WorldWideScience

Sample records for cold-water coral mound

  1. The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation

    Science.gov (United States)

    Wienberg, Claudia; Titschack, Jürgen; Freiwald, André; Frank, Norbert; Lundälv, Tomas; Taviani, Marco; Beuck, Lydia; Schröder-Ritzrau, Andrea; Krengel, Thomas; Hebbeln, Dierk

    2018-04-01

    The largest coherent cold-water coral (CWC) mound province in the Atlantic Ocean exists along the Mauritanian margin, where up to 100 m high mounds extend over a distance of ∼400 km, arranged in two slope-parallel chains in 400-550 m water depth. Additionally, CWCs are present in the numerous submarine canyons with isolated coral mounds being developed on some canyon flanks. Seventy-seven Uranium-series coral ages were assessed to elucidate the timing of CWC colonisation and coral mound development along the Mauritanian margin for the last ∼120,000 years. Our results show that CWCs were present on the mounds during the Last Interglacial, though in low numbers corresponding to coral mound aggradation rates of 16 cm kyr-1. Most prolific periods for CWC growth are identified for the last glacial and deglaciation, resulting in enhanced mound aggradation (>1000 cm kyr-1), before mound formation stagnated along the entire margin with the onset of the Holocene. Until today, the Mauritanian mounds are in a dormant state with only scarce CWC growth. In the canyons, live CWCs are abundant since the Late Holocene at least. Thus, the canyons may serve as a refuge to CWCs potentially enabling the observed modest re-colonisation pulse on the mounds along the open slope. The timing and rate of the pre-Holocene coral mound aggradation, and the cessation of mound formation varied between the individual mounds, which was likely the consequence of vertical/lateral changes in water mass structure that placed the mounds near or out of oxygen-depleted waters, respectively.

  2. Cold-water coral mounds on the Pen Duick Escarpment, Gulf of Cadiz: The MiCROSYSTEMS project approach

    NARCIS (Netherlands)

    Van Rooij, D.; Blamart, D.; De Mol, L.; Mienis, F.; Pirlet, H.; Wehrmann, L. M.; Barbieri, R.; Maignien, L.; Templer, S. P.; de Haas, H.; Hebbeln, D.; Frank, N.; Larmagnat, S.; Stadnitskaia, A.; Stivaletta, N.; van Weering, T.; Zhang, Y.; Hamoumi, N.; Cnudde, V.; Duyck, P.; Henriet, J.-P.; The MiCROSYSTEMS MD 169 Shipboard Party

    2011-01-01

    Here we present a case study of three cold-water coral mounds in a juvenile growth stage on top of the Pen Duick Escarpment in the Gulf of Cadiz; Alpha, Beta and Gamma mounds. Although cold-water corals are a common feature on the adjacent cliffs, mud volcanoes and open slope, no actual living

  3. IODP Expedition 307 Drills Cold-Water Coral Mound Along the Irish Continental Margin

    Directory of Open Access Journals (Sweden)

    Trevor Williams

    2006-03-01

    Full Text Available Introduction Over the past decade, oceanographic and geophysical surveys along the slope of the Porcupine Seabight off the southwestern continental margin of Ireland have identified upwards of a thousand enigmatic mound-like structures (Figs. 1 and 2. The mounds of the Porcupine Seabight rise from the seafl oor in water depths of 600–900 m and formimpressive conical bodies several kilometers wide and up to 200 m high. Although a few mounds such as Thérèse Mound and Galway Mound are covered by a thriving thicket of coldwater corals, most mound tops and fl anks are covered by dead coral rubble or are entirely buried by sediment (De Mol et al., 2002; Fig. 2, Beyer et al., 2003. Lophelia pertusa (Fig.3 and Madrepora oculata are the most prominent cold-water corals growing without photosynthetic symbionts. The widespread discovery of large and numerous coral-bearing banks and the association of these corals with the mounds have generated signifi cant interest as to the composition, origin and development of these mound structures.Challenger Mound, in the Belgica mound province, has an elongated shape oriented along a north-northeast to south-southwest axis and ispartially buried under Pleistocene drift sediments. In high-resolution seismic profiles the mounds appear to root on an erosion surface (van Rooij et al., 2003. During IODP Expedition307 the Challenger Mound in the Porcupine Seabight was drilled with the goal of unveiling the origin and depositional processes withinthese intriguing sedimentary structures. Challenger Mound, unlike its near neighbors the Thérèse and Galway mounds, has little to no livecoral coverage and, therefore, was chosen as the main target for drilling activities, so that no living ecosystem would be disturbed.

