WorldWideScience

Sample records for cold-water evaluation ice

  1. Changes of brachial arterial doppler waveform during immersion of the hand of young men in ice-cold water

    International Nuclear Information System (INIS)

    Kim, Young Goo

    1994-01-01

    To evaluate the changes of brachial arterial Doppler waveform during immersion of the hand of young men in ice-cold water. Doppler waveforms of brachial arteries in 11 young male patients were recorded before and during immersion of ipsilateral hand in ice-cold water(4-5 .deg. C). The procedure was repeated on separate days. Patterns of waveform during immersion were compared with the changes of pulsatility index. Four men showed high impedance waveforms, and 5 men showed low impedance waveforms during immersion both at the first and at the second study. Two men, however, showed high impedance waveforms at the first study and tow impedance waveforms at the second study. The pulsatility index rose and fell in high and low impedance waveforms, respectively. The changes of brachial arterial Doppler waveforms could be classified into high and low impedance patterns, probably reflecting the acute changes in downstream impedance during immersion of hand in ice-cold water

  2. Photolytic degradation of methyl-parathion and fenitrothion in ice and water: Implications for cold environments

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jan [Lancaster Environment Centre, Centre for Chemicals Management, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Kurkova, Romana; Klanova, Jana [RECETOX, Faculty of Science, Masaryk University, Kamenice 3, 625 00 Brno (Czech Republic); Klan, Petr, E-mail: klan@sci.muni.c [Dept of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A8, 625 00 Brno (Czech Republic); Halsall, Crispin J., E-mail: c.halsall@lancaster.ac.u [Lancaster Environment Centre, Centre for Chemicals Management, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2009-12-15

    Here we investigate the photodegradation of structurally similar organophosphorus pesticides; methyl-parathion and fenitrothion in water (20 deg. C) and ice (-15 deg. C) under environmentally-relevant conditions with the aim of comparing these laboratory findings to limited field observations. Both compounds were found to be photolyzed more efficiently in ice than in aqueous solutions, with quantum yields of degradation being higher in ice than in water (fenitrothion > methyl-parathion). This rather surprising observation was attributed to the concentration effect caused by freezing the aqueous solutions. The major phototransformation products included the corresponding oxons (methyl-paraoxon and fenitroxon) and the nitrophenols (3-methyl-nitrophenol and nitrophenol) in both irradiated water and ice samples. The presence of oxons in ice following irradiation, demonstrates an additional formation mechanism of these toxicologically relevant compounds in cold environments, although further photodegradation of oxons in ice indicates that photochemistry of OPs might be an environmentally important sink in cold environments. - Photodegradation of methyl-parathion and fenitrothion in water and ice under environmentally-relevant conditions is described.

  3. Cold pleasure. Why we like ice drinks, ice-lollies and ice cream.

    Science.gov (United States)

    Eccles, R; Du-Plessis, L; Dommels, Y; Wilkinson, J E

    2013-12-01

    This review discusses how the ingestion of cold foods and drinks may be perceived as pleasant because of the effects of cooling of the mouth. The case is made that man has originated from a tropical environment and that cold stimuli applied to the external skin may initiate thermal discomfort and reflexes such as shivering and vasoconstriction that defend body temperature, whereas cold stimuli applied to the mouth are perceived as pleasant because of pleasure associated with satiation of thirst and a refreshing effect. Cold water is preferred to warm water as a thirst quencher and cold products such as ice cream may also be perceived as pleasant because oral cooling satiates thirst. The case is made that cold stimuli may be perceived differently in the skin and oral mucosa, leading to different effects on temperature regulation, and perception of pleasure or displeasure, depending on the body temperature and the temperature of the external environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Cold Water Vapor in the Barnard 5 Molecular Cloud

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Persson, C. M.; Buckle, J. V.; Cordiner, M. A.; Takakuwa, S.

    2014-01-01

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  5. COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Wirström, E. S.; Persson, C. M. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Charnley, S. B.; Cordiner, M. A. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); Buckle, J. V. [Astrophysics Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Takakuwa, S., E-mail: eva.wirstrom@chalmers.se [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2014-06-20

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (∼10 K) water vapor has been detected—L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work—likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H{sub 2}O (J = 1{sub 10}-1{sub 01}) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  6. Infrared Thermal Signature Evaluation of a Pure and Saline Ice for Marine Operations in Cold Climate

    Directory of Open Access Journals (Sweden)

    Taimur Rashid

    2015-11-01

    Full Text Available Marine operations in cold climates are subjected to abundant ice accretion, which can lead to heavy ice loads over larger surface area. For safe and adequate operations on marine vessels over a larger area, remote ice detection and ice mitigation system can be useful. To study this remote ice detection option, lab experimentation was performed to detect the thermal gradient of ice with the infrared camera. Two different samples of ice blocks were prepared from tap water and saline water collected from the North Atlantic Ocean stream. The surfaces of ice samples were observed at room temperature. A complete thermal signature over the surface area was detected and recorded until the meltdown process was completed. Different temperature profiles for saline and pure ice samples were observed, which were kept under similar conditions. This article is focused to understand the experimentation methodology and thermal signatures of samples. However, challenges remains in terms of the validation of the detection signature and elimination of false detection.

  7. Protozoan Bacterivory in the Ice and the Water Column of a Cold Temperate Lagoon.

    Science.gov (United States)

    Sime-Ngando; Demers; Juniper

    1999-02-01

    > Abstract Bacterial abundance and bacterivorous protist abundance and activity were examined in ice-brine and water column communities of a cold temperate Japanese lagoon (Saroma-Ko Lagoon, Hokkaido, 44 degreesN, 144 degreesE), during the late winter phase of ice community development (February-March 1992). Bacterial abundance averaged 6 and 1 x 10(5) cells ml-1 in the ice-brine and plankton samples, respectively, and generally decreased during the sampling period. Bacterivorous protists, identified based on direct observation of short-term (Protist abundance averaged 4 x 10(3) and 8.1 cells ml-1 in the ice-brine and 0.3 x 10(3) and 1.2 cells ml-1 in the plankton, for flagellates and ciliates, respectively. In contrast to bacteria, the abundance of protists generally increased throughout the sampling period, indicating predator-prey interactions. Protistan bacterivory, measured from the rate of FLB disappearance over 24 h, averaged 36% (ice) and 24% (plankton) of bacterial standing stock and exhibited the same seasonal pattern as for protist abundance. The calculated specific clearance (range, 2-67 nl protozoa-1 h-1) and ingestion (protists" on nonbacterial food items were also provided. Although alternative sources of bacterial loss are likely to be of importance, this study provides evidence for the potential of protozoan assemblages as bacterial grazers in both sea ice-brine biota and water column at the southern limit of sea ice in the northern hemisphere.

  8. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    Science.gov (United States)

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  9. Experimental study of natural convection adjacent to an isothermal vertical ice cylinder in cold pure water

    International Nuclear Information System (INIS)

    Riu, Kap Jong; Yea, Yong Taeg; Park, Sang Hee

    1991-01-01

    A natural convection adjacent to an isothermal vertical ice cylinder is studied experimentally in cold pure water. The experiments are carried out as changing the temperature of the ambient water and then the flow and heat transfer characteristics is visualized and observed. It is shown that flow patterns are steady state upflow, unsteady state flow, steady state dual flow, and steady state downflow. There is also obtained a heat transfer coefficient and mean Nusselt number at various ambient temperature. These results are in good agreement with the theoretical ones. (Author)

  10. Ergogenic effects of precooling with cold water immersion and ice ingestion: A meta-analysis.

    Science.gov (United States)

    Choo, Hui C; Nosaka, Kazunori; Peiffer, Jeremiah J; Ihsan, Mohammed; Abbiss, Chris R

    2018-03-01

    This review evaluated the effects of precooling via cold water immersion (CWI) and ingestion of ice slurry/slushy or crushed ice (ICE) on endurance performance measures (e.g. time-to-exhaustion and time trials) and psychophysiological parameters (core [T core ] and skin [T skin ] temperatures, whole body sweat [WBS] response, heart rate [HR], thermal sensation [TS], and perceived exertion [RPE]). Twenty-two studies were included in the meta-analysis based on the following criteria: (i) cooling was performed before exercise with ICE or CWI; (ii) exercise longer than 6 min was performed in ambient temperature ≥26°C; and (iii) crossover study design with a non-cooling passive control condition. CWI improved performance measures (weighted average effect size in Hedges' g [95% confidence interval] + 0.53 [0.28; 0.77]) and resulted in greater increase (ΔEX) in T skin (+4.15 [3.1; 5.21]) during exercise, while lower peak T core (-0.93 [-1.18; -0.67]), WBS (-0.74 [-1.18; -0.3]), and TS (-0.5 [-0.8; -0.19]) were observed without concomitant changes in ΔEX-T core (+0.19 [-0.22; 0.6]), peak T skin (-0.67 [-1.52; 0.18]), peak HR (-0.14 [-0.38; 0.11]), and RPE (-0.14 [-0.39; 0.12]). ICE had no clear effect on performance measures (+0.2 [-0.07; 0.46]) but resulted in greater ΔEX-T core (+1.02 [0.59; 1.45]) and ΔEX-T skin (+0.34 [0.02; 0.67]) without concomitant changes in peak T core (-0.1 [-0.48; 0.28]), peak T skin (+0.1 [-0.22; 0.41]), peak HR (+0.08 [-0.19; 0.35]), WBS (-0.12 [-0.42; 0.18]), TS (-0.2 [-0.49; 0.1]), and RPE (-0.01 [-0.33; 0.31]). From both ergogenic and thermoregulatory perspectives, CWI may be more effective than ICE as a precooling treatment prior to exercise in the heat.

  11. Cold water recovery reduces anaerobic performance.

    Science.gov (United States)

    Crowe, M J; O'Connor, D; Rudd, D

    2007-12-01

    This study investigated the effects of cold water immersion on recovery from anaerobic cycling. Seventeen (13 male, 4 female) active subjects underwent a crossover, randomised design involving two testing sessions 2 - 6 d apart. Testing involved two 30-s maximal cycling efforts separated by a one-hour recovery period of 10-min cycling warm-down followed by either passive rest or 15-min cold water immersion (13 - 14 degrees C) with passive rest. Peak power, total work and postexercise blood lactate were significantly reduced following cold water immersion compared to the first exercise test and the control condition. These variables did not differ significantly between the control tests. Peak exercise heart rate was significantly lower after cold water immersion compared to the control. Time to peak power, rating of perceived exertion, and blood pH were not affected by cold water immersion compared to the control. Core temperature rose significantly (0.3 degrees C) during ice bath immersion but a similar increase also occurred in the control condition. Therefore, cold water immersion caused a significant decrease in sprint cycling performance with one-hour recovery between tests.

  12. Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole

    Science.gov (United States)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2017-01-01

    The small obliquity of Mercury causes topographic depressions located near its poles to cast persistent shadows. Many [1, 9, 15] have shown these permanently shadowed regions (PSRs) may trap water ice for geologic time periods inside cold-traps. More recently, direct evidence for the presence of water ice deposits inside craters was remotely sensed in RADAR [5] and visible imagery [3]. Albedo measurements (reflectence at 1064 nm) obtained by the MErcury Space ENviroment GEochemistry and Ranging Laser Altimeter (MLA) found unusually bright and dark areas next to Mercury's north pole [7]. Using a thermal illumination model, Paige et al. [8] found the bright deposits are correlated with surface cold-traps, and the dark deposits are correlated with subsurface cold-traps. They suggested these anomalous deposits were brought to the surface by comets and were processed by the magnetospheric radiation flux, removing hydrogen and mixing C-N-O-S atoms to form a variety of molecules which will darken with time. Here we use a thermal illumination model to find the link between the cold-trap area fraction of a rough surface and its albedo. Using this link and the measurements obtained by MESSENGER we derive a surface and a subsurface ice distribution map on Mercury's north pole below the MESSENGER spatial resolution, approximately 500 m. We find a large fraction of the polar ice on Mercury resides inside micro cold-traps (of scales 10 - 100 m) distributed along the inter-crater terrain.

  13. Muscle Reaction Time During a Simulated Lateral Ankle Sprain After Wet-Ice Application or Cold-Water Immersion.

    Science.gov (United States)

    Thain, Peter K; Bleakley, Christopher M; Mitchell, Andrew C S

    2015-07-01

    Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. Randomized controlled clinical trial. University of Hertfordshire human performance laboratory. A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P > .05). Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is warranted to assess the clinical applicability of these interventions.

  14. Load leveling of the Tohoku Electric Power Co. Development of ice storage cold-water manufacturing unit/solid organic waste treatment equipment using midnight power for cold district; Tohoku Denryoku no fuka heijunka. Kori chikunetsu reisui seizo unit no kaihatsu, shin`ya denryoku riyo kanreichi muke kokei yuki haikibutsu shori sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    An ice storage cold-water manufacturing unit that can manufacture cold water at a stable temperature near 0degC by using midnight power and a solid organic waste treatment facility were developed. The high-speed melting of ice is required to stabilize the cold-water temperature. Therefore, experimental investigation was performed. A piece of flake-shaped ice whose surface area and storage quality are balanced was used. A system that melts ice using the melting tank installed outside an icebox, and a high-speed melting system of ice based on the mixing unit installed in a melting tank were also used together. In the validation test of a prototype for smaller food factories, the following was confirmed. Manufacturing of cold water at about 1degC, amount of cooled water, stability of output water temperature for a change in water temperature, and good storage of ice in an icebox. In the prototype developed for a solid organic waste treatment facility, satisfactory performance was confirmed for following. Temperature in a fermenter when wastes were put, moisture content in a fermenter, pH value, net loss when the refuse of fish is put, and saving of an electricity rate. 6 figs., 2 tabs.

  15. New evidence for surface water ice in small-scale cold traps and in three large craters at the north polar region of Mercury from the Mercury Laser Altimeter

    Science.gov (United States)

    Deutsch, Ariel N.; Neumann, Gregory A.; Head, James W.

    2017-09-01

    The Mercury Laser Altimeter (MLA) measured surface reflectance, rs, at 1064 nm. On Mercury, most water-ice deposits have anomalously low rs values indicative of an insulating layer beneath which ice is buried. Previous detections of surface water ice (without an insulating layer) were limited to seven possible craters. Here we map rs in three additional permanently shadowed craters that host radar-bright deposits. Each crater has a mean rs value >0.3, suggesting that water ice is exposed at the surface without an overlying insulating layer. We also identify small-scale cold traps (rs >0.3 and permanent shadows have biannual maximum surface temperatures <100 K. We suggest that a substantial amount of Mercury's water ice is not confined to large craters but exists within microcold traps, within rough patches and intercrater terrain.

  16. The De-Icing Comparison Experiment (D-ICE): A campaign for improving data retention rates of radiometric measurements under icing conditions in cold regions

    Science.gov (United States)

    Cox, C. J.; Morris, S. M.

    2017-12-01

    Longwave and shortwave radiative fluxes are fundamental quantities regularly observed globally using broadband radiometers. In cold climates, frost, rime, snow and ice (collectively, "icing") frequently builds up on sensor windows, contaminating measurements. Since icing occurs under particular meteorological conditions, associated data losses constitutes a climatological bias. Furthermore, the signal caused by ice is difficult to distinguish from that of clouds, hampering efforts to identify contaminated from real data in post-processing. Because of the sensitivity of radiometers to internal temperature instabilities, there are limitations to using heat as a de-icing method. The magnitude of this problem is indicated by the large number of research institutions and commercial vendors that have developed various de-icing strategies. The D-ICE campaign has been designed to bring together a large number of currently available systems to quantitatively evaluate and compare ice-migration strategies and also to characterize the potentially adverse effects of the techniques themselves. For D-ICE, a variety of automated approaches making use of ventilation, heating, modified housings and alcohol spray are being evaluated alongside standard units operating with only the regularly scheduled manual cleaning by human operators at the NOAA Baseline Surface Radiation Network (BSRN) station in Utqiaġvik (formerly Barrow), Alaska. Previous experience within the BSRN community suggests that aspiration of ambient air alone may be sufficient to maintain ice-free radiometers without increasing measurement uncertainty during icing conditions, forming the main guiding hypothesis of the experiment. Icing on the sensors is monitored visually using cameras recording images every 15 minutes and quantitatively using an icing probe and met station. The effects of applied heat on infrared loss in pyranometers will be analyzed and the integrated effect of icing on monthly averages will be

  17. Exospheric transport restrictions on water ice in lunar polar traps

    Science.gov (United States)

    Hodges, R. R., Jr.

    1991-01-01

    There is little doubt that at least 10 exp 17 g of water has accreted on the moon as a result of the reduction of ferric iron at the regolith surface by solar wind protons, the vaporization of chondrites, and perhaps comet impacts. Lacking an efficient escape mechanism, most of this water (or its progeny) is probably on the moon now. If the water were to have migrated to permanently shaded cold traps near the lunar poles, ice deposts with densities greater than 1000 g/sq cm would cover the traps, providing accessible resources. However, exospheric transport considerations suggest that the actual amount of water ice in the cold traps is probably too small to be of practical interest. The alternative is global assimilation of most of the water into the regolith, a process that must account for about 30 micromoles of water per gram of soil.

  18. Up-going Red Water in the Ice at the Bottom of the World: Picture Taking Boxes and Listening Boxes Tell Us How and Why

    Science.gov (United States)

    Carr, C. G.; Pettit, E. C.

    2017-12-01

    Blood Falls is a place where red water comes out from under ice to the top of the ice and makes a strange red water fall. This ice is part of the big ice at the bottom of the world. The red water only comes out at some times and not every year, but it always comes out at the same place. The red water is important because it has tiny tiny not-animal life that tells us how life could be on other worlds. Knowing about the ice and red water is important because this ice is cold, colder than other ice in other places, and we want to know how water can get through. We didn't know why the red water comes up from under the ice when it does or how. We wanted to understand how the ice breaks and we watched the ice by taking pictures all year to see when the red water comes out. We found out that in the cold part of one year, the red water came out even though the air was not warm enough for water to be water! We think the red water comes out because the red water is blocked under the heavy ice and gets pushed tight. In the cold part of the year, cracks break down from the air into the ice and other cracks break up from under the ice because the red water is so pushed. The cracks from the top and bottom of the ice join, and the red water comes out. We used listening boxes that can feel how the ground moves to understand that the ice is breaking at the bottom and we can see that it breaks at the top of the ice. The red water can stay water and not ice inside the big ice because the red water has tiny pieces of the same stuff that can turn ice into water on the roads. If the ice breaks in the cold time, no water can get in from the top of the ice, so the red water under the ice stays clean from the air water. If the ice breaks in the warm time of year, water could get in from the top of the ice and make the red water under the ice not clean from the air. Since we saw in our pictures that the red water came out in the cold time of year, this means the red water could stay clean

  19. Study of Cycling Air-Cooling System with a Cold Accumulator for Micro Gas-Turbine Installations

    Science.gov (United States)

    Ochkov, V. F.; Stepanova, T. A.; Katenev, G. M.; Tumanovskii, V. A.; Borisova, P. N.

    2018-05-01

    Using the cycling air-cooling systems of the CTIC type (Combustion Turbine Inlet Cooling) with a cold accumulator in a micro gas-turbine installation (micro-GTI) to preserve its capacity under the seasonal temperature rise of outside air is described. Water ice is used as the body-storage in the accumulators, and ice water (water at 0.5-1.0°C) is used as the body that cools air. The ice water circulates between the accumulator and the air-water heat exchanger. The cold accumulator model with renewable ice resources is considered. The model contains the heat-exchanging tube lattice-evaporator covered with ice. The lattice is cross-flowed with water. The criterion heat exchange equation that describes the process in the cold accumulator under consideration is presented. The calculations of duration of its active operation were performed. The dependence of cold accumulator service life on water circulation rate was evaluated. The adequacy of the design model was confirmed experimentally in the mock-up of the cold accumulator with a refrigerating machine periodically creating a 200 kg ice reserve in the reservoir-storage. The design model makes it possible to determine the weight of ice reserve of the discharged cold accumulator for cooling the cycle air in the operation of a C-30 type micro- GTI produced by the Capstone Company or micro-GTIs of other capacities. Recommendations for increasing the working capacity of cold accumulators of CTIC-systems of a micro-GTI were made.

  20. The role of water ice clouds in the Martian hydrologic cycle

    Science.gov (United States)

    James, Philip B.

    1990-01-01

    A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water ice clouds, which are included as an independent phase in addition to ground ice and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water ice clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry ice in the south acts as a cold trap which, in the absence of sources other than the caps, will ultimately attract the water ice from the north cap; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and ice can be in a steady state even if a residual CO2 cap is a permanent feature of the system.

  1. High-Speed Imaging of a Water Droplet Impacting a Super Cold Surface

    KAUST Repository

    Khaled, Narimane

    2016-08-01

    Frost formation is of a major research interest as it can affect many industrial processes. Frost appears as a thin deposit of ice crystals when the temperature of the surface is below the freezing point of the liquid. The objective of this research is to study icing with hope to propose new anti-icing and deicing methods. In the beginning of the research, cracking of the ice layer was observed when a deionized water droplet impacts a ?50 oC cooled sphere surface that is in contact with dry ice. To further investigate the cracks occurrence, multiple experiments were conducted. It was observed that the sphere surface temperature and droplet temperature (ranges from 10-80 oC) have no effect on the crack formation. On the other hand, it was observed that formation of a thin layer of frost on the sphere before the drop impact leads the lateral cracking of the ice. Thus, attempts to reproduce the cracks on clean super cold sphere surfaces were made using scratched and sandblasted spheres as well as superhydrophobized and polymer particle coated spheres. Furthermore, innovative methods were tried to initiate the cracks by placing epoxy glue bumps and ice-islands coatings on the surface of the spheres. All of these attempts to reproduce the crack formation without the presence of frost, failed. Nonetheless, the adding of isolated frost on the sphere surfaces always leads to the crack formation. Generally, frost forms on the small spheres faster than it does on the bigger ones. Additionally, the cold water droplet produces thicker water and ice layer compared to a hot water droplet; and the smaller the sphere the larger its water and ice layer thicknesses.

  2. Survey of public knowledge and responses to educational slogans regarding cold-water immersion.

    Science.gov (United States)

    Giesbrecht, Gordon G; Pretorius, Thea

    2008-01-01

    Cold water temperature is a significant factor in North American drownings. These deaths are usually attributed to hypothermia. Survey questions were administered to 661 attendees of cold-stress seminars-including medical, rescue, law enforcement and lay attendees-to determine general knowledge of the effects of ice water immersion and responses to 2 public service educational slogans. Five questions were posed at the beginning of seminars to 8 groups (ranging in size from 46 to 195) during a 2-year period. Pi(2) analyses were used to determine if responses within any occupational category differed from the group responses. A high portion of respondents greatly underestimated the time to become hypothermic in ice water (correct answer >30 minutes; 84% stated 15 minutes or less) and the time until cooling was life threatening (correct answer >60 minutes; 85% stated 30 minutes or less). There were no occupational differences in these responses. Most of the respondents identified a correct cause of death during cold stress (81% stated cardiac arrest, hypothermia, or drowning). Although both educational slogans had some advantages, between 40% (Slogan #1) to 50% (Slogan #2) of respondents did not respond correctly. The majority of respondents underestimated the time available for survival during ice water immersion. It is important to educate the public accurately to decrease the probability of panic under these circumstances. More work is required to develop effective educational slogans that provide proper information and actions for victims of cold-water immersion.

  3. WATER ICE IN THE KUIPER BELT

    International Nuclear Information System (INIS)

    Brown, M. E.; Fraser, W. C.; Schaller, E. L.

    2012-01-01

    We examine a large collection of low-resolution near-infrared spectra of Kuiper Belt objects (KBOs) and centaurs in an attempt to understand the presence of water ice in the Kuiper Belt. We find that water ice on the surface of these objects occurs in three separate manners: (1) Haumea family members uniquely show surfaces of nearly pure water ice, presumably a consequence of the fragmentation of the icy mantle of a larger differentiated proto-Haumea; (2) large objects with absolute magnitudes of H < 3 (and a limited number to H = 4.5) have surface coverings of water ice—perhaps mixed with ammonia—that appears to be related to possibly ancient cryovolcanism on these large objects; and (3) smaller KBOs and centaurs which are neither Haumea family members nor cold-classical KBOs appear to divide into two families (which we refer to as 'neutral' and 'red'), each of which is a mixture of a common nearly neutral component and either a slightly red or very red component that also includes water ice. A model suggesting that the difference between neutral and red objects due to formation in an early compact solar system either inside or outside, respectively, of the ∼20 AU methanol evaporation line is supported by the observation that methanol is only detected on the reddest objects, which are those which would be expected to have the most of the methanol containing mixture.

  4. Sensation of Cold during the Ice Water Test Corresponds to the Perception of Pain during Botulinum Toxin Bladder Wall Injections.

    Science.gov (United States)

    Reitz, André; Hüsch, Tanja; Doggweiler, Regula; Buse, Stephan; Haferkamp, Axel

    2018-01-01

    To investigate the association of bladder cold sensation (BCS) during the ice water test (IWT) and pain perception when botulinum toxin injections (BTI) are administered into the bladder wall. In 86 patients with idiopathic overactive bladder, the BCS during the IWT was investigated. Patients were divided into 2 groups: with and without BCS. During subsequent administration of BTI, the number of perceived and painful injections as well as the pain levels on a 0-100 pain scale were compared in both groups using Student t test. Thirty-five patients reported a BCS, while 51 did not. After 10 BTI, the mean number of perceived injections was 7.9 in patients with and 2.4 in patients without BCS (p sensation (p perceptions of cold and pain in the urinary bladder may use similar receptors and neuronal pathways. © 2018 S. Karger AG, Basel.

  5. New measurements on water ice photodesorption and product formation under ultraviolet irradiation

    Science.gov (United States)

    Cruz-Diaz, Gustavo A.; Martín-Doménech, Rafael; Moreno, Elena; Muñoz Caro, Guillermo M.; Chen, Yu-Jung

    2018-03-01

    The photodesorption of icy grain mantles has been claimed to be responsible for the abundance of gas-phase molecules towards cold regions. Being water a ubiquitous molecule, it is crucial to understand its role in photochemistry and its behaviour under an ultraviolet field. We report new measurements on the ultraviolet (UV) photodesorption of water ice and its H2, OH, and O2 photoproducts using a calibrated quadrupole mass spectrometer. Solid water was deposited under ultra-high-vacuum conditions and then UV-irradiated at various temperatures starting from 8 K with a microwave discharged hydrogen lamp. Deuterated water was used for confirmation of the results. We found a photodesorption yield of 1.3 × 10-3 molecules per incident photon for water and 0.7 × 10-3 molecules per incident photon for deuterated water at the lowest irradiation temperature, 8 K. The photodesorption yield per absorbed photon is given and comparison with astrophysical scenarios, where water ice photodesorption could account for the presence of gas-phase water towards cold regions in the absence of a thermal desorption process, is addressed.

  6. Pseudo one-dimensional analysis of polymer electrolyte fuel cell cold-start

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Wang, Yun [NON LANL; Mishlera, Jeff [NON LANL

    2009-01-01

    This paper investigates the electrochemical kinetics, oxygen transport, and solid water formation in polymer electrolyte fuel cell (PEFC) during cold start. Following [Yo Wang, J. Electrochem. Soc., 154 (2007) B1041-B1048], we develop a pseudo one-dimensional analysis, which enables the evaluation of the impact of ice volume fraction and temperature variations on cell performance during cold-start. The oxygen profile, starvation ice volume fraction, and relevant overpotentials are obtained. This study is valuable for studying the characteristics of PEFC cold-start.

  7. Reduced cerebral perfusion on sudden immersion in ice water: a possible cause of drowning

    DEFF Research Database (Denmark)

    Mantoni, Teit; Belhage, Bo; Pedersen, Lars M

    2007-01-01

    INTRODUCTION: Near-drowning incidents and drowning deaths after accidental immersion in open waters have been linked to cold shock response. It consists of inspiratory gasps, hyperventilation, tachycardia, and hypertension in the first 2-3 min of cold-water immersion. This study explored the imme......INTRODUCTION: Near-drowning incidents and drowning deaths after accidental immersion in open waters have been linked to cold shock response. It consists of inspiratory gasps, hyperventilation, tachycardia, and hypertension in the first 2-3 min of cold-water immersion. This study explored...... cerebral artery (MCA) was measured together with ventilatory parameters and heart rate before, during, and after immersion. RESULTS: Within seconds after immersion in ice water, heart rate increased from 74 +/- 16 to 107 +/- 18 bpm (mean +/- SD; p elevation...

  8. Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China.

    Science.gov (United States)

    Tang, Gula; Zhu, Yunqiang; Wu, Guozheng; Li, Jing; Li, Zhao-Liang; Sun, Jiulin

    2016-04-08

    In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC) was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of COD(Cr) and NH₃N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well.

  9. Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China

    Directory of Open Access Journals (Sweden)

    Gula Tang

    2016-04-01

    Full Text Available In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of CODCr and NH3N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well.

  10. Voluntary respiratory control and cerebral blood flow velocity upon ice-water immersion

    DEFF Research Database (Denmark)

    Mantoni, Teit; Rasmussen, Jakob Højlund; Belhage, Bo

    2008-01-01

    INTRODUCTION: In non-habituated subjects, cold-shock response to cold-water immersion causes rapid reduction in cerebral blood flow velocity (approximately 50%) due to hyperventilation, increasing risk of syncope, aspiration, and drowning. Adaptation to the response is possible, but requires...... velocity (CBFV) was measured together with ventilatory parameters and heart rate before, during, and after immersion. RESULTS: Within seconds after immersion in ice-water, heart rate increased significantly from 95 +/- 8 to 126 +/- 7 bpm (mean +/- SEM). Immersion was associated with an elevation...

  11. A review on the development of reinforced ice for use as a building material in cold regions

    NARCIS (Netherlands)

    Vasiliev, N.K.; Pronk, A.D.C.; Shatalina, I.N.; Janssen, F.H.M.E.; Houben, R.W.G.

    2015-01-01

    Carrying building materials into remote cold regions makes construction in these regions difficult and rather expensive. The need for such materials can be reduced by the use of both ice and ice-soil composites. In cold regions ice is abundant and cheap. However, using ice as a building material has

  12. Bibliography of Ice Properties and Forecasting Related to Transportation in Ice-Covered Waters.

    Science.gov (United States)

    1980-09-01

    N. and Tabata , T., Ice study in the Gulf of Peschanskii, I.S., Ice science and ice technology, Bothnia, III: observations on large grains of ice...ice and by Sterrett, K.F., The arctic environment and the hitting ice floes. Results of these measurements have arctic surface effect vehicle, Cold...ice growth, temperature 26-3673 effects, ice cover thickness. 28-557 Determining contact stresses when a ship’s stem hits the ice, Kheisin, D.E

  13. Sea-ice cover in the Nordic Seas and the sensitivity to Atlantic water temperatures

    Science.gov (United States)

    Jensen, Mari F.; Nisancioglu, Kerim H.; Spall, Michael A.

    2017-04-01

    Changes in the sea-ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. However, with its proximity to the warm Atlantic water, how a sea-ice cover can persist in the Nordic Seas is not well understood. In this study, we apply an eddy-resolving configuration of the Massachusetts Institute of Technology general circulation model with an idealized topography to study the presence of sea ice in a Nordic Seas-like domain. We assume an infinite amount of warm Atlantic water present in the south by restoring the southern area to constant temperatures. The sea-surface temperatures are restored toward cold, atmospheric temperatures, and as a result, sea ice is present in the interior of the domain. However, the sea-ice cover in the margins of the Nordic Seas, an area with a warm, cyclonic boundary current, is sensitive to the amount of heat entering the domain, i.e., the restoring temperature in the south. When the temperature of the warm, cyclonic boundary current is high, the margins are free of sea ice and heat is released to the atmosphere. We show that with a small reduction in the temperature of the incoming Atlantic water, the Nordic Seas-like domain is fully covered in sea ice. Warm water is still entering the Nordic Seas, however, this happens at depths below a cold, fresh surface layer produced by melted sea ice. Consequently, the heat release to the atmosphere is reduced along with the eddy heat fluxes. Results suggest a threshold value in the amount of heat entering the Nordic Seas before the sea-ice cover disappears in the margins. We study the sensitivity of this threshold to changes in atmospheric temperatures and vertical diffusivity.

  14. The Contribution of Water Ice Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis

    Science.gov (United States)

    Bass, D. S.; Tamppari, L. K.

    2000-01-01

    While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that ice hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 ice. While the detection of water ice clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water ice clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water ice cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water ice onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water ice clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.

  15. Effect of Cold (14° C) vs. Ice (5° C) Water Immersion on Recovery From Intermittent Running Exercise.

    Science.gov (United States)

    Anderson, Daniel; Nunn, James; Tyler, Christopher J

    2018-03-01

    Anderson, D, Nunn, J, and Tyler, CJ. Effect of cold (14° C) vs. ice (5° C) water immersion on recovery from intermittent running exercise. J Strength Cond Res 32(3): 764-771, 2018-The purpose was to compare 14° C (CWI14° C) and 5° C (CWI5° C) cold water immersion after intermittent running. On 3 occasions, 9 male team-sport players undertook 12 minutes of CWI14° C, CWI5° C, or nonimmersed seated recovery (CON) after 45 minutes of intermittent running exercise. Maximal cycling performance and markers of recovery were measured before and in the 0-72 hours after exercise. Peak power output (PPO) was immediately reduced after all interventions (d = 1.8). CWI5° C was more effective at restoring PPO than CWI14° C (d = 0.38) and CON (d = 0.28) 24 hours after exercise, whereas both CON (d = 0.20) and CWI5 (d = 0.37) were more effective than CWI14° C after 48 hours. Cold water immersion (CWI) was more effective than CON at restoring PPO 72 hours after exercise (d = 0.28-0.30). Mean power output (MPO) was higher in CON compared with CWI5° C (d = 0.30) and CWI14° C (d = 0.21), but there was no difference between CWI5° C and CWI14° C (d = 0.08). CWI5° C was more effective than CWI14° C for restoring MPO to baseline levels 24 hours (d = 0.28) and 72 hours (d = 0.28) after exercise; however, CON was more, or equally, effective as CWI5° C and CWI14° C throughout. Lactate and creatine kinase concentrations were unaffected. Perceived muscle soreness remained elevated in CWI5 and CON throughout but was similar to baseline in CWI14° C after 72 hours. In conclusion, repeated bouts of exercise are initially impaired after 5 and 14° C CWI, but PPO may be improved 72 hours after exercise. Cold water immersion is not recommended for acute recovery based on these data. Athletes and coaches should use the time currently allocated to CWI for more effective and alternative recovery modalities.

  16. On the Method of Efficient Ice Cold Energy Storage Using a Heat Transfer of Direct Contact Phase Change and a Natural Circulation of a Working Medium in an Enclosure

    Science.gov (United States)

    Utaka, Yoshio; Saito, Akio; Nakata, Naoki

    The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.

  17. Process and device for fabrication of ice beads and application to abrasive blasting with ice beads for surface treatments

    International Nuclear Information System (INIS)

    Barnier, M.; Manificat, A.; Perroud, P.

    1989-01-01

    A device is described for cleaning and decontamination by abrasive blasting with ice beads. It comprises a water injector, with many holes, at the top of a column feeded with cold gas where solidification of water droplets begins, solidification is completed in a cooling liquids, ice is extracted by a screw and pushed to the projection nozzle with cold gas [fr

  18. Evidence for propagation of cold-adapted yeast in an ice core from a Siberian Altai glacier

    Science.gov (United States)

    Uetake, Jun; Kohshima, Shiro; Nakazawa, Fumio; Takeuchi, Nozomu; Fujita, Koji; Miyake, Takayuki; Narita, Hideki; Aizen, Vladimir; Nakawo, Masayoshi

    2011-03-01

    Cold environments, including glacier ice and snow, are known habitats for cold-adapted microorganisms. We investigated the potential for cold-adapted yeast to have propagated in the snow of the high-altitude Belukha glacier. We detected the presence of highly concentrated yeast (over 104 cells mL-1) in samples of both an ice core and firn snow. Increasing yeast cell concentrations in the same snow layer from July 2002 to July 2003 suggests that the yeast cells propagated in the glacier snow. A cold-adapted Rhodotorula sp. was isolated from the snow layer and found to be related to psychrophilic yeast previously found in other glacial environments (based on the D1/D2 26S rRNA domains). 26S rRNA clonal analysis directly amplified from meltwater within the ice core also revealed the presence of genus Rhodotorula. Analyses of the ice core showed that all peaks in yeast concentration corresponded to the peaks in indices of surface melting. These results support the hypothesis that occasional surface melting in an accumulation area is one of the major factors influencing cold-adapted yeast propagation.

  19. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    Science.gov (United States)

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  20. The ins and outs of water dynamics in cold tolerant soil invertebrates.

    Science.gov (United States)

    Holmstrup, Martin

    2014-10-01

    Many soil invertebrates have physiological characteristics in common with freshwater animals and represent an evolutionary transition from aquatic to terrestrial life forms. Their high cuticular permeability and ability to tolerate large modifications of internal osmolality are of particular importance for their cold tolerance. A number of cold region species that spend some or most of their life-time in soil are in more or less intimate contact with soil ice during overwintering. Unless such species have effective barriers against cuticular water-transport, they have only two options for survival: tolerate internal freezing or dehydrate. The risk of internal ice formation may be substantial due to inoculative freezing and many species rely on freeze-tolerance for overwintering. If freezing does not occur, the desiccating power of external ice will cause the animal to dehydrate until vapor pressure equilibrium between body fluids and external ice has been reached. This cold tolerance mechanism is termed cryoprotective dehydration (CPD) and requires that the animal must be able to tolerate substantial dehydration. Even though CPD is essentially a freeze-avoidance strategy the associated physiological traits are more or less the same as those found in freeze tolerant species. The most well-known are accumulation of compatible osmolytes and molecular chaperones reducing or protecting against the stress caused by cellular dehydration. Environmental moisture levels of the habitat are important for which type of cold tolerance is employed, not only in an evolutionary context, but also within a single population. Some species use CPD under relatively dry conditions, but freeze tolerance when soil moisture is high. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Proceedings of the 19. IAHR international symposium on ice : using new technology to understand water-ice interaction

    International Nuclear Information System (INIS)

    Jasek, M.; Andrishak, R.; Siddiqui, A.

    2008-01-01

    This conference provided a venue for scientists, engineers and researchers an opportunity to expand their knowledge of water-ice interactions with reference to water resources, river and coastal hydraulics, risk analysis, energy and the environment. The the theme of new technology falls into 3 basic groups, notably measurement and instrumentation; remote sensing; and numerical simulation. The thermal regime of rivers was discussed along with ice mechanics, ice hydraulics, ice structures and modelling ice phenomena. The titles of the sessions were: river ice, glaciers and climate change; freeze-up processes on rivers and oceans; river ice-structure interactions; numerical simulations in ice engineering; river-ice break-up and ice jam formation; ice measurement; Grasse River ice evaluation; evaluation of structural ice control alternatives; remote sensing; hydropower and dam decommissioning; mechanical behaviour of river ice, ice covered flow and thermal modelling; mathematical and computer model formulations for ice friction and sea ice; ice bergs and ice navigation; ice crushing processes; sea ice and shore/structure interactions; ice properties, testing and physical modelling; ice actions on compliant structures; oil spills in ice; desalination, ice thickness and climate change; and, sea ice ridges. The conference featured 123 presentations, of which 20 have been catalogued separately for inclusion in this database. refs., tabs., figs

  2. Spontaneous De-Icing Phenomena on Extremely Cold Surfaces

    Science.gov (United States)

    Song, Dong; Choi, Chang-Hwan

    2017-11-01

    Freezing of droplets on cold surfaces is universal phenomenon, while the mechanisms are still inadequately understood. Here we report spontaneous de-icing phenomena of an impacting droplet which occur on extreme cold surfaces. When a droplet impacts on cold surfaces lower than -80°, it takes more than two times longer for the droplet to freeze than the ones at -50°. Moreover, the frozen droplet below -80° breaks up into several large parts spontaneously in the end. When a droplet impacts on the extreme cold surfaces, evaporation and condensation occur immediately as the droplet approaches the substrate. A thick layer of frost forms between the droplet and substrate, decreasing the contact area of the droplet with substrate. It leads to impede the heat transfer and hence extends the freezing time significantly. On the extremely cold substrate, the droplet freezes from the center to the edge area, in contrast to a typical case freezing from the bottom to the top. This novel from-center-to-edge freezing process changes the internal tension of the frozen droplet and results in the instantaneous breakup and release eventually, which can be taken advantage of for effective deicing mechanisms.

  3. Is Detrusor Contraction during Rapid Bladder Filling Caused by Cold or Warm Water? A Randomized, Controlled, Double-Blind Trial.

    Science.gov (United States)

    Kozomara, Marko; Mehnert, Ulrich; Seifert, Burkhardt; Kessler, Thomas M

    2018-01-01

    We investigated whether detrusor contraction during rapid bladder filling is provoked by cold or warm water. Patients with neurogenic lower urinary tract dysfunction were included in this randomized, controlled, double-blind trial. At the end of a standard urodynamic investigation patients underwent 2 bladder fillings using a 4C ice water test or a 36C warm water test saline solution at a filling speed of 100 ml per minute. The order was randomly selected, and patients and investigators were blinded to the order. The primary outcome measure was detrusor overactivity, maximum detrusor pressure and maximum bladder filling volume during the ice and warm water tests. Nine women and 31 men were the subject of data analysis. Neurogenic lower urinary tract dysfunction was caused by spinal cord injury in 33 patients and by another neurological disorder in 7. Irrespective of test order detrusor overactivity occurred significantly more often during the ice water test than during the warm water test (30 of 40 patients or 75% vs 25 of 40 or 63%, p = 0.02). When comparing the ice water test to the warm water test, maximum detrusor pressure was significantly higher and maximum bladder filling volume was significantly lower during the ice water test (each p warm water first) had no effect on the parameters. Our findings imply that the more frequent detrusor overactivity, higher maximum detrusor pressure and lower bladder filling volume during the ice water test compared to the warm water test were caused by cold water. This underlies the theory of a C-fiber mediated bladder cooling reflex in humans. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.

    Science.gov (United States)

    Zobrist, B; Marcolli, C; Peter, T; Koop, T

    2008-05-01

    Heterogeneous ice nucleation experiments have been performed with four different ice nuclei (IN), namely nonadecanol, silica, silver iodide and Arizona test dust. All IN are either immersed in the droplets or located at the droplets surface. The IN were exposed to various aqueous solutions, which consist of (NH4)2SO4, H2SO4, MgCl2, NaCl, LiCl, Ca(NO3)2, K2CO3, CH3COONa, ethylene glycol, glycerol, malonic acid, PEG300 or a NaCl/malonic acid mixture. Freezing was studied using a differential scanning calorimeter and a cold finger cell. The results show that the heterogeneous ice freezing temperatures decrease with increasing solute concentration; however, the magnitude of this effect is solute dependent. In contrast, when the results are analyzed in terms of the solution water activity a very consistent behavior emerges: heterogeneous ice nucleation temperatures for all four IN converge each onto a single line, irrespective of the nature of the solute. We find that a constant offset with respect to the ice melting point curve, Deltaaw,het, can describe the observed freezing temperatures for each IN. Such a behavior is well-known for homogeneous ice nucleation from supercooled liquid droplets and has led to the development of water-activity-based ice nucleation theory. The large variety of investigated solutes together with different general types of ice nuclei studied (monolayers, ionic crystals, covalently bound network-forming compounds, and a mixture of chemically different crystallites) underlines the general applicability of water-activity-based ice nucleation theory also for heterogeneous ice nucleation in the immersion mode. Finally, the ice nucleation efficiencies of the various IN, as well as the atmospheric implication of the developed parametrization are discussed.

  5. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  6. The Large Scale Distribution of Water Ice in the Polar Regions of the Moon

    Science.gov (United States)

    Jordan, A.; Wilson, J. K.; Schwadron, N.; Spence, H. E.

    2017-12-01

    For in situ resource utilization, one must know where water ice is on the Moon. Many datasets have revealed both surface deposits of water ice and subsurface deposits of hydrogen near the lunar poles, but it has proved difficult to resolve the differences among the locations of these deposits. Despite these datasets disagreeing on how deposits are distributed on small scales, we show that most of these datasets do agree on the large scale distribution of water ice. We present data from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO), LRO's Lunar Exploration Neutron Detector (LEND), the Neutron Spectrometer on Lunar Prospector (LPNS), LRO's Lyman Alpha Mapping Project (LAMP), LRO's Lunar Orbiter Laser Altimeter (LOLA), and Chandrayaan-1's Moon Mineralogy Mapper (M3). All, including those that show clear evidence for water ice, reveal surprisingly similar trends with latitude, suggesting that both surface and subsurface datasets are measuring ice. All show that water ice increases towards the poles, and most demonstrate that its signature appears at about ±70° latitude and increases poleward. This is consistent with simulations of how surface and subsurface cold traps are distributed with latitude. This large scale agreement constrains the origin of the ice, suggesting that an ancient cometary impact (or impacts) created a large scale deposit that has been rendered locally heterogeneous by subsequent impacts. Furthermore, it also shows that water ice may be available down to ±70°—latitudes that are more accessible than the poles for landing.

  7. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Hu, Hui [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Chen, Wen-Li [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090 (China); Bond, Leonard J. [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, 151 ASC II, Ames, IA 50011 (United States)

    2014-02-18

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  8. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.

    Science.gov (United States)

    Zhao, Chunzhao; Wang, Pengcheng; Si, Tong; Hsu, Chuan-Chih; Wang, Lu; Zayed, Omar; Yu, Zheping; Zhu, Yingfang; Dong, Juan; Tao, W Andy; Zhu, Jian-Kang

    2017-12-04

    Mitogen-activated protein kinase cascades are important signaling modules that convert environmental stimuli into cellular responses. We show that MPK3, MPK4, and MPK6 are rapidly activated after cold treatment. The mpk3 and mpk6 mutants display increased expression of CBF genes and enhanced freezing tolerance, whereas constitutive activation of the MKK4/5-MPK3/6 cascade in plants causes reduced expression of CBF genes and hypersensitivity to freezing, suggesting that the MKK4/5-MPK3/6 cascade negatively regulates the cold response. MPK3 and MPK6 can phosphorylate ICE1, a basic-helix-loop-helix transcription factor that regulates the expression of CBF genes, and the phosphorylation promotes the degradation of ICE1. Interestingly, the MEKK1-MKK2-MPK4 pathway constitutively suppresses MPK3 and MPK6 activities and has a positive role in the cold response. Furthermore, the MAPKKK YDA and two calcium/calmodulin-regulated receptor-like kinases, CRLK1 and CRLK2, negatively modulate the cold activation of MPK3/6. Our results uncover important roles of MAPK cascades in the regulation of plant cold response. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Nitric acid particles in cold thick ice clouds observed at global scale: Link with lightning, temperature, and upper tropospheric water vapor

    OpenAIRE

    Chepfer , H.; Minnis , P.; Dubuisson , P.; Chiriaco , Marjolaine; Sun-Mack , S.; Rivière , E.D.

    2007-01-01

    International audience; Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the tropics (9 to 20% of clouds with T < 202.5 K). Higher occurrences were found in the rare midlatitudes very cold clouds. NAP occurrence increases as cloud temperature decreases, and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning seems to be the main source of the NOx...

  10. Enrichment of methylated molecules using enhanced-ice-co-amplification at lower denaturation temperature-PCR (E-ice-COLD-PCR) for the sensitive detection of disease-related hypermethylation.

    Science.gov (United States)

    Mauger, Florence; Kernaleguen, Magali; Lallemand, Céline; Kristensen, Vessela N; Deleuze, Jean-François; Tost, Jörg

    2018-05-01

    The detection of specific DNA methylation patterns bears great promise as biomarker for personalized management of cancer patients. Co-amplification at lower denaturation temperature-PCR (COLD-PCR) assays are sensitive methods, but have previously only been able to analyze loss of DNA methylation. Enhanced (E)-ice-COLD-PCR reactions starting from 2 ng of bisulfite-converted DNA were developed to analyze methylation patterns in two promoters with locked nucleic acid (LNA) probes blocking amplification of unmethylated CpGs. The enrichment of methylated molecules was compared to quantitative (q)PCR and quantified using serial dilutions. E-ice-COLD-PCR allowed the multiplexed enrichment and quantification of methylated DNA. Assays were validated in primary breast cancer specimens and circulating cell-free DNA from cancer patients. E-ice-COLD-PCR could prove a useful tool in the context of DNA methylation analysis for personalized medicine.

  11. Heat pipe based cold energy storage systems for datacenter energy conservation

    International Nuclear Information System (INIS)

    Singh, Randeep; Mochizuki, Masataka; Mashiko, Koichi; Nguyen, Thang

    2011-01-01

    In the present paper, design and economics of the novel type of thermal control system for datacenter using heat pipe based cold energy storage has been proposed and discussed. Two types of cold energy storage system namely: ice storage system and cold water storage system are explained and sized for datacenter with heat output capacity of 8800 kW. Basically, the cold energy storage will help to reduce the chiller running time that will save electricity related cost and decrease greenhouse gas emissions resulting from the electricity generation from non-renewable sources. The proposed cold energy storage system can be retrofit or connected in the existing datacenter facilities without major design changes. Out of the two proposed systems, ice based cold energy storage system is mainly recommended for datacenters which are located in very cold locations and therefore can offer long term seasonal storage of cold energy within reasonable cost. One of the potential application domains for ice based cold energy storage system using heat pipes is the emergency backup system for datacenter. Water based cold energy storage system provides more compact size with short term storage (hours to days) and is potential for datacenters located in areas with yearly average temperature below the permissible cooling water temperature (∼25 o C). The aforesaid cold energy storage systems were sized on the basis of metrological conditions in Poughkeepsie, New York. As an outcome of the thermal and cost analysis, water based cold energy storage system with cooling capability to handle 60% of datacenter yearly heat load will provide an optimum system size with minimum payback period of 3.5 years. Water based cold energy storage system using heat pipes can be essentially used as precooler for chiller. Preliminary results obtained from the experimental system to test the capability of heat pipe based cold energy storage system have provided satisfactory outcomes and validated the proposed

  12. Effect of cryotherapy on the ankle temperature in athletes: ice pack and cold water immersion

    Directory of Open Access Journals (Sweden)

    Vanessa Batista da Costa Santos

    Full Text Available Introduction Cryotherapy is often used for rehabilitation of injured athletes. Objective To compare the effectiveness of ice pack (IP and cold water immersion (CWI on lowering the ankle skin surface temperature in athletes. Materials and methods Thirteen athletes (seven women and six men, age 19.53 (± 2.9 years. IP and CWI were applied on the anterior talofibular ligament (ATFL of the dominant leg for 30 minutes. The skin surface temperature was measured with an infrared digital thermometer prior to the application and during cryotherapy (10, 15, 20, 25 and 30 minutes and up to two hours of rewarming. During rewarming, the athletes remained at rest and the temperature was measured every 1 minute until 10 minutes, every 5 minutes for up to an hour and every 15 minutes until 2 hours. Results The two types of cold application were effective in lowering the skin surface temperature after the 30-minute procedure. Significant differences were observed among the following temperatures: pre-application (IP = 29.8 ± 2.4 °C and CWI = 27.5 ± 3 °C – P < 0.05; after 30 minutes (IP = 5 ± 2.4 °C and CWI = 7.8 ± 3 °C – P < 0.01. For rewarming, after 25 minutes (IP = 20.8 ± 3.3 °C and CWI = 18.2 ± 2.7 °C – P < 0.04; after 45 minutes (IP = 24.5 ± 2.3 °C and IP = 22.1 ± 3.5 °C – P < 0.05; after 75 minutes (IP = 26.4 ± 2.2 °C and CWI = 24 ± 2.7 °C – P < 0.02. Conclusion After the 30-minute application, both IP and CWI produced the appropriate temperature; however the application of CWI produced the lowest temperature during rewarming.

  13. Turbulent heat exchange between water and ice at an evolving ice-water interface

    Science.gov (United States)

    Ramudu, Eshwan; Hirsh, Benjamin Henry; Olson, Peter; Gnanadesikan, Anand

    2016-07-01

    We conduct laboratory experiments on the time evolution of an ice layer cooled from below and subjected to a turbulent shear flow of warm water from above. Our study is motivated by observations of warm water intrusion into the ocean cavity under Antarctic ice shelves, accelerating the melting of their basal surfaces. The strength of the applied turbulent shear flow in our experiments is represented in terms of its Reynolds number $\\textit{Re}$, which is varied over the range $2.0\\times10^3 \\le \\textit{Re} \\le 1.0\\times10^4$. Depending on the water temperature, partial transient melting of the ice occurs at the lower end of this range of $\\textit{Re}$ and complete transient melting of the ice occurs at the higher end. Following these episodes of transient melting, the ice reforms at a rate that is independent of $\\textit{Re}$. We fit our experimental measurements of ice thickness and temperature to a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. The melting mechanism we investigate in our experiments can easily account for the basal melting rate of Pine Island Glacier ice shelf inferred from observations.

  14. A Molecular Explanation of How the Fog Is Produced When Dry Ice Is Placed in Water

    Science.gov (United States)

    Kuntzleman, Thomas S.; Ford, Nathan; No, Jin-Hwan; Ott, Mark E.

    2015-01-01

    Everyone enjoys seeing the cloudy white fog generated when solid carbon dioxide (dry ice) is placed in water. Have you ever wondered what physical and chemical processes occur to produce this fog? When asked this question, many chemical educators suggest that the fog is produced when atmospheric water vapor condenses on cold carbon dioxide gas…

  15. Pain during ice water test distinguishes clinical bladder hypersensitivity from overactivity disorders

    Directory of Open Access Journals (Sweden)

    Bountra Chas

    2006-12-01

    Full Text Available Abstract Background The Bladder cooling reflex (BCR i.e. uninhibited detrusor contractions evoked by intravesical instillation of cold saline, is a segmental reflex believed to be triggered by menthol sensitive cold receptors in the bladder wall, with the afferent signals transmitted by C fibres. The BCR is a neonatal reflex that becomes suppressed by descending signals from higher centres at approximately the time when the child gains full voluntary control of voiding. It re-emerges in adults with neurogenic detrusor overactivity as a consequence of loss of central descending inhibition, resulting from conditions such as spinal cord injury or multiple sclerosis. We have recently shown an increase of nerve fibres expressing the cool and menthol receptor TRPM8 in both overactive (IDO and painful bladder syndrome (PBS, but its functional significance is unknown. We have therefore studied the bladder cooling reflex and associated sensory symptoms in patients with PBS and overactivity disorders. Methods The BCR, elicited by ice water test (IWT was performed in patients with painful bladder syndrome (PBS, n = 17, idiopathic detrusor overactivity (IDO, n = 22, neurogenic detrusor overactivity (NDO, n = 4 and stress urinary incontinence (as controls, n = 21. The IWT was performed by intravesical instillation of cold saline (0 – 4°C. A positive IWT was defined as presence of uninhibited detrusor contraction evoked by cold saline, associated with urgency or with fluid expulsion. Patients were asked to report and rate any pain and cold sensation during the test. Results A positive IWT was observed in IDO (6/22, 27.3% and NDO (4/4, 100% patients, but was negative in all control and PBS patients. Thirteen (76.5% PBS patients reported pain during the IWT, with significantly higher pain scores during ice water instillation compared to the baseline (P = 0.0002, or equivalent amount of bladder filling (100 mls with saline at room temperature (P = 0.015. None

  16. Nitric acid particles in cold thick ice clouds observed at global scale: Link with lightning, temperature, and upper tropospheric water vapor

    Science.gov (United States)

    Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; RivièRe, E. D.

    2007-03-01

    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the tropics (9 to 20% of clouds with T < 202.5 K). Higher occurrences were found in the rare midlatitudes very cold clouds. NAP occurrence increases as cloud temperature decreases, and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning seems to be the main source of the NOx, which forms NAP in cold clouds over continents. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP may play a role in the dehydration of the upper troposphere when the tropopause is colder than 195 K.

  17. The Secret of the Svalbard Sea Ice Barrier

    Science.gov (United States)

    Nghiem, Son V.; Van Woert, Michael L.; Neumann, Gregory

    2004-01-01

    An elongated sea ice feature called the Svalbard sea ice barrier rapidly formed over an area in the Barents Sea to the east of Svalbard posing navigation hazards. The secret of its formation lies in the bottom bathymetry that governs the distribution of cold Arctic waters masses, which impacts sea ice growth on the water surface.

  18. Water on Mars: Inventory, distribution, and possible sources of polar ice

    Science.gov (United States)

    Clifford, S. M.

    1992-01-01

    Theoretical considerations and various lines of morphologic evidence suggest that, in addition to the normal seasonal and climatic exchange of H2O that occurs between the Martian polar caps, atmosphere, and mid to high latitude regolith, large volumes of water have been introduced into the planet's long term hydrologic cycle by the sublimation of equatorial ground ice, impacts, catastrophic flooding, and volcanism. Under the climatic conditions that are thought to have prevailed on Mars throughout the past 3 to 4 b.y., much of this water is expected to have been cold trapped at the poles. The amount of polar ice contributed by each of the planet's potential crustal sources is discussed and estimated. The final analysis suggests that only 5 to 15 pct. of this potential inventory is now in residence at the poles.

  19. Application of Response Surface Methodology (RSM for Optimization of Operating Parameters and Performance Evaluation of Cooling Tower Cold Water Temperature

    Directory of Open Access Journals (Sweden)

    Ramkumar RAMAKRISHNAN

    2012-01-01

    Full Text Available The performance of a cooling tower was analyzed with various operating parameters tofind the minimum cold water temperature. In this study, optimization of operating parameters wasinvestigated. An experimental design was carried out based on central composite design (CCD withresponse surface methodology (RSM. This paper presents optimum operating parameters and theminimum cold water temperature using the RSM method. The RSM was used to evaluate the effectsof operating variables and their interaction towards the attainment of their optimum conditions.Based on the analysis, air flow, hot water temperature and packing height were high significanteffect on cold water temperature. The optimum operating parameters were predicted using the RSMmethod and confirmed through experiment.

