seung Kwan; Seo, Seongho; Shin, Seong A; Byun, Min Soo; Lee, Dong Young; Kim, Yu Kyeong; Lee, Dong Soo; Lee, Jae Sung

    2018-05-11

    Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates. More specifically, the networks were trained using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets and validated using 154 datasets. The input to the supervised neural networks was the 3D PET volume in native space and the label was the spatially normalized 3D PET image using the transformation parameters obtained from MRI-based SN. The proposed deep learning approach significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing the SN error observed when an average amyloid PET template is used. Given an input image, the trained deep neural networks rapidly provide individually adaptive 3D PET templates without any discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in clinical practice and research. © 2018 Wiley Periodicals, Inc.

  11. A fluorescent probe distinguishes between inhibition of early and late steps of lipopolysaccharide biogenesis in whole cells

    Science.gov (United States)

    Moison, Eileen; Xie, Ran; Zhang, Ge; Lebar, Matthew D.; Meredith, Timothy C.; Kahne, Daniel

    2017-01-01

    Lipopolysaccharide (LPS) biogenesis in Gram-negative organisms involves its biosynthesis in the cytoplasm and subsequent transport across three cellular compartments to the cell surface. We developed a fluorescent probe that allows us to determine the spatial distribution of LPS in whole cells. We show that polymyxin B nonapeptide (PMBN) containing a dansyl fluorophore specifically binds to LPS in membranes. We show that this probe detects decreases in LPS levels on the cell surface when LPS biosynthesis is inhibited at an early step. We also can detect accumulation of LPS in particular subcellular locations when LPS assembly is blocked during transport, allowing us to differentiate inhibitors targeting early and late stages of LPS biogenesis. PMID:28248483

  12. Amyloid Load in Fat Tissue Reflects Disease Severity and Predicts Survival in Amyloidosis

    NARCIS (Netherlands)

    Van Gameren, Ingrid I.; Hazenberg, Bouke P. C.; Bijzet, Johan; Haagsma, Elizabeth B.; Vellenga, Edo; Posthumus, Marcel D.; Jager, Pieter L.; Van Rijswijk, Martin H.

    Objective. The severity of systemic amyloidosis is thought to be related to the extent of amyloid deposition. We studied whether amyloid load in fat tissue reflects disease severity and predicts survival. Methods. We studied all consecutive patients with systemic amyloidosis seen between January

  13. The synthesis of glutamic acid in the absence of enzymes: Implications for biogenesis

    Science.gov (United States)

    Morowitz, Harold; Peterson, Eta; Chang, Sherwood

    1995-01-01

    This paper reports on the non-enzymatic aqueous phase synthesis of amino acids from keto acids, ammonia and reducing agents. The facile synthesis of key metabolic intermediates, particularly in the glycolytic pathway, the citric acid cycle, and the first step of amino acid synthesis, lead to new ways of looking at the problem of biogenesis.

  14. Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer's Disease: Results from the DIAN Study Group.

    Directory of Open Access Journals (Sweden)

    Yi Su

    Full Text Available Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer's Network (DIAN, an autosomal dominant Alzheimer's disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer's disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted.

  15. Bioinformatic analysis of microRNA biogenesis and function related proteins in eleven animal genomes.

    Science.gov (United States)

    Liu, Xiuying; Luo, GuanZheng; Bai, Xiujuan; Wang, Xiu-Jie

    2009-10-01

    MicroRNAs are approximately 22 nt long small non-coding RNAs that play important regulatory roles in eukaryotes. The biogenesis and functional processes of microRNAs require the participation of many proteins, of which, the well studied ones are Dicer, Drosha, Argonaute and Exportin 5. To systematically study these four protein families, we screened 11 animal genomes to search for genes encoding above mentioned proteins, and identified some new members for each family. Domain analysis results revealed that most proteins within the same family share identical or similar domains. Alternative spliced transcript variants were found for some proteins. We also examined the expression patterns of these proteins in different human tissues and identified other proteins that could potentially interact with these proteins. These findings provided systematic information on the four key proteins involved in microRNA biogenesis and functional pathways in animals, and will shed light on further functional studies of these proteins.

  16. A Heme-Sensing Mechanism in the Translational Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis

    Science.gov (United States)

    Soto, Iliana C.; Fontanesi, Flavia; Myers, Richard S.; Hamel, Patrice; Barrientos, Antoni

    2012-01-01

    Heme plays fundamental roles as cofactor and signaling molecule in multiple pathways devoted to oxygen sensing and utilization in aerobic organisms. For cellular respiration, heme serves as a prosthetic group in electron transfer proteins and redox enzymes. Here we report that in the yeast Saccharomyces cerevisiae a heme-sensing mechanism translationally controls the biogenesis of cytochrome c oxidase (COX), the terminal mitochondrial respiratory chain enzyme. We show that Mss51, a COX1 mRNA-specific translational activator and Cox1 chaperone, which coordinates Cox1 synthesis in mitoribosomes with its assembly in COX, is a heme-binding protein. Mss51 contains two heme regulatory motifs or Cys-Pro-X domains located in its N-terminus. Using a combination of in vitro and in vivo approaches, we have demonstrated that these motifs are important for heme binding and efficient performance of Mss51 functions. We conclude that heme sensing by Mss51 regulates COX biogenesis and aerobic energy production. PMID:23217259

  17. PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Glenn C Rowe

    Full Text Available Exercise confers numerous health benefits, many of which are thought to stem from exercise-induced mitochondrial biogenesis (EIMB in skeletal muscle. The transcriptional coactivator PGC-1α, a potent regulator of metabolism in numerous tissues, is widely believed to be required for EIMB. We show here that this is not the case. Mice engineered to lack PGC-1α specifically in skeletal muscle (Myo-PGC-1αKO mice retained intact EIMB. The exercise capacity of these mice was comparable to littermate controls. Induction of metabolic genes after 2 weeks of in-cage voluntary wheel running was intact. Electron microscopy revealed no gross abnormalities in mitochondria, and the mitochondrial biogenic response to endurance exercise was as robust in Myo-PGC-1αKO mice as in wildtype mice. The induction of enzymatic activity of the electron transport chain by exercise was likewise unperturbed in Myo-PGC-1αKO mice. These data demonstrate that PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle, in sharp contrast to the prevalent assumption in the field.

  18. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells.

    Science.gov (United States)

    Tan, Thomas C J; Knight, John; Sbarrato, Thomas; Dudek, Kate; Willis, Anne E; Zamoyska, Rose

    2017-07-25

    Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.

  19. Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer's disease.

    Science.gov (United States)

    Michael, Ralph; Rosandić, Jurja; Montenegro, Gustavo A; Lobato, Elvira; Tresserra, Francisco; Barraquer, Rafael I; Vrensen, Gijs F J M

    2013-01-01

    Eye lenses from human donors with and without Alzheimer's disease (AD) were studied to evaluate the presence of amyloid in cortical cataract. We obtained 39 lenses from 21 postmortem donors with AD and 15 lenses from age-matched controls provided by the Banco de Ojos para Tratamientos de la Ceguera (Barcelona, Spain). For 17 donors, AD was clinically diagnosed by general physicians and for 4 donors the AD diagnosis was neuropathologically confirmed. Of the 21 donors with AD, 6 had pronounced bilateral cortical lens opacities and 15 only minor or no cortical opacities. As controls, 7 donors with pronounced cortical opacities and 8 donors with almost transparent lenses were selected. All lenses were photographed in a dark field stereomicroscope. Histological sections were analyzed using a standard and a more sensitive Congo red protocol, thioflavin staining and beta-amyloid immunohistochemistry. Brain tissue from two donors, one with cerebral amyloid angiopathy and another with advanced AD-related changes and one cornea with lattice dystrophy were used as positive controls for the staining techniques. Thioflavin, standard and modified Congo red staining were positive in the control brain tissues and in the dystrophic cornea. Beta-amyloid immunohistochemistry was positive in the brain tissues but not in the cornea sample. Lenses from control and AD donors were, without exception, negative after Congo red, thioflavin, and beta-amyloid immunohistochemical staining. The results of the positive control tissues correspond well with known observations in AD, amyloid angiopathy and corneas with lattice dystrophy. The absence of staining in AD and control lenses with the techniques employed lead us to conclude that there is no beta-amyloid in lenses from donors with AD or in control cortical cataracts. The inconsistency with previous studies of Goldstein et al. (2003) and Moncaster et al. (2010), both of which demonstrated positive Congo red, thioflavin, and beta-amyloid

  20. Amyloid-β secretion, generation, and lysosomal sequestration in response to proteasome inhibition

    DEFF Research Database (Denmark)

    Agholme, Lotta; Hallbeck, Martin; Benedikz, Eirikur

    2012-01-01

    , as the autophagosome has been suggested as a site of amyloid-β (Aβ) generation. In this study, we investigated the effect of proteasome inhibition on Aβ accumulation and secretion, as well as the processing of amyloid-β protein precursor (AβPP) in AβPP(Swe) transfected SH-SY5Y neuroblastoma cells. We show...

  1. The Pattern of Brain Amyloid Load in Posterior Cortical Atrophy Using 18F-AV45: Is Amyloid the Principal Actor in the Disease

    Directory of Open Access Journals (Sweden)

    Emilie Beaufils

    2014-11-01

    Full Text Available Background: Posterior cortical atrophy (PCA is characterized by progressive higher-order visuoperceptual dysfunction and praxis declines. This syndrome is related to a number of underlying diseases, including, in most cases, Alzheimer's disease (AD. The aim of this study was to compare the amyloid load with 18F-AV45 positron emission tomography (PET between PCA and AD subjects. Methods: We performed 18F-AV45 PET, cerebrospinal fluid (CSF biomarker analysis and a neuropsychological assessment in 11 PCA patients and 12 AD patients. Results: The global and regional 18F-AV45 uptake was similar in the PCA and AD groups. No significant correlation was observed between global 18F-AV45 uptake and CSF biomarkers or between regional 18F-AV45 uptake and cognitive and affective symptoms. Conclusion: This 18F-AV45 PET amyloid imaging study showed no specific regional pattern of cortical 18F-AV45 binding in PCA patients. These results confirm that a distinct clinical phenotype in amnestic AD and PCA is not related to amyloid distribution.

  2. The Pattern of Brain Amyloid Load in Posterior Cortical Atrophy Using 18F-AV45: Is Amyloid the Principal Actor in the Disease?

    Science.gov (United States)

    Beaufils, Emilie; Ribeiro, Maria Joao; Vierron, Emilie; Vercouillie, Johnny; Dufour-Rainfray, Diane; Cottier, Jean-Philippe; Camus, Vincent; Mondon, Karl; Guilloteau, Denis; Hommet, Caroline

    2014-01-01

    Background Posterior cortical atrophy (PCA) is characterized by progressive higher-order visuoperceptual dysfunction and praxis declines. This syndrome is related to a number of underlying diseases, including, in most cases, Alzheimer's disease (AD). The aim of this study was to compare the amyloid load with 18F-AV45 positron emission tomography (PET) between PCA and AD subjects. Methods We performed 18F-AV45 PET, cerebrospinal fluid (CSF) biomarker analysis and a neuropsychological assessment in 11 PCA patients and 12 AD patients. Results The global and regional 18F-AV45 uptake was similar in the PCA and AD groups. No significant correlation was observed between global 18F-AV45 uptake and CSF biomarkers or between regional 18F-AV45 uptake and cognitive and affective symptoms. Conclusion This 18F-AV45 PET amyloid imaging study showed no specific regional pattern of cortical 18F-AV45 binding in PCA patients. These results confirm that a distinct clinical phenotype in amnestic AD and PCA is not related to amyloid distribution. PMID:25538727

  3. Association of Cerebral Amyloid-β Aggregation With Cognitive Functioning in Persons Without Dementia

    DEFF Research Database (Denmark)

    Jansen, Willemijn J; Ossenkoppele, Rik; Tijms, Betty M

    2018-01-01

    Importance: Cerebral amyloid-β aggregation is an early event in Alzheimer disease (AD). Understanding the association between amyloid aggregation and cognitive manifestation in persons without dementia is important for a better understanding of the course of AD and for the design of prevention tr...

  4. Impaired TFEB-mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-induced Liver Injury and Steatosis in Mice.

    Science.gov (United States)

    Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing

    2018-05-18

    Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the

  5. Structural evaluation of an amyloid fibril model using small-angle x-ray scattering

    Science.gov (United States)

    Dahal, Eshan; Choi, Mina; Alam, Nadia; Bhirde, Ashwinkumar A.; Beaucage, Serge L.; Badano, Aldo

    2017-08-01

    Amyloid fibrils are highly structured protein aggregates associated with a wide range of diseases including Alzheimer’s and Parkinson’s. We report a structural investigation of an amyloid fibril model prepared from a commonly used plasma protein (bovine serum albumin (BSA)) using small-angle x-ray scattering (SAXS) technique. As a reference, the size estimates from SAXS are compared to dynamic light scattering (DLS) data and the presence of amyloid-like fibrils is confirmed using Congo red absorbance assay. Our SAXS results consistently show the structural transformation of BSA from spheroid to rod-like elongated structures during the fibril formation process. We observe the elongation of fibrils over two months with fibril length growing from 35.9  ±  3.0 nm to 51.5  ±  2.1 nm. Structurally metastable fibrils with distinct SAXS profiles have been identified. As proof of concept, we demonstrate the use of such distinct SAXS profiles to detect fibrils in the mixture solutions of two species by estimating their volume fractions. This easily detectable and well-characterized amyloid fibril model from BSA can be readily used as a control or standard reference to further investigate SAXS applications in the detection of structurally diverse amyloid fibrils associated with protein aggregation diseases.

  6. Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury

    OpenAIRE

    Loane, David J; Pocivavsek, Ana; Moussa, Charbel E-H; Thompson, Rachel; Matsuoka, Yasuji; Faden, Alan I; Rebeck, G William; Burns, Mark P

    2009-01-01

    Amyloid-β (Aβ) peptides, found in Alzheimer’s disease brain, accumulate rapidly after traumatic brain injury (TBI) in both humans and animals. Here we show that blocking either β- or γ-secretase, enzymes required for production of Aβ from amyloid precursor protein (APP), can ameliorate motor and cognitive deficits and reduce cell loss after experimental TBI in mice. Thus, APP secretases are promising targets for treatment of TBI.

  7. Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids

    Science.gov (United States)

    Nyström, Gustav; Arcari, Mario; Mezzenga, Raffaele

    2018-04-01

    Chirality is ubiquitous in nature and plays crucial roles in biology, medicine, physics and materials science. Understanding and controlling chirality is therefore an important research challenge with broad implications. Unlike other chiral colloids, such as nanocellulose or filamentous viruses, amyloid fibrils form nematic phases but appear to miss their twisted form, the cholesteric or chiral nematic phases, despite a well-defined chirality at the single fibril level. Here we report the discovery of cholesteric phases in amyloids, using β-lactoglobulin fibrils shortened by shear stresses. The physical behaviour of these new cholesteric materials exhibits unprecedented structural complexity, with confinement-driven ordering transitions between at least three types of nematic and cholesteric tactoids. We use energy functional theory to rationalize these results and observe a chirality inversion from the left-handed amyloids to right-handed cholesteric droplets. These findings deepen our understanding of cholesteric phases, advancing their use in soft nanotechnology, nanomaterial templating and self-assembly.

  8. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease.

    Science.gov (United States)

    Barage, Sagar H; Sonawane, Kailas D

    2015-08-01

    Alzheimer's disease is an irreversible, progressive neurodegenerative disorder. Various therapeutic approaches are being used to improve the cholinergic neurotransmission, but their role in AD pathogenesis is still unknown. Although, an increase in tau protein concentration in CSF has been described in AD, but several issues remains unclear. Extensive and accurate analysis of CSF could be helpful to define presence of tau proteins in physiological conditions, or released during the progression of neurodegenerative disease. The amyloid cascade hypothesis postulates that the neurodegeneration in AD caused by abnormal accumulation of amyloid beta (Aβ) plaques in various areas of the brain. The amyloid hypothesis has continued to gain support over the last two decades, particularly from genetic studies. Therefore, current research progress in several areas of therapies shall provide an effective treatment to cure this devastating disease. This review critically evaluates general biochemical and physiological functions of Aβ directed therapeutics and their relevance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. [Behavioural problems and personality change related to cerebral amyloid angiopathy].