  4. Mapping of Cold-Water Coral Carbonate Mounds Based on Geomorphometric Features: An Object-Based Approach

    Directory of Open Access Journals (Sweden)

    Markus Diesing

    2018-01-01

    Full Text Available Cold-water coral reefs are rich, yet fragile ecosystems found in colder oceanic waters. Knowledge of their spatial distribution on continental shelves, slopes, seamounts and ridge systems is vital for marine spatial planning and conservation. Cold-water corals frequently form conspicuous carbonate mounds of varying sizes, which are identifiable from multibeam echosounder bathymetry and derived geomorphometric attributes. However, the often-large number of mounds makes manual interpretation and mapping a tedious process. We present a methodology that combines image segmentation and random forest spatial prediction with the aim to derive maps of carbonate mounds and an associated measure of confidence. We demonstrate our method based on multibeam echosounder data from Iverryggen on the mid-Norwegian shelf. We identified the image-object mean planar curvature as the most important predictor. The presence and absence of carbonate mounds is mapped with high accuracy. Spatially-explicit confidence in the predictions is derived from the predicted probability and whether the predictions are within or outside the modelled range of values and is generally high. We plan to apply the showcased method to other areas of the Norwegian continental shelf and slope where multibeam echosounder data have been collected with the aim to provide crucial information for marine spatial planning.

  5. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    NARCIS (Netherlands)

    Soetaert, K.; Mohn, C.; Rengstorf, A.; Grehan, A.; Van Oevelen, D.

    2016-01-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces

  6. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic

    Science.gov (United States)

    Mohn, Christian; Rengstorf, Anna; White, Martin; Duineveld, Gerard; Mienis, Furu; Soetaert, Karline; Grehan, Anthony

    2014-03-01

    Observations from numerous cold-water coral locations in the NE Atlantic show energetic near-bottom flow dynamics along the European continental margin at individual coral mounds and mound clusters. Dynamics are largely controlled by tide-topography interaction generating and enhancing periodic motions such as trapped waves, freely propagating internal tides and internal hydraulic jumps. In this study, linkages between key abiotic parameters and cold water coral occurrences are explored across entire cold-water coral mound provinces using an integrated modelling and observational approach. The 3-D ocean circulation model ROMS-AGRIF was applied to simulate near-bottom hydrodynamic conditions at three provinces in the NE Atlantic (Logachev mounds, Arc mounds and Belgica mounds) adopting a nested model setup with a central grid resolution of 250 m. Simulations were carried out with a focus on accurate high-resolution topography and tidal forcing. The central model bathymetry was taken from high-resolution INSS (Irish National Seabed Survey) seafloor mapping data. The model was integrated over a full one-year reference period starting from the 1st January 2010. Interannual variability was not considered. Tidal forcing was obtained from a global solution of the Oregon State University (OSU) inverse tidal model. Modelled fields of benthic currents were validated against available independent in situ observations. Coral assemblage patterns (presence and absence locations) were obtained from benthic surveys of the EU FP7 CoralFISH programme and supplemented by data from additional field surveys. Modelled near-bottom currents, temperature and salinity were analysed for a 1-month subset (15th April to 15th May 2010) corresponding to the main CoralFISH survey period. The model results show intensified near-bottom currents in areas where living corals are observed by contrast with coral absence and random background locations. Instantaneous and time-mean current speeds at

  7. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic

    NARCIS (Netherlands)

    Mohn, C.; Rengstorf, A.; White, M.; Mienis, F.; Soetaert, K.; Grehan, A.; Duineveld, G.

    2014-01-01

    Observations from numerous cold-water coral locations in the NE Atlantic show energetic near-bottom flow dynamics along the European continental margin at individual coral mounds and mound clusters. Dynamics are largely controlled by tide-topography interaction generating and enhancing periodic

  8. The giant cold-water coral mound as a nested microbial/metazoan system: physical, chemical, biological and geological picture (ESF EuroDiversity MiCROSYSTEMS)

    Science.gov (United States)