  20. 21 CFR 135.160 - Water ices.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the same...

  1. Cold-water acclimation does not modify whole-body fluid regulation during subsequent cold-water immersion.

    Science.gov (United States)

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-06-01

    We investigated the impact of cold-water acclimation on whole-body fluid regulation using tracer-dilution methods to differentiate between the intracellular and extracellular fluid compartments. Seven euhydrated males [age 24.7 (8.7) years, mass 74.4 (6.4) kg, height 176.8 (7.8) cm, sum of eight skinfolds 107.4 (20.4) mm; mean (SD)] participated in a 14-day cold-water acclimation protocol, with 60-min resting cold-water stress tests [CWST; 18.1 (0.1) degrees C] on days 1, 8 and 15, and 90-min resting cold-water immersions [18.4 (0.4) degrees C] on intervening days. Subjects were immersed to the 4th intercostal space. Intracellular and extracellular fluid compartments, and plasma protein, electrolyte and hormone concentrations were investigated. During the first CWST, the intracellular fluid (5.5%) and plasma volumes were reduced (6.1%), while the interstitial fluid volume was simultaneously expanded (5.4%). This pattern was replicated on days 8 and 15, but did not differ significantly among test days. Acclimation did not produce significant changes in the pre-immersion distribution of total body water, or changes in plasma osmolality, total protein, electrolyte, atrial natriuretic peptide or aldosterone concentrations. Furthermore, a 14-day cold-water acclimation regimen did not elicit significant changes in body-fluid distribution, urine production, or the concentrations of plasma protein, electrolytes or the fluid-regulatory hormones. While acclimation trends were not evident, we have confirmed that fluid from extravascular cells is displaced into the interstitium during acute cold-water immersion, both before and after cold acclimation.

  2. Warm versus Cold Water Island Tourism: A Review of Policy Implications

    Directory of Open Access Journals (Sweden)

    Godfrey Baldacchino

    2006-11-01

    Full Text Available Not sun, sea, sand but ice, isolation, indigenous people: the critical exploration of extreme tourism in cold water locations has barely started. Cold water island locations tend to have harsh, pristine and fragile natural environments, characterized by wide open spaces. They become contexts for an exceptional and expensive form of vigorous, outdoor, adventure or cultural tourism, and direct encounters with nature. The nature and practices of the tourism industry suggest a more sustainable form of island tourism, very different from what is experienced on the warm, tropical and exotic island stereotype.This paper critically reviews some of the salient contrasts between the ‘hot’ and ‘cold’ versions of island tourism. It discusses how, on many ‘cold water’ island locations, sound strategic management, limited civilian ‘buy in’, low populations and an absence of pluralism in political life, can conspire with climate and relative inaccessibility to limit tourism to a small scale, low-impact industry with a relatively high, locally-retained value added. Some ‘warm water’ islands are trying to follow this model for tourism development, with mixed results.

  3. Export of Ice-Cavity Water from Pine Island Ice Shelf, West Antarctica

    Science.gov (United States)

    Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre

    2013-04-01

    Stability of the West Antarctic Ice Sheet is sensitive to changes in melting at the bottom of floating ice shelves that form the seaward extensions of Antarctic glaciers flowing into the ocean. Not least because observations in the cavities beneath ice shelves are difficult, heat fluxes and melt rates have been inferred from oceanographic measurements obtained near the ice edge (calving fronts). Here, we report on a set of hydrographic and velocity data collected in early 2009 near the calving front of the Amundsen Sea's fast-moving and (until recently) accelerating Pine Island Glacier and its associated ice shelf. CTD profiles collected along the southern half of the meridionally-trending ice front show clear evidence for export of ice-cavity water. That water was carried in the upper ocean along the ice front by a southward current that is possibly related to a striking clockwise gyre that dominated the (summertime) upper-ocean circulation in Pine Island Bay. Signatures of ice-cavity water appear unrelated to current direction along most of the ice front, suggesting that cross-frontal exchange is dominated by temporal variability. However, repeated hydrographic and velocity measurements in a small "ice cove" at the southern end of the calving front show a persistent strong (mean velocity peaking near 0.5 ms-1) outflow of ice-cavity water in the upper 500 m. While surface features (boils) suggested upwelling from deep below the ice shelf, vertical velocity measurements reveal 1) that the mean upwelling within the confines of the cove was too weak to feed the observed outflow, and 2) that large high-frequency internal waves dominated the vertical motion of water inside the cove. These observations indicate that water exchange between the Pine Island Ice Shelf cavity and the Amundsen sea is strongly asymmetric with weak broad inflow at depth and concentrated surface-intensified outflow of melt-laden deep water at the southern edge of the calving front. The lack of

  4. Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-11-01

    To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.

  5. Sputtering of water ice

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.; Schou, J.; Shi, M.; Bahr, D.A.; Atteberrry, C.L.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from the decay of H(2p) atoms sputtered by heavy ion impact, but not bulk ice luminescence. Radiolyzed ice does not sputter under 3.7 eV laser irradiation

  6. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden)

    2010-11-15

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  7. Ice sheet hydrology from observations

    International Nuclear Information System (INIS)

    Jansson, Peter

    2010-11-01

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  8. Design, fabrication, and evaluation of a partially melted ice particle cloud facility

    Science.gov (United States)

    Soltis, Jared T.

    % melt to 3°C at 90%. There were two types of ice accretion with a transition zone in between. The first type of ice was opaque in color and had a rough surface. This ice occurred roughly from 6.0°C to 12.0°C duct temperatures (8% to 50% melt). The qualitative characteristics of the ice were produced from the low water content in the cloud. The water that was available froze instantly and trapped ice particle. Duct temperatures greater than 17.5°C (80% melt) produced ice that was clear and smooth. The water in the surface did not freeze instantly due to the high water content creating a water film that froze. A mixed-phase cloud dynamics model from NASA Glenn was used to estimate the percent melt of the cloud exiting the duct. There was no way to validate the model by directly measuring the percent melt of the cloud, so single particle melt experiments were conducted and compared to the model. A 0.05g/L solution of rhodamine b was sprayed into a levitator and droplets formed at the nodes of the wave. A 532nm green laser was used to illuminate the dye, and the water emitted orange 593nm light given the luminescent properties of the ink. The emitted light intensity was recorded, and a linear relationship between the light intensity of ice to the light intensity of water was used to determine the percent melt of a droplet. The droplets were frozen with a cold flow of nitrogen gas via a liquid nitrogen heat exchanger. The droplets melted under natural convection when the cold nitrogen was shut off. Fifteen cases were compared with droplet diameters ranging from 324mum to 1112mum, air temperatures from 16°C to 31°C, and relative humidities from 41% to 100%. The average discrepancy between predictions and results for the cases that melted slower than ten seconds was 13% while the cases that melted faster than 10 second had 64% discrepancy between the model and experiment. To explain the discrepancy between the experiment and model, sensitivity studies of the model were

  9. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA

    International Nuclear Information System (INIS)

    Liu Heping; Blanken, Peter D; Weidinger, Tamas; Nordbo, Annika; Vesala, Timo

    2011-01-01

    Understanding seasonal variations in the evaporation of inland waters (e.g., lakes and reservoirs) is important for water resource management as well as the prediction of the hydrological cycles in response to climate change. We analyzed eddy covariance-based evaporation measurements from the Ross Barnett Reservoir (32 deg. 26'N, 90 0 02'W; which is always ice-free) in central Mississippi during the cool months (i.e., September-March) of 2007 and 2008, and found that the variability in cold front activities (i.e., passages of cold fronts and cold/dry air masses behind cold fronts) played an important role in modulating the exchange of sensible (H) and latent (λE) heat fluxes. Our analysis showed that 2007's warmer cool season had smaller mean H and λE than 2008's cooler cool season. This implies that the warmer cool season did not accelerate evaporation and heat exchange between the water surface and the atmosphere. Instead, more frequent cold fronts and longer periods of cold/dry air masses behind the cold fronts in 2008 resulted in overall larger H and λE as compared with 2007, this primarily taking the form of sporadic short-term rapid 'pulses' of H and λE losses from the water's surface. These results suggest that future climate-induced changes in frequency of cold fronts and the meteorological properties of the air masses behind cold fronts (e.g., wind speeds, temperature, and humidity), rather than other factors of climate change, would produce significant variations in the water surface's energy fluxes and subsequent evaporation rates.

  10. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Directory of Open Access Journals (Sweden)

    Nicole A. Vander Schaaf

    2015-07-01

    Full Text Available The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  11. The effect of ice-cream-scoop water on the hygiene of ice cream.

    Science.gov (United States)

    Wilson, I. G.; Heaney, J. C.; Weatherup, S. T.

    1997-01-01

    A survey of unopened ice cream, ice cream in use, and ice-cream-scoop water (n = 91) was conducted to determine the effect of scoop water hygiene on the microbiological quality of ice cream. An aerobic plate count around 10(6) c.f.u. ml-1 was the modal value for scoop waters. Unopened ice creams generally had counts around 10(3)-10(4) c.f.u. ml-1 and this increased by one order of magnitude when in use. Many scoop waters had low coliform counts, but almost half contained > 100 c.f.u. ml-1. E. coli was isolated in 18% of ice creams in use, and in 10% of unopened ice creams. S. aureus was not detected in any sample. Statistical analysis showed strong associations between indicator organisms and increased counts in ice cream in use. EC guidelines for indicator organisms in ice cream were exceeded by up to 56% of samples. PMID:9287941

  12. Validation of OMA formation in cold brackish and sea waters

    International Nuclear Information System (INIS)

    Khelifa, A.; Hill, P.S.

    2005-01-01

    This study addressed the challenge of cleaning oil spilled in cold, ice-infested waters in the St. Lawrence estuary in the winter. The main objective was to develop an environmentally safe and efficient cleansing method. The use of an oil-mineral agglomeration (OMA) process has been proposed to improve dispersion and biodegradation of the spilled oil. This bench-scale study was conducted to validate this proposed remedial method. The theory for this natural attenuation process for oil spills on shores is that oil droplets and suspended sediments disperse in the water column and aggregate into OMAs. OMA formation involves floc break and aggregation by differential settling. This study examined the formation time and the concentration of OMA in a typical turbulent estuarine environment and determined the effect of sediment size and concentration on OMA formation. It also verified if OMA forms in cold brackish water considering 2 types of oils which are commonly transported along the St. Lawrence estuary to Quebec City. OMA formation was validated with Heidrun and IF30 crude oils and 2 types of engineered sediments to determine the best sediment to form OMA and to determine the minimum sediment concentration needed to maximize OMA formation. The minimum agitation time to reach this maximizing condition of OMA formation was also determined. It was concluded that OMAs form readily in cold brackish and seawater when Heidrun or IF30 crude oils are mixed with chalk or bentonite sediment. 23 refs., 2 tabs., 8 figs

  13. Characterization of a cold-active bacterium isolated from the South Pole “Ice Tunnel”

    Energy Technology Data Exchange (ETDEWEB)

    Madigan, Michael T.; Kempher, Megan L.; Bender, Kelly S.; Sullivan, Paul; Matthew Sattley, W.; Dohnalkova, Alice C.; Joye, Samantha B.

    2017-07-05

    Abstract Extremely cold microbial habitats on Earth (those below -30 °C) are rare and have not been surveyed for microbes as extensively as environments in the 0 to -20 °C range. Using cryoprotected growth media incubated at -5 °C, we enriched a cold-active Pseudomonas species from -50 °C ice collected from a utility tunnel for wastewater pipes under Amundsen–Scott South Pole Station, Antarctica. The isolate, strain UC-1, is related to other cold-active Pseudomonas species, most notably P. psychrophila, and grew at -5 °C to +34–37 °C; growth of UC-1 at +3 °C was significantly faster than at +34 °C. Strain UC-1 synthesized a surface exopolymer and high levels of unsaturated fatty acids under cold growth conditions. A 16S rRNA gene diversity screen of the ice sample that yielded strain UC-1 revealed over 1200 operational taxonomic units (OTUs) distributed across eight major classes of Bacteria. Many of the OTUs were Clostridia and Bacteriodia and some of these were probably of wastewater origin. However, a significant fraction of the OTUs were Proteobacteria and Actinobacteria of likely environmental origin. Our results shed light on the lower temperature limits to life and the possible existence of functional microbial communities in ultra-cold environments.

  14. Cold Lake-Beaver River water management study update: Report of the Cold Lake Regional Water Management Task Force

    International Nuclear Information System (INIS)

    1994-01-01

    The Cold Lake Regional Water Management Task Force was formed in 1992, comprising representatives from local governments, aboriginal groups, the oil industry, and the public. The Task Force's mandate was to advise Alberta Environmental Protection on updating the Cold Lake-Beaver River Water Management Plan, taking into acocunt the views and concerns of the public, industry, and local governments. Industrial water use was found to be the key issue to be addressed in the plan update, so the Task Force focused on reviewing industrial water supply options and developing recommendations on the appropriate water supply to meet long-term requirements. A subcommittee was established to monitor groundwater use by the heavy oil industry. This committee took readings at Imperial Oil's water production and observation wells on a biweekly basis. Nine options for supplying industrial water requirements were examined and evaluated using criteria including supply reliability, economic factors, and impacts on other users and the environment. The Task Force found that the preferred source of water for industrial use is the North Saskatchewan River, to be accessed by a water pipeline. The second and less desirable source of water for industrial use would be a system of weirs on Cold or Primrose Lakes and Wolf Lake, supplemented by the use of brackish water to the maximum extent possible. In the interim, industry was recommended to maximize its use of brackish water and continue to use surface and ground water within existing license limits. Other recommendations were to form provincial or regional boards to oversee water use and issue water licenses, to treat water as a resource, and to establish a fee for industrial use of water. 3 figs., 5 tabs

  15. Seasonal reversal at Miryang Eoreumgol (Ice Valley), Korea: observation and monitoring

    Science.gov (United States)

    Byun, Hi-Ryong; Tanaka, Hiroshi L.; Choi, Pom-Yong; Kim, Do-Woo

    2011-12-01

    We investigate an anomalous phenomenon evident in the Miryang Eoreumgol (Ice Valley), Korea: The wind and water are cold during summer and warm during winter, and ice formation does not occur in winter but in summer. We have initiated observations and investigations into the origin of heat sources particularly with regard to the mechanism of ice formation in summer. Previous theories, e.g., concerning underground gravity currents, water evaporation, diurnal and seasonal respirations of the talus, effects of ground heat, radiation and topography, etc., are considered. After a calculation of heat sources, we propose two new concepts—a repetitious heat separation mechanism and a positive feedback mechanism of cold air generation—to demonstrate that the heat mechanism of the seasonal reversal of the ice valley may be controlled by the use of the phase change between ice and water vapor with only a small amount of additional unknown energy.

  16. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    Science.gov (United States)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  17. The Effectiveness of Whole Body Cryotherapy Compared to Cold Water Immersion: Implications for Sport and Exercise Recovery

    Directory of Open Access Journals (Sweden)

    Michael Holmes

    2016-10-01

    Full Text Available Background: Cryotherapy is the process of cooling the body, is typically used therapeutically, and is often used as a method of recovery relative to sport and exercise performance.  The purpose of this review is to compare the current literature on WBC to that of CWI and determine whether WBC provides any additional enhancements for sport and exercise recovery. These include tissue temperature reduction, markers of muscle damage, markers of inflammation, and parasympathetic reactivation. Method: Common methods of cryotherapy include cold water immersion (CWI, ice packs, ice massages, and gel or cooling creams. CWI is the most common method among athletes; however, a new form of cryotherapy, known as whole-body cryotherapy (WBC, has recently emerged.  Since its introduction, WBC has grown in popularity among practitioners and athletes. WBC involves short exposures (generally between 2-4 minutes to very cold air (-100o C to -140o C in a controlled room and setting. Furthermore, many of the studies on WBC were observational and did not contain a control group. Conclusion: Despite its growing popularity, the alleged benefits of WBC are largely based on anecdotal evidence as randomized, clinically-controlled studies regarding its efficacy are limited.  Keywords: cryotherapy, cold water immersion, exercise, recovery, muscle damage, inflammation

  18. The Banana Fruit SINA Ubiquitin Ligase MaSINA1 Regulates the Stability of MaICE1 to be Negatively Involved in Cold Stress Response.

    Science.gov (United States)

    Fan, Zhong-Qi; Chen, Jian-Ye; Kuang, Jian-Fei; Lu, Wang-Jin; Shan, Wei

    2017-01-01

    The regulation of ICE1 protein stability is important to ensure effective cold stress response, and is extensively studied in Arabidopsis . Currently, how ICE1 stability in fruits under cold stress is controlled remains largely unknown. Here, we reported the possible involvement of a SEVEN IN ABSENTIA (SINA) ubiquitin ligase MaSINA1 from banana fruit in affecting MaICE1 stability. MaSINA1 was identified based on a yeast two-hybrid screening using MaICE1 as bait. Further yeast two-hybrid, pull-down, bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (CoIP) assays confirmed that MaSINA1 interacted with MaICE1. The expression of MaSINA1 was repressed by cold stress. Subcellular localization analysis in tobacco leaves showed that MaSINA1 was localized predominantly in the nucleus. In vitro ubiquitination assay showed that MaSINA1 possessed E3 ubiquitin ligase activity. More importantly, in vitro and semi- in vivo experiments indicated that MaSINA1 can ubiquitinate MaICE1 for the 26S proteasome-dependent degradation, and therefore suppressed the transcriptional activation of MaICE1 to MaNAC1, an important regulator of cold stress response of banana fruit. Collectively, our data reveal a mechanism in banana fruit for control of the stability of ICE1 and for the negative regulation of cold stress response by a SINA E3 ligase via the ubiquitin proteasome system.

  19. The minimal ice water caloric test compared with established vestibular caloric test procedures.

    Science.gov (United States)

    Schmäl, Frank; Lübben, Björn; Weiberg, Kerstin; Stoll, Wolfgang

    2005-01-01

    Caloric testing of the vestibular labyrinth is usually performed by classical caloric test procedures (CCTP) using water warmed to 30 degrees C and 44 degrees C. Ice water irrigation (4 degrees C) is usually not performed, although it might be useful as a bedside test. To verify the validity of the Minimal Ice Water Caloric Test (MIWCT), comparative video-oculographic investigations were performed in 22 healthy subjects using ice water (0.5 ml, 1.0 ml, 2 ml), CCTP, and cold air (27 degrees C). Frequency, amplitude, slow phase velocity (SPV), the onset, and the duration of nystagmus were documented. After addition of three ice cubes, the temperature of conventional tap water (16 degrees C) fell within 13 min to 4 degrees C. In pessimum position the subjects demonstrated no nystagmus response. Compared to CCTP, MIWCT was associated with a significantly later onset of nystagmus and a significant prolongation of the nystagmus reaction. In contrast to air stimulation (27 degrees C), a significant Spearman's correlation was noted between MIWCT (1 and 2 ml) and established CCTP in respect of essential nystagmus parameters (frequency, amplitude and SPV). Furthermore, MIWCT (0.5 and 1 ml) showed a higher sensitivity and specificity with regard to the detection of canal paresis based on Jongkees' formula compared to stimulation with air 27 degrees C. Thus, MIWCT appears to be a suitable procedure for bedside investigation of vestibular function outside the vestibular laboratory, e.g. in a hospital ward, where bedridden patients with vertigo occasionally require vestibular testing.

  20. Sputtering of water ice

    DEFF Research Database (Denmark)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from...

  1. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Science.gov (United States)

    Tran Trong, Than; Riera, Florence; Rinaldi, Kévin; Briki, Walid; Hue, Olivier

    2015-01-01

    A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions. Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol) beverage at three temperatures: Neutral (ambient temperature) (28.7°C±0. 5°C), Cold (3.1°C±0.6°C) or Ice-slurry (0.17°C±0.07°C). Trial time, core temperature (Tco), heart rate (HR), rate of perceived exertion (RPE), thermal sensation (TS) and thermal comfort (TC) were assessed. Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol. A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone). Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE) between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  2. First Thoughts About Being Outside In The Very Cold Land: Did We Get Rocks That Will Let Us Study How Warm And Wet It Was In The Past?

    Science.gov (United States)

    Winsor, K.; Swanger, K.

    2015-12-01

    In the very cold land at the bottom of the world, ice lives under ground. How old is the ice? In some places, the ice is very old, but in other places, it's pretty young. If the ice is old, that must mean that it was always cold there. Old ice is interesting because it tells a story about old air and water. And, it means that even if the air were much warmer, the old ice could probably live. But, young ice is interesting, too. When a place has young ice, it means that it wasn't too long ago that ice could be made there. And, both kinds of under ground ice are interesting because if they turn to water, they can go into small bodies of water. There, tiny living things grow. The living things eat food brought by the water, so the ice-turned-to-water is important to their families. In this talk, we will think about a part of the very cold land at the bottom of the world, and about how old the ice is there. What ice and rocks can we use to figure this out? What does the ice look like when it's hiding under ground? These are only first thoughts, because we will only just be back from the very cold land!

  3. 21 CFR 880.6085 - Hot/cold water bottle.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold water...

  4. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    Science.gov (United States)

    Richardson, M. I.

    2002-12-01

    Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and

  5. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter

    International Nuclear Information System (INIS)

    Sato, Kazutoshi; Inoue, Jun; Watanabe, Masahiro

    2014-01-01

    Abnormal sea-ice retreat over the Barents Sea during early winter has been considered a leading driver of recent midlatitude severe winters over Eurasia. However, causal relationships between such retreat and the atmospheric circulation anomalies remains uncertain. Using a reanalysis dataset, we found that poleward shift of a sea surface temperature front over the Gulf Stream likely induces warm southerly advection and consequent sea-ice decline over the Barents Sea sector, and a cold anomaly over Eurasia via planetary waves triggered over the Gulf Stream region. The above mechanism is supported by the steady atmospheric response to the diabatic heating anomalies over the Gulf Stream region obtained with a linear baroclinic model. The remote atmospheric response from the Gulf Stream would be amplified over the Barents Sea region via interacting with sea-ice anomaly, promoting the warm Arctic and cold Eurasian pattern. (letter)

  6. Heterogeneous condensation of ice mantle around silicate core grain in molecular cloud

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    Interstellar water ice grains are observed in the cold and dense regions such as molecular clouds, HII regions and protostellar objects. The water ice is formed from gas phase during the cooling stage of cosmic gas with solid grain surfaces of high temperature silicate minerals. It is a question whether the ice is formed through the homogeneous condensation process (as the ice alone) or the heterogeneous one (as the ice around the pre-existing high temperature mineral grains). (author)

  7. Raman lidar measurement of water vapor and ice clouds associated with Asian dust layer over Tsukuba, Japan

    Science.gov (United States)

    Sakai, Tetsu; Nagai, Tomohiro; Nakazato, Masahisa; Matsumura, Takatsugu

    2004-03-01

    The vertical distributions of particle extinction, backscattering, depolarization, and water vapor mixing ratio were measured using a Raman lidar over Tsukuba (36.1°N, 140.1°E), Japan, on 23-24 April 2001. Ice clouds associated with the Asian dust layer were observed at an altitude of ~6-9 km. The relative humidities in the cloud layer were close to the ice saturation values and the temperature at the top of the cloud layer was ~-35°C, suggesting that the Asian dust acted as ice nuclei at the high temperatures. The meteorological analysis suggested that the ice-saturated region was formed near the top of the dust layer where the moist air ascended in slantwise fashion above the cold-frontal zone associated with extratropical cyclone.

  8. Chemical complexity induced by efficient ice evaporation in the Barnard 5 molecular cloud

    OpenAIRE

    Taquet, Vianney; Wirström, Eva; Charnley, Steven B.; Faure, Alexandre; López-Sepulcre, Ana; Persson, Carina M.

    2017-01-01

    Cold gas-phase water has recently been detected in a cold dark cloud, Barnard 5 located in the Perseus complex, by targeting methanol peaks as signposts for ice mantle evaporation. Observed morphology and abundances of methanol and water are consistent with a transient non-thermal evaporation process only affecting the outermost ice mantle layers, possibly triggering a more complex chemistry. We present the detection of the Complex Organic Molecules (COMs) acetaldehyde and methyl formate as w...

  9. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Directory of Open Access Journals (Sweden)

    Than Tran Trong

    Full Text Available A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions.Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol beverage at three temperatures: Neutral (ambient temperature (28.7°C±0. 5°C, Cold (3.1°C±0.6°C or Ice-slurry (0.17°C±0.07°C. Trial time, core temperature (Tco, heart rate (HR, rate of perceived exertion (RPE, thermal sensation (TS and thermal comfort (TC were assessed.Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol.A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone. Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  10. Ice Nucleation in the Tropical Tropopause Layer: Implications for Cirrus Occurrence, Cirrus Microphysical Properties, and Dehydration of Air Entering the Stratosphere

    Science.gov (United States)

    Jensen, Eric; Kaercher, Bernd; Ueyama, Rei; Pfister, Leonhard

    2017-01-01

    Recent laboratory experiments have advanced our understanding of the physical properties and ice nucleating abilities of aerosol particles atlow temperatures. In particular, aerosols containing organics will transition to a glassy state at low temperatures, and these glassy aerosols are moderately effective as ice nuclei. These results have implications for ice nucleation in the cold Tropical Tropopause Layer (TTL; 13-19 km). We have developed a detailed cloud microphysical model that includes heterogeneous nucleation on a variety of aerosol types and homogeneous freezing of aqueous aerosols. This model has been incorporated into one-dimensional simulations of cirrus and water vapor driven by meteorological analysis temperature and wind fields. The model includes scavenging of ice nuclei by sedimenting ice crystals. The model is evaluated by comparing the simulated cloud properties and water vapor concentrations with aircraft and satellite measurements. In this presentation, I will discuss the relative importance of homogeneous and heterogeneous ice nucleation, the impact of ice nuclei scavenging as air slowly ascends through the TTL, and the implications for the final dehydration of air parcels crossing the tropical cold-point tropopause and entering the tropical stratosphere.

  11. Evaluation of Ice sheet evolution and coastline changes from 1960s in Amery Ice Shelf using multi-source remote sensing images

    Science.gov (United States)

    Qiao, G.; Ye, W.; Scaioni, M.; Liu, S.; Feng, T.; Liu, Y.; Tong, X.; Li, R.

    2013-12-01

    Global change is one of the major challenges that all the nations are commonly facing, and the Antarctica ice sheet changes have been playing a critical role in the global change research field during the past years. Long time-series of ice sheet observations in Antarctica would contribute to the quantitative evaluation and precise prediction of the effects on global change induced by the ice sheet, of which the remote sensing technology would make critical contributions. As the biggest ice shelf and one of the dominant drainage systems in East Antarctic, the Amery Ice Shelf has been making significant contributions to the mass balance of the Antarctic. Study of Amery Ice shelf changes would advance the understanding of Antarctic ice shelf evolution as well as the overall mass balance. At the same time, as one of the important indicators of Antarctica ice sheet characteristics, coastlines that can be detected from remote sensing imagery can help reveal the nature of the changes of ice sheet evolution. Most of the scientific research on Antarctica with satellite remote sensing dated from 1970s after LANDSAT satellite was brought into operation. It was the declassification of the cold war satellite reconnaissance photographs in 1995, known as Declassified Intelligence Satellite Photograph (DISP) that provided a direct overall view of the Antarctica ice-sheet's configuration in 1960s, greatly extending the time span of Antarctica surface observations. This paper will present the evaluation of ice-sheet evolution and coastline changes in Amery Ice Shelf from 1960s, by using multi-source remote sensing images including the DISP images and the modern optical satellite images. The DISP images scanned from negatives were first interior-oriented with the associated parameters, and then bundle block adjustment technology was employed based on the tie points and control points, to derive the mosaic image of the research region. Experimental results of coastlines generated

  12. Cold modalities with different thermodynamic properties have similar effects on muscular performance and activation.

    Science.gov (United States)

    Vieira, A; Oliveira, A B; Costa, J R; Herrera, E; Salvini, T F

    2013-10-01

    Although tissue cooling is widely used in the treatment of musculoskeletal injuries there is still controversy about its effects on muscular performance. The combination of cooling and exercise justifies the study of this topic. The aim was to compare the effects of ice pack and cold-water immersion on the muscular performance parameters of plantar flexors and muscular activation of the triceps surae. 41 healthy men (mean age: 22.1 years, SD: 2.9) were randomly assigned to cooling with either ice pack (n=20) or cold-water immersion (n=21). Independent variables were cold modality (ice pack or cold-water immersion) and pre- and post-cooling measurement time. Dependent variables were muscular performance (measured during isometric and concentric contractions of plantar flexors) and electromyography parameters of the triceps surae (median frequency and root mean square amplitude). Dependent-samples t-tests were used to compare pre- and post-cooling data and independent-samples t-tests were used to compare the difference (pre- and post-cooling) between groups. Ice pack increased isometric peak torque (mean: 9.00 Nm, P=0.01) and both cold modalities reduced muscular activation in triceps surae (Pimmersion and ice pack reduced peak torque and total work during dynamic isokinetic contraction at both velocities (mean: -11,00 Nm, Pimmersion decrease concentric muscular performance. These results indicate that these cooling methods should be chosen with caution, considering the type of task required during training or rehabilitation. New studies investigating other muscle groups and joints are necessary. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Criticality safety evaluation report for the Cold Vacuum Drying Facility's process water handling system

    International Nuclear Information System (INIS)

    Roblyer, S.D.

    1998-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility (CVDF). The controls and limitations on equipment design and operations to control potential criticality occurrences are identified. The effectiveness of equipment design and operation controls in preventing criticality occurrences during normal and abnormal conditions is evaluated and documented in this report. Spent nuclear fuel (SNF) is removed from existing canisters in both the K East and K West Basins and loaded into a multicanister overpack (MCO) in the K Basin pool. The MCO is housed in a shipping cask surrounded by clean water in the annulus between the exterior of the MCO and the interior of the shipping cask. The fuel consists of spent N Reactor and some single pass reactor fuel. The MCO is transported to the CVDF near the K Basins to remove process water from the MCO interior and from the shipping cask annulus. After the bulk water is removed from the MCO, any remaining free liquid is removed by drawing a vacuum on the MCO's interior. After cold vacuum drying is completed, the MCO is filled with an inert cover gas, the lid is replaced on the shipping cask, and the MCO is transported to the Canister Storage Building. The process water removed from the MCO contains fissionable materials from metallic uranium corrosion. The process water from the MCO is first collected in a geometrically safe process water conditioning receiver tank. The process water in the process water conditioning receiver tank is tested, then filtered, demineralized, and collected in the storage tank. The process water is finally removed from the storage tank and transported from the CVDF by truck

  14. The Dominant Snow-forming Process in Warm and Cold Mixed-phase Orographic Clouds: Effects of Cloud Condensation Nuclei and Ice Nuclei

    Science.gov (United States)

    Fan, J.; Rosenfeld, D.; Leung, L. R.; DeMott, P. J.

    2014-12-01

    Mineral dust aerosols often observed over California in winter and spring from long-range transport can be efficient ice nuclei (IN) and enhance snow precipitation in mixed-phase orographic clouds. On the other hand, local pollution particles can serve as good CCN and suppress warm rain, but their impacts on cold rain processes are uncertain. The main snow-forming mechanism in warm and cold mixed-phase orographic clouds (refer to as WMOC and CMOC, respectively) could be very different, leading to different precipitation response to CCN and IN. We have conducted 1-km resolution model simulations using the Weather Research and Forecasting (WRF) model coupled with a spectral-bin cloud microphysical model for WMOC and CMOC cases from CalWater2011. We investigated the response of cloud microphysical processes and precipitation to CCN and IN with extremely low to extremely high concentrations using ice nucleation parameterizations that connect with dust and implemented based on observational evidences. We find that riming is the dominant process for producing snow in WMOC while deposition plays a more important role than riming in CMOC. Increasing IN leads to much more snow precipitation mainly due to an increase of deposition in CMOC and increased rimming in WMOC. Increasing CCN decreases precipitation in WMOC by efficiently suppressing warm rain, although snow is increased. In CMOC where cold rain dominates, increasing CCN significantly increases snow, leading to a net increase in precipitation. The sensitivity of supercooled liquid to CCN and IN has also been analyzed. The mechanism for the increased snow by CCN and caveats due to uncertainties in ice nucleation parameterizations will be discussed.

  15. Phytochemical content of hot and cold water extracts of Orthosiphon stamineus leaves

    Science.gov (United States)

    Habboo, Maysam Dahham; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2018-04-01

    Orthosiphon stamineus Benth (Lamiaceae) is a plant with ethnobotanical applications including antifungal and antibacterial properties. This study aimed to evaluate the phytochemical contents of Orthosiphon stamineus leaves water extract prepared in cold and hot distilled water. Phytochemical screening revealed the presence of phytochemicals components such as a flavonoid, terpenoid and steroid in both extracts. Cold water extract has two extra components: saponin and alkaloid that may be destroyed by the exposure to heat.

  16. Corona-producing ice clouds: A case study of a cold mid-latitude cirrus layer

    International Nuclear Information System (INIS)

    Sassen, K.; Mace, G.G.; Hallett, J.; Poellot, M.R.

    1998-01-01

    A high (14.0-km), cold (-71.0thinsp degree C) cirrus cloud was studied by ground-based polarization lidar and millimeter radar and aircraft probes on the night of 19 April 1994 from the Cloud and Radiation Testbed site in northern Oklahoma. A rare cirrus cloud lunar corona was generated by this 1 - 2-km-deep cloud, thus providing an opportunity to measure the composition in situ, which had previously been assumed only on the basis of lidar depolarization data and simple diffraction theory for spheres. In this case, corona ring analysis indicated an effective particle diameter of ∼22 μm. A variety of in situ data corroborates the approximate ice-particle size derived from the passive retrieval method, especially near the cloud top, where impacted cloud samples show simple solid crystals. The homogeneous freezing of sulfuric acid droplets of stratospheric origin is assumed to be the dominant ice-particle nucleation mode acting in corona-producing cirrus clouds. It is speculated that this process results in a previously unrecognized mode of acid-contaminated ice-particle growth and that such small-particle cold cirrus clouds are potentially a radiatively distinct type of cloud. copyright 1998 Optical Society of America

  17. Theoretical Analysis on Marangoni-driven Cavity Formation in Ice during In Situ Burning of Oil Spills in Ice-infested Waters

    Science.gov (United States)

    Farmahini Farahani, H.; Jomaas, G.; Rangwala, A. S.

    2017-12-01

    In situ burning, intentional burning of discharged oil on the water surface, is a promising response method to oil spill accidents in the Arctic. However, burning of the oil adjacent to ice bodies creates a lateral cavity in the ice. As a result of the cavity formation the removal efficiency which is a key success criterion for in situ burning operation will decrease. The formation of lateral cavities are noticed recently and only a few experimental studies have addressed them. These experiments have shown lateral cavities with a length of severe horizontal temperature gradient which in turn generates a Marangoni flow from hot to cold regions. This is found to be the dominant heat transfer mechanism that is providing the heat for the ice to melt. Here, we introduce an order of magnitude analysis on the governing equations of the ice melting problem to estimate the penetration length of a burning oil near ice. This correlation incorporates the flame heat feedback with the surface flow driven by Marangoni convection. The melting energy continuity is also included in the analysis to complete the energy transfer cycle that leads to melting of the ice. The comparison between this correlation and the existing experimental data shows a very good agreement. Therefore, this correlation can be used to estimate the penetration length for burning of an actual spill and can be applied towards improved guidelines of burning adjacent to ice bodies, so as to enhance the chances for successful implantation of in situ burning.

  18. Simulating Arctic clouds during Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE)

    Science.gov (United States)

    Bromwich, D. H.; Hines, K. M.; Wang, S. H.

    2015-12-01

    The representation within global and regional models of the extensive low-level cloud cover over polar oceans remains a critical challenge for quantitative studies and forecasts of polar climate. In response, the polar-optimized version of the Weather Research and Forecasting model (Polar WRF) is used to simulate the meteorology, boundary layer, and Arctic clouds during the September-October 2014 Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE) project. Polar WRF was developed with several adjustments to the sea ice thermodynamics in WRF. ARISE was based out of Eielson Air Force Base near Fairbanks, Alaska and included multiple instrumented C-130 aircraft flights over open water and sea ice of the Beaufort Sea. Arctic boundary layer clouds were frequently observed within cold northeasterly flow over the open ocean and ice. Preliminary results indicate these clouds were primarily liquid water, with characteristics differing between open water and sea ice surfaces. Simulated clouds are compared to ARISE observations. Furthermore, Polar WRF simulations are run for the August-September 2008 Arctic Summer Cloud Ocean Study (ASCOS) for comparison to the ARISE. Preliminary analysis shows that simulated low-level water clouds over the sea ice are too extensive during the the second half of the ASCOS field program. Alternatives and improvements to the Polar WRF cloud schemes are considered. The goal is to use the ARISE and ASCOS observations to achieve an improved polar supplement to the WRF code for open water and sea ice that can be provided to the Polar WRF community.

  19. Benchmarking a first-principles thermal neutron scattering law for water ice with a diffusion experiment

    Directory of Open Access Journals (Sweden)

    Holmes Jesse

    2017-01-01

    Full Text Available The neutron scattering properties of water ice are of interest to the nuclear criticality safety community for the transport and storage of nuclear materials in cold environments. The common hexagonal phase ice Ih has locally ordered, but globally disordered, H2O molecular orientations. A 96-molecule supercell is modeled using the VASP ab initio density functional theory code and PHONON lattice dynamics code to calculate the phonon vibrational spectra of H and O in ice Ih. These spectra are supplied to the LEAPR module of the NJOY2012 nuclear data processing code to generate thermal neutron scattering laws for H and O in ice Ih in the incoherent approximation. The predicted vibrational spectra are optimized to be representative of the globally averaged ice Ih structure by comparing theoretically calculated and experimentally measured total cross sections and inelastic neutron scattering spectra. The resulting scattering kernel is then supplied to the MC21 Monte Carlo transport code to calculate time eigenvalues for the fundamental mode decay in ice cylinders at various temperatures. Results are compared to experimental flux decay measurements for a pulsed-neutron die-away diffusion benchmark.

  20. DETECTIONS OF TRANS-NEPTUNIAN ICE IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, M. K.; Calvet, N.; Bergin, E.; Cleeves, L. I. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Bldg., Ann Arbor, MI 48109 (United States); Espaillat, C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); D' Alessio, P. [Centro de Radioastronomía y Astrofísica, Universidad NacionalAUtónoma de México, 58089 Morelia, Michoacán (Mexico); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Sargent, B., E-mail: melisma@umich.edu, E-mail: ncalvet@umich.edu, E-mail: ebergin@umich.edu, E-mail: cleeves@umich.edu, E-mail: cce@bu.edu, E-mail: p.dalessio@crya.unam.mx, E-mail: dmw@pas.rochester.edu, E-mail: manoj.puravankara@tifr.res.in, E-mail: baspci@rit.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2015-02-01

    We present Herschel Space Observatory PACS spectra of T Tauri stars, in which we detect amorphous and crystalline water ice features. Using irradiated accretion disk models, we determine the disk structure and ice abundance in each of the systems. Combining a model-independent comparison of the ice feature strength and disk size with a detailed analysis of the model ice location, we estimate that the ice emitting region is at disk radii >30 AU, consistent with a proto-Kuiper belt. Vertically, the ice emits most below the photodesorption zone, consistent with Herschel observations of cold water vapor. The presence of crystallized water ice at a disk location (1) colder than its crystallization temperature and (2) where it should have been re-amorphized in ∼1 Myr suggests that localized generation is occurring; the most likely cause appears to be micrometeorite impact or planetesimal collisions. Based on simple tests with UV models and different ice distributions, we suggest that the SED shape from 20 to 50 μm may probe the location of the water ice snowline in the disk upper layers. This project represents one of the first extra-solar probes of the spatial structure of the cometary ice reservoir thought to deliver water to terrestrial planets.

  1. CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS

    Energy Technology Data Exchange (ETDEWEB)

    Bordalo, V.; Da Silveira, E. F. [Departamento de Fisica/Laboratorio do Acelerador Van de Graaff, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de S. Vicente 225, 22451-900 Rio de Janeiro, RJ (Brazil); Lv, X. Y.; Domaracka, A.; Rothard, H.; Boduch, P. [Centre de Recherche sur les Ions, les Materiaux et la Photonique (CEA/CNRS/ENSICAEN/Universite de Caen-Basse Normandie), CIMAP-CIRIL-GANIL, Boulevard Henri Becquerel, BP 5133, F-14070 Caen Cedex 05 (France); Seperuelo Duarte, E., E-mail: vbordalo@fis.puc-rio.br [Grupo de Fisica e Astronomia, Instituto Federal do Rio de Janeiro, Rua Lucio Tavares 1045, 26530-060 Nilopolis, RJ (Brazil)

    2013-09-10

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified after irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

  2. Assimilation of ice and water observations from SAR imagery to improve estimates of sea ice concentration

    Directory of Open Access Journals (Sweden)

    K. Andrea Scott

    2015-09-01

    Full Text Available In this paper, the assimilation of binary observations calculated from synthetic aperture radar (SAR images of sea ice is investigated. Ice and water observations are obtained from a set of SAR images by thresholding ice and water probabilities calculated using a supervised maximum likelihood estimator (MLE. These ice and water observations are then assimilated in combination with ice concentration from passive microwave imagery for the purpose of estimating sea ice concentration. Due to the fact that the observations are binary, consisting of zeros and ones, while the state vector is a continuous variable (ice concentration, the forward model used to map the state vector to the observation space requires special consideration. Both linear and non-linear forward models were investigated. In both cases, the assimilation of SAR data was able to produce ice concentration analyses in closer agreement with image analysis charts than when assimilating passive microwave data only. When both passive microwave and SAR data are assimilated, the bias between the ice concentration analyses and the ice concentration from ice charts is 19.78%, as compared to 26.72% when only passive microwave data are assimilated. The method presented here for the assimilation of SAR data could be applied to other binary observations, such as ice/water information from visual/infrared sensors.

  3. Instability of water-ice interface under turbulent flow

    Science.gov (United States)

    Izumi, Norihiro; Naito, Kensuke; Yokokawa, Miwa

    2015-04-01

    It is known that plane water-ice interface becomes unstable to evolve into a train of waves. The underside of ice formed on the water surface of rivers are often observed to be covered with ice ripples. Relatively steep channels which discharge melting water from glaciers are characterized by beds covered with a series of steps. Though the flowing agent inducing instability is not water but gas including water vapor, a similar train of steps have been recently observed on the Polar Ice Caps on Mars (Spiral Troughs). They are expected to be caused by the instability of water-ice interface induced by flowing fluid on ice. There have been some studies on this instability in terms of linear stability analysis. Recently, Caporeale and Ridolfi (2012) have proposed a complete linear stability analysis in the case of laminar flow, and found that plane water-ice interface is unstable in the range of sufficiently large Reynolds numbers, and that the important parameters are the Reynolds number, the slope angle, and the water surface temperature. However, the flow inducing instability on water-ice interface in the field should be in the turbulent regime. Extension of the analysis to the case of fully developed turbulent flow with larger Reynolds numbers is needed. We have performed a linear stability analysis on the instability of water-ice interface under turbulent flow conditions with the use of the Reynolds-averaged Navier-Stokes equations with the mixing length turbulent model, the continuity equation of flow, the diffusion/dispersion equation of heat, and the Stefan equation. In order to reproduce the accurate velocity distribution and the heat transfer in the vicinity of smooth walls with the use of the mixing length model, it is important to take into account of the rapid decrease in the mixing length in the viscous sublayer. We employ the Driest model (1956) to the formulation. In addition, as the thermal boundary condition at the water surface, we describe the

  4. Water ice and sub-micron ice particles on Tethys and Mimas

    Science.gov (United States)

    Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.

    2017-10-01

    IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side

  5. Ice Segregation and Frost Heaving.

    Science.gov (United States)

    1984-01-01

    to a buried chilled gas pipeline by continual frost ’. ’- heave during the service life or to a buried liquefied gas tank is a more _ recent concern...M). Lule en: Uiversity of Lulea. Pehner, E., 1982. Aspects of ice lens fornmation. P ing of the Third International Syvosium on Ground Freezi, Hanover...Soils. Lalea, Sweden: Uiversity ofLulea. . Berg, R. L., G. Guymon and J. Ingersoll, 1979. Conference on soil-water . problems in cold regions. Cold

  6. Experimental study on a cold neutron source of solid methylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Utsuro, M; Sugimoto, M; Fujita, Y [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1975-10-01

    An experimental study to produce cold neutrons with low temperature solid mesitylene as cold moderator in liquid helium and liquid nitrogen cryostats is reported. Measured cold neutron spectra by using an electron linac and time-of-flight method shows that this material is a better cold moderator than light water ice, giving the cold neutron output not so much inferior to that of solid methane in the temperature range above about 20 K and in the neutron energy region above about 1 MeV.

  7. Comparison of the quantification of KRAS mutations by digital PCR and E-ice-COLD-PCR in circulating-cell-free DNA from metastatic colorectal cancer patients.

    Science.gov (United States)

    Sefrioui, David; Mauger, Florence; Leclere, Laurence; Beaussire, Ludivine; Di Fiore, Frédéric; Deleuze, Jean-François; Sarafan-Vasseur, Nasrin; Tost, Jörg

    2017-02-01

    Circulating cell-free DNA (ccfDNA) bears great promise as biomarker for personalized medicine, but ccfDNA is present only at low levels in the plasma or serum of cancer patients. E-ice-COLD-PCR is a recently developed enrichment method to detect and identify mutations present at low-abundance in clinical samples. However, recent studies have shown the importance to accurately quantify low-abundance mutations as clinically important decisions will depend on certain mutation thresholds. The possibility for an enrichment method to accurately quantify the mutation levels remains a point of concern and might limit its clinical applicability. In the present study, we compared the quantification of KRAS mutations in ccfDNA from metastatic colorectal cancer patients by E-ice-COLD-PCR with two digital PCR approaches. For the quantification of mutations by E-ice-COLD-PCR, cell lines with known mutations diluted into WT genomic DNA were used for calibration. E-ice-COLD-PCR and the two digital PCR approaches showed the same range of the mutation level and were concordant for mutation levels below the clinical relevant threshold. E-ice-COLD-PCR can accurately detect and quantify low-abundant mutations in ccfDNA and has a shorter time to results making it compatible with the requirements of analyses in a clinical setting without the loss of quantitative accuracy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Use of ice storage equipment in the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Vries, H. de

    1984-01-01

    The manufacture of foods in its widest sense demands a 'balanced supply of cooling'. Whenever 'cold requirement' occurs in different ways during production, the ice storage equipment in particular for 'cooling supplies'. The cooling performance (amount of cold from horizontal tubes and slabs or from horizontal pipes given off to the water flowing past) that can be expected from modern ice storage equipment, is made clear numerically. The way the storage vessel is constructed and its design have particular influence on the energy-saving quality (stirring mechanism with high performance at low pump capacity). Optimisation results for a plate evaporator design combined with a heat exchange system are presented. These include running cost savings of up to 18% in a yoghurt factory, a maltery and an ice cream factory. By means of this heat pump compound, environmental energy can be used in cold storage.

  9. Factors Affecting the Changes of Ice Crystal Form in Ice Cream

    Science.gov (United States)

    Wang, Xin; Watanabe, Manabu; Suzuki, Toru

    In this study, the shape of ice crystals in ice cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial ice cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each ice crystal were measured to calculate fractal dimension using image analysis software. The results showed that the ice crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of ice crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape ice crystals was relatively higher because of aggregation.

  10. Structural experiments with ice (composite) shells

    NARCIS (Netherlands)

    Belis, J.; Martens, K.; Van Lancker, B.; Pronk, A.; Zingoni, Alphose

    2016-01-01

    ABSTRACT: Ice can be a very suitable building material for temporary structures in a freezing environment. When water, mixed with small fibre reinforcements, is sprayed onto an inflatable membrane structure in suitable cold outdoor conditions, a thin shell is formed which increases thickness layer

  11. Chlorine-containing salts as water ice nucleating particles on Mars

    Science.gov (United States)

    Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.

    2018-03-01

    Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.

  12. Cold distribution networks. Cold distribution by two-phase refrigerant fluid. Case of ice slurries; Reseaux de distribution de froid. Distribution de froid par fluide frigoporteur diphasique. Cas du coulis de glace stabilisee (2002 - 2004). Rapport final (1er juillet 2004). Programme energie. PRI 9.1

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), Centre de Thermique de Lyon (CETHIL), UMR 5008, 69 - Villeurbanne (France); Mercier, P. [CEA Grenoble, Groupement pour la Recherche sur les Echangeurs Thermiques (GRETH), 38 (France); Royon, L. [Paris-1 Univ., Lab. de Biorheologie et d' Hydrodynamique Physico-Chimique, 75 (France); Dumas, J.P. [L' Ecole Nationale Superieure en Genie des Technologies Industrielles, Lab. de Thermique Energetique et Procedes, 64 - Pau (France); Guilpart, J. [URGPAN/CEMAGRE, 33 - Bordeaux (France)

    2004-07-01

    This PRI aims to participate to the development of alternate solutions for refrigerant fluids, for the cold transport and more specially a two phase refrigerant fluid: the stabilized ice slurry. The research program presented three main axis: design, realization and characterization of stabilized ice slurry, experimental studies of transport and transfer properties, study of online measurement process of the solid content. A simulation has been realized to evaluate the energy efficiency of this refrigerant use. (A.L.B.)

  13. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    Science.gov (United States)

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  14. Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: Insights into the Cryogenian ocean and Precambrian cold-water carbonates

    Science.gov (United States)

    James, Noel P.; Narbonne, Guy M.; Dalrymple, Robert W.; Kurtis Kyser, T.

    2005-01-01

    Stellate crystals of ferroan dolomite in neritic siliciclastic and carbonate sedimentary rocks between Sturtian and Marinoan glaciations in the Mackenzie Mountains are interpreted as replaced glendonites. These pseudomorphs after ikaite indicate that shallow seawater at that time was near freezing. Stromatolites verify that paleoenvironments were in the photic zone and physical sedimentary structures such as hummocky cross-bedding confirm that the seafloor was repeatedly disturbed by storms. Glendonites within these low-latitude, continental shelf to coastal sedimentary deposits imply that global ocean water during much of Cryogenian time was likely very cold. Such an ocean would easily have cooled to yield widespread sea ice and, through positive feedback, growth of low-latitude continental glaciers. In this situation gas hydrates could have formed in shallow-water, cold shelf sediment, but would have been particularly sensitive to destabilization as a result of sea-level change. Co-occurrence of pisolites and glendonites in these rocks additionally implies that some ooids and pisoids might have been, unlike Phanerozoic equivalents, characteristic of cold-water sediments.

  15. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate....... It was revealed that cloudy bands affect ice-deformation processes, but the details remain unclear. Udgivelsesdato: June......Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  16. Cold-Based Glaciation on Mercury: Accumulation and Flow of Ice in Permanently-Shadowed Circum-Polar Crater Interiors

    Science.gov (United States)

    Fastook, J. L.; Head, J. W.

    2018-05-01

    Examining the potential for dynamic flow of ice deposits in permanently-shadowed craters, it is determined that the cold environment of the polar craters yields very small velocities and deformation is minimal on a time scale of millions of years.

  17. Water, ice and mud: Lahars and lahar hazards at ice- and snow-clad volcanoes

    Science.gov (United States)

    Waythomas, Christopher F.

    2014-01-01

    Large-volume lahars are significant hazards at ice and snow covered volcanoes. Hot eruptive products produced during explosive eruptions can generate a substantial volume of melt water that quickly evolves into highly mobile flows of ice, sediment and water. At present it is difficult to predict the size of lahars that can form at ice and snow covered volcanoes due to their complex flow character and behaviour. However, advances in experiments and numerical approaches are producing new conceptual models and new methods for hazard assessment. Eruption triggered lahars that are ice-dominated leave behind thin, almost unrecognizable sedimentary deposits, making them likely to be under-represented in the geological record.

  18. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  19. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean.

    Science.gov (United States)

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A; Buttigieg, Pier L; Rapp, Josephine Z; Krumpen, Thomas; Zehr, Jonathan P; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.

  20. Diazotroph diversity in the sea ice, melt ponds and surface waters of the Eurasian Basin of the Central Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Mar Fernández-Méndez

    2016-11-01

    Full Text Available The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing towards a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77ºN. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.

  1. Optimal Electromagnetic (EM) Geophysical Techniques to Map the Concentration of Subsurface Ice and Adsorbed Water on Mars and the Moon

    Science.gov (United States)

    Stillman, D. E.; Grimm, R. E.

    2013-12-01

    dielectric spectroscopy at the Cold Regions Research and Engineering Laboratory (CRREL) permafrost tunnel in Fox, AK. We were able to detect the ice relaxation in the subsurface despite the considerable amount of subsurface unfrozen water due to the presence of montmorillonite clay and much warmer temperatures than Mars or permanently shadowed regions of the Moon. While dielectric spectroscopy can be used to determine ice and adsorbed water content it does not possess the high resolution mapping capability of a GPR. Moreover, GPR cannot detect subsurface ice content in ice-sediment mixtures as evidenced in the interpretation of the Medusae Fossae Formation. Orbital radar surveys show this unit has a low attenuation and a dielectric permittivity near 4. This allows the formation to be interpreted as ice-rich or a dry high-porosity volcanic tuff unit. Therefore, combining GPR and dielectric spectroscopy will enable high-resolution structural and volatile mapping of the subsurface. Furthermore, the addition of neutron spectroscopy would add total hydrogen abundance in the top meter. This could lead to the determination of how much hydrogen resides in ice, adsorbed water, and minerals.

  2. Cold weather oil spill response training

    International Nuclear Information System (INIS)

    Solsberg, L.B.; Owens, E.H.

    2001-01-01

    In April 2000, a three-day oil spill response training program was conducted on Alaska's North Slope. The unique hands-on program was specifically developed for Chevron Corporation's world-wide response team. It featured a combination of classroom and outdoor sessions that helped participants to learn and apply emergency measures in a series of field exercises performed in very cold weather conditions. Temperatures remained below minus 20 degrees C and sometimes reached minus 40 degrees C throughout the training. The classroom instructions introduced participants to the Emergency Prevention Preparedness and Response (EPPR) Working Group's Field Guide for Spill Response in Arctic Waters. This guide provides response strategies specific to the Arctic, including open water, ice and snow conditions. The sessions also reviewed the Alaska Clean Seas Tactics Manual which addresses spill containment and recovery, storage, tracking, burning and disposal. The issues that were emphasized throughout the training program were cold weather safety and survival. During the training sessions, participants were required to set up weather ports and drive snowmobiles and all terrain vehicles. Their mission was to detect oil with infra-red and hand-held devices. They were required to contain the oil by piling snow into snow banks, and by augering, trenching and slotting ice. Oil was removed by trimming operations on solid ice, snow melting, snow blowing, skimming and pumping. In-situ burning was also performed. Other sessions were also conducted develop skills in site characterization and treating oiled shorelines. The successfully conducted field sessions spanned all phases of a cleanup operation in cold weather. 5 refs., 7 figs

  3. Cold leg condensation tests. Task C. Steam--water interaction tests

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Loiselle, V.

    1974-03-01

    A report is presented of tests to determine the condensation efficiency of ECC water injected into a quality fluid mixture flowing through the cold leg. In particular, a specific objective was to determine if the mixture of ECC water and quality fluid reached thermodynamic equilibrium before exiting the cold leg. Further, the stability of the ECC water/quality fluid interaction would be assessed by interpretation of thermocouple records and utilization of a section of cold leg piping with view ports to film the interaction whenever possible. The cold leg condensation tests showed complete condensation of the 5 lbm/sec steam quality mixtures in the cold leg by the ECC water flows of the test matrix. The cold leg exit fluid temperature remained below the saturation temperature and had good agreement with the predicted cold leg outlet temperature, calculated assuming total condensation. (U.S.)

  4. Water ice grains in comet C/2013 US10 (Catalina)

    Science.gov (United States)

    Protopapa, Silvia; Kelley, Michael S. P.; Yang, Bin; Woodward, Charles E.; Sunshine, Jessica M.

    2017-10-01

    Knowledge of the the physical properties of water ice in cometary nuclei is critical in determining how the Solar System was formed. While it is difficult to directly study the properties of water ice in comet nuclei, we can study comet interiors through their comae. Cometary activity makes the interiors of these objects available for characterization. However, the properties (grain size, abundance, purity, chemical state) of water-ice grains detected in the coma do not necessarily represent the characteristics of the water ice on the surface and/or in the interior of the nucleus. This is due to the potential physical and chemical evolution of the emitted material. Once in the coma, water-ice grains are heated by sunlight, and if temperatures are warm enough, they sublime. In this case, their sizes and potentially their ice-to-dust fractions are reduced.We present IRTF/SpeX measurements of the Oort cloud comet C/2013 US10 (Catalina), which reached perihelion in Nov 2015 at a heliocentric distance Rh=0.822 AU. Observations of US10 were acquired on UT 2014-08-13, 2016-01-12, and 2016-08-13 (Rh=5.9, 1.3, and 3.9 AU). This set of measurements, spanning a broad range in Rh, are rare and fundamental for estimating how ice grains evolve in the coma. The spectrum obtained close to perihelion is featureless and red sloped, which is consistent with a dust-dominated coma. Conversely, the spectra acquired on August 2014 and 2016 display neutral slopes and absorption bands at 1.5 and 2.0 μm, consistent with the presence of water-ice grains. These variations in water ice with heliocentric distance are correlated with sublimation rates. Additionally, the measurements obtained at 5.8 AU and 3.9 AU are nearly identical, suggesting that water-ice grains, once in the coma, do not sublime significantly. Therefore, the properties of these long-lived water-ice grains may represent their state in the nucleus or immediately after insertion into the coma. We will present radiative

  5. Dynamics of ice nucleation on water repellent surfaces.

    Science.gov (United States)

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  6. Proton dynamics and the phase diagram of dense water ice.