    Science.gov (United States)

    Gahr, Maximilian; Connemann, Bernhard J; Schönfeldt-Lecuona, Carlos

    2012-11-01

    Cerebral amyloid angiopathy (CAA) belongs to the group of amyloidoses that are characterized by the deposition of insoluble and tissue-damaging amyloid proteins. Spontaneous intracerebral hemorrhage is the common clinical presentation of CAA resulting from the degenerative effect of beta amyloid on the cerebral vascular system. Though CAA is rather a neurological disease psychiatric symptoms can occur and even dominate the clinical picture. A case report is presented in order to illustrate the association between CAA and psychiatric symptoms. We report the case of a 54-year-old female patient with radiologic references to a probable CAA and mild cognitive impairment who developed behavioural difficulties and personality change that necessitated a psychiatric treatment. Psychiatric symptoms were most likely due to CAA. CAA can be associated with psychiatric symptoms and hence should be considered in the treatment of elderly patients with behavioural problems or personality changes. Diagnostic neuroimaging and examination of cerebrospinal fluid is recommended. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2011-02-01

    Full Text Available Abstract Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D. As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might

  11. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, D L; Walsh, J L; Iza, F; Kong, M G [Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Shama, G [Department of Chemical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)], E-mail: m.g.kong@lboro.ac.uk

    2009-11-15

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  12. Conformational changes of the amyloid beta-peptide (1-40) adsorbed on solid surfaces

    NARCIS (Netherlands)

    Giacomelli, CE; Norde, W

    2005-01-01

    The conformational change of the 39-43 residues of the amyloid beta-peptide (A beta) toward a beta-sheet enriched state promotes self-aggregation of the peptide molecules and constitutes the major peptide component of the amyloid plaques in Alzheimer patients. The crucial question behind the

  13. Conformational changes of the amyloid beta-peptide (1-40) adsorbed on solid surfaces

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2005-01-01

    The conformational change of the 39-43 residues of the amyloid beta -peptide (A beta) toward a beta -sheet enriched state promotes self-aggregation of the peptide molecules and constitutes the major peptide component of the amyloid plaques in Alzheimer patients. The crucial question behind the

  14. Biogenesis of the Saccharomyces cerevisiae Pheromone a-Factor, from Yeast Mating to Human Disease

    Science.gov (United States)

    Barrowman, Jemima

    2012-01-01

    Summary: The mating pheromone a-factor secreted by Saccharomyces cerevisiae is a farnesylated and carboxylmethylated peptide and is unusually hydrophobic compared to other extracellular signaling molecules. Mature a-factor is derived from a precursor with a C-terminal CAAX motif that directs a series of posttranslational reactions, including prenylation, endoproteolysis, and carboxylmethylation. Historically, a-factor has served as a valuable model for the discovery and functional analysis of CAAX-processing enzymes. In this review, we discuss the three modules comprising the a-factor biogenesis pathway: (i) the C-terminal CAAX-processing steps carried out by Ram1/Ram2, Ste24 or Rce1, and Ste14; (ii) two sequential N-terminal cleavage steps, mediated by Ste24 and Axl1; and (iii) export by a nonclassical mechanism, mediated by the ATP binding cassette (ABC) transporter Ste6. The small size and hydrophobicity of a-factor present both challenges and advantages for biochemical analysis, as discussed here. The enzymes involved in a-factor biogenesis are conserved from yeasts to mammals. Notably, studies of the zinc metalloprotease Ste24 in S. cerevisiae led to the discovery of its mammalian homolog ZMPSTE24, which cleaves the prenylated C-terminal tail of the nuclear scaffold protein lamin A. Mutations that alter ZMPSTE24 processing of lamin A in humans cause the premature-aging disease progeria and related progeroid disorders. Intriguingly, recent evidence suggests that the entire a-factor pathway, including all three biogenesis modules, may be used to produce a prenylated, secreted signaling molecule involved in germ cell migration in Drosophila. Thus, additional prenylated signaling molecules resembling a-factor, with as-yet-unknown roles in metazoan biology, may await discovery. PMID:22933563

  15. Insights into the variability of nucleated amyloid polymerization by a minimalistic model of stochastic protein assembly

    Energy Technology Data Exchange (ETDEWEB)

    Eugène, Sarah, E-mail: Sarah.Eugene@inria.fr; Doumic, Marie, E-mail: Philippe.Robert@inria.fr, E-mail: Marie.Doumic@inria.fr [INRIA de Paris, 2 Rue Simone Iff, CS 42112, 75589 Paris Cedex 12 (France); Sorbonne Universités, UPMC Université Pierre et Marie Curie, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris (France); Xue, Wei-Feng, E-mail: W.F.Xue@kent.ac.uk [School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ (United Kingdom); Robert, Philippe, E-mail: Philippe.Robert@inria.fr [INRIA de Paris, 2 Rue Simone Iff, CS 42112, 75589 Paris Cedex 12 (France)

    2016-05-07

    Self-assembly of proteins into amyloid aggregates is an important biological phenomenon associated with human diseases such as Alzheimer’s disease. Amyloid fibrils also have potential applications in nano-engineering of biomaterials. The kinetics of amyloid assembly show an exponential growth phase preceded by a lag phase, variable in duration as seen in bulk experiments and experiments that mimic the small volumes of cells. Here, to investigate the origins and the properties of the observed variability in the lag phase of amyloid assembly currently not accounted for by deterministic nucleation dependent mechanisms, we formulate a new stochastic minimal model that is capable of describing the characteristics of amyloid growth curves despite its simplicity. We then solve the stochastic differential equations of our model and give mathematical proof of a central limit theorem for the sample growth trajectories of the nucleated aggregation process. These results give an asymptotic description for our simple model, from which closed form analytical results capable of describing and predicting the variability of nucleated amyloid assembly were derived. We also demonstrate the application of our results to inform experiments in a conceptually friendly and clear fashion. Our model offers a new perspective and paves the way for a new and efficient approach on extracting vital information regarding the key initial events of amyloid formation.

  16. Amyloid formation and disaggregation of α-synuclein and its tandem repeat (α-TR)

    International Nuclear Information System (INIS)

    Bae, Song Yi; Kim, Seulgi; Hwang, Heejin; Kim, Hyun-Kyung; Yoon, Hyun C.; Kim, Jae Ho; Lee, SangYoon; Kim, T. Doohun

    2010-01-01

    Research highlights: → Formation of the α-synuclein amyloid fibrils by [BIMbF 3 Im]. → Disaggregation of amyloid fibrils by epigallocatechin gallate (EGCG) and baicalein. → Amyloid formation of α-synuclein tandem repeat (α-TR). -- Abstract: The aggregation of α-synuclein is clearly related to the pathogenesis of Parkinson's disease. Therefore, detailed understanding of the mechanism of fibril formation is highly valuable for the development of clinical treatment and also of the diagnostic tools. Here, we have investigated the interaction of α-synuclein with ionic liquids by using several biochemical techniques including Thioflavin T assays and transmission electron microscopy (TEM). Our data shows a rapid formation of α-synuclein amyloid fibrils was stimulated by 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BIMbF 3 Im], and these fibrils could be disaggregated by polyphenols such as epigallocatechin gallate (EGCG) and baicalein. Furthermore, the effect of [BIMbF 3 Im] on the α-synuclein tandem repeat (α-TR) in the aggregation process was studied.

  17. Functional and structural effects of amyloid-β aggregate on Xenopus laevis oocytes.

    Science.gov (United States)

    Parodi, Jorge; Ochoa-de la Paz, Lenin; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2012-10-01

    Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of "spontaneous" blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca(2+) was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca(2+)-dependent Cl(-) currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (T(out)) and the serum-activated, oscillatory Cl(-) currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca(2+)-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication.

  18. Long-term TNF-alpha blockade in patients with amyloid A amyloidosis complicating rheumatic diseases.

    Science.gov (United States)

    Fernández-Nebro, Antonio; Olivé, Alejandro; Castro, María Carmen; Varela, Angela Herranz; Riera, Elena; Irigoyen, Maria V; García de Yébenes, María Jesús; García-Vicuña, Rosario

    2010-05-01

    To evaluate the effectiveness and safety of anti-tumor necrosis factor therapy in patients with amyloid A amyloidosis. Multicenter, controlled, dynamic prospective cohort study of 36 patients with amyloid A amyloidosis (94% kidney involvement) treated with anti-tumor necrosis factor agents (drug exposure of 102.97 patient-years). As an external control group, 35 propensity score-matched non-amyloid patients were chosen from the Base de Datos de Productos Biológicos de la Sociedad Española de Reumatología registry. The end points were kidney response and progression, anti-tumor necrosis factor continuation rate, patient survival, and adverse events. At the end of follow-up, a kidney response was observed in 12 of 22 patients (54.5%) and a kidney progression was observed in 6 of 36 patients (17%). The kidney amyloidosis remained stable in 16 of 36 patients (44%). The level of acute phase reactants diminished but did not reach the normal level. The continuation rates of anti-tumor necrosis factor drugs among patients with amyloid A amyloidosis after 1, 2, 3, and 4 or more years were 80%, 80%, 61%, and 52%, respectively, comparable to controls. The 5-year cumulative survival of amyloid A amyloidosis cases was 90.6%, and the 10-year survival was 78.5%. In a multivariate Cox regression analysis, the duration of amyloidosis and the level of proteinuria at the onset of anti-tumor necrosis factor treatment were independent predictors of treatment failure, whereas the level of proteinuria was the only factor that predicts mortality. Most adverse events were similar in both groups, although the number of infections was 3 times higher in amyloid A amyloidosis cases. Anti-tumor necrosis factor drugs are effective in treating amyloid A amyloidosis, although they might increase the risk of infection. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Real-time amyloid aggregation monitoring with a photonic crystal-based approach.

    Science.gov (United States)

    Santi, Sara; Musi, Valeria; Descrovi, Emiliano; Paeder, Vincent; Di Francesco, Joab; Hvozdara, Lubos; van der Wal, Peter; Lashuel, Hilal A; Pastore, Annalisa; Neier, Reinhard; Herzig, Hans Peter

    2013-10-21

    We propose the application of a new label-free optical technique based on photonic nanostructures to real-time monitor the amyloid-beta 1-42 (Aβ(1-42)) fibrillization, including the early stages of the aggregation process, which are related to the onset of the Alzheimer's Disease (AD). The aggregation of Aβ peptides into amyloid fibrils has commonly been associated with neuronal death, which culminates in the clinical features of the incurable degenerative AD. Recent studies revealed that cell toxicity is determined by the formation of soluble oligomeric forms of Aβ peptides in the early stages of aggregation. At this phase, classical amyloid detection techniques lack in sensitivity. Upon a chemical passivation of the sensing surface by means of polyethylene glycol, the proposed approach allows an accurate, real-time monitoring of the refractive index variation of the solution, wherein Aβ(1-42) peptides are aggregating. This measurement is directly related to the aggregation state of the peptide throughout oligomerization and subsequent fibrillization. Our findings open new perspectives in the understanding of the dynamics of amyloid formation, and validate this approach as a new and powerful method to screen aggregation at early stages. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanoscopic and Photonic Ultrastructural Characterization of Two Distinct Insulin Amyloid States

    Directory of Open Access Journals (Sweden)

    Mikael Lindgren

    2012-02-01

    Full Text Available Two different conformational isoforms or amyloid strains of insulin with different cytotoxic capacity have been described previously. Herein these filamentous and fibrillar amyloid states of insulin were investigated using biophysical and spectroscopic techniques in combination with luminescent conjugated oligothiophenes (LCO. This new class of fluorescent probes has a well defined molecular structure with a distinct number of thiophene units that can adopt different dihedral angles depending on its binding site to an amyloid structure. Based on data from surface charge, hydrophobicity, fluorescence spectroscopy and imaging, along with atomic force microscopy (AFM, we deduce the ultrastructure and fluorescent properties of LCO stained insulin fibrils and filaments. Combined total internal reflection fluorescence microscopy (TIRFM and AFM revealed rigid linear fibrous assemblies of fibrils whereas filaments showed a short curvilinear morphology which assemble into cloudy deposits. All studied LCOs bound to the filaments afforded more blue-shifted excitation and emission spectra in contrast to those corresponding to the fibril indicating a different LCO binding site, which was also supported by less efficient hydrophobic probe binding. Taken together, the multi-tool approach used here indicates the power of ultrastructure identification applying AFM together with LCO fluorescence interrogation, including TIRFM, to resolve structural differences between amyloid states.

  1. Native human serum amyloid P component is a single pentamer

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Andersen, Ove; Nielsen, EH

    1995-01-01

    Serum amyloid P component (SAP) and C-reactive protein (CRP) are members of the pentraxin protein family. SAP is the precursor protein to amyloid P component present in all forms of amyloidosis. The prevailing notion is that SAP in circulation has the form of a double pentameric molecule (decamer...... by rocket immunoelectrophoresis and electron microscopy. Thus, electron micrographs of purified SAP showed a predominance of decamers. However, the decamer form of SAP reversed to single pentamers when purified SAP was incorporated into SAP-depleted serum....

  2. Cellular proteostasis: degradation of misfolded proteins by lysosomes

    Science.gov (United States)

    Jackson, Matthew P.

    2016-01-01

    Proteostasis refers to the regulation of the cellular concentration, folding, interactions and localization of each of the proteins that comprise the proteome. One essential element of proteostasis is the disposal of misfolded proteins by the cellular pathways of protein degradation. Lysosomes are an important site for the degradation of misfolded proteins, which are trafficked to this organelle by the pathways of macroautophagy, chaperone-mediated autophagy and endocytosis. Conversely, amyloid diseases represent a failure in proteostasis, in which proteins misfold, forming amyloid deposits that are not degraded effectively by cells. Amyloid may then exacerbate this failure by disrupting autophagy and lysosomal proteolysis. However, targeting the pathways that regulate autophagy and the biogenesis of lysosomes may present approaches that can rescue cells from the deleterious effects of amyloidogenic proteins. PMID:27744333

  3. Influence of dendrimer's structure on its activity against amyloid fibril formation

    International Nuclear Information System (INIS)

    Klajnert, B.; Cortijo-Arellano, M.; Cladera, J.; Bryszewska, M.

    2006-01-01

    Inhibition of fibril assembly is a potential therapeutic strategy in neurodegenerative disorders such as prion and Alzheimer's diseases. Highly branched, globular polymers-dendrimers-are novel promising inhibitors of fibril formation. In this study, the effect of polyamidoamine (PAMAM) dendrimers (generations 3rd, 4th, and 5th) on amyloid aggregation of the prion peptide PrP 185-208 and the Alzheimer's peptide Aβ 1-28 was examined. Amyloid fibrils were produced in vitro and their formation was monitored using the dye thioflavin T (ThT). Fluorescence studies were complemented with electron microscopy. The results show that the higher the dendrimer generation, the larger the degree of inhibition of the amyloid aggregation process and the more effective are dendrimers in disrupting the already existing fibrils. A hypothesis on dendrimer-peptide interaction mechanism is presented based on the dendrimers' molecular structure

  4. Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins.

    Science.gov (United States)

    Flavin, William P; Bousset, Luc; Green, Zachary C; Chu, Yaping; Skarpathiotis, Stratos; Chaney, Michael J; Kordower, Jeffrey H; Melki, Ronald; Campbell, Edward M

    2017-10-01

    Numerous pathological amyloid proteins spread from cell to cell during neurodegenerative disease, facilitating the propagation of cellular pathology and disease progression. Understanding the mechanism by which disease-associated amyloid protein assemblies enter target cells and induce cellular dysfunction is, therefore, key to understanding the progressive nature of such neurodegenerative diseases. In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis. We observe that the ability to induce vesicle rupture is a common feature of α-synuclein (α-syn) assemblies, as assemblies derived from WT or familial disease-associated mutant α-syn all exhibited the ability to induce vesicle rupture. Similarly, different conformational strains of WT α-syn assemblies, but not monomeric or oligomeric forms, efficiently induced vesicle rupture following endocytosis. The ability to induce vesicle rupture was not specific to α-syn, as amyloid assemblies of tau and huntingtin Exon1 with pathologic polyglutamine repeats also exhibited the ability to induce vesicle rupture. We also observe that vesicles ruptured by α-syn are positive for the autophagic marker LC3 and can accumulate and fuse into large, intracellular structures resembling Lewy bodies in vitro. Finally, we show that the same markers of vesicle rupture surround Lewy bodies in brain sections from PD patients. These data underscore the importance of this conserved endocytic vesicle rupture event as a damaging mechanism of cellular invasion by amyloid assemblies of multiple neurodegenerative disease-associated proteins, and suggest that proteinaceous inclusions such as Lewy bodies form as a consequence of continued fusion of autophagic vesicles in cells unable to degrade ruptured vesicles and their amyloid contents.

  5. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis

    Directory of Open Access Journals (Sweden)

    Sara Mattana

    2017-11-01

    Full Text Available Amyloidopathy is one of the most prominent hallmarks of Alzheimer’s disease (AD, the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β-amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons, giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β-amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β-pleated sheet conformation (β-amyloid protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy.

  6. Use of amyloid PET across the spectrum of Alzheimer's disease: clinical utility and associated ethical issues.

    Science.gov (United States)

    Leuzy, Antoine; Zimmer, Eduardo Rigon; Heurling, Kerstin; Rosa-Neto, Pedro; Gauthier, Serge

    2014-09-01

    Abstract Recent advances have made possible the in vivo detection of beta-amyloid (Aβ) pathology using positron emission tomography. While the gold standard for amyloid imaging, carbon-11 labeled Pittsburgh compound B is increasingly being replaced by fluorine-18 labeled radiopharmaceuticals, with three already approved for clinical use by US and European regulatory bodies. Appropriate use criteria proposed by an amyloid imaging taskforce convened by the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging recommend restricting use of this technology to the evaluation of patients with mild cognitive impairment or atypical dementia syndromes. While use among asymptomatic individuals is currently viewed as inappropriate due prognostic uncertainty, elevated levels of brain Aβ among asymptomatic individuals may represent preclinical Alzheimer's disease. Amyloid imaging is likewise expected to play a role in the design of clinical trials. Though preliminary results suggest amyloid imaging to possess clinical utility and cost-effectiveness, both domains have yet to be assessed systematically. As the field moves toward adoption of a pro-disclosure stance for amyloid imaging findings, it is imperative that a broad range of stakeholders be involved to ensure the appropriateness of emerging policies and protocols.

  7. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting.

    Science.gov (United States)

    Pansieri, Jonathan; Plissonneau, Marie; Stransky-Heilkron, Nathalie; Dumoulin, Mireille; Heinrich-Balard, Laurence; Rivory, Pascaline; Morfin, Jean-François; Toth, Eva; Saraiva, Maria Joao; Allémann, Eric; Tillement, Olivier; Forge, Vincent; Lux, François; Marquette, Christel

    2017-07-01

    Gadolinium-based nanoparticles were functionalized with either the Pittsburgh compound B or a nanobody (B10AP) in order to create multimodal tools for an early diagnosis of amyloidoses. The ability of the functionalized nanoparticles to target amyloid fibrils made of β-amyloid peptide, amylin or Val30Met-mutated transthyretin formed in vitro or from pathological tissues was investigated by a range of spectroscopic and biophysics techniques including fluorescence microscopy. Nanoparticles functionalized by both probes efficiently interacted with the three types of amyloid fibrils, with K D values in 10 micromolar and 10 nanomolar range for, respectively, Pittsburgh compound B and B10AP nanoparticles. Moreover, they allowed the detection of amyloid deposits on pathological tissues. Such functionalized nanoparticles could represent promising flexible and multimodal imaging tools for the early diagnostic of amyloid diseases, in other words, Alzheimer's disease, Type 2 diabetes mellitus and the familial amyloidotic polyneuropathy.