    Henriet, J. P.; Microsystems Team

    2009-04-01

    The MiCROSYSTEMS project under the ESF EUROCORES EuroDiversity scheme is a holistic and multi-scale approach in studying microbial diversity and functionality in a nested microbial/metazoan system, which thrives in deep waters: the giant cold-water coral mound. Studies on prolific cold-water coral sites have been carried out from the canyons of the Bay of Biscay to the fjords of the Norwegian margin, while the Pen Duick carbonate mound province off Morocco developed into a joint natural lab for studying in particular the impact of biogeochemical and microbial processes on modern sedimentary diagenesis within the reef sediments, in complement to the studies on I0DP Exp. 307 cores (Challenger Mound, off Ireland). Major outcomes of this research can be summarized as follows. • IODP Exp. 307 on Challenger Mound had revealed a significant prokaryotic community both within and beneath the carbonate mound. MiCROSYSTEMS unveils a remarkable degree of compartmentalization in such community from the seawater, the coral skeleton surface and mucus to the reef sediments. The occurrence of such multiple and distinct microbial compartments associated with cold-water coral ecosystems promotes opportunities for microbial diversity in the deep ocean. • New cases of co-habitation of cold-water corals and giant deep-water oysters were discovered in the Bay of Biscay, which add a new facet of macrofaunal diversity to cold-water coral reef systems. • The discovery of giant, ancient coral graveyards on the Moroccan mounds not only fuels the debate about natural versus anthropogenic mass extinction, but these open frameworks simultaneously invite for the study of bio-erosion and early diagenesis, in particular organo-mineralization, and of the possible role and significance of these thick, solid rubble patches in 3D mound-building and consolidation. • The assessment of the carbonate budget of a modern cold-water coral mound (Challenger Mound) reveals that only 33 to 40 wt % of

  9. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    Science.gov (United States)

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  10. Present and past Gulf Stream variability in a cold-water coral area off Cape Lookout, West Atlantic

    Science.gov (United States)

    Mienis, F.; Pedersen, A.; Duineveld, G.; Seidenkrantz, M.; Fischel, A.; Matos, L.; Bane, J. M.; Frank, N.; Hebbeln, D.; Ross, S.

    2012-12-01

    Cold-water coral mounds are common on the SE slope of the US from Florida to Cape Hatteras between depths of 400-600 m. All coral areas lie in the vicinity of the Gulf Stream, which is characterized by strong currents transporting relatively warm water northwards. Thus far little is known about the recent and past environmental conditions inside the cold-water coral habitats on the SE US slope and particularly the effect of changing patterns of the Gulf Stream. Near Cape Lookout, which is the northern most cold-water coral area on the SE US slope, cold-water corals have formed mounds up to 60 m high with a tear drop shape, which are oriented in a SSW-NNE direction. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. Two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Furthermore, a 3.6 m long piston core was collected in 2010 during a cruise with the R.V. Pelagia. This pistoncore was used to determine the changes of current strength through time, using foraminiferal counts, stable oxygen and carbon isotopes on foraminifera, XRF and magnetic susceptibility measurements. Cold-water coral fragments were dated with U/Th and foraminifera from the same depth interval were dated with C14. Bottom landers have recorded a number of events that are characterized by of peaks in temperature and salinity, coinciding with increased flow and turbidity. The current during these events was directed to the NNE. During some of these events temperature rose up to 9 degrees in one day. The temporary replacement of the colder bottom water by warm (and saline) water in combination with the strong currents to the NNE

  11. A Picture on the Wall: Innovative Mapping Reveals Cold-Water Coral Refuge in Submarine Canyon

    OpenAIRE

    Huvenne, Veerle A. I.; Tyler, Paul A.; Masson, Doug G.; Fisher, Elizabeth H.; Hauton, Chris; Huehnerbach, Veit; Le Bas, Timothy P.; Wolff, George A.

    2011-01-01

    Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has...

  12. Cold-water coral banks and submarine landslides: a review

    Science.gov (United States)

    de Mol, Ben; Huvenne, Veerle; Canals, Miquel

    2009-06-01

    This paper aims to review the relation between cold-water coral bank development and submarine landslides. Both are common features on continental margins, but so far it has not been reviewed which effect—if at all—they may have upon each other. Indirect and direct relations between coral banks and landslides are evaluated here, based on four case studies: the Magellan Mound Province in the Porcupine Seabight, where fossil coral banks appear partly on top of a buried slide deposit; the Sula Ridge Reef Complex and the Storegga landslide both off mid-Norway; and the Mauritania coral bank province, associated with the Mauritanian Slide Complex. For each of these locations, positive and negative relationships between both features are discussed, based on available datasets. Locally submarine landslides might directly favour coral bank development by creating substratum where corals can settle on, enhancing turbulence due to abrupt seabed morphological variations and, in some cases, causing fluid seepage. In turn, some of these processes may contribute to increased food availability and lower sedimentation rates. Landslides can also affect coral bank development by direct erosion of the coral banks, and by the instantaneous increase of turbidity, which may smother the corals. On the other hand, coral banks might have a stabilising function and delay or stop the headwall retrogradation of submarine landslides. Although local relationships can be deduced from these case studies, no general and direct relationship exists between submarine landslides and cold-water coral banks.