    Science.gov (United States)

    Hernandez, J-A; Caracas, R

    2018-06-07

    All the different phases of water ice between 2 GPa and several megabars are based on a single body-centered cubic sub-lattice of oxygen atoms. They differ only by the behavior of the hydrogen atoms. In this study, we investigate the dynamics of the H atoms at high pressures and temperatures in water ice from first-principles molecular dynamics simulations. We provide a detailed analysis of the O-H⋯O bonding dynamics over the entire stability domain of the body-centered cubic (bcc) water ices and compute transport properties and vibrational density-of-states. We report the first ab initio evidence for a plastic phase of water and we propose a coherent phase diagram for bcc water ices compatible with the two groups of melting curves and with the multiple anomalies reported in ice VII around 15 GPa.

  7. Freeze desalination of seawater using LNG cold energy

    KAUST Repository

    Chang, Jian; Zuo, Jian; Lu, Kang-Jia; Chung, Neal Tai-Shung

    2016-01-01

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around −8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater.

  8. Freeze desalination of seawater using LNG cold energy

    KAUST Repository

    Chang, Jian

    2016-06-23

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around −8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater.

  9. Martian North Polar Water-Ice Clouds During the Viking Era

    Science.gov (United States)

    Tamppari, L. K.; Bass, D. S.

    2000-01-01

    The Viking Orbiters determined that the surface of Mars' northern residual cap consists of water ice. Observed atmospheric water vapor abundances in the equatorial regions have been related to seasonal exchange between reservoirs such as the polar caps, the regolith and between different phases in the atmosphere. Kahn modeled the physical characteristics of ice hazes seen in Viking Orbiter imaging limb data, hypothesizing that ice hazes provide a method for scavenging water vapor from the atmosphere and accumulating it into ice particles. Given that Jakosky found that these particles had sizes such that fallout times were of order one Martian sol, these water-ice hazes provided a method for returning more water to the regolith than that provided by adsorption alone. These hazes could also explain the rapid hemispheric decrease in atmospheric water in late northern summer as well as the increase during the following early spring. A similar comparison of water vapor abundance versus polar cap brightness has been done for the north polar region. They have shown that water vapor decreases steadily between L(sub s) = 100-150 deg while polar cap albedo increases during the same time frame. As a result, they suggested that late summer water-ice deposition onto the ice cap may be the cause of the cap brightening. This deposition could be due to adsorption directly onto the cap surface or to snowfall. Thus, an examination of north polar waterice clouds could lend insight into the fate of the water vapor during this time period. Additional information is contained in the original extended abstract.

  10. Cold-season patterns of reserve and soluble carbohydrates in sugar maple and ice-damaged trees of two age classes following drought

    Science.gov (United States)

    B. L. Wong; K. L. Baggett; A. H. Rye

    2009-01-01

    This study examines the effects of summer drought on the composition and profiles of cold-season reserve and soluble carbohydrates in sugar maple (Acer saccharum Marsh.) trees (50-100 years old or ~200 years old) in which the crowns were nondamaged or damaged by the 1998 ice storm. The overall cold season reserve...

  11. Water and complex organic chemistry in the cold dark cloud Barnard 5: Observations and Models

    Science.gov (United States)

    Wirström, Eva; Charnley, Steven B.; Taquet, Vianney; Persson, Carina M.

    2015-08-01

    Studies of complex organic molecule (COM) formation have traditionally been focused on hot cores in regions of massive star formation, where chemistry is driven by the elevated temperatures - evaporating ices and allowing for endothermic reactions in the gas-phase. As more sensitive instruments have become available, the types of objects known to harbour COMs like acetaldehyde (CH3CHO), dimethyl ether (CH3OCH3), methyl formate (CH3OCHO), and ketene (CH2CO) have expanded to include low mass protostars and, recently, even pre-stellar cores. We here report on the first in a new category of objects harbouring COMs: the cold dark cloud Barnard 5 where non-thermal ice desorption induce complex organic chemistry entirely unrelated to local star-formation.Methanol, which only forms efficiently on the surfaces of dust grains, provide evidence of efficient non-thermal desorption of ices in the form of prominent emission peaks offset from protostellar activity and high density tracers in cold molecular clouds. A study with Herschel targeting such methanol emission peaks resulted in the first ever detection of gas-phase water offset from protostellar activity in a dark cloud, at the so called methanol hotspot in Barnard 5.To model the effect a transient injection of ices into the gas-phase has on the chemistry of a cold, dark cloud we have included gas-grain interactions in an existing gas-phase chemical model and connected it to a chemical reaction network updated and expanded to include the formation and destruction paths of the most common COMs. Results from this model will be presented.Ground-based follow-up studies toward the methanol hotspot in B5 have resulted in the detection of a number of COMs, including CH2CO, CH3CHO, CH3OCH3, and CH3OCHO, as well as deuterated methanol (CH2DOH). Observations have also confirmed that COM emission is extended and not localised to a core structure. The implications of these observational and theoretical studies of B5 will be discussed

  12. Cold-water immersion alters muscle recruitment and balance of basketball players during vertical jump landing.

    Science.gov (United States)

    Macedo, Christiane de Souza Guerino; Vicente, Rafael Chagas; Cesário, Mauricio Donini; Guirro, Rinaldo Roberto de Jesus

    2016-01-01

    The purpose of this study was to evaluate the effects of cold-water immersion on the electromyographic (EMG) response of the lower limb and balance during unipodal jump landing. The evaluation comprised 40 individuals (20 basketball players and 20 non-athletes). The EMG response in the lateral gastrocnemius, tibialis anterior, fibular longus, rectus femoris, hamstring and gluteus medius; amplitude and mean speed of the centre of pressure, flight time and ground reaction force (GRF) were analysed. All volunteers remained for 20 min with their ankle immersed in cold-water, and were re-evaluated immediately post and after 10, 20 and 30 min of reheating. The Shapiro-Wilk test, Friedman test and Dunn's post test (P lower for the athletes. Lower jump flight time and GRF, greater amplitude and mean speed of centre of pressure were predominant in the athletes. Cold-water immersion decreased the EMG activity of the lower limb, flight time and GRF and increased the amplitude and mean speed of centre of pressure.

  13. River ice implications related to water power production in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Asvall, R.P. [Norwegian Water Resources and Energy Directorate, Oslo (Norway). Hydrology Dept.

    2009-07-01

    Nearly 99 per cent of the electricity produced in Norway is based on water power. While the period of large power development is over, the current focus lies in developing small hydroelectric power plants. A new market based energy law was implemented in Norway in 1991 to achieve more efficient use of electricity production by means of market forces. Since water regulation influences ice conditions in lakes and rivers, this paper focused on the implications of changes in ice conditions. In Norway, the expected changes in ice conditions are taken into account when issuing permits for water regulations and schemes for water discharge because some waterways are used as winter roads. Follow-up includes both close and long term observations and measurements. The impact of variable price on power was also discussed, with particular reference to ice conditions in cases where water discharge occurs on rivers. This paper summarized selected ice problems and how they have been handled. The paper also included a summary of anticipated climatic changes relevant to ice conditions.

  14. River ice implications related to water power production in Norway

    International Nuclear Information System (INIS)

    Asvall, R.P.

    2009-01-01

    Nearly 99 per cent of the electricity produced in Norway is based on water power. While the period of large power development is over, the current focus lies in developing small hydroelectric power plants. A new market based energy law was implemented in Norway in 1991 to achieve more efficient use of electricity production by means of market forces. Since water regulation influences ice conditions in lakes and rivers, this paper focused on the implications of changes in ice conditions. In Norway, the expected changes in ice conditions are taken into account when issuing permits for water regulations and schemes for water discharge because some waterways are used as winter roads. Follow-up includes both close and long term observations and measurements. The impact of variable price on power was also discussed, with particular reference to ice conditions in cases where water discharge occurs on rivers. This paper summarized selected ice problems and how they have been handled. The paper also included a summary of anticipated climatic changes relevant to ice conditions.

  15. Food selectivity and processing by the cold-water coral

    NARCIS (Netherlands)

    Van Oevelen, D.; Mueller, C.E.; Lundälv, T.; Middelburg, J.J.

    2016-01-01

    Cold-water corals form prominent reef ecosystemsalong ocean margins that depend on suspended resourcesproduced in surface waters. In this study, we investigatedfood processing of 13C and 15N labelled bacteria and algaeby the cold-water coral Lophelia pertusa. Coral respiration,tissue incorporation

  16. Evaluation of Retrieval Algorithms for Ice Microphysics Using CALIPSO/CloudSat and Earthcare

    Directory of Open Access Journals (Sweden)

    Okamoto Hajime

    2016-01-01

    We performed several sensitivity studies to evaluate uncertainties in the retrieved ice microphysics due to ice particle orientation and shape. It was found that the implementation of orientation of horizontally oriented ice plate model in the algorithm drastically improved the retrieval results in both for nadir- and off-nadir lidar pointing periods. Differences in the retrieved microphysics between only randomly oriented ice model (3D-ice and mixture of 3D-ice and Q2Dplate model were large especially in off-nadir period, e.g., 100% in effective radius and one order in ice water content, respectively. And differences in the retrieved ice microphysics among different mixture models were smaller than about 50% for effective radius in nadir period.

  17. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area.

    Science.gov (United States)

    Gustafsson, O; Andersson, P; Axelman, J; Bucheli, T D; Kömp, P; McLachlan, M S; Sobek, A; Thörngren, J-O

    2005-04-15

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l(-1) in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC(-1) in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K(ow) (ice log K(oc)-log K(ow) regressions: p<0.05, r2=0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration

  18. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area

    International Nuclear Information System (INIS)

    Gustafsson, Oe.; Andersson, P.; Axelman, J.; Bucheli, T.D.; Koemp, P.; McLachlan, M.S.; Sobek, A.; Thoerngren, J.-O.

    2005-01-01

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l -1 in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC -1 in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K ow (ice log K oc -log K ow regressions: p 2 =0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration gradients, both

  19. Nye Lecture: Water Under Ice: Curiosities, Complexities, and Catastrophes

    Science.gov (United States)

    Clarke, G. K.

    2006-12-01

    Meltwater beneath glaciers and ice sheets activates some of the most curious and impressive phenomena known to glaciology. These range from the generation of miniscule electrokinetic currents by water flow through subglacial sediment to massive outburst floods that rearrange landscapes and deliver freshwater pulses to the ocean. The source of this water varies but is some mix of surface water and water melted from the glacier base by geothermal and frictional heating. The outflow of subglacial water is somewhat affected by bed topography but the dominant influence is from gradients in ice overburden pressure and thus from the surface topography of the ice sheet. Upslope water flow is possible and large adverse bed slopes are required before topographic water traps can exist. As a consequence, subglacial topographic basins tend to be leaky and less than 5% of the area of the contemporary Antarctic Ice Sheet provides suitable habitat for subglacial lakes. Following a variety of subglacial pathways, water can migrate toward the ice margins, either as a liquid or as refrozen meltwater accreted to the ice base. The morphology of the subglacial water system is thought to comprise a combination of sheet-like, channel-like, and vein-like elements, all of which lend themselves to mathematical representation. Water transport processes need not operate in a steady fashion and morphological switching between sheet-like and channel-like endmembers is linked to spectacular events such as glacier surges and outburst floods. Large outbursts of proglacially or subglacially-stored meltwater, the classic Icelandic j{ö}kulhaups, continue to occur in glaciated regions of the world and much larger floods were released during the Late Pleistocene--Early Holocene deglaciation of the Northern Hemisphere. Whether large subglacial lakes like Lake Vostok, Earth's seventh largest lake, have similar potential for delivering cataclysmic floods remains uncertain. The recent detection of a small

  20. Lipid-induced thermogenesis is up-regulated by the first cold-water immersions in juvenile penguins.

    Science.gov (United States)

    Teulier, Loïc; Rey, Benjamin; Tornos, Jérémy; Le Coadic, Marion; Monternier, Pierre-Axel; Bourguignon, Aurore; Dolmazon, Virginie; Romestaing, Caroline; Rouanet, Jean-Louis; Duchamp, Claude; Roussel, Damien

    2016-07-01

    The passage from shore to marine life is a critical step in the development of juvenile penguins and is characterized by a fuel selection towards lipid oxidation concomitant to an enhancement of lipid-induced thermogenesis. However, mechanisms of such thermogenic improvement at fledging remain undefined. We used two different groups of pre-fledging king penguins (Aptenodytes patagonicus) to investigate the specific contribution of cold exposure during water immersion to lipid metabolism. Terrestrial penguins that had never been immersed in cold water were compared with experimentally cold-water immersed juveniles. Experimentally immersed penguins underwent ten successive immersions at approximately 9-10 °C for 5 h over 3 weeks. We evaluated adaptive thermogenesis by measuring body temperature, metabolic rate and shivering activity in fully immersed penguins exposed to water temperatures ranging from 12 to 29 °C. Both never-immersed and experimentally immersed penguins were able to maintain their homeothermy in cold water, exhibiting similar thermogenic activity. In vivo, perfusion of lipid emulsion at thermoneutrality induced a twofold larger calorigenic response in experimentally immersed than in never-immersed birds. In vitro, the respiratory rates and the oxidative phosphorylation efficiency of isolated muscle mitochondria were not improved with cold-water immersions. The present study shows that acclimation to cold water only partially reproduced the fuel selection towards lipid oxidation that characterizes penguin acclimatization to marine life.

  1. Results of the new icetools inquiry on operator's experience with turbine icing

    Energy Technology Data Exchange (ETDEWEB)

    Durstewitz, M.

    2005-07-01

    One task within the FP5 project New Icetools has been the development and evaluation of a questionnaire regarding operators experience with iced wind turbines. This questionnaire was sent to turbine operators in European countries by mail, per download from the New Icetools web site and as well as an online form on the Internet. The questionnaire has been available in several languages (English, German, Swedish, Spanish) so that many operators at cold climate sites in Europe can be reached. The questionnaire shall collect specific information about e.g. cold climate sites, icing conditions, turbine equipment and consequences of icing events. Nearly 100 replies from operators were collected and evaluated with respect to icing cases, amount of ice upon blades, duration of icing, downtimes, observed losses etc. The presentation will include an introduction to the questionnaire as well as an analysis of operators replies. (orig.)

  2. Characterisation of the nematode community of a low-activity cold seep in the recently ice-shelf free Larsen B area, Eastern Antarctic Peninsula.

    Directory of Open Access Journals (Sweden)

    Freija Hauquier

    Full Text Available BACKGROUND: Recent climate-induced ice-shelf disintegration in the Larsen A (1995 and B (2002 areas along the Eastern Antarctic Peninsula formed a unique opportunity to assess sub-ice-shelf benthic community structure and led to the discovery of unexplored habitats, including a low-activity methane seep beneath the former Larsen B ice shelf. Since both limited particle sedimentation under previously permanent ice coverage and reduced cold-seep activity are likely to influence benthic meiofauna communities, we characterised the nematode assemblage of this low-activity cold seep and compared it with other, now seasonally ice-free, Larsen A and B stations and other Antarctic shelf areas (Weddell Sea and Drake Passage, as well as cold-seep ecosystems world-wide. PRINCIPAL FINDINGS: The nematode community at the Larsen B seep site differed significantly from other Antarctic sites in terms of dominant genera, diversity and abundance. Densities in the seep samples were high (>2000 individuals per 10 cm(2 and showed below-surface maxima at a sediment depth of 2-3 cm in three out of four replicates. All samples were dominated by one species of the family Monhysteridae, which was identified as a Halomonhystera species that comprised between 80 and 86% of the total community. The combination of high densities, deeper density maxima and dominance of one species is shared by many cold-seep ecosystems world-wide and suggested a possible dependence upon a chemosynthetic food source. Yet stable (13C isotopic signals (ranging between -21.97±0.86‰ and -24.85±1.89‰ were indicative of a phytoplankton-derived food source. CONCLUSION: The recent ice-shelf collapse and enhanced food input from surface phytoplankton blooms were responsible for the shift from oligotrophic pre-collapse conditions to a phytodetritus-based community with high densities and low diversity. The parthenogenetic reproduction of the highly dominant Halomonhystera species is rather unusual

  3. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties

    Science.gov (United States)

    Marcellini, Moreno; Fernandes, Francisco M.; Dedovets, Dmytro; Deville, Sylvain

    2017-04-01

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  4. Could the Hokusai Impact Have Delivered Mercury's Water Ice?

    Science.gov (United States)

    Ernst, C. M.; Chabot, N. L.; Barnouin, O. S.

    2018-05-01

    Hokusai is the best candidate source crater for Mercury’s water-ice inventory if it was primarily delivered by a single impact event. The Hokusai impact could account for the inventory of water ice on Mercury for impact velocities <30 km/s.

  5. The potential of perennial cave ice in isotope palaeoclimatology

    International Nuclear Information System (INIS)

    Yonge, Charles J.; MacDonald, William D.

    1999-01-01

    Perennial ice from caves on and to the east of the Canadian Great Divide yield delta O 18 and delta D values which are usually high measurements where compared with the average precipitation for the region. Furthermore, these ice data fall below and along lines of lower slope than the Global Meteoric Water Line. To explain the observed relationships, we propose the following process. a vapour-ice isotopic fractionation mechanism operates on warm season vapour when it precipitates as hoar ice on entering the caves. The subsequent fall of hoar to the cave floor through mechanical overloading along with ice derived from ground-water seepage (with a mean annual isotopic composition), results in massive ice formation of a mixed composition. This mixed composition is what is observed in the characteristic relationships found here. Such findings suggest that a warm versus cold climate interpretation for ancient cave ice may be the opposite of that found in the more familiar polar and glacial ice caves. (Author) 3 figs., 1 tab., 12 refs

  6. Changes in landing mechanics after cold-water immersion.

    Science.gov (United States)

    Wang, He; Toner, Michael M; Lemonda, Thomas J; Zohar, Mor

    2010-06-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 degrees C) and in cold water (20 degrees C) to the ankle (low level), knee (medium level), and hip (high level) joints. Sagittal plane kinematics and kinetics were determined. One-way repeated measures multivariate analysis of variance was used for statistical analysis. Compared to the control, the low-level condition had similar joint mechanics, the medium level showed 26% less ankle mechanical work (p = .003), and the high level showed 9% less vertical ground reaction force (p = .025) and 23% less ankle mechanical work (p = .023) with 18% greater trunk flexion (p = .024). In summary, the low-level cold-water immersion had no effect on landing mechanics. The medium- and high-level cold-water immersion resulted in a reduction in impact absorption at the ankle joint during landing. The increased trunk flexion after high-level immersion helped dissipate landing impact.

  7. When Big Ice Turns Into Water It Matters For Houses, Stores And Schools All Over

    Science.gov (United States)

    Bell, R. E.

    2017-12-01

    When ice in my glass turns to water it is not bad but when the big ice at the top and bottom of the world turns into water it is not good. This new water makes many houses, stores and schools wet. It is really bad during when the wind is strong and the rain is hard. New old ice water gets all over the place. We can not get to work or school or home. We go to the big ice at the top and bottom of the world to see if it will turn to water soon and make more houses wet. We fly over the big ice to see how it is doing. Most of the big ice sits on rock. Around the edge of the big sitting on rock ice, is really low ice that rides on top of the water. This really low ice slows down the big rock ice turning into water. If the really low ice cracks up and turns into little pieces of ice, the big rock ice will make more houses wet. We look to see if there is new water in the cracks. Water in the cracks is bad as it hurts the big rock ice. Water in the cracks on the really low ice will turn the low ice into many little pieces of ice. Then the big rock ice will turn to water. That is water in cracks is bad for the houses, schools and businesses. If water moves off the really low ice, it does not stay in the cracks. This is better for the really low ice. This is better for the big rock ice. We took pictures of the really low ice and saw water leaving. The water was not staying in the cracks. Water leaving the really low ice might be good for houses, schools and stores.

  8. Criticality safety evaluation report for the cold vacuum drying facility's process water handling system

    International Nuclear Information System (INIS)

    NELSON, J.V.

    1999-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified

  9. Cold-water immersion (cryotherapy for preventing and treating muscle soreness after exercise

    Directory of Open Access Journals (Sweden)

    Chris Bleakley

    Full Text Available BACKGROUND: Many strategies are in use with the intention of preventing or minimizing delayed onset muscle soreness and fatigue after exercise. Cold-water immersion, in water temperatures of less than 15 °C, is currently one of the most popular interventional strategies used after exercise. OBJECTIVES: To determine the effects of cold-water immersion in the management of muscle soreness after exercise. SEARCH METHODS: In February 2010, we searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials (The Cochrane Library (2010, Issue 1, Medline, Embase, Cumulative Index to Nursing and Allied Health (CINAHL, British Nursing Index and archive (BNI, and the Physiotherapy Evidence Database (PEDro. We also searched the reference lists of articles, handsearched journals and conference proceedings and contacted experts. In November 2011, we updated the searches of Central (2011, Issue 4, Medline (up to November Week 3 2011, Embase (to 2011 Week 46 and CINAHL (to 28 November 2011 to check for more recent publications. SELECTION CRITERIA: Randomized and quasi-randomized trials comparing the effect of using cold-water immersion after exercise with: passive intervention (rest/no intervention, contrast immersion, warm-water immersion, active recovery, compression, or a different duration/dosage of cold-water immersion. Primary outcomes were pain (muscle soreness or tenderness (pain on palpation, and subjective recovery (return to previous activities without signs or symptoms. DATA COLLECTION AND ANALYSIS: Three authors independently evaluated study quality and extracted data. Some of the data were obtained following author correspondence or extracted from graphs in the trial reports. Where possible, data were pooled using the fixed-effect model. MAIN RESULTS: Seventeen small trials were included, involving a total of 366 participants. Study quality was low. The temperature, duration and

  10. Viscosity of interfacial water regulates ice nucleation

    International Nuclear Information System (INIS)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun; Song, Yanlin

    2014-01-01

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J 0 and Γ, in the context of classical nucleation theory. From the extracted J 0 and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces

  11. Hexagonal ice in pure water and biological NMR samples

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thomas; Gath, Julia; Hunkeler, Andreas; Ernst, Matthias, E-mail: maer@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS, Université de Lyon 1, Institut de Biologie et Chimie des Protéines (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland)

    2017-01-15

    Ice, in addition to “liquid” water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273 K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.

  12. Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice.

    Science.gov (United States)

    Feliciano, Lizanel; Lee, Jaesung; Lopes, John A; Pascall, Melvin A

    2010-05-01

    This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PRO-SAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PRO-SAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for cross-contamination.

  13. Prevention and Management of Cold-Weather Injuries

    Science.gov (United States)

    2005-04-01

    49 d. After an initial stimulation of respiration with mild hypothermia (leading to respiratory alkalosis ), there is a progressive decrease...nonevaporated sweat will reduce clothing insulation and possibly form ice crystals. Breathing cold air can slightly exacerbate respiratory water loss... Respiratory . (1) Upper airway temperatures, which normally remain unchanged during exercise under temperate conditions, can decrease substantially

  14. Rapid formation of a sea ice barrier east of Svalbard

    Science.gov (United States)

    Nghiem, S. V.; van Woert, M. L.; Neumann, G.

    2005-11-01

    Daily SeaWinds scatterometer images acquired by the QuikSCAT satellite show an elongated sea ice feature that formed very rapidly (˜1-2 days) in November 2001 east of Svalbard over the Barents Sea. This sea ice structure, called "the Svalbard sea ice barrier," spanning approximately 10° in longitude and 2° in latitude, restricts the sea route and poses a significant navigation hazard. The secret of its formation appears to lie in the bottom of the sea: A comparison between bathymetry from the International Bathymetric Chart of the Arctic Ocean data and the pattern of sea ice formation from scatterometer data reveals that the sea ice barrier conforms well with and stretches above a deep elongated channel connecting the Franz Josef-Victoria Trough to the Hinlopen Basin between Svalbard and Franz Josef Land. Historic hydrographic data from this area indicate that this sea channel contains cold Arctic water less than 50 m below the surface. Strong and persistent cold northerly winds force strong heat loss from this shallow surface layer, leading to the rapid formation of the sea ice barrier. Heat transfer rates estimated from European Centre for Medium-Range Weather Forecasts temperature and wind data over this region suggest that the surface water along the deep channel can be rapidly cooled to the freezing point. Scatterometer results in 1999-2003 show that sea ice forms in this area between October and December. Understanding the ice formation mechanisms helps to select appropriate locations for deployment of buoys measuring wind and air-sea temperature profile and to facilitate ice monitoring, modeling, and forecasting.

  15. Caltech water-ice dusty plasma: preliminary results

    Science.gov (United States)

    Bellan, Paul; Chai, Kilbyoung

    2013-10-01

    A water-ice dusty plasma laboratory experiment has begun operation at Caltech. As in Ref., a 1-5 watt parallel-plate 13.56 MHz rf discharge plasma has LN2-cooled electrodes that cool the neutral background gas to cryogenic temperatures. However, instead of creating water vapor by in-situ deuterium-oxygen bonding, here the neutral gas is argon and water vapor is added in a controlled fashion. Ice grains spontaneously form after a few seconds. Photography with a HeNe line filter of a sheet of HeNe laser light sheet illuminating a cross section of dust grains shows a large scale whorl pattern composed of concentric sub-whorls having wave-like spatially varying intensity. Each sub-whorl is composed of very evenly separated fine-scale stream-lines indicating that the ice grains move in self-organized lanes like automobiles on a multi-line highway. HeNe laser extinction together with an estimate of dust density from the intergrain spacing in photographs indicates a 5 micron nominal dust grain radius. HeNe laser diffraction patterns indicate the ice dust grains are large and ellipsoidal at low pressure (200 mT) but small and spheroidal at high pressure (>600 mT). Supported by USDOE.

  16. Changes in Landing Mechanics after Cold-Water Immersion

    Science.gov (United States)

    Wang, He; Toner, Michael M.; Lemonda, Thomas J.; Zohar, Mor

    2010-01-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 [degrees]C) and in cold water…

  17. Thermo-hydraulic behavior of saturated steam-water mixture in pressure vessel during injection of cold water

    International Nuclear Information System (INIS)

    Aya, Izuo; Kobayashi, Michiyuki; Inasaka, Fujio; Nariai, Hideki.

    1983-01-01

    The thermo-hydraulic behavior of saturated steam water mixture in a pressure vessel during injection of cold water was experimentally investigated with the Facility for Mixing Effect of Emergency Core Cooling Water. The dimensions of the pressure vessel used in the experiments were 284mm ID and 1,971mm height. 11 experiments were conducted without blowdown in order to comprehend the basic process excluding the effect of blowdown at injection of cold water. The initial pressure and water level, the injection flow rate and the size of injection nozzle were chosen as experimental parameters. Temperatures and void fractions at 6 elevations as well as pressure in the pressure vessel were measured, and new data especially on the pressure undershoot just after the initation of water injection and the vertical distribution of temperature and void fraction were gotten. The transients of pressure, average temperature and void fraction were caluculated using single-volume analysis code BLODAC-1V which is based on thermal equilibrium and so-called bubble gradient model. Some input parameters included in the analysis code were evaluated through the comparison of analysis with experimental data. Moreover, the observed pressure undershoot which is evaluated to be induced by a time lag of vapourization in water due to thermal nonequilibrium, was also discussed with the aid of another simple analysis model. (author)

  18. Evaluation of icing drag coefficient correlations applied to iced propeller performance prediction

    Science.gov (United States)

    Miller, Thomas L.; Shaw, R. J.; Korkan, K. D.

    1987-01-01

    Evaluation of three empirical icing drag coefficient correlations is accomplished through application to a set of propeller icing data. The various correlations represent the best means currently available for relating drag rise to various flight and atmospheric conditions for both fixed-wing and rotating airfoils, and the work presented here ilustrates and evaluates one such application of the latter case. The origins of each of the correlations are discussed, and their apparent capabilities and limitations are summarized. These correlations have been made to be an integral part of a computer code, ICEPERF, which has been designed to calculate iced propeller performance. Comparison with experimental propeller icing data shows generally good agreement, with the quality of the predicted results seen to be directly related to the radial icing extent of each case. The code's capability to properly predict thrust coefficient, power coefficient, and propeller efficiency is shown to be strongly dependent on the choice of correlation selected, as well as upon proper specificatioon of radial icing extent.

  19. WATER ICE AT THE SURFACE OF THE HD 100546 DISK

    International Nuclear Information System (INIS)

    Honda, M.; Kudo, T.; Terada, H.; Takato, N.; Takatsuki, S.; Nakamoto, T.; Inoue, A. K.; Fukagawa, M.; Tamura, M.

    2016-01-01

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H 2 O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models

  20. WATER ICE AT THE SURFACE OF THE HD 100546 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M. [Department of Physics, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011 (Japan); Kudo, T.; Terada, H.; Takato, N. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, Hawaii 96720 (United States); Takatsuki, S.; Nakamoto, T. [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Inoue, A. K. [College of General Education, Osaka Sangyo University, Daito, Osaka 574-8530 (Japan); Fukagawa, M.; Tamura, M. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-04-10

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H{sub 2}O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.

  1. A scheme for parameterizing ice cloud water content in general circulation models

    Science.gov (United States)

    Heymsfield, Andrew J.; Donner, Leo J.

    1989-01-01

    A method for specifying ice water content in GCMs is developed, based on theory and in-cloud measurements. A theoretical development of the conceptual precipitation model is given and the aircraft flights used to characterize the ice mass distribution in deep ice clouds is discussed. Ice water content values derived from the theoretical parameterization are compared with the measured values. The results demonstrate that a simple parameterization for atmospheric ice content can account for ice contents observed in several synoptic contexts.

  2. Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations.

    Science.gov (United States)

    Glatz, Brittany; Sarupria, Sapna

    2018-01-23

    Ice is ubiquitous in nature, and heterogeneous ice nucleation is the most common pathway of ice formation. How surface properties affect the propensity to observe ice nucleation on that surface remains an open question. We present results of molecular dynamics studies of heterogeneous ice nucleation on model surfaces. The models surfaces considered emulate the chemistry of kaolinite, an abundant component of mineral dust. We investigate the interplay of surface lattice and hydrogen bonding properties in affecting ice nucleation. We find that lattice matching and hydrogen bonding are necessary but not sufficient conditions for observing ice nucleation at these surfaces. We correlate this behavior to the orientations sampled by the metastable supercooled water in contact with the surfaces. We find that ice is observed in cases where water molecules not only sample orientations favorable for bilayer formation but also do not sample unfavorable orientations. This distribution depends on both surface-water and water-water interactions and can change with subtle modifications to the surface properties. Our results provide insights into the diverse behavior of ice nucleation observed at different surfaces and highlight the complexity in elucidating heterogeneous ice nucleation.

  3. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    Science.gov (United States)

    Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.

    2018-05-01

    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.

  4. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles.

    Science.gov (United States)

    Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry

    2016-02-01

    Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Wind energy under cold climate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-03-01

    There is an increasing interest in wind energy production under different climatic conditions, among them cold climate and icing conditions. More and more wind turbines are being installed in cold climates and even adapted technology has been developed for that environment. Various national activities are going on in at least Finland, Canada, Italy, Sweden, etc. and international collaboration has been carried out within the European Union's Non-nuclear energy programme. Wind turbine operation is affected by both the cold temperatures and the formation of ice on the blades and the supporting structure. Cold temperatures can be handled by material selections known in other technical fields but to prevent icing, new techniques have to be - and have been - developed. Icing affects the reliability of anemometers, which concerns both turbine control and resource estimation, and changes the aerodynamics of the blades, which eventually stops the turbine. In addition, occasional icing events can locally affect public safety. The development of applied technology has entered some different paths and different solutions are tried out. As the applications are entering a commercial phase, these is a request to gather the experiences and monitor the reliability in a form that can be utilised by developers, manufactureres, consultants and other tenderers. The Topical Experts Meeting will focus on site classification, operational experiences, modelling and mesurements of ice induced loads and safety aspects. (EHS)

  6. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facility's Process Water Handling System

    International Nuclear Information System (INIS)

    KESSLER, S.F.

    2000-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified

  7. The lunar thermal ice pump

    Energy Technology Data Exchange (ETDEWEB)

    Schorghofer, Norbert [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii, Honolulu, HI 96822 (United States); Aharonson, Oded, E-mail: norbert@hawaii.edu [Helen Kimmel Center for Planetary Science, Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100 (Israel)

    2014-06-20

    It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H{sub 2}O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature is below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H{sub 2}O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.

  8. The impact of radiatively active water-ice clouds on Martian mesoscale atmospheric circulations

    Science.gov (United States)

    Spiga, A.; Madeleine, J.-B.; Hinson, D.; Navarro, T.; Forget, F.

    2014-04-01

    Background and Goals Water ice clouds are a key component of the Martian climate [1]. Understanding the properties of the Martian water ice clouds is crucial to constrain the Red Planet's climate and hydrological cycle both in the present and in the past [2]. In recent years, this statement have become all the more true as it was shown that the radiative effects of water ice clouds is far from being as negligible as hitherto believed; water ice clouds plays instead a key role in the large-scale thermal structure and dynamics of the Martian atmosphere [3, 4, 5]. Nevertheless, the radiative effect of water ice clouds at lower scales than the large synoptic scale (the so-called meso-scales) is still left to be explored. Here we use for the first time mesoscale modeling with radiatively active water ice clouds to address this open question.

  9. Investigation of heterogeneous ice nucleation in pollen suspensions and washing water

    Science.gov (United States)

    Dreischmeier, Katharina; Budke, Carsten; Koop, Thomas

    2014-05-01

    Biological particles such as pollen often show ice nucleation activity at temperatures higher than -20 °C. Immersion freezing experiments of pollen washing water demonstrate comparable ice nucleation behaviour as water containing the whole pollen bodies (Pummer et al., 2012). It was suggested that polysaccharide molecules leached from the grains are responsible for the ice nucleation. Here, heterogeneous ice nucleation in birch pollen suspensions and their washing water was investigated by two different experimental methods. The optical freezing array BINARY (Bielefeld Ice Nucleation ARraY) allows the direct observation of freezing of microliter-sized droplets. The IN spectra obtained from such experiments with birch pollen suspensions over a large concentration range indicate several different ice nucleation active species, two of which are present also in the washing water. The latter was probed also in differential scanning calorimeter (DSC) experiments of emulsified sub-picoliter droplets. Due to the small droplet size in the emulsion samples and at small concentration of IN in the washing water, such DSC experiments can exhibit the ice nucleation behaviour of a single nucleus. The two heterogeneous freezing signals observed in the DSC thermograms can be assigned to two different kinds of ice nuclei, confirming the observation from the BINARY measurements, and also previous studies on Swedish birch pollen washing water (Augustin et al., 2012). The authors gratefully acknowledge funding by the German Research Foundation (DFG) through the project BIOCLOUDS (KO 2944/1-1) and through the research unit INUIT (FOR 1525) under KO 2944/2-1. We particularly thank our INUIT partners for fruitful collaboration and sharing of ideas and IN samples. S. Augustin, H. Wex, D. Niedermeier, B. Pummer, H. Grothe, S. Hartmann, L. Tomsche, T. Clauss, J. Voigtländer, K. Ignatius, and F. Stratmann, Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989

  10. Forced convective melting at an evolving ice-water interface

    Science.gov (United States)

    Ramudu, Eshwan; Hirsh, Benjamin; Olson, Peter; Gnanadesikan, Anand

    2015-11-01

    The intrusion of warm Circumpolar Deep Water into the ocean cavity between the base of ice shelves and the sea bed in Antarctica causes melting at the ice shelves' basal surface, producing a turbulent melt plume. We conduct a series of laboratory experiments to investigate how the presence of forced convection (turbulent mixing) changes the delivery of heat to the ice-water interface. We also develop a theoretical model for the heat balance of the system that can be used to predict the change in ice thickness with time. In cases of turbulent mixing, the heat balance includes a term for turbulent heat transfer that depends on the friction velocity and an empirical coefficient. We obtain a new value for this coefficient by comparing the modeled ice thickness against measurements from a set of nine experiments covering one order of magnitude of Reynolds numbers. Our results are consistent with the altimetry-inferred melting rate under Antarctic ice shelves and can be used in climate models to predict their disintegration. This work was supported by NSF grant EAR-110371.

  11. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone

    Science.gov (United States)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.

    2016-12-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong

  12. Identification and evaluation of slip and fall risk on ice and snow

    OpenAIRE

    Gao, Chuansi

    2001-01-01

    Roads and pavements covered with ice and snow during winter in the Nordic and other cold regions are slippery, which result in the prevalence of slip and fall accidents among not only the public, but also outdoor workers. Literature and injury statistics revealed that the most frequently specified contributory factor for occupational slip, trip and fall accidents in Sweden is snow and ice. Road accident research showed that the largest numbers of traffic casualties occurred during walking, fo...

  13. The phase diagram of water at negative pressures: virtual ices.

    Science.gov (United States)

    Conde, M M; Vega, C; Tribello, G A; Slater, B

    2009-07-21

    The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

  14. Effective Ice Particle Densities for Cold Anvil Cirrus

    Science.gov (United States)

    Heymsfield, Andrew J.; Schmitt, Carl G.; Bansemer, Aaron; Baumgardner, Darrel; Weinstock, Elliot M.; Smith, Jessica

    2002-01-01

    This study derives effective ice particle densities from data collected from the NASA WB-57F aircraft near the tops of anvils during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) in southern Florida in July 2002. The effective density, defined as the ice particle mass divided by the volume of an equivalent diameter liquid sphere, is obtained for particle populations and single sizes containing mixed particle habits using measurements of condensed water content and particle size distributions. The mean effective densities for populations decrease with increasing slopes of the gamma size distributions fitted to the size distributions. The population-mean densities range from near 0.91 g/cu m to 0.15 g/cu m. Effective densities for single sizes obey a power-law with an exponent of about -0.55, somewhat less steep than found from earlier studies. Our interpretations apply to samples where particle sizes are generally below 200-300 microns in maximum dimension because of probe limitations.

  15. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  16. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S.

    2007-04-01

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method

  17. Impairment of exercise performance following cold water immersion is not attenuated after 7 days of cold acclimation.

    Science.gov (United States)

    Jones, Douglas M; Roelands, Bart; Bailey, Stephen P; Buono, Michael J; Meeusen, Romain

    2018-03-19

    It is well-documented that severe cold stress impairs exercise performance. Repeated immersion in cold water induces an insulative type of cold acclimation, wherein enhanced vasoconstriction leads to greater body heat retention, which may attenuate cold-induced exercise impairments. The purpose of this study, therefore, was to investigate changes in exercise performance during a 7-day insulative type of cold acclimation. Twelve healthy participants consisting of eight males and four females (mean ± SD age: 25.6 ± 5.2 years, height: 174.0 ± 8.9 cm, weight: 75.6 ± 13.1 kg) performed a 20 min self-paced cycling test in 23 °C, 40% humidity without prior cold exposure. Twenty-four hours later they began a 7-day cold acclimation protocol (daily 90 min immersion in 10 °C water). On days one, four, and seven of cold acclimation, participants completed the same cycling test. Measurements of work completed, core and skin temperatures, heart rate, skin blood flow, perceived exertion, and thermal sensation were measured during each cycling test. Successful insulative cold acclimation was observed. Work produced during the baseline cycling test (220 ± 70 kJ) was greater (p immersions (195 ± 58, 197 ± 60, and 194 ± 62 kJ) despite similar ratings of perceived exertion during each test, suggesting that cold exposure impaired cycling performance. This impairment, however, was not attenuated over the cold acclimation period. Results suggest that insulative cold acclimation does not attenuate impairments in exercise performance that were observed following acute cold water immersion.

  18. Ice nucleation active particles are efficiently removed by precipitating clouds

    OpenAIRE

    Emiliano Stopelli; Franz Conen; Cindy E. Morris; Erik Herrmann; Nicolas Bukowiecki; Christine Alewell

    2015-01-01

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ(18)O to derive the fraction of water vapour lost from precipitating clouds ...

  19. A simulation study of homogeneous ice nucleation in supercooled salty water

    Science.gov (United States)

    Soria, Guiomar D.; Espinosa, Jorge R.; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2018-06-01

    We use computer simulations to investigate the effect of salt on homogeneous ice nucleation. The melting point of the employed solution model was obtained both by direct coexistence simulations and by thermodynamic integration from previous calculations of the water chemical potential. Using a seeding approach, in which we simulate ice seeds embedded in a supercooled aqueous solution, we compute the nucleation rate as a function of temperature for a 1.85 NaCl mol per water kilogram solution at 1 bar. To improve the accuracy and reliability of our calculations, we combine seeding with the direct computation of the ice-solution interfacial free energy at coexistence using the Mold Integration method. We compare the results with previous simulation work on pure water to understand the effect caused by the solute. The model captures the experimental trend that the nucleation rate at a given supercooling decreases when adding salt. Despite the fact that the thermodynamic driving force for ice nucleation is higher for salty water for a given supercooling, the nucleation rate slows down with salt due to a significant increase of the ice-fluid interfacial free energy. The salty water model predicts an ice nucleation rate that is in good agreement with experimental measurements, bringing confidence in the predictive ability of the model. We expect that the combination of state-of-the-art simulation methods here employed to study ice nucleation from solution will be of much use in forthcoming numerical investigations of crystallization in mixtures.

  20. Ice nucleating particles in the high Arctic at the beginning of the melt season

    Science.gov (United States)

    Hartmann, M.; Gong, X.; Van Pinxteren, M.; Welti, A.; Zeppenfeld, S.; Herrmann, H.; Stratmann, F.

    2017-12-01

    Ice nucleating particles (INPs) initiate the ice crystal formation in persistent Arctic mixed-phase clouds and are important for the formation of precipitation, which affects the radiative properties of the Arctic pack ice as well as the radiative properties of clouds. Sources of Arctic INP have been suggested to be local emissions from the marine boundary and long-range transport. To what extent local marine sources contribute to the INP population or if the majority of INPs originate from long-range transport is not yet known. Ship-based INP measurements in the PASCAL framework are reported. The field campaign took place from May 24 to July 20 2017 around and north of Svalbard (up to 84°N, between 0° and 35°E) onboard the RV Polarstern. INP concentrations were determined applying in-situ measurements (DMT Spectrometer for Ice Nuclei, SPIN) and offline filter techniques (filter sampling on both quartz fiber and polycarbonate filters with subsequent analysis of filter pieces and water suspension from particles collected on filters by means of immersion freezing experiments on cold stage setups). Additionally the compartments sea-surface micro layer (SML), bulk sea water, snow, sea ice and fog water were sampled and their ice nucleation potential quantified, also utilizing cold stages. The measurements yield comprehensive picture of the spatial and temporal distribution of INPs around Svalbard for the different compartments. The dependence of the INP concentration on meteorological conditions (e.g. wind speed) and the geographical situation (sea ice cover, distance to the ice edge) are investigated. Potential sources of INP are identified by the comparison of INP concentrations in the compartments and by back trajectory analysis.

  1. The Distribution of Basal Water Beneath the Greenland Ice Sheet from Radio-Echo Sounding

    Science.gov (United States)

    Jordan, T.; Williams, C.; Schroeder, D. M.; Martos, Y. M.; Cooper, M.; Siegert, M. J.; Paden, J. D.; Huybrechts, P.; Bamber, J. L.

    2017-12-01

    There is widespread, but often indirect, evidence that a significant fraction of the Greenland Ice Sheet is thawed at the bed. This includes major outlet glaciers and around the NorthGRIP ice-core in the interior. However, the ice-sheet-wide distribution of basal water is poorly constrained by existing observations, and the spatial relationship between basal water and other ice-sheet and subglacial properties is therefore largely unexplored. In principle, airborne radio-echo sounding (RES) surveys provide the necessary information and spatial coverage to infer the presence of basal water at the ice-sheet scale. However, due to uncertainty and spatial variation in radar signal attenuation, the commonly used water diagnostic, bed-echo reflectivity, is highly ambiguous and prone to spatial bias. Here we introduce a new RES diagnostic for the presence of basal water which incorporates both sharp step-transitions and rapid fluctuations in bed-echo reflectivity. This has the advantage of being (near) independent of attenuation model, and enables a decade of recent Operation Ice Bride RES survey data to be combined in a single map for basal water. The ice-sheet-wide water predictions are compared with: bed topography and drainage network structure, existing knowledge of the thermal state and geothermal heat flux, and ice velocity. In addition to the fast flowing ice-sheet margins, we also demonstrate widespread water routing and storage in parts of the slow-flowing northern interior. Notably, this includes a quasi-linear `corridor' of basal water, extending from NorthGRIP to Petermann glacier, which spatially correlates with a region of locally high (magnetic-derived) geothermal heat flux. The predicted water distribution places a new constraint upon the basal thermal state of the Greenland Ice Sheet, and could be used as an input for ice-sheet model simulations.

  2. Effetively trapping air or lqiud water for anti-icing applications

    Science.gov (United States)

    Wang, Jianjun

    2014-03-01

    Icing on solid surfaces leads to operational difficulties and high maintenance efforts for power networks, aircrafts, ships, ground transportation vehicles and house-hold refrigerators, to name but a few. In extreme cases, icing on surfaces causes disastrous events such as crash of aircrafts and collapse of power networks, which result in severe economic impact and large loss of life. This talk is focused on the fundamentals of the ice formation and adhesion of ice with solid substrates aiming for fighting against icing on solid surfaces. When the supercooling is low, it would be possible to remove supercooled liquid water from the solid surfaces before freezing occurs. To achieve this, we design and constructed surfaces that can trap the air at the subfreezing temperature thus condensed water microdroplets could be spontaneously removed after the coalescence. When the supercooling is high, icing on surfaces occurs spontaniously. In this case, we constructed coatings on which aqueous lubricating layer could be trapped, thus the ice adhesion on the coating is so low that the ice formed atop could be removed by a wind action or its own gravity.

  3. Intermittent cold exposure enhances fat accumulation in mice.

    Directory of Open Access Journals (Sweden)

    Hyung Sun Yoo

    Full Text Available Due to its high energy consuming characteristics, brown adipose tissue (BAT has been suggested as a key player in energy metabolism. Cold exposure is a physiological activator of BAT. Intermittent cold exposure (ICE, unlike persistent exposure, is clinically feasible. The main objective of this study was to investigate whether ICE reduces adiposity in C57BL/6 mice. Surprisingly, we found that ICE actually increased adiposity despite enhancing Ucp1 expression in BAT and inducing beige adipocytes in subcutaneous white adipose tissue. ICE did not alter basal systemic insulin sensitivity, but it increased liver triglyceride content and secretion rate as well as blood triglyceride levels. Gene profiling further demonstrated that ICE, despite suppressing lipogenic gene expression in white adipose tissue and liver during cold exposure, enhanced lipogenesis between the exposure periods. Together, our results indicate that despite enhancing BAT recruitment, ICE in mice increases fat accumulation by stimulating de novo lipogenesis.

  4. VOLATILE TRANSPORT INSIDE SUPER-EARTHS BY ENTRAPMENT IN THE WATER-ICE MATRIX

    Energy Technology Data Exchange (ETDEWEB)

    Levi, A.; Podolak, M. [Department of Geophysics and Planetary Science, Tel Aviv University, Tel Aviv 69978 (Israel); Sasselov, D., E-mail: amitlevi.planetphys@gmail.com [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-05-20

    Whether volatiles can be entrapped in a background matrix composing planetary envelopes and be dragged via convection to the surface is a key question in understanding atmospheric fluxes, cycles, and composition. In this paper, we consider super-Earths with an extensive water mantle (i.e., water planets), and the possibility of entrapment of methane in their extensive water-ice envelopes. We adopt the theory developed by van der Waals and Platteeuw for modeling solid solutions, often used for modeling clathrate hydrates, and modify it in order to estimate the thermodynamic stability field of a new phase called methane filled ice Ih. We find that in comparison to water ice VII the filled ice Ih structure may be stable not only at the high pressures but also at the high temperatures expected at the core-water mantle transition boundary of water planets.

  5. Food selectivity and processing by the cold-water Coral Lophelia pertusa

    NARCIS (Netherlands)

    van Oevelen, Dick; Mueller, Christina E.; Lundälv, Tomas; Middelburg, Jack J.

    2016-01-01

    Cold-water corals form prominent reef ecosystems along ocean margins that depend on suspended resources produced in surface waters. In this study, we investigated food processing of 13C and 15N labelled bacteria and algae by the cold-water coral Lophelia pertusa. Coral respiration, tissue

  6. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    International Nuclear Information System (INIS)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D

    2008-01-01

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH i ) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH i values were dependent on the total surface area of the particulates, indicating that no unique threshold RH i for ice nucleation prevails

  7. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    Energy Technology Data Exchange (ETDEWEB)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D [Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6 (Canada)], E-mail: zkanji@chem.utoronto.ca

    2008-04-15

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH{sub i}) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH{sub i} values were dependent on the total surface area of the particulates, indicating that no unique threshold RH{sub i} for ice nucleation prevails.

  8. Evaluation of real-time ice concentration inside pipeline by the refractive index method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Gyu; Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of); Chung, Dong Yeol; Peck, Jong Hyeon [KITECH, Cheonan (Korea, Republic of)

    2015-05-15

    Ice fraction (or ice concentration, IC) of the ice slurry flowing through the pipe is very difficult to measure directly and in real time in ice slurry type system in thermal energy storage system. Measuring IC is very important to calculate the capacity of cold energy supplied through a pipeline. Ice fraction measurement methods have been reported as using density, electric resistance, electric conductivity, freezing point etc. However, the conventional methods are not perfect in terms of the resolution and accuracy. In this study, a new method is suggested to measure the IC of the ice slurry flowing through a pipe, which is used for a refractometer with low electrical noise and high resolution. To measure IC of the flowing ice slurry aqueous solution in pipe, it was installed in the test section to mass flow meter, refractometer, cyclone, and RTD Resistance temperature detector) sensor. From the experiment, IC measurement method by using refractive index showed better result than others for the ice slurry in pipeline flowing or slurry tank.

  9. Snow and ice blocking of tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Leif

    1998-12-31

    Hydroelectric power development in cold regions causes much concern about operational reliability and dam safety. This thesis studies the temperature distribution in tunnels by means of air temperature measurements in six tunnel spillways and five diversion tunnels. The measurements lasted for two consecutive winters. The air through flow tunnel is used as it causes cooling of both rock and water. In open spillway tunnels, frost reaches the entire tunnel. In spillway tunnels with walls, the frost zones reach about 100 m from the downstream end. In mildly-inclined diversion tunnels, a frost free zone is located in the middle of the tunnel and snow and ice problems were only observed in the inlet and outlet. Severe aufeis is accumulation is observed in the frost zones. The heat transfer from rock to air, water and ice is calculated and used in a prediction model for the calculation of aufeis build-up together with local field observation data. The water penetration of snow plugs is also calculated, based on the heat balance. It takes 20 to 50 days for water to enter the blocked tunnel. The empirical values are 30 to 60 days, but only 1 day if the temperature of the snow pack is 0{sup o}C. Sensitivity analyses are carried out for temperature variations in rock, snow, water and ice. Systematic field observation shows that it is important for hydropower companies to know about the effects of snow and ice blocking in an area. A risk analysis of dam safety is presented for a real case. Finally, the thesis proposes solutions which can reduce the snow and ice problems. 79 refs., 63 figs., 11 tabs.

  10. Performance evaluation on aquatic product cold-chain logistics

    Directory of Open Access Journals (Sweden)

    Wenbing Wu

    2015-11-01

    Full Text Available Purpose: The requirements for high quality and diversification aquatic products are increasing with the improvement of Chinese living standard. However, the distribution between place of production and place of consumption are uneven, which results in large cold-chain logistics demand for aquatic products. At present, the low-level development of cold chain logistics has a bad impact on the circulation of aquatic products in China. So it is very urgent to develop cold-chain logistics in China. Design/methodology/approach: In order to do this, we apply performance evaluation, a well-known management tool, to study Chinese aquatic product cold-chain logistics. In this paper we first propose SISP(Subjects, Indexes, Standards, and Phases of performance evaluation model and ACSSN model(Aquatic product, Customer, Supply Chain, Society, and Node enterprises of supply chain for aquatic products cold-chain logistics performance evaluation. Then an ANP-Fuzzy method is proposed to evaluate the operational performance of Shandong Oriental Ocean Sci-Tech Co., Ltd. Furthermore, a system dynamic model is built to simulate the impact of temperature on the profits in aquatic products cold-chain sales section. Findings: We find out within a reasonable temperature range, lower temperature brings higher profit level. Also, performance improvement methods are proposed and the simulation of performance evaluation system is developed. Practical implications: Our findings can help to improve the level of aquatic product cold-chain logistics in China. Originality/value: The paper proposes the SISP (Subjects, Indexes, Standards, and Phases of performance evaluation model and ACSSN model (Aquatic product, Customer, Supply Chain, Society, and Node enterprises of supply chain for aquatic products cold-chain logistics performance evaluation.

  11. Polyamorphism in Water: Amorphous Ices and their Glassy States

    Science.gov (United States)

    Amann-Winkel, K.; Boehmer, R.; Fujara, F.; Gainaru, C.; Geil, B.; Loerting, T.

    2015-12-01

    Water is ubiquitous and of general importance for our environment. But it is also known as the most anomalous liquid. The fundamental origin of the numerous anomalies of water is still under debate. An understanding of these anomalous properties of water is closely linked to an understanding of the phase diagram of the metastable non-crystalline states of ice. The process of pressure induced amorphization of ice was first observed by Mishima et al. [1]. The authors pressurized hexagonal ice at 77 K up to a pressure of 1.6 GPa to form high density amorphous ice (HDA). So far three distinct structural states of amorphous water are known [2], they are called low- (LDA), high- (HDA) and very high density amorphous ice (VHDA). Since the discovery of multiple distinct amorphous states it is controversy discussed whether this phenomenon of polyamorphism at high pressures is connected to the occurrence of more than one supercooled liquid phase [3]. Alternatively, amorphous ices have been suggested to be of nanocrystalline nature, unrelated to liquids. Indeed inelastic X-ray scattering measurements indicate sharp crystal-like phonons in the amorphous ices [4]. In case of LDA the connection to the low-density liquid (LDL) was inferred from several experiments including the observation of a calorimetric glass-to-liquid transition at 136 K and ambient pressure [5]. Recently also the glass transition in HDA was observed at 116 K at ambient pressure [6] and at 140 K at elevated pressure of 1 GPa [7], using calorimetric measurements as well as dielectric spectroscopy. We discuss here the general importance of amorphous ices and their liquid counterparts and present calorimetric and dielectric measurements on LDA and HDA. The good agreement between dielectric and calorimetric results convey for a clearer picture of water's vitrification phenomenon. [1] O. Mishima, L. D. Calvert, and E. Whalley, Nature 314, 76, 1985 [2] D.T. Bowron, J. L. Finney, A. Hallbrucker, et al., J. Chem

  12. Probabilistic Modeling and Risk Assessment of Cable Icing

    DEFF Research Database (Denmark)

    Roldsgaard, Joan Hee

    This dissertation addresses the issues related to icing of structures with special emphasis on bridge cables. Cable supported bridges in cold climate suffers for ice accreting on the cables, this poses three different undesirable situations. Firstly the changed shape of the cable due to ice...... preliminary framework is modified for assessing the probability of occurrence of in-cloud and precipitation icing and its duration. Different probabilistic models are utilized for the representation of the meteorological variables and their appropriateness is evaluated both through goodness-of-fit tests...... are influencing the two icing mechanisms and their duration. The model is found to be more sensitive to changes in the discretization levels of the input variables. Thirdly the developed operational probabilistic framework for the assessment of the expected number of occurrences of ice/snow accretion on bridge...

  13. Diviner lunar radiometer observations of cold traps in the moon's south polar region

    Science.gov (United States)

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.

    2010-01-01

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  14. Ice versus liquid water saturation in simulations of the indian summer monsoon

    Science.gov (United States)

    Glazer, Russell H.; Misra, Vasubandhu

    2018-02-01

    At the same temperature, below 0 °C, the saturation vapor pressure (SVP) over ice is slightly less than the SVP over liquid water. Numerical models use the Clausius-Clapeyron relation to calculate the SVP and relative humidity, but there is not a consistent method for the treatment of saturation above the freezing level where ice and mixed-phase clouds may be present. In the context of current challenges presented by cloud microphysics in climate models, we argue that a better understanding of the impact that this treatment has on saturation-related processes like cloud formation and precipitation, is needed. This study explores the importance of the SVP calculation through model simulations of the Indian summer monsoon (ISM) using the regional spectral model (RSM) at 15 km grid spacing. A combination of seasonal and multiyear simulations is conducted with two saturation parameterizations. In one, the SVP over liquid water is prescribed through the entire atmospheric column (woIce), and in another the SVP over ice is used above the freezing level (wIce). When SVP over ice is prescribed, a thermodynamic drying of the middle and upper troposphere above the freezing level occurs due to increased condensation. In the wIce runs, the model responds to the slight decrease in the saturation condition by increasing, relative to the SVP over liquid water only run, grid-scale condensation of water. Increased grid-scale mean seasonal precipitation is noted across the ISM region in the simulation with SVP over ice prescribed. Modification of the middle and upper troposphere moisture results in a decrease in mean seasonal mid-level cloud amount and an increase in high cloud amount when SVP over ice is prescribed. Multiyear simulations strongly corroborate the qualitative results found in the seasonal simulations regarding the impact of ice versus liquid water SVP on the ISM's mean precipitation and moisture field. The mean seasonal rainfall difference over All India between wIce

  15. DISCOVERY OF CRYSTALLIZED WATER ICE IN A SILHOUETTE DISK IN THE M43 REGION

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Hiroshi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Tokunaga, Alan T., E-mail: terada@subaru.naoj.org [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu 96822 (United States)

    2012-07-01

    We present the 1.9-4.2 {mu}m spectra of the five bright (L {<=} 11.2) young stars associated with silhouette disks with a moderate to high inclination angle of 39 Degree-Sign -80 Degree-Sign in the M42 and M43 regions. The water ice absorption is seen toward d121-1925 and d216-0939, while the spectra of d182-316, d183-405, and d218-354 show no water ice feature around 3.1 {mu}m within the detection limits. By comparing the water ice features toward nearby stars, we find that the water ice absorption toward d121-1925 and d216-0939 most likely originates from the foreground material and the surrounding disk, respectively. The angle of the disk inclination is found to be mainly responsible for the difference of the optical depth of the water ice among the five young stars. Our results suggest that there is a critical inclination angle between 65 Degree-Sign and 75 Degree-Sign for the circumstellar disk where the water ice absorption becomes strong. The average density at the disk surface of d216-0939 was found to be 6.38 Multiplication-Sign 10{sup -18} g cm{sup -3}. The water ice absorption band in the d216-0939 disk is remarkable in that the maximum optical depth of the water ice band is at a longer wavelength than detected before. It indicates that the primary carrier of the feature is purely crystallized water ice at the surface of the d216-0939 disk with characteristic size of {approx}0.8 {mu}m, which suggests grain growth. This is the first direct detection of purely crystallized water ice in a silhouette disk.