  8. Measurement of amyloid formation by turbidity assay-seeing through the cloud.

    Science.gov (United States)

    Zhao, Ran; So, Masatomo; Maat, Hendrik; Ray, Nicholas J; Arisaka, Fumio; Goto, Yuji; Carver, John A; Hall, Damien

    2016-01-01

    Detection of amyloid growth is commonly carried out by measurement of solution turbidity, a low-cost assay procedure based on the intrinsic light scattering properties of the protein aggregate. Here, we review the biophysical chemistry associated with the turbidimetric assay methodology, exploring the reviewed literature using a series of pedagogical kinetic simulations. In turn, these simulations are used to interrogate the literature concerned with in vitro drug screening and the assessment of amyloid aggregation mechanisms.

  9. Stereoselective determination of amino acids in beta-amyloid peptides and senile plaques.

    Science.gov (United States)

    Thorsén, G; Bergquist, J; Westlind-Danielsson, A; Josefsson, B

    2001-06-01

    A novel method for the determination of the enantiomeric composition of peptides is presented. In this paper, the focus has been on beta-amyloid peptides from deceased Alzheimer's disease patients. The peptides are hydrolyzed using mineral acid. The free amino acids are derivatized with the chiral reagent (+)- or (-)-1-(9-anthryl)-2-propyl chloroformate and subsequently separated using micellar electrokinetic chromatography (MEKC) and detected using laser-induced fluorescence (LIF) detection. The high separation efficiency of the MEKC-LIF system, yielding approximately 1 million theoretical plates/m for most amino acids, facilitates the simultaneous chiral determination of nine amino acids. The samples that have been analyzed were standard 1-40 beta-amyloid peptides, in vitro precipitated beta-amyloid fibrils, and human senile plaque samples.

  10. Benzofuranone derivatives as effective small molecules related to insulin amyloid fibrillation: a structure-function study

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Ebrahim-Habibi, Azadeh; Navidpour, Latifeh

    2011-01-01

    amyloid fibrils under slightly destabilizing conditions in vitro and may form amyloid structures when subcutaneously injected into patients with diabetes. There is a great deal of interest in developing novel small molecule inhibitors of amyloidogenic processes, as potential therapeutic compounds...... of the five tested compounds was observed to enhance amyloid fibrillation, while the others inhibited the process when used at micromolar concentrations, which could make them interesting potential lead compounds for the design of therapeutic antiamyloidogenic compounds....

  11. Amyloid-β positron emission tomography imaging probes

    DEFF Research Database (Denmark)

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt

    2013-01-01

    , a number of factors appear to preclude these probes from clinical utilization. As the available "amyloid specific" positron emission tomography imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate...

  12. Escherichia coli pathotypes

    Science.gov (United States)

    Escherichia coli strains are important commensals of the intestinal tract of humans and animals; however, pathogenic strains, including diarrhea-inducing E. coli and extraintestinal pathogenic E. coli. Intestinal E. coli pathotypes may cause a dehydrating watery diarrhea, or more severe diseases su...

  13. The Common Inhalational Anesthetic Sevoflurane Induces Apoptosis and Increases β-Amyloid Protein Levels

    Science.gov (United States)

    Dong, Yuanlin; Zhang, Guohua; Zhang, Bin; Moir, Robert D.; Xia, Weiming; Marcantonio, Edward R.; Culley, Deborah J.; Crosby, Gregory; Tanzi, Rudolph E.; Xie, Zhongcong

    2009-01-01

    Objective: To assess the effects of sevoflurane, the most commonly used inhalation anesthetic, on apoptosis and β-amyloid protein (Aβ) levels in vitro and in vivo. Subjects: Naive mice, H4 human neuroglioma cells, and H4 human neuroglioma cells stably transfected to express full-length amyloid precursor protein. Interventions: Human H4 neuroglioma cells stably transfected to express full-length amyloid precursor protein were exposed to 4.1% sevoflurane for 6 hours. Mice received 2.5% sevoflurane for 2 hours. Caspase-3 activation, apoptosis, and Aβ levels were assessed. Results: Sevoflurane induced apoptosis and elevated levels of β-site amyloid precursor protein-cleaving enzyme and Aβ in vitro and in vivo. The caspase inhibitor Z-VAD decreased the effects of sevoflurane on apoptosis and Aβ. Sevoflurane-induced caspase-3 activation was attenuated by the γ-secretase inhibitor L-685,458 and was potentiated by Aβ. These results suggest that sevoflurane induces caspase activation which, in turn, enhances β-site amyloid precursor protein–cleaving enzyme and Aβ levels. Increased Aβ levels then induce further rounds of apoptosis. Conclusions: These results suggest that inhalational anesthetic sevoflurane may promote Alzheimer disease neuropathogenesis. If confirmed in human subjects, it may be prudent to caution against the use of sevoflurane as an anesthetic, especially in those suspected of possessing excessive levels of cerebral Aβ. PMID:19433662

  14. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation

    DEFF Research Database (Denmark)

    Brambilla, Davide; Verpillot, Romain; Le Droumaguet, Benjamin

    2012-01-01

    We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aß(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs on the int......We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aß(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs...

  15. Optimal parameters for near infrared fluorescence imaging of amyloid plaques in Alzheimer's disease mouse models

    International Nuclear Information System (INIS)

    Raymond, S B; Kumar, A T N; Boas, D A; Bacskai, B J

    2009-01-01

    Amyloid-β plaques are an Alzheimer's disease biomarker which present unique challenges for near-infrared fluorescence tomography because of size (<50 μm diameter) and distribution. We used high-resolution simulations of fluorescence in a digital Alzheimer's disease mouse model to investigate the optimal fluorophore and imaging parameters for near-infrared fluorescence tomography of amyloid plaques. Fluorescence was simulated for amyloid-targeted probes with emission at 630 and 800 nm, plaque-to-background ratios from 1-1000, amyloid burden from 0-10%, and for transmission and reflection measurement geometries. Fluorophores with high plaque-to-background contrast ratios and 800 nm emission performed significantly better than current amyloid imaging probes. We tested idealized fluorophores in transmission and full-angle tomographic measurement schemes (900 source-detector pairs), with and without anatomical priors. Transmission reconstructions demonstrated strong linear correlation with increasing amyloid burden, but underestimated fluorescence yield and suffered from localization artifacts. Full-angle measurements did not improve upon the transmission reconstruction qualitatively or in semi-quantitative measures of accuracy; anatomical and initial-value priors did improve reconstruction localization and accuracy for both transmission and full-angle schemes. Region-based reconstructions, in which the unknowns were reduced to a few distinct anatomical regions, produced highly accurate yield estimates for cortex, hippocampus and brain regions, even with a reduced number of measurements (144 source-detector pairs).

  16. Heterologous amyloid seeding: revisiting the role of acetylcholinesterase in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Létitia Jean

    2007-07-01

    Full Text Available Neurodegenerative diseases associated with abnormal protein folding and ordered aggregation require an initial trigger which may be infectious, inherited, post-inflammatory or idiopathic. Proteolytic cleavage to generate vulnerable precursors, such as amyloid-beta peptide (Abeta production via beta and gamma secretases in Alzheimer's Disease (AD, is one such trigger, but the proteolytic removal of these fragments is also aetiologically important. The levels of Abeta in the central nervous system are regulated by several catabolic proteases, including insulysin (IDE and neprilysin (NEP. The known association of human acetylcholinesterase (hAChE with pathological aggregates in AD together with its ability to increase Abeta fibrilization prompted us to search for proteolytic triggers that could enhance this process. The hAChE C-terminal domain (T40, AChE(575-614 is an exposed amphiphilic alpha-helix involved in enzyme oligomerisation, but it also contains a conformational switch region (CSR with high propensity for conversion to non-native (hidden beta-strand, a property associated with amyloidogenicity. A synthetic peptide (AChE(586-599 encompassing the CSR region shares homology with Abeta and forms beta-sheet amyloid fibrils. We investigated the influence of IDE and NEP proteolysis on the formation and degradation of relevant hAChE beta-sheet species. By combining reverse-phase HPLC and mass spectrometry, we established that the enzyme digestion profiles on T40 versus AChE(586-599, or versus Abeta, differed. Moreover, IDE digestion of T40 triggered the conformational switch from alpha- to beta-structures, resulting in surfactant CSR species that self-assembled into amyloid fibril precursors (oligomers. Crucially, these CSR species significantly increased Abeta fibril formation both by seeding the energetically unfavorable formation of amyloid nuclei and by enhancing the rate of amyloid elongation. Hence, these results may offer an explanation

  17. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes.

    Science.gov (United States)

    Crossland, Hannah; Timmons, James A; Atherton, Philip J

    2017-12-01

    Increased ribosomal DNA transcription has been proposed to limit muscle protein synthesis, making ribosome biogenesis central to skeletal muscle hypertrophy. We examined the relationship between ribosomal RNA (rRNA) production and IGF-1-mediated myotube hypertrophy in vitro Primary skeletal myotubes were treated with IGF-1 (50 ng/ml) with or without 0.5 µM CX-5461 (CX), an inhibitor of RNA polymerase I. Myotube diameter, total protein, and RNA and DNA levels were measured along with markers of RNA polymerase I regulatory factors and regulators of protein synthesis. CX treatment reduced 45S pre-rRNA expression (-64 ± 5% vs. IGF-1; P IGF-1; P IGF-1-treated myotubes. IGF-1-mediated increases in myotube diameter (1.27 ± 0.09-fold, P IGF-1 treatment did not prevent early increases in AKT (+203 ± 39% vs. CX; P IGF-1, myotube diameter and protein accretion were sustained. Thus, while ribosome biogenesis represents a potential site for the regulation of skeletal muscle protein synthesis and muscle mass, it does not appear to be a prerequisite for IGF-1-induced myotube hypertrophy in vitro. -Crossland, H., Timmons, J. A., Atherton, P. J. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes. © The Author(s).

  18. Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer’s Disease: Results from the DIAN Study Group

    Science.gov (United States)

    Su, Yi; Blazey, Tyler M.; Owen, Christopher J.; Christensen, Jon J.; Friedrichsen, Karl; Joseph-Mathurin, Nelly; Wang, Qing; Hornbeck, Russ C.; Ances, Beau M.; Snyder, Abraham Z.; Cash, Lisa A.; Koeppe, Robert A.; Klunk, William E.; Galasko, Douglas; Brickman, Adam M.; McDade, Eric; Ringman, John M.; Thompson, Paul M.; Saykin, Andrew J.; Ghetti, Bernardino; Sperling, Reisa A.; Johnson, Keith A.; Salloway, Stephen P.; Schofield, Peter R.; Masters, Colin L.; Villemagne, Victor L.; Fox, Nick C.; Förster, Stefan; Chen, Kewei; Reiman, Eric M.; Xiong, Chengjie; Marcus, Daniel S.; Weiner, Michael W.; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.

    2016-01-01

    Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer’s Network (DIAN), an autosomal dominant Alzheimer’s disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer’s disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted. PMID:27010959

  19. [Development of anti-Alzheimer's disease drug based on beta-amyloid hypothesis].

    Science.gov (United States)

    Sugimoto, Hachiro

    2010-04-01

    Currently, there are five anti-Alzheimer's disease drugs approved. These are tacrine, donepezil, rivastigmine, galantamine, and memantine. The mechanism of the first four drugs is acetylcholinesterase inhibition, while memantine is an NMDA-receptor antagonist. However, these drugs do not cure Alzheimer's, but are only symptomatic treatments. Therefore, a cure for Alzheimer's disease is truly needed. Alzheimer's disease is a progressive neurodegenerative disease characterized by cognitive deficits. The cause of the disease is not well understood, but research indicates that the aggregation of beta-amyloid is the fundamental cause. This theory suggests that beta-amyloid aggregation causes neurotoxicity. Therefore, development of the next anti-Alzheimer's disease drug is based on the beta-amyloid theory. We are now studying natural products, such as mulberry leaf extracts and curcumin derivatives, as potential cure for Alzheimer's disease. In this report, we describe some data about these natural products and derivatives.

  20. A Binding-Site Barrier Affects Imaging Efficiency of High Affinity Amyloid-Reactive Peptide Radiotracers In Vivo

    OpenAIRE

    Wall, Jonathan S.; Williams, Angela; Richey, Tina; Stuckey, Alan; Huang, Ying; Wooliver, Craig; Macy, Sallie; Heidel, Eric; Gupta, Neil; Lee, Angela; Rader, Brianna; Martin, Emily B.; Kennel, Stephen J.

    2013-01-01

    Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selecti...

  1. A routine PET/CT protocol with simple calculations for assessing cardiac amyloid using 18F-Florbetapir

    Directory of Open Access Journals (Sweden)

    Dustin Ryan Osborne

    2015-05-01

    Full Text Available Introduction: Cardiac amyloidosis is a rare condition characterized by the deposition of well-structured protein fibrils, proteoglycans, and serum proteins as amyloid. Recent work has shown that it may be possible to use 18F-Florbetapir to image cardiac amyloidosis. Current methods for assessment include invasive biopsy techniques. This work enhances foundational work by Dorbala et al. by developing a routine imaging and analysis protocol using 18F-Florbetapir for cardiac amyloid assessment.Methods: Ten patients, 3 healthy controls and 7 amyloid positive patients, were imaged using 18F-Florbetapir to assess cardiac amyloid burden. Four of the patients also were imaged using 82Rb-Chloride to evaluate possible 18F-Florbetapir retention because of reduced myocardial blood flow. Quantitative methods using modeling, SUVs and SUV ratios were used to define a new streamlined clinical imaging protocol that could be used routinely and provide patient stratification.Results: Quantitative analysis of 18F-Florbetapir cardiac amyloid data were compiled from a 20 minute listmode protocol with data histogrammed into two static images at 0-5 minutes and, 10-15 min or 15-20 min. Data analysis indicated the use of SUVs or ratios of SUVs calculated from regions draw in the septal wall were adequate in identification of all healthy controls from amyloid positive patients in this small cohort. Additionally, we found that it may be possible to use this method to differentiate patients suffering from AL vs. TTR amyloid.Conclusions: This work builds on the seminal work by Dorbala et Al. by describing a short 18F-Florbetapir imaging protocol that is suitable for routine clinical use and uses a simple method for quantitative analysis of cardiac amyloid disease.

  2. Investigation of the inhibitory effects of TiO{sub 2} on the β-amyloid peptide aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mukhtar H., E-mail: ahmed-m@email.ulster.ac.uk [School of Chemical Science, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Nanotechnology Integrated Bioengineering Centre, University of Ulster, Jordanstown, BT37 0QB Belfast (United Kingdom); Byrne, John A. [Nanotechnology Integrated Bioengineering Centre, University of Ulster, Jordanstown, BT37 0QB Belfast (United Kingdom); Keyes, Tia E. [School of Chemical Science, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland)

    2014-06-01

    TiO{sub 2} thin films are of great interest as biocompatible coatings and also as photocatalytic self-cleaning and antimicrobial coatings. In this work we used β-amyloid as a model for infectious protein to investigate the attachment and photocatalytic degradation. TiO{sub 2} films were prepared on stainless steel substrates using magnetron sputtering. The films were characterised before and after exposure to β-amyloid (1–42), using XRD, Raman spectroscopy, XPS and AFM. The TiO{sub 2} film was mostly composed of the anatase phase with a relatively high surface roughness. The presence of Raman peaks at 1668 cm{sup −1} and 1263 cm{sup −1}, with the XPS spectral feature for nitrogen at 400 eV, confirmed the adsorption of amyloid on surface. Following exposure of the β-amyloid contaminated TiO{sub 2} to UV-B irradiation a slight shift of amide modes was observed. Furthermore, the amide I spectra show an overall decrease in α-helix content with presence of a minor peak around 1591 cm{sup −1}, which is related to tryptophanyl and tyrosinyl radicals, which can lead to conformational change of β-amyloid. The C1s band at 292.2 eV suggests the formation of free carboxylic acid. The loss in the crucial structure of β-amyloid leads to reduce the fibril formation, thought to be induced through a photocatalytic process. - Highlights: • TiO{sub 2} thin films synthesised and characterised • Absorption study using β-amyloid (1–42) • Investigation of peptide configuration via Raman, AFM and XPS spectroscopies • β-Amyloid was subsequently degraded by photocatalytic activity of TiO{sub 2}.

  3. Imaging Amyloid Tissues Stained with Luminescent Conjugated Oligothiophenes by Hyperspectral Confocal Microscopy and Fluorescence Lifetime Imaging.