  13. Diversity And Abundance Of Deep-Water Coral Mounds In The Straits Of Florida: A Result of Adaptability To Local Environments?

    Science.gov (United States)

    Correa, T. B.; Grasmueck, M.; Eberli, G.; Viggiano, D. A.; Rosenberg, A.; Reed, J. K.

    2007-12-01

    To improve the understanding of the Florida-Bahamas deep-water coral mound ecosystem, Autonomous Underwater Vehicle (AUV) surveys were conducted on five coral mound fields throughout the Straits of Florida (three sites at the base of slope of Great Bahama Bank (GBB), one in the middle of the Straits (MS) and one at the base of the Miami Terrace (MT)) in water depths of 590 to 860 m. The AUV provides high-resolution bathymetric maps, sub-bottom profiles and oceanographic data. The AUV survey sites were subsequently groundtruthed via sample collection and video transects, using the Johnson Sealink submersible. Contrary to previous surveys, we found a high diversity in coral mound morphology between sites separated by 15 to 80 km. The MT site is characterized by sinusoidal coral mound ridges, while the MS site contains densely clustered small coral mounds. Meanwhile, mounds of the GBB region are better developed, with some individual mounds reaching up to 90 m in height. Benthic coverage of live corals also differs between sites; the GBB sites are characterized by mounds densely covered by large thickets of live corals, while small thickets of mostly dead corals dominate the MT and MS sites. Several environmental factors may explain these differences. For example, bottom current patterns change between sites. The MT and the MS sites have a unidirectional regime (southward or northward flow, respectively), whereas the GBB sites have a tidal current regime. Sedimentation patterns as depicted by sub-bottom profiles also vary between the sites; coral mounds in the GBB area appear to receive higher sediment input, which can significantly enhance mound growth rates as the reef framework baffles and traps mobile sediments. However, coral mounds that cannot keep-up with the sedimentation rate are buried. Therefore, in the high sedimentation areas of GBB, flourishing live coral mounds are limited to elevated positions (i.e. plateaus, ridges crests) where sediment accumulation

  14. Long-term monitoring reveals cold-water corals in extreme conditions off the southeast US coast

    Science.gov (United States)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Ross, S. W.; Lavaleye, M.; Van Weering, T.

    2011-12-01

    Cold-water corals are common on the SE slope of the US (SEUS) from Florida to Cape Hatteras between depths of 400-600 m. Near Cape Hatteras cold-water corals have formed mound structures that are up to 60 m high, which are mainly covered by living colonies of the coral species Lophelia pertusa. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. The coral areas lie in the vicinity of the Gulf Stream characterized by strong currents transporting relatively warm water northwards along the SEUS slope. Thus far little is known about the environmental conditions inside the SEUS coral communities and particularly the effects of the nearby Gulf Stream. In December 2009 two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Landers recorded temperature, fluorescence, turbidity, and current speed and direction. Furthermore, a sediment trap was mounted on the landers that collected material at a 16-days interval. A first analysis of the lander data shows that instability of the Gulf Stream causes rapid rises in temperature, current speed and turbidity lasting for days to more than a week. Peak temperature and turbidity levels are the highest measured in coral habitats studied so far. We did not see clear cut effects of Gulf Stream instabilities on the near bed flux of phytodetritus as opposed to reports of meanders inducing upwelling and enhanced production in the photic zone. Data analyzed so far suggest that cwc habitats of Cape Lookout experience extreme and adverse conditions for prolonged periods. The findings of this study are compared with methodologically similar studies that have been conducted in

  15. Long-term baited lander experiments at a cold-water coral community on Galway Mound (Belgica Mound Province, NE Atlantic)

    Science.gov (United States)