  16. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...

  17. Multiple Nonconformities in Ice-Walled Lake Successions Indicate Periods with Cold Summers (24.4 - 22.5 ka, 21.1 - 19.2 ka, 18.5 - 18.1 ka) during the Last Deglaciation in Northeastern Illinois, USA

    Science.gov (United States)

    Curry, B. B.

    2014-12-01

    Unprecedented age control on many last glacial stratigraphic units and morainal ice-margin positions are interpreted from AMS radiocarbon ages of tundra plant macrofossils archived in low-relief ice-walled lake plain (IWLP) deposits the Lake Michigan Lobe (south-central Laurentide Ice Sheet). IWLPs are periglacial features that formed on morainal dead-ice permafrost. Lacustrine sediment, and the fossils contained therein, had physical and temporal proximity to the glacier which formed the underlying moraine. In modern ice-walled lakes, as the lake's ice cover begins to melt, moats form which allows access of sloughing tundra-mantled active layer sediment (soil) into the lakes. Multiple AMS ages from two sites with proglacial sediment buried by glacial max LIS diamicton, and IWLPs reveal evidence of episodic plant growth and sedimentation including ca. 24.0 to 24.4 ka (post Shelby Phase), 22.5 to 21.1 ka (post Livingston Phase), 18.1 to 17.4 ka (post Woodstock Phase). Although presently based on negative evidence, the associated nonconformities (listed in title) indicate periods when cold conditions did not promote development of the estival moat. Although the evidence does not preclude tundra growth during the cold summers, there was little landscape modification due to limited thawing of the active layer. At approximately the onset of the 19.2-18.5 "warm" period, at least two large deglacial discharge events flooded the Fox and Kankakee tributary valleys of the Illinois River. The latter, known as the Kankakee Torrent, occurred at 19.05 - 18.85 ka (σ1 range) at the Oswego channel complex. The temporal coincidence of the torrents and sedimentation in ice-walled lakes suggests that the post-Livingston Phase nonconformity (21.1 - 19.2 ka) was a period of lessened meltwater discharge through subglacial conduits (tunnel valleys) as the frozen toe promoted formation of subglacial lakes, buildup of pore-water pressures, and the release of subglacial water as "torrents

  18. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  19. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  20. Carbon sources and trophic relationships of ice seals during recent environmental shifts in the Bering Sea.

    Science.gov (United States)

    Wang, Shiway W; Springer, Alan M; Budge, Suzanne M; Horstmann, Lara; Quakenbush, Lori T; Wooller, Matthew J

    2016-04-01

    Dramatic multiyear fluctuations in water temperature and seasonal sea ice extent and duration across the Bering-Chukchi continental shelf have occurred in this century, raising a pressing ecological question: Do such environmental changes alter marine production processes linking primary producers to upper trophic-level predators? We examined this question by comparing the blubber fatty acid (FA) composition and stable carbon isotope ratios of individual FA (δ¹³CFA) of adult ringed seals (Pusa hispida), bearded seals (Erignathus barbatus), spotted seals (Phoca largha), and ribbon seals (Histriophoca fasciata), collectively known as "ice seals," sampled during an anomalously warm, low sea ice period in 2002-2005 in the Bering Sea and a subsequent cold, high sea ice period in 2007-2010. δ¹³C(FA) values, used to estimate the contribution to seals of carbon derived from sea ice algae (sympagic production) relative to that derived from water column phytoplankton (pelagic production), indicated that during the cold period, sympagic production accounted for 62-80% of the FA in the blubber of bearded seals, 51-62% in spotted seals, and 21-60% in ringed seals. Moreover, the δ¹³CFA values of bearded seals indicated a greater incorporation of sympagic FAs during the cold period than the warm period. This result provides the first empirical evidence of an ecosystem-scale effect of a putative change in sympagic production in the Western Arctic. The FA composition of ice seals showed clear evidence of resource partitioning among ringed, bearded, and spotted seals, and little niche separation between spotted and ribbon seals, which is consistent with previous studies. Despite interannual variability, the FA composition of ringed and bearded seals showed little evidence of differences in diet between the warm and cold periods. The findings that sympagic production contributes significantly to food webs supporting ice seals, and that the contribution apparently is less in

  1. Development of ice cream based sugar cane juice and sensory evaluation with children

    Directory of Open Access Journals (Sweden)

    Vanessa Pedro da Silva

    2014-02-01

    Full Text Available Ice cream is a tasty and nutritious source of protein and calcium, but it is deficient in some minerals, as iron, but it is found in sugar cane juice, which is a source of minerals such as iron, phosphorus, calcium, sodium among others. The objective of the present study are: to develop sugar cane juice ice cream, in order to increase the mineral content replacing refined sugar and water during the manufacturing process by sugar cane juice; to analyze its physical-chemical composition; to check your sensory acceptance with children. Three formulations were prepared from sugar cane juice ice cream: sugar cane juice ice cream (SC, sugar cane juice ice cream with molasses (SCM and sugar cane juice ice cream with brown sugar (SCR. Sensory evaluation was conducted with 120 children (62 boys and 58 girls from 8 to 10 years old, students from 3rd to 5th years of primary school. Sensory tests were ordering-preference, intention to use and acceptance with facial hedonic scale of 7 points. The results of physico-chemical and acceptance testing were statistically analyzed by analysis of variance (ANOVA, the scores compared by Tukey test (p ? 0.05 and the result of the sensory test ordering-preference were assessed using the Friedman. The ice cream it presents has a reduced fat content because it was formulated with palm trans-fat free. The use of sugar cane juice in the formulation of the ice cream increased the amount of minerals when compared to ordinary ice cream. Therefore, sugar cane juice ice cream demonstrated to be more healthy and nutritious compared with traditional ice cream, besides being source of calcium, iron and phosphorus; serving the needs of the recommended daily intake (IDR for children from 7 to 10 years old. About the sensory evaluation, all formulations of sugar cane juice ice cream obtained great sensory acceptance among children in all sensory attributes evaluated, showing excellent percentages of acceptance and intention to use by

  2. A simple and inexpensive method for determining cold sensitivity and adaptation in mice.

    Science.gov (United States)

    Brenner, Daniel S; Golden, Judith P; Vogt, Sherri K; Gereau, Robert W

    2015-03-17

    Cold hypersensitivity is a serious clinical problem, affecting a broad subset of patients and causing significant decreases in quality of life. The cold plantar assay allows the objective and inexpensive assessment of cold sensitivity in mice, and can quantify both analgesia and hypersensitivity. Mice are acclimated on a glass plate, and a compressed dry ice pellet is held against the glass surface underneath the hindpaw. The latency to withdrawal from the cooling glass is used as a measure of cold sensitivity. Cold sensation is also important for survival in regions with seasonal temperature shifts, and in order to maintain sensitivity animals must be able to adjust their thermal response thresholds to match the ambient temperature. The Cold Plantar Assay (CPA) also allows the study of adaptation to changes in ambient temperature by testing the cold sensitivity of mice at temperatures ranging from 30 °C to 5 °C. Mice are acclimated as described above, but the glass plate is cooled to the desired starting temperature using aluminum boxes (or aluminum foil packets) filled with hot water, wet ice, or dry ice. The temperature of the plate is measured at the center using a filament T-type thermocouple probe. Once the plate has reached the desired starting temperature, the animals are tested as described above. This assay allows testing of mice at temperatures ranging from innocuous to noxious. The CPA yields unambiguous and consistent behavioral responses in uninjured mice and can be used to quantify both hypersensitivity and analgesia. This protocol describes how to use the CPA to measure cold hypersensitivity, analgesia, and adaptation in mice.

  3. New Records of Cold-Water Corals from Korea

    Directory of Open Access Journals (Sweden)

    Jun-Im Song

    2016-07-01

    Full Text Available Two cold-water coral taxa, Octocorallia in the class Anthozoa and Stylasteridae in the class Hydrozoa, were identified. Deep-water samples were collected in fishing nets at depths ranging between 20 and 200 m along the coasts of the East Sea in Korea from 1976 to 1993. The two species found in this study represent new records for Korea: Paragorgia arborea (Linnaeus, 1758 in the class Anthozoa, and Stylaster profundiporus Broch, 1936 in the class Hydrozoa. Two families, Paragorgiidae and Stylasteridae, are also newly recorded in Korea. Furthermore, the species name of another cold-water gorgonian species, Primnoa pacifica (Kinoshita, 1907 in the family Primnoidae, is amended in this report. The two newly recorded cold-water coral species from Korea are described in detail based on their morphological characteristics. Paragorgia arborea is characterized by its growth form, medulla and cortex, zooid dimorphism, canal system, and spicule composition. Stylaster profundiporus is distinguished by its external skeletal characteristics, such as the coordination of dactylopores and gastropores, presence or absence of gastrostyles and dactylostyles, cyclosystem orientation, ampullar position, gastropore tube shape, and coenosteal texture.

  4. Quantifying the Metabolome of Pseudomonas taiwanensis VLB120: Evaluation of Hot and Cold Combined Quenching/Extraction Approaches

    DEFF Research Database (Denmark)

    Wordofa, Gossa Garedew; Kristensen, Mette; Schrübbers, Lars

    2017-01-01

    Absolute quantification of free intracellular metabolites is a valuable tool in both pathway discovery and metabolic engineering. In this study, we conducted a comprehensive examination of different hot and cold combined quenching/extraction approaches to extract and quantify intracellular...... (such as cold methanol/acetonitrile/water, hot water, and boiling ethanol/water, as well as cold ethanol/water) were tested and evaluated for P. taiwanensis VLB120 metabolome analysis. In total 94 out of 107 detected intracellular metabolites were quantified using an isotope-ratio-based approach....... The quantified metabolites include amino acids, nucleotides, central carbon metabolism intermediates, redox cofactors, and others. The acquired data demonstrate that the pressure driven fast filtration approach followed by boiling ethanol quenching/extraction is the most adequate technique for P. taiwanensis VLB...

  5. Sensory evaluation of ice cream with hydrosoluble soy extract

    Directory of Open Access Journals (Sweden)

    Bueno, M.M.,

    2017-11-01

    Full Text Available Ice cream is a nutritious food because it contains ingredients responsible for supplying energy to the body. Soy has a high nutritional value and functional properties which make it to be an alternative ingredient to replace cow's milk. The purpose of this paper was to formulate an ice cream with hydrosoluble soy extract and submitted to a sensory evaluation. Two formulations of ice cream were prepared: one soy-based and the other with cow's milk (control. Both ice creams were submitted to a sensory evaluation in order to evaluate the appearance, flavor and texture attributes, for this examination it was used the hedonic scale of nine points. For the appearance attribute, the soy-based ice cream had an average score of 7.6, which means between “liked moderately and liked very much”, and cow’s milk ice cream had an average score of 8.1, “liked very much”. For the texture attribute, the soy-based ice cream reached an average of 7.4, meaning “like moderately” and “liked very much” and the cow´s milk ice cream obtained an average of 8.2, meaning “liked very much”. The flavor attribute had an average score of 6.1, meaning “liked slightly” and 8.2 “liked very much” for the soy-based ice cream and the cow´s milk ice cream respectively. When the assessors were asked about their purchase intention, 68% said that certainly they would buy the control sample and 32% definitely or probably would buy the soy-based ice cream. The sensory parameters evaluated showed that the soy-based ice cream had a good acceptance.

  6. L-band radiometry for sea ice applications

    Science.gov (United States)

    Heygster, G.; Hedricks, S.; Mills, P.; Kaleschke, L.; Stammer, D.; Tonboe, R.

    2009-04-01

    Although sea ice remote sensing has reached the level of operational exploitation with well established retrieval methods, several important tasks are still unsolved. In particular during freezing and melting periods with mixed ice and water surfaces, estimates of ice concentration with passive and active microwave sensors remain challenging. Newly formed thin ice is also hard to distinguish from open water with radiometers for frequencies above 8 GHz. The SMOS configuration (planned launch 2009) with a radiometer at 1.4 GHz is a promising technique to complement observations at higher microwave frequencies. ESA has initiated a project to investigate the possibilities for an additional Level-2 sea ice data product based on SMOS. In detail, the project objectives are (1) to model the L band emission of sea ice, and to assess the potential (2) to retrieve sea ice parameters, especially concentration and thickness, and (3) to use cold water regions for an external calibration of SMOS. Modelling of L band emission: Several models have are investigated. All of them work on the same basic principles and have a vertically-layered, plane-parallel geometry. They are comprised of three basic components: (1) effective permittivities are calculated for each layer based on ice bulk and micro-structural properties; (2) these are integrated across the total depth to derive emitted brightness temperature; (3) scattering terms can also be added because of the granular structure of ice and snow. MEMLS (Microwave Emission Model of Layered Snowpacks (Wiesmann and Matzler 1999)) is one such model that contains all three elements in a single Matlab program. In the absence of knowledge about the internal structure of the sea ice, three-layer (air, ice and water) dielectric slab models which take as input a single effective permittivity for the ice layer are appropriate. By ignoring scattering effects one can derive a simple analytic expression for a dielectric slab as shown by Apinis and

  7. Temporal characteristics of cold pain perception.

    Science.gov (United States)

    Frölich, Michael A; Bolding, Mark S; Cutter, Gary R; Ness, Timothy J; Zhang, Kui

    2010-08-09

    Adaptation to a sustained stimulus is an important phenomenon in psychophysical experiments. When studying the response to an experimental task, the investigator has to account for the change in perceived stimulus intensity with repeated stimulus application and, if the stimulus is sustained, for the change in intensity during the presentation. An example of a sustained stimulus is the cold pressor task (CPT). The task has been used both as an experimental pain task and to study cardiovascular physiology. In functional imaging research, the CPT has been used to evaluate cognitive processing of a noxious stimulus. Investigators typically model the stimulus in a block design as a categorical (on-off) stimulus and do not account for a temporal change in stimulus perception. If the perceived stimulus changes over time, the results may be misleading. Therefore, we characterized the time course of cold pain in human volunteers and developed a model of the temporal characteristics of perceived cold pain. Fifteen healthy participants underwent cold pain testing by immersing their right foot into a container filled with ice water (2 degrees C) for 30s alternating with a 30s immersion into a container filled with tepid water 32 degrees C (control). Participants rated the pain intensity using an electronic slide algometer. Using a mixed general linear model (effectively a polynomial regression model), we determined that pain ratings follow a crescendo-decrescendo pattern that can be described well using a quadratic model. We conclude that the time course of quantitative perception differs fundamentally from the time course of stimulus presentation. This may be important when looking for the physiological correlates of perception as opposed to the presence of a stimulus per se. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  8. A Novel Ice Storm Experiment for Evaluating the Ecological Impacts of These Extreme Weather Events

    Science.gov (United States)

    Driscoll, C. T.; Campbell, J. L.; Rustad, L.; Fahey, T.; Fahey, R. T.; Garlick, S.; Groffman, P.; Hawley, G. J.; Schaberg, P. G.

    2017-12-01

    Ice storms are among the most destructive natural disturbances in some regions of the world, and are an example of an extreme weather event that can profoundly disrupt ecosystem function. Despite potential dire consequences of ice storms on ecosystems and society, we are poorly positioned to predict responses because severe ice storms are infrequent and understudied. Since it is difficult to determine when and where ice storms will occur, most previous research has consisted of ad hoc attempts to characterize impacts in the wake of major icing events. To evaluate ice storm effects in a more controlled manner, we conducted a novel ice storm manipulation experiment at the Hubbard Brook Experimental Forest in New Hampshire. Water was sprayed above the forest canopy in sub-freezing conditions to simulate a glaze ice event. Treatments included replicate plots that received three levels of radial ice thickness (6, 13, and 19 mm) and reference plots that were not sprayed. Additionally, two of the mid-level treatment plots received ice applications in back-to-back years to evaluate effects associated with ice storm frequency. Measures of the forest canopy, including hemispherical photography, photosynthetically active radiation, and ground-based LiDAR, indicated that the ice loads clearly damaged vegetation and opened up the canopy, allowing more light to penetrate. These changes in the canopy were reflected in measurements of fine and coarse woody debris that were commensurate with the level of icing. Soil respiration declined in the most heavily damaged plots, which we attribute to changes in root activity. Although soil solution nitrogen showed clear seasonal patterns, there was no treatment response. These results differ from the severe regional natural ice storm of 1998, which caused large leaching losses of nitrate in soil solutions and stream water during the growing season after the event, due to lack of uptake by damaged vegetation. It is not yet clear why there

  9. Cold water injection into two-phase mixtures

    International Nuclear Information System (INIS)

    1989-07-01

    This report presents the results of a review of the international literature regarding the dynamic loadings associated with the injection of cold water into two-phase mixtures. The review placed emphasis on waterhammer in nuclear power plants. Waterhammmer incidence data were reviewed for information related to thermalhydraulic conditions, underlying causes and consequential damage. Condensation induced waterhammer was found to be the most significant consequence of injecting cold water into a two-phase system. Several severe waterhammer incidents have been attributed to slug formation and steam bubble collapse under conditions of stratified steam and cold water flows. These phenomena are complex and not well understood. The current body of experimental and analytical knowledge is not large enough to establish maps of expected regimes of condensation induced waterhammer. The Electric Power Research Institute, in the United States, has undertaken a major research and development programme to develop the knowledge base for this area. The limited models and data currently available show that mechanical parameters are as important as thermodynamic conditions for the initiation of condensation induced waterhammer. Examples of bounds for avoiding two-phase waterhammer are given. These bounds are system specific and depend upon parameters such as pump capacity, pipe length and pipe orientation

  10. The need to be cold : cold warriors

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, L.

    2008-10-15

    This article discussed the changing climate of Ellesmere Island and the adaptation of the Inuit in response to the climate change, with particular reference to Canada's most northern community of Grise Fiord. Because of the changing climate, the vast northern landscape that the Inuit navigated for centuries by reading its subtle signs is becoming warmer, softer, and unpredictable. The geographic history and demographics of Grise Fiord were described. The community's main water supply comes from a glacier which is sinking. The negative impacts of ice shrinkage on this northern community and on the environment were presented. These included more international shipping through the Arctic, more resource exploration, a greater risk of environmental contamination, and reduced habitat for the polar bears and seals that eat, mate, and reproduce on the ice. Climate change impacts on the sea and sea ice were also discussed. Several photographs illustrating the changing climate were presented. The article noted that climate change could destroy the Inuit culture, making climate change an issue of human rights, notably the right to live connected to the land and the right to be cold. It was concluded that in one generation, Inuit were swept up by both a social and an economic upheaval. In one more generation, they will undergo an environmental shift. 13 figs.

  11. Positron Lifetimes in Pure and Doped Ice and in Water

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Mogensen, O.; Trumpy, Georg

    1972-01-01

    for the other components show a complex behavior. The spectra for mono- and polycrystalline light ice and for polycrystalline heavy ice are identical. For water long lifetime components attributed to ortho-Ps are 1.86 nsec, 27% for H2O and 2.01 nsec, 22% for D2O. Theoretical explanations are suggested. Fast......Positron lifetime spectra were measured in mono- and polycrystalline light ice, polycrystalline heavy ice, doped light ice, as well as in light and heavy water. All spectra were resolved into three components. At temperatures between −196° and −100°C the lifetimes and relative intensities...... of the spectra are found by heating above approximately −120°C. Measurements on a number of fast frozen aqueous solutions of acids, bases, and salts are reported, none of them showing as strong influence on the ortho-Ps lifetime as HF. ©1972 The American Institute of Physics...

  12. Assessment of electrical stunning in fresh water of African Catfish (Clarias gariepinus) and chilling in ice water for loss of consciousness and sensibility

    NARCIS (Netherlands)

    Lambooij, E.; Kloosterboer, R.J.; Gerritzen, M.A.; Vis, van de J.W.

    2006-01-01

    The overall objective of the study was to evaluate loss of consciousness and sensibility after electrical stunning in fresh water and live chilling in ice water for slaughter of African catfish using measurement of electrical brain and heart activity. To provoke immediate loss of consciousness and

  13. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    Science.gov (United States)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  14. Production and Evaluation of Ice Cream from Nigerian Tiger-Nut ...

    African Journals Online (AJOL)

    Ice cream was prepared from water-soluble extracts of the yellow variety of Nigerian tiger-nut. A modified standard method was used for the production of the tiger-nut milk ice cream. The resulting ice cream had pH of 7.10, 35% Brix, specific gravity of 1.0888 and total solids of 45.67%. The proximate composition of the ice ...

  15. Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection

    International Nuclear Information System (INIS)

    Ortiz, M.G.; Ghan, L.S.

    1991-01-01

    Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA's), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of liquid may then be accelerated towards each other or against the piping structure. The possibility of this phenomenon is of concern to us because it may become a dominant phenomenon and change the character of the transient. In performing the code scaling, applicability, and uncertainty study (CSAU) on a SBLOCA scenario, we had to examine the possibility that the transient being analyzed could experience water-hammer and thus depart from the scope of the study. Two criteria for water-hammer initiation were investigated and tested using a RELAP5/MOD3 simulation of the transient. Our results indicated a very low likelihood of occurrence of the phenomenon. 8 refs., 6 figs

  16. Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment

    Science.gov (United States)

    Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul

    2016-10-01

    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.

  17. The main chemical properties of hot and cold mineral waters in Bayankhongor, Mongolia

    Directory of Open Access Journals (Sweden)

    D Oyuntsetseg

    2014-12-01

    Full Text Available In the current study, hot and cold mineral springs and sub mineral waters in the Bayankhongor province were examined for their chemical characteristics and identified cold mineral waters classification according to mineral water classification of Mongolia. The hot spring waters belong to Na+-HCO3- and Na+-SO42- types. The cold mineral spring of Lkham belongs to Ca2+-HCO3- type. All sub mineral waters are generally located in the two areas (northern part or mountain forest area and the southern part or Gobi desert area. TDS concentrations of cold springs of the southern part in the study area were higher than northern part’s cold springs. The total dissolved silica content of cold spring was ranged from 4.5mg/L to 26 mg/L which did not correspond to requirements of mineral water standard of Mongolia. Thus, these cold springs are belonging to sub mineral water classification. The sub mineral waters were characterized into four types such as a Ca2+-SO42-, Na+-SO42-, Na+-HCO3 and Ca2+ - HCO3 by their chemical composition in the study area. The values for the quartz, chalcedony geothermometer and the Na/K geothermometer were quite different. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 124 and 197°C and most of the hot waters have been  probably mixed with cold water. The result shows that an averaged value of calculated temperature ranges from 77°C to 119°C which indicates that studied area has low temperature geothermal resources. DOI: http://doi.dx.org/10.5564/mjc.v15i0.324 Mongolian Journal of Chemistry 15 (41, 2014, p56-62

  18. First Detection of Water Ice and Organics on an Asteroid: A Possible Link to the Origin of Earth's Water

    Science.gov (United States)

    Hargrove, Kelsey D.; Campins, H.; Pinilla-Alonso, N.; Howell, E. S.; Kelley, M. S.; Licandro, J.; Mothédiniz, T.; Fernández, Y.; Ziffer, J.

    2010-05-01

    We report the detection of water ice and organics on the surface of asteroid 24 Themis. Our rotationally-resolved infrared (2-4 µm) spectra of this asteroid indicate that the ice and organics are widespread on its surface. The spectral difference with other asteroids observed in the same manner, makes 24 Themis unique so far. Our identification of water ice and organic compounds on this asteroid agrees with independent results (Rivkin and Emery 2010). At first glance, the presence of any surface ice on 24 Themis, particularly over a significant fraction of its surface, is puzzling because of the instability for exposed water ice at Themis's heliocentric distance ( 3.2 AU). Nevertheless, there are several possible sources for this unstable ice and identifying them is likely to be diagnostic of other processes on primitive asteroids. The presence of water ice on 24 Themis supports the idea that ice sublimation drives the cometary activity in two small members of the Themis dynamical family, labeled "Main Belt comets” by Hsieh and Jewitt (2006). It also helps to address other relevant questions, such as, how abundant is water ice in the outer asteroid belt and where was the "snow” line when the solar system formed? The answers to these questions could transform current views of primitive asteroids, delivery of water and organic molecules to Earth, and models of Solar System formation. This research was published in the April 29, 2010 issue of the journal Nature. Hargrove and Campins are visiting astronomers at the Infrared Telescope Facility (IRTF), which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration

  19. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival

    Science.gov (United States)

    Barwood, Martin J.; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R. D.

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3–5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [fc], respiratory frequency [fR], tidal volume [VT], minute ventilation [E]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the fc component of the CSR in unhabituated participants (CON1; p anxiety rating predicted the f

  20. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival.

    Science.gov (United States)

    Barwood, Martin J; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R D

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3-5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [ f c ], respiratory frequency [ f R ], tidal volume [ V T ], minute ventilation [ E ]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1 st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the f c component of the CSR in unhabituated participants (CON1; p CSR when anxiety

  1. Oxytocin decreases colonic motility of cold water stressed rats via oxytocin receptors.

    Science.gov (United States)

    Yang, Xiao; Xi, Tao-Fang; Li, Yu-Xian; Wang, Hai-Hong; Qin, Ying; Zhang, Jie-Ping; Cai, Wen-Ting; Huang, Meng-Ting; Shen, Ji-Qiao; Fan, Xi-Min; Shi, Xuan-Zheng; Xie, Dong-Ping

    2014-08-21

    To investigate whether cold water intake into the stomach affects colonic motility and the involvement of the oxytocin-oxytocin receptor pathway in rats. Female Sprague Dawley rats were used and some of them were ovariectomized. The rats were subjected to gastric instillation with cold (0-4 °C, cold group) or room temperature (20-25 °C, control group) saline for 14 consecutive days. Colon transit was determined with a bead inserted into the colon. Colonic longitudinal muscle strips were prepared to investigate the response to oxytocin in vitro. Plasma concentration of oxytocin was detected by ELISA. Oxytocin receptor expression was investigated by Western blot analysis. Immunohistochemistry was used to locate oxytocin receptors. Colon transit was slower in the cold group than in the control group (P cold water intake (0.69 ± 0.08 vs 0.88 ± 0.16, P receptors were located in the myenteric plexus, and their expression was up-regulated in the cold group (P Cold water intake increased blood concentration of oxytocin, but this effect was attenuated in ovariectomized rats (286.99 ± 83.72 pg/mL vs 100.56 ± 92.71 pg/mL, P Cold water intake inhibits colonic motility partially through oxytocin-oxytocin receptor signaling in the myenteric nervous system pathway, which is estrogen dependent.

  2. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone.

    Science.gov (United States)

    Kashiwase, Haruhiko; Ohshima, Kay I; Nihashi, Sohey; Eicken, Hajo

    2017-08-15

    Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979-2014) and a simplified ice-upper ocean coupled model reveal that divergent ice motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea ice anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile ice cover, which can partly explain the recent drastic ice reduction in the Arctic Ocean.

  3. Evaluation of vaccine cold chain in urban health centers of municipal corporation of surat city, Western India.

    Science.gov (United States)

    Naik, Ashish K; Rupani, Mihir P; Bansal, R K

    2013-12-01

    The success of immunization depends highly on the level of cold chain maintenance. The aim of the study was to assess the condition of cold chain equipment, practices adopted for cold chain maintenance and knowledge of the vaccinators. It was a cross-sectional study conducted in 20 UHCs of Surat Municipal Corporation (SMC). Cold chain equipment were observed with regards to their condition, along with the practices adopted by vaccinators for cold chain maintenance. A pre-designed and pre-tested questionnaire was used to interview the vaccinators regarding their knowledge and awareness regarding cold chain practices, management and handling. Data were entered and analyzed using Epi Info v 3.5.1. Simple proportions were calculated. Absence of separate stabilizer for deep freezers and ILRs (85%), ill-maintained temperature-record register, lack of criss-cross pattern of ice packs in deep freezer (65%), presence of things other than ice packs in deep freezer (10%) and things other than vaccines in ILR (10%) indicate poor cold chain maintenance. In addition to this, expired vaccines in ILR (5%), vaccines in the "unusable" stages of VVM (15%), lack of emergency contact number nearby in case of cold chain failure (85%), lack of inverter (85%), lack of generator (85%) and failure to note time of reconstitution on the vaccine vial at the time of vaccination (25%) indicate poor cold chain practices. Lack of knowledge of defrosting of ILR and deep freezer (45%), lack of knowledge about Shake test (40%), lack of knowledge of temperature range to be maintained in deep freezer (70%) and in ILR (15%) indicate poor knowledge of vaccinators. Cold chain maintenance and practices need improvement. Knowledge of vaccinators was overall unsatisfactory.

  4. Perennial water stratification and the role of freshwater in the mass balance of Arctic ice shelves and multiyear landfast sea ice

    International Nuclear Information System (INIS)

    Jeffries, M.O.

    1991-01-01

    A number of the ice shelves of northern Ellesmere Island in the Canadian High Arctic owe their origin to multiyear landfast sea ice (MLSI) growth during the post-Hypsithermal cooling ca. 3,000-4,000 BP. Since they grew in response to an arctic-wide climatic deterioration and contain evidence of occasional post-4,000 BP climatic ameliorations, they may be expected to be sensitive to future global climate changes manifested in the High Arctic. The purpose of this paper is to examine ice-ocean interactions and feedbacks, and the response of the ice shelves and the MLSI to the improved summer climate of the last ca. 100 years, and implications for the future. There is good evidence that there has been a negative surface mass balance since the turn of the century. Mass balance measurements on the Ward Hunt Ice Shelf between 1966 and 1985 indicate a total ice loss of 1.371 m at a mean annual rate of 68.5 mm. The interannual pattern of accumulation and ablation and the long-term losses on the ice shelf are similar to other Canadian High Arctic glacier mass balance records. It is evident from water and ice core records of salinity, δ 18 0 and tritium, that perennial water stratification is common below and behind the ice shelves and MLSI. The coastal waters are highly stratified, with anything from 0.5 m to 41.0 m of freshwater interposed between the overlying ice and underlying seawater. The primary source of the freshwater is summer run-off of snow-meltwater from the adjacent land and from the ice itself. There is minimal mixing between the influent freshwater and seawater, and the freshwater is either dammed behind the ice shelves and the MLSI, with subsequent under-ice freshwater outflows, or pooled in under-ice depressions

  5. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    OpenAIRE

    Xiao Chen; Yongquan Wen; Nanyang Li

    2016-01-01

    With the urbanization process of the hot summer and cold winter (HSCW) zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE) and sustainability index based on exergy efficiency, are adopted t...

  6. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans.

    Science.gov (United States)

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-04-01

    The diving response is initiated by apnea and facial immersion in cold water and includes, besides bradycardia, peripheral vasoconstriction, while cerebral perfusion may be enhanced. This study evaluated whether facial immersion in 10 degrees C water has an independent influence on cerebral perfusion evaluated as the middle cerebral artery mean flow velocity (MCA V(mean)) during exercise in nine male subjects. At rest, a breath hold of maximum duration increased the arterial carbon dioxide tension (Pa(CO(2))) from 4.2 to 6.7 kPa and MCA V(mean) from 37 to 103 cm/s (mean; approximately 178%; P breath hold increased Pa(CO(2)) from 5.9 to 8.2 kPa (P breath hold diverts blood toward the brain with a >100% increase in MCA V(mean), largely because Pa(CO(2)) increases, but the increase in MCA V(mean) becomes larger when combined with facial immersion in cold water independent of Pa(CO(2)).

  7. Cold Vacuum Drying facility potable water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system

  8. Assessing modelled spatial distributions of ice water path using satellite data

    Science.gov (United States)

    Eliasson, S.; Buehler, S. A.; Milz, M.; Eriksson, P.; John, V. O.

    2010-05-01

    The climate models used in the IPCC AR4 show large differences in monthly mean cloud ice. The most valuable source of information that can be used to potentially constrain the models is global satellite data. For this, the data sets must be long enough to capture the inter-annual variability of Ice Water Path (IWP). PATMOS-x was used together with ISCCP for the annual cycle evaluation in Fig. 7 while ECHAM-5 was used for the correlation with other models in Table 3. A clear distinction between ice categories in satellite retrievals, as desired from a model point of view, is currently impossible. However, long-term satellite data sets may still be used to indicate the climatology of IWP spatial distribution. We evaluated satellite data sets from CloudSat, PATMOS-x, ISCCP, MODIS and MSPPS in terms of monthly mean IWP, to determine which data sets can be used to evaluate the climate models. IWP data from CloudSat cloud profiling radar provides the most advanced data set on clouds. As CloudSat data are too short to evaluate the model data directly, it was mainly used here to evaluate IWP from the other satellite data sets. ISCCP and MSPPS were shown to have comparatively low IWP values. ISCCP shows particularly low values in the tropics, while MSPPS has particularly low values outside the tropics. MODIS and PATMOS-x were in closest agreement with CloudSat in terms of magnitude and spatial distribution, with MODIS being the best of the two. As PATMOS-x extends over more than 25 years and is in fairly close agreement with CloudSat, it was chosen as the reference data set for the model evaluation. In general there are large discrepancies between the individual climate models, and all of the models show problems in reproducing the observed spatial distribution of cloud-ice. Comparisons consistently showed that ECHAM-5 is the GCM from IPCC AR4 closest to satellite observations.

  9. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating

    Science.gov (United States)

    Yang, Chao; Wang, Fajun; Li, Wen; Ou, Junfei; Li, Changquan; Amirfazli, Alidad

    2016-01-01

    We present the excellent anti-icing performance for a superhydrophobic coating surface based on ZnO/polydimethylsiloxane (ZnO/PDMS) composite. The superhydrophobic ZnO/PDMS coating surface was prepared by a facile solution mixing, drop coating, room-temperature curing and surface abrading procedure. The superhydrophobic ZnO/PDMS composite coating possesses a water contact angle of 159.5° and a water sliding angle of 8.3° at room temperature (5 °C). The anti-icing properties of the superhydrophobic coating were investigated by continuously dropping cold-water droplets (about 0 °C) onto the pre-cooled surface using a home-made apparatus. The sample was placed at different tilting angle (0° and 10°) and pre-cooled to various temperatures (-5, -10 and -15 °C) prior to measure. The pure Al surface was also studied for comparison. It was found that icing accretion on the surface could be reduced apparently because the water droplets merged together and slid away from the superhydrophobic surface at all of the measuring temperatures when the surface is horizontally placed. In addition, water droplet slid away completely from the superhydrophobic surface at -5 and -10 °C when the surface is tilted at 10°, which demonstrates its excellent anti-icing properties at these temperatures. When the temperature decreased to -15 °C, though ice accretion on the tilted superhydrophobic coating surface could not be avoided absolutely, the amount of ice formed on the surface is very small, which indicated that the coating surface with superhydrophobicity could significantly reduce ice accumulation on the surface at very low temperature (-15 °C). Importantly, the sample is also stable against repeated icing/deicing cycles. More meaningfully, once the superhydrophobic surface is damaged, it can be repaired easily and rapidly.

  10. Thick or Thin Ice Shell on Europa?

    Science.gov (United States)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  11. Icing Problems of Wind Turbine Blades in Cold Climates

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    Climatic Wind Tunnel located at FORCE Technology. The aerodynamic forces acting on the blade during ice accretion for different angles of attack at various air temperatures were measured along with the mass of ice and the final ice shape. For all three types of ice accretion, glaze, mixed and rime ice...... and on the aerodynamic characteristics of the airfoil. The trend of the reduction of lift coefficients agrees quite well with the wind tunnel test results, although based on the measured and the numerical lift coefficients of the clean airfoil, the presence of the wind tunnel walls had significant influence...

  12. Ice and water droplets on graphite: A comparison of quantum and classical simulations

    International Nuclear Information System (INIS)

    Ramírez, Rafael; Singh, Jayant K.; Müller-Plathe, Florian; Böhm, Michael C.

    2014-01-01

    Ice and water droplets on graphite have been studied by quantum path integral and classical molecular dynamics simulations. The point-charge q-TIP4P/F potential was used to model the interaction between flexible water molecules, while the water-graphite interaction was described by a Lennard-Jones potential previously used to reproduce the macroscopic contact angle of water droplets on graphite. Several energetic and structural properties of water droplets with sizes between 10 2 and 10 3 molecules were analyzed in a temperature interval of 50–350 K. The vibrational density of states of crystalline and amorphous ice drops was correlated to the one of ice Ih to assess the influence of the droplet interface and molecular disorder on the vibrational properties. The average distance of covalent OH bonds is found 0.01 Å larger in the quantum limit than in the classical one. The OO distances are elongated by 0.03 Å in the quantum simulations at 50 K. Bond distance fluctuations are large as a consequence of the zero-point vibrations. The analysis of the H-bond network shows that the liquid droplet is more structured in the classical limit than in the quantum case. The average kinetic and potential energy of the ice and water droplets on graphite has been compared with the values of ice Ih and liquid water as a function of temperature. The droplet kinetic energy shows a temperature dependence similar to the one of liquid water, without apparent discontinuity at temperatures where the droplet is solid. However, the droplet potential energy becomes significantly larger than the one of ice or water at the same temperature. In the quantum limit, the ice droplet is more expanded than in a classical description. Liquid droplets display identical density profiles and liquid-vapor interfaces in the quantum and classical limits. The value of the contact angle is not influenced by quantum effects. Contact angles of droplets decrease as the size of the water droplet increases

  13. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  14. Multilayer Formation and Evaporation of Deuterated Ices in Prestellar and Protostellar Cores

    Science.gov (United States)

    Taquet, Vianney; Charnley, Steven B.; Sipilä, Olli

    2014-08-01

    Extremely large deuteration of several molecules has been observed toward prestellar cores and low-mass protostars for a decade. New observations performed toward low-mass protostars suggest that water presents a lower deuteration in the warm inner gas than in the cold external envelope. We coupled a gas-grain astrochemical model with a one-dimensional model of a collapsing core to properly follow the formation and the deuteration of interstellar ices as well as their subsequent evaporation in the low-mass protostellar envelopes with the aim of interpreting the spatial and temporal evolutions of their deuteration. The astrochemical model follows the formation and the evaporation of ices with a multilayer approach and also includes a state-of-the-art deuterated chemical network by taking the spin states of H2 and light ions into account. Because of their slow formation, interstellar ices are chemically heterogeneous and show an increase of their deuterium fractionation toward the surface. The differentiation of the deuteration in ices induces an evolution of the deuteration within protostellar envelopes. The warm inner region is poorly deuterated because it includes the whole molecular content of ices, while the deuteration predicted in the cold external envelope scales with the highly deuterated surface of ices. We are able to reproduce the observed evolution of water deuteration within protostellar envelopes, but we are still unable to predict the super-high deuteration observed for formaldehyde and methanol. Finally, the extension of this study to the deuteration of complex organics, important for the prebiotic chemistry, shows good agreement with the observations, suggesting that we can use the deuteration to retrace their mechanisms and their moments of formation.

  15. Multilayer formation and evaporation of deuterated ices in prestellar and protostellar cores

    International Nuclear Information System (INIS)

    Taquet, Vianney; Charnley, Steven B.; Sipilä, Olli

    2014-01-01

    Extremely large deuteration of several molecules has been observed toward prestellar cores and low-mass protostars for a decade. New observations performed toward low-mass protostars suggest that water presents a lower deuteration in the warm inner gas than in the cold external envelope. We coupled a gas-grain astrochemical model with a one-dimensional model of a collapsing core to properly follow the formation and the deuteration of interstellar ices as well as their subsequent evaporation in the low-mass protostellar envelopes with the aim of interpreting the spatial and temporal evolutions of their deuteration. The astrochemical model follows the formation and the evaporation of ices with a multilayer approach and also includes a state-of-the-art deuterated chemical network by taking the spin states of H 2 and light ions into account. Because of their slow formation, interstellar ices are chemically heterogeneous and show an increase of their deuterium fractionation toward the surface. The differentiation of the deuteration in ices induces an evolution of the deuteration within protostellar envelopes. The warm inner region is poorly deuterated because it includes the whole molecular content of ices, while the deuteration predicted in the cold external envelope scales with the highly deuterated surface of ices. We are able to reproduce the observed evolution of water deuteration within protostellar envelopes, but we are still unable to predict the super-high deuteration observed for formaldehyde and methanol. Finally, the extension of this study to the deuteration of complex organics, important for the prebiotic chemistry, shows good agreement with the observations, suggesting that we can use the deuteration to retrace their mechanisms and their moments of formation.

  16. Multilayer formation and evaporation of deuterated ices in prestellar and protostellar cores

    Energy Technology Data Exchange (ETDEWEB)

    Taquet, Vianney; Charnley, Steven B. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); Sipilä, Olli [Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki (Finland)

    2014-08-10

    Extremely large deuteration of several molecules has been observed toward prestellar cores and low-mass protostars for a decade. New observations performed toward low-mass protostars suggest that water presents a lower deuteration in the warm inner gas than in the cold external envelope. We coupled a gas-grain astrochemical model with a one-dimensional model of a collapsing core to properly follow the formation and the deuteration of interstellar ices as well as their subsequent evaporation in the low-mass protostellar envelopes with the aim of interpreting the spatial and temporal evolutions of their deuteration. The astrochemical model follows the formation and the evaporation of ices with a multilayer approach and also includes a state-of-the-art deuterated chemical network by taking the spin states of H{sub 2} and light ions into account. Because of their slow formation, interstellar ices are chemically heterogeneous and show an increase of their deuterium fractionation toward the surface. The differentiation of the deuteration in ices induces an evolution of the deuteration within protostellar envelopes. The warm inner region is poorly deuterated because it includes the whole molecular content of ices, while the deuteration predicted in the cold external envelope scales with the highly deuterated surface of ices. We are able to reproduce the observed evolution of water deuteration within protostellar envelopes, but we are still unable to predict the super-high deuteration observed for formaldehyde and methanol. Finally, the extension of this study to the deuteration of complex organics, important for the prebiotic chemistry, shows good agreement with the observations, suggesting that we can use the deuteration to retrace their mechanisms and their moments of formation.

  17. Air dehumidification by membrane with cold water for manned spacecraft environmental control

    Directory of Open Access Journals (Sweden)

    Shang Yonghong

    2017-01-01

    Full Text Available The traditional condensation dehumidification method requires additional gas-liquid separation and water recovery process in the manned spacecraft humidity control system, which would increase weight and complexity of systems. A new membrane dehumidification with cold water is proposed, which uses water vapor partial pressure difference to promote water vapor transmembrane mass transfer for dehumidification. The permeability of the membrane was measured and the experimental results agree well with the theoretical calculations. Based on the simulation of dehumidification process of cold water-membrane, the influence of module structure and working condition on dehumidification performance was analyzed, which provided reference for the design of membrane module construct. It can be seen from the simulation and experiments that the cold water-membrane dehumidification can effectively reduce the thermal load of the manned spacecraft.

  18. Improved Instrument for Detecting Water and Ice in Soil

    Science.gov (United States)

    Buehler, Martin; Chin, Keith; Keymeulen, Didler; McCann, Timothy; Seshadri, Suesh; Anderson, Robert

    2009-01-01

    An instrument measures electrical properties of relatively dry soils to determine their liquid water and/or ice contents. Designed as a prototype of instruments for measuring the liquid-water and ice contents of lunar and planetary soils, the apparatus could also be utilized for similar purposes in research and agriculture involving terrestrial desert soils and sands, and perhaps for measuring ice buildup on aircraft surfaces. This instrument is an improved version of the apparatus described in Measuring Low Concentrations of Liquid Water and Ice in Soil (NPO-41822), NASA Tech Briefs, Vol. 33, No. 2 (February 2009), page 22. The designs of both versions are based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and the magnitude and phase angle of impedance changes accordingly) with increasing water content. The previous version included an impedance spectrometer and a jar into which a sample of soil was placed. Four stainless-steel screws at the bottom of the jar were used as electrodes of a fourpoint impedance probe connected to the spectrometer. The present instrument does not include a sample jar and can be operated without acquiring or handling samples. Its impedance probe consists of a compact assembly of electrodes housed near the tip of a cylinder. The electrodes protrude slightly from the cylinder (see Figure 1). In preparation for measurements, the cylinder is simply pushed into the ground to bring the soil into contact with the electrodes.

  19. Evaluation of Water Quality Change of Brackish Lake in Snowy Cold Regions Accompanying Climate Change

    Science.gov (United States)

    Kudo, K.; Hasegawa, H.; Nakatsugawa, M.

    2017-12-01

    This study addresses evaluation of water quality change of brackish lake based on the estimation of hydrological quantities resulting from long-term hydrologic process accompanying climate change. For brackish lakes, such as Lake Abashiri in Eastern Hokkaido, there are concerns about water quality deterioration due to increases in water temperature and salinity. For estimating some hydrological quantities in the Abashiri River basin, including Lake Abashiri, we propose the following methods: 1) MRI-NHRCM20, a regional climate model based on the Representative Concentration Pathways adopted by IPCC AR5, 2) generalized extreme value distribution for correcting bias, 3) kriging adopted variogram for downscaling and 4) Long term Hydrologic Assessment model considering Snow process (LoHAS). In addition, we calculate the discharge from Abashiri River into Lake Abashiri by using estimated hydrological quantities and a tank model, and simulate impacts on water quality of Lake Abashiri due to climate change by setting necessary conditions, including the initial conditions of water temperature and water quality, the pollution load from the inflow rivers, the duration of ice cover and salt pale boundary. The result of the simulation of water quality indicates that climate change is expected to raise the water temperature of the lake surface by approximately 4°C and increase salinity of surface of the lake by approximately 4psu, also if salt pale boundary in the lake raises by approximately 2-m, the concentration of COD, T-N and T-P in the bottom of the lake might increase. The processes leading to these results are likely to be as follows: increased river water flows in along salt pale boundary in lake, causing dynamic flow of surface water; saline bottom water is entrained upward, where it mixes with surface water; and the shear force acting at salt pale boundary helps to increase the supply of salts from bottom saline water to the surface water. In the future, we will

  20. Circulation and water properties in the landfast ice zone of the Alaskan Beaufort Sea

    Science.gov (United States)

    Weingartner, Thomas J.; Danielson, Seth L.; Potter, Rachel A.; Trefry, John H.; Mahoney, Andy; Savoie, Mark; Irvine, Cayman; Sousa, Leandra

    2017-09-01

    Moorings, hydrography, satellite-tracked drifters, and high-frequency radar data describe the annual cycle in circulation and water properties in the landfast ice zone (LIZ) of the Alaskan Beaufort Sea. Three seasons, whose duration and characteristics are controlled by landfast ice formation and ablation, define the LIZ: ;winter;, ;break-up;, and ;open-water;. Winter begins in October with ice formation and ends in June when rivers commence discharging. Winter LIZ ice velocities are zero, under-ice currents are weak ( 5 cm s-1), and poorly correlated with winds and local sea level. The along-shore momentum balance is between along-shore pressure gradients and bottom and ice-ocean friction. Currents at the landfast ice-edge are swift ( 35 cm s-1), wind-driven, with large horizontal shears, and potentially unstable. Weak cross-shore velocities ( 1 cm s-1) imply limited exchanges between the LIZ and the outer shelf in winter. The month-long break-up season (June) begins with the spring freshet and concludes when landfast ice detaches from the bottom. Cross-shore currents increase, and the LIZ hosts shallow ( 2 m), strongly-stratified, buoyant and sediment-laden, under-ice river plumes that overlie a sharp, 1 m thick, pycnocline across which salinity increases by 30. The plume salt balance is between entrainment and cross-shore advection. Break-up is followed by the 3-month long open-water season when currents are swift (≥20 cm s-1) and predominantly wind-driven. Winter water properties are initialized by fall advection and evolve slowly due to salt rejection from ice. Fall waters and ice within the LIZ derive from local rivers, the Mackenzie and/or Chukchi shelves, and the Arctic basin.

  1. Tracing Atlantic Water Signature in the Arctic Sea Ice Cover East of Svalbard

    Directory of Open Access Journals (Sweden)

    Vladimir V. Ivanov

    2012-01-01

    Full Text Available We focus on the Arctic Ocean between Svalbard and Franz Joseph Land in order to elucidate the possible role of Atlantic water (AW inflow in shaping ice conditions. Ice conditions substantially affect the temperature regime of the Spitsbergen archipelago, particularly in winter. We test the hypothesis that intensive vertical mixing at the upper AW boundary releases substantial heat upwards that eventually reaches the under-ice water layer, thinning the ice cover. We examine spatial and temporal variation of ice concentration against time series of wind, air temperature, and AW temperature. Analysis of 1979–2011 ice properties revealed a general tendency of decreasing ice concentration that commenced after the mid-1990s. AW temperature time series in Fram Strait feature a monotonic increase after the mid-1990s, consistent with shrinking ice cover. Ice thins due to increased sensible heat flux from AW; ice erosion from below allows wind and local currents to more effectively break ice. The winter spatial pattern of sea ice concentration is collocated with patterns of surface heat flux anomalies. Winter minimum sea ice thickness occurs in the ice pack interior above the AW path, clearly indicating AW influence on ice thickness. Our study indicates that in the AW inflow region heat flux from the ocean reduces the ice thickness.

  2. Going Green and Cold: Biosurfactants from Low-Temperature Environments to Biotechnology Applications.

    Science.gov (United States)

    Perfumo, Amedea; Banat, Ibrahim M; Marchant, Roger

    2018-03-01

    Approximately 80% of the Earth's biosphere is cold, at an average temperature of 5°C, and is populated by a diversity of microorganisms that are a precious source of molecules with high biotechnological potential. Biosurfactants from cold-adapted organisms can interact with multiple physical phases - water, ice, hydrophobic compounds, and gases - at low and freezing temperatures and be used in sustainable (green) and low-energy-impact (cold) products and processes. We review the biodiversity of microbial biosurfactants produced in cold habitats and provide a perspective on the most promising future applications in environmental and industrial technologies. Finally, we encourage exploring the cryosphere for novel types of biosurfactants via both culture screening and functional metagenomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of storage temperature on quality of light and full-fat ice cream.

    Science.gov (United States)

    Buyck, J R; Baer, R J; Choi, J

    2011-05-01

    Ice cream quality is dependent on many factors including storage temperature. Currently, the industry standard for ice cream storage is -28.9 °C. Ice cream production costs may be decreased by increasing the temperature of the storage freezer, thus lowering energy costs. The first objective of this research was to evaluate the effect of 4 storage temperatures on the quality of commercial vanilla-flavored light and full-fat ice cream. Storage temperatures used were -45.6, -26.1, and -23.3 °C for the 3 treatments and -28.9 °C as the control or industry standard. Ice crystal sizes were analyzed by a cold-stage microscope and image analysis at 1, 19.5, and 39 wk of storage. Ice crystal size did not differ among the storage temperatures of light and full-fat ice creams at 19.5 or 39 wk. An increase in ice crystal size was observed between 19.5 and 39 wk for all storage temperatures except -45.6 °C. Coldness intensity, iciness, creaminess, and storage/stale off-flavor of the light and full-fat ice creams were evaluated at 39 wk of storage. Sensory evaluation indicated no difference among the different storage temperatures for light and full-fat ice creams. In a second study, light and full-fat ice creams were heat shocked by storing at -28.9 °C for 35 wk and then alternating between -23.3 and -12.2 °C every 24h for 4 wk. Heat-shocked ice creams were analyzed at 2 and 4 wk of storage for ice crystal size and were evaluated by the sensory panel. A difference in ice crystal size was observed for light and full-fat ice creams during heat-shock storage; however, sensory results indicated no differences. In summary, storage of light or full-fat vanilla-flavored ice creams at the temperatures used within this research did not affect quality of the ice creams. Therefore, ice cream manufacturers could conserve energy by increasing the temperature of freezers from -28.9 to -26.1 °C. Because freezers will typically fluctuate from the set temperature, usage of -26.1

  4. Patterns of ice nuclei from natural water sources in the mountains of Tirol, Austria

    Science.gov (United States)

    Baloh, Philipp; Hanlon, Regina; Pietsch, Renee; Anderson, Christopher; Schmale, David G., III; Grothe, Hinrich

    2017-04-01

    Heterogeneous ice nucleation—the process by which particles can nucleate ice between 0 and -35°C—is important for generating artificial snow. Though abiotic and biotic ice nuclei are present in many different natural and managed ecosystems, little is known about their nature, sources, and ecological roles. We collected samples of water and snow from the mountains of Tyrol, Austria in June, July, and November, 2016. The collected water was mostly from sources with minimal anthropogenic pollution, since most of the water from the sampled streams came from glacial melt. The samples were filtered through a 0.22μm filter, and microorganisms were cultured on different types of media. Resulting colonies were tested for their ice nucleation ability using a droplet freezing assay and identified to the level of the species. The unfiltered water and the filtered water will be subjected to additional assays using cryo microscopy and vibrational microscopy (IR and Raman- spectroscopy). Preliminary analyses suggested that the percentage of ice-nucleating microbes varied with season; greater percentages of ice nucleating microbes were present during colder months. The glacial melt also varies strongly over the year with the fraction of mineral dust suspended in it which serves as an inorganic ice nucleation agent. Further investigation of these samples may help to show the combined ice nuleation abilities of biological and non biological particles present in the mountains of Tirol, Austria. Future work may shed light on how the nucleation properties of the natural water changes with the time of the year and what may be responsible for these changes.

  5. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  6. Effect of ascorbic acid on fatigue of skeletal muscle fibres in long term cold exposed sprague dawley rats

    International Nuclear Information System (INIS)

    Rashid, A.; Ayub, M.

    2011-01-01

    On exposure to prolonged cold temperature, the body responds for effective heat production both by shivering and non-shivering thermo genesis. Cold exposure increases the production of reactive oxygen species which influence the sarcoplasmic reticulum Ca/sup ++/ release from the skeletal muscles and affect their contractile properties. The role of ascorbic acid supplementation on force of contraction during fatigue of cold exposed skeletal muscles was evaluated in this study. Method: Ninety healthy, male Sprague Dawley rats were randomly divided into three groups of control, cold exposed, and cold exposed with ascorbic acid 500 mg/L supplementation mixed in drinking water. Group II and III were given cold exposure by keeping their cages in ice-filled tubs for 1 hr/day for one month. After one month, the extensor digitorum longus muscle was dissected out and force of contraction during fatigue in the skeletal muscle fibres was analysed on a computerised data acquisition system. Results: The cold exposed group showed a significant delay in the force of contraction during fatigue of skeletal muscle fibres compared to control group. Group III showed easy fatigability and a better force of contraction than the cold exposed group. Conclusions: Ascorbic acid increases the force of contraction and decreases resistance to fatigue in the muscles exposed to chronic cold. (author)

  7. Reduced cerebral perfusion on sudden immersion in ice water: a possible cause of drowning

    DEFF Research Database (Denmark)

    Mantoni, Teit; Belhage, Bo; Pedersen, Lars M

    2007-01-01

    Near-drowning incidents and drowning deaths after accidental immersion in open waters have been linked to cold shock response. It consists of inspiratory gasps, hyperventilation, tachycardia, and hypertension in the first 2-3 min of cold-water immersion. This study explored the immediate changes...... in cerebral blood flow velocity (Vmean) during cold-water immersion since cold shock induced hyperventilation may diminish Vmean and lead to syncope and drowning....

  8. Periglacial complexes in Utopia Planitia: rimless, tiered depressions, (clastically) sorted and unsorted polygonised terrain and an ice-rich mantle

    Science.gov (United States)

    Soare, Richard; Conway, Susan; Gallagher, Colman; Dohm, James; Clifford, Stephen M.; Williams, Jean-pierre

    2016-10-01

    We report the spatial and possible genetic-relationship at the mid-latitudes of Utopia Planitia (45-500N 115-1200E), Mars, of: (a) metre to decametre deep, rimless, tiered depressions; terrain that exhibits (b) (clastically) sorted and (c) unsorted (small-sized) polygons; and, (d) a very youthful, ice-rich mantle. We show that these individual landscape features are separated stratigraphically, this being presented to the Mars community for the first time, and suggest that the stratigraphical separation of these features could be the result of boundary conditions and formation processes that have varied much more widely than has been thought hitherto. In cold-climate and non-glacial regions such as the Yamal Peninsula of eastern Russia and the Tuktoyaktuk Coastlands of northern Canada, landscape assemblages comprised of similar features are referenced as "ice complexes" and are indicative of periglacialism on two fronts: first, the presence of "ice-rich" permafrost or permafrost comprised of "excess ice", i.e. "permafrost" whose pore space is exceeded by the "water ice" within that body of sediment; and, second, antecedently or currently active freeze-thaw cycling, minimally, to the full depth of the "ice-complex" depressions. In the Dry Valleys of the Antarctic, where the atmospheric aridity and cold-temperatures approach those of Mars, ice-vapour diffusion and adsorption cycles are cited as the means by which the near-surface, permafrost, i.e. ≤1m deep, has become ice-cemented. However, the metre to decametre depths of the "ice-complex" depressions on Earth and the morphologically-similar ones on Mars lie beyond the vertical reach of the Antarctic diffusion and adsorption cycles, both empirically and theoretically. By deduction, this points to the freeze-thaw cycling of water to depth, fostered either by exogenic or endogenic means, perhaps playing a more important role in the formation of the possible Martian "ice complexes" than might be expected were

  9. Air-sea flux of CO2 in arctic coastal waters influenced by glacial melt water and sea ice

    DEFF Research Database (Denmark)

    Sejr, Mikael Kristian; Krause-Jensen, Dorte; Rysgaard, Søren

    2011-01-01

    Annual air–sea exchange ofCO2 inYoung Sound,NEGreenlandwas estimated using pCO2 surface-water measurements during summer (2006–2009) and during an ice-covered winter 2008. All surface pCO2 values were below atmospheric levels indicating an uptake of atmospheric CO2. During sea ice formation...... and thereby efficiently blocked air–sea CO2 exchange. During sea ice melt, dissolution of CaCO3 combined with primary production and strong stratification of the water column acted to lower surface-water pCO2 levels in the fjord. Also, a large input of glacial melt water containing geochemically reactive...... year-to-year variation in annual gas exchange....