    Science.gov (United States)

    Nyström, Sofie; Bäck, Marcus; Nilsson, K Peter R; Hammarström, Per

    2017-10-20

    Proteins that deposit as amyloid in tissues throughout the body can be the cause or consequence of a large number of diseases. Among these we find neurodegenerative diseases such as Alzheimer's and Parkinson's disease afflicting primarily the central nervous system, and systemic amyloidosis where serum amyloid A, transthyretin and IgG light chains deposit as amyloid in liver, carpal tunnel, spleen, kidney, heart, and other peripheral tissues. Amyloid has been known and studied for more than a century, often using amyloid specific dyes such as Congo red and Thioflavin T (ThT) or Thioflavin (ThS). In this paper, we present heptamer-formyl thiophene acetic acid (hFTAA) as an example of recently developed complements to these dyes called luminescent conjugated oligothiophenes (LCOs). hFTAA is easy to use and is compatible with co-staining in immunofluorescence or with other cellular markers. Extensive research has proven that hFTAA detects a wider range of disease associated protein aggregates than conventional amyloid dyes. In addition, hFTAA can also be applied for optical assignment of distinct aggregated morphotypes to allow studies of amyloid fibril polymorphism. While the imaging methodology applied is optional, we here demonstrate hyperspectral imaging (HIS), laser scanning confocal microscopy and fluorescence lifetime imaging (FLIM). These examples show some of the imaging techniques where LCOs can be used as tools to gain more detailed knowledge of the formation and structural properties of amyloids. An important limitation to the technique is, as for all conventional optical microscopy techniques, the requirement for microscopic size of aggregates to allow detection. Furthermore, the aggregate should comprise a repetitive β-sheet structure to allow for hFTAA binding. Excessive fixation and/or epitope exposure that modify the aggregate structure or conformation can render poor hFTAA binding and hence pose limitations to accurate imaging.

  4. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple.

    Science.gov (United States)

    You, Chun-Xiang; Zhao, Qiang; Wang, Xiao-Fei; Xie, Xing-Bin; Feng, Xiao-Ming; Zhao, Ling-Ling; Shu, Huai-Rui; Hao, Yu-Jin

    2014-02-01

    Although numerous miRNAs have been already isolated from fruit trees, knowledge about miRNA biogenesis is largely unknown in fruit trees. Double-strand RNA-binding (DRB) protein plays an important role in miRNA processing and maturation; however, its role in the regulation of economically important traits is not clear yet in fruit trees. EST blast and RACE amplification were performed to isolate apple MdDRB1 gene. Following expression analysis, RNA binding and protein interaction assays, MdDRB1 was transformed into apple callus and in vitro tissue cultures to characterize the functions of MdDRB1 in miRNA biogenesis, adventitious rooting, leaf development and tree growth habit. MdDRB1 contained two highly conserved DRB domains. Its transcripts existed in all tissues tested and are induced by hormones. It bound to double-strand RNAs and interacted with AtDCL1 (Dicer-Like 1) and MdDCL1. Chip assay indicated its role in miRNA biogenesis. Transgenic analysis showed that MdDRB1 controls adventitious rooting, leaf curvature and tree architecture by modulating the accumulation of miRNAs and the transcript levels of miRNA target genes. Our results demonstrated that MdDRB1 functions in the miRNA biogenesis in a conserved way and that it is a master regulator in the formation of economically important traits in fruit trees. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Calcium signaling and amyloid toxicity in Alzheimer disease.

    Science.gov (United States)

    Demuro, Angelo; Parker, Ian; Stutzmann, Grace E

    2010-04-23

    Intracellular Ca(2+) signaling is fundamental to neuronal physiology and viability. Because of its ubiquitous roles, disruptions in Ca(2+) homeostasis are implicated in diverse disease processes and have become a major focus of study in multifactorial neurodegenerative diseases such as Alzheimer disease (AD). A hallmark of AD is the excessive production of beta-amyloid (Abeta) and its massive accumulation in amyloid plaques. In this minireview, we highlight the pathogenic interactions between altered cellular Ca(2+) signaling and Abeta in its different aggregation states and how these elements coalesce to alter the course of the neurodegenerative disease. Ca(2+) and Abeta intersect at several functional levels and temporal stages of AD, thereby altering neurotransmitter receptor properties, disrupting membrane integrity, and initiating apoptotic signaling cascades. Notably, there are reciprocal interactions between Ca(2+) pathways and amyloid pathology; altered Ca(2+) signaling accelerates Abeta formation, whereas Abeta peptides, particularly in soluble oligomeric forms, induce Ca(2+) disruptions. A degenerative feed-forward cycle of toxic Abeta generation and Ca(2+) perturbations results, which in turn can spin off to accelerate more global neuropathological cascades, ultimately leading to synaptic breakdown, cell death, and devastating memory loss. Although no cause or cure is currently known, targeting Ca(2+) dyshomeostasis as an underlying and integral component of AD pathology may result in novel and effective treatments for AD.

  6. AMYPdb: A database dedicated to amyloid precursor proteins

    Directory of Open Access Journals (Sweden)

    Delamarche Christian

    2008-06-01

    Full Text Available Abstract Background Misfolding and aggregation of proteins into ordered fibrillar structures is associated with a number of severe pathologies, including Alzheimer's disease, prion diseases, and type II diabetes. The rapid accumulation of knowledge about the sequences and structures of these proteins allows using of in silico methods to investigate the molecular mechanisms of their abnormal conformational changes and assembly. However, such an approach requires the collection of accurate data, which are inconveniently dispersed among several generalist databases. Results We therefore created a free online knowledge database (AMYPdb dedicated to amyloid precursor proteins and we have performed large scale sequence analysis of the included data. Currently, AMYPdb integrates data on 31 families, including 1,705 proteins from nearly 600 organisms. It displays links to more than 2,300 bibliographic references and 1,200 3D-structures. A Wiki system is available to insert data into the database, providing a sharing and collaboration environment. We generated and analyzed 3,621 amino acid sequence patterns, reporting highly specific patterns for each amyloid family, along with patterns likely to be involved in protein misfolding and aggregation. Conclusion AMYPdb is a comprehensive online database aiming at the centralization of bioinformatic data regarding all amyloid proteins and their precursors. Our sequence pattern discovery and analysis approach unveiled protein regions of significant interest. AMYPdb is freely accessible 1.

  7. Cognitive and functional patterns of nondemented subjects with equivocal visual amyloid PET findings

    International Nuclear Information System (INIS)

    Payoux, P.; Delrieu, J.; Gallini, A.; Cantet, C.; Voisin, T.; Gillette-Guyonnet, S.; Vellas, B.; Adel, D.; Salabert, A.S.; Hitzel, A.; Tafani, M.; Verbizier, D. de; Darcourt, J.; Fernandez, P.; Monteil, J.; Carrie, I.; Pontecorvo, M.; Andrieu, S.

    2015-01-01

    Despite good to excellent inter-reader agreement in the evaluation of amyloid load on PET scans in subjects with Alzheimer's disease, some equivocal findings have been reported in the literature. We aimed to describe the clinical characteristics of subjects with equivocal PET images. Nondemented subjects aged 70 years or more were enrolled from the MAPT trial. Cognitive and functional assessments were conducted at baseline, at 6 months, and annually for 3 years. During the follow-up period, 271 subjects had 18 F-AV45 PET scans. Images were visually assessed by three observers and classified as positive, negative or equivocal (if one observer disagreed). After debate, equivocal images were reclassified as positive (EP+) or negative (EP-). Scans were also classified by semiautomated quantitative analysis using mean amyloid uptake of cortical regions. We evaluated agreement among the observers, and between visual and quantitative assessments using kappa coefficients, and compared the clinical characteristics of the subjects according to their PET results. In 158 subjects (58.30 %) the PET scan was negative for amyloid, in 77 (28.41 %) the scan was positive and in 36 (13.28 %) the scan was equivocal. Agreement among the three observers was excellent (kappa 0.80). Subjects with equivocal images were more frequently men (58 % vs. 37 %) and exhibited intermediate scores on cognitive and functional scales between those of subjects with positive and negative scans. Amyloid load differed between the EP- and negative groups and between the EP+ and positive groups after reclassification. Equivocal amyloid PET images could represent a neuroimaging entity with intermediate amyloid load but without a specific neuropsychological pattern. Clinical follow-up to assess cognitive evolution in subjects with equivocal scans is needed. (orig.)

  8. Cognitive and functional patterns of nondemented subjects with equivocal visual amyloid PET findings

    Energy Technology Data Exchange (ETDEWEB)

    Payoux, P. [Purpan University Hospital, Department of Nuclear Medicine, CHU Toulouse, Toulouse (France); Inserm, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); INSERM U825, CHU Purpan, Toulouse Cedex (France); Delrieu, J. [Purpan University Hospital, Gerontopole, Department of Geriatrics, CHU Toulouse, Toulouse (France); INSERM UMR 1027, Toulouse (France); Gallini, A.; Cantet, C.; Voisin, T.; Gillette-Guyonnet, S.; Vellas, B. [Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Purpan University Hospital, Gerontopole, Department of Geriatrics, CHU Toulouse, Toulouse (France); INSERM UMR 1027, Toulouse (France); Adel, D.; Salabert, A.S. [Inserm, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Hitzel, A. [Purpan University Hospital, Department of Nuclear Medicine, CHU Toulouse, Toulouse (France); Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Tafani, M. [Purpan University Hospital, Department of Nuclear Medicine, CHU Toulouse, Toulouse (France); Inserm, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Verbizier, D. de [Montpellier University Hospital, Department of Nuclear Medicine, Montpellier (France); Darcourt, J. [Centre Antoine Lacassagne, Nuclear Medicine Department, Nice (France); University of Nice-Sophia Antipolis, Nice (France); Fernandez, P. [Pellegrin University Hospital Bordeaux, Nuclear Medicine Department, Bordeaux (France); University Bordeaux II, CNRS UMR 5287 - INCIA, Victor Segalen, Bordeaux (France); Monteil, J. [University Hospital, Department of Nuclear Medicine, Limoges (France); University of Limoges, Limoges (France); Carrie, I. [Purpan University Hospital, Gerontopole, Department of Geriatrics, CHU Toulouse, Toulouse (France); Pontecorvo, M. [Avid Radiopharmaceuticals, Philadelphia, PA (United States); Andrieu, S. [Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Purpan University Hospital, Gerontopole, Department of Geriatrics, CHU Toulouse, Toulouse (France); INSERM UMR 1027, Toulouse (France); CHU Toulouse, Department of Epidemiology and Public Health, Toulouse (France)

    2015-08-15

    Despite good to excellent inter-reader agreement in the evaluation of amyloid load on PET scans in subjects with Alzheimer's disease, some equivocal findings have been reported in the literature. We aimed to describe the clinical characteristics of subjects with equivocal PET images. Nondemented subjects aged 70 years or more were enrolled from the MAPT trial. Cognitive and functional assessments were conducted at baseline, at 6 months, and annually for 3 years. During the follow-up period, 271 subjects had {sup 18}F-AV45 PET scans. Images were visually assessed by three observers and classified as positive, negative or equivocal (if one observer disagreed). After debate, equivocal images were reclassified as positive (EP+) or negative (EP-). Scans were also classified by semiautomated quantitative analysis using mean amyloid uptake of cortical regions. We evaluated agreement among the observers, and between visual and quantitative assessments using kappa coefficients, and compared the clinical characteristics of the subjects according to their PET results. In 158 subjects (58.30 %) the PET scan was negative for amyloid, in 77 (28.41 %) the scan was positive and in 36 (13.28 %) the scan was equivocal. Agreement among the three observers was excellent (kappa 0.80). Subjects with equivocal images were more frequently men (58 % vs. 37 %) and exhibited intermediate scores on cognitive and functional scales between those of subjects with positive and negative scans. Amyloid load differed between the EP- and negative groups and between the EP+ and positive groups after reclassification. Equivocal amyloid PET images could represent a neuroimaging entity with intermediate amyloid load but without a specific neuropsychological pattern. Clinical follow-up to assess cognitive evolution in subjects with equivocal scans is needed. (orig.)

  9. The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria

    NARCIS (Netherlands)

    Dragoš, A.; Kovács, Á.T.; Claessen, D.

    2017-01-01

    Amyloid fibrils play pivotal roles in all domains of life. In bacteria, these fibrillar structures are often part of an extracellular matrix that surrounds the producing organism and thereby provides protection to harsh environmental conditions. Here, we discuss the role of amyloid fibrils in the

  10. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis.

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C; Rife, Jason P; Ban, Nenad

    2012-03-23

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.

  11. Structural Insights into Methyltransferase KsgA Function in 30S Ribosomal Subunit Biogenesis*

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C.; Rife, Jason P.; Ban, Nenad

    2012-01-01

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3′-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation. PMID:22308031

  12. The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria

    DEFF Research Database (Denmark)

    Dragoš, Anna; Kovács, Ákos T.; Claessen, Dennis

    2017-01-01

    Amyloid fibrils play pivotal roles in all domains of life. In bacteria, these fibrillar structures are often part of an extracellular matrix that surrounds the producing organism and thereby provides protection to harsh environmental conditions. Here, we discuss the role of amyloid fibrils...... in the two distant Gram-positive bacteria, Streptomyces coelicolor and Bacillus subtilis. We describe how amyloid fibrils contribute to a multitude of developmental processes in each of these systems, including multicellular growth and community development. Despite this variety of tasks, we know...... surprisingly little about how their assembly is organized to fulfill all these roles....

  13. A comparison of serum amyloid A (SAA) synthesis with that of the pentraxins: Serum amyloid P (SAP) and C-reactive protein (CRP)

    International Nuclear Information System (INIS)

    Tatsuta, E.; Shirahama, T.; Sipe, J.D.; Skinner, M.

    1986-01-01

    Serum amyloid A (SAA) and serum amyloid P (SAP) were detected in cultures of hepatocytes which had been isolated from normal CBA/J mice by the collagenase perfusion technique. SAP production in 24 h cultures was more resistant than SAA and total protein synthesis to inhibition by actinomycin D, but was more sensitive to inhibition by 48 h. However, the production of SAP was more sensitive to cycloheximide than SAA and total protein throughout the 48 hr incubation period. SAP and SAA levels in the culture media were suppressed by treatment of liver cells with 10 -6 M of colchicine for 48 h. Inhibition of SAP production by colchicine was the same regardless of culture condition, but the effect of colchicine on SAA synthesis varied according to the presence of serum of monokine. These observations also support the concept that the two amyloid proteins are produced under different regulatory mechanisms. When C-reactive protein (CRP) was not detected in the sera of patients with severe chronic liver diseases, the SAA levels were very low. When CRP was detected, SAA values were within the normal range. Thus, in order to produce SAA, liver cells in these patients not only were viable but also maintained their specialized function

  14. APP processing and the APP-KPI domain involvement in the amyloid cascade.

    Science.gov (United States)

    Menéndez-González, M; Pérez-Pinera, P; Martínez-Rivera, M; Calatayud, M T; Blázquez Menes, B

    2005-01-01

    Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.

  15. Inhibitory Activities of Antioxidant Flavonoids from Tamarix gallica on Amyloid Aggregation Related to Alzheimer's and Type 2 Diabetes Diseases.

    Science.gov (United States)

    Ben Hmidene, Asma; Hanaki, Mizuho; Murakami, Kazuma; Irie, Kazuhiro; Isoda, Hiroko; Shigemori, Hideyuki

    2017-01-01

    The prevention of amyloid aggregation is promising for the treatment of age-related diseases such as Alzheimer's (AD) and type 2 diabetes (T2D). Ten antioxidant flavonoids isolated from the medicinal halophyte Tamarix gallica were tested for their amyloid aggregation inhibition potential. Glucuronosylated flavonoids show relatively strong inhibitory activity of Amyloid β (Aβ) and human islet amyloid polypeptide (hIAPP) aggregation compared to their aglycone analogs. Structure-activity relationship of the flavonoids suggests that the catechol moiety is important for amyloid aggregation inhibition, while the methylation of the carboxyl group in the glucuronide moiety and of the hydroxyl group in the aglycone flavonoids decreased it.

  16. Exploring the early steps of aggregation of amyloid-forming peptide KFFE

    International Nuclear Information System (INIS)

    Wei Guanghong; Mousseau, Normand; Derreumaux, Philippe

    2004-01-01

    It has been shown recently that even a tetrapeptide can form amyloid fibrils sharing all the characteristics of amyloid fibrils built from large proteins. Recent experimental studies also suggest that the toxicity observed in several neurodegenerative diseases, such as Alzheimer's disease and Creutzfeldt-Jakob disease, is not only related to the mature fibrils themselves, but also to the soluble oligomers formed early in the process of fibrillogenesis. This raises the interest in studying the early steps of the aggregation process. Although fibril formation follows the nucleation-condensation process, characterized by the presence of lag phase, the exact pathways remain to be determined. In this study, we used the activation-relaxation technique and a generic energy model to explore the process of self-assembly and the structures of the resulting aggregates of eight KFFE peptides. Our simulations show, starting from different states with a preformed antiparallel dimer, that eight chains can self-assemble to adopt, with various orientations, four possible distant oligomeric well-aligned structures of similar energy. Two of these structures show a double-layer β-sheet organization, in agreement with the structure of amyloid fibrils as observed by x-ray diffraction; another two are mixtures of dimers and trimers. Our results also suggest that octamers are likely to be below the critical size for nucleation of amyloid fibrils for small peptides

  17. Exploring the early steps of aggregation of amyloid-forming peptide KFFE

    Energy Technology Data Exchange (ETDEWEB)

    Wei Guanghong [Departement de Physique and Regroupement Quebecois sur les Materiaux de Pointe, Universite de Montreal, CP 6128, succursale centre-ville, Montreal, QC, H3C 3J7 (Canada); Mousseau, Normand [Departement de Physique and Regroupement Quebecois sur les Materiaux de Pointe, Universite de Montreal, CP 6128, succursale centre-ville, Montreal, QC, H3C 3J7 (Canada); Derreumaux, Philippe [Laboratoire de Biochimie, Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7 Denis-Diderot, 13 rue Pierre et Marie Curie, 75005 Paris (France)

    2004-11-10

    It has been shown recently that even a tetrapeptide can form amyloid fibrils sharing all the characteristics of amyloid fibrils built from large proteins. Recent experimental studies also suggest that the toxicity observed in several neurodegenerative diseases, such as Alzheimer's disease and Creutzfeldt-Jakob disease, is not only related to the mature fibrils themselves, but also to the soluble oligomers formed early in the process of fibrillogenesis. This raises the interest in studying the early steps of the aggregation process. Although fibril formation follows the nucleation-condensation process, characterized by the presence of lag phase, the exact pathways remain to be determined. In this study, we used the activation-relaxation technique and a generic energy model to explore the process of self-assembly and the structures of the resulting aggregates of eight KFFE peptides. Our simulations show, starting from different states with a preformed antiparallel dimer, that eight chains can self-assemble to adopt, with various orientations, four possible distant oligomeric well-aligned structures of similar energy. Two of these structures show a double-layer {beta}-sheet organization, in agreement with the structure of amyloid fibrils as observed by x-ray diffraction; another two are mixtures of dimers and trimers. Our results also suggest that octamers are likely to be below the critical size for nucleation of amyloid fibrils for small peptides.