    Lavaleye, Marc; Duineveld, Gerard; Bergman, Magda; van den Beld, Inge

    2017-11-01

    A long-term lander employing a baited camera system was developed to study temporal variation in the presence of scavenging fish and invertebrates at a cold-water coral community on Galway Mound (Belgica Mound Province, NE Atlantic). The camera system was tested during two successful long-term deployments for periods of 6 and 12 months respectively. The baited system, consisting of two separate video cameras with infrared lights and a bait dispenser with 24 bait positions, recorded more than 15,500 clips of 17 s, regularly spread over both periods. New bait, consisting of sardines in oil, was offered at regular time intervals, and attracted scavengers over the whole period of deployment, and especially the crab Chaceon affinis did still eat from it till the end of the deployments. However, the attractiveness for some scavengers, i.e. amphipods, diminished quite quickly. In addition to invertebrate scavengers, namely C. affinis, two other crab species, amphipods, a shrimp and a starfish, also 7 species of fish were recorded near the bait, of which Lepidion eques was by far the most common. Though there was no concrete evidence for seasonal patterns, the observations showed substantial temporal variation in the abundance of several species, especially the crabs C. affinis and Bathynectes maravigna and the fish Phycis blennoides. It is concluded that long-term deployments of such a baited camera system can produce novel data. For instance such a system could be employed for monitoring impacts of disturbances on the deep-sea floor (e.g. mining), as we infer that mobile scavengers will be among the first organisms to show a visible reaction to any chemically and physically (noise, vibrations) alteration of the environment similar to a mine canary.

  16. The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound development and associated phosphatic deposition

    Science.gov (United States)

    Mazzini, A.; Akhmetzhanov, A.; Monteys, X.; Ivanov, M.

    2012-06-01

    The head of a canyon system extending along the western Porcupine Bank (west of Ireland) and which accommodates a large field of giant carbonate mounds was investigated during two cruises (INSS 2000 and TTR-13). Multibeam and sidescan sonar data (600-1,150 m water depth) suggest that the pre-existing seabed topography acts as a significant factor controlling mound distribution and shape. The mounds are concentrated along the edges of the canyon or are associated with a complex fault system traced around the canyon head, comprising escarpments up to 60 m high and several km long. The sampling for geochemical and petrographic analysis of numerous types of authigenic deposits was guided by sidescan sonar and video recordings. Calcite-cemented biogenic rubble was observed at the top and on the flanks of the carbonate mounds, being associated with both living and dead corals ( Lophelia pertusa, Madrepora oculata and occasional Desmophyllum cristagalli). This can plausibly be explained by dissolution of coral debris facilitated by strong currents along the mound tops and flanks. In turn, the dissolved carbon is recycled and precipitated as interstitial micrite. Calcite, dolomite and phosphatic hardgrounds were identified in samples from the escarpment framing the eastern part of the survey area. The laterally extensive phosphatic hardgrounds represent a novel discovery in the region, supplying hard substrata for the establishment of new coral colonies. Based on existing knowledge of regional oceanographic conditions, complemented with new CTD measurements, it is suggested that water column stratification, enhanced bottom currents, and upwelling facilitate the deposition of organic matter, followed by phosphatisation leading to the formation of phosphate-glauconite deposits. The occurrence of strong bottom currents was confirmed by means of video observations combined with acoustic and sampling data, providing circumstantial evidence of fine- to medium-grained sand

  17. The cold-water coral community as a hot spot of carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic)

    NARCIS (Netherlands)

    Van Oevelen, D.J.; Duineveld, G.; Lavaleye, M.; Mienis, F.; Soetaert, K.E.R.; Heip, C.H.R.

    2009-01-01

    We present a quantitative food-web analysis of the cold-water coral community, i.e., the assembly of living corals, dead coral branches and sediment beneath, associated with the reef-building Lophelia pertusa on the giant carbonate mounds at ~800-m depth at Rockall Bank. Carbon flows, 140 flows

  18. Mapping cold-water coral habitats at different scales within the Northern Ionian Sea (Central Mediterranean: an assessment of coral coverage and associated vulnerability.