  10. Oxygen exchange and ice melt measured at the ice-water interface by eddy correlation

    DEFF Research Database (Denmark)

    Long, M.H.; Koopmans, D.; Berg, P.

    2012-01-01

    heterotrophic with a daily gross primary production of 0.69 mmol O2 mĝ̂'2 dĝ̂'1 and a respiration rate of ĝ̂'2.13 mmol O2 mĝ̂'2 dĝ̂'1 leading to a net ecosystem metabolism of ĝ̂'1.45 mmol O2 mĝ̂'2 dĝ̂'1. This application of the eddy correlation technique produced high temporal resolution O2 fluxes and ice melt......This study examined fluxes across the ice-water interface utilizing the eddy correlation technique. Temperature eddy correlation systems were used to determine rates of ice melting and freezing, and O2 eddy correlation systems were used to examine O2 exchange rates driven by biological and physical...

  11. Lung function after cold-water dives with a standard scuba regulator or full-face-mask during wintertime.

    Science.gov (United States)

    Uhlig, Florian; Muth, Claus-Martin; Tetzlaff, Kay; Koch, Andreas; Leberle, Richard; Georgieff, Michael; Winkler, Bernd E

    2014-06-01

    Full-face-masks (FFM) prevent the diver's face from cold and can support nasal breathing underwater. The aim of the study was to evaluate the effect of the use of FFMs on lung function and wellbeing. Twenty-one, healthy, non-asthmatic divers performed two cold-water dives (4⁰C, 25 min, 10 metres' depth) - one with a FFM and the other with a standard scuba regulator (SSR). Spirometry was performed before and after each dive and well-being and cold sensation were assessed after the dives. Significant decreases in forced vital capacity (FVC), forced expiratory volume in one second (FEV₁) and midexpiratory flow at 75% of FVC (MEF₇₅) occurred after both FFM and SSR dives. Changes in FVC and FEV₁ did not differ significantly between FFM and SSR dives. However, the mid-expiratory flows measured at 50% and 25% of FVC (MEF₅₀ and MEF₂₅) were significantly lower 10 minutes after the FFM dive compared to 10 minutes after the SSR dive. The wellbeing and cold sensation of the divers were significantly improved with FFM dives compared to SSR dives. Cold-water dives during wintertime can be associated with airway narrowing. During cold-water dives, the use of a FFM appears to reduce the cold sensation and enhance the well-being of the divers. However, a FFM does not appear to prevent airway narrowing in healthy, non-asthmatic subjects.

  12. Brief Communication: Mapping river ice using drones and structure from motion

    Science.gov (United States)

    Alfredsen, Knut; Haas, Christian; Tuhtan, Jeffrey A.; Zinke, Peggy

    2018-02-01

    In cold climate regions, the formation and break-up of river ice is important for river morphology, winter water supply, and riparian and instream ecology as well as for hydraulic engineering. Data on river ice is therefore significant, both to understand river ice processes directly and to assess ice effects on other systems. Ice measurement is complicated due to difficult site access, the inherent complexity of ice formations, and the potential danger involved in carrying out on-ice measurements. Remote sensing methods are therefore highly useful, and data from satellite-based sensors and, increasingly, aerial and terrestrial imagery are currently applied. Access to low cost drone systems with quality cameras and structure from motion software opens up a new possibility for mapping complex ice formations. Through this method, a georeferenced surface model can be built and data on ice thickness, spatial distribution, and volume can be extracted without accessing the ice, and with considerably fewer measurement efforts compared to traditional surveying methods. A methodology applied to ice mapping is outlined here, and examples are shown of how to successfully derive quantitative data on ice processes.

  13. Outlet Glacier-Ice Shelf-Ocean Interactions: Is the Tail Wagging the Dog?

    Science.gov (United States)

    Parizek, B. R.; Walker, R. T.; Rinehart, S. K.

    2009-12-01

    While the massive interior regions of the Antarctic and Greenland Ice Sheets are presently ``resting quietly", the lower elevations of many outlet glaciers are experiencing dramatic adjustments due to changes in ice dynamics and/or surface mass balance. Oceanic and/or atmospheric forcing in these marginal regions often leads to mass deficits for entire outlet basins. Therefore, coupling the wagging tail of ice-ocean interactions with the vast ice-sheet reservoirs is imperative for accurate assessments of future sea-level rise. To study ice-ocean dynamic processes, we couple an ocean-plume model that simulates ice-shelf basal melting rates based on temperature and salinity profiles combined with plume dynamics associated with the geometry of the ice-shelf cavity (following Jenkins, 1991 and Holland and Jenkins, 1999) with a two-dimensional, isothermal model of outlet glacier-ice shelf flow (as used in Alley et al., 2007; Walker et al., 2008; Parizek et al., in review). Depending on the assigned temperature and salinity profiles, the ocean model can simulate both water-mass end-members: either cold High Salinity Shelf Water (HSSW) or relatively warm Circumpolar Deep Water (CDW), as well as between-member conditions. Notably, the coupled system exhibits sensitivity to the initial conditions. In particular, melting concentrated near the grounding line has the greatest effect in forcing grounding-line retreat. Retreat is further enhanced by a positive feedback between the ocean and ice, as the focused melt near the grounding line leads to an increase in the local slope of the basal ice, thereby enhancing buoyancy-driven plume flow and subsequent melt rates.

  14. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  15. Voluntary water intake during and following moderate exercise in the cold.

    Science.gov (United States)

    Mears, Stephen A; Shirreffs, Susan M

    2014-02-01

    Exercising in cold environments results in water losses, yet examination of resultant voluntary water intake has focused on warm conditions. The purpose of the study was to assess voluntary water intake during and following exercise in a cold compared with a warm environment. Ten healthy males (22 ± 2 years, 67.8 ± 7.0 kg, 1.77 ± 0.06 m, VO₂peak 60.5 ± 8.9 ml·kg⁻¹·min⁻¹) completed two trials (7-8 days). In each trial subjects sat for 30 min before cycling at 70% VO₂peak (162 ± 27W) for 60 min in 25.0 ± 0.1 °C, 50.8 ± 1.5% relative humidity (RH; warm) or 0.4 ± 1.0 °C, 68.8 ± 7.5% RH (cold). Subjects then sat for 120 min at 22.2 ± 1.2 °C, 50.5 ± 8.0% RH. Ad libitum drinking was allowed during the exercise and recovery periods. Urine volume, body mass, serum osmolality, and sensations of thirst were measured at baseline, postexercise and after 60 and 120 min of the recovery period. Sweat loss was greater in the warm trial (0.96 ± 0.18 l v 0.48 ± 0.15 l; p cold) v 1.03 ± 0.26% (warm)). More water was consumed throughout the duration of the warm trial (0.81 ± 0.42 l v 0.50 ± 0.49 l; p = .001). Cumulative urine output was greater in the cold trial (0.81 ± 0.46 v 0.54 ± 0.31 l; p = .036). Postexercise serum osmolality was higher compared with baseline in the cold (292 ± 2 v 287 ± 3 mOsm.kg⁻¹, p sensations were similar between trials (p > .05). Ad libitum water intake adjusted so that similar body mass losses occurred in both trials. In the cold there appeared to a blunted thirst response.

  16. Linescan camera evaluation of SSM/I 85.5 GHz sea ice retrieval

    DEFF Research Database (Denmark)

    Garrity, Caren; Lubin, Dan; Kern, Stefan

    2002-01-01

    misclassify clouds over open water as sea ice, and is therefore unreliable for locating the sea ice edge. The best algorithm for locating the sea ice edge is found to be the SEA LION algorithm, which explicitly uses meteorological reanalysis data to correct for atmospheric contamination. For total sea ice...

  17. Water ice clouds observations with PFS on Mars Express

    Science.gov (United States)

    Moroz, V. I.; Zasova, L. V.; Formisano, V.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Maturilli, A.; Pfs Team

    The water ice cloud observation is one of the scientific goals of PFS. Presence and properties of the ice particles are identified from absorption features, observed in both spectral ranges of PFS. Being in the near perihelion condition, the temperature of the Martian atmosphere is pretty high and ice clouds exist only in some places, for example, related to topography or at north high latitudes et etc. The ice clouds are observed often above the tops of the volcanoes. We have found the ice clouds above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Effective radius of particles according to the thermal IR is preliminary estimated of 1 μ m, which leads to the visual opacity of 0.2 -0.3 above Olympus and of maximum of 0.6 above Ascraeus Mons. In the case of Ascraeus Mons the ice clouds are observed on the south slope near the top of the volcano. The maximum surface temperature, observed there, results in the upward flux of warm air, which, cooling, provides the condensation of H2O. We will present a detailed analysis of the ice clouds, observed over the planet in the IR spectral range.

  18. Design of the MISMIP+, ISOMIP+, and MISOMIP ice-sheet, ocean, and coupled ice sheet-ocean intercomparison projects

    Science.gov (United States)

    Asay-Davis, Xylar; Cornford, Stephen; Martin, Daniel; Gudmundsson, Hilmar; Holland, David; Holland, Denise

    2015-04-01

    The MISMIP and MISMIP3D marine ice sheet model intercomparison exercises have become popular benchmarks, and several modeling groups have used them to show how their models compare to both analytical results and other models. Similarly, the ISOMIP (Ice Shelf-Ocean Model Intercomparison Project) experiments have acted as a proving ground for ocean models with sub-ice-shelf cavities.As coupled ice sheet-ocean models become available, an updated set of benchmark experiments is needed. To this end, we propose sequel experiments, MISMIP+ and ISOMIP+, with an end goal of coupling the two in a third intercomparison exercise, MISOMIP (the Marine Ice Sheet-Ocean Model Intercomparison Project). Like MISMIP3D, the MISMIP+ experiments take place in an idealized, three-dimensional setting and compare full 3D (Stokes) and reduced, hydrostatic models. Unlike the earlier exercises, the primary focus will be the response of models to sub-shelf melting. The chosen configuration features an ice shelf that experiences substantial lateral shear and buttresses the upstream ice, and so is well suited to melting experiments. Differences between the steady states of each model are minor compared to the response to melt-rate perturbations, reflecting typical real-world applications where parameters are chosen so that the initial states of all models tend to match observations. The three ISOMIP+ experiments have been designed to to make use of the same bedrock topography as MISMIP+ and using ice-shelf geometries from MISMIP+ results produced by the BISICLES ice-sheet model. The first two experiments use static ice-shelf geometries to simulate the evolution of ocean dynamics and resulting melt rates to a quasi-steady state when far-field forcing changes in either from cold to warm or from warm to cold states. The third experiment prescribes 200 years of dynamic ice-shelf geometry (with both retreating and advancing ice) based on a BISICLES simulation along with similar flips between warm and

  19. The role of ice dynamics in shaping vegetation in flowing waters.

    Science.gov (United States)

    Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine

    2014-11-01

    Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams

  20. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    Science.gov (United States)

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  1. An unusual early Holocene diatom event north of the Getz Ice Shelf (Amundsen Sea): Implications for West Antarctic Ice Sheet development

    Science.gov (United States)

    Esper, O.; Gersonde, R.; Hillenbrand, C.; Kuhn, G.; Smith, J.

    2011-12-01

    Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and palaeobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited around 12,500 cal. years B.P. [1]. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage

  2. Formation of Valley Networks in a Cold and Icy Early Mars Climate: Predictions for Erosion Rates and Channel Morphology

    Science.gov (United States)

    Cassanelli, J.

    2017-12-01

    Mars is host to a diverse array of valley networks, systems of linear-to-sinuous depressions which are widely distributed across the surface and which exhibit branching patterns similar to the dendritic drainage patterns of terrestrial fluvial systems. Characteristics of the valley networks are indicative of an origin by fluvial activity, providing among the most compelling evidence for the past presence of flowing liquid water on the surface of Mars. Stratigraphic and crater age dating techniques suggest that the formation of the valley networks occurred predominantly during the early geologic history of Mars ( 3.7 Ga). However, whether the valley networks formed predominantly by rainfall in a relatively warm and wet early Mars climate, or by snowmelt and episodic rainfall in an ambient cold and icy climate, remains disputed. Understanding the formative environment of the valley networks will help distinguish between these warm and cold end-member early Mars climate models. Here we test a conceptual model for channel incision and evolution under cold and icy conditions with a substrate characterized by the presence of an ice-free dry active layer and subjacent ice-cemented regolith, similar to that found in the Antarctic McMurdo Dry Valleys. We implement numerical thermal models, quantitative erosion and transport estimates, and morphometric analyses in order to outline predictions for (1) the precise nature and structure of the substrate, (2) fluvial erosion/incision rates, and (3) channel morphology. Model predictions are compared against morphologic and morphometric observational data to evaluate consistency with the assumed cold climate scenario. In the cold climate scenario, the substrate is predicted to be characterized by a kilometers-thick globally-continuous cryosphere below a 50-100 meter thick desiccated ice-free zone. Initial results suggest that, with the predicted substrate structure, fluvial channel erosion and morphology in a cold early Mars

  3. Rapid changes in surface water carbonate chemistry during Antarctic sea ice melt

    Science.gov (United States)

    Jones, Elizabeth M.; Bakker, Dorothee C. E.; Venables, Hugh J.; Whitehouse, Michael J.; Korb, Rebecca E.; Watson, Andrew J.

    2010-11-01

    ABSTRACT The effect of sea ice melt on the carbonate chemistry of surface waters in the Weddell-Scotia Confluence, Southern Ocean, was investigated during January 2008. Contrasting concentrations of dissolved inorganic carbon (DIC), total alkalinity (TA) and the fugacity of carbon dioxide (fCO2) were observed in and around the receding sea ice edge. The precipitation of carbonate minerals such as ikaite (CaCO3.6H2O) in sea ice brine has the net effect of decreasing DIC and TA and increasing the fCO2 in the brine. Deficits in DIC up to 12 +/- 3 μmol kg-1 in the marginal ice zone (MIZ) were consistent with the release of DIC-poor brines to surface waters during sea ice melt. Biological utilization of carbon was the dominant processes and accounted for 41 +/- 1 μmol kg-1 of the summer DIC deficit. The data suggest that the combined effects of biological carbon uptake and the precipitation of carbonates created substantial undersaturation in fCO2 of 95 μatm in the MIZ during summer sea ice melt. Further work is required to improve the understanding of ikaite chemistry in Antarctic sea ice and its importance for the sea ice carbon pump.

  4. Process optimization of ultrasound-assisted alcoholic-alkaline treatment for granular cold water swelling starches.

    Science.gov (United States)

    Zhu, Bo; Liu, Jianli; Gao, Weidong

    2017-09-01

    This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.

  5. A novel behavioral assay for measuring cold sensation in mice.

    Science.gov (United States)

    Brenner, Daniel S; Golden, Judith P; Gereau, Robert W

    2012-01-01

    Behavioral models of cold responses are important tools for exploring the molecular mechanisms of cold sensation. To complement the currently cold behavioral assays and allow further studies of these mechanisms, we have developed a new technique to measure the cold response threshold, the cold plantar assay. In this assay, animals are acclimated on a glass plate and a cold stimulus is applied to the hindpaw through the glass using a pellet of compressed dry ice. The latency to withdrawal from the cooled glass is used as a measure of the cold response threshold of the rodents, and the dry ice pellet provides a ramping cold stimulus on the glass that allows the correlation of withdrawal latency values to rough estimates of the cold response threshold temperature. The assay is highly sensitive to manipulations including morphine-induced analgesia, Complete Freund's Adjuvant-induced inflammatory allodynia, and Spinal Nerve Ligation-induced neuropathic allodynia.

  6. Sea ice - Multiyear cycles and white ice

    Science.gov (United States)

    Ledley, T. S.

    1985-01-01

    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  7. Radiation Effects in Hydrogen-Laden Porous Water Ice Films: Implications for Interstellar Ices

    Science.gov (United States)

    Raut, Ujjwal; Baragiola, Raul; Mitchell, Emma; Shi, Jianming

    H _{2} molar remains trapped in the ice even upon removal of ambient gas-phase H _{2}, and is stable to 170 K, where the ice film desorbs. We will describe the dependence of net loss of adsorbed hydrogen on important parameters such as ice film thickness and the ratio of ion flux (f) to H _{2} flux (F _{H}). Both fluxes are higher by orders of magnitude than interstellar values. However, the information obtained from these experiments, especially the behavior in the limit of low flux (f Journal, 1983. 275: p. 391-404. 3.Shi, J., B.D. Teolis, and R.A. Baragiola, Irradiation-enhanced adsorption and trapping of O2 on nanoporous water ice. Physical Review B, 2009. 79(23): p. 235422. 4.Raut, U., et al., Compaction of microporous amorphous solid water by ion irradiation. Journal of Chemical Physics, 2007. 126(24): p. 244511.

  8. Cold Vacuum Drying facility deionized water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit

  9. Thermal desorption of formamide and methylamine from graphite and amorphous water ice surfaces

    Science.gov (United States)

    Chaabouni, H.; Diana, S.; Nguyen, T.; Dulieu, F.

    2018-04-01

    Context. Formamide (NH2CHO) and methylamine (CH3NH2) are known to be the most abundant amine-containing molecules in many astrophysical environments. The presence of these molecules in the gas phase may result from thermal desorption of interstellar ices. Aims: The aim of this work is to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces and to understand their interaction with water ice. Methods: Temperature programmed desorption (TPD) experiments of formamide and methylamine ices were performed in the sub-monolayer and monolayer regimes on graphite (HOPG) and non-porous amorphous solid water (np-ASW) ice surfaces at temperatures 40-240 K. The desorption energy distributions of these two molecules were calculated from TPD measurements using a set of independent Polanyi-Wigner equations. Results: The maximum of the desorption of formamide from both graphite and ASW ice surfaces occurs at 176 K after the desorption of H2O molecules, whereas the desorption profile of methylamine depends strongly on the substrate. Solid methylamine starts to desorb below 100 K from the graphite surface. Its desorption from the water ice surface occurs after 120 K and stops during the water ice sublimation around 150 K. It continues to desorb from the graphite surface at temperatures higher than160 K. Conclusions: More than 95% of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate and is released into the gas phase with a desorption energy distribution Edes = 7460-9380 K, which is measured with the best-fit pre-exponential factor A = 1018 s-1. However, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes = 3850-8420 K) is measured with the best-fit pre-exponential factor A = 1012 s-1. A fraction of solid methylamine monolayer of roughly 0.15 diffuses through the water ice surface towards the HOPG substrate. This small amount of methylamine

  10. EPR Evidence of Liquid Water in Ice: An Intrinsic Property of Water or a Self-Confinement Effect?

    Science.gov (United States)

    Thangswamy, Muthulakshmi; Maheshwari, Priya; Dutta, Dhanadeep; Rane, Vinayak; Pujari, Pradeep K

    2018-06-01

    Liquid water (LW) existence in pure ice below 273 K has been a controversial aspect primarily because of the lack of experimental evidence. Recently, electron paramagnetic resonance (EPR) has been used to study deeply supercooled water in a rapidly frozen polycrystalline ice. The same technique can also be used to probe the presence of LW in polycrystalline ice that has formed through a more conventional, slow cooling one. In this context, the present study aims to emphasize that in case of an external probe involving techniques such as EPR, the results are influenced by the binary phase (BP) diagram of the probe-water system, which also predicts the existence of LW domains in ice, up to the eutectic point. Here we report the results of our such EPR spin-probe studies on water, which demonstrate that smaller the concentration of the probe stronger is the EPR evidence of liquid domains in polycrystalline ice. We used computer simulations based on stochastic Liouville theory to analyze the lineshapes of the EPR spectra. We show that the presence of the spin probe modifies the BP diagram of water, at very low concentrations of the spin probe. The spin probe thus acts, not like a passive reporter of the behavior of the solvent and its environment, but as an active impurity to influence the solvent. We show that there exists a lower critical concentration, below which BP diagram needs to be modified, by incorporating the effect of confinement of the spin probe. With this approach, we demonstrate that the observed EPR evidence of LW domains in ice can be accounted for by the modified BP diagram of the probe-water system. The present work highlights the importance of taking cognizance of the possibility of spin probes affecting the host systems, when interpreting the EPR (or any other probe based spectroscopic) results of phase transitions of host, as its ignorance may lead to serious misinterpretations.

  11. Evaluation of Composite-Hull Ships Operating in Arctic Ice

    Science.gov (United States)

    2016-06-01

    COMPOSITE- HULL SHIPS OPERATING IN ARCTIC ICE by Ryan M. Tran June 2016 Thesis Advisor: Young W. Kwon Co-Advisor: Jarema M. Didoszak THIS...Master’s thesis 4. TITLE AND SUBTITLE EVALUATION OF COMPOSITE- HULL SHIPS OPERATING IN ARCTIC ICE 5. FUNDING NUMBERS 6. AUTHOR Ryan M. Tran 7...melting ice caps. Extensive research is thus being conducted to determine the interaction between ice and steel- hulls in anticipation of opening sea

  12. Anatomical regulation of ice nucleation and cavitation helps trees to survive freezing and drought stress

    Science.gov (United States)

    Lintunen, A.; Hölttä, T.; Kulmala, M.

    2013-01-01

    Water in the xylem, the water transport system of plants, is vulnerable to freezing and cavitation, i.e. to phase change from liquid to ice or gaseous phase. The former is a threat in cold and the latter in dry environmental conditions. Here we show that a small xylem conduit diameter, which has previously been shown to be associated with lower cavitation pressure thus making a plant more drought resistant, is also associated with a decrease in the temperature required for ice nucleation in the xylem. Thus the susceptibility of freezing and cavitation are linked together in the xylem of plants. We explain this linkage by the regulation of the sizes of the nuclei catalysing freezing and drought cavitation. Our results offer better understanding of the similarities of adaption of plants to cold and drought stress, and offer new insights into the ability of plants to adapt to the changing environment. PMID:23778457

  13. Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes

    Science.gov (United States)

    Xiao, Xiaotong; Zhao, Meixun; Knudsen, Karen Luise; Sha, Longbin; Eiríksson, Jón; Gudmundsdóttir, Esther; Jiang, Hui; Guo, Zhigang

    2017-08-01

    Sea-ice conditions on the North Icelandic shelf constitute a key component for the study of the climatic gradients between the Arctic and the North Atlantic Oceans at the Polar Front between the cold East Icelandic Current delivering Polar surface water and the relatively warm Irminger Current derived from the North Atlantic Current. The variability of sea ice contributes to heat reduction (albedo) and gas exchange between the ocean and the atmosphere, and further affects the deep-water formation. However, lack of long-term and high-resolution sea-ice records in the region hinders the understanding of palaeoceanographic change mechanisms during the last glacial-interglacial cycle. Here, we present a sea-ice record back to 15 ka (cal. ka BP) based on the sea-ice biomarker IP25, phytoplankton biomarker brassicasterol and terrestrial biomarker long-chain n-alkanols in piston core MD99-2272 from the North Icelandic shelf. During the Bølling/Allerød (14.7-12.9 ka), the North Icelandic shelf was characterized by extensive spring sea-ice cover linked to reduced flow of warm Atlantic Water and dominant Polar water influence, as well as strong meltwater input in the area. This pattern showed an anti-phase relationship with the ice-free/less ice conditions in marginal areas of the eastern Nordic Seas, where the Atlantic Water inflow was strong, and contributed to an enhanced deep-water formation. Prolonged sea-ice cover with occasional occurrence of seasonal sea ice prevailed during the Younger Dryas (12.9-11.7 ka) interrupted by a brief interval of enhanced Irminger Current and deposition of the Vedde Ash, as opposed to abruptly increased sea-ice conditions in the eastern Nordic Seas. The seasonal sea ice decreased gradually from the Younger Dryas to the onset of the Holocene corresponding to increasing insolation. Ice-free conditions and sea surface warming were observed for the Early Holocene, followed by expansion of sea ice during the Mid-Holocene.

  14. The Design of a Moderator for a Cold Neutron Source for the LINAC of the Centro Atomico Bariloche

    International Nuclear Information System (INIS)

    Torres, Lourdes; Gilette, Victor

    2003-01-01

    The results obtained in the design of a moderator to a cold neutron source for LINAC are given. Light water ice at 100 deg K was used as a moderator and we calculated its optimum dimension.We also calculated a grid moderator

  15. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: A microautoradiographic study.

    Science.gov (United States)

    Grossmann, S

    1994-07-01

    Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [(3)H]leucine as substrate, was compared with incorporation rates of [(3)H]leucine into proteins. Relation of [(3)H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 10(5) ml(-1), but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3-0.4 days(-1). Total cell concentration of bacteria in 400 m depth was 6.6 × 10(4) ml(-1). Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml(-1), exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3-5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.

  16. Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4

    Science.gov (United States)

    Naughten, Kaitlin A.; Meissner, Katrin J.; Galton-Fenzi, Benjamin K.; England, Matthew H.; Timmermann, Ralph; Hellmer, Hartmut H.; Hattermann, Tore; Debernard, Jens B.

    2018-04-01

    An increasing number of Southern Ocean models now include Antarctic ice-shelf cavities, and simulate thermodynamics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves interact directly with the ocean and indirectly with sea ice. Here, we present the first model intercomparison and evaluation of present-day ocean/sea-ice/ice-shelf interactions, as simulated by two models: a circumpolar Antarctic configuration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element Sea-ice Ocean Model), where the latter is run at two different levels of horizontal resolution. From a circumpolar Antarctic perspective, we compare and evaluate simulated ice-shelf basal melting and sub-ice-shelf circulation, as well as sea-ice properties and Southern Ocean water mass characteristics as they influence the sub-ice-shelf processes. Despite their differing numerical methods, the two models produce broadly similar results and share similar biases in many cases. Both models reproduce many key features of observations but struggle to reproduce others, such as the high melt rates observed in the small warm-cavity ice shelves of the Amundsen and Bellingshausen seas. Several differences in model design show a particular influence on the simulations. For example, FESOM's greater topographic smoothing can alter the geometry of some ice-shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothing is required. In the interior Southern Ocean, the vertical coordinate system affects the degree of water mass erosion due to spurious diapycnal mixing, with MetROMS' terrain-following coordinate leading to more erosion than FESOM's z coordinate. Finally, increased horizontal resolution in FESOM leads to higher basal melt rates for small ice shelves, through a combination of stronger circulation and small-scale intrusions of

  17. Study on the Influence of the Cold-End Cooling Water Thickness on the Generative Performance of TEG

    Science.gov (United States)

    Zhou, Li; Guo, Xuexun; Tan, Gangfeng; Ji, Kangping; Xiao, Longjie

    2017-05-01

    At present, about 40% of the fuel energy is discharged into air with the exhaust gas when an automobile is working, which is a big waste of energy. A thermoelectric generator (TEG) has the ability to harvest the waste heat energy in the exhaust gas. The traditional TEG cold-end is cooled by the engine cooling system, and although its structure is compact, the TEG weight and the space occupied are important factors restricting its application. In this paper, under the premise of ensuring the TEG maximum net output power and reducing the TEG water consumption as much as possible, the optimization of the TEG water thickness in the normal direction of the cold-end surface (WTNCS) is studied, which results in lighter weight, less space occupied and better automobile fuel economy. First, the thermal characteristics of the target diesel vehicle exhaust gas are evaluated based on the experimental data. Then, according to the thermoelectric generation model and the cold-end heat transfer model, the effect of the WTNCS on the cold-end temperature control stability and the system flow resistance are studied. The results show that the WTNCS influences the TEG cold-end temperature. When the engine works in a stable condition, the cold-end temperature decreases with the decrease of the WTNCS. The optimal value of the WTNCS is 0.02 m and the TEG water consumption is 8.8 L. Comparin it with the traditional vehicle exhaust TEG structure, the power generation increased slightly, but the water consumption decreased by about 39.5%, which can save fuel at0.18 L/h when the vehicle works at the speed of 60 km/h.

  18. Bio-optical properties of Arctic drift ice and surface waters north of Svalbard from winter to spring

    Science.gov (United States)

    Kowalczuk, Piotr; Meler, Justyna; Kauko, Hanna M.; Pavlov, Alexey K.; Zabłocka, Monika; Peeken, Ilka; Dybwad, Christine; Castellani, Giulia; Granskog, Mats A.

    2017-06-01

    We have quantified absorption by CDOM, aCDOM(λ), particulate matter, ap(λ), algal pigments, aph(λ), and detrital material, aNAP(λ), coincident with chlorophyll a in sea ice and surface waters in winter and spring 2015 in the Arctic Ocean north of Svalbard. The aCDOM(λ) was low in contrast to other regions of the Arctic Ocean, while ap(λ) has the largest contribution to absorption variability in sea ice and surface waters. ap(443) was 1.4-2.8 times and 1.3-1.8 times higher than aCDOM(443) in surface water and sea ice, respectively. aph(λ) contributed 90% and 81% to ap(λ), in open leads and under-ice waters column, and much less (53%-74%) in sea ice, respectively. Both aCDOM(λ) and ap(λ) followed closely the vertical distribution of chlorophyll a in sea ice and the water column. We observed a tenfold increase of the chlorophyll a concentration and nearly twofold increase in absorption at 443 nm in sea ice from winter to spring. The aCDOM(λ) dominated the absorption budget in the UV both in sea ice and surface waters. In the visible range, absorption was dominated by aph(λ), which contributed more than 50% and aCDOM(λ), which contributed 43% to total absorption in water column. Detrital absorption contributed significantly (33%) only in surface ice layer. Algae dynamics explained more than 90% variability in ap(λ) and aph(λ) in water column, but less than 70% in the sea ice. This study presents detailed absorption budget that is relevant for modeling of radiative transfer and primary production.

  19. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    Science.gov (United States)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  20. Ice shelf melt rates in Greenland and Antarctica using time-tagged digital imagery from World View and TanDEM-X

    Science.gov (United States)

    Charolais, A.; Rignot, E. J.; Milillo, P.; Scheuchl, B.; Mouginot, J.

    2017-12-01

    The floating extensions of glaciers, or ice shelves, melt vigorously in contact with ocean waters. Melt is non uniform, with the highest melt taking place in the deepest part of the cavity, where thermal forcing is the greatest because of 1) the pressure dependence of the freezing point of the seawater/ice mixture and 2) subglacial water injects fresh, buoyant, cold melt water to fuel stronger ice-ocean interactions. Melt also forms along preferential channels, which are not stationary, and create lines of weakness in the shelf. Ice shelf melt rates have been successfully measured from space over the entire Antarctic continent and on the ice shelves in Greenland using an Eulerian approach that combines ice thickness, ice velocity vectors, surface mass balance data, and measurements of ice thinning rates. The Eulerian approach is limited by the precision of the thickness gradients, typically of a few km, and requires significant spatial averaging to remove advection effects. A Lagrangian approach has been shown to be robust to advection effects and provides higher resolution details. We implemented a Lagrangian methodology for time-tagged World View DEMs by the Polar Geoscience Center (PGS) at the University of Minnesota and time-tagged TanDEM-X DEMs separated by one year. We derive melt rates on a 300-m grid with a precision of a few m/yr. Melt is strongest along grounding lines and along preferred channels. Channels are non-stationary because melt is not the same on opposite sides of the channels. Examining time series of data and comparing with the time-dependent grounding line positions inferred from satellite radar interferometry, we evaluate the magnitude of melt near the grounding line and even within the grounding zone. A non-zero melt rate in the grounding zone has vast implications for ice sheet modeling. This work is funded by a grant from NASA Cryosphere Program.

  1. P-band radar ice sounding in Antarctica

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kusk, Anders; Kristensen, Steen Savstrup

    2012-01-01

    In February 2011, the Polarimetric Airborne Radar Ice Sounder (POLARIS) was flown in Antarctica in order to assess the feasibility of a potential space-based radar ice sounding mission. The campaign has demonstrated that the basal return is detectable in areas with up to 3 km thick cold ice, in a...

  2. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys

    Science.gov (United States)

    Feng, Libang; Yan, Zhongna; Shi, Xueting; Sultonzoda, Firdavs

    2018-02-01

    Ice formation and frost deposition on cryogenic equipment and systems can result in serious problems and huge economic loss. Hence, it is quite necessary to develop new materials to prevent icing and frosting on cold surfaces in engineering fields. Here, a superhydrophobic aluminum alloy with enhanced anti-frosting, anti-icing, and self-cleaning performance has been developed by a facile one-step method. The anti-frosting/icing performance of superhydrophobic aluminum alloys is confirmed by frosting/icing time delay, consolidating and freezing temperature reduction, and lower amount of frost/ice adhesion. Meanwhile, the excellent self-cleaning performance is authenticated by the fact that simulated pollution particles can be cleaned out by rolling water droplets completely. Finally, based on the classical nucleation theory, anti-icing and anti-frosting mechanisms of the superhydrophobic aluminum alloys are deduced. Results show that grounded on "air cushion" and "heat insulation" effect, a larger nucleation barrier and a lower crystal growth rate can be observed, which, hence, inhibit ice formation and frost deposition. It can be concluded that preparing superhydrophobic surfaces would be an effective strategy for improving anti-icing, anti-frosting, and self-cleaning performance of aluminum alloys.

  3. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D.W.; Shedd, A.C. [D.W. Abrams, P.E. and Associates, Atlanta, GA (United States)

    1996-11-01

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building, and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.

  4. Studies on Physical and Sensory Properties of Premium Vanilla Ice Cream Distributed in Korean Market.

    Science.gov (United States)

    Choi, Mi-Jung; Shin, Kwang-Soon

    2014-01-01

    The object of this study was to investigate the difference in physical and sensory properties of various premium ice creams. The physical properties of the various ice creams were compared by manufacturing brand. The water contents of the samples differed, with BR having the highest value at 60.5%, followed by NT and CS at 57.8% and 56.9%, respectively. The higher the water content, the lower Brix and milk fat contents in all samples. The density of the samples showed almost similar values in all samples (p>0.05). The viscosity of each ice cream had no effect on the water content in any of the brands. Before melting of the ice cream, the total color difference was dependent on the lightness, especially in the vanilla ice cream, owing to the reflection of light on the surface of the ice crystals. The CS product melted the fastest. In the sensory test, CS obtained a significantly higher sweetness intensity score but a lower score for color intensity, probably due to the smaller difference in total color, by which consumers might consider the color of CS as less intense. From this study, the cold chain system for ice cream distribution might be important to decide the physical properties although the concentration of milk fat is key factor in premium ice cream.

  5. The barrier to ice nucleation in monatomic water

    Science.gov (United States)

    Prestipino, Santi

    2018-03-01

    Crystallization from a supercooled liquid initially proceeds via the formation of a small solid embryo (nucleus), which requires surmounting an activation barrier. This phenomenon is most easily studied by numerical simulation, using specialized biased-sampling techniques to overcome the limitations imposed by the rarity of nucleation events. Here, I focus on the barrier to homogeneous ice nucleation in supercooled water, as represented by the monatomic-water model, which in the bulk exhibits a complex interplay between different ice structures. I consider various protocols to identify solidlike particles on a computer, which perform well enough for the Lennard-Jones model, and compare their respective impact on the shape and height of the nucleation barrier. It turns out that the effect is stronger on the nucleus size than on the barrier height. As a by-product of the analysis, I determine the structure of the nucleation cluster, finding that the relative amount of ice phases in the cluster heavily depends on the method used for classifying solidlike particles. Moreover, the phase which is most favored during the earlier stages of crystallization may happen, depending on the nucleation coordinate adopted, to be different from the stable polymorph. Therefore, the quality of a reaction coordinate cannot be assessed simply on the basis of the barrier height obtained. I explain how this outcome is possible and why it just points out the shortcoming of collective variables appropriate to simple fluids in providing a robust method of particle classification for monatomic water.

  6. A novel behavioral assay for measuring cold sensation in mice.

    Directory of Open Access Journals (Sweden)

    Daniel S Brenner

    Full Text Available Behavioral models of cold responses are important tools for exploring the molecular mechanisms of cold sensation. To complement the currently cold behavioral assays and allow further studies of these mechanisms, we have developed a new technique to measure the cold response threshold, the cold plantar assay. In this assay, animals are acclimated on a glass plate and a cold stimulus is applied to the hindpaw through the glass using a pellet of compressed dry ice. The latency to withdrawal from the cooled glass is used as a measure of the cold response threshold of the rodents, and the dry ice pellet provides a ramping cold stimulus on the glass that allows the correlation of withdrawal latency values to rough estimates of the cold response threshold temperature. The assay is highly sensitive to manipulations including morphine-induced analgesia, Complete Freund's Adjuvant-induced inflammatory allodynia, and Spinal Nerve Ligation-induced neuropathic allodynia.

  7. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  8. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.

    Science.gov (United States)

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

    2015-02-01

    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Estimation of the consumption of cold tap water for microbiological risk assessment: An overview of studies and statistical analysis of data

    NARCIS (Netherlands)

    Mons, M.N.; Wielen, J.M.L. van der; Blokker, E.J.M.; Sinclair, M.I.; Hulshof, K.F.A.M.; Dangendorf, F.; Hunter, P.R.; Medema, G.J.

    2007-01-01

    The volume of cold tap water consumed is an essential element in quantitative microbial risk assessment. This paper presents a review of tap water consumption studies. Study designs were evaluated and statistical distributions were fitted to water consumption data from The Netherlands, Great

  10. Application of GRACE to the Evaluation of an Ice Flow Model of the Greenland Ice Sheet

    Science.gov (United States)

    Schlegel, N.; Wiese, D. N.; Watkins, M. M.; Larour, E. Y.; Box, J. E.; Fettweis, X.; van den Broeke, M. R.; Morlighem, M.; Boening, C.; Seroussi, H. L.

    2014-12-01

    Quantifying Greenland's future contribution to sea level rise is a challenging task and requires accurate estimates of ice flow sensitivity to climate change. Transient ice flow models are promising tools for estimating future ice sheet behavior. However, confidence in these types of future projections is low, especially because evaluation of model historical runs is so challenging due to the scarcity of continental-wide data for validation. For more than a decade, NASA's GRACE has continuously acquired time-variable measurements of the Earth's gravity field and has provided unprecedented surveillance of mass balance of the ice sheets, offering an opportunity for ice sheet model evaluation. Here, we take advantage of a new high-resolution (~300 km) monthly mascon solution for the purpose of mass balance comparison with an independent, historical ice flow model simulation using the Ice Sheet System Model (ISSM). The comparison highlights which regions of the ice sheet differ most from GRACE. Investigation of regional differences in trends and seasonal amplitudes between simulations forced with three different Regional Climate Model (RCM)-based estimates of surface mass balance (SMB) allows us to make conclusions about the relative contributions of various error sources in the model hindcast. This study constitutes the first regional comparison of GRACE data and an ice sheet model. Conclusions will aid in the improvement of RCM SMB estimates as well as ice sheet simulation estimates of present and future rates of sea level rise. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Program and President's and Director's Fund Program.

  11. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    Science.gov (United States)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  12. Properties of volcanic soils in cold climate conditions

    Science.gov (United States)

    Kuznetsova, Elena

    2017-04-01

    Layers of volcanic ash and the Andosol soils derived from them may play an important role in preserving snow and ice as well as developing permafrost conditions in the immediate vicinity of volcanoes of high elevation or those situated at high latitudes, and land areas, often distant from volcanic activity that are either prone to permafrost or covered by snow and ice, but are affected by the deposition of subaerial ash. The special properties of volcanic ash that are responsible are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place. Volcanic glass is the most easily weathered component of volcanic ejecta (Shoji et al., 1993; Kimble et al., 2000). There are many specific environmental conditions, including paleoclimate and present-day climate, the composition of volcanic tephra and glaciation history, which cause the differences in weathering and development of volcanic ash soils (Zehetner et al., 2003). The preservation of in situ, unweathered, and unaltered surficial ash-fall deposits in the cold regions has important implications for paleoclimate and glacial history. Ash-fall deposits, which trap and preserve the soils, sediments, and landforms on which they fall, can be used to resolve local climate conditions (temperature and moisture) at the ash site during ash-fall deposition. The preservation of detailed sedimentary features (e.g. bedding in the ash, sharpness of stratigraphic contacts) can tell us about their post-depositional history, whether they have been redeposited by wind or water, or overridden by glaciers (Marchant et al., 1996). Weathering of volcanic glass results in the development of amorphous clay minerals (e.g. allophane, opal, palagonite) but this takes place much slower in cold than under warmer climate conditions. Only few

  13. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice

    Science.gov (United States)

    Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.

    2017-08-01

    Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.

  14. Winter Arctic sea ice growth: current variability and projections for the coming decades

    Science.gov (United States)

    Petty, A.; Boisvert, L.; Webster, M.; Holland, M. M.; Bailey, D. A.; Kurtz, N. T.; Markus, T.

    2017-12-01

    Arctic sea ice increases in both extent and thickness during the cold winter months ( October to May). Winter sea ice growth is an important factor controlling ocean ventilation and winter water/deep water formation, as well as determining the state and vulnerability of the sea ice pack before the melt season begins. Key questions for the Arctic community thus include: (i) what is the current magnitude and variability of winter Arctic sea ice growth and (ii) how might this change in a warming Arctic climate? To address (i), our current best guess of pan-Arctic sea ice thickness, and thus volume, comes from satellite altimetry observations, e.g. from ESA's CryoSat-2 satellite. A significant source of uncertainty in these data come from poor knowledge of the overlying snow depth. Here we present new estimates of winter sea ice thickness from CryoSat-2 using snow depths from a simple snow model forced by reanalyses and satellite-derived ice drift estimates, combined with snow depth estimates from NASA's Operation IceBridge. To address (ii), we use data from the Community Earth System Model's Large Ensemble Project, to explore sea ice volume and growth variability, and how this variability might change over the coming decades. We compare and contrast the model simulations to observations and the PIOMAS ice-ocean model (over recent years/decades). The combination of model and observational analysis provide novel insight into Arctic sea ice volume variability.

  15. Possible significance of cubic water-ice, H2O-Ic, in the atmospheric water cycle of Mars

    Science.gov (United States)

    Gooding, James L.

    1988-01-01

    The possible formation and potential significance of the cubic ice polymorph on Mars is discussed. When water-ice crystallizes on Earth, the ambient conditions of temperature and pressure result in the formation of the hexagonal ice polymorph; however, on Mars, the much lower termperature and pressures may permit the crystallization of the cubic polymorph. Cubic ice has two properties of possible importance on Mars: it is an excellant nucleator of other volatiles (such as CO2), and it undergoes an exothermic transition to hexagonal ice at temperatures above 170 K. These properties may have significant implications for both martian cloud formation and the development of the seasonal polar caps.

  16. Human impacts on river ice regime in the Carpathian Basin

    Science.gov (United States)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    River ice is a very important component of the cryosphere, and is especially sensitive to climatic variability. Historical records of appearance or disappearance and timing of ice phenomena are useful indicators for past climatic variations (Williams, 1970). Long-term observations of river ice freeze-up and break-up dates are available for many rivers in the temperate or cold region to detect and analyze the effects of climate change on river ice regime. The ice regime of natural rivers is influenced by climatic, hydrological and morphological factors. Regular ice phenomena observation mostly dates back to the 19th century. During this long-term observation period, the human interventions affecting the hydrological and morphological factors have become more and more intensive (Beltaos and Prowse, 2009). The anthropogenic effects, such as river regulation, hydropower use or water pollution causes different changes in river ice regime (Ashton, 1986). To decrease the occurrence of floods and control the water discharge, nowadays most of the rivers are regulated. River regulation changes the morphological parameters of the river bed: the aim is to create solid and equable bed size and stream gradient to prevent river ice congestion. For the satisfaction of increasing water demands hydropower is also used. River damming results a condition like a lake upstream to the barrage; the flow velocity and the turbulence are low, so this might be favourable for river ice appearance and freeze-up (Starosolsky, 1990). Water pollution affects ice regime in two ways; certain water contaminants change the physical characteristics of the water, e.g. lessens the freezing point of the water. Moreover the thermal stress effect of industrial cooling water and communal wastewater is also important; in winter these water sources are usually warmer, than the water body of the river. These interventions result different changes in the characteristic features of river ice regime. Selected

  17. The reactor and cold neutron research facility at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Prask, H J; Rowe, J M [Reactor Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1992-07-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D{sub 2}O/H{sub 2}O ice cold source. (author)

  18. The reactor and cold neutron research facility at NIST

    International Nuclear Information System (INIS)

    Prask, H.J.; Rowe, J.M.

    1992-01-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D 2 O/H 2 O ice cold source. (author)

  19. Competition for water vapour results in suppression of ice formation in mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    E. L. Simpson

    2018-05-01

    Full Text Available The formation of ice in clouds can initiate precipitation and influence a cloud's reflectivity and lifetime, affecting climate to a highly uncertain degree. Nucleation of ice at elevated temperatures requires an ice nucleating particle (INP, which results in so-called heterogeneous freezing. Previously reported measurements for the ability of a particle to nucleate ice have been made in the absence of other aerosol which will act as cloud condensation nuclei (CCN and are ubiquitous in the atmosphere. Here we show that CCN can outcompete INPs for available water vapour thus suppressing ice formation, which has the potential to significantly affect the Earth's radiation budget. The magnitude of this suppression is shown to be dependent on the mass of condensed water required for freezing. Here we show that ice formation in a state-of-the-art cloud parcel model is strongly dependent on the criteria for heterogeneous freezing selected from those previously hypothesised. We have developed an alternative criteria which agrees well with observations from cloud chamber experiments. This study demonstrates the dominant role that competition for water vapour can play in ice formation, highlighting both a need for clarity in the requirements for heterogeneous freezing and for measurements under atmospherically appropriate conditions.

  20. Competition for water vapour results in suppression of ice formation in mixed-phase clouds

    Science.gov (United States)

    Simpson, Emma L.; Connolly, Paul J.; McFiggans, Gordon

    2018-05-01

    The formation of ice in clouds can initiate precipitation and influence a cloud's reflectivity and lifetime, affecting climate to a highly uncertain degree. Nucleation of ice at elevated temperatures requires an ice nucleating particle (INP), which results in so-called heterogeneous freezing. Previously reported measurements for the ability of a particle to nucleate ice have been made in the absence of other aerosol which will act as cloud condensation nuclei (CCN) and are ubiquitous in the atmosphere. Here we show that CCN can outcompete INPs for available water vapour thus suppressing ice formation, which has the potential to significantly affect the Earth's radiation budget. The magnitude of this suppression is shown to be dependent on the mass of condensed water required for freezing. Here we show that ice formation in a state-of-the-art cloud parcel model is strongly dependent on the criteria for heterogeneous freezing selected from those previously hypothesised. We have developed an alternative criteria which agrees well with observations from cloud chamber experiments. This study demonstrates the dominant role that competition for water vapour can play in ice formation, highlighting both a need for clarity in the requirements for heterogeneous freezing and for measurements under atmospherically appropriate conditions.

  1. Cold vacuum drying facility site evaluation report

    International Nuclear Information System (INIS)

    Diebel, J.A.

    1996-01-01

    In order to transport Multi-Canister Overpacks to the Canister Storage Building they must first undergo the Cold Vacuum Drying process. This puts the design, construction and start-up of the Cold Vacuum Drying facility on the critical path of the K Basin fuel removal schedule. This schedule is driven by a Tri-Party Agreement (TPA) milestone requiring all of the spent nuclear fuel to be removed from the K Basins by December, 1999. This site evaluation is an integral part of the Cold Vacuum Drying design process and must be completed expeditiously in order to stay on track for meeting the milestone

  2. Ocean-Ice-Atmosphere Interactions off Sabrina and Adelie Coasts During NBP1402 and AU1402

    Science.gov (United States)

    Orsi, A. H.; Zielinski, N. J.; Webb, C.; Huber, B. A.

    2015-12-01

    Diverse interactions of winds, currents and ice around Antarctica dictate how, where and when the world's densest waters form, massive floating ice shelves and glaciers melt, gases are exchanged at the sea surface, and primary productivity. Compelled by recent rate estimates of East Antarctic Ice Sheet mass loss, we contrast the paths and mixing histories of oceanic waters reaching the continental ice edge off the Sabrina and Adelie coasts relying on a the first synoptic shipboard measurements made by U.S. (NBP1402) and Australian (AU1402) scientists. Analysis of historical hydrography and sea ice concentration fields within the Mertz Polynya indicates the apparent effect of evolving ocean-ice- atmosphere interactions on the characteristics of local Shelf Water (SW) sources. A polynya dominated water mass structure similar to that observed off the Adelie Coast before the removal of the Mertz Ice Tongue was expected to the west of the Dalton Ice Tongue (DIT). However, there was no evidence of dense SW off Sabrina Coast during both summer cruises of 2014 and 2015, thus lessening the region's preconceived influence to global meridional overturning. Present sea ice production within the eastern Dalton Polynya is overshadowed by freshwater input to relatively stable interior upper waters. The Antarctic Coastal Current (ACoC) picks up distinct meltwater contributions along the DIT western flank and in front of the Moscow University Ice Shelf (MUIS) and Totten Glacier (TG). Unlike over other highly influential margins to global sea level rise, the main evidence of inflow and mixing of relatively warm oceanic waters is reduced to relatively cold thermocline water (< 0.3°C) from the continental slope. This source water enters the eastern trough off Sabrina Coast and is swiftly steered poleward by complex underlying topography. Meltwater export from beneath the MUIS and TG is observed at newly discovered trenches that effectively constrain sub-cavity inflow to low salinity

  3. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei

    2017-04-01

    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Modelling of destructive ability of water-ice-jet while machine processing of machine elements

    Directory of Open Access Journals (Sweden)

    Burnashov Mikhail

    2017-01-01

    Full Text Available This paper represents the classification of the most common contaminants, appearing on the surfaces of machine elements after a long-term service.The existing well-known surface cleaning methods are described and analyzed in the framework of this paper. The article is intended to provide the reader with an understanding of the process of cleaning and removing contamination from machine elements surface by means of water-ice-jet with preprepared beforehand particles, as well as the process of water-ice-jet formation. The paper deals with the description of such advantages of this method as low costs, wastelessness, high quality of the surface, undergoing processing, minimization of harmful impact upon environment and eco-friendliness, which makes it differ radically from formerly known methods. The scheme of interection between the surface and ice particle is represented. A thermo-physical model of destruction of contaminants by means of a water-ice-jet cleaning technology was developed on its basis. The thermo-physical model allows us to make setting of processing mode and the parameters of water-ice-jet scientifically substantiated and well-grounded.

  5. Cold-water immersion and iced-slush ingestion are effective at cooling firefighters following a simulated search and rescue task in a hot environment.

    Science.gov (United States)

    Walker, Anthony; Driller, Matthew; Brearley, Matt; Argus, Christos; Rattray, Ben

    2014-10-01

    Firefighters are exposed to hot environments, which results in elevated core temperatures. Rapidly reducing core temperatures will likely increase safety as firefighters are redeployed to subsequent operational tasks. This study investigated the effectiveness of cold-water immersion (CWI) and iced-slush ingestion (SLUSH) to cool firefighters post-incident. Seventy-four Australian firefighters (mean ± SD age: 38.9 ± 9.0 years) undertook a simulated search and rescue task in a heat chamber (105 ± 5 °C). Testing involved two 20-min work cycles separated by a 10-min rest period. Ambient temperature during recovery periods was 19.3 ± 2.7 °C. Participants were randomly assigned one of three 15-min cooling protocols: (i) CWI, 15 °C to umbilicus; (ii) SLUSH, 7 g·kg(-1) body weight; or (iii) seated rest (CONT). Core temperature and strength were measured pre- and postsimulation and directly after cooling. Mean temperatures for all groups reached 38.9 ± 0.9 °C at the conclusion of the second work task. Both CWI and SLUSH delivered cooling rates in excess of CONT (0.093 and 0.092 compared with 0.058 °C·min(-1)) and reduced temperatures to baseline measurements within the 15-min cooling period. Grip strength was not negatively impacted by either SLUSH or CONT. CWI and SLUSH provide evidence-based alternatives to passive recovery and forearm immersion protocols currently adopted by many fire services. To maximise the likelihood of adoption, we recommend SLUSH ingestion as a practical and effective cooling strategy for post-incident cooling of firefighters in temperate regions.

  6. Ice Engineering Research Area

    Data.gov (United States)

    Federal Laboratory Consortium — Refrigerated Physical Modeling of Waterways in a Controlled EnvironmentThe Research Area in the Ice Engineering Facility at the Cold Regions Research and Engineering...

  7. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Robert [Lockheed Martin Corporation, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates, Houston, TX (United States); Johnson, Peter [BMT Scientific Marine Services, Inc., Houston, TX (United States); Shi, Shan [Houston Offshore Engineering, Houston, TX (United States); Marinho, Thiago [Federal Univ. of Rio de Janeiro (Brazil). LabOceano

    2014-05-09

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to final design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.

  8. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat.

    Science.gov (United States)

    Vaile, Joanna; Halson, Shona; Gill, Nicholas; Dawson, Brian

    2008-03-01

    To assess the effect of cold water immersion and active recovery on thermoregulation and repeat cycling performance in the heat, ten well-trained male cyclists completed five trials, each separated by one week. Each trial consisted of a 30-min exercise task, one of five 15-min recoveries (intermittent cold water immersion in 10 degrees C, 15 degrees C and 20 degrees C water, continuous cold water immersion in 20 degrees C water or active recovery), followed by 40 min passive recovery, before repeating the 30-min exercise task. Recovery strategy effectiveness was assessed via changes in total work in the second exercise task compared with that in the first. Following active recovery, a mean 4.1% (s = 1.8) less total work (P = 0.00) was completed in the second than in the first exercise task. However, no significant differences in total work were observed between any of the cold water immersion protocols. Core and skin temperature, blood lactate concentration, heart rate, rating of thermal sensation, and rating of perceived exertion were recorded. During both exercise tasks there were no significant differences in blood lactate concentration between interventions; however, following active recovery blood lactate concentration was significantly lower (P immersion protocols. All cold water immersion protocols were effective in reducing thermal strain and were more effective in maintaining subsequent high-intensity cycling performance than active recovery.

  9. Human thermal responses during leg-only exercise in cold water.

    Science.gov (United States)

    Golden, F S; Tipton, M J

    1987-10-01

    1. Exercise during immersion in cold water has been reported by several authors to accelerate the rate of fall of core temperature when compared with rates seen during static immersion. The nature of the exercise performed, however, has always been whole-body in nature. 2. In the present investigation fifteen subjects performed leg exercise throughout a 40 min head-out immersion in water at 15 degrees C. The responses obtained were compared with those seen when the subjects performed an identical static immersion. 3. Aural and rectal temperatures were found to fall by greater amounts during static immersion. 4. It is concluded that 'the type of exercise performed' should be included in the list of factors which affect core temperature during cold water immersion.

  10. Magnetospheric ion sputtering and water ice grain size at Europa

    Science.gov (United States)

    Cassidy, T. A.; Paranicas, C. P.; Shirley, J. H.; Dalton, J. B., III; Teolis, B. D.; Johnson, R. E.; Kamp, L.; Hendrix, A. R.

    2013-03-01

    We present the first calculation of Europa's sputtering (ion erosion) rate as a function of position on Europa's surface. We find a global sputtering rate of 2×1027 H2O s-1, some of which leaves the surface in the form of O2 and H2. The calculated O2 production rate is 1×1026 O2 s-1, H2 production is twice that value. The total sputtering rate (including all species) peaks at the trailing hemisphere apex and decreases to about 1/3rd of the peak value at the leading hemisphere apex. O2 and H2 sputtering, by contrast, is confined almost entirely to the trailing hemisphere. Most sputtering is done by energetic sulfur ions (100s of keV to MeV), but most of the O2 and H2 production is done by cold oxygen ions (temperature ∼ 100 eV, total energy ∼ 500 eV). As a part of the sputtering rate calculation we compared experimental sputtering yields with analytic estimates. We found that the experimental data are well approximated by the expressions of Famá et al. for ions with energies less than 100 keV (Famá, M., Shi, J., Baragiola, R.A., 2008. Sputtering of ice by low-energy ions. Surf. Sci. 602, 156-161), while the expressions from Johnson et al. fit the data best at higher energies (Johnson, R.E., Burger, M.H., Cassidy, T.A., Leblanc, F., Marconi, M., Smyth, W.H., 2009. Composition and Detection of Europa's Sputter-Induced Atmosphere, in: Pappalardo, R.T., McKinnon, W.B., Khurana, K.K. (Eds.), Europa. University of Arizona Press, Tucson.). We compare the calculated sputtering rate with estimates of water ice regolith grain size as estimated from Galileo Near-Infrared Mapping Spectrometer (NIMS) data, and find that they are strongly correlated as previously suggested by Clark et al. (Clark, R.N., Fanale, F.P., Zent, A.P., 1983. Frost grain size metamorphism: Implications for remote sensing of planetary surfaces. Icarus 56, 233-245.). The mechanism responsible for the sputtering rate/grain size link is uncertain. We also report a surface composition estimate using

  11. Study on heat transfer performance of water-borne and oily graphene coatings using anti-/de-icing component

    Science.gov (United States)

    Chen, Long; Zhang, Yidu; Wu, Qiong; Jie, Zhang

    2018-02-01

    A graphene coating anti-/de-icing experiment was proposed by employing water-borne and oily graphene coatings on the composite material anti-/de-icing component. Considering the characteristics of helicopter rotor sensitivity to icing, a new graphene coating enhancing thermal conductivity of anti-/de-icing component was proposed. The anti-/de-icing experiment was conducted to validate the effectiveness of graphene coating. The results of the experiment show that the graphene coatings play a prominent role in controlling the heat transfer of anti-/de-icing component. The anti-/de-icing effect of oily graphene coating is superior to water-borne graphene.