  18. Microglia kill amyloid-beta1-42 damaged neurons by a CD14-dependent process

    NARCIS (Netherlands)

    Bate, Clive; Veerhuis, Robert; Eikelenboom, Piet; Williams, Alun

    2004-01-01

    Activated microglia are closely associated with neuronal damage in Alzheimer's disease. In the present study, neurons exposed to low concentrations of amyloid-beta1-42, a toxic fragment of the amyloid-beta protein, were killed by microglia in a process that required cell-cell contact. Pre-treating

  19. Cerebral Amyloid Angiopathy-Related Inflammation: Report of a Case with Very Difficult Therapeutic Management

    Directory of Open Access Journals (Sweden)

    Francesca Crosta

    2015-01-01

    Full Text Available Background. Cerebral amyloid angiopathy-related inflammation (CAA-ri results from autoimmune response to beta-amyloid deposits in cerebral vessels. Its clinical course and complications have seldom been described in literature. Case Report. In a patient presenting with delirium and left hemiparesis the diagnosis of CAA-ri was supported by the finding of elevated anti-amyloid autoantibodies in the cerebrospinal fluid (CSF. Steroid therapy produced significant improvements in clinical and investigational assessments, but after two months, it caused Acute Respiratory Distress Syndrome. After steroid therapy discontinuation the patient presented a rapidly progressive dementia, Guillain-Barré syndrome, new cerebral ischemic lesions, and thrombosis of the right cephalic and subclavian veins that were treated with subcutaneous heparin. After a week the patient died because of brain hemorrhage. Conclusion. This case suggests caution in steroid therapy discontinuation and antithrombotic therapy administration in patients with CAA-ri. The CSF search of anti-amyloid autoantibodies could be helpful to support the diagnosis.

  20. Common genetic polymorphisms of microRNA biogenesis pathway genes and breast cancer survival

    International Nuclear Information System (INIS)

    Sung, Hyuna; Ahn, Sei-Hyun; Kang, Daehee; Jeon, Sujee; Lee, Kyoung-Mu; Han, Sohee; Song, Minkyo; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Noh, Dong-Young

    2012-01-01

    Although the role of microRNA’s (miRNA’s) biogenesis pathway genes in cancer development and progression has been well established, the association between genetic variants of this pathway genes and breast cancer survival is still unknown. We used genotype data available from a previously conducted case–control study to investigate association between common genetic variations in miRNA biogenesis pathway genes and breast cancer survival. We investigated the possible associations between 41 germ-line single-nucleotide polymorphisms (SNPs) and both disease free survival (DFS) and overall survival (OS) among 488 breast cancer patients. During the median follow-up of 6.24 years, 90 cases developed disease progression and 48 cases died. Seven SNPs were significantly associated with breast cancer survival. Two SNPs in AGO2 (rs11786030 and rs2292779) and DICER1 rs1057035 were associated with both DFS and OS. Two SNPs in HIWI (rs4759659 and rs11060845) and DGCR8 rs9606250 were associated with DFS, while DROSHA rs874332 and GEMIN4 rs4968104 were associated with only OS. The most significant association was observed in variant allele of AGO2 rs11786030 with 2.62-fold increased risk of disease progression (95% confidence interval (CI), 1.41-4.88) and in minor allele homozygote of AGO2 rs2292779 with 2.94-fold increased risk of death (95% CI, 1.52-5.69). We also found cumulative effects of SNPs on DFS and OS. Compared to the subjects carrying 0 to 2 high-risk genotypes, those carrying 3 or 4–6 high-risk genotypes had an increased risk of disease progression with a hazard ratio of 2.16 (95% CI, 1.18- 3.93) and 4.47 (95% CI, 2.45- 8.14), respectively (P for trend, 6.11E-07). Our results suggest that genetic variants in miRNA biogenesis pathway genes may be associated with breast cancer survival. Further studies in larger sample size and functional characterizations are warranted to validate these results

  1. Development of a Standardized Approach to Disclosing Amyloid Imaging Research Results in Mild Cognitive Impairment.

    Science.gov (United States)

    Lingler, Jennifer H; Butters, Meryl A; Gentry, Amanda L; Hu, Lu; Hunsaker, Amanda E; Klunk, William E; Mattos, Meghan K; Parker, Lisa A; Roberts, J Scott; Schulz, Richard

    2016-03-08

    The increased use of PET amyloid imaging in clinical research has sparked numerous concerns about whether and how to return such research test results to study participants. Chief among these is the question of how best to disclose amyloid imaging research results to individuals who have cognitive symptoms that could impede comprehension of the information conveyed. We systematically developed and evaluated informational materials for use in pre-test counseling and post-test disclosures of amyloid imaging research results in mild cognitive impairment (MCI). Using simulated sessions, persons with MCI and their family care partners (N = 10 dyads) received fictitious but realistic information regarding brain amyloid status, followed by an explanation of how results impact Alzheimer's disease risk. Satisfaction surveys, comprehension assessments, and focus group data were analyzed to evaluate the materials developed. The majority of persons with MCI and their care partners comprehended and were highly satisfied with the information presented. Focus group data reinforced findings of high satisfaction and included 6 recommendations for practice: 1) offer pre-test counseling, 2) use clear graphics, 3) review participants' own brain images during disclosures, 4) offer take-home materials, 5) call participants post-disclosure to address emerging questions, and 6) communicate seamlessly with primary care providers. Further analysis of focus group data revealed that participants understood the limitations of amyloid imaging, but nevertheless viewed the prospect of learning one's amyloid status as valuable and empowering.

  2. Development and characterization of a TAPIR-like mouse monoclonal antibody to amyloid-beta.

    Science.gov (United States)

    Wang, Jun; Hara, Hideo; Makifuchi, Takao; Tabira, Takeshi

    2008-06-01

    Tissue amyloid plaque immuno-reactive (TAPIR) antibody was better related to the effect of immunotherapy in Alzheimer's disease (AD) than ELISA antibody. Here we used a hybridoma technique to develop a TAPIR-like anti-human amyloid-beta (Abeta) mouse monoclonal antibody. The obtained monoclonal antibody, 3.4A10, was an IgG2b isotype and recognized N-terminal portion of Abeta1-42 without binding denatured or native amyloid-beta protein precursor. It had higher affinity to Abeta1-42 than to Abeta1-40 by Biacore affinity analysis and stained preferably the peripheral part of senile plaques and recognized the plaque core less than 4G8. It inhibited the Abeta1-42 fibril formation as well as degraded pre-aggregated Abeta1-42 peptide in a thioflavin T fluorescence spectrophotometry assay. The in vivo studies showed that 3.4A10 treatment decreased amyloid burden compared to the control group and significantly reduced Abeta42 levels rather than Abeta40 levels in brain lysates as well as the Abeta*56 oligomer (12mer) in TBS fraction of the brain lysates. 3.4A10 entered brain and decorated some plaques, which is surrounded by more Iba1-positive microglia. 3.4A10 therapy did not induce lymphocytic infiltration and obvious increase in microhemorrhage. We conclude that 3.4A10 is a TAPIR-like anti-human amyloid monoclonal antibody, and has a potential of therapeutic application for AD.

  3. High plasma levels of islet amyloid polypeptide in young with new-onset of type 1 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Johan F Paulsson

    Full Text Available AIMS/HYPOTHESIS: Islet amyloid polypeptide (IAPP is a beta cell hormone secreted together with insulin upon glucose stimulation. IAPP participates in normal glucose regulation, but IAPP is also known for its ability to misfold and form islet amyloid. Amyloid fibrils form through smaller cell toxic intermediates and deposited amyloid disrupts normal islet architecture. Even though IAPP and amyloid formation are much discussed in type 2 diabetes, our aim was to study the significance of IAPP in type 1 diabetes. RESULTS: Plasma IAPP levels in children and adolescents with newly diagnosed type 1 diabetes (n = 224 were analysed and concentrations exceeding 100 pmol/L (127.2-888.7 pmol/L were found in 11% (25/224. The IAPP increase did not correlate with C-peptide levels. CONCLUSIONS/INTERPRETATION: Plasma levels of IAPP and insulin deviate in a subpopulation of young with newly-diagnosed type 1 diabetes. The determined elevated levels of IAPP might increase the risk for IAPP misfolding and formation of cell toxic amyloid in beta cells. This finding add IAPP-aggregation to the list over putative pathological factors causing type 1 diabetes.

  4. Mapping local structural perturbations in the native state of stefin B (cystatin B under amyloid forming conditions

    Directory of Open Access Journals (Sweden)

    Robert eParamore

    2012-10-01

    Full Text Available Unlike a number of amyloid-forming proteins, stefins, in particular stefin B (cystatin B form amyloids under conditions where the native state predominates. In order to trigger oligomerization processes, the stability of the protein needs to be compromised, favoring structural re-arrangement however, accelerating fibril formation is not a simple function of protein stability. We report here on how optimal conditions for amyloid formation lead to the destabilization of dimeric and tetrameric states of the protein in favor of the monomer. Small, highly localized structural changes can be mapped out that allow us to visualize directly areas of the protein which eventually become responsible for triggering amyloid formation. These regions of the protein overlap with the Cu (II-binding sites which we identify here for the first time. We hypothesize that in vivo modulators of amyloid formation may act similarly to painstakingly optimized solvent conditions developed in vitro. We discuss these data in the light of current structural models of stefin B amyloid fibrils based on H-exchange data, where the detachment of the helical part and the extension of loops were observed.

  5. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  6. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma.

    Science.gov (United States)

    Daus, Martin L

    2016-01-04

    In 1982, the term "prions" (proteinaceous infectious particles) was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE) was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid) can store and transmit information similarly to DNA was initially even denoted as being "heretical" but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the "protein-only hypothesis" expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed.

  7. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma

    Directory of Open Access Journals (Sweden)

    Martin L. Daus

    2016-01-01

    Full Text Available In 1982, the term “prions” (proteinaceous infectious particles was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid can store and transmit information similarly to DNA was initially even denoted as being “heretical” but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the “protein-only hypothesis” expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed.

  8. Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors.

    Science.gov (United States)

    Panek, Dawid; Wichur, Tomasz; Godyń, Justyna; Pasieka, Anna; Malawska, Barbara

    2017-10-01

    The emergence of a multitarget design approach in the development of new potential anti-Alzheimer's disease agents has resulted in the discovery of many multifunctional compounds focusing on various targets. Among them the largest group comprises inhibitors of both cholinesterases, with additional anti-β-amyloid aggregation activity. This review describes recent advances in this research area and presents the most interesting compounds reported over a 2-year span (2015-2016). The majority of hybrids possess heterodimeric structures obtained by linking structurally active fragments interacting with different targets. Multipotent cholinesterase inhibitors with β-amyloid antiaggregating activity may additionally possess antioxidative, neuroprotective or metal-chelating properties or less common features such as anti-β-secretase or τ-antiaggregation activity.

  9. Effect of dietary resveratrol supplementation on meat quality, muscle antioxidative capacity and mitochondrial biogenesis of broilers.

    Science.gov (United States)

    Zhang, Cheng; Yang, Lei; Zhao, Xiaohui; Chen, Xingyong; Wang, Li; Geng, Zhaoyu

    2018-02-01

    The naturally occurring polyphenol resveratrol has been acknowledged with many beneficial biological effects. The aim of this study was to evaluate the influence of dietary resveratrol supplementation on meat quality, muscle antioxidative capacity and mitochondrial biogenesis of broilers. One hundred and eighty 21-day-old male Cobb broilers were randomly assigned to two groups and fed on a 0 mg kg -1 or 400 mg kg -1 resveratrol-supplemented diet for 21 days. Then, chickens were slaughtered and pectoralis major muscle (PM) samples were collected for analysis. The results showed that resveratrol not only tended to increase (P resveratrol, while malondialdehyde content was decreased (P resveratrol significantly increased (P Resveratrol can be used as a feed additive to improve meat quality of broilers, which may be associated with improved muscle antioxidative status and mitochondrial biogenesis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Contact between the β1 and β2 Segments of α-Synuclein that Inhibits Amyloid Formation.

    Science.gov (United States)

    Shaykhalishahi, Hamed; Gauhar, Aziz; Wördehoff, Michael M; Grüning, Clara S R; Klein, Antonia N; Bannach, Oliver; Stoldt, Matthias; Willbold, Dieter; Härd, Torleif; Hoyer, Wolfgang

    2015-07-20

    Conversion of the intrinsically disordered protein α-synuclein (α-syn) into amyloid aggregates is a key process in Parkinson's disease. The sequence region 35-59 contains β-strand segments β1 and β2 of α-syn amyloid fibril models and most disease-related mutations. β1 and β2 frequently engage in transient interactions in monomeric α-syn. The consequences of β1-β2 contacts are evaluated by disulfide engineering, biophysical techniques, and cell viability assays. The double-cysteine mutant α-synCC, with a disulfide linking β1 and β2, is aggregation-incompetent and inhibits aggregation and toxicity of wild-type α-syn. We show that α-syn delays the aggregation of amyloid-β peptide and islet amyloid polypeptide involved in Alzheimer's disease and type 2 diabetes, an effect enhanced in the α-synCC mutant. Tertiary interactions in the β1-β2 region of α-syn interfere with the nucleation of amyloid formation, suggesting promotion of such interactions as a potential therapeutic approach. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils.

    Science.gov (United States)

    Honda, Ryo; Kuwata, Kazuo

    2018-02-01

    Amyloid fibrils are filamentous protein aggregates associated with the pathogenesis of a wide variety of human diseases. The formation of such aggregates typically follows nucleation-dependent kinetics, wherein the assembly and structural conversion of amyloidogenic proteins into oligomeric aggregates (nuclei) is the rate-limiting step of the overall reaction. In this study, we sought to gain structural insights into the oligomeric nuclei of the human prion protein (PrP) by preparing a series of deletion mutants lacking 14-44 of the C-terminal 107 residues of PrP and examined the kinetics and thermodynamics of these mutants in amyloid formation. An analysis of the experimental data using the concepts of the Φ-value analysis indicated that the helix 2 region (residues 168-196) acquires an amyloid-like β-sheet during nucleation, whereas the other regions preserves a relatively disordered structure in the nuclei. This finding suggests that the helix 2 region serves as the nucleation site for the assembly of amyloid fibrils.-Honda, R., Kuwata, K. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils.

  12. To estimate effective antiamyloidogenic property of melatonin and fisetin and their actions to destabilize amyloid fibrils.

    Science.gov (United States)

    Aarabi, Mohammad Hossein; Mirhashemi, Seyyed Mehdi

    2017-09-01

    Aggregating of amylin as pancreatic deposition is connected with pancreas degeneration in type 2 diabetes mellitus. Suppression of the amylin accumulation and so instability of the pre-formed pancreatic β-amyloid, may be attractive curative goal for mediation of diabetes mellitus. Fluorimetric assay by Thioflavin-T was utilized for investigating the properties of melatonin and fisetin on the generation and instability of β-amyloid near to physiological conditions. The results showed that after 168 hours incubation by shaker incubator in 37oC, melatonin at 10μM and 40 µM repressed amylin amyloid formation by 20.1% and 27.5% respectively (p<0.05) and the similar values of fisetin inhibited the formation of β-sheet structure by 16.5% and 23.2% respectively (p<0.05).The obtained data also confirmed that amyloidal sheet opening was induced by melatonin and fisetin significantly (p<0.05). It may be concluded that islet amyloid cytotoxicity to β-cells may be reduced by melatonin and fisetin, and they should be important constituents of new drugs for diabetes mellitus treatment.

  13. Chemical Kinetics for Bridging Molecular Mechanisms and Macroscopic Measurements of Amyloid Fibril Formation.

    Science.gov (United States)

    Michaels, Thomas C T; Šarić, Anđela; Habchi, Johnny; Chia, Sean; Meisl, Georg; Vendruscolo, Michele; Dobson, Christopher M; Knowles, Tuomas P J

    2018-04-20

    Understanding how normally soluble peptides and proteins aggregate to form amyloid fibrils is central to many areas of modern biomolecular science, ranging from the development of functional biomaterials to the design of rational therapeutic strategies against increasingly prevalent medical conditions such as Alzheimer's and Parkinson's diseases. As such, there is a great need to develop models to mechanistically describe how amyloid fibrils are formed from precursor peptides and proteins. Here we review and discuss how ideas and concepts from chemical reaction kinetics can help to achieve this objective. In particular, we show how a combination of theory, experiments, and computer simulations, based on chemical kinetics, provides a general formalism for uncovering, at the molecular level, the mechanistic steps that underlie the phenomenon of amyloid fibril formation.

  14. Chemical Kinetics for Bridging Molecular Mechanisms and Macroscopic Measurements of Amyloid Fibril Formation

    Science.gov (United States)

    Michaels, Thomas C. T.; Šarić, Anđela; Habchi, Johnny; Chia, Sean; Meisl, Georg; Vendruscolo, Michele; Dobson, Christopher M.; Knowles, Tuomas P. J.