    Directory of Open Access Journals (Sweden)

    Alessandra Savini

    Full Text Available In this study, we mapped the distribution of Cold-Water Coral (CWC habitats on the northern Ionian Margin (Mediterranean Sea, with an emphasis on assessing coral coverage at various spatial scales over an area of 2,000 km(2 between 120 and 1,400 m of water depth. Our work made use of a set of data obtained from ship-based research surveys. Multi-scale seafloor mapping data, video inspections, and previous results from sediment samples were integrated and analyzed using Geographic Information System (GIS-based tools. Results obtained from the application of spatial and textural analytical techniques to acoustic meso-scale maps (i.e. a Digital Terrain Model (DTM of the seafloor at a 40 m grid cell size and associated terrain parameters and large-scale maps (i.e. Side-Scan Sonar (SSS mosaics of 1 m in resolution ground-truthed using underwater video observations were integrated and revealed that, at the meso-scale level, the main morphological pattern (i.e. the aggregation of mound-like features associated with CWC habitat occurrences was widespread over a total area of 600 km(2. Single coral mounds were isolated from the DTM and represented the geomorphic proxies used to model coral distributions within the investigated area. Coral mounds spanned a total area of 68 km(2 where different coral facies (characterized using video analyses and mapped on SSS mosaics represent the dominant macro-habitat. We also mapped and classified anthropogenic threats that were identifiable within the examined videos, and, here, discuss their relationship to the mapped distribution of coral habitats and mounds. The combined results (from multi-scale habitat mapping and observations of the distribution of anthropogenic threats provide the first quantitative assessment of CWC coverage for a Mediterranean province and document the relevant role of seafloor geomorphology in influencing habitat vulnerability to different types of human pressures.

  19. Mapping cold-water coral habitats at different scales within the Northern Ionian Sea (Central Mediterranean): an assessment of coral coverage and associated vulnerability.

    Science.gov (United States)

    Savini, Alessandra; Vertino, Agostina; Marchese, Fabio; Beuck, Lydia; Freiwald, André

    2014-01-01

    In this study, we mapped the distribution of Cold-Water Coral (CWC) habitats on the northern Ionian Margin (Mediterranean Sea), with an emphasis on assessing coral coverage at various spatial scales over an area of 2,000 km(2) between 120 and 1,400 m of water depth. Our work made use of a set of data obtained from ship-based research surveys. Multi-scale seafloor mapping data, video inspections, and previous results from sediment samples were integrated and analyzed using Geographic Information System (GIS)-based tools. Results obtained from the application of spatial and textural analytical techniques to acoustic meso-scale maps (i.e. a Digital Terrain Model (DTM) of the seafloor at a 40 m grid cell size and associated terrain parameters) and large-scale maps (i.e. Side-Scan Sonar (SSS) mosaics of 1 m in resolution ground-truthed using underwater video observations) were integrated and revealed that, at the meso-scale level, the main morphological pattern (i.e. the aggregation of mound-like features) associated with CWC habitat occurrences was widespread over a total area of 600 km(2). Single coral mounds were isolated from the DTM and represented the geomorphic proxies used to model coral distributions within the investigated area. Coral mounds spanned a total area of 68 km(2) where different coral facies (characterized using video analyses and mapped on SSS mosaics) represent the dominant macro-habitat. We also mapped and classified anthropogenic threats that were identifiable within the examined videos, and, here, discuss their relationship to the mapped distribution of coral habitats and mounds. The combined results (from multi-scale habitat mapping and observations of the distribution of anthropogenic threats) provide the first quantitative assessment of CWC coverage for a Mediterranean province and document the relevant role of seafloor geomorphology in influencing habitat vulnerability to different types of human pressures.

  20. COCARDE: new view on old mounds - an international network of carbonate mound research

    Science.gov (United States)

    Rüggeberg, A.; Foubert, A.; Vertino, A.; van Rooij, D.; Spezzaferri, S.; Henriet, J.-P.; Dullo, W.-C.; Cocarde Science Community