  12. Changes in the content of water-soluble vitamins in Actinidia chinensis during cold storage

    Directory of Open Access Journals (Sweden)

    Zhu Xian-Bo

    2016-01-01

    Full Text Available We assessed the effects of cold storage on nine water-soluble vitamins in 7 cultivars of Actinidia chinensis (kiwifruit using high-performance liquid chromatography. Samples were collected at three time points during cold storage: one day, 30 days, and when edible. We found that vitamin C in most cultivars was raised with cold storage, but there was no consistent increased or decreased trend for other water-soluble vitamins across cultivars in storage. After one day of cold storage, vitamins B1 and B2 were the most prevalent vitamins in Control (wild fruit, while vitamins B5 and B6 were most prevalent in the Hongyang and Qihong cultivars. However, B12 was the most prevalent vitamin in the Qihong cultivar after 30 days of cold storage. Vitamins B3, B7, B9, and C were detected at the edible time point in Huayou, Hongyang, Jinnong-2, and Control fruit. Vitamin contents varied significantly among cultivars of kiwifruit following different durations of cold storage. Out of the three durations tested, a period of 30 days in cold storage was the most suitable for the absorption of water-soluble vitamins by A. chinensis.

  13. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic

    Science.gov (United States)

    Mohn, Christian; Rengstorf, Anna; White, Martin; Duineveld, Gerard; Mienis, Furu; Soetaert, Karline; Grehan, Anthony

    2014-03-01

    Observations from numerous cold-water coral locations in the NE Atlantic show energetic near-bottom flow dynamics along the European continental margin at individual coral mounds and mound clusters. Dynamics are largely controlled by tide-topography interaction generating and enhancing periodic motions such as trapped waves, freely propagating internal tides and internal hydraulic jumps. In this study, linkages between key abiotic parameters and cold water coral occurrences are explored across entire cold-water coral mound provinces using an integrated modelling and observational approach. The 3-D ocean circulation model ROMS-AGRIF was applied to simulate near-bottom hydrodynamic conditions at three provinces in the NE Atlantic (Logachev mounds, Arc mounds and Belgica mounds) adopting a nested model setup with a central grid resolution of 250 m. Simulations were carried out with a focus on accurate high-resolution topography and tidal forcing. The central model bathymetry was taken from high-resolution INSS (Irish National Seabed Survey) seafloor mapping data. The model was integrated over a full one-year reference period starting from the 1st January 2010. Interannual variability was not considered. Tidal forcing was obtained from a global solution of the Oregon State University (OSU) inverse tidal model. Modelled fields of benthic currents were validated against available independent in situ observations. Coral assemblage patterns (presence and absence locations) were obtained from benthic surveys of the EU FP7 CoralFISH programme and supplemented by data from additional field surveys. Modelled near-bottom currents, temperature and salinity were analysed for a 1-month subset (15th April to 15th May 2010) corresponding to the main CoralFISH survey period. The model results show intensified near-bottom currents in areas where living corals are observed by contrast with coral absence and random background locations. Instantaneous and time-mean current speeds at

  14. Adsorption Energies of Carbon, Nitrogen, and Oxygen Atoms on the Low-temperature Amorphous Water Ice: A Systematic Estimation from Quantum Chemistry Calculations

    Science.gov (United States)

    Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya

    2018-03-01

    We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.

  15. Ice ages and nuclear waste disposal

    International Nuclear Information System (INIS)

    Ahonen, L.; Ruskeeniemi, T.; Luukkonen, A.; Pitkaenen, P.; Rasilainen, K.

    2002-01-01

    This report is an overview of Quaternary Ice Age and its potential consequences for nuclear waste disposal. Geological information on past climatic changes is shortly reviewed, based on the following records: geomorphological information, loessic deposits, deep-sea carbonate sediments, ice-core records, and continental calcite precipitates. Even though the present 'Great Ice Age' has lasted more that two million years, the present variation in cycles of about 100 000 years seems to have commenced only about 600 - 700 thousands years ago. According to the present understanding, southern Finland was during a major span of Weichsel free of continental ice sheet. However, the conditions may have been very cold, periglacial, when the continental ice sheet covered the Caledonian mountains and large areas of central Fennoscandia. The last glacial maximum of Weichsel glaciation was shorter than estimated earlier. Periglacial conditions are characterized by deep permafrost, reaching even the depth of nuclear waste disposal. Calculations of the advancement of permafrost indicate that the permafrost-front may reach the depth of about 500 meters in less than 10 000 years. The crust beneath the continental ice cover depresses, and rebounds when the ice sheet retreats. During the most intensive vertical movement of the crust, some crush zones may be activated and bedrock movements may take place along them. Due to the growth of ice sheets, ocean water table also depresses during glacial maximum, thus changing hydrogeological conditions in non-glaciated terrains. Increase in global ice volume is manifested in the stable oxygen and hydrogen isotope ratios. Based on isotope signals, as well other hydrogeochemical interpretation methods, indications of the earlier glaciations have been recognized in present groundwaters. (orig.)

  16. Observed microphysical structure of nimbostratus in northeast cold vortex over China

    Science.gov (United States)

    Zhao, Zhen; Lei, Hengchi

    2014-06-01

    Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a northeast cold vortex in Jilin Province over China on 20 June 2005 to study cloud structure and ice particle spectra. The microphysical structure of the nimbostratus was elucidated by King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2D images provide detailed information on crystal habits. A thick layer of supercooled cloud is observed and Hallett-Mossop ice multiplication process is used to explain very high ice particle concentrations in the temperature region between - 3 °C and - 6 °C. From near cloud top to melting layer, ice crystals shape in the form of columns, needles, aggregations and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Ice particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (N0) and slope (λ) parameters of an exponential size distribution was well characterized by a power law.

  17. Ice Water Classification Using Statistical Distribution Based Conditional Random Fields in RADARSAT-2 Dual Polarization Imagery

    Science.gov (United States)

    Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.

    2017-09-01

    In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.

  18. Cold-water coral banks and submarine landslides: a review

    Science.gov (United States)

    de Mol, Ben; Huvenne, Veerle; Canals, Miquel

    2009-06-01

    This paper aims to review the relation between cold-water coral bank development and submarine landslides. Both are common features on continental margins, but so far it has not been reviewed which effect—if at all—they may have upon each other. Indirect and direct relations between coral banks and landslides are evaluated here, based on four case studies: the Magellan Mound Province in the Porcupine Seabight, where fossil coral banks appear partly on top of a buried slide deposit; the Sula Ridge Reef Complex and the Storegga landslide both off mid-Norway; and the Mauritania coral bank province, associated with the Mauritanian Slide Complex. For each of these locations, positive and negative relationships between both features are discussed, based on available datasets. Locally submarine landslides might directly favour coral bank development by creating substratum where corals can settle on, enhancing turbulence due to abrupt seabed morphological variations and, in some cases, causing fluid seepage. In turn, some of these processes may contribute to increased food availability and lower sedimentation rates. Landslides can also affect coral bank development by direct erosion of the coral banks, and by the instantaneous increase of turbidity, which may smother the corals. On the other hand, coral banks might have a stabilising function and delay or stop the headwall retrogradation of submarine landslides. Although local relationships can be deduced from these case studies, no general and direct relationship exists between submarine landslides and cold-water coral banks.

  19. Neurobehavioral Grand Rounds introduction: Does near drowning in ice water prevent anoxic induced brain injury?

    Science.gov (United States)

    Hopkins, Ramona O

    2008-07-01

    Cold water near-drowning is often thought to be neuroprotective in individuals with anoxia of a longer duration than that usually required to produce irreversible neurologic damage. There is a paucity of data in adults with cold water near-drowning that assess neuropsychological outcomes. Information regarding long-term effects of near cold water near-drowning on neuropathology, neuropsychological and neurobehavioral outcomes are uncommon. This paper provides an introduction to two cases of cold water near-drowning reported in this issue of JINS by Sameulson and colleagues and provides background information for interpretation of the findings of these cases in the context of outcomes following anoxia.

  20. Heavy ion irradiation of crystalline water ice. Cosmic ray amorphisation cross-section and sputtering yield

    Science.gov (United States)

    Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.

    2015-04-01

    Context. Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. Aims: We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. Methods: We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). Results: The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. Conclusions: The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices. Experiments performed at the Grand Accélérateur National d'Ions Lourds (GANIL) Caen, France. Part of this work has been financed by the French INSU-CNRS programme "Physique et Chimie du Milieu Interstellaire" (PCMI) and the ANR IGLIAS.

  1. New counter flow heat exchanger designed for ventilation systems in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Nielsen, Toke Rammer

    2007-01-01

    In cold climates, mechanical ventilation systems with highly efficient heat recovery will experience problems with condensing water from the extracted humid indoor air. If the condensed water changes to ice in the heat exchanger, the airflow rate will quickly fall due to the increasing pressure...... problem is therefore desirable. In this paper, the construction and test measurements of a new counter flow heat exchanger designed for cold climates are presented. The developed heat exchanger is capable of continuously defrosting itself without using supplementary heating. Other advantages...... of the developed beat exchanger are low pressure loss, cheap materials and a simple construction. The disadvantage is that the exchanger is big compared with other heat exchangers. In this paper, the new heat exchanger's efficiency is calculated theoretically and measured experimentally. The experiment shows...

  2. Water Ice Clouds and Dust in the Martian Atmosphere Observed by Mars Climate Sounder

    Science.gov (United States)

    Benson, Jennifer L.; Kass, David; Heavens, Nicholas; Kleinbohl, Armin

    2011-01-01

    The water ice clouds are primarily controlled by the temperature structure and form at the water condensation level. Clouds in all regions presented show day/night differences. Cloud altitude varies between night and day in the SPH and tropics: (1) NPH water ice opacity is greater at night than day at some seasons (2) The diurnal thermal tide controls the daily variability. (3) Strong day/night changes indicate that the amount of gas in the atmosphere varies significantly. See significant mixtures of dust and ice at the same altitude planet-wide (1) Points to a complex radiative and thermal balance between dust heating (in the visible) and ice heating or cooling in the infrared. Aerosol layering: (1) Early seasons reveal a zonally banded spatial distribution (2) Some localized longitudinal structure of aerosol layers (3) Later seasons show no consistent large scale organization

  3. Response of faults to climate-driven changes in ice and water volumes on Earth's surface.

    Science.gov (United States)

    Hampel, Andrea; Hetzel, Ralf; Maniatis, Georgios

    2010-05-28

    Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in ice and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where ice caps and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian ice sheets but also occurred in regions affected by smaller ice caps or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern ice sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.

  4. Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water

    International Nuclear Information System (INIS)

    Wang Huajun; Zhao Jun; Chen Zhihao

    2008-01-01

    Road ice and snow melting based on low temperature geothermal tail water is of significance to realize energy cascading utilization. A small scale ice and snow melting system is built in this work. Experiments of dynamic melting processes of crushed ice, solid ice, artificial snow and natural snow are conducted on concrete pavement. The results show that the melting process of ice and snow includes three phases: a starting period, a linear period and an accelerated period. The critical value of the snow free area ratio between the linear period and the accelerated period is about 0.6. The physical properties of ice and snow, linked with ambient conditions, have an obvious effect on the melting process. The difference of melting velocity and melting time between ice and snow is compared. To reduce energy consumption, the formation of ice on roads should be avoided if possible. The idling process is an effective pathway to improve the performance of melting systems. It is feasible to utilize geothermal tail water of about 40 deg. C for melting ice and snow on winter roads, and it is unnecessary to keep too high fluid temperatures during the practical design and applications. Besides, with the exception of solid ice, the density and porosity of snow and ice tend to be decreasing and increasing, respectively, as the ambient temperature decreases

  5. Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations

    DEFF Research Database (Denmark)

    Steen-Larsen, Hans Christian; Risi, C.; Werner, M.

    2017-01-01

    The skills of isotope-enabled general circulation models are evaluated against atmospheric water vapor isotopes. We have combined in situ observations of surface water vapor isotopes spanning multiple field seasons (2010, 2011, and 2012) from the top of the Greenland Ice Sheet (NEEM site: 77.45°N......: 2014). This allows us to benchmark the ability to simulate the daily water vapor isotope variations from five different simulations using isotope-enabled general circulation models. Our model-data comparison documents clear isotope biases both on top of the Greenland Ice Sheet (1-11% for δ18O and 4...... boundary layer water vapor isotopes of the Baffin Bay region show strong influence on the water vapor isotopes at the NEEM deep ice core-drilling site in northwest Greenland. Our evaluation of the simulations using isotope-enabled general circulation models also documents wide intermodel spatial...

  6. Oxo Crater on (1) Ceres: Geological History and the Role of Water-ice

    Energy Technology Data Exchange (ETDEWEB)

    Nathues, A.; Platz, T.; Hoffmann, M.; Thangjam, G.; Le Corre, L.; Reddy, V. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Goettingen (Germany); Cloutis, E. A.; Applin, D. M. [University of Winnipeg, Winnipeg, MB R3B 2E9 (Canada); Mengel, K. [IELF, TU Clausthal, Adolph-Roemer-Straße 2A, D-38678 Clausthal-Zellerfeld (Germany); Protopapa, S. [University of Maryland, Department of Astronomy, College Park, MD 20742 (United States); Takir, D. [SETI Institute, Mountain View, CA 94043 (United States); Preusker, F. [German Aerospace Center (DLR), Institute of Planetary Research, D-12489 Berlin (Germany); Schmidt, B. E. [Georgia Institute of Technology, Atlanta, GA (United States); Russell, C. T., E-mail: nathues@mps.mpg.de [Institute of Geophysics and Planetary Physics, Dept. of Earth, Planetary and Space Sciences, University of California Los Angeles, Los Angeles, CA (United States)

    2017-09-01

    Dwarf planet Ceres (∅ ∼ 940 km) is the largest object in the main asteroid belt. Investigations suggest that Ceres is a thermally evolved, volatile-rich body with potential geological activity, a body that was never completely molten, but one that possibly partially differentiated into a rocky core and an ice-rich mantle, and may contain remnant internal liquid water. Thermal alteration and the infall of exogenic material contribute to producing a (dark) carbonaceous chondritic-like surface containing ammoniated phyllosilicates. Here we report imaging and spectroscopic analyses of data on the bright Oxo crater derived from the Framing Camera and the Visible and Infrared Spectrometer on board the Dawn spacecraft. We confirm that the transitional complex crater Oxo (∅ ∼ 9 km) exhibits exposed surface water-ice. We show that this water-ice-rich material is associated exclusively with two lobate deposits at pole-facing scarps, deposits that also contain carbonates and admixed phyllosilicates. Due to Oxo’s location at −4802 m below the cerean reference ellipsoid and its very young age of only 190 ka (1 σ : +100 ka, −70 ka), Oxo is predestined for ongoing water-ice sublimation.

  7. Effects of whole body cryotherapy and cold water immersion on knee skin temperature.

    Science.gov (United States)

    Costello, J T; Donnelly, A E; Karki, A; Selfe, J

    2014-01-01

    This study sought to (a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of -110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and (b) establish whether either protocol was capable of achieving a skin temperature (cryotherapy (19.0±0.9 °C) compared to cold water immersion (20.5±0.6 °C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p<0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Thermodynamical effects accompanied freezing of two water layers separated by sea ice sheet

    Science.gov (United States)

    Bogorodsky, Petr; Marchenko, Aleksey

    2014-05-01

    The process of melt pond freezing is very important for generation of sea ice cover thermodynamic and mass balance during winterperiod. However, due to significant difficulties of field measurements the available data of model estimations still have no instrumental confirmation. In May 2009 the authors carried out laboratory experiment on freezing of limited water volume in the University Centre in Svalbard ice tank. In the course of experiment fresh water layer of 27.5 cm thickness at freezing point poured on the 24 cm sea ice layer was cooled during 50 hours at the temperature -10º C and then once again during 60 hours at -20º C. For revealing process typical characteristics the data of continuous measurements of temperature and salinity in different phases were compared with data of numerical computations obtained with thermodynamic model which was formulated in the frames of 1-D equation system (infinite extension of water freezing layer) and adapted to laboratory conditions. The known surprise of the experiment became proximity of calculated and measured estimates of process dynamics that confirmed the adequacy of the problem mathematical statement (excluding probably process finale stage). This effect can be explained by formation of cracks on the upper layer of ice at sharp decreases of air temperature, which temporary compensated hydrostatic pressure growth during freezing of closed water volume. Another compensated mechanism can be migration of brine through the lower layer of ice under influence of vertical pressure gradient and also rejection of gas dissolved in water which increased its compressibility. During 110 hours cooling thickness of water layer between ice layers reduced approximately to 2 cm. According to computations this layer is not chilled completely but keeps as thin brine interlayer within ice body whose thickness (about units of mm) is determined by temperature fluctuations of cooled surface. Nevertheless, despite good coincidence of

  9. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the rat...

  10. Temporal variatiions of Sea ice cover in the Baltic Sea derived from operational sea ice products used in NWP.

    Science.gov (United States)

    Lange, Martin; Paul, Gerhard; Potthast, Roland

    2014-05-01

    Sea ice cover is a crucial parameter for surface fluxes of heat and moisture over water areas. The isolating effect and the much higher albedo strongly reduces the turbulent exchange of heat and moisture from the surface to the atmosphere and allows for cold and dry air mass flow with strong impact on the stability of the whole boundary layer and consequently cloud formation as well as precipitation in the downstream regions. Numerical weather centers as, ECMWF, MetoFrance or DWD use external products to initialize SST and sea ice cover in their NWP models. To the knowledge of the author there are mainly two global sea ice products well established with operational availability, one from NOAA NCEP that combines measurements with satellite data, and the other from OSI-SAF derived from SSMI/S sensors. The latter one is used in the Ostia product. DWD additionally uses a regional product for the Baltic Sea provided by the national center for shipping and hydrografie which combines observations from ships (and icebreakers) for the German part of the Baltic Sea and model analysis from the hydrodynamic HIROMB model of the Swedish meteorological service for the rest of the domain. The temporal evolution of the three different products are compared for a cold period in Februar 2012. Goods and bads will be presented and suggestions for a harmonization of strong day to day jumps over large areas are suggested.

  11. High Ice Water Concentrations in the 19 August 2015 Coastal Mesoconvective System

    Science.gov (United States)

    Proctor, Fred H.; Harrah, Steven; Switzer, George F.; Strickland, Justin K.; Hunt, Patricia J.

    2017-01-01

    During August 2015, NASA's DC-8 research aircraft was flown into High Ice Water Content (HIWC) events as part of a three-week campaign to collect airborne radar data and to obtain measurements from microphysical probes. Goals for this flight campaign included improved characterization of HIWC events, especially from an airborne radar perspective. This paper focuses on one of the flight days, in which a coastal mesoscale convective system (MCS) was investigated for HIWC conditions. The system appears to have been maintained by bands of convection flowing in from the Gulf of Mexico. These convective bands were capped by a large cloud canopy, which masks the underlying structure if viewed from an infrared sensing satellite. The DC-8 was equipped with an IsoKinetic Probe that measured ice concentrations of up to 2.3 g m(exp -3) within the cloud canopy of this system. Sustained measurements of ice crystals with concentrations exceeding 1 g m(exp -3) were encountered for up to ten minutes of flight time. Airborne Radar reflectivity factors were found to be weak within these regions of high ice water concentrations, suggesting that Radar detection of HIWC would be a challenging endeavor. This case is then investigated using a three-dimensional numerical cloud model. Profiles of ice water concentrations and radar reflectivity factor demonstrate similar magnitudes and scales between the flight measurements and model simulation. Also discussed are recent modifications to the numerical model's ice-microphysics that are based on measurements during the flight campaign. The numerical model and its updated ice-microphysics are further validated with a simulation of a well-known case of a supercell hailstorm measured during the Cooperative Convective Precipitation Experiment. Differences in HIWC between the continental supercell and the coastal MCS are discussed.

  12. Cold Water, Warm Ice?

    Science.gov (United States)

    Yang, Li-Hsuan

    2012-01-01

    This article describes engaging students in two simple observations to address the concepts of changes of states, heat, temperature, and molecular potential and kinetic energy. It also discusses how these concepts can enable students to further explore and understand interesting and significant phenomena and research in multiple areas of science.…

  13. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    Science.gov (United States)

    Hollingsworth, Jeffery; Kahre, Melinda; Haberle, Robert; Urata, Richard

    2017-01-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems.Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  14. Active microwave measurements of sea ice under fall conditions: The RADARSAT/FIREX fall experiment. [in the Canadian Arctic

    Science.gov (United States)

    Onstott, R. G.; Kim, Y. S.; Moore, R. K.

    1984-01-01

    A series of measurements of the active microwave properties of sea ice under fall growing conditions was conducted. Ice in the inland waters of Mould Bay, Crozier Channel, and intrepid inlet and ice in the Arctic Ocean near Hardinge Bay was investigated. Active microwave data were acquired using a helicopter borne scatterometer. Results show that multiyear ice frozen in grey or first year ice is easily detected under cold fall conditions. Multiyear ice returns were dynamic due to response to two of its scene constituents. Floe boundaries between thick and thin ice are well defined. Multiyear pressure ridge returns are similar in level to background ice returns. Backscatter from homogeneous first year ice is seen to be primarily due to surface scattering. Operation at 9.6 GHz is more sensitive to the detailed changes in scene roughness, while operation at 5.6 GHz seems to track roughness changes less ably.

  15. Meltwater retention in a transect across the Greenland ice sheet

    DEFF Research Database (Denmark)

    Bøggild, Carl Egede; Forsberg, René; Reeh, Niels

    2005-01-01

    by different physical mechanisms, their potential magnitude can be estimated, which has been done in a transect at 66 degrees N. Results show that SI declines from west to east and inversely correlates with accumulation. From the total retention capacity, theoretical lowest-runoff lines were determined......Meltwater retention by freezing is a highly climate-sensitive term in the mass budget since the cold content is directly controlled by winter climate, which is expected to change most in an anthropogenic-driven climate change. Meltwater released at the surface percolates into dry snow in a pattern...... with alternating horizontal and vertical water-flow directions, where the processes of pore refreezing (RF) (vertical flow) and superimposed ice (SI) formation (horizontal flow) occur. The flow cannot be forecasted and quantified when water first enters cold, dry snow. However, because the two processes are driven...

  16. Ice in the Tropics: the Export of ‘Crystal Blocks of Yankee Coldness’ to India and Brazil

    Directory of Open Access Journals (Sweden)

    Marc W. Herold

    2011-11-01

    Full Text Available The Boston natural ice trade thrived during 1830-70 based upon Frederic Tudor’s idea of combining two useless products – natural winter ice in New England ponds and sawdust from Maine’s lumber mills. Tudor ice was exported extensively to the tropics from the West Indies to Brazil and the East Indies as well as to southern ports of the United States. In tropical ice ports, imported natural ice was a luxury product, e.g., serving to chill claret wines (Calcutta, champagne (Havana and Manaus, and mint juleps (New Orleans and Savannah and used in luxury hotels or at banquets. In the temperate United States, natural ice was employed to preserve foods (cold storage and to cool water (Americans’ peculiar love of ice water. In both temperate and tropical regions natural ice found some use for medicinal purposes (to calm fevers. With the invention of a new technology to manufacture artificial ice as part of the Industrial Revolution, the natural ice export trade dwindled as import substituting industrialization proceeded in the tropics. By the turn of the twentieth century, ice factories had been established in half a dozen Brazilian port cities. All that remained of the once extensive global trade in natural ice was a sailing ship which docked in Rio Janeiro at Christmas time laden with ice and apples from New England.

  17. On the Revealing Firsthand Probing of Ocean-Ice-Atmosphere Interactions off Sabrina Coast During NBP1402

    Science.gov (United States)

    Huber, B. A.; Orsi, A. H.; Zielinski, N. J.; Durkin, W. J., IV; Clark, P.; Wiederwohl, C. L.; Rosenberg, M. A.; Gwyther, D.; Greenbaum, J. S.; Lavoie, C.; Shevenell, A.; Leventer, A.; Blankenship, D. D.; Gulick, S. P. S.; Domack, E. W.

    2014-12-01

    Diverse interactions of winds, currents and ice around Antarctica dictate how, where and when the world's densest waters form and massive floating ice shelves and glaciers melt, as well as control sea surface gas exchange and primary productivity. Compelled by recent rate estimates of East Antarctic Ice Sheet mass loss, we contrast the paths and mixing histories of oceanic waters reaching the continental ice edge off the Sabrina and Adelie coasts relying on the unique set of synoptic shipboard measurements from NBP1402 (swath bathymetry, ADCP, underway CTD). Analysis of historical hydrography and sea ice concentration fields within the Mertz Polynya indicates the apparent effect of evolving ocean-ice-atmosphere interactions on the characteristics of local Shelf Water (SW) sources to current outflow of newly formed Antarctic Bottom Water (AABW). A polynya dominated water mass structure similar to that observed off the Adelie Coast before the removal of the Mertz Ice Tongue was expected to the west of the Dalton Ice Tongue (DIT). However, we found no evidence of dense SW off Sabrina Coast, which may lessen the region's preconceived influence to global meridional overturning. Present sea ice production within the eastern Dalton Polynya is overshadowed by freshwater input to relatively stable interior upper waters. The Antarctic Coastal Current (ACoC) picks up distinct meltwater contributions along the DIT western flank and in front of the Moscow University Ice Shelf (MUIS) and Totten Glacier (TG). Unlike over other highly influential margins to global sea level rise, there is no evidence of local cross-shelf inflow and mixing of warm Circumpolar Deep Water. Relatively cold thermocline waters from the continental slope enter the eastern trough off Sabrina Coast, and they are swiftly steered poleward by complex underlying topography. Meltwater export from beneath the MUIS and TG is observed at newly discovered trenches that effectively constrain sub-cavity inflow to low

  18. Effect of a 5-min cold-water immersion recovery on exercise performance in the heat.

    Science.gov (United States)

    Peiffer, J J; Abbiss, C R; Watson, G; Nosaka, K; Laursen, P B

    2010-05-01

    This study examined the effect of a 5-min cold-water immersion (14 degrees C) recovery intervention on repeated cycling performance in the heat. 10 male cyclists performed two bouts of a 25-min constant-paced (254 (22) W) cycling session followed by a 4-km time trial in hot conditions (35 degrees C, 40% relative humidity). The two bouts were separated by either 15 min of seated recovery in the heat (control) or the same condition with 5-min cold-water immersion (5th-10th minute), using a counterbalanced cross-over design (CP(1)TT(1) --> CWI or CON --> CP(2)TT(2)). Rectal temperature was measured immediately before and after both the constant-paced sessions and 4-km timed trials. Cycling economy and Vo(2) were measured during the constant-paced sessions, and the average power output and completion times were recorded for each time trial. Compared with control, rectal temperature was significantly lower (0.5 (0.4) degrees C) in cold-water immersion before CP(2) until the end of the second 4-km timed trial. However, the increase in rectal temperature (0.5 (0.2) degrees C) during CP(2) was not significantly different between conditions. During the second 4-km timed trial, power output was significantly greater in cold-water immersion (327.9 (55.7) W) compared with control (288.0 (58.8) W), leading to a faster completion time in cold-water immersion (6.1 (0.3) min) compared with control (6.4 (0.5) min). Economy and Vo(2) were not influenced by the cold-water immersion recovery intervention. 5-min cold-water immersion recovery significantly lowered rectal temperature and maintained endurance performance during subsequent high-intensity exercise. These data indicate that repeated exercise performance in heat may be improved when a short period of cold-water immersion is applied during the recovery period.

  19. Azimuthal Structure of the Sand Erg that Encircles the North Polar Water-Ice Cap

    Science.gov (United States)

    Teodoro, L. A.; Elphic, R. C.; Eke, V. R.; Feldman, W. C.; Maurice, S.; Pathare, A.

    2011-12-01

    The sand erg that completely encircles the perennial water-ice cap that covers the Martian north geographic pole displays considerable azimuthal structure as seen in visible and near-IR images. Much of this structure is associated with the terminations of the many steep troughs that cut spiral the approximately 3 km thick polar ice cap. Other contributions come from the katabatic winds that spill over steep-sided edges of the cap, such as what bounds the largest set of dunes that comprise Olympia Undae. During the spring and summer months when these winds initiate from the higher altitudes that contain sublimating CO2 ice, which is very cold and dry, heat adiabatically when they compress as they lose altitude. These winds should then remove H2O moisture from the uppermost layer of the sand dunes that are directly in their path. Two likely locations where this desiccation may occur preferentially is at the termination of Chasma Boreale and the ice cap at Olympia Undae. We will search for this effect by sharpening the spatial structure of the epithermal neutron counting rates measured at northern high latitudes using the Mars Odyssey Neutron Spectrometer (MONS). The epithermal range of neutron energies is nearly uniquely sensitive to the hydrogen content of surface soils, which should likely be in the form of H2O/OH molecules/radicals. We therefore convert epithermal counting rates in terms of Water-Equivalent-Hydrogen, WEH. However, MONS counting-rate data have a FWHM of ~550 km., which is sufficiently broad to prevent a close association of WEH variability with images of geological features. In this study, we reduce spurious features in the instrument smeared neutron counting rates through deconvolution. We choose the PIXON numerical deconvolution technique for this purpose. This technique uses a statistical approach (Pina 2001, Eke 2001), which is capable of removing spurious features in the data in the presence of noise. We have previously carried out a detailed

  20. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    Science.gov (United States)

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  1. Direct calculation of ice homogeneous nucleation rate for a molecular model of water

    Science.gov (United States)

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2015-01-01

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  2. [Phylogenetic diversity and cold-adaptive hydrolytic enzymes of culturable psychrophilic bacteria associated with sea ice from high latitude ocean, Artic].

    Science.gov (United States)

    Yu, Yong; Li, Hui-Rong; Chen, Bo; Zeng, Yin-Xin; He, Jian-Feng

    2006-04-01

    The phylogenetic diversity of culturable psychrophilic bacteria associated with sea ice from high latitude sea (77 degrees 30'N - 81 degrees 12'N), Canadian Basin and Greenland sea Arctic, was investigated. A total of 37 psychrophilic strains were isolated using three different methods of ( i ) spread plate method: 100 microL of each dilution ice-melt sample was spreaded onto the surface of Marine 2216 agar (DIFCO laboratories, Detroit, MI) and incubated for 2 to 6 weeks at 4 degrees C; ( ii ) bath culture and spread plate method: 1 mL of sample was added to 9mL of NSW (unamended natural seawater, 0.2 microm prefiltered and autoclaved) and incubated for 1 months at - 1 degrees C, then spread plate method was used to isolate bacterial strains from the pre-cultured samples; ( iii ) cold shock, bath culture and spread plate method: samples were exposed to - 20 degrees C for 24h, then bacterial strains isolated by bath culture and spread plate method under aerobic conditions. Nearly half of psychrophilic strains are isolated by using method iii . 16S rDNA nearly full-length sequence analysis reveal that psychrophilic strains fall in two phylogenetic divisions, gamma-proteobacteria (in the genera Colwellia, Marinobacter, Shewanella, Thalassomonas, Glaciecola, Marinomonas and Pseudoalteromonas) and Cytophaga-Flexibacter-Bacteroides (in the genera Flavobacterium and Psychroflexus). Nine of bacterial isolates (BSi20007, BSi20497, BSi20517, BSi20537, BSi20170, BSi20001, BSi20002, BSi20675 and BSi20101) quite likely represent novel species (16S rDNA sequence similarity below 97%). One of strains (BSi20002) from Canadian Basin shows 100% sequence similarity to the Antarctic Weddell sea ice isolate Marinobacter sp. ANT8277, suggesting bacteria may have a bipolar distribution at the species level. AF283859 sequences were submitted to the BLAST search program of the National Center for Biotechnology Information website (NCBI, http://www. ncbi. nlm.nih. gov). Twenty sequences

  3. An alternative to the traditional cold pressor test: the cold pressor arm wrap.

    Science.gov (United States)

    Porcelli, Anthony John

    2014-01-16

    Recently research on the relationship between stress and cognition, emotion, and behavior has greatly increased. These advances have yielded insights into important questions ranging from the nature of stress' influence on addiction(1) to the role of stress in neural changes associated with alterations in decision-making(2,3). As topics being examined by the field evolve, however, so too must the methodologies involved. In this article a practical and effective alternative to a classic stress induction technique, the cold pressor test (CPT), is presented: the cold pressor arm wrap (CPAW). CPT typically involves immersion of a participant's dominant hand in ice-cold water for a period of time(4). The technique is associated with robust activation of the sympatho-adrenomedullary (SAM) axis (and release of catecholamines; e.g. adrenaline and noradrenaline) and mild-to-moderate activation of the hypothalamic-pituitary-adrenal (HPA) axis with associated glucocorticoid (e.g. cortisol) release. While CPT has been used in a wide range of studies, it can be impractical to apply in some research environments. For example use of water during, rather than prior to, magnetic resonance imaging (MRI) has the potential to damage sensitive and expensive equipment or interfere with acquisition of MRI signal. The CPAW is a practical and effective alternative to the traditional CPT. Composed of a versatile list of inexpensive and easily acquired components, CPAW makes use of MRI-safe gelpacs cooled to a temperature similar to CPT rather than actual water. Importantly CPAW is associated with levels of SAM and HPA activation comparable to CPT, and can easily be applied in a variety of research contexts. While it is important to maintain specific safety protocols when using the technique, these are easy to implement if planned for. Creation and use of the CPAW will be discussed.

  4. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.

    Science.gov (United States)

    Gerber, R Benny; Varner, Mychel E; Hammerich, Audrey D; Riikonen, Sampsa; Murdachaew, Garold; Shemesh, Dorit; Finlayson-Pitts, Barbara J

    2015-02-17

    CONSPECTUS: Reactions on water and ice surfaces and in other aqueous media are ubiquitous in the atmosphere, but the microscopic mechanisms of most of these processes are as yet unknown. This Account examines recent progress in atomistic simulations of such reactions and the insights provided into mechanisms and interpretation of experiments. Illustrative examples are discussed. The main computational approaches employed are classical trajectory simulations using interaction potentials derived from quantum chemical methods. This comprises both ab initio molecular dynamics (AIMD) and semiempirical molecular dynamics (SEMD), the latter referring to semiempirical quantum chemical methods. Presented examples are as follows: (i) Reaction of the (NO(+))(NO3(-)) ion pair with a water cluster to produce the atmospherically important HONO and HNO3. The simulations show that a cluster with four water molecules describes the reaction. This provides a hydrogen-bonding network supporting the transition state. The reaction is triggered by thermal structural fluctuations, and ultrafast changes in atomic partial charges play a key role. This is an example where a reaction in a small cluster can provide a model for a corresponding bulk process. The results support the proposed mechanism for production of HONO by hydrolysis of NO2 (N2O4). (ii) The reactions of gaseous HCl with N2O4 and N2O5 on liquid water surfaces. Ionization of HCl at the water/air interface is followed by nucleophilic attack of Cl(-) on N2O4 or N2O5. Both reactions proceed by an SN2 mechanism. The products are ClNO and ClNO2, precursors of atmospheric atomic chlorine. Because this mechanism cannot result from a cluster too small for HCl ionization, an extended water film model was simulated. The results explain ClNO formation experiments. Predicted ClNO2 formation is less efficient. (iii) Ionization of acids at ice surfaces. No ionization is found on ideal crystalline surfaces, but the process is efficient on

  5. An evaluation of hand immersion for rewarming individuals cooled by immersion in cold water.

    Science.gov (United States)

    Cahill, C J; Balmi, P J; Tipton, M J

    1995-05-01

    The hypothesis that hypothermic individuals can be actively rewarmed in the field by immersion of the extremities in hot water was investigated. Three techniques for rewarming subjects with lowered deep body temperatures were compared: a) whole body immersion to the neck in water at 40 degrees C; b) immersion of two hands plus forearms only in water at 42 degrees C; and c) passive rewarming. The suggestion that the fall in deep body temperature resulting from immersion to the neck in water at 15 degrees C could be arrested by immersing both arms in water at 42 degrees C was also investigated. Results indicated that immersion to the neck in hot water was clearly the most effective rewarming technique. No significant difference (p > 0.05) was observed in the deep body temperature response during passive rewarming or during immersion of both hands and forearms in water at 42 degrees C. In the later condition some increase in peripheral blood flow to the hands may have occurred and resulted in a heat input of approximately 12 W, but any benefit from this was negated by an associated significant decrease (p > 0.05) in intrinsic heat production. Immersing the arms in hot water during immersion to the neck in cold water appeared to accelerate rather than decelerate the rate of fall of deep body temperature. We concluded that hand rewarming, although theoretically attractive, is ineffective in practice and could be detrimental in some circumstances, by suppressing intrinsic heat production or precipitating rewarming collapse.

  6. Water Quality Study on the Hot and Cold Water Supply Systems at Vietnamese Hotels

    Directory of Open Access Journals (Sweden)

    Kanako Toyosada

    2017-04-01

    Full Text Available This study was conducted as part of the Joint Crediting Mechanism (JCM of the Japanese Ministry of Economy, Trade and Industry, and the Ministry of the Environment project’s preparation in Vietnam. Samples were taken from hot and cold water supplies from guest rooms’ faucets in 12 hotels in Hanoi city, Vietnam, and 13 hotels in Japan for comparison. A simple water quality measurement and determination of Legionella was carried out. The results showed that residual effective chlorine—which guarantees bactericidal properties—was not detected in tap water supplied in hotel rooms in Vietnam, and nitrite (an indicator of water pollution was detected in 40% of buildings. In the hotels in Japan, the prescribed residual chlorine concentration met the prescribed levels, and nitrite was not detected. Additionally, while there was no Legionella detected in the Japanese cases, it was detected in most of the Vietnamese hotels, which were found to manage the hot water storage tank at low temperatures of 40–50 °C. It was found that there were deficiencies in cold and hot water supply quality, and that there was no effective system in place for building operation maintenance and management.

  7. ADAPTIVE OPTICS OBSERVATIONS OF 3 {mu}m WATER ICE IN SILHOUETTE DISKS IN THE ORION NEBULA CLUSTER AND M43

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Hiroshi; Pyo, Tae-Soo; Minowa, Yosuke; Hayano, Yutaka; Oya, Shin; Hattori, Masayuki; Takami, Hideki [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Tokunaga, Alan T. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Watanabe, Makoto [Department of Cosmosciences, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Saito, Yoshihiko [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Ito, Meguru [Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Iye, Masanori, E-mail: terada@subaru.naoj.org [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-12-01

    We present the near-infrared images and spectra of four silhouette disks in the Orion Nebula Cluster (M42) and M43 using the Subaru Adaptive Optics system. While d053-717 and d141-1952 show no water ice feature at 3.1 {mu}m, a moderately deep ({tau}{sub ice} {approx} 0.7) water ice absorption is detected toward d132-1832 and d216-0939. Taking into account the water ice so far detected in the silhouette disks, the critical inclination angle to produce a water ice absorption feature is confirmed to be 65 Degree-Sign -75 Degree-Sign . As for d216-0939, the crystallized water ice profile is exactly the same as in the previous observations taken 3.63 years ago. If the water ice material is located at 30 AU, then the observations suggest it is uniform at a scale of about 3.5 AU.

  8. The Implement of a Multi-layer Frozen Soil Scheme into SSiB3 and its Evaluation over Cold Regions

    Science.gov (United States)

    Li, Q.

    2016-12-01

    The SSiB3 is a biophysics-based model of land-atmosphere interactions and is designed for global and regional studies. It has three soil layers, three snow layers, as well as one vegetation layer. Soil moisture of the three soil layers, interception water store for the canopy, subsurface soil temperature, ground temperature, canopy temperature and snow water equivalent are all predicted based on the water and energy balance at canopy, soil and snow. SSiB3 substantially enhances the model's capability for cold season studies and produces reasonable results compared with observations. However, frozen soil processes are ignored in the SSiB3 and may have effects on the interannual variability of soil temperature and deep soil memory. A multi-layer comprehensive frozen soil scheme (FSM), which is developed for climate study has been implemented into the SSiB3 to describe soil heat transfer and water flow affected by frozen processed in soil. In the coupled SSiB3-FSM, both liquid water and ice content have been taken into account in the frozen soil hydrologic and thermal property parameterization. The maximum soil layer depth could reach 10 meters thick depending on land conditions. To better evaluate the models' performance, the coupled offline SSiB3-FSM and SSiB3 have been driven from 1948 to 1958 by the Princeton global meteorological data set, respectively. For the 10yrs run, the coupled SSiB3-FSM almost captures the features over different regions, especially cold regions. In order to analysis and compare the differences of SSIB3-FSM and SSIB3 in detail, monthly mean surface temperature for different regions are compared with CAMS data. The statistical results of surface skin temperature show that high latitude regions, Africa, Eastern Australia, and North American monsoon regions have been greatly improved in SSIB3-FSM. For the global statistics, the RMSE of the surface temperature simulated by SSiB3-FSM can be improved about 0.6K compared to SSiB3. In this study

  9. Thermal ice loads on dams and ancillary structures: A brief review

    International Nuclear Information System (INIS)

    Gerard, R.

    1989-01-01

    A major consideration in the design of low to medium head dams in cold regions is the thrust exerted by thermal expansion of a solid ice sheet. Such loads are also of concern in the design of gates, intakes and other ancillary structures. Such loads can be greater than 300-400 kilo Newtons per meter, and are of greatest concern when ice is unshielded by snow from temperature fluctuations. Details are presented of calculation of thermal ice loads, and field measurements of thermal ice forces. Past structural failures, field and laboratory investigations, and analyses, all confirm that thermal ice loads on wide structures such as dams, and isolated structures such as bridge piers and water intakes, can be much more significant than is suggested by the loads currently specified in various North American design guidelines for hydraulic structures. While some guidelines for thermal ice loads are excessively conservative, particularly for protected situations such as gates set between piers, in other more common situations they are dangerously low. Three useful approaches that would yield information for improving thermal ice load specification are: hindcast upper bounds on thermal ice loads by assessing the ice regime and load bearing capacity of existing structures; field measurement of thermal ice loads and stresses using modern instrumentation; and measurement and analysis of the formation and movement of lake and reservoir ice covers. 23 refs., 4 figs

  10. Effective Climate Refugia for Cold-water Fishes

    Science.gov (United States)

    Ebersole, J. L.; Morelli, T. L.; Torgersen, C.; Isaak, D.; Keenan, D.; Labiosa, R.; Fullerton, A.; Massie, J.

    2015-12-01

    Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in mid-latitude salmonid distributions under future climates range from modest to severe, depending on modeling approaches, assumptions, and spatial context of analyses. Given these projected losses, increased emphasis on management for ecosystem resilience to help buffer cold-water fish populations and their habitats against climate change is emerging. Using terms such as "climate-proofing", "climate-ready", and "climate refugia", such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, such approaches will need to address critical uncertainties in both the physical basis for projected landscape changes in water temperature and streamflow, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on projected streamflows, air temperatures, and associated water temperature changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local hydrological responses and thermal dynamics. Yet important questions remain. Drawing on case studies throughout the Pacific Northwest, we illustrate some key uncertainties in the responses of salmonids and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. Key uncertainties include biotic interactions, organismal adaptive capacity, local climate decoupling due to groundwater-surface water interactions, the influence of human engineering responses, and synergies between climatic and other stressors. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted

  11. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops.

    Science.gov (United States)

    Yang, Fan; Cruikshank, Owen; He, Weilue; Kostinski, Alex; Shaw, Raymond A

    2018-02-01

    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does not freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ∼10^{10} increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.

  12. Charge Transfer Scheme for Atmospheric Ice Sensing

    Directory of Open Access Journals (Sweden)

    Umair Najeeb MUGHAL

    2015-01-01

    Full Text Available The atmospheric icing parameters are being measured nowadays with the aid of more customized yet limited commercial equipment. The parameters include atmospheric ice detection, icing load and icing rate. The robustness of such equipment is usually under scrutiny when it comes to cold/harsh environment operations. This phenomenon was experienced consistently by the atmospheric Icing Research Team at Narvik University College during data retrieval exercises from its atmospheric icing stations installed at Fargnesfjellet during 2012-13. In this paper it is aimed to address the potential feasibility to produce a robust hardware addressing the icing measurements signals, which includes instrumentation hardware giving icing indications, icing type and de- icing rate measurements in a single platform (not commercially available till date.

  13. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  14. Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2013-05-01

    Full Text Available This study uses aircraft measurements of relative humidity and ice crystal size distribution collected during the SPARTICUS (Small PARTicles In CirrUS field campaign to evaluate and constrain ice cloud parameterizations in the Community Atmosphere Model version 5. About 200 h of data were collected during the campaign between January and June 2010, providing the longest aircraft measurements available so far for cirrus clouds in the midlatitudes. The probability density function (PDF of ice crystal number concentration (Ni derived from the high-frequency (1 Hz measurements features a strong dependence on ambient temperature. As temperature decreases from −35 °C to −62 °C, the peak in the PDF shifts from 10–20 L−1 to 200–1000 L−1, while Ni shows a factor of 6–7 increase. Model simulations are performed with two different ice nucleation schemes for pure ice-phase clouds. One of the schemes can reproduce a clear increase of Ni with decreasing temperature by using either an observation-based ice nuclei spectrum or a classical-theory-based spectrum with a relatively low (5–10% maximum freezing ratio for dust aerosols. The simulation with the other scheme, which assumes a high maximum freezing ratio (100%, shows much weaker temperature dependence of Ni. Simulations are also performed to test empirical parameters related to water vapor deposition and the autoconversion of ice crystals to snow. Results show that a value between 0.05 and 0.1 for the water vapor deposition coefficient, and 250 μm for the critical diameter that distinguishes ice crystals from snow, can produce good agreement between model simulation and the SPARTICUS measurements in terms of Ni and effective radius. The climate impact of perturbing these parameters is also discussed.

  15. Cold vacuum drying residual free water test description

    International Nuclear Information System (INIS)

    Pajunen, A.L.

    1997-01-01

    Residual free water expected to remain in a Multi-Canister Overpack (MCO) after processing in the Cold Vacuum Drying (CVD) Facility is investigated based on three alternative models of fuel crevices. Tests and operating conditions for the CVD process are defined based on the analysis of these models. The models consider water pockets constrained by cladding defects, water constrained in a pore or crack by flow through a porous bed, and water constrained in pores by diffusion. An analysis of comparative reaction rate constraints is also presented indicating that a pressure rise test can be used to show MCO's will be thermally stable at operating temperatures up to 75 C

  16. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    Science.gov (United States)

    de Barros, A. L. F.; Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G. A.; Allamandola, L. J.

    2017-10-01

    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C24H12:H2O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H2O, pyrene:H2O, and benzo[ghi]perylene:H2O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO2 and H2CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H+) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H2O photoproducts have mid-infrared spectroscopic signatures in the 5-8 μm region that can contribute to the interstellar ice components described by Boogert et al. as C1-C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.

  17. Acute effects of Finnish sauna and cold-water immersion on haemodynamic variables and autonomic nervous system activity in patients with heart failure.

    Science.gov (United States)

    Radtke, Thomas; Poerschke, Daniel; Wilhelm, Matthias; Trachsel, Lukas D; Tschanz, Hansueli; Matter, Friederike; Jauslin, Daniel; Saner, Hugo; Schmid, Jean-Paul

    2016-04-01

    The haemodynamic response to Finnish sauna and subsequent cold-water immersion in heart failure patients is unknown. Haemodynamic response to two consecutive Finnish sauna (80℃) exposures, followed by a final head-out cold-water immersion (12℃) was measured in 37 male participants: chronic heart failure (n = 12, 61.8 ± 9.2 years), coronary artery disease (n = 13, 61.2 ± 10.6 years) and control subjects (n = 12, 60.9 ± 8.9 years). Cardiac output was measured non-invasively with an inert gas rebreathing method prior to and immediately after the first sauna exposure and after cold-water immersion, respectively. Blood pressure was measured before, twice during and after sauna. The autonomic nervous system was assessed by power spectral analysis of heart rate variability. Total power, low-frequency and high-frequency components were evaluated. The low frequency/high frequency ratio was used as a marker of sympathovagal balance. Sauna and cold-water immersion were well tolerated by all subjects. Cardiac output and heart rate significantly increased in all groups after sauna and cold-water immersion (p heart failure patients. In coronary artery disease patients and controls a prolonged increase in low frequency/high frequency ratio was observed after the first sauna exposure. Acute exposure to Finnish sauna and cold-water immersion causes haemodynamic alterations in chronic heart failure patients similarly to control subjects and in particular did not provoke an excessive increase in adrenergic activity or complex arrhythmias. © The European Society of Cardiology 2015.

  18. The study of fresh-water lake ice using multiplexed imaging radar

    Science.gov (United States)

    Leonard, Bryan M.; Larson, R.W.

    1975-01-01

    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  19. Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction followed by atomic absorption spectrometry for trace determination of zinc in water and food samples

    International Nuclear Information System (INIS)

    Zeeb, M.; Sadeghi, M.

    2011-01-01

    We report on a new method for the microextraction and determination of zinc (II). The ion is accumulated via ionic-liquid cold-induced aggregation dispersive liquid-liquid microextraction (IL-CIA-DLLME) followed by flame atomic absorption spectrometry (FAAS). The ionic liquid (IL) 1-hexyl-3-methylimidazolium hexafluorophosphate is dispersed into a heated sample solution containing sodium hexafluorophosphate as a common ion source. The solution is then placed in an ice-water bath upon which a cloudy solution forms due to the decrease of the solubility of the IL. Zinc is complexed with 8-hydroxyquinoline and extracted into the IL. The enriched phase is dissolved in a diluting agent and introduced to the FAAS. The method is not influenced by variations in the ionic strength of the sample solution. Factors affecting the performance were evaluated and optimized. At optimum conditions, the limit of detection is 0.18 μg L -1 , and the relative standard deviation is 3.0% (at n=5). The method was validated by recovery experiments and by analyzing a certified reference material and successfully applied to the determination of Zn (II) in water and food samples. (author)

  20. Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors

    Science.gov (United States)

    Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar

    2018-02-01

    The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.

  1. Effect of cold water injection on operation of and oil production from formations of Romashkino field

    Energy Technology Data Exchange (ETDEWEB)

    Mingareev, R Sh; Vakhitov, G G; Sultanov, S A

    1968-11-01

    Each year about 130 million cu m of cold water are injected into this field. Since cold water can lower reservoir temperature, increase oil viscosity, deposit paraffin in the formation, and reduce oil recovery, a thermal survey of this field was conducted. The survey showed that the average reservoir temperature was not reduced by cold-water injection for 15 yr. However, local cooling was observed at distances less than 400 m from the water injection well. Through these wells more than 4 PV of water have passed. The thermal front lags 1,500 m behind the advancing water front. For this reason, cold-water injection does not reduce oil recovery where there is uniform advance of the floodwater. When the formation is heterogeneous so that water advances more rapidly in high-permeability sand than in adjoining low-permeability sand, then the cooling effect can reduce oil recovery. For this reason, it is advisable to force water into the entire interval of the oil formation. An isotherm map of the Romashkino field is shown.

  2. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water

    Science.gov (United States)

    Darelius, E.; Fer, I.; Nicholls, K. W.

    2016-01-01

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing. PMID:27481659

  3. Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions

    Science.gov (United States)

    Fedoseev, G.; Scirè, C.; Baratta, G. A.; Palumbo, M. E.

    2018-04-01

    N2 is believed to lock considerable part of nitrogen elemental budget and, therefore, to be one of the most abundant ice constituent in cold dark clouds. This laboratory-based research utilizes high energetic processing of N2 containing interstellar ice analogues using 200 keV H+ and He+ ions that mimics cosmic ray processing of the interstellar icy grains. It aims to investigate the formation of (iso)cyanates and cyanides in the ice mantles at the conditions typical for cold dark clouds and prestellar cores. Investigation of cosmic ray processing as a chemical trigger mechanism is explained by the high stability of N2 molecules that are chemically inert in most of the atom- and radical-addition reactions and cannot be efficiently dissociated by cosmic ray induced UV-field. Two sets of experiments are performed to closer address solid-state chemistry occurring in two distinct layers of the ice formed at different stages of dark cloud evolution, i.e. `H2O-rich' and `CO-rich' ice layers. Formation of HNCO and OCN- is discussed in all of the performed experiments. Corresponding kinetic curves for HNCO and OCN- are obtained. Furthermore, a feature around 2092 cm-1 assigned to the contributions of 13CO, CN-, and HCN is analysed. The kinetic curves for the combined HCN/CN- abundance are derived. In turn, normalized formation yields are evaluated by interpolation of the obtained results to the low irradiation doses relevant to dark cloud stage. The obtained values can be used to interpret future observations towards cold dark clouds using James Webb Space Telescope.

  4. Ice haze, snow, and the Mars water cycle

    International Nuclear Information System (INIS)

    Kahn, R.

    1990-01-01

    Images of the limb of Mars reveal discrete cloud layers between 20 and 80 km above the surface. They appear to be composed of water ice and have a number of characteristics similar to hazes that produce diamond dust precipitation in the continental Antarctic of Earth. Temperatures from 170 K to 190 K are deduced at the condensation levels. Eddy diffusion coefficients around 10 5 cm 2 s -1 , typical of a nonconvecting atmosphere, are also derived in the haze regions at times when the atmosphere is relatively clear of dust. This parameter apparently changes by more than 3 orders of magnitude with season and local conditions, with important implications for vertical transport of water and dust and for models of photochemistry and middle atmosphere dynamics. For the cases studied, particle sizes vary systematically by more than an order of magnitude with condensation level, in such a way that the characteristic fall time for particles is always about 1 Mars day, which is the dominant thermal forcing time. The hazes may play a key role in the seasonal water cycle of Mars. They provide a mechanism for growing particles large enough to move atmospheric water closer to the surface, thereby improving the efficiency of adsorption and ice deposit formation in the regolith. This is particularly likely in late northern summer, when the rapid hemispheric decrease in atmospheric water vapor may reflect the precipitation of snow. This rapid decrease in late summer involves atmospheric water vapor in about the quantities needed to supply the mid-latitude regolith with the water that appears in the atmosphere early in the following spring

  5. The effects of sub-ice-shelf melting on dense shelf water formation and export in idealized simulations of Antarctic margins

    Science.gov (United States)

    Marques, Gustavo; Stern, Alon; Harrison, Matthew; Sergienko, Olga; Hallberg, Robert

    2017-04-01

    Dense shelf water (DSW) is formed in coastal polynyas around Antarctica as a result of intense cooling and brine rejection. A fraction of this water reaches ice shelves cavities and is modified due to interactions with sub-ice-shelf melt water. This modified water mass contributes to the formation of Antarctic Bottom Water, and consequently, influences the large-scale ocean circulation. Here, we investigate the role of sub-ice-shelf melting in the formation and export of DSW using idealized simulations with an isopycnal ocean model (MOM6) coupled with a sea ice model (SIS2) and a thermodynamic active ice shelf. A set of experiments is conducted with variable horizontal grid resolutions (0.5, 1.0 and 2.0 km), ice shelf geometries and atmospheric forcing. In all simulations DSW is spontaneously formed in coastal polynyas due to the combined effect of the imposed atmospheric forcing and the ocean state. Our results show that sub-ice-shelf melting can significantly change the rate of dense shelf water outflows, highlighting the importance of this process to correctly represent bottom water formation.

  6. Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage

    NARCIS (Netherlands)

    Yan, C.; Shi, W.; Li, X.; Zhao, Y.

    2016-01-01

    Seasonal cold storage using natural cold sources for cooling is a sustainable cooling technique. However, this technique suffers from limitations such as large storage space and poor reliability. Combining seasonal storage with short-term storage might be a promising solution while it is not

  7. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans

    DEFF Research Database (Denmark)

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-01-01

    The diving response is initiated by apnea and facial immersion in cold water and includes, besides bradycardia, peripheral vasoconstriction, while cerebral perfusion may be enhanced. This study evaluated whether facial immersion in 10 degrees C water has an independent influence on cerebral...... immersion further increased MCA V(mean) to 122 cm/s ( approximately 88%; both P ... 180-W exercise (from 47 to 53 cm/s), and this increment became larger with facial immersion (76 cm/s, approximately 62%; P 100% increase in MCA V(mean), largely...

  8. Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans.