    2018-04-01

    Understanding how normally soluble peptides and proteins aggregate to form amyloid fibrils is central to many areas of modern biomolecular science, ranging from the development of functional biomaterials to the design of rational therapeutic strategies against increasingly prevalent medical conditions such as Alzheimer's and Parkinson's diseases. As such, there is a great need to develop models to mechanistically describe how amyloid fibrils are formed from precursor peptides and proteins. Here we review and discuss how ideas and concepts from chemical reaction kinetics can help to achieve this objective. In particular, we show how a combination of theory, experiments, and computer simulations, based on chemical kinetics, provides a general formalism for uncovering, at the molecular level, the mechanistic steps that underlie the phenomenon of amyloid fibril formation.

  15. Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo.

    Directory of Open Access Journals (Sweden)

    Christine R Langlois

    2016-11-01

    Full Text Available Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI+] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid.

  16. E coli enteritis

    Science.gov (United States)

    ... coli; Food poisoning - E. coli; E. coli diarrhea; Hamburger disease ... coleslaw or potato salad) that have been out of the refrigerator too ... reheated Fish or oysters Raw fruits or vegetables that have ...

  17. Isolation of Penicillium chrysogenum PEX1 and PEX6 encoding AAA proteins involved in peroxisome biogenesis

    NARCIS (Netherlands)

    Kiel, JAKW; Hilbrands, RE; Bovenberg, RAL; Veenhuis, M

    In Penicillium chrysogenum, key enzymes involved in the production of penicillin reside in peroxisomes. As a first step to understand the role of these organelles in penicillin biosynthesis, we set out to isolate the genes involved in peroxisome biogenesis. Here we report the cloning and

  18. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1.

    Science.gov (United States)

    Corum, Daniel G; Tsichlis, Philip N; Muise-Helmericks, Robin C

    2014-01-01

    Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (~5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ~1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.

  19. Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans.

    Directory of Open Access Journals (Sweden)

    Martin L Duennwald

    Full Text Available How small heat shock proteins (sHsps might empower proteostasis networks to control beneficial prions or disassemble pathological amyloid is unknown. Here, we establish that yeast sHsps, Hsp26 and Hsp42, inhibit prionogenesis by the [PSI+] prion protein, Sup35, via distinct and synergistic mechanisms. Hsp42 prevents conformational rearrangements within molten oligomers that enable de novo prionogenesis and collaborates with Hsp70 to attenuate self-templating. By contrast, Hsp26 inhibits self-templating upon binding assembled prions. sHsp binding destabilizes Sup35 prions and promotes their disaggregation by Hsp104, Hsp70, and Hsp40. In yeast, Hsp26 or Hsp42 overexpression prevents [PSI+] induction, cures [PSI+], and potentiates [PSI+]-curing by Hsp104 overexpression. In vitro, sHsps enhance Hsp104-catalyzed disaggregation of pathological amyloid forms of α-synuclein and polyglutamine. Unexpectedly, in the absence of Hsp104, sHsps promote an unprecedented, gradual depolymerization of Sup35 prions by Hsp110, Hsp70, and Hsp40. This unanticipated amyloid-depolymerase activity is conserved from yeast to humans, which lack Hsp104 orthologues. A human sHsp, HspB5, stimulates depolymerization of α-synuclein amyloid by human Hsp110, Hsp70, and Hsp40. Thus, we elucidate a heretofore-unrecognized human amyloid-depolymerase system that could have applications in various neurodegenerative disorders.

  20. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein

    Directory of Open Access Journals (Sweden)

    Hongyu Pan

    2016-10-01

    Full Text Available Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP. However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid β (Aβ or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG of adult mice overexpressing wild-type hAPP (hAPP-I5 compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of Aβ. Furthermore, reducing Aβ levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and Aβ was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice.

  1. Fibrils from designed non-amyloid-related synthetic peptides induce AA-amyloidosis during inflammation in an animal model.

    Directory of Open Access Journals (Sweden)

    Per Westermark

    Full Text Available BACKGROUND: Mouse AA-amyloidosis is a transmissible disease by a prion-like mechanism where amyloid fibrils act by seeding. Synthetic peptides with no amyloid relationship can assemble into amyloid-like fibrils and these may have seeding capacity for amyloid proteins. PRINCIPAL FINDINGS: Several synthetic peptides, designed for nanotechnology, have been examined for their ability to produce fibrils with Congo red affinity and concomitant green birefringence, affinity for thioflavin S and to accelerate AA-amyloidosis in mice. It is shown that some amphiphilic fibril-forming peptides not only produced Congo red birefringence and showed affinity for thioflavin S, but they also shortened the lag phase for systemic AA-amyloidosis in mice when they were given intravenously at the time of inflammatory induction with silver nitride. Peptides, not forming amyloid-like fibrils, did not have such properties. CONCLUSIONS: These observations should caution researchers and those who work with synthetic peptides and their derivatives to be aware of the potential health concerns.

  2. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment

    NARCIS (Netherlands)

    Tosun, Duygu; Schuff, Norbert; Mathis, Chester A.; Jagust, William; Weiner, Michael W.; Saradha, A.; Abdi, Herve; Abdulkadir, Ahmed; Abeliovich, Asa; Abellan van Kan, Gabor; Abner, Erin; Acharya, Deepa; Agrusti, Antonella; Agyemang, Alex; Ahdidan, Jamila; Ahmed, Shiek; Ahn, Jae Eun; Aisen, Paul; Aksu, Yaman; Al-Akhras, Mousa; Alarcon, Marcelo; Alberca, Roman; Alexander, Gene; Alexander, Daniel; Alin, Aylin; Almeida, Fabio; Amlien, Inge; Anand, Shyam; Anderson, Dallas; Andrew, Marilee; Angersbach, Steve; Anjum, Ayesha; Aoyama, Eiji; Arfanakis, Konstantinos; Armor, Tom; Arnold, Steven; Arunagiri, Vidhya; Asatryan, Albert; Ashe-McNalley, Cody; Ashiga, Hirokazu; Assareh, Arezoo; Le Page, Aurelie; Avants, Brian; Avinash, Gopal; Aviv, Richard; Awasthi, Sukrati; Ayan-Oshodi, Mosun; Babic, Tomislav; Baek, Young; Bagci, Ulas; Bai, Shuyang; Baird, Geoffrey; Baker, John; Banks, Sarah; Bard, Jonathan; Barnes, Josephine; Bartlett, Jonathan; Bartzokis, George; Barua, Neil; Bauer, Corinna; Bayley, Peter; Beck, Irene; Becker, James; Becker, J. Alex; Beckett, Laurel; Bednar, Martin; Beg, Mirza Faisal; Bek, Stephan; Belaroussi, Boubakeur; Belmokhtar, Nabil; Bernard, Charlotte; Bertram, Lars; Bhaskar, Uday; Biffi, Alessandro; Bigler, Erin; Bilgic, Basar; Bishop, Courtney; Bittner, Daniel; Black, Ronald; Bogorodzki, Piotr; Bokde, Arun; Bonner-Jackson, Aaron; Boppana, Madhu; Bourgeat, Pierrick; Bowes, Mike; Bowman, DuBois; Bowman, Gene; Braskie, Meredith; Braunewell, Karl; Breitner, Joihn; Bresell, Anders; Brewer, James; Brickman, Adam; Britschgi, Markus; Broadbent, Steve; Brogren, Jacob; Brooks, David; Browndyke, Jeffrey; Brunton, Simon; Buchert, Ralph; Buchsbaum, Monte; Buckley, Chris; Buerger, Katharina; Burger, Cyrill; Burnham, Samantha; Burns, Jeffrey; Burton, David; Butman, John; Cabeza, Rafael; Cairns, Nigel; Callhoff, Johanna; Calvini, Piero; Cantillon, Marc; Capella, Heraldo; Carbotti, Angela; Cardona-Sanclemente, Luis Eduardo; Carle, Adam; Carmasin, Jeremy; Carranza-Ath, Fredy; Casabianca, Jodi; Casanova, Ramon; Cash, David; Cedarbaum, Jesse; Cella, Massimo; Celsis, Pierre; Chanu, Pascal; Chao, Linda; Charil, Arnaud; Chemali, Zeina; Chen, Rong; Chen, Jake; Chen, Gennan; Chen, Wei; Chen, Kewei; Chen, Shuzhong; Chen, Minhua; Cheng, Wei-Chen; Cherkas, Yauheniya; Chertkow, Howard; Cheung, Charlton; Cheung, Vinci; Chiang, Gloria; Chiba, Koji; Chin, Simon; Chisholm, Jane; Cho, Youngsang; Choe, John; Choubey, Suresh; Chowbina, Sudhir; Christensen, Anette Luther; Clark, David; Clark, Chris; Clarkson, Matt; Clayton, David; Clunie, David; Coen, Michael; Coimbra, Alexandre; Compton, David; Coppola, Giovanni; Coulin, Samuel; Cover, Keith S.; Crane, Paul; Crans, Gerald; Croop, Robert; Crowther, Daniel; Crum, William; Cui, Yue; Curry, Charles; Curtis, Steven; Cutter, Gary; Daiello, Lori; Dake, Michael; Dale, Anders; Daliri, Mohammad Reza; Damato, Vito Domenico; Darby, Eveleen; Darkner, Sune; Davatzikos, Christos; Dave, Jay; David, Renaud; DavidPrakash, Bhaskaran; Davidson, Julie; de Bruijne, Marleen; de Meyer, Geert; de Nunzio, Giorgio; Decarli, Charles; Dechairo, Bryan; DeDuck, Kristina; Dehghan, Hossein; Dejkam, Arsalan; Delfino, Manuel; Della Rosa, Pasquale Anthony; Dellavedova, Luca; Delpassand, Ebrahim; Delrieu, Julien; DeOrchis, Vincent; Depy Carron, Delphine; deToledo-Morrell, Leyla; Devanand, Davangere; Devanarayan, Viswanath; DeVous, Michael; Diaz-Arrastia, Ramon; Bradford, Dickerson; Ding, Xiaobo; Dinov, Ivo; Dobson, Howard; Dodge, Hiroko; Donohue, Michael; Dore, Vincent; Dorflinger, Ernest; Dowling, Maritza; Duan, Xujun; Dubal, Dena; Duchesne, Simon; Duff, Kevin; Dukart, Jrgen; Durazzo, Timothy; Dykstra, Kevin; Earl, Nancy; Edula, Goutham; Ekin, Ahmet; Elcoroaristizabal, Xabier; Emahazion, Tesfai; Engelman, Corinne; Epstein, Noam; Erten-Lyons, Deniz; Eskildsen, Simon; Falcone, Guido; Fan, Lingzhong; Fan, Yong; Farahibozorg, Seyedehrezvan; Farb, Norman; Farnum, Michael; Farrer, Lindsay; Farzan, Ali; Faux, Noel; Feldman, Betsy; Feldman, Howard; Feldman, Susan; Fennema-Notestine, Christine; Fernandes, Michel; Fernandez, Elsa; Ferrarini, Luca; Ferreira, Manuel Joao; Ferrer, Eugene; Figurski, Michal; Filipovych, Roman; Fillit, Howard; Finch, Stephen; Finlay, Daniel; Fiot, Jean-Baptiste; Flenniken, Derek; Fletcher, P. Thomas; Fletcher, Evan; Flynn Longmire, Crystal; Focke, Niels; Forman, Mark; Forsythe, Alan; Fox, Steven; Fox-Bosetti, Sabrina; Francis, Alexander L.; Franco-Villalobos, Conrado; Franko, Edit; Freeman, Stefanie; Friedrich, Christoph M.; Friesenhahn, Michel; Frings, Lars; Frisoni, Giovanni; Fritzsche, Klaus; Fujimoto, Yoko; Fujiwara, Ken; Fullerton, Terence; Furney, Simon; Gallins, Paul; Galvin, Ben; Gamst, Anthony; Gan, Ke; Garcia, Maria Teresa; Garg, Gaurav; Gaser, Christian; Gastineau, Edward; Gauthier, Serge; Gavett, Brandon; Gavidia, Giovana; Gazdzinski, Stefan; Ge, Qi; Ge, Tian; Gemme, Gianluca; Geraci, Joseph; Ghassabi, Zeinab; Gieschke, Ronald; Gil, Juan E.; Gill, Ryan; Gitelman, Darren; Gleason, Carey; Glymour, M. Maria; Godbey, Michael; Goghari, Vina; Gold, Michael; Goldberg, Terry; Goldman, Jennifer; Gomeni, Roberto; Gong, Shangwenyan; Gonzales, Celedon; Goodro, Robert; Gordon, Brian; Gore, Chris; Gorriz, Juan Manuel; Grachev, Igor; Grandey, Emily; Grasela, Thaddeus; Gratt, Jeremy; Gray, Katherine; Greenberg, Barry; Gregg, Keith; Gregory, Erik; Greicius, Michael; Greve, Douglas; Grill, Joshua; Gross, Alden; Gross, Alan; Guignot, Isabelle; Guo, Jeffrey; Guo, Qimiao; Guo, Hongbin; Guo, Lianghao; Habeck, Christian; Hai, Yizhen; Haight, Thaddeus; Hammarstrom, Per; Hampel, Harald; Han, Duke; Han, Jian; Han, Tony; Hanif, Muhammad; Hanna, Yousef; Hardy, Peter; Harvey, Danielle; Hasan, Md Kamrul; Hayashi, Toshihiro; Hazart, Aurelien; He, Huiguang; He, Yong; Head, Denise; Heckemann, Rolf; Heidebrink, Judith; Henderson, David; Henrard, Sebastien; Herholz, Karl; Hernandez, Monica; Herskovits, A. Zara; Hess, Christopher; Hildenbrand, Maike; Hobart, Jeremy; Hoffman, John; Holder, Daniel; Hollingworth, Paul; Holmes, Robin; Honigberg, Lee; Hoppin, Jack; Hou, Yangyang; Hsu, Ailing; Hsu, Wei-Wen; Hu, Xiaolan; Hu, Zhiwei; Hu, William; Huang, Juebin; Huang, Chien-Chih; Huang, Chingwen; Huang, Shuai; Huang, Yifan; Huang, Fude; Huang, Chun-Jung; Huang, Shu-Pang; Hubbard, Rebecca; Huentelman, Matthew; Hui, Shen; Huppertz, Hans-Jürgen; Hurko, Orest; Hurt, Stephen; Huyck, Susan; Hwang, Scott; Hyun, JungMoon; Ifeachor, Emmanuel; Iglesias, Martina; Ikari, Yasuhiko; Ikonomidou, Vasiliki; Imani, Farzin; Immermann, Fred; Inlow, Mark; Inoue, Lurdes; Insel, Philip; Irizarry, Michael; Irungu, Benson mwangi; Ishibashi, Taro; Ishii, Kenji; Ismail, Sara; Ismail, Shahina; Ito, Kaori; Iturria-Medina, Yasser; Iwatsubo, Takeshi; Jacobson, Mark; Jacqmin, Philippe; Jafari, Aria; Jafari-Khouzani, Kourosh; Jaffe, Carl; Jara, Hernan; Jasperse, Bas; Jedynak, Bruno; Jefferson, Angela; Jennings, J. Richard; Jessen, Walter; Jia, Fucang; Jiang, Tianzi; Jing, Huang; Johnson, Julene; Johnson, Sterling; Johnson, David K.; Jones, Richard; Juengling, Freimut; Juh, Rahyeong; Julin, Per; Kadish, Bill; Kahle-Wrobleski, Kristin; Kallam, Hanimi Reddy; Kamboh, M. Ilyas; Kaneko, Tomoki; Kaneta, Tomohiro; Kang, Ju Hee; Karageorgiou, Elissaios; Karantzoulis, Stella; Karlawish, Jason; Katz, Elyse; Kaushik, Sandeep S.; Kauwe, John; Kawakami, Hirofumi; Kazimipoor, Borhan; Kelleher, Thomas; Kennedy, Richard; Kerchner, Geoffrey; Kerrouche, Nacer; Khalil, Iya; Khalil, Andre; Killeen, Neil; Killiany, Ron; Kim, Jong Hun; Kim, Heeyoung; Kim, Ana; Kim, Yeonhee; Kim, Hyoungkyu; Kim, Seongkyun; Kim, Hyewon; Kimberg, Daniel; Kimura, Tokunori; King, Richard; Kirby, Justin; Kirsch, Wolff; Klimas, Michael; Kline, Richard; Kling, Mitchel; Klopfenstein, Erin; Koikkalainen, Juha; Kokomoor, Anders; Kolasny, Anthony; Koppel, Jeremy; Korolev, Igor; Kotran, Nickolas; Kouassi, Alex; Kowalczyk, Adam; Kozma, Lynn; Krams, Michael; Kratzer, Martina; Kuceyeski, Amy; Kuhn, Felix Pierre; Kumar, Sreedhar; Kuo, Hsun Ting; Kuo, Julie; Kurosawa, Ken; Kwon, Oh Hun; Labrish, Catherine; Laforet, Genevieve; Lai, Song; Lakatos, Anita; Lam, On Ki; Lampron, Antoine; Landau, Susan; Landen, Jaren; Lane, Richard; Langbaum, Jessica; Langford, Dianne; Lanius, Vivian; Laxamana, Joel; Le, Trung; Leahy, Richard; Lee, Jong-Min; Lee, Vita; Lee, Joseph H.; Lee, Grace; Lee, Dongsoo; Lee, Noah; Lefkimmiatis, Stamatis; Lemaitre, Herve; Lenfant, Pierre; Lenz, Robert; Leoutsakos, Jeannie-Marie; Lester, Gayle; Levey, Allan; Li, Shi-jiang; Li, Shanshan; Li, Wenjun; Li, Chin-Shang; Li, Xiaodong; Li, Rui; Li, Ming; Li, Lexin; Li, Jinhe; Li, Yi; Li, Quanzheng; Li, Gang; Liang, Kuchang; Liang, Peipeng; Liang, Lichen; Liao, Yuan-Lin; Lin, Ling-chih; Lin, Lan; Lin, Mingkuan; Lin, Ai-Ling; Liu, Songling; Liu, Yuan; Liu, Tianming; Liu, Meijie; Liu, Xiuwen; Liu, Li; Liu, Honggang; Liu, Pu; Liu, Tao; Liu, Sophia; Liu, Dazhong; Lo, Raymond; Lobanov, Victor; Loewenstein, David; Logovinsky, Veronika; Long, Xiaojing; Long, Ziyi; Looi, Jeffrey; Lu, Po-Haong; Lukic, Ana; Lull, Juan J.; Luo, Xiongjian; Lynch, John; Ma, Lei; Mackin, Scott; Mada, Marius; Magda, Sebastian; Maglio, Silvio; Maikusa, Norihide; Mak, Henry Ka-Fung; Malave, Vicente; Maldjian, Joseph; Mandal, Pravat; Mangin, Jean-Francois; Manjon, Jose; Mantri, Ninad; Manzour, Amir; Marambaud, Philippe; Marchewka, Artur; Marek, Kenneth; Markind, Samuel; Marshall, Gad; Martinez Torteya, Antonio; Mather, Mara; Mathis, Chester; Matoug, Sofia; Matsuo, Yoshiyuki; Mattei, Peter; Matthews, Dawn; McArdle, John; McCarroll, Steven; McEvoy, Linda; McGeown, William; McGonigle, John; McIntyre, John; McLaren, Donald; McQuail, Joseph; Meadowcroft, Mark; Meda, Shashwath; Mehta, Nirav; Melie-Garcia, Lester; Melrose, Rebecca; Mendonca, Brian; Menendez, Manuel; Meredith, Jere; Merrill, David; Mesulam, Marek-Marsel; Metti, Andrea; Meyer, Carsten; Mez, Jesse; Mickael, Guedj; Miftahof, Roustem; Mikhno, Arthur; Miller, David; Millikin, Colleen; Min, Ye; Mirza, Mubeena; Mistridis, Panagiota; Mitchell, Meghan; Mitsis, Effie; Mohan, Ananth; Moore, Dana; Moradi Birgani, Parmida; Moratal, David; Morimoto, Bruce; Mormino, Elizabeth; Mortamet, Benedicte; Moscato, Pablo; Mueller, Kathyrne; Mueller, Susanne; Mueller, Notger; Mukherjee, Shubhabrata; Mulder, Emma; Murayama, Shigeo; Murphy, Michael; Murray, Brian; Musiek, Erik; Myers, Amanda; Najafi, Shahla; Nazarparvar, Babak; Nazeri, Arash; Nettiksimmons, Jasmine; Neu, Scott; Ng, Yen-Bee; Nguyen, Nghi; Nguyen Xuan, Tuong; Nichols, Thomas; Nicodemus, Kristin; Niecko, Timothy; Nielsen, Casper; Notomi, Keiji; Nutakki, Gopi Chand; O'Bryant, Sid; O'Neil, Alison; Obisesan, Thomas; Oh, Dong Hoon; Oh, Joonmi; Okonkwo, Ozioma; Olde Rikkert, Marcel; Olmos, Salvador; Ortner, Marion; Ostrowitzki, Susanne; Oswald, Annahita; Ott, Brian; Ourselin, Sebastien; Ouyang, Gaoxiang; Paiva, Renata; Pan, Zhifang; Pande, Yogesh; Pardo, Jose; Pardoe, Heath; Park, Hyunjin; Park, Lovingly; Park, Moon Ho; Park, Sang hyun; Park, Kee Hyung; Park, Sujin; Parsey, Ramin; Parveen, Riswana; Paskavitz, James; Patel, Yogen; Patil, Manasi; Pawlak, Mikolaj; Payoux, Pierre; Pearson, Jim; Peavy, Guerry; Pell, Gaby; Peng, Yahong; Pennec, Xavier; Pepin, Jean louis; Perea, Rodrigo; Perneczky, Robert; Petitti, Diana; Petrella, Jeffrey; Peyrat, Jean-Marc; Pezoa, Jorge; Pham, Chi-Tuan; Phillips, Justin; Phillips, Nicole; Pierson, Ronald; Piovezan, Mauro; Podhorski, Adam; Pollari, Mika; Pontecorvo, Michael; Poppenk, Jordan; Posner, Holly; Potkin, Steven; Potter, Guy; Potter, Elizabeth; Poulin, Stephane; Prasad, Gautam; Prenger, Kurt; Prince, Jerry; Priya, Anandh; Puchakayala, Shashidhar Reddy; Qiu, Ruolun; Qiu, Anqi; Qiu, Wendy; Qualls, Constance Dean; Rabie, Huwaida; Rajeesh, Rajeesh; Rallabandi, V. P. Subramanyam; Ramage, Amy; Randolph, Christopher; Rao, Anil; Rao, Divya; Raubertas, Richard; Ray, Debashis; Razak, Hana; Redolfi, Alberto; Reed, Bruce; Reid, Andrew; Reilhac, Anthonin; Reinsberger, Claus; Restrepo, Lucas; Retico, Alessandra; Richards, John; Riddle, William; Ries, Michele; Rincon, Mariano; Rischall, Matt; Rizk-Jackson, Angela; Robieson, Weining; Rocha-Rego, Vanessa; Rogalski, Emily; Rogers, Elizabeth; Rojas, Ignacio; Rojas Balderrama, Javier; Romero, Klaus; Rorden, Chris; Rosand, Jonathan; Rosen, Allyson; Rosen, Ori; Rosenberg, Paul; Ross, David; Roubini, Eli; Rousseau, François; Rowe, Christopher; Rubin, Daniel; Rubright, Jonathan; Ruiz, Agustin; Rusinek, Henry; Ryan, Laurie; Saad, Ahmed; Sabbagh, Marway; Sabuncu, Mert; Sachs, Michael; Sadeghi, Ali; Said, Yasmine; Saint-Aubert, Laure; Sakata, Muneyuki; Salat, David; Salmon, David; Salter, Hugh; Samwald, Matthias; Sanchez, Luciano; Sanders, Elizabeth; Sanjo, Nobuo; Sarnel, Haldun; Sato, Hajime; Sato, Shinji; Saumier, Daniel; Savio, Alexandre; Sawada, Ikuhisa; Saykin, Andrew; Schaffer, J. David; Scharre, Douglas; Schegerin, Marc; Schlosser, Gretchen; Schmand, Ben; Schmansky, Nick; Schmidt, Mark; Schmidt-Wilcke, Tobias; Schneider, Lon; Schramm, Hauke; Schuerch, Markus; Schwartz, Eben; Schwartz, Craig; Schwarz, Adam; Seethamraju, Ravi; Seixas, Flavio; Selnes, Per; Senjem, Matthew; Senlin, Wang; Seo, Sang Won; Sethuraman, Gopalan; Sevigny, Jeffrey; Sfikas, Giorgos; Sghedoni, Roberto; Shah, Said Khalid; Shahbaba, Babak; Shams, Soheil; Shattuck, David; Shaw, Leslie; Sheela, Jaba; Shen, Weijia; Shen, Qian; Shera, David; Sherman, John; Sherva, Richard; Shi, Feng; Shukla, Vinay; Shuler, Catherine; Shulman, Joshua; Siegel, Rene; Siemers, Eric; Silveira, Margarida; Silver, Michael; Silverman, Daniel; Sim, Ida; Simmons, Andy; Simoes, Rita; Simon, Melvin; Simpson, Ivor; Singh, Simer Preet; Singh, Nikhil; Siuciak, Judy; Sjogren, Niclas; Skinner, Jeannine; Skup, Martha; Small, Gary; Smith, Michael; Smith, Benjamin; Smith, Charles; Smyth, Timothy; Snow, Sarah; Soares, Holly; Soldea, Octavian; Solomon, Paul; Solomon, Alan; Som, Subhojit; Song, Changhong; Song, Mingli; Sosova, Iveta; Soudah, Eduardo; Soydemir, Melih; Spampinato, Maria Vittoria; Spenger, Christian; Sperling, Reisa; Spiegel, Rene; Spies, Lothar; Squarcia, Sandro; Squire, Larry; Staff, Roger; Stern, Yaakov; Straw, Jack; Stricker, Nikki; Strittmatter, Stephen; Stühler, Elisabeth; Styren, Scot; Subramanian, Vijayalakshmi; Sugishita, Morihiro; Sukkar, Rafid; Sun, Jia; Sun, Ying; Sun, Yu; Sundell, Karen; Suri, Muhammad; Suzuki, Akiyuki; Svetnik, Vladimir; Swan, Melanie; Takahasi, Tetsuhiko; Takeuchi, Tomoko; Tanaka, Shoji; Tanchi, Chaturaphat; Tancredi, Daniel; Tao, Wenwen; Tao, Dacheng; Taylor-Reinwald, Lisa; Teng, Edmond; Terlizzi, Rita; Thames, April; Thiele, Frank; Thomas, Benjamin; Thomas, Ronald; Thompson, Paul; Thompson, Wesley; Thornton-Wells, Tricia; Thorvaldsson, Valgeir; Thurfjell, Lennart; Titeux, Laurence; Tokuda, Takahiko; Toledo, Juan B.; Tolli, Tuomas; Toma, Ahmed; Tomita, Naoki; Toro, Roberto; Torrealdea, Patxi; Tousian, Mona; Toussaint, Paule; Toyoshiba, Hiroyoshi; Tractenberg, Rochelle E.; Trittschuh, Emily; Trojanowski, John; Truran, Diana; Tsechpenakis, Gavriil; Tucker-Drob, Elliot; Tufail, Ahsan; Tung, Joyce; Turken, And; Ueda, Yoji; Ullrich, Lauren; Umadevi Venkataraju, Kannan; Umar, Nisser; Uzunbas, Gokhan; van de Nes, Joseph; van der Brug, Marcel; van Horn, John; van Leemput, Koen; van Train, Kenneth; van Zeeland, Ashley; Vasanawala, Minal; Vemuri, Prashanthi; Verwaerde, Philippe; Videbaek, Charlotte; Vidoni, Eric; Villanueva-Meyer, Javier; Visser, Pieter Jelle; Vitolo, Ottavio; Vounou, Maria; Wade, Sara; Walhovd, Kristine B.; Wan, Hong; Wang, Huanli; Wang, Yongmei Michelle; Wang, Yalin; Wang, Angela; Wang, Lei; Wang, Yue; Wang, Xu; Wang, Ze; Wang, Yaping; Wang, Tiger; Wang, Alex; Wang, Huali; Wang, Li-San; Wang, Wei; Wang, Li; Ward, Michael; Warfield, Simon; Waring, Stephen; Watanabe, Toshiyuki; Webb, David; Wei, Lili; Weiner, Michael; Wen, Shu-Hui; Wenjing, Li; Wenzel, Fabian; Westlye, Lars T.; Whitcher, Brandon; Whitlow, Christopher; Whitwell, Jennifer; Wilhelmsen, Kirk; Williams, David; Wilmot, Beth; Wimsatt, Matt; Wingo, Thomas; Wiste, Heather; Wolfson, Tanya; Wolke, Ira; Wolz, Robin; Woo, Jongwook; Woo, Ellen; Woods, Lynn; Worth, Andrew; Worth, Eric; Wouters, Hans; Wu, Teresa; Wu, Yi-Gen; Wu, Liang; Wu, Xiaoling; Wyman, Bradley; Wyss-Coray, Tony; Xiao, Guanghua; Xiao, Liu; Xie, Sharon; Xu, Shunbin; Xu, Ye; Xu, Yi-Zheng; Xu, Guofan; Xu, Jun; Yamane, Tomohiko; Yamashita, Fumio; Yan, Yunyi; Yan, Pingkun; Yang, Eric; Yang, Jinzhong; Yang, Qing X.; Yang, Zijiang; Yang, Guang; Yang, Zhitong; Yang, Wenlu; Ye, Liang; Ye, Byoung Seok; Ye, Jieping; Ye, Jong; Yee, Laura; Yesavage, Jerome; Ying, Song; Yoo, Bongin; Young, Jonathan; Yu, Shiwei; Yu, Dongchuan; Yuan, Guihong; Yuan, Kai; Yushkevich, Paul; Zaborszky, Laszlo; Zagorodnov, Vitali; Zagorski, Michael; Zawadzki, Rezi; Zeitzer, Jamie; Zelinski, Elizabeth; Zhang, Kurt; Zhang, Huixiong; Zhang, Tianhao; Zhang, Xin; Zhang, Ping; Zhang, Bin; Zhang, Jing; Zhang, Linda; Zhang, Lijun; Zhang, Zhiguo; Zhao, Qinying; Zhao, Jim; Zhao, Peng; Zhen, Xiantong; Zheng, Yuanjie; Zhijun, Yao; Zhou, Bin; Zhou, Sheng; Zhu, Wen; Zhu, Hongtu; Zhu, Wanlin; Zilka, Samantha; Zito, Giancarlo; Zou, Heng