    Science.gov (United States)

    Winchester, Wendy J; Gore, Katrina; Glatt, Sophie; Petit, Wendy; Gardiner, Jennifer C; Conlon, Kelly; Postlethwaite, Michael; Saintot, Pierre-Philippe; Roberts, Sonia; Gosset, James R; Matsuura, Tomomi; Andrews, Mark D; Glossop, Paul A; Palmer, Michael J; Clear, Nicola; Collins, Susie; Beaumont, Kevin; Reynolds, David S

    2014-11-01

    The transient receptor potential (subfamily M, member 8; TRPM8) is a nonselective cation channel localized in primary sensory neurons, and is a candidate for cold thermosensing, mediation of cold pain, and bladder overactivity. Studies with TRPM8 knockout mice and selective TRPM8 channel blockers demonstrate a lack of cold sensitivity and reduced cold pain in various rodent models. Furthermore, TRPM8 blockers significantly lower body temperature. We have identified a moderately potent (IC50 = 103 nM), selective TRPM8 antagonist, PF-05105679 [(R)-3-[(1-(4-fluorophenyl)ethyl)(quinolin-3-ylcarbonyl)amino]methylbenzoic acid]. It demonstrated activity in vivo in the guinea pig bladder ice water and menthol challenge tests with an IC50 of 200 nM and reduced core body temperature in the rat (at concentrations >1219 nM). PF-05105679 was suitable for acute administration to humans and was evaluated for effects on core body temperature and experimentally induced cold pain, using the cold pressor test. Unbound plasma concentrations greater than the IC50 were achieved with 600- and 900-mg doses. The compound displayed a significant inhibition of pain in the cold pressor test, with efficacy equivalent to oxycodone (20 mg) at 1.5 hours postdose. No effect on core body temperature was observed. An unexpected adverse event (hot feeling) was reported, predominantly periorally, in 23 and 36% of volunteers (600- and 900-mg dose, respectively), which in two volunteers was nontolerable. In conclusion, this study supports a role for TRPM8 in acute cold pain signaling at doses that do not cause hypothermia. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  9. A low cost, high precision extreme/harsh cold environment, autonomous sensor data gathering and transmission platform.

    Science.gov (United States)

    Chetty, S.; Field, L. A.

    2014-12-01

    SWIMS III, is a low cost, autonomous sensor data gathering platform developed specifically for extreme/harsh cold environments. Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally inert materials that when deployed will increase the albedo, enabling the formation and/preservation of multi-year ice. SWIMS III's sophisticated autonomous sensors are designed to measure the albedo, weather, water temperature and other environmental parameters. This platform uses low cost, high accuracy/precision sensors, extreme environment command and data handling computer system using satellite and terrestrial wireless solution. The system also incorporates tilt sensors and sonar based ice thickness sensors. The system is light weight and can be deployed by hand by a single person. This presentation covers the technical, and design challenges in developing and deploying these platforms.

  10. Effect of Cold-Water Irrigation on Grain Quality Traits in japonica Rice Varieties from Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Guo-zhen ZHAO

    2009-09-01

    Full Text Available The response of grain quality traits to cold-water irrigation and its correlation with cold tolerance were studied in 11 japonica rice varieties from Yunnan Province, China. The results indicated that the response of grain quality traits to the cold-water stress varied with rice varieties and grain quality traits. Under the cold-water stress, grain width, chalky rice rate, whiteness, 1000-grain weight, brown rice rate, taste meter value, peak viscosity, trough viscosity, breakdown viscosity and final viscosity significantly decreased, whereas grain length-width ratio, head rice rate, alkali digestion value, protein content and setback viscosity markedly increased. However, the other traits such as grain length, amylose content, milled rice rate, peak viscosity time and pasting temperature were not significantly affected by the cold-water stress. Significant correlations were discovered between phenotypic acceptability and cold response indices of taste meter value, protein content, peak viscosity and breakdown viscosity. Therefore, it would be very important to improve the cold tolerance of Yunnan rice varieties in order to stabilize and improve their eating quality.

  11. Archival processes of the water stable isotope signal in East Antarctic ice cores

    Science.gov (United States)

    Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean

    2018-05-01

    The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.

  12. The "Grey Zone" cold air outbreak global model intercomparison: A cross evaluation using large-eddy simulations

    Science.gov (United States)

    Tomassini, Lorenzo; Field, Paul R.; Honnert, Rachel; Malardel, Sylvie; McTaggart-Cowan, Ron; Saitou, Kei; Noda, Akira T.; Seifert, Axel

    2017-03-01

    A stratocumulus-to-cumulus transition as observed in a cold air outbreak over the North Atlantic Ocean is compared in global climate and numerical weather prediction models and a large-eddy simulation model as part of the Working Group on Numerical Experimentation "Grey Zone" project. The focus of the project is to investigate to what degree current convection and boundary layer parameterizations behave in a scale-adaptive manner in situations where the model resolution approaches the scale of convection. Global model simulations were performed at a wide range of resolutions, with convective parameterizations turned on and off. The models successfully simulate the transition between the observed boundary layer structures, from a well-mixed stratocumulus to a deeper, partly decoupled cumulus boundary layer. There are indications that surface fluxes are generally underestimated. The amount of both cloud liquid water and cloud ice, and likely precipitation, are under-predicted, suggesting deficiencies in the strength of vertical mixing in shear-dominated boundary layers. But also regulation by precipitation and mixed-phase cloud microphysical processes play an important role in the case. With convection parameterizations switched on, the profiles of atmospheric liquid water and cloud ice are essentially resolution-insensitive. This, however, does not imply that convection parameterizations are scale-aware. Even at the highest resolutions considered here, simulations with convective parameterizations do not converge toward the results of convection-off experiments. Convection and boundary layer parameterizations strongly interact, suggesting the need for a unified treatment of convective and turbulent mixing when addressing scale-adaptivity.

  13. Surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) in ice-free and ice-covered waters

    KAUST Repository

    Solberg, Ingrid

    2013-10-04

    Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) throughout an entire winter in a 150-m-deep Norwegian fjord. During ice-free conditions, the sprat surfaced and released gas bubbles at night with an estimated surfacing rate of 3.5 times per fish day-1. The vertical swimming speeds during surfacing were considerably higher (~10 times) than during diel vertical migrations, especially when returning from the surface, and particularly when the fjord was not ice covered. The sprat released gas a few hours after surfacing, suggesting that the sprat gulped atmospheric air during its excursions to the surface. While the surface activity increased after the fjord became ice covered, the records of gas release decreased sharply. The under-ice fish then displayed a behavior interpreted as "searching for the surface" by repeatedly ascending toward the ice, apparently with limited success of filling the swim bladder. This interpretation was supported by lower acoustic target strength in ice-covered waters. The frequent surfacing behavior demonstrated in this study indicates that gulping of atmospheric air is an important element in the life of sprat. While at least part of the population endured overwintering in the ice-covered habitat, ice covering may constrain those physostome fishes that lack a gas-generating gland in ways that remain to be established. 2013 The Author(s).

  14. LabVIEW-operated novel nanoliter osmometer for ice binding protein investigations.

    Science.gov (United States)

    Braslavsky, Ido; Drori, Ran

    2013-02-04

    Ice-binding proteins (IBPs), including antifreeze proteins, ice structuring proteins, thermal hysteresis proteins, and ice recrystallization inhibition proteins, are found in cold-adapted organisms and protect them from freeze injuries by interacting with ice crystals. IBPs are found in a variety of organism, including fish(1), plants(2, 3), arthropods(4, 5), fungi(6), and bacteria(7). IBPs adsorb to the surfaces of ice crystals and prevent water molecules from joining the ice lattice at the IBP adsorption location. Ice that grows on the crystal surface between the adsorbed IBPs develops a high curvature that lowers the temperature at which the ice crystals grow, a phenomenon referred to as the Gibbs-Thomson effect. This depression creates a gap (thermal hysteresis, TH) between the melting point and the nonequilibrium freezing point, within which ice growth is arrested(8-10), see Figure 1. One of the main tools used in IBP research is the nanoliter osmometer, which facilitates measurements of the TH activities of IBP solutions. Nanoliter osmometers, such as the Clifton instrument (Clifton Technical Physics, Hartford, NY,) and Otago instrument (Otago Osmometers, Dunedin, New Zealand), were designed to measure the osmolarity of a solution by measuring the melting point depression of droplets with nanoliter volumes. These devices were used to measure the osmolarities of biological samples, such as tears(11), and were found to be useful in IBP research. Manual control over these nanoliter osmometers limited the experimental possibilities. Temperature rate changes could not be controlled reliably, the temperature range of the Clifton instrument was limited to 4,000 mOsmol (about -7.5 °C), and temperature recordings as a function of time were not an available option for these instruments. We designed a custom-made computer-controlled nanoliter osmometer system using a LabVIEW platform (National Instruments). The cold stage, described previously(9, 10), contains a metal

  15. Severnaya Zemlya, arctic Russia: a nucleation area for Kara Sea ice sheets during the Middle to Late Quaternary

    DEFF Research Database (Denmark)

    Möller, Per; Lubinski, David J.; Ingólfsson, Ólafur

    2006-01-01

    Quaternary glacial stratigraphy and relative sea-level changes reveal at least four expansions of the Kara Sea ice sheet over the Severnaya Zemlya Archipelago at 79°N in the Russian Arctic, as indicated from tills interbedded with marine sediments, exposed in stratigraphic superposition, and from......-5e and MIS 5d-3. The MIS 6-5e event, associated with the high marine limit, implies ice-sheet thickness of >2000 m only 200 km from the deep Arctic Ocean, consistent with published evidence of ice grounding at ~1000 m water depth in the central Arctic Ocean. Till fabrics and glacial tectonics record...... repeated expansions of local ice caps exclusively, suggesting wet-based ice cap advance followed by cold-based regional ice-sheet expansion. Local ice caps over highland sites along the perimeter of the shallow Kara Sea, including the Byrranga Mountains, appear to have repeatedly fostered initiation...

  16. The modelled liquid water balance of the Greenland Ice Sheet

    Science.gov (United States)

    Steger, Christian R.; Reijmer, Carleen H.; van den Broeke, Michiel R.

    2017-11-01

    Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS) contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB) of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with the SNOWPACK model for the GrIS and over the period 1960-2014 with a special focus on the LWB and refreezing. Evaluations of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model-observation agreement. Results of the LWB analysis reveal a spatially uniform increase in surface melt (0.16 m w.e. a-1) during 1990-2014. As a response, refreezing and run-off also indicate positive changes during this period (0.05 and 0.11 m w.e. a-1, respectively), where refreezing increases at only half the rate of run-off, implying that the majority of the additional liquid input runs off the ice sheet. This pattern of refreeze and run-off is spatially variable. For instance, in the south-eastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. Modelled increase in refreezing leads to a decrease in firn air content and to a substantial increase in near-surface firn temperature. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases are more gradual and are associated with the migration of firn aquifers to higher elevations.

  17. Increased Ice-age Influence of Antarctic Intermediate Water.

    Science.gov (United States)

    Muratli, J.; McManus, J.; Mix, A.; Chase, Z.

    2008-12-01

    A depth transect of three ODP sites collected along the central Chile Margin constrain Antarctic Intermediate Water (AAIW) distributions and regional export production over the last 30 ka. Reduced Re and Cd, and increased Mn are proxies for higher bottom water oxygenation; 230Th-normalized burial of opal is a proxy for productivity. Mn/Al is high during the glacial interval at all three sites, suggesting high oxygenation and the retreat of the oxygen minimum zone during this period. At Site 1233, within the core of modern AAIW, Re and Cd are unchanged from detrital values throughout the last 30 ky, implying continuously oxic conditions. In contrast, at the northern sites 1234 and 1235, which reside below and above AAIW respectively, Re and Cd rise rapidly from low glacial values at ~15ka, signifying lower oxygen concentrations at the sea floor during Holocene time relative to ice-age conditions. Local productivity, recorded in Th-normalized opal burial, is highest during the glacial interval at both sites 1233 and 1234, and varies independently from the redox proxies. We conclude that local productivity does not drive bottom water oxygenation here, and that ventilation of the shallow subsurface southeast Pacific increased during the last ice age, with an expanded depth range of AAIW relative to the present.

  18. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&ice Dusty Plasma Experiment

    Science.gov (United States)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.

    2017-03-01

    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (I) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (II) the major axis length has a log-normal distribution rather than a power-law dependence, and (III) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (I.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ˜0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  19. Biological Ice Nuclei: They are Everywhere, What are Their Roles? (Invited)

    Science.gov (United States)

    Schnell, R. C.

    2009-12-01

    help plant growth, initiating ice formation and subsequent scavenging of water vapor in cold climates (e.g. Arctic and high elevation lichen), living in symbiosis with high elevation vegetation that freezes nightly, and probably a range of others we have not observed or yet hypothesized. Bacterial ice nucleation is truly an intriguing and fantastic phenomenon for which we have just begun to understand.

  20. The Effect of Seasonal Variability of Atlantic Water on the Arctic Sea Ice Cover

    Science.gov (United States)

    Ivanov, V. V.; Repina, I. A.

    2018-01-01

    Under the influence of global warming, the sea ice in the Arctic Ocean (AO) is expected to reduce with a transition toward a seasonal ice cover by the end of this century. A comparison of climate-model predictions with measurements shows that the actual rate of ice cover decay in the AO is higher than the predicted one. This paper argues that the rapid shrinking of the Arctic summer ice cover is due to its increased seasonality, while seasonal oscillations of the Atlantic origin water temperature create favorable conditions for the formation of negative anomalies in the ice-cover area in winter. The basis for this hypothesis is the fundamental possibility of the activation of positive feedback provided by a specific feature of the seasonal cycle of the inflowing Atlantic origin water and the peaking of temperature in the Nansen Basin in midwinter. The recently accelerated reduction in the summer ice cover in the AO leads to an increased accumulation of heat in the upper ocean layer during the summer season. The extra heat content of the upper ocean layer favors prerequisite conditions for winter thermohaline convection and the transfer of heat from the Atlantic water (AW) layer to the ice cover. This, in turn, contributes to further ice thinning and a decrease in ice concentration, accelerated melting in summer, and a greater accumulation of heat in the ocean by the end of the following summer. An important role is played by the seasonal variability of the temperature of AW, which forms on the border between the North European and Arctic basins. The phase of seasonal oscillation changes while the AW is moving through the Nansen Basin. As a result, the timing of temperature peak shifts from summer to winter, additionally contributing to enhanced ice melting in winter. The formulated theoretical concept is substantiated by a simplified mathematical model and comparison with observations.

  1. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: Mean seasonal cycle

    Science.gov (United States)

    Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.

    2014-12-01

    The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic

  2. Sea ice roughness: the key for predicting Arctic summer ice albedo

    Science.gov (United States)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  3. Influence of pyridostigmine bromide on human thermoregulation during cold-water immersion

    Energy Technology Data Exchange (ETDEWEB)

    Cadarette, B.S.; Prusaczyk, W.K.; Sawka, M.N. (Army Research Inst. of Environmental Medicine, Natick, MA (United States))

    1991-03-11

    This study examined the effects of an oral 30 mg dose of pyridostigmine bromide (PYR) on thermoregulatory and physiological responses during cold stress. Six men were immersed in chilled stirred water for up to 180 minutes; once 2 hours following ingestion of PYR and once 2 hours following ingestion of a placebo (CON). With PYR, mean ({plus minus} SD) red blood cell cholinesterase inhibition was 33 ({plus minus}12)% at 110 minutes post-ingestion. Cholinesterase inhibition was negatively related to lean body mass. Abdominal discomfort caused termination in 3 of 6 PYR experiments ({bar X} immersion time = 117 min) but in no CON experiments ({bar X} immersion time = 142 min, p > 0.05). During immersion, metabolic rate increased significantly over pre-immersion levels, and increased with duration of immersion, but did not differ between conditions. PYR had no significant effect on rectal temperature, mean body temperature, thermal sensation, heart rate, or plasma cortisol concentration. It was concluded that a 30 mg dose of PYR does not increase susceptibility to hypothermia in humans immersed in cold-water; however, in combination with cold-stress, PYR may result in marked abdominal cramping and limit cold tolerance.

  4. A Dynamic Model for the Evaluation of Aircraft Engine Icing Detection and Control-Based Mitigation Strategies

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.

    2017-01-01

    Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the

  5. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  6. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    Science.gov (United States)

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. © 2015 John Wiley & Sons Ltd.

  7. Inelastic neutron scattering and spectral measurements of advanced cold moderator materials

    International Nuclear Information System (INIS)

    Conrad, H.; Prager, M.; Nuenighoff, K.; Pohl, C.; Kuhs, W.F.

    2004-01-01

    Inelastic neutron scattering with emphasis on energetically low lying modes as well as cold neutron leakage measurements have been performed on four prospective advanced cold moderator materials. Employing the time-of-flight instrument SV29 at the Juelich FRJ-2 reactor, spectra have been obtained from synthetic methane clathrate, tetrahydro-furane (THF) clathrate, 1,3,5-trimethyl-benzene (mesitylene) and light water ice at several temperatures between 2 K and 70 K. Clearly separated excitations at energy transfers of ±1 meV, +2 meV and +3 meV have been observed with synthetic methane clathrate. In mesitylene a wealth of low lying excitations have been observed. In the quenched phase we found lines at 4.7, 7.2, 9.6, 13.6, 15.4, 18.4, 19.0, 23.0, 29.5 and 34.3 meV, respectively. In the annealed phase, we observed significant shifts with the majority of lines. The lowest lying lines now are located at 7.0, 8.5 and 10.5 meV, respectively. In hexagonal ice at T=2 K up to now unreported low lying energy levels were found at energy transfers of 1.8 meV and 2.8 meV. An additional line at about 10 meV could be detected in THF clathrate. Mesitylene, synthetic methane clathrate and water ice, all at T=20 K, have been tested as moderators at the Juelich spallation mock-up JESSICA. The expected gain in neutron leakage current at energies around 2 meV as compared to conventional liquid hydrogen moderators has been observed for methane clathrate and mesitylene. (orig.)

  8. Spatial and temporal distributions of Martian north polar cold spots before, during, and after the global dust storm of 2001

    Science.gov (United States)

    Cornwall, C.; Titus, T.N.

    2009-01-01

    In the 1970s, Mariner and Viking observed features in the Mars northern polar region that were a few hundred kilometers in diameter with 20 fj,m brightness temperatures as low as 130 K (considerably below C02 ice sublimation temperatures). Over the past decade, studies have shown that these areas (commonly called "cold spots") are usually due to emissivity effects of frost deposits and occasionally to active C02 snowstorms. Three Mars years of Mars Global Surveyor Thermal Emission Spectrometer data were used to observe autumn and wintertime cold spot activity within the polar regions. Many cold spots formed on or near scarps of the perennial cap, probably induced by adiabatic cooling due to orographic lifting. These topographically associated cold spots were often smaller than those that were not associated with topography. We determined that initial grain sizes within the cold spots were on the order of a few millimeters, assuming the snow was uncontaminated by dust or water ice. On average, the half-life of the cold spots was 5 Julian days. The Mars global dust storm in 2001 significantly affected cold spot activity in the north polar region. Though overall perennial cap cold spot activity seemed unaffected, the distribution of cold spots did change by a decrease in the number of topographically associated cold spots and an increase in those not associated with topography. We propose that the global dust storm affected the processes that form cold spots and discuss how the global dust storm may have affected these processes. ?? 2009 by the American Geophysical Union.

  9. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic

    NARCIS (Netherlands)

    Mohn, C.; Rengstorf, A.; White, M.; Mienis, F.; Soetaert, K.; Grehan, A.; Duineveld, G.

    2014-01-01

    Observations from numerous cold-water coral locations in the NE Atlantic show energetic near-bottom flow dynamics along the European continental margin at individual coral mounds and mound clusters. Dynamics are largely controlled by tide-topography interaction generating and enhancing periodic

  10. Icing Impacts on Wind Energy Production

    DEFF Research Database (Denmark)

    Davis, Neil

    was developed for the identification of icing periods from the turbine power data and the nacelle wind speeds. This method was based on the spread of power production observations at cold temperatures that was not seen during warmer periods. Using the insights gained through the observational analysis...... and the turbine power loss. The model took the shape of a hierarchal model that combined a decision tree model, based on the existence of ice on the turbine blade, and two Generalized Additive Models (GAM). The GAM for periods where icing was forecast was found to include the terms wind speed, total ice mass...

  11. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    De Barros, A. L. F. [Departamento de Física, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Av. Maracanã 229, 20271-110 Rio de Janeiro, RJ (Brazil); Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G.A.; Allamandola, L. J. [NASA Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000 (United States)

    2017-10-20

    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C{sub 24}H{sub 12}:H{sub 2}O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO{sub 2} and H{sub 2}CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H{sup +}) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H{sub 2}O photoproducts have mid-infrared spectroscopic signatures in the 5–8 μ m region that can contribute to the interstellar ice components described by Boogert et al. as C1–C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.

  12. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    International Nuclear Information System (INIS)

    De Barros, A. L. F.; Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G.A.; Allamandola, L. J.

    2017-01-01

    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C 24 H 12 :H 2 O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H 2 O, pyrene:H 2 O, and benzo[ghi]perylene:H 2 O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO 2 and H 2 CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H + ) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H 2 O photoproducts have mid-infrared spectroscopic signatures in the 5–8 μ m region that can contribute to the interstellar ice components described by Boogert et al. as C1–C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.

  13. Multipole moments of water molecules in clusters and ice Ih from first principles calculations

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1999-01-01

    We have calculated molecular multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader close-quote s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. copyright 1999 American Institute of Physics

  14. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    Science.gov (United States)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  15. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.

    Science.gov (United States)

    Juan, J X; Yu, X H; Jiang, X M; Gao, Z; Zhang, Y; Li, W; Duan, Y D; Yang, G

    2015-01-30

    ICE1 genes play a very important role in plants in cold conditions. To improve the cold resistance of tomato, the ICE1 gene of Arabidopsis thaliana was used to construct the plant expression vector p3301-ICE1, and was overexpressed in tomato through Agrobacterium-mediated transformation. Five strains of resistant plants were obtained. PCR and half-quantitative results showed that the ICE1 gene was transferred to tomato; three strains tested positive. After low-temperature stress treatment, praline content and peroxide and catalase activities in the transgenic tomato plants were higher compared with non-transgenic controls, while malondialdehyde content was clearly lower.

  16. Performance on Water Stability of Cement-Foamed Asphalt Cold Recycled Mixture

    Directory of Open Access Journals (Sweden)

    Li Junxiao

    2018-01-01

    Full Text Available Through designing the mixture proportion of foamed asphalt cold in-place recycled mixture combined with the water stability experiment, it shows that the addition of cement can obviously improve foamed asphalt mixture’s water stability and the best cement admixture is between 1% ~ 2%; Using digital imaging microscope and SEM technology, the mechanism of increasing on the intensity of foamed asphalt mixture resulted by adding cement was analyzed. It revealed that the cement hydration products contained in the foamed asphalt mixture hydrolyzed into space mesh structure and wrapped up the aggregate particle, this is the main reason that the cement can enhance the mixture’s intensity as well as the water stability. This research provides reference for cement admixture’s formulation in the designing of foamed asphalt cold in-place recycled mixture.

  17. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  18. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    Science.gov (United States)

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  19. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    Directory of Open Access Journals (Sweden)

    D. M. Lienhard

    2015-12-01

    secondary organic aerosol (SOA material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA, levoglucosan, levoglucosan/NH4HSO4, raffinose are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  20. Analysis of the Effect of Water Activity on Ice Formation Using a New Theory of Nucleation

    Science.gov (United States)

    Barahona, Donifan

    2013-01-01

    In this work a new theory of nucleation is developed and used to investigate the effect of water activity on the formation of ice within super-cooled droplets. The new theory is based on a novel concept where the interface is assumed to be made of liquid molecules trapped by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new theory does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a theoretical derivation of the constant shift in water activity between melting and nucleation. The new theory offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.

  1. delta 18O variations in snow on the Devon Island ice cap, Northwest Territories, Canada

    International Nuclear Information System (INIS)

    Koerner, R.; Russel, R.D.

    1979-01-01

    A study of delta 18 O variations of snow samples taken on traverses across the Devon Island ice cap in June 1971, 1972, and 1973 has shown a difference between the accumulation conditions on the souteast and nortwest sides of the ice cap. On the souteast side there is an increasing depletion of 18 O in the snow with increasing elevation. This pattern is attibuted to the effect of orographic uplift of air masses moving over the ice cap from the southeast, which promotes condensation and precipitation due to adiabatic cooling. On the northwest side of the ice cap there is no evidence of any further depletion of 18 O in snow, neither with increasing distance from the possible moisture source in Baffin Bay to the southeast nor with increasing elevation if the air mass comes from the northwest. In this case condensation is due to isobaric cooling so that precipitation is generally from level cloud bases. The changes inferred for the isotopic composition of the water vapour as it rises up the southeast slope are found to be consistent with its depletion through precipitation under near-equilibrium conditions. It is calculated that approximately 30% of the moisture at sea level on the southeast side of the ice cap and 8% at the top of the ice cap are of local origin. Lower temporal and aerial variability of the delta values on the southeast side of the ice cap is attributed to dominance of the Baffin Bay low on that side Effecting consistency of storm conditions there. The delta values of ice in the ablation zone on the Sverdrup Glacier show the combined effect of ice movement from the accumulation to the ablation zone and climatic change during the period of movement from cold to warm and back to cold conditions again. (auth)

  2. Metal-ion catalyzed polymerization in the eutectic phase in water-ice

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain; Szostak, Jack W.

    2008-01-01

    The emergence of an RNA world requires among other processes the non-enzymatic, template-directed replication of genetic polymers such as RNA or related nucleic acids, possibly catalyzed by metal ions. The absence of uridilate derivative polymerization on adenine containing templates has been...... the main issue preventing an efficient template-directed RNA polymerization. We report here the investigation of template-directed RNA polymerization in the eutectic phase in water-ice. In particular, it was found that activated Uridilate monomers in the presence of metal-ion catalysts could efficiently......-pairing opportunities. These results suggest that a template-directed RNA polymerization catalyzed by metal-ions could be carried out under eutectic phase in water-ice conditions....

  3. Evaluation of fission product removal by an ice-condenser containment

    International Nuclear Information System (INIS)

    Kubis, K.

    1977-01-01

    Studies have been restricted to removal of iodine, a fission product significant with regard to radiation protection. Results referring to the absorption of molecular iodine in an ice bed have been obtained from model experiments. These data were the basis of evaluating iodine removal in a containment with ice condenser. Removal has been determined by use of computational models. The ice condenser reduces the iodine amount released by one order of magnitude. (author)

  4. Predicting the occurrence of cold water patches at intermittent and ephemeral tributary confluences with warm rivers

    Science.gov (United States)

    Small, cold tributary streams can provide important thermal refuge habitat for cold-water fishes such as Pacific salmon (Oncorhynchus spp.) residing in warm, downstream receiving waters. We investigated the potential function of small perennial and non-perennial tributary stream...

  5. Cold tolerance evaluation in Chilean rice genotypes at the germination stage

    Directory of Open Access Journals (Sweden)

    Gabriel Donoso Ñanculao

    2013-03-01

    Full Text Available Low temperature is the most important abiotic stress affecting rice (Oryza sativa L. yield in Chile. Rice in Chile is usually planted when the minimum air temperatures are below 12 °C. This temperature is lower than the optimum needed for normal rice germination. Therefore, the aim of this study was to evaluate cold tolerance in 20 experimental lines from the Rice Breeding Program of the Instituto de Investigaciones Agropecuarias (INIA, Chile, at the germination stage. Coleoptile length reduction (CRED, coleoptile length after cold treatment (CLEN, coleoptile length recovery (CREC, and coleoptile regrowth (CREG were evaluated at 13 °C for 4 d using 'Diamante-INIA' as the cold-tolerant control. To find genotypes with cold tolerance (low CRED value and high CLEN, CREC, and CREG values, genotypes were ranked, a biplot of principal components, and cluster analysis were performed. No differences were found among genotypes in the ranking based on CREC value so this trait was not considered. Analysis showed that only three experimental lines had cold tolerance similar to that of 'Diamante-INIA'; all other experimental lines exhibited intermediate to low cold tolerance. These results showed low cold tolerance of some Chilean genotypes at the germination stage, thus confirming the need to evaluate the rest of the germplasm from the Rice Breeding Program.

  6. Spent nuclear fuel project cold vacuum drying facility tempered water and tempered water cooling system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Tempered Water (TW) and Tempered Water Cooling (TWC) System . The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the TW and TWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SOD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  7. Hydroelectric power development and the ice regime of inland waters: A northern community perspective

    International Nuclear Information System (INIS)

    Gerard, R.

    1989-03-01

    Inland waters play a vital role in the life of the many small northern communities which depend in large measure on the provisions of the natural environment for their sustenance. These communities are therefore particularly vulnerable to changes in the ice regime of these waters, especially changes that are irregular. However, the north is also the site of much of Canada's hydroelectric power development and potential, developments that have a major influence on the ice regime of effected waters. As a contribution to the background information required for the necessary discussions and negotiations associated with such developments, the various aspects of the natural ice regime, the possible effects of hydroelectric development and operation on this regime, and its consequences, are briefly reviewed. The emphasis has been placed on changes that will likely be of most significance to northern communities in the bedrock-controlled country of the western Canadian Shield. The major direct, and in some circumstances life-threatening, impact of changes to the ice regime is on trafficability of the iceways that play such a vital role in the life of the communities. Hence particular emphasis has been placed on this aspect and on the formation of the slush and thin ice conditions that are the bane of over-ice travel and that are subject to unexpected changes by hydroelectric development and operation. To place these changes and their effects in some perspective, the nature of a hydroelectric development is also briefly described and an effort made to indicate the large costs incurred if these developments are restrained in their operation to avoid or mitigate some of the effects on the ice regime. 31 refs., 57 figs., 1 tab

  8. Evaluating Ice Nucleating Particle Concentrations From Prognostic Dust Minerals in an Earth System Model

    Science.gov (United States)

    Perlwitz, J. P.; Knopf, D. A.; Fridlind, A. M.; Miller, R. L.; Pérez García-Pando, C.; DeMott, P. J.

    2016-12-01

    The effect of aerosol particles on the radiative properties of clouds, the so-called, indirect effect of aerosols, is recognized as one of the largest sources of uncertainty in climate prediction. The distribution of water vapor, precipitation, and ice cloud formation are influenced by the atmospheric ice formation, thereby modulating cloud albedo and thus climate. It is well known that different particle types possess different ice formation propensities with mineral dust being a superior ice nucleating particle (INP) compared to soot particles. Furthermore, some dust mineral types are more proficient INP than others, depending on temperature and relative humidity.In recent work, we have presented an improved dust aerosol module in the NASA GISS Earth System ModelE2 with prognostic mineral composition of the dust aerosols. Thus, there are regional variations in dust composition. We evaluated the predicted mineral fractions of dust aerosols by comparing them to measurements from a compilation of about 60 published literature references. Additionally, the capability of the model to reproduce the elemental composition of the simulated dusthas been tested at Izana Observatory at Tenerife, Canary Islands, which is located off-shore of Africa and where frequent dust events are observed. We have been able to show that the new approach delivers a robust improvement of the predicted mineral fractions and elemental composition of dust.In the current study, we use three-dimensional dust mineral fields and thermodynamic conditions, which are simulated using GISS ModelE, to calculate offline the INP concentrations derived using different ice nucleation parameterizations that are currently discussed. We evaluate the calculated INP concentrations from the different parameterizations by comparing them to INP concentrations from field measurements.

  9. Dating of 30m ice cores drilled by Japanese Antarctic Research Expedition and environmental change study

    Science.gov (United States)

    Motoyama, H.; Suzuki, T.; Fukui, K.; Ohno, H.; Hoshina, Y.; Hirabayashi, M.; Fujita, S.

    2017-12-01

    1. Introduction It is possible to reveal the past climate and environmental change from the ice core drilled in polar ice sheet and glaciers. The 54th Japanese Antarctic Research Expedition conducted several shallow core drillings up to 30 m depth in the inland and coastal areas of the East Antarctic ice sheet. Ice core sample was cut out at a thickness of about 5 cm in the cold room of the National Institute of Polar Research, and analyzed ion, water isotope, dust and so one. We also conducted dielectric profile measurement (DEP measurement). The age as a key layer of large-scale volcanic explosion was based on Sigl et al. (Nature Climate Change, 2014). 2. Inland ice core Ice cores were collected at the NDF site (77°47'14"S, 39°03'34"E, 3754 m.a.s.l.) and S80 site (80°00'00"S, 40°30'04"E, 3622 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. We determined the key layer with nssSO42 - peak corresponding to several large volcanic explosions. The accumulation rate was kept constant between the key layers. As a result, NDF was estimated to be around 1360 AD and S80 was estimated to be around 1400 AD in the deepest ice core. 3. Coastal ice core An ice core was collected at coastal H15 sites (69°04'10"S, 40°44'51"E, 1030 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from ice core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. Basically we decided to summer (December) and winter (June) due to the seasonal change of the water isotope (δD or δ18O). In addition to the seasonal change of isotope, confirm the following. Maximum of SO42- / Na +, which is earlier in time than the maximum of water isotope. Maximum of MSA at about the same time as the maximum of the

  10. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2008-09-01

    Full Text Available Homogeneous nucleation of ice within aqueous solution droplets and their subsequent crystallisation is thought to play a significant role in upper tropospheric ice cloud formation. It is normally assumed that homogeneous nucleation will take place at a threshold supersaturation, irrespective of the identity of the solute, and that rapid growth of ice particles will follow immediately after nucleation. However, it is shown here through laboratory experiments that droplets may not readily freeze in the very cold tropical tropopause layer (TTL, typical temperatures of 186–200 K. In these experiments ice crystal growth in citric acid solution droplets did not occur when ice nucleated below 197±6 K. Citric acid, 2-hydroxypropane-1,2,3-tricarboxyllic acid, is a molecule with similar functionality to oxygenated organic compounds which are ubiquitous in atmospheric aerosol. It is therefore thought to be a sensible proxy for atmospheric organic material. Evidence is presented that suggests citric acid solution droplets become ultra-viscous and form glassy solids under atmospherically relevant conditions. Diffusion of liquid water molecules to ice nuclei is expected to be very slow in ultra-viscous solution droplets and nucleation is negligible in glassy droplets; this most likely provides an explanation for the experimentally observed inhibition of ice crystallisation. The implications of ultra-viscous and glassy solution droplets for ice cloud formation and supersaturations in the TTL are discussed.

  11. Investigation of the relationship between permafrost distribution in NW Europe and extensive winter sea-ice cover in the North Atlantic Ocean during the cold phases of the Last Glaciation.

    NARCIS (Netherlands)

    Renssen, H.; Vandenberghe, J.

    2003-01-01

    Atmospheric model simulations with different extents of sea-ice are compared with reconstructed European mean annual temperatures derived from permafrost indicators. Analysis of the results suggest that during cold phases of the Last Glacial, the southern margin of permafrost in western Europe was

  12. Freezing on a Chip—A New Approach to Determine Heterogeneous Ice Nucleation of Micrometer-Sized Water Droplets

    Directory of Open Access Journals (Sweden)

    Thomas Häusler

    2018-04-01

    Full Text Available We are presenting a new approach to analyze the freezing behavior of aqueous droplets containing ice nucleating particles. The freezing chip consists of an etched and sputtered (15 × 15 × 1 mm gold-plated silicon or pure gold chip, enabling the formation of droplets with defined diameters between 20 and 80 µm. Several applications like an automated process control and an automated image evaluation were implemented to improve the quality of heterogeneous freezing experiments. To show the functionality of the setup, we compared freezing temperatures of aqueous droplets containing ice nucleating particles (i.e., microcline, birch pollen washing water, juniper pollen, and Snomax® solution measured with our setup, with literature data. The ice nucleation active surface/mass site density (ns/m of microcline, juniper pollen, and birch pollen washing water are shown to be in good agreement with literature data. Minor variations can be explained by slight differences in composition and droplet generation technique. The nm values of Snomax® differ by up to one order of magnitude at higher subzero temperatures when compared with fresh samples but are in agreement when compared with reported data of aged Snomax® samples.

  13. Comparison of carbon monoxide levels during heating of ice and water to boiling point with a camping stove.

    Science.gov (United States)

    Leigh-Smith, Simon; Watt, Ian; McFadyen, Angus; Grant, Stan

    2004-01-01

    To determine whether using a camping stove to bring a pan of ice to boiling point produces higher carbon monoxide (CO) concentration than would bringing a pan of water to boiling point. The hypothesis was that ice would cause greater CO concentration because of its greater flame-cooling effect and, consequently, more incomplete combustion. This was a randomized, prospective observational study. After an initial pilot study, CO concentration was monitored during 10 trials for each of ice and water. A partially ventilated 200-L cardboard box model was developed and then used inside a chamber at -6 degrees C. Ice temperature and volume, water temperature and volume, pan size, and flame characteristics were all standardized. Temperature of the heated medium was monitored to determine time to boiling point. Carbon monoxide concentration was monitored every 30 seconds for the first 3 minutes, then every minute until the end of each 10-minute trial. There was no significant difference (P > .05) in CO production levels between ice and water. Each achieved a similar mean plateau level of approximately 400 ppm CO concentration with a similar rate of rise. However, significantly higher (P = .014) CO concentration occurred at 4 and 5 minutes when the flame underwent a yellow flare; this occurred only on 3 occasions when ice was the medium. There were no significant differences for CO production between bringing a pan of ice or water to boiling point. In a small number of ice trials, the presence of a yellow flame resulted in high CO concentration. Yellow flares might occur more often with ice or snow melting, but this has not been proven.

  14. ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts

    Science.gov (United States)

    Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.

    2015-12-01

    Ice911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar ice melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited areas from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for ice preservation, using hollow glass spheres deployed over our largest test areas yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. This year Ice911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO area, and results are still coming in. The technology that Ice911 has been developing for ice preservation has also been shown to keep small test areas of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of Ice911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping

  15. Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR

    Science.gov (United States)

    Zhou, Xiaohai; Zhou, Jian; Kinzelbach, Wolfgang; Stauffer, Fritz

    2014-12-01

    The freezing temperature of water in soil is not constant but varies over a range determined by soil texture. Consequently, the amounts of unfrozen water and ice change with temperature in frozen soil, which in turn affects hydraulic, thermal, and mechanical properties of frozen soil. In this paper, an Am-241 gamma ray source and time-domain reflectometry (TDR) were combined to measure unfrozen water content and ice content in frozen soil simultaneously. The gamma ray attenuation was used to determine total water content. The TDR was used to determine the dielectric constant of the frozen soil. Based on a four-phase mixing model, the amount of unfrozen water content in the frozen soil could be determined. The ice content was inferred by the difference between total water content and unfrozen water content. The gamma ray attenuation and the TDR were both calibrated by a gravimetric method. Water contents measured by gamma ray attenuation and TDR in an unfrozen silt column under infiltration were compared and showed that the two methods have the same accuracy and response to changes of water content. Unidirectional column freezing experiments were performed to apply the combined method of gamma ray attenuation and TDR for measuring unfrozen water content and ice content. The measurement error of the gamma ray attenuation and TDR was around 0.02 and 0.01 m3/m3, respectively. The overestimation of unfrozen water in frozen soil by TDR alone was quantified and found to depend on the amount of ice content. The higher the ice content, the larger the overestimation. The study confirmed that the combined method could accurately determine unfrozen water content and ice content in frozen soil. The results of soil column freezing experiments indicate that total water content distribution is affected by available pore space and the freezing front advance rate. It was found that there is similarity between the soil water characteristic and the soil freezing characteristic of

  16. 207 EFFECTS OF HOT AND COLD WATER PRE- TREATMENTS ...

    African Journals Online (AJOL)

    The treatments used were immersion of the seeds in cold water (at room o temperature) for 8, 12 and ... goat, sheep and cattle in the semi arid regions due to the palatability of its ... visible signs of infestation were selected out of the total seeds ...

  17. Local cooling does not prevent hyperalgesia following burn injury in humans

    DEFF Research Database (Denmark)

    Werner, Mads U; Lassen, Birgit Vibeke; Pedersen, Juri L

    2002-01-01

    One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti-inflammato......One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti...

  18. Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present.

    Science.gov (United States)

    Hoff, Ulrike; Rasmussen, Tine L; Stein, Ruediger; Ezat, Mohamed M; Fahl, Kirsten

    2016-07-26

    In the light of rapidly diminishing sea ice cover in the Arctic during the present atmospheric warming, it is imperative to study the distribution of sea ice in the past in relation to rapid climate change. Here we focus on glacial millennial-scale climatic events (Dansgaard/Oeschger events) using the sea ice proxy IP25 in combination with phytoplankton proxy data and quantification of diatom species in a record from the southeast Norwegian Sea. We demonstrate that expansion and retreat of sea ice varies consistently in pace with the rapid climate changes 90 kyr ago to present. Sea ice retreats abruptly at the start of warm interstadials, but spreads rapidly during cooling phases of the interstadials and becomes near perennial and perennial during cold stadials and Heinrich events, respectively. Low-salinity surface water and the sea ice edge spreads to the Greenland-Scotland Ridge, and during the largest Heinrich events, probably far into the Atlantic Ocean.

  19. Effects of cold working ratio and stress intensity factor on intergranular stress corrosion cracking susceptibility of non-sensitized austenitic stainless steels in simulated BWR and PWR primary water

    International Nuclear Information System (INIS)

    Yaguchi, Seiji; Yonezawa, Toshio

    2012-01-01

    To evaluate the effects of cold working ratio, stress intensity factor and water chemistry on an IGSCC susceptibility of non-sensitized austenitic stainless steel, constant displacement DCB specimens were applied to SCC tests in simulated BWR and PWR primary water for the three types of austenitic stainless steels, Types 316L, 347 and 321. IGSCC was observed on the test specimens in simulated BWR and PWR primary water. The observed IGSCC was categorized into the following two types. The one is that the IGSCC observed on the same plane of the pre-fatigue crack plane, and the other is that the IGSCC observed on a plane perpendicular to the pre-fatigue crack plane. The later IGSCC fractured plane is parallel to the rolling plane of a cold rolled material. Two types of IGSCC fractured planes were changed according to the combination of the testing conditions (cold working ratio, stress intensity factor and simulated water). It seems to suggest that the most susceptible plane due to fabrication process of materials might play a significant role of IGSCC for non-sensitized cold worked austenitic stainless steels, especially, in simulated PWR primary water. Based upon evaluating on the reference crack growth rate (R-CGR) of the test specimens, the R-CGR seems to be mainly affected by cold working ratio. In case of simulated PWR primary water, it seems that the effect of metallurgical aspects dominates IGSCC susceptibility. (author)

  20. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    Science.gov (United States)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  1. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.

    Science.gov (United States)

    Knopf, Daniel A; Rigg, Yannick J

    2011-02-10

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  2. Development of a Compact and Efficient Ice Thermal Energy Storage Vessel

    Science.gov (United States)

    Sasaguchi, Kengo; Ishikawa, Masatoshi; Muta, Kenji; Yoshino, Kiyotaka; Hayashi, Hiroko; Baba, Yoshiyuki

    In the present study, the authors propose the use of a low concentration aqueous solution as phase change material for static-type ice-storage-vessels, instead of pure water commonly used today. If an aqueous solution with low concentration is used, even when a large amount of solution (aqueous ethylene glycol in this study) is solidified and bridging of ice developed around cold tubes occurs, the pressure increase could be prevented by the existence of a continuous liquid phase in the solid-liquid two-phase layer (mushy layer) which opens to an air gap at the top of a vessel. Therefore, one can continue to solidify an aqueous solution after bridging, achieving a high ice packing factor (IPF). First, experiments using small-scale test cells have been conducted to confirm the present idea, and then we have performed experiments using a large vessel with an early practical size. It was seen that a large pressure increase is prevented for the initial concentration of the solution C0 of 1.0%, and IPF obtained using the solution is much greater than 0.65 using pure water for which the solidification must be stopped before the bridging.

  3. Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper anti-fouling paints.

    Science.gov (United States)

    Pelletier, Emilien; Bonnet, Claudie; Lemarchand, Karine

    2009-07-14

    Ecological concerns about antifouling paints containing non-green tin and copper compounds have highlighted the need for environmentally friendly alternatives. We report here a field test conducted in estuarine waters over two months designed to evaluate the efficiency of a number of active natural and man-made chemical ingredients added into a silicon-polyurethane marine paint. Early steps of biofouling in cold seawater of the St. Lawrence Estuary (Canada) were observed. Analyses, including dry biomass, flow cytometry and spectrofluorimetry, demonstrated a short-term antibacterial action of chitosan-based paints although no significant anti-algal action was observed. Cuprous oxide paints were efficient against bacteria and algae invasion in the first two weeks, especially those with added organic biocides such as isothiazolone and copper pyrithione. However, the overall dry biomass and chlorophyll a content were similar for all chitosan-and copper-based paints after 63 days. Microscopic observations revealed variation in the highly diverse benthic diatom population including species Navicula, Melosira, Cocconeis, Nitshzcia, Fragilaria and Amphora. Results suggest no real long-term efficiency for tested antifouling paints and highlight a particular need for green antifouling ingredients that are active under northern estuarine conditions.

  4. Biofouling Growth in Cold Estuarine Waters and Evaluation of Some Chitosan and Copper Anti-Fouling Paints

    Directory of Open Access Journals (Sweden)

    Karine Lemarchand

    2009-07-01

    Full Text Available Ecological concerns about antifouling paints containing non-green tin and copper compounds have highlighted the need for environmentally friendly alternatives. We report here a field test conducted in estuarine waters over two months designed to evaluate the efficiency of a number of active natural and man-made chemical ingredients added into a silicon-polyurethane marine paint. Early steps of biofouling in cold seawater of the St. Lawrence Estuary (Canada were observed. Analyses, including dry biomass, flow cytometry and spectrofluorimetry, demonstrated a short-term antibacterial action of chitosan-based paints although no significant anti-algal action was observed. Cuprous oxide paints were efficient against bacteria and algae invasion in the first two weeks, especially those with added organic biocides such as isothiazolone and copper pyrithione. However, the overall dry biomass and chlorophyll a content were similar for all chitosan- and copper-based paints after 63 days. Microscopic observations revealed variation in the highly diverse benthic diatom population including species Navicula, Melosira, Cocconeis, Nitshzcia, Fragilaria and Amphora. Results suggest no real long-term efficiency for tested antifouling paints and highlight a particular need for green antifouling ingredients that are active under northern estuarine conditions.

  5. Modelling of Cold Water Hammer with WAHA code

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2003-01-01

    The Cold Water Hammer experiment described in the present paper is a simple facility where overpressure accelerates a column of liquid water into the steam bubble at the closed vertical end of the pipe. Severe water hammer with high pressure peak occurs when the vapor bubble condenses and the liquid column hits the closed end of the pipe. Experimental data of Forschungszentrum Rossendorf are being used to test the newly developed computer code WAHA and the computer code RELAP5. Results show that a small amount of noncondensable air in the steam bubble significantly affects the magnitude of the calculated pressure peak, while the wall friction and condensation rate only slightly affect the simulated phenomena. (author)

  6. Comparative study of ice nucleating efficiency of K-feldspar in immersion and deposition freezing modes

    Science.gov (United States)

    Hiron, T.; Hoffmann, N.; Peckhaus, A.; Kiselev, A. A.; Leisner, T.; Flossmann, A. I.

    2016-12-01

    One of the main challenges in understanding the evolution of Earth's climate resides in the understanding the role of ice nucleation on the development of tropospheric clouds as well as its initiation. K-feldspar is known to be a very active ice nucleating particle and this study focuses on the characterization of its activity in two heterogeneous nucleation modes, immersion and deposition freezing.We use a newly built humidity-controlled cold stage allowing the simultaneous observation of up to 2000 identical 0.6-nanoliter droplets containing suspension of mineral dust particles. The droplets are first cooled down to observe immersion freezing, the obtained ice crystals are then evaporated and finally, the residual particles are exposed to the water vapor supersaturated with respect to ice.The ice nucleation abilities for the individual residual particles are then compared for the different freezing modes and correlation between immersion ice nuclei and deposition ice nuclei is investigated.Based on the electron microscopy analysis of the residual particles, we discuss the possible relationship between the ice nucleation properties of feldspar and its microstructure. Finally, we discuss the atmospheric implications of our experimental results, using DESCAM, a 1.5D bin-resolved microphysics model.

  7. Evaluation and rehabilitation of corrosion damaged reinforced concrete structures

    International Nuclear Information System (INIS)

    Paul, I.S.

    1999-01-01

    For the last two decades, rehabilitation of corrosion damaged concrete structures has been one of the most important challenges faced by the construction industry throughout the world. The extent of the damage is significant in cold climates and also in hot and humid climates. In both cases, the corrosion is invariably initiated by ingress of salts into the concrete either from de-icing salts used on roads, or from salt-laden air, soils or ground water. However, there is a contrast in sites of distress in the two climatic regions mentioned above. In cold climates, where de-icing salts are used, the damage is generally to superstructures and is therefore visible, but in hot, humid coastal regions damage is primarily in the substructures and may not be so clearly apparent. This paper presents the corrosion mechanism in concrete deterioration, the methods of evaluation of the damaged structures, and rehabilitation strategies. A case history of a concrete rehabilitation project is included together with some lessons learned in rehabilitation of corrosion damaged structures. Recommendations are made for maintenance of concrete structures and a warning is issued that salt run-off from roads in cold climates may cause distress in below ground concrete structures, similar to structures in hot and humid climates with saline groundwater and soils. (author)

  8. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.

    Science.gov (United States)

    Ramya, L; Ramakrishnan, Vigneshwar

    2016-07-01

    Antifreeze proteins (AFP) observed in cold-adapting organisms bind to ice crystals and prevent further ice growth. However, the molecular mechanism of AFP-ice binding and AFP-inhibited ice growth remains unclear. Here we report the interaction of the insect antifreeze protein (Tenebrio molitor, TmAFP) with ice crystal by molecular dynamics simulation studies. Two sets of simulations were carried out at 263 K by placing the protein near the primary prism plane (PP) and basal plane (BL) of the ice crystal. To delineate the effect of temperatures, both the PP and BL simulations were carried out at 253 K as well. The analyses revealed that the protein interacts strongly with the ice crystal in BL simulation than in PP simulation both at 263 K and 253 K. Further, it was observed that the interactions are primarily mediated through the interface waters. We also observed that as the temperature decreases, the interaction between the protein and the ice increases which can be attributed to the decreased flexibility and the increased structuring of the protein at low temperature. In essence, our study has shed light on the interaction mechanism between the TmAFP antifreeze protein and the ice crystal. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat

    Science.gov (United States)

    Durner, George M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.

    2011-01-01

    Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness.

  10. ON THE FORMATION OF INTERSTELLAR WATER ICE: CONSTRAINTS FROM A SEARCH FOR HYDROGEN PEROXIDE ICE IN MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. G.; Wright, C. M.; Robinson, G. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Charnley, S. B. [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pendleton, Y. J. [NASA Lunar Science Institute, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Maldoni, M. M., E-mail: r.smith@adfa.edu.au, E-mail: c.wright@adfa.edu.au, E-mail: g.robinson@adfa.edu.au, E-mail: Steven.B.Charnley@nasa.gov, E-mail: yvonne.pendleton@nasa.gov [Geoscience Australia, Canberra, ACT 2601 (Australia)

    2011-12-20

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H{sub 2}O{sub 2}), for the production of water (H{sub 2}O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H{sub 2}O{sub 2} ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H{sub 2}O{sub 2} should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H{sub 2}O{sub 2}/H{sub 2}O ice films between 2.5 and 200 {mu}m, from 10 to 180 K, containing 3%, 30%, and 97% H{sub 2}O{sub 2} ice. Integrated absorbances for all the absorption features in low-temperature H{sub 2}O{sub 2} ice have been derived from these spectra. For identifying H{sub 2}O{sub 2} ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 {mu}m. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H{sub 2}O ice absorption bands, no absorption features are found that can definitely be identified with H{sub 2}O{sub 2} ice. In the absence of definite H{sub 2}O{sub 2} features, the H{sub 2}O{sub 2} abundance is constrained by its possible contribution to the weak absorption feature near 3.47 {mu}m found on the long-wavelength wing of the 3 {mu}m H{sub 2}O ice band. This gives an average upper limit for H{sub 2}O{sub 2}, as a percentage of H{sub 2}O, of 9% {+-} 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  11. Hot Water after the Cold War – Water Policy Dynamics in (Semi-Authoritarian States

    Directory of Open Access Journals (Sweden)

    Peter P. Mollinga

    2010-10-01

    Full Text Available This introductory article of the special section introduces the central question that the section addresses: do water policy dynamics in (semi-authoritarian states have specific features as compared to other state forms? The article situates the question in the post-Cold War global water governance dynamics, argues that the state is a useful and required entry point for water policy analysis, explores the meaning of (semi-authoritarian as a category, and finally introduces the three papers, which are on China, South Africa and Vietnam.

  12. The physiological response to cold-water immersion following a mixed martial arts training session.

    Science.gov (United States)

    Lindsay, Angus; Carr, Sam; Cross, Sean; Petersen, Carl; Lewis, John G; Gieseg, Steven P

    2017-05-01

    Combative sport is one of the most physically intense forms of exercise, yet the effect of recovery interventions has been largely unexplored. We investigated the effect of cold-water immersion on structural, inflammatory, and physiological stress biomarkers following a mixed martial arts (MMA) contest preparation training session in comparison with passive recovery. Semiprofessional MMA competitors (n = 15) were randomly assigned to a cold-water immersion (15 min at 10 °C) or passive recovery protocol (ambient air) completed immediately following a contest preparation training session. Markers of muscle damage (urinary myoglobin), inflammation/oxidative stress (urinary neopterin + total neopterin (neopterin + 7,8-dihydroneopterin)), and hypothalamic-pituitary axis (HPA) activation (saliva cortisol) were determined before, immediately after, and 1, 2, and 24 h postsession. Ratings of perceived soreness and fatigue, counter movement jump, and gastrointestinal temperature were also measured. Concentrations of all biomarkers increased significantly (p < 0.05) postsession. Cold water immersion attenuated increases in urinary neopterin (p < 0.05, d = 0.58), total neopterin (p < 0.05, d = 0.89), and saliva cortisol after 2 h (p < 0.05, d = 0.68) and urinary neopterin again at 24 h (p < 0.01, d = 0.57) in comparison with passive recovery. Perceived soreness, fatigue, and gastrointestinal temperatures were also lower for the cold-water immersion group at several time points postsession whilst counter movement jump did not differ. Combative sport athletes who are subjected to impact-induced stress may benefit from immediate cold-water immersion as a simple recovery intervention that reduces delayed onset muscle soreness as well as macrophage and HPA activation whilst not impairing functional performance.

  13. Influence of cold water immersion on limb and cutaneous blood flow at rest.

    Science.gov (United States)

    Gregson, Warren; Black, Mark A; Jones, Helen; Milson, Jordon; Morton, James; Dawson, Brian; Atkinson, Greg; Green, Daniel J

    2011-06-01

    Cold water immersion reduces exercise-induced muscle damage. Benefits may partly arise from a decline in limb blood flow; however, no study has comprehensively investigated the influence of different degrees of cooling undertaken via cold water immersion on limb blood flow responses. To determine the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow. Controlled laboratory study. Nine men were placed in a semireclined position and lowered into 8°C or 22°C water to the iliac crest for two 5-minute periods interspersed with 2 minutes of nonimmersion. Rectal and thigh skin temperature, deep and superficial muscle temperature, heart rate, mean arterial pressure, thigh cutaneous blood velocity (laser Doppler), and superficial femoral artery blood flow (duplex ultrasound) were measured during immersion and for 30 minutes after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). Reductions in rectal temperature (8°C, 0.2° ± 0.1°C; 22°C, 0.1° ± 0.1°C) and thigh skin temperature (8°C, 6.2° ± 0.5°C; 22°C, 3.2° ± 0.2°C) were greater in 8°C water than in 22°C (P water compared with 22°C (P = .01). These data suggest that immersion at both temperatures resulted in similar whole limb blood flow but, paradoxically, more blood was distributed to the skin in the colder water. This suggests that colder temperatures may be associated with reduced muscle blood flow, which could provide an explanation for the benefits of cold water immersion in alleviating exercise-induced muscle damage in sports and athletic contexts. Colder water temperatures may be more effective in the treatment of exercise-induced muscle damage and injury rehabilitation because of greater reductions in muscle blood flow.

  14. Predicting drivers and distributions of deep-sea ecosystems: A cold-water coral case study

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Brown, Colin

    2015-01-01

    pertusa as a case study (Rengstorf et al., 2014). The study shows that predictive models incorporating hydrodynamic variables perform significantly better than models based on terrain parameters only. They are a potentially powerful tool to improve our understanding of deep-sea ecosystem functioning......, facilitating species distribution modelling with high spatial detail. In this study, we used high resolution data (250 m grid size) from a newly developed hydrodynamic model to explore linkages between key physical drivers and occurrences of the cold-water coral Lophelia pertusa in selected areas of the NE...... and to provide decision support for marine spatial planning and conservation in the deep sea. Mohn et al., 2014.Linking benthic hydrodynamics and cold water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography 122, 92-104. Rengstorf et...

  15. Evaluation of the limit ice thickness for the hull of various Finnish-Swedish ice class vessels navigating in the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Pentti Kujala

    2018-05-01

    Full Text Available Selection of suitable ice class for ships operation is an important but not simple task. The increased exploitation of the Polar waters, both seasonal periods and geographical areas, as well as the introduction of new international design standards such as Polar Code, reduces the relevancy of using existing experience as basis for the selection, and new methods and knowledge have to be developed. This paper will analyse what can be the limiting ice thickness for ships navigating in the Russian Arctic and designed according to the Finnish-Swedish ice class rules. The permanent deformations of ice-strengthened shell structures for various ice classes is determined using MT Uikku as the typical size of a vessel navigating in ice. The ice load in various conditions is determined using the ARCDEV data from the winter 1998 as the basic database. By comparing the measured load in various ice conditions with the serviceability limit state of the structures, the limiting ice thickness for various ice classes is determined. The database for maximum loads includes 3-weeks ice load measurements during April 1998 on the Kara Sea mainly by icebreaker assistance. Gumbel 1 distribution is fitted on the measured 20 min maximum values and the data is divided into various classes using ship speed, ice thickness and ice concentration as the main parameters. Results encouragingly show that present designs are safer than assumed in the Polar Code suggesting that assisted operation in Arctic conditions is feasible in rougher conditions than indicated in the Polar Code. Keywords: Loads, Serviceability, Limit ice thickness, Polar code

  16. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises

    Directory of Open Access Journals (Sweden)

    Kane J. Hayter

    2016-03-01

    Full Text Available This study examined the effects of cold-water immersion (CWI and cold air therapy (CAT on maximal cycling performance (i.e. anaerobic power and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10 and female (n = 10 participants were randomised into either: CWI (15 min in 14 °C water to iliac crest or CAT (15 min in 14 °C air immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively. Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24, 48 (T48 and 72 (T72 h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05. However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90, T48 (8% ± 2%, ES = 0.64 and T72 (8% ± 7%, ES = 0.76. The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone.

  17. Investigating cold based summit glaciers through direct access to the glacier base: a case study constraining the maximum age of Chli Titlis glacier, Switzerland

    Science.gov (United States)

    Bohleber, Pascal; Hoffmann, Helene; Kerch, Johanna; Sold, Leo; Fischer, Andrea

    2018-01-01

    Cold glaciers at the highest locations of the European Alps have been investigated by drilling ice cores to retrieve their stratigraphic climate records. Findings like the Oetztal ice man have demonstrated that small ice bodies at summit locations of comparatively lower altitudes may also contain old ice if locally frozen to the underlying bedrock. In this case, constraining the maximum age of their lowermost ice part may help to identify past periods with minimum ice extent in the Alps. However, with recent warming and consequent glacier mass loss, these sites may not preserve their unique climate information for much longer. Here we utilized an existing ice cave at Chli Titlis (3030 m), central Switzerland, to perform a case study for investigating the maximum age of cold-based summit glaciers in the Alps. The cave offers direct access to the glacier stratigraphy without the logistical effort required in ice core drilling. In addition, a pioneering exploration had already demonstrated stagnant cold ice conditions at Chli Titlis, albeit more than 25 years ago. Our englacial temperature measurements and the analysis of the isotopic and physical properties of ice blocks sampled at three locations within the ice cave show that cold ice still exists fairly unchanged today. State-of-the-art micro-radiocarbon analysis constrains the maximum age of the ice at Chli Titlis to about 5000 years before present. By this means, the approach presented here will contribute to a future systematic investigation of cold-based summit glaciers, also in the Eastern Alps.

  18. An Assessment of the Icing Blade and the SEA Multi-Element Sensor for Liquid Water Content Calibration of the NASA GRC Icing Research Tunnel

    Science.gov (United States)

    Steen, Laura E.; Ide, Robert F.; Van Zante, Judith Foss

    2017-01-01

    The Icing Research Tunnel at NASA Glenn has recently switched to from using the Icing Blade to using the SEA Multi-Element Sensor (also known as the multi-wire) for its calibration of cloud liquid water content. In order to perform this transition, tests were completed to compare the Multi-Element Sensor to the Icing Blade, particularly with respect to liquid water content, airspeed, and drop size. The two instruments were found to compare well for the majority of Appendix C conditions. However, it was discovered that the Icing Blade under-measures when the conditions approach the Ludlam Limit. This paper also describes data processing procedures for the Multi-Element Sensor in the IRT, including collection efficiency corrections, mounting underneath a splitter plate, and correcting for a jump in the compensation wire power. Further data is presented to describe the repeatability of the IRT with the Multi-Element sensor, health-monitoring checks for the instrument, and a sensing-element configuration comparison.

  19. Effect of incorporation of natural chemicals in water ice-glazing on freshness and shelf-life of Pacific saury (Cololabis saira) during -18 °C frozen storage.

    Science.gov (United States)

    Luo, Haibo; Wang, Weihua; Chen, Wei; Tang, Haiqing; Jiang, Li; Yu, Zhifang

    2017-12-14

    Microbial spoilage and lipid oxidation are two major factors causing freshness deterioration of Pacific saury (Cololabis saira) during frozen storage. To provide a remedy, the effects of several natural chemicals incorporated alone or in combination in traditional water ice-glazing on the freshness and shelf-life of Pacific saury during frozen storage at -18 °C were investigated. Pacific sauries were subjected to individual quick freezing followed immediately by dipping into cold tap water (control) or solutions containing nisin, chitosan, phytic acid (single-factor experiment) or their combinations ((L 9 (3 4 ) orthogonal experiment) for 10 s at 1 °C and then packaged in polypropylene bags before frozen storage at -18 °C. The storage duration tested was up to 12 months. All ice-glazing treatments with individual chemicals could significantly (P shelf-life of Pacific saury could be extended up to 12 months at -18 °C. The study indicated that the combination treatment with natural chemicals could be commercially utilized to maintain the freshness and prolong the shelf-life of Pacific saury. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Design and characterization of a low cost CubeSat multi-band optical receiver to map water ice on the lunar surface for the Lunar Flashlight mission

    Science.gov (United States)

    Vinckier, Quentin; Crabtree, Karlton; Paine, Christopher G.; Hayne, Paul O.; Sellar, Glenn R.

    2017-08-01

    Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.

  1. An efficient synthesis of pyrazolo[1,5-a]pyrimidines and evaluation of ...

    Indian Academy of Sciences (India)

    methanol 9:1), reaction mixture was poured in ice cold water (10 mL) and further stirred for one hour. The solid obtained was suction filtered, washed with water, dried and ..... urea) (1 gm) and catalytic amount of glacial acetic acid. (2 drops) ...

  2. The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds

    Directory of Open Access Journals (Sweden)

    A. Wiacek

    2010-09-01

    Full Text Available This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons, without explicitly modelling dust emission and deposition processes. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high ice clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Downstream of the investigated dust sources, practically none of the simulated air parcels reached conditions of homogeneous ice nucleation (T≲−40 °C along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through atmospheric regions supersaturated with respect to ice but subsaturated with respect to water, where so-called "warm ice clouds" (T≳−40 °C theoretically may form prior to supercooled water or mixed-phase clouds. The importance of "warm ice

  3. Postexercise cold-water immersion improves intermittent high-intensity exercise performance in normothermia.

    Science.gov (United States)

    McCarthy, Avina; Mulligan, James; Egaña, Mikel

    2016-11-01

    A brief cold water immersion between 2 continuous high-intensity exercise bouts improves the performance of the latter compared with passive recovery in the heat. We investigated if this effect is apparent in normothermic conditions (∼19 °C), employing an intermittent high-intensity exercise designed to reflect the work performed at the high-intensity domain in team sports. Fifteen young active men completed 2 exhaustive cycling protocols (Ex1 and Ex2: 12 min at 85% ventilatory threshold (VT) and then an intermittent exercise alternating 30-s at 40% peak power (P peak ) and 30 s at 90% P peak to exhaustion) separated by 15 min of (i) passive rest, (ii) 5-min cold-water immersion at 8 °C, and (iii) 10-min cold-water immersion at 8 °C. Core temperature, heart rate, rates of perceived exertion, and oxygen uptake kinetics were not different during Ex1 among conditions. Time to failure during the intermittent exercise was significantly (P immersions (7.2 ± 3.5 min and 7.3 ± 3.3 min, respectively) compared with passive rest (5.8 ± 3.1 min). Core temperature, heart rate, and rates of perceived exertion were significantly (P immersions compared with passive rest. The time constant of phase II oxygen uptake response during the 85% VT bout of Ex2 was not different among the 3 conditions. A postexercise, 5- to 10-min cold-water immersion increases subsequent intermittent high-intensity exercise compared with passive rest in normothermia due, at least in part, to reductions in core temperature, circulatory strain, and effort perception.

  4. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.

    Science.gov (United States)

    Knopf, Daniel A; Alpert, Peter A

    2013-01-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  5. Effect of Warm Atlantic Waters on the Climate Anomalies in the West Arctic

    Directory of Open Access Journals (Sweden)

    A. N. Zolotokrylin

    2015-01-01

    Full Text Available Significant climatic changes of oceanic and atmospheric elements and a relation of them to the ocean surface winter anomalies in North Atlantic are analyzed in the paper. Periods of «warm» ocean (2002–2012 and «cold» ocean (1960–1970 were determined. Positive anomalies of the ocean surface temperature increase the ice-free water area and, correspondingly, decrease the ice-field area. As a result of such changes in a state of the ocean surface (open water and ice, surface air temperature rises, and, consequently, atmospheric pressure in central part of a given Arctic sector drops.

  6. Measurement of Tritium Activity in Plants by Ice Extraction Method

    International Nuclear Information System (INIS)

    Pelled, O.; Ovad, S.; Tubul, Y.; Tsroya, S.; Gonen, R.; Abraham, A.; Weinstein, M.; German, U.

    2014-01-01

    cell and causing its death. This process continues until the cells are almost totally dehydrated. In the temperature range of -20° to -60° C the intra-cellular water freeze forms 'sharp' ice crystals that cause the death of the cells. Water (H2O) and tritiated water (HTO) behave nearly identically in both liquid and vapour phases. The freeze-drying method, although relatively simple, requires the use of dedicated systems and is time consuming. When a plant is frozen in a closed bag, ice is accumulated on the exterior surface of the plant and in the plastic bag that contained the sample, producing a 'self-freeze drying' effect. This ice may be directly used for tritium evaluation if the tritium measurement results are compatible with the generally accepted freeze-drying (lyophilization) method. The present work presents a comparison of this simple Ice Extraction Method (IEM) for tritiated water analysis with the standard lyophilization method

  7. Does Hot Water Freeze Faster Than Cold? Or Why Mpemba's Ice Cream Is a Discrepant Event

    Science.gov (United States)

    Palmer, Bill

    1993-01-01

    A discrepant event is a happening contrary to our current beliefs. Discrepant events are said to be useful in clarifying concepts. This is one of the interesting features of current theories of constructivism. The story of Mpemba's ice cream is quite well known, but it is the educational aspects of the experiment that are of interest in this…

  8. Review of Ice-Induced Scour Impacts to Navigation and Structures

    Science.gov (United States)

    2017-07-17

    Channel Responses to River Ice. Journal of Cold Regions Engineering 164:191–217. ———. 2008. Ice Effects on Sediment Transport in Rivers. In...Chichester, UK: Wiley-Blackwell. Ettema, R., F. Braileanu, and M. Muste. 2000. Method for Estimating Sediment Transport in Ice-Covered Channels ... Sediment Transport in Ice-Covered Channels . International Journal of Sediment Research 301:63–67. ERDC SR-17-3 35 Knack, I. M., A. M. Tuthill

  9. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    Science.gov (United States)

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  10. NORTH PORTAL - DOMESTIC COLD WATER CALCULATION - CHANGE HOUSE FACILITY NO.5008

    International Nuclear Information System (INIS)

    Blackstone, R.

    1996-01-01

    The purpose of this design analysis and calculation is to determine the demand for domestic cold water and to size the supply main piping for the Change House Facility No.5008 in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculations is based on the Uniform Plumbing Code (UPC), Section 4.4.1. The first step is to determine the maximum pressure drop between the most remote cold water plumbing fixture and the main distribution supply. The developed length of pipe from the supply to the fixture is then determined from the plumbing drawings. The maximum pressure drop is then divided by the developed length which results in the friction loss per 100 feet of pipe. Equivalent fixture units are assigned from the UPC based on the actual fixture count which when totaled determines the water flow rate. The water flow rate and pressure drop are used to determine the pipe size based on a given velocity of flow

  11. Evaluation of radar reflectivity factor simulations of ice crystal populations from in situ observations for the retrieval of condensed water content in tropical mesoscale convective systems

    Directory of Open Access Journals (Sweden)

    E. Fontaine

    2017-06-01

    Full Text Available This study presents the evaluation of a technique to estimate cloud condensed water content (CWC in tropical convection from airborne cloud radar reflectivity factors at 94 GHz and in situ measurements of particle size distributions (PSDs and aspect ratios of ice crystal populations. The approach is to calculate from each 5 s mean PSD and flight-level reflectivity the variability of all possible solutions of m(D relationships fulfilling the condition that the simulated radar reflectivity factor (T-matrix method matches the measured radar reflectivity factor. For the reflectivity simulations, ice crystals were approximated as oblate spheroids, without using a priori assumptions on the mass–size relationship of ice crystals. The CWC calculations demonstrate that individual CWC values are in the range ±32 % of the retrieved average CWC value over all CWC solutions for the chosen 5 s time intervals. In addition, during the airborne field campaign performed out of Darwin in 2014, as part of the international High Altitude Ice Crystals/High Ice Water Content (HAIC/HIWC projects, CWCs were measured independently with the new IKP-2 (isokinetic evaporator probe instrument along with simultaneous particle imagery and radar reflectivity. Retrieved CWCs from the T-matrix radar reflectivity simulations are on average 16 % higher than the direct CWCIKP measurements. The differences between the CWCIKP and averaged retrieved CWCs are found to be primarily a function of the total number concentration of ice crystals. Consequently, a correction term is applied (as a function of total number concentration that significantly improves the retrieved CWC. After correction, the retrieved CWCs have a median relative error with respect to measured values of only −1 %. Uncertainties in the measurements of total concentration of hydrometeors are investigated in order to calculate their contribution to the relative error of calculated CWC with respect to

  12. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea

    Science.gov (United States)

    Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari

    2017-08-01

    The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO-LIM3.6-based ocean-sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.

  13. A Picture on the Wall: Innovative Mapping Reveals Cold-Water Coral Refuge in Submarine Canyon

    OpenAIRE

    Huvenne, Veerle A. I.; Tyler, Paul A.; Masson, Doug G.; Fisher, Elizabeth H.; Hauton, Chris; Huehnerbach, Veit; Le Bas, Timothy P.; Wolff, George A.

    2011-01-01

    Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has...

  14. Cold shock treatment extends shelf life of naturally ripened or ethylene-ripened avocado fruits.

    Science.gov (United States)

    Chen, Jiao; Liu, Xixia; Li, Fenfang; Li, Yixing; Yuan, Debao

    2017-01-01

    Avocado is an important tropical fruit with high commercial value, but has a relatively short storage life. In this study, the effects of cold shock treatment (CST) on shelf life of naturally ripened and ethylene-ripened avocado fruits were investigated. Fruits were immersed in ice water for 30 min, then subjected to natural or ethylene-induced ripening. Fruit color; firmness; respiration rate; ethylene production; and the activities of polygalacturonase (PG), pectin methylesterase (PME), and endo-β-1,4-glucanase were measured. Immersion in ice water for 30 min effectively delayed ripening-associated processes, including peel discoloration, pulp softening, respiration rate, and ethylene production during shelf life. The delay in fruit softening by CST was associated with decreased PG and endo-β-1,4-glucanase activities, but not PME activity. This method could potentially be a useful postharvest technology to extend shelf life of avocado fruits.

  15. Formation of large (≃100 μm ice crystals near the tropical tropopause

    Directory of Open Access Journals (Sweden)

    M. J. Alexander

    2008-03-01

    Full Text Available Recent high-altitude aircraft measurements with in situ imaging instruments indicated the presence of relatively large (≃100 μm length, thin (aspect ratios of ≃6:1 or larger hexagonal plate ice crystals near the tropical tropopause in very low concentrations (<0.01 L−1. These crystals were not produced by deep convection or aggregation. We use simple growth-sedimentation calculations as well as detailed cloud simulations to evaluate the conditions required to grow the large crystals. Uncertainties in crystal aspect ratio leave a range of possibilities, which could be constrained by knowledge of the water vapor concentration in the air where the crystal growth occurred. Unfortunately, water vapor measurements made in the cloud formation region near the tropopause with different instruments ranged from <2 ppmv to ≃3.5 ppmv. The higher water vapor concentrations correspond to very large ice supersaturations (relative humidities with respect to ice of about 200%. If the aspect ratios of the hexagonal plate crystals are as small as the image analysis suggests (6:1, see companion paper (Lawson et al., 2008 then growth of the large crystals before they sediment out of the supersaturated layer would only be possible if the water vapor concentration were on the high end of the range indicated by the different measurements (>3 ppmv. On the other hand, if the crystal aspect ratios are quite a bit larger (≃10:1, then H2O concentrations toward the low end of the measurement range (≃2–2.5 ppmv would suffice to grow the large crystals. Gravity-wave driven temperature and vertical wind perturbations only slightly modify the H2O concentrations needed to grow the crystals. We find that it would not be possible to grow the large crystals with water concentrations less than 2 ppmv, even with assumptions of a very high aspect ratio of 15 and steady upward motion of 2 cm s−1 to loft the crystals in the tropopause region. These calculations would seem

  16. Effect of cold work hardening on stress corrosion cracking of stainless steels in primary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Raquet, O.; Herms, E.; Vaillant, F.; Couvant, T.; Boursier, J.M.

    2004-01-01

    A R and D program is carried out in CEA and EDF laboratories to investigate separately the effects of factors which could contribute to IASCC mechanism. In the framework of this study, the influence of cold work on SCC of ASSs in primary water is studied to supply additional knowledge concerning the contribution of radiation hardening on IASCC of ASSs. Solution annealed ASSs, essentially of type AISI 304(L) and AISI 316(L), are generally considered very resistant to SCC in nominal primary water. However, Constant Extension Rate Tests (CERTs), performed on cold pressed humped specimens in nominal primary water at 360 deg. C, reveal that these materials can exhibit a high SCC susceptibility: deepest cracks reach 1 mm (mean crack growth rate about 1 μm.h -1 ) and propagation is mainly intergranular for 304L and mainly transgranular for 316L. Indeed, work hardening in conjunction with high localized deformation can promote SCC. The influence of the nature of the cold work (shot peening, reaming, cold rolling, counter sinking, fatigue work hardening and tensile deformation) is investigated by means of screening CERTs performed with smooth specimens in 304L at 360 deg. C. For a given cold work hardening level, the susceptibility to crack initiation strongly depends on the cold working process, and no propagation is observed for a hardness level lower than 300 ±10 HV(0.49N). The propagation of cracks is observed only for dynamic loadings like CERT, traction/relaxation tests and crack growth rate tests performed with CT specimens under trapezoidal loading. Although crack initiation is observed for constant load and constant deformation tests, crack propagation do not seem to occur under these mechanical solicitations for 17000 hours of testing, even for hardness levels higher than 450 HV(0.49N). The mean crack growth rate increases when the hardness increases. An important R and D program is in progress to complement these results and to develop a SCC model for ASSs in

  17. Electrophysiological and behavioural responses of turbot (Scophthalmus maximus) cooled in ices water

    NARCIS (Netherlands)

    Lambooij, E.; Bracke, M.B.M.; Reimert, H.G.M.; Foss, A.; Imsland, A.; Vis, van de J.W.

    2015-01-01

    Behavioural, neural and physiological aspects related to pre-slaughter cooling of turbot habituated to two environmental temperatures (18.7 and 12.0 °C) were investigated. Six fish in both treatments were immersed in ice water for 75 min. For control, four fish were immersed in water under their

  18. Preliminary modelling study of ice accretion on wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Marie Cecilie; Yin, Chungen

    2014-01-01

    One of the main challenges associated with cold-climate wind energy is icing on wind turbines and a series of icing-induced problems such as production loss, blade fatigue and safety issues. Because of the difficulties with on-site measurements, simulations are often used to understand and predic...

  19. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies

    Science.gov (United States)

    Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed

    2017-04-01

    Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary

  20. Evaporation Rates for Liquid Water and Ice Under Current Martian Conditions

    Science.gov (United States)

    Sears, D. W. G.; Moore, S. R.; Meier, A.; Chittenden, J.; Kareev, M.; Farmer, C. B.

    2004-01-01

    A number of studies have been concerned with the evaporation rates under martian conditions in order to place limits on the possible survival time of both liquid water and ice exposed on the surface of Mars. Such studies also aid in assessing the efficacy of an overlying layer of dust or loose regolith material in providing a barrier to free evaporation and thus prolong the lifetime of water in locations where its availability to putative living organisms would be significant. A better quantitative understanding of the effects of phase changes of water in the near surface environment would also aid the evaluation of the possible role of water in the formation of currently observed features, such as gullies in cliff walls and relatively short-term changes in the albedo of small surface areas ('dark stains'). Laboratory measurements aimed at refinement of our knowledge of these values are described here. The establishment of accurate values for evaporation rates and their dependence on the physical conditions of temperature, pressure and energy input, is an important benchmark for the further investigation of the efficacy of barriers to free evaporation in providing a prolonged period of survival of the water, particularly as a liquid.

  1. Measurements of cold and hot water in ten dwellings; Maetning av kall- och varmvatten i tio hushaall

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, Aasa; Nordman, Roger; Pettersson, Ulrik (Swedish National Testing and Research Inst., Boraas (Sweden))

    2008-07-01

    Reducing tap water consumption has considerable potential for reducing overall environmental impact. It not only saves fresh water, but also gives significant savings of energy that would otherwise have been needed to heat hot water. However, in order to improve the energy efficiency of building services systems and to help occupants act more energy-efficiently, more knowledge is needed on how water is used in our homes. Today, we actually know very little about usage patterns from one tapping point to another, or the division between cold and hot water use, and this study aims to help provide appropriate information. The aim of this project is to increase the knowledge of how tap water is used in Swedish households. The main purpose is to gain knowledge of how to decrease the energy use and for that reason the description of the use of hot water is essential. Measurement has been made of hot and cold water use at each tapping point in ten dwellings: four apartments in apartment buildings, and six single-family buildings. The households were of the following categories; single, young couple, middle-aged couple and families with children. The number of households is too low to represent the water use at national level, but can still contribute with important knowledge of how we use water in our homes. The results show the following division of tap water use: - wash basin: 19% (11 % hot water and 8 % cold water); - kitchen sink 41% (23 % hot water and 18 % cold water); - shower/bathtub 40% (27 % hot water and 13 % cold water). About 61% of the total water quantity is hot water (note that cold water for toilet flushing and for laundry is not included in the total water use). The proportions between tapping points are very similar for the dwellings in the apartment buildings and single-family houses, and the use of water in the shower/bathtub is essentially the same as the use in the kitchens. In the single-family buildings the water use in laundry rooms was measured

  2. Effects of menthol application on the skin during prolonged immersion in cool and cold water.

    Science.gov (United States)

    Botonis, P G; Kounalakis, S N; Cherouveim, E D; Koskolou, M D; Geladas, N D

    2018-03-01

    The aim of the study was to compare the effect of skin surface menthol application on rectal temperature (Tre) during prolonged immersion in cool and cold water. We hypothesized that menthol application would lead to a slower Tre decline due to the reduced heat loss as a consequence of the menthol-induced vasoconstriction and that this effect would be attenuated during cold-water immersion. Six male subjects were immersed for 55 minutes in stirred cool (24°C) or cold (14°C) water immediately after attaining a Tre of 38°C by cycling at 60% of maximum heart rate on two occasions: without (ΝM) and with (M) whole-body skin application of menthol cream. Tre, the proximal-distal skin temperature gradient, and oxygen uptake were continuously measured. ANOVA with repeated measures was employed to detect differences among variables. Significance level was set at 0.05. The area under the curve for Tre was calculated and was greater in 24°C M (-1.81 ± 8.22 a.u) compared to 24°C NM (-27.09 ± 19.09 a.u., P = .03, r = .90), 14°C NM (-18.08 ± 10.85 a.u., P = .03, r = .90), and 14°C M (-11.71 ± 12.58 a.u, P = .05, r = .81). In cool water, oxygen uptake and local vasoconstriction were increased (P ≤ .05) by 39 ± 25% and 56 ± 37%, respectively, with menthol compared to ΝM, while no differences were observed in cold water. Menthol application on the skin before prolonged immersion reduces heat loss resulting in a blunted Tre decline. However, such a response is less obvious at 14°C water immersion, possibly because high-threshold cold-sensitive fibers are already maximally recruited and the majority of cold receptors saturated. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. UV/Vis spectroscopy of C60 embedded in water ice

    DEFF Research Database (Denmark)

    Cuylle, Steven; Linnartz, Harold; Thrower, John

    2012-01-01

    Electronic solid state spectra are recorded for C60 embedded in 40 K water ice using broad band direct absorption spectroscopy, and assigned with reference to existing matrix data. The results are interesting in view of the recent gas phase detection of fullerenes in the interstellar medium...

  4. The Triaging and Treatment of Cold-Induced Injuries.

    Science.gov (United States)

    Sachs, Christoph; Lehnhardt, Marcus; Daigeler, Adrien; Goertz, Ole

    2015-10-30

    In Central Europe, cold-induced injuries are much less common than burns. In a burn center in western Germany, the mean ratio of these two types of injury over the past 10 years was 1 to 35. Because cold-induced injuries are so rare, physicians often do not know how to deal with them. This article is based on a review of publications (up to December 2014) retrieved by a selective search in PubMed using the terms "freezing," "frostbite injury," "non-freezing cold injury," and "frostbite review," as well as on the authors' clinical experience. Freezing and cold-induced trauma are part of the treatment spectrum in burn centers. The treatment of cold-induced injuries is not standardized and is based largely on case reports and observations of use. distinction is drawn between non-freezing injuries, in which there is a slow temperature drop in tissue without freezing, and freezing injuries in which ice crystals form in tissue. In all cases of cold-induced injury, the patient should be slowly warmed to 22°-27°C to prevent reperfusion injury. Freezing injuries are treated with warming of the body's core temperature and with the bathing of the affected body parts in warm water with added antiseptic agents. Any large or open vesicles that are already apparent should be debrided. To inhibit prostaglandin-mediated thrombosis, ibuprofen is given (12 mg/kg body weight b.i.d.). The treatment of cold-induced injuries is based on their type, severity, and timing. The recommendations above are grade C recommendations. The current approach to reperfusion has yielded promising initial results and should be further investigated in prospective studies.

  5. Mapping the depth to ice-cemented ground in the high elevation Dry Valleys, Antarctica

    Science.gov (United States)

    Marinova, M.; McKay, C. P.; Heldmann, J. L.; Davila, A. F.; Andersen, D. T.; Jackson, A.; Lacelle, D.; Paulsen, G.; Pollard, W. H.; Zacny, K.

    2011-12-01

    The high elevation Dry Valleys of Antarctica provide a unique location for the study of permafrost distribution and stability. In particular, the extremely arid and cold conditions preclude the presence of liquid water, and the exchange of water between the ice-cemented ground and the atmosphere is through vapour transport (diffusion). In addition, the low atmospheric humidity results in the desiccation of the subsurface, forming a dry permafrost layer (i.e., cryotic soils which are dry and not ice-cemented). Weather data suggests that subsurface ice is unstable under current climatic conditions. Yet we do find ice-cemented ground in these valleys. This contradiction provides insight into energy balance modeling, vapour transport, and additional climate effects which stabilize subsurface ice. To study the driving factors in the stability and distribution of ice-cemented ground, we have extensively mapped the depth to ice-cemented ground in University Valley (1730 m; 77°S 51.8', 160°E 43'), and three neighbouring valleys in the Beacon Valley area. We measured the depth to ice-cemented ground at 15-40 locations per valley by digging soil pits and drilling until ice was reached; for each location 3-5 measurements within a ~1 m2 area were averaged (see figure). This high-resolution mapping of the depth to ice-cemented ground provides new insight on the distribution and stability of subsurface ice, and shows significant variability in the depth to ground ice within each valley. We are combining data from mapping the depth to ice-cemented ground with year-round, in situ measurements of the atmospheric and subsurface conditions, such as temperature, humidity, wind, and light, to model the local stability of ice-cemented ground. We are using this dataset to examine the effects of slopes, shading, and soil properties, as well as the suggested importance of snow recurrence, to better understand diffusion-controlled subsurface ice stability.

  6. Physical Limits on Hmax, the Maximum Height of Glaciers and Ice Sheets

    Science.gov (United States)

    Lipovsky, B. P.

    2017-12-01

    The longest glaciers and ice sheets on Earth never achieve a topographic relief, or height, greater than about Hmax = 4 km. What laws govern this apparent maximum height to which a glacier or ice sheet may rise? Two types of answer appear possible: one relating to geological process and the other to ice dynamics. In the first type of answer, one might suppose that if Earth had 100 km tall mountains then there would be many 20 km tall glaciers. The counterpoint to this argument is that recent evidence suggests that glaciers themselves limit the maximum height of mountain ranges. We turn, then, to ice dynamical explanations for Hmax. The classical ice dynamical theory of Nye (1951), however, does not predict any break in scaling to give rise to a maximum height, Hmax. I present a simple model for the height of glaciers and ice sheets. The expression is derived from a simplified representation of a thermomechanically coupled ice sheet that experiences a basal shear stress governed by Coulomb friction (i.e., a stress proportional to the overburden pressure minus the water pressure). I compare this model to satellite-derived digital elevation map measurements of glacier surface height profiles for the 200,000 glaciers in the Randolph Glacier Inventory (Pfeffer et al., 2014) as well as flowlines from the Greenland and Antarctic Ice Sheets. The simplified model provides a surprisingly good fit to these global observations. Small glaciers less than 1 km in length are characterized by having negligible influence of basal melt water, cold ( -15C) beds, and high surface slopes ( 30 deg). Glaciers longer than a critical distance 30km are characterized by having an ice-bed interface that is weakened by the presence of meltwater and is therefore not capable of supporting steep surface slopes. The simplified model makes predictions of ice volume change as a function of surface temperature, accumulation rate, and geothermal heat flux. For this reason, it provides insights into

  7. Estimating Past Temperature Change in Antarctica Based on Ice Core Stable Water Isotope Diffusion

    Science.gov (United States)

    Kahle, E. C.; Markle, B. R.; Holme, C.; Jones, T. R.; Steig, E. J.

    2017-12-01

    The magnitude of the last glacial-interglacial transition is a key target for constraining climate sensitivity on long timescales. Ice core proxy records and general circulation models (GCMs) both provide insight on the magnitude of climate change through the last glacial-interglacial transition, but appear to provide different answers. In particular, the magnitude of the glacial-interglacial temperature change reconstructed from East Antarctic ice-core water-isotope records is greater ( 9 degrees C) than that from most GCM simulations ( 6 degrees C). A possible source of this difference is error in the linear-scaling of water isotopes to temperature. We employ a novel, nonlinear temperature-reconstruction technique using the physics of water-isotope diffusion to infer past temperature. Based on new, ice-core data from the South Pole, this diffusion technique suggests East Antarctic temperature change was smaller than previously thought. We are able to confirm this result using a simple, water-isotope fractionation model to nonlinearly reconstruct temperature change at ice core locations across Antarctica based on combined oxygen and hydrogen isotope ratios. Both methods produce a temperature change of 6 degrees C for South Pole, agreeing with GCM results for East Antarctica. Furthermore, both produce much larger changes in West Antarctica, also in agreement with GCM results and independent borehole thermometry. These results support the fidelity of GCMs in simulating last glacial maximum climate, and contradict the idea, based on previous work, that the climate sensitivity of current GCMs is too low.

  8. Great Lakes Daily Ice Observations at NOAA Water Level Gauge Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains daily visual ice observations taken yearly from 1 November to 30 April at NOAA/National Ocean Service water level gauge sites in the Great...

  9. Siple Dome ice reveals two modes of millennial CO2 change during the last ice age

    Science.gov (United States)

    Ahn, Jinho; Brook, Edward J.

    2014-01-01

    Reconstruction of atmospheric CO2 during times of past abrupt climate change may help us better understand climate-carbon cycle feedbacks. Previous ice core studies reveal simultaneous increases in atmospheric CO2 and Antarctic temperature during times when Greenland and the northern hemisphere experienced very long, cold stadial conditions during the last ice age. Whether this relationship extends to all of the numerous stadial events in the Greenland ice core record has not been clear. Here we present a high-resolution record of atmospheric CO2 from the Siple Dome ice core, Antarctica for part of the last ice age. We find that CO2 does not significantly change during the short Greenlandic stadial events, implying that the climate system perturbation that produced the short stadials was not strong enough to substantially alter the carbon cycle. PMID:24781344

  10. Endmembers of Ice Shelf Melt

    Science.gov (United States)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  11. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev; Chan, Derek Y.  C.; Thoroddsen, Sigurdur T

    2015-01-01

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  12. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  13. Enzyme-assisted peeling of cold water shrimps (Pandalus borealis)

    DEFF Research Database (Denmark)

    Dang, Tem Thi; Gringer, Nina; Jessen, Flemming

    2018-01-01

    An enzymatic method to facilitate the peeling of cold water shrimps (Pandalus borealis) was developed. The protease solutions were used to mature the shrimps to promote shell-loosening prior to peeling. The efficiency of peeling enzyme-treated shrimps was evaluated by a new quantitative measurement......L and 0.25% Exocut-A0 for 20 h resulted in the best peeling of shrimps (100% completely peeled shrimps, 3 mJ/g work and 89% meat yield). Reuse of the enzyme solution was possible due to a 95% retention rate of proteolytic activity after two 20-h cycles of maturation. The studied enzymatic maturation...... of shrimp. This approach would benefit the shrimp processing industry by 1) enhancing peeling efficiency that includes least efforts to remove the shell, high rate of completely peeled shrimps and high meat yield; 2) shortening the duration of maturation but still sufficiently loosening the shell...

  14. Performance evaluation approach for the supercritical helium cold circulators of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Vaghela, H.; Sarkar, B.; Bhattacharya, R.; Kapoor, H. [ITER-India, Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar-382428 (India); Chalifour, M.; Chang, H.-S.; Serio, L. [ITER Organization, Route de Vinon sur Verdon - 13115 St Paul Lez Durance (France)

    2014-01-29

    The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe cold circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.

  15. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind l -1, median 40 ind l -1), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind m -2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of

  16. Chillers and cold water units. Special issue; Chillers en koudwateraggregaten. Thema

    Energy Technology Data Exchange (ETDEWEB)

    Van Zwam, P. [GEA Refrigeration Components Benelux, Den Bosch (Netherlands); Meijer, W. [Daikin Airconditioning Netherlands, Rotterdam (Netherlands); Torsy, E. [Trane Airconditioning, Soest (Netherlands); Berends, E. [GEA Grenco Refrigeration, Den Bosch (Netherlands); Havenaar, D. (ed.)

    2010-05-15

    In five articles attention is paid to several aspects of chillers and cold water units: (1) reduction of refrigerants and increase of the COP; (2) realization of high partial load efficiency in mono-screw compressors; (3) energy efficient innovation for cooling and heat pump systems; (4) application of modern chiller technology for a skating rink of Sportboulevard, Dordrecht, Netherlands; and (5) the use of propane as a refrigerant in air-cooled cold water units. [Dutch] In vijf artikelen wordt aandacht besteed aan verschillende aspecten van chillers en koudwateraggregaten: (1) minimaliseren van koudemiddeleninhoud en verhogen van de COP; (2) realisatie van hoge deellastrendementen met mono-schroefcompressoren; (3) energie efficiente innovaties voor koelmachine- en warmtepompsystemen; (4) toepassing van moderne chillertechnologie in de ijshal van Sportboulevard Dordrecht; en (5) het gebruik van propaan als koudemiddel in luchtgekoelde koudwateraggregaten.

  17. Spontaneous abrupt climate change due to an atmospheric blocking-sea-ice-ocean feedback in an unforced climate model simulation.

    Science.gov (United States)

    Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A; Livina, Valerie

    2013-12-03

    Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70 °N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change.

  18. The Effects of Multiple Cold Water Immersions on Indices of Muscle Damage

    Science.gov (United States)

    Goodall, Stuart; Howatson, Glyn

    2008-01-01

    The aim of this investigation was to elucidate the efficacy of repeated cold water immersions (CWI) in the recovery of exercise induced muscle damage. A randomised group consisting of eighteen males, mean ± s age, height and body mass were 24 ± 5 years, 1.82 ± 0.06 m and 85.7 ± 16.6 kg respectively, completed a bout of 100 drop jumps. Following the bout of damaging exercise, participants were randomly but equally assigned to either a 12 min CWI (15 ± 1 °C; n = 9) group who experienced immersions immediately post-exercise and every 24 h thereafter for the following 3 days, or a control group (no treatment; n = 9). Maximal voluntary contraction (MVC) of the knee extensors, creatine kinase activity (CK), muscle soreness (DOMS), range of motion (ROM) and limb girth were measured pre-exercise and then for the following 96 h at 24 h increments. In addition MVC was also recorded immediately post-exercise. Significant time effects were seen for MVC, CK, DOMS and limb girth (p 0.05). These results suggest that repeated CWI do not enhance recovery from a bout of damaging eccentric contractions. Key pointsCryotherapy, particularly cold water immersions are one of the most common interventions used in order to enhance recovery post-exercise.There is little empirical evidence demonstrating benefits from cold water immersions. Research evidence is equivocal, probably due to methodological inconsistencies.Our results show that the cryotherapy administered did not attenuate any markers of EIMD or enhance the recovery of function.We conclude that repeated cold water immersions are ineffective in the recovery from heavy plyometric exercise and suggest athletes and coaches should use caution before using this intervention as a recovery strategy PMID:24149455

  19. Thermal regime of an ice-wedge polygon landscape near Barrow, Alaska

    Science.gov (United States)

    Daanen, R. P.; Liljedahl, A. K.

    2017-12-01

    Tundra landscapes are changing all over the circumpolar Arctic due to permafrost degradation. Soil cracking and infilling of meltwater repeated over thousands of years form ice wedges, which produce the characteristic surface pattern of ice-wedge polygon tundra. Rapid top-down thawing of massive ice leads to differential ground subsidence and sets in motion a series of short- and long-term hydrological and ecological changes. Subsequent responses in the soil thermal regime drive further permafrost degradation and/or stabilization. Here we explore the soil thermal regime of an ice-wedge polygon terrain near Utqiagvik (formerly Barrow) with the Water balance Simulation Model (WaSiM). WaSiM is a hydro-thermal model developed to simulate the water balance at the watershed scale and was recently refined to represent the hydrological processes unique to cold climates. WaSiM includes modules that represent surface runoff, evapotranspiration, groundwater, and soil moisture, while active layer freezing and thawing is based on a direct coupling of hydrological and thermal processes. A new snow module expands the vadose zone calculations into the snow pack, allowing the model to simulate the snow as a porous medium similar to soil. Together with a snow redistribution algorithm based on local topography, this latest addition to WaSiM makes simulation of the ground thermal regime much more accurate during winter months. Effective representation of ground temperatures during winter is crucial in the simulation of the permafrost thermal regime and allows for refined predictions of future ice-wedge degradation or stabilization.

  20. Design of a cold neutron source for 25MeV Linac of CAB (Centro Atomico Bariloche - Argentina)

    International Nuclear Information System (INIS)

    Torres, Lourdes

    2006-01-01

    Cold neutrons are widely used in fields of research such as the dynamics of solids and liquids, the investigation of magnetic materials, material science, biology, and nuclear physics in general. Accelerator-based cold neutron sources have already proved to be well adapted to perform neutron scattering studies in all those fields.In this work we present the design of a cold neutron source in the electron Linac-based pulsed source at Centro Atomico Bariloche.The objective of this work is to develop an inexpensive yet efficient cold source with a simple moderator material.Although ideal materials for that purpose would be solid methane or liquid H2, due to economical and safety reasons light water ice, benzene or solid mesitylene were considered as cold moderators. In order to proceed with the design and optimization process of the neutron source, total cross sections for light water ice, benzene and mesitylene were measured at low temperature and thermal nuclear data libraries for such materials had to be developed.The purpose of these calculations was to optimize shape and size for the moderator at a working temperature.To calculations were performed using the MCNP-4C code and our libraries, together with files for (free-atom) carbon, hydrogen and oxygen at that temperature.The geometry studied consisted of a neutron source and different moderator (slab, cylindrical slab, grids, and sets premoderator - moderator with and without coupled).To simplify the system cooler, the slab geometry was changed to a coin shaped moderator using liquid nitrogen as cooler.From the variety of simulations performed, it was clear that a premoderator was necessary to obtain higher intensities.Furthermore, with a premoderator the thickness of the moderator was reduced, simplifying the cooling system.Finally, we adopted for our cold neutron source, a slab premoderator of PLE at room temperature, and a cylindrical moderator of mesitylene at 89K with a cooler system of stainless steel with

  1. Anomalous cold in the Pangaean tropics

    Science.gov (United States)

    Soreghan, G.S.; Soreghan, M.J.; Poulsen, C.J.; Young, R.A.; Eble, C.F.; Sweet, D.E.; Davogustto, O.C.

    2008-01-01

    The late Paleozoic archives the greatest glaciation of the Phanerozoic. Whereas high-latitude Gondwanan strata preserve widespread evidence for continental ice, the Permo-Carboniferous tropics have long been considered analogous to today's: warm and shielded from the highlatitude cold. Here, we report on glacial and periglacial indicators that record episodes of freezing continental temperatures in western equatorial Pangaea. An exhumed glacial valley and associated deposits record direct evidence for glaciation that extended to low paleoelevations in the ancestral Rocky Mountains. Furthermore, the Permo-Carboniferous archives the only known occurrence of widespread tropical loess in Earth's history; the volume, chemistry, and provenance of this loess(ite) is most consistent with glacial derivation. Together with emerging indicators for cold elsewhere in low-latitude Pangaea, these results suggest that tropical climate was not buffered from the high latitudes and may record glacial-interglacial climate shifts of very large magnitude. Coupled climate-ice sheet model simulations demonstrate that low atmospheric CO2 and solar luminosity alone cannot account for such cold, and that other factors must be considered in attempting to explain this 'best-known' analogue to our present Earth. ?? 2008 The Geological Society of America.

  2. Legionella species diversity and dynamics from surface reservoir to tap water: from cold adaptation to thermophily.

    Science.gov (United States)

    Lesnik, René; Brettar, Ingrid; Höfle, Manfred G

    2016-05-01

    Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8-14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8-40%) accompanied by 5-14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella.

  3. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    Science.gov (United States)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates

  4. Cold Storage for a Single-Family House in Italy

    OpenAIRE

    Luigi Mongibello; Giorgio Graditi

    2016-01-01

    This work deals with the operation, modeling, simulation, and cost evaluation of two different cold storage systems for a single-family house in Italy, that differ from one another on the cold storage material. The two materials used to perform the numerical simulations of the cold storage systems are represented by cold water and a phase change material (PCM), and the numerical simulations have been realized by means of numerical codes written in Matlab environment. The main finding of the p...

  5. Impact of prescribed Arctic sea ice thickness in simulations of the present and future climate

    Energy Technology Data Exchange (ETDEWEB)

    Krinner, Gerhard [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); INSU-CNRS and UJF Grenoble, Laboratoire de Glaciologie et Geophysique de l' Environnement (LGGE), 54 rue Moliere, BP 96, Saint Martin d' Heres Cedex (France); Rinke, Annette; Dethloff, Klaus [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); Gorodetskaya, Irina V. [INSU-CNRS and UJF Grenoble, Laboratoire de Glaciologie et Geophysique de l' Environnement (LGGE), 54 rue Moliere, BP 96, Saint Martin d' Heres Cedex (France)

    2010-09-15

    This paper describes atmospheric general circulation model climate change experiments in which the Arctic sea-ice thickness is either fixed to 3 m or somewhat more realistically parameterized in order to take into account essentially the spatial variability of Arctic sea-ice thickness, which is, to a first approximation, a function of ice type (perennial or seasonal). It is shown that, both at present and at the end of the twenty-first century (under the SRES-A1B greenhouse gas scenario), the impact of a variable sea-ice thickness compared to a uniform value is essentially limited to the cold seasons and the lower troposphere. However, because first-year ice is scarce in the Central Arctic today, but not under SRES-A1B conditions at the end of the twenty-first century, and because the impact of a sea-ice thickness reduction can be masked by changes of the open water fraction, the spatial and temporal patterns of the effect of sea-ice thinning on the atmosphere differ between the two periods considered. As a consequence, not only the climate simulated at a given period, but also the simulated Arctic climate change over the twenty-first century is affected by the way sea-ice thickness is prescribed. (orig.)

  6. Electron Density Dropout Near Enceladus in the Context of Water-Vapor and Water-Ice

    Science.gov (United States)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Johnson, R. E.; Kaiser, M. L.; Wahlund, J.-E.; Waite, J. H., Jr.

    2009-01-01

    On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from approximately 90 el/cubic cm to below 20 el/cubic cm that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process.

  7. Design, Construction, Testing and Evaluation of a Residential Ice Storage Air Conditioning System.

    Science.gov (United States)

    1982-11-01

    handler and chilled water coil from previous research. This was a necessity because of the financial constraints of ] the project. 2. The trailer was...Load lbs ice/12 hr Calculation Btuh req’d @ 8 FLEOB 1. NFPA 501 BM 25,043 1391 2. ACCA Manual J 27,571 1537 using manufacturer’sdata 3. ACCA Manual J...kilowatt hrf - ~0.197 (N da• y The equivalent ice requirement was estimated using the above data and 144 Btu/pound of ice. This does not account for any

  8. Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air.

    Science.gov (United States)

    Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro

    2018-02-13

    We carried out upper air measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold air domes overlying sea ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and sea ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.

  9. Atypical water lattices and their possible relevance to the amorphous ices: A density functional study

    Science.gov (United States)

    Anick, David J.

    2013-04-01

    Of the fifteen known crystalline forms of ice, eleven consist of a single topologically connected hydrogen bond network with four H-bonds at every O. The other four, Ices VI-VIII and XV, consist of two topologically connected networks, each with four H-bonds at every O. The networks interpenetrate but do not share H-bonds. This article presents two new periodic water lattice families whose topological connectivity is "atypical": they consist of many two-dimensional layers that share no H-bonds. Layers are held together only by dispersion forces. Within each layer there are still four H-bonds at each O. Called "Hexagonal Bilayer Water" (HBW) and "Pleated Sheet Water" (PSW), they have computed densities of about 1.1 g/mL and 1.3 g/mL respectively, and nearest neighbor O-coordination is 4.5 to 5.5 and 6 to 8 respectively. Using density functional theory (BLYP-D/TZVP), various proton ordered forms of HBW and PSW are optimized and categorized. There are simple pathways connecting Ice-Ih to HBW and HBW to PSW. Their computed properties suggest similarities to the high density and very high density amorphous ices (HDA and VHDA) respectively. It is unknown whether HDA, VHDA, and Low Density Amorphous Ice (LDA) are fully disordered glasses down to the molecular level, or whether there is some short-range local order. Based on estimated radial distribution functions (RDFs), one proton ordered form of HBW matches HDA best. The idea is explored that HDA could contain islands with this underlying structure, and likewise, that VHDA could contain regions of PSW. A "microlattice model version 1" (MLM1) is presented as a device to compare key experimental data on the amorphous ices with these atypical structures and with a microlattice form of Ice-XI for LDA. Resemblances are found with the amorphs' RDFs, densities, Raman spectra, and transition behaviors. There is not enough information in the static models to assign either a microlattice structure or a partial microlattice

  10. Exploring the utility of quantitative network design in evaluating Arctic sea ice thickness sampling strategies

    OpenAIRE

    Kaminski, T.; Kauker, F.; Eicken, H.; Karcher, M.

    2015-01-01

    We present a quantitative network design (QND) study of the Arctic sea ice-ocean system using a software tool that can evaluate hypothetical observational networks in a variational data assimilation system. For a demonstration, we evaluate two idealised flight transects derived from NASA's Operation IceBridge airborne ice surveys in terms of their potential to improve ten-day to five-month sea-ice forecasts. As target regions for the forecasts we select the Chukchi Sea, a...

  11. The Regional Water Cycle and Water Ice Clouds in the Tharsis - Valles Marineris System

    Science.gov (United States)

    Leung, C. W. S.; Rafkin, S. C.

    2017-12-01

    The regional atmospheric circulation on Mars is highly influenced by local topographic gradients. Terrain-following air parcels forced along the slopes of the major Tharsis volcanoes and the steep canyon walls of Valles Marineris significantly impact the local water vapor concentration and the associated conditions for cloud formation. Using a non-hydrostatic mesoscale atmospheric model with aerosol & cloud microphysics, we investigate the meteorological conditions for water ice cloud formation in the coupled Tharsis - Valles Marineris system near the aphelion season. The usage of a limited area regional model ensures that topographic slopes are well resolved compared to the typical resolutions of a global-coverage general circulation model. The effects of shadowing and slope angle geometries on the energy budget is also taken into account. Diurnal slope winds in complex terrains are typically characterized by the reversal of wind direction twice per sol: upslope during the day, and downslope at night. However, our simulation results of the regional circulation and diurnal water cycle indicate substantial asymmetries in the day-night circulation. The convergence of moist air masses enters Valles Marineris via easterly flows, whereas dry air sweep across the plateau of the canyon system from the south towards the north. We emphasize the non-uniform vertical distribution of water vapor in our model results. Water vapor mixing ratios in the lower planetary boundary layer may be factors greater than the mixing ratio aloft. Water ice clouds are important contributors to the climatic forcing on Mars, and their effects on the mesoscale circulations in the Tharsis - Valles Marineris region significantly contribute to the regional perturbations in the large-scale global atmospheric circulation.

  12. Constraining the Depth of Polar Ice Deposits and Evolution of Cold Traps on Mercury with Small Craters in Permanently Shadowed Regions

    Science.gov (United States)

    Deutsch, Ariel N.; Head, James W.; Neumann, Gregory A.; Chabot, Nancy L.

    2017-01-01

    Earth-based radar observations revealed highly reflective deposits at the poles of Mercury [e.g., 1], which collocate with permanently shadowed regions (PSRs) detected from both imagery and altimetry by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [e.g., 2]. MESSENGER also measured higher hydrogen concentrations at the north polar region, consistent with models for these deposits to be composed primarily of water ice [3]. Enigmatic to the characterization of ice deposits on Mercury is the thickness of these radar-bright features. A current minimum bound of several meters exists from the radar measurements, which show no drop in the radar cross section between 13- and 70-cm wavelength observations [4, 5]. A maximum thickness of 300 m is based on the lack of any statistically significant difference between the height of craters that host radar-bright deposits and those that do not [6]. More recently, this upper limit on the depth of a typical ice deposit has been lowered to approximately 150 m, in a study that found a mean excess thickness of 50 +/- 35 m of radar-bright deposits for 6 craters [7]. Refining such a constraint permits the derivation of a volumetric estimate of the total polar ice on Mercury, thus providing insight into possible sources of water ice on the planet. Here, we take a different approach to constrain the thickness of water-ice deposits. Permanently shadowed surfaces have been resolved in images acquired with the broadband filter on MESSENGER's wide-angle camera (WAC) using low levels of light scattered by crater walls and other topography [8]. These surfaces are not featureless and often host small craters (less than a few km in diameter). Here we utilize the presence of these small simple craters to constrain the thickness of the radar-bright ice deposits on Mercury. Specifically, we compare estimated depths made from depth-to-diameter ratios and depths from individual Mercury Laser Altimeter (MLA

  13. Petroleum activity in ice covered waters - development and operation phase. Focus of eventual consequential explanation

    International Nuclear Information System (INIS)

    Thomassen, J.; Andresen, K.H.; Moe, K.A.

    1996-06-01

    This report from a seminar relates to the petroleum activities in the Barentshavet north. The focal point was to put on petroleum activities in ice covered waters covering the drilling and operation phase, to identify discharges from various technical solutions, and to classify possible research requirements when mapping the impacts of such components. In addition to this approach, the seminar also focused on other factors regarding drilling and production activities in ice covered waters. 3 refs., 13 figs., 25 tabs

  14. Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products

    Science.gov (United States)

    Brown, Jennifer R.; Brox, Timothy I.; Vogt, Sarah J.; Seymour, Joseph D.; Skidmore, Mark L.; Codd, Sarah L.

    2012-12-01

    Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In this work, Nuclear Magnetic Resonance measurements of relaxation rates and molecular diffusion, useful for probing pore structure and transport dynamics in porous systems, were used to physically characterize the unfrozen vein network structure in ice and its response to the presence of metabolic products produced by V3519-10, a cold tolerant microorganism isolated from the Vostok ice core. Recent research has found microorganisms that can remain viable and even metabolically active within icy environments at sub-zero temperatures. One potential mechanism of survival for V3519-10 is secretion of an extracellular ice binding protein that binds to the prism face of ice crystals and inhibits ice recrystallization, a coarsening process resulting in crystal growth with ice aging. Understanding the impact of ice binding activity on the bulk vein network structure in ice is important to modeling of frozen geophysical systems and in development of ice interacting proteins for biotechnology applications, such as cryopreservation of cell lines, and manufacturing processes in food sciences. Here, we present the first observations of recrystallization inhibition in low porosity ice containing V3519-10 extracellular protein extract as measured with Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

  15. Tracking the evolution of a cold stress associated gene family in cold tolerant grasses

    DEFF Research Database (Denmark)

    Sandve, Simen R; Rudi, Heidi; Asp, Torben

    2008-01-01

    to the repeat motifs of the IRI-domain in cold tolerant grasses. Finally we show that the LRR-domain of carrot and grass IRI proteins both share homology to an Arabidopsis thaliana LRR-trans membrane protein kinase (LRR-TPK). Conclusion The diverse IRI-like genes identified in this study tell a tale...... of a complex evolutionary history including birth of an ice binding domain, a burst of gene duplication events after cold tolerant grasses radiated from rice, protein domain structure differentiation between paralogs, and sub- and/or neofunctionalisation of IRI-like proteins. From our sequence analysis we...

  16. Complete remission of severe idiopathic cold urticaria on interleukin-1 receptor antagonist (anakinra).

    NARCIS (Netherlands)

    Bodar, E.J.; Simon, A.; Visser, M. de; Meer, J.W.M. van der

    2009-01-01

    A 62-year-old patient had suffered from severe cold intolerance with an urticarial rash and oropharyngeal angio-oedema upon cold exposure since early childhood. This could be provoked by the ice cube test and by exposure in a cold room. Her family history was negative, and she did not carry any

  17. Complete remission of severe idiopathic cold urticaria on interleukin-1 receptor antagonist (anakinra)

    NARCIS (Netherlands)

    Bodar, E. J.; Simon, A.; de Visser, M.; van der Meer, J. W. M.

    2009-01-01

    A 62-year-old patient had suffered from severe cold intolerance with an urticarial rash and oropharyngeal angio-oedema upon cold exposure since early childhood. This could be provoked by the ice cube test and by exposure in a cold room. Her family history was negative, and she did not carry any

  18. Cold sprayed WO3 and TiO2 electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications.

    Science.gov (United States)

    Haisch, Christoph; Schneider, Jenny; Fleisch, Manuel; Gutzmann, Henning; Klassen, Thomas; Bahnemann, Detlef W

    2017-10-03

    Films prepared by cold spray have potential applications as photoanodes in electrochemical water splitting and waste water purification. In the present study cold sprayed photoelectrodes produced with WO 3 (active under visible light illumination) and TiO 2 (active under UV illumination) on titanium metal substrates were investigated as photoanodes for the oxidation of water and methanol, respectively. Methanol was chosen as organic model pollutant in acidic electrolytes. Main advantages of the cold sprayed photoelectrodes are the improved metal-semiconductor junctions and the superior mechanical stability. Additionally, the cold spray method can be utilized as a large-scale electrode fabrication technique for photoelectrochemical applications. Incident photon to current efficiencies reveal that cold sprayed TiO 2 /WO 3 photoanodes exhibit the best photoelectrochemical properties with regard to the water and methanol oxidation reactions in comparison with the benchmark photocatalyst Aeroxide TiO 2 P25 due to more efficient harvesting of the total solar light irradiation related to their smaller band gap energies.

  19. UAV applications for thermodynamic profiling: Emphasis on ice fog research

    Science.gov (United States)

    Gultepe, Ismail; Heymsfield, Andrew J.; Fernando, Harindra J. S.; Hoch, Sebastian W.; Ware, Randolph

    2016-04-01

    Ice fog occurs often over the Arctic, cold climatic, and mountainous regions for about 30% of time where temperature (T) can go down to -10°C or below. Ice Nucleation (IN) and cooling processes play an important role by the controlling the intensity of ice fog conditions that affect aviation application, transportation, and local climate. Ice fog can also occur at T above -10°C but close to 0°C it occurs due to freezing of supercooled droplets that include an IN. To better document ice fog conditions, observations from the ice fog events of the Indirect and Semi-Direct Aerosol effects on Climate (ISDAC) project, Barrow, Alaska, Fog Remote Sensing And Modeling (FRAM) project Yellowknife, Northwest Territories, and the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) project, Heber City, Utah, were analyzed.. Measurements difficulties of small ice fog particles at cold temperatures and low-level flying restrictions prevent observations from aircraft within the surface boundary layer. However, unmanned Aerial Vehicles (UAVs) can be operated safely to measure IN number concentration, Relative Humidity with respect to ice (RHi), T, horizontal wind speed (Uh) and direction, and ice crystal spectra less than about 500 micron. Thermodynamic profiling by a Radiometrics Profiling Microwave Radiometer (PMWR) and Vaisala CL51 ceilometer was used to describe ice fog conditions in the vertical and its time development. In this presentation, ice fog characteristics and its thermodynamic environment will be presented using both ground-based and airborne platforms such as a UAV with new sensors. Some examples of measurements from the UAV for future research, and challenges related to both ice fog measurements and visibility parameterization will also be presented.

  20. Photoionization in Ultraviolet Processing of Astrophysical Ice Analogs at Cryogenic Temperatures

    Science.gov (United States)

    Woon, David E.

    2004-01-01

    Two recent experimental studies have demonstrated that amino acids or amino acid precursors are generated when astrophysical ice analogs are subjected to ultraviolet (UV) irradiation at cryogenic temperatures. Understanding the complete phenomenology of photoprocessing is critical to elucidating chemical reaction mechanisms that can function within an ice matrix under very cold conditions. Pushing beyond the much better characterized study of photolytic dissociation of chemical bonds through electronic excitation, this work explored the ability of UV radiation present in the interstellar medium to ionize small molecules embedded in ices. Quantum chemical calculations, including bulk solvation effects, were used to study the ionization of hydrogen (H2), water, and methanol (CH3OH) bound in small clusters of water. Ionization potentials were found to be much smaller in the condensed phase than in the gas phase; even a small cluster can account for large changes in the ionization potentials in ice, as well as the known formation of an OH--H3O+ pair in the case of H2O photoionization. To gauge the impact of photoionization on subsequent grain chemistry, the reaction between OH and CO in the presence of H3O+ was studied and compared with the potential energy surface without hydronium present, which is relevant to chemistry following photolysis. The differences indicate that the reaction is somewhat more likely to proceed to products (H + CO2) in the case of photoionization.