    2011-01-01

    Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer's disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by

  3. The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis*

    Science.gov (United States)

    Cwiklinski, Krystyna; de la Torre-Escudero, Eduardo; Trelis, Maria; Bernal, Dolores; Dufresne, Philippe J.; Brennan, Gerard P.; O'Neill, Sandra; Tort, Jose; Paterson, Steve; Marcilla, Antonio; Dalton, John P.; Robinson, Mark W.

    2015-01-01

    Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterization of the total secretome of this zoonotic parasite. Fasciola secretes at least two subpopulations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialized cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic data sets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular “machinery” required for EV biogenesis is constitutively expressed across the intramammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack. PMID:26486420

  4. Diagnostic performance and prognostic value of extravascular retention of I-123-labeled serum amyloid P component in systemic amyloidosis

    NARCIS (Netherlands)

    Hazenberg, Bouke P. C.; van Rijswijk, Martin H.; Lub-de Hooge, Marjolijn N.; Vellenga, Edo; Haagsma, Elizabeth B.; Posthumus, Marcel D.; Jager, Pieter L.

    Serum amyloid P component (SAP) binds to amyloid.I-123-SAP scintigraphy is used to evaluate the extent and distribution of amyloid in systemic amyloidosis and has great clinical value in the detection of systemic amyloidosis. The aim of the study was to assess during scintigraphy the diagnostic

  5. Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals.

    Directory of Open Access Journals (Sweden)

    Agustina Taglialegna

    2016-06-01

    Full Text Available Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria.

  6. Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases.

    Science.gov (United States)

    Alam, Parvez; Chaturvedi, Sumit Kumar; Siddiqi, Mohammad Khursheed; Rajpoot, Ravi Kant; Ajmal, Mohd Rehan; Zaman, Masihuz; Khan, Rizwan Hasan

    2016-05-27

    Protein misfolding and aggregation have been associated with several human diseases such as Alzheimer's, Parkinson's and familial amyloid polyneuropathy etc. In this study, anti-fibrillation activity of vitamin k3 and its effect on the kinetics of amyloid formation of hen egg white lysozyme (HEWL) and Aβ-42 peptide were investigated. Here, in combination with Thioflavin T (ThT) fluorescence assay, circular dichroism (CD), transmission electron microscopy and cell cytotoxicity assay, we demonstrated that vitamin k3 significantly inhibits fibril formation as well as the inhibitory effect is dose dependent manner. Our experimental studies inferred that vitamin k3 exert its neuro protective effect against amyloid induced cytotoxicity through concerted pathway, modifying the aggregation formation towards formation of nontoxic aggregates. Molecular docking demonstrated that vitamin k3 mediated inhibition of HEWL and Aβ-42 fibrillogenesis may be initiated by interacting with proteolytic resistant and aggregation prone regions respectively. This work would provide an insight into the mechanism of protein aggregation inhibition by vitamin k3; pave the way for discovery of other small molecules that may exert similar effect against amyloid formation and its associated neurodegenerative diseases.

  7. Dual role of interleukin-1β in islet amyloid formation and its β-cell toxicity: Implications for type 2 diabetes and islet transplantation.

    Science.gov (United States)

    Park, Yoo Jin; Warnock, Garth L; Ao, Ziliang; Safikhan, Nooshin; Meloche, Mark; Asadi, Ali; Kieffer, Timothy J; Marzban, Lucy

    2017-05-01

    Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to β-cell failure in type 2 diabetes, cultured and transplanted islets. We previously showed that biosynthetic hIAPP aggregates induce β-cell Fas upregulation and activation of the Fas apoptotic pathway. We used cultured human and hIAPP-expressing mouse islets to investigate: (1) the role of interleukin-1β (IL-1β) in amyloid-induced Fas upregulation; and (2) the effects of IL-1β-induced β-cell dysfunction on pro-islet amyloid polypeptide (proIAPP) processing and amyloid formation. Human and h IAPP -expressing mouse islets were cultured to form amyloid without or with the IL-1 receptor antagonist (IL-1Ra) anakinra, in the presence or absence of recombinant IL-1β. Human islets in which amyloid formation was prevented (amyloid inhibitor or Ad-prohIAPP-siRNA) were cultured similarly. β-cell function, apoptosis, Fas expression, caspase-8 activation, islet IL-1β, β-cell area, β-/α-cell ratio, amyloid formation, and (pro)IAPP forms were assessed. hIAPP aggregates were found to increase IL-1β levels in cultured human islets that correlated with β-cell Fas upregulation, caspase-8 activation and apoptosis, all of which were reduced by IL-1Ra treatment or prevention of amyloid formation. Moreover, IL-1Ra improved culture-induced β-cell dysfunction and restored impaired proIAPP processing, leading to lower amyloid formation. IL-1β treatment potentiated impaired proIAPP processing and increased amyloid formation in cultured human and h IAPP -expressing mouse islets, which were prevented by IL-1Ra. IL-1β plays a dual role by: (1) mediating amyloid-induced Fas upregulation and β-cell apoptosis; (2) inducing impaired proIAPP processing thereby potentiating amyloid formation. Blocking IL-1β may provide a new strategy to preserve β cells in conditions associated with islet amyloid formation. © 2017 John Wiley & Sons Ltd.

  8. Increased biogenesis of glucagon-containing secretory granules and glucagon secretion in BIG3-knockout mice

    Directory of Open Access Journals (Sweden)

    Hongyu Li

    2015-03-01

    Conclusions: Together with our previous studies, the current data reveal a conserved role for BIG3 in regulating alpha- and beta-cell functions. We propose that BIG3 negatively regulates hormone production at the secretory granule biogenesis stage and that such regulatory mechanism may be used in secretory pathways of other endocrine cells.

  9. Quantitative Analyses of Force-Induced Amyloid Formation in Candida albicans Als5p: Activation by Standard Laboratory Procedures.

    Directory of Open Access Journals (Sweden)

    Cho X J Chan

    Full Text Available Candida albicans adhesins have amyloid-forming sequences. In Als5p, these amyloid sequences cluster cell surface adhesins to create high avidity surface adhesion nanodomains. Such nanodomains form after force is applied to the cell surface by atomic force microscopy or laminar flow. Here we report centrifuging and resuspending S. cerevisiae cells expressing Als5p led to 1.7-fold increase in initial rate of adhesion to ligand coated beads. Furthermore, mechanical stress from vortex-mixing of Als5p cells or C. albicans cells also induced additional formation of amyloid nanodomains and consequent activation of adhesion. Vortex-mixing for 60 seconds increased the initial rate of adhesion 1.6-fold. The effects of vortex-mixing were replicated in heat-killed cells as well. Activation was accompanied by increases in thioflavin T cell surface fluorescence measured by flow cytometry or by confocal microscopy. There was no adhesion activation in cells expressing amyloid-impaired Als5pV326N or in cells incubated with inhibitory concentrations of anti-amyloid dyes. Together these results demonstrated the activation of cell surface amyloid nanodomains in yeast expressing Als adhesins, and further delineate the forces that can activate adhesion in vivo. Consequently there is quantitative support for the hypothesis that amyloid forming adhesins act as both force sensors and effectors.

  10. Proactive Semantic Interference is Associated with Total and Regional Abnormal Amyloid Load in Non-Demented Community-Dwelling Elders: A Preliminary Study.

    Science.gov (United States)

    Loewenstein, David A; Greig, Maria T; Curiel, Rosie; Rodriguez, Rosemarie; Wicklund, Meredith; Barker, Warren W; Hidalgo, Jacqueline; Rosado, Marian; Duara, Ranjan

    2015-12-01

    To evaluate the relationship between susceptibility to proactive semantic interference (PSI) and retroactive semantic interference (RSI) and brain amyloid load in non-demented elders. 27 participants (11 cognitively normal [CN] with subjective memory complaints, 8 CN without memory complaints, and 8 with mild cognitive impairment [MCI]) underwent complete neurological and neuropsychological evaluations. Participants also received the Semantic Interference Test (SIT) and AV-45 amyloid PET imaging. High levels of association were present between total amyloid load, regional amyloid levels, and the PSI measure (in the entire sample and a subsample excluding MCI subjects). RSI and other memory measures showed much weaker associations or no associations with total and regional amyloid load. No associations between amyloid levels and non-memory performance were observed. In non-demented individuals, vulnerability to PSI was highly associated with total and regional beta-amyloid load and may be an early cognitive marker of brain pathology. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes.

    Science.gov (United States)

    Tanaka, Yoshinori; Suzuki, Genjiro; Matsuwaki, Takashi; Hosokawa, Masato; Serrano, Geidy; Beach, Thomas G; Yamanouchi, Keitaro; Hasegawa, Masato; Nishihara, Masugi

    2017-03-01

    Progranulin (PGRN) haploinsufficiency resulting from loss-of-function mutations in the PGRN gene causes frontotemporal lobar degeneration accompanied by TDP-43 accumulation, and patients with homozygous mutations in the PGRN gene present with neuronal ceroid lipofuscinosis. Although it remains unknown why PGRN deficiency causes neurodegenerative diseases, there is increasing evidence that PGRN is implicated in lysosomal functions. Here, we show PGRN is a secretory lysosomal protein that regulates lysosomal function and biogenesis by controlling the acidification of lysosomes. PGRN gene expression and protein levels increased concomitantly with the increase of lysosomal biogenesis induced by lysosome alkalizers or serum starvation. Down-regulation or insufficiency of PGRN led to the increased lysosomal gene expression and protein levels, while PGRN overexpression led to the decreased lysosomal gene expression and protein levels. In particular, the level of mature cathepsin D (CTSDmat) dramatically changed depending upon PGRN levels. The acidification of lysosomes was facilitated in cells transfected with PGRN. Then, this caused degradation of CTSDmat by cathepsin B. Secreted PGRN is incorporated into cells via sortilin or cation-independent mannose 6-phosphate receptor, and facilitated the acidification of lysosomes and degradation of CTSDmat. Moreover, the change of PGRN levels led to a cell-type-specific increase of insoluble TDP-43. In the brain tissue of FTLD-TDP patients with PGRN deficiency, CTSD and phosphorylated TDP-43 accumulated in neurons. Our study provides new insights into the physiological function of PGRN and the role of PGRN insufficiency in the pathogenesis of neurodegenerative diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. The amyloid architecture provides a scaffold for enzyme-like catalysts.

    Science.gov (United States)

    Al-Garawi, Z S; McIntosh, B A; Neill-Hall, D; Hatimy, A A; Sweet, S M; Bagley, M C; Serpell, L C

    2017-08-03

    Natural biological enzymes possess catalytic sites that are generally surrounded by a large three-dimensional scaffold. However, the proportion of the protein molecule that participates in the catalytic reaction is relatively small. The generation of artificial or miniature enzymes has long been a focus of research because enzyme mimetics can be produced with high activity at low cost. These enzymes aim to mimic the active sites without the additional architecture contributed by the protein chain. Previous work has shown that amyloidogenic peptides are able to self-assemble to create an active site that is capable of binding zinc and catalysing an esterase reaction. Here, we describe the structural characterisation of a set of designed peptides that form an amyloid-like architecture and reveal that their capability to mimic carbonic anhydrase and serve as enzyme-like catalysts is related to their ability to self-assemble. These amyloid fibril structures can bind the metal ion Zn 2+ via a three-dimensional arrangement of His residues created by the amyloid architecture. Our results suggest that the catalytic efficiency of amyloid-like assembly is not only zinc-dependent but also depends on an active centre created by the peptides which is, in turn, dependent on the ordered architecture. These fibrils have good esterase activity, and they may serve as good models for the evolution of modern-day enzymes. Furthermore, they may be useful in designing self-assembling fibrils for applications as metal ion catalysts. This study also demonstrates that the ligands surrounding the catalytic site affect the affinity of the zinc-binding site to bind the substrate contributing to the enzymatic activity of the assembled peptides.

  13. Dissociation between brain amyloid deposition and metabolism in early mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Liyong Wu

    Full Text Available The hypothetical model of dynamic biomarkers for Alzheimer's disease (AD describes high amyloid deposition and hypometabolism at the mild cognitive impairment (MCI stage. However, it remains unknown whether brain amyloidosis and hypometabolism follow the same trajectories in MCI individuals. We used the concept of early MCI (EMCI and late MCI (LMCI as defined by the Alzheimer's disease Neuroimaging Initiative (ADNI-Go in order to compare the biomarker profile between EMCI and LMCI.To examine the global and voxel-based neocortical amyloid burden and metabolism among individuals who are cognitively normal (CN, as well as those with EMCI, LMCI and mild AD.In the present study, 354 participants, including CN (n = 109, EMCI (n = 157, LMCI (n = 39 and AD (n = 49, were enrolled between September 2009 and November 2011 through ADNI-GO and ADNI-2. Brain amyloid load and metabolism were estimated using [(18F]AV45 and [(18F]fluorodeoxyglucose ([(18F]FDG PET, respectively. Uptake ratio images of [(18F]AV45 and [(18F]FDG were calculated by dividing the summed PET image by the median counts of the grey matter of the cerebellum and pons, respectively. Group differences of global [(18F]AV45 and [(18F]FDG were analyzed using ANOVA, while the voxel-based group differences were estimated using statistic parametric mapping (SPM.EMCI patients showed higher global [(18F]AV45 retention compared to CN and lower uptake compared to LMCI. SPM detected higher [(18F]AV45 uptake in EMCI compared to CN in the precuneus, posterior cingulate, medial and dorsal lateral prefrontal cortices, bilaterally. EMCI showed lower [(18F]AV45 retention than LMCI in the superior temporal, inferior parietal, as well as dorsal lateral prefrontal cortices, bilaterally. Regarding to the global [(18F]FDG, EMCI patients showed no significant difference from CN and a higher uptake ratio compared to LMCI. At the voxel level, EMCI showed higher metabolism in precuneus, hippocampus, entorhinal and

  14. Amyloid arthropathy of the hip joint: MR demonstration of presumed amyloid lesions in 152 patients with long-term hemodialysis

    International Nuclear Information System (INIS)

    Otake, S.; Yamana, D.; Tsuruta, Y.; Mizutani, H.; Ohba, S.

    1998-01-01

    The aim of this study was to determine the spectrum of MR findings of presumed amyloid arthropathy of the hip joints in patients on long-term hemodialysis. We prospectively performed T1- and T2-weighted spin-echo imaging on 152 consecutive patients on hemodialysis. The duration of hemodialysis ranged from 5 months to 24 years, 2 months (mean: 8 years, 8 months). The frequency, location, and signal intensity of bone lesions were assessed. In 12 cases with contrast-enhanced MR examination, enhancement pattern of bone lesions, synovial lesions, and intra-articular lesions were characterized. Bone lesions presumed to be amyloid deposits were identified in 60 patients (39 %). Magnetic resonance imaging revealed that amyloid lesions were more extensive than anticipated by plain radiographs. All bone lesions showed decreased signal intensity on T1-weighted images. On T2-weighted images, bone lesions showed increased signal intensity in 32 patients (54 %), decreased signal intensity in 11 patients (18 %), and both increased and decreased signal intensity in 17 patients (28 %). Following intravenous injection of gadolinium-based contrast, all bone lesions showed moderate enhancement. Synovial thickening could not be identified on T1- and T2-weighted images. However, contrast-enhanced images showed thickened synovial membrane, which could be differentiated from joint fluid. Intra-articular nodules showed decreased or intermediate signal intensity on T1-weighted images and decreased signal intensity on T2-weighted images; the intra-articular nodules were contiguous with subchondral bone lesions. Magnetic resonance imaging is useful for evaluating the distribution and extent of amyloidosis of the hip joints in patients undergoing long-term hemodialysis. (orig.) (orig.)

  15. Effects of diet-induced hypercholesterolemia on amyloid ...

    Indian Academy of Sciences (India)

    2012-10-27

    Oct 27, 2012 ... A central hypothesis in the study of Alzheimer's disease (AD) is the accumulation and aggregation of β-amyloid ... protein (APP) and estrogen has been implicated in the pre- .... inant in HCL in the intensity of the expression was lower ..... estrogen replacement therapy of the Women's Health Initiative.

  16. Sequence-Dependent Self-Assembly and Structural Diversity of Islet Amyloid Polypeptide-Derived β-Sheet Fibrils

    International Nuclear Information System (INIS)

    Wang, Shih-Ting; Lin, Yiyang; Spencer, Ryan K.; Thomas, Michael R.; Nguyen, Andy I.

    2017-01-01

    Determining the structural origins of amyloid fibrillation is essential for understanding both the pathology of amyloidosis and the rational design of inhibitors to prevent or reverse amyloid formation. In this work, the decisive roles of peptide structures on amyloid self-assembly and morphological diversity were investigated by the design of eight amyloidogenic peptides derived from islet amyloid polypeptide. Among the segments, two distinct morphologies were highlighted in the form of twisted and planar (untwisted) ribbons with varied diameters, thicknesses, and lengths. In particular, transformation of amyloid fibrils from twisted ribbons into untwisted structures was triggered by substitution of the C-terminal serine with threonine, where the side chain methyl group was responsible for the distinct morphological change. This effect was confirmed following serine substitution with alanine and valine and was ascribed to the restriction of intersheet torsional strain through the increased hydrophobic interactions and hydrogen bonding. We also studied the variation of fibril morphology (i.e., association and helicity) and peptide aggregation propensity by increasing the hydrophobicity of the peptide side group, capping the N-terminus, and extending sequence length. Lastly, we anticipate that our insights into sequence-dependent fibrillation and morphological diversity will shed light on the structural interpretation of amyloidogenesis and development of structure-specific imaging agents and aggregation inhibitors.

  17. Breast cancer and amyloid bodies: is there a role for amyloidosis in cancer-cell dormancy?

    Directory of Open Access Journals (Sweden)

    Mizejewski GJ

    2017-04-01

    Full Text Available Gerald J Mizejewski Wadsworth Center, New York State Department of Health, Albany, NY, USA Abstract: Breast cancer and Alzheimer’s disease (AD are major causes of death in older women. Interestingly, breast cancer occurs less frequently in AD patients than in the general population. Amyloidosis, the aggregation of amyloid proteins to form amyloid bodies, plays a central role in the pathogenesis of AD and other human neuropathies by forming intracellular fibrillary proteins. Contrary to popular belief, amyloidosis is a common occurrence in mammalian cells, and has recently been reported to be a natural physiological process in response to environmental stress stimulations (such as pH and temperature extremes, hypoxia, and oxidative stress. Many proteins contain an intrinsic “amyloid-converting motif”, which acts in conjunction with a specific noncoding RNA to induce formation of proteinaceous amyloid bodies that are stored in intracellular bundles. In cancer cells such as breast and prostate, the process of amyloidosis induces cells to enter a dormant or resting stage devoid of cell division and proliferation. Therefore, cancer cells undergo growth cessation and enter a dormant stage following amyloidosis in the cell; this is akin to giving the cell AD to cease growth. Keywords: α-fetoprotein, noncoding RNA, amyloid bodies, dormancy, breast cancer, Alzheimer’s disease

  18. New Cyclolignans from Origanumglandulosum Active Against b -amyloid Aggregation

    Directory of Open Access Journals (Sweden)

    Abdelkader Basli

    2014-05-01

    Full Text Available Origanum glandulosum Desf is an endemic flavoring herb widely distributed in North Africa that is commonly used in traditional medicine. This oregano species is rich in essential oils but little is known about its phenolic composition. In the present study, a crude extract of O. glandulosum was prepared in order to isolate and investigate its neuroprotective potential to inhibit β-amyloid peptide (Aβ aggregation. The three major compounds of the extract were isolated: rosmarinic acid and two cyclolignans in Origanum genus, globoidnan A and a new derivative named globoidnan B. Rosmarinic acid and globoidnan A showed significant anti-aggregative activity against β amyloid aggregation (IC50 7.0 and 12.0 µM, respectively. In contrast, globoidnan B was found to be less active.

  19. Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein

    Directory of Open Access Journals (Sweden)

    Masahiro Kawahara

    2011-01-01

    Full Text Available Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP play crucial roles in the pathogenesis of Alzheimer's disease (AD. Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal membranes, form cation-sensitive ion channels (“amyloid channels”, and cause the disruption of calcium homeostasis via the amyloid channels. Other disease-related amyloidogenic proteins, such as prion protein in prion diseases or α-synuclein in dementia with Lewy bodies, exhibit similarities in the incorporation into membranes and the formation of calcium-permeable channels. Here, based on our experimental results and those of numerous other studies, we review the current understanding of the direct binding of AβP into membrane surfaces and the formation of calcium-permeable channels. The implication of composition of membrane lipids and the possible development of new drugs by influencing membrane properties and attenuating amyloid channels for the treatment and prevention of AD is also discussed.

  20. Alzheimer's disease amyloid-beta links lens and brain pathology in Down syndrome.

    Directory of Open Access Journals (Sweden)

    Juliet A Moncaster

    2010-05-01

    Full Text Available Down syndrome (DS, trisomy 21 is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans. In DS, triplication of chromosome 21 invariably includes the APP gene (21q21 encoding the Alzheimer's disease (AD amyloid precursor protein (APP. Triplication of the APP gene accelerates APP expression leading to cerebral accumulation of APP-derived amyloid-beta peptides (Abeta, early-onset AD neuropathology, and age-dependent cognitive sequelae. The DS phenotype complex also includes distinctive early-onset cerulean cataracts of unknown etiology. Previously, we reported increased Abeta accumulation, co-localizing amyloid pathology, and disease-linked supranuclear cataracts in the ocular lenses of subjects with AD. Here, we investigate the hypothesis that related AD-linked Abeta pathology underlies the distinctive lens phenotype associated with DS. Ophthalmological examinations of DS subjects were correlated with phenotypic, histochemical, and biochemical analyses of lenses obtained from DS, AD, and normal control subjects. Evaluation of DS lenses revealed a characteristic pattern of supranuclear opacification accompanied by accelerated supranuclear Abeta accumulation, co-localizing amyloid pathology, and fiber cell cytoplasmic Abeta aggregates (approximately 5 to 50 nm identical to the lens pathology identified in AD. Peptide sequencing, immunoblot analysis, and ELISA confirmed the identity and increased accumulation of Abeta in DS lenses. Incubation of synthetic Abeta with human lens protein promoted protein aggregation, amyloid formation, and light scattering that recapitulated the molecular pathology and clinical features observed in DS lenses. These results establish the genetic etiology of the distinctive lens phenotype in DS and identify the molecular origin and pathogenic mechanism by which lens pathology is expressed in this common chromosomal disorder. Moreover, these findings confirm increased Abeta