    2012-04-01

    Carbonate mounds are important contributors of life in different settings, from warm-water to cold-water environments, and throughout geological history. Research on modern cold-water coral carbonate mounds over the last decades made a major contribution to our overall understanding of these particular sedimentary systems. By looking to the modern carbonate mound community with cold-water corals as main framework builders, some fundamental questions could be addressed, until now not yet explored in fossil mound settings. The international network COCARDE (http://www.cocarde.eu) is a platform for exploring new insights in carbonate mound research of recent and ancient mound systems. The aim of the COCARDE network is to bring together scientific communities, studying Recent carbonate mounds in midslope environments in the present ocean and investigating fossil mounds spanning the whole Phanerozoic time, respectively. Scientific challenges in modern and ancient carbonate mound research got well defined during the ESF Magellan Workshop COCARDE in Fribourg, Switzerland (21.-24.01.2009). The Special Volume Cold-water Carbonate Reservoir systems in Deep Environments - COCARDE (Marine Geology, Vol. 282) was the major outcome of this meeting and highlights the diversity of Recent carbonate mound studies. The following first joint Workshop and Field Seminar held in Oviedo, Spain (16.-20.09.2009) highlighted ongoing research from both Recent and fossil academic groups integrating the message from the industry. The field seminar focused on mounds from the Carboniferous platform of Asturias and Cantabria, already intensively visited by industrial and academic researchers. However, by comparing ancient, mixed carbonate-siliciclastic mound systems of Cantabria with the Recent ones in the Porcupine Seabight, striking similarities in their genesis and processes in mound development asked for an integrated drilling campaign to understand better the 3D internal mound build-up. The

  1. Trophic structure of cold-water coral communities revealed from the analysis of tissue isotopes and fatty acid composition

    NARCIS (Netherlands)

    Van Oevelen, D.; Duineveld, G.; Lavaleye, M.S.S.; Kutti, T.; Soetaert, K.

    2018-01-01

    The trophic structure of cold-water coral reef communities at two contrasting locations, the 800-m deep Belgica Mounds (Irish margin) and the 300-m deep Træna reefs (Norwegian Shelf), was investigated using stable isotope (δ13C and δ15N) and fatty-acid composition analysis. A broad range of

  2. A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon.

    Directory of Open Access Journals (Sweden)

    Veerle A I Huvenne

    Full Text Available Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked--quite literally--and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin.

  3. Evolution of body size, vision, and biodiversity of coral-associated organisms: evidence from fossil crustaceans in cold-water coral and tropical coral ecosystems.

    Science.gov (United States)

    Klompmaker, Adiël A; Jakobsen, Sten L; Lauridsen, Bodil W

    2016-06-16

    Modern cold-water coral and tropical coral environments harbor a highly diverse and ecologically important macrofauna of crustaceans that face elevated extinction risks due to reef decline. The effect of environmental conditions acting on decapod crustaceans comparing these two habitats is poorly understood today and in deep time. Here, we compare the biodiversity, eye socket height as a proxy for eye size, and body size of decapods in fossil cold-water and tropical reefs that formed prior to human disturbance. We show that decapod biodiversity is higher in fossil tropical reefs from The Netherlands, Italy, and Spain compared to that of the exceptionally well-preserved Paleocene (Danian) cold-water reef/mound ecosystem from Faxe (Denmark), where decapod diversity is highest in a more heterogeneous, mixed bryozoan-coral habitat instead of in coral and bryozoan-dominated facies. The relatively low diversity at Faxe was not influenced substantially by the preceding Cretaceous/Paleogene extinction event that is not apparent in the standing diversity of decapods in our analyses, or by sampling, preservation, and/or a latitudinal diversity gradient. Instead, the lower availability of food and fewer hiding places for decapods may explain this low diversity. Furthermore, decapods from Faxe are larger than those from tropical waters for half of the comparisons, which may be caused by a lower number of predators, the delayed maturity, and the increased life span of crustaceans in deeper, colder waters. Finally, deep-water specimens of the benthic crab Caloxanthus from Faxe exhibit a larger eye socket size compared to congeneric specimens from tropical reefs, suggesting that dim light conditions favored the evolution of relatively large eyes. The results suggest a strong habitat control on the biodiversity of crustaceans in coral-associated environments and that the diversity difference between deep, cold-water reefs and tropical reefs evolved at least ~63 million years ago

  4. Food selectivity and processing by the cold-water coral

    NARCIS (Netherlands)

    Van Oevelen, D.; Mueller, C.E.; Lundälv, T.; Middelburg, J.J.

    2016-01-01

    Cold-water corals form prominent reef ecosystemsalong ocean margins that depend on suspended resourcesproduced in surface waters. In this study, we investigatedfood processing of 13C and 15N labelled bacteria and algaeby the cold-water coral Lophelia pertusa. Coral respiration,tissue incorporation

  5. Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea.

    Directory of Open Access Journals (Sweden)

    Claudio Stalder

    Full Text Available Cold-water coral (CWC ecosystems occur worldwide and play a major role in the ocean's carbonate budget and atmospheric CO2 balance since the Danian (~65 m.y. ago. However their temporal and spatial evolution against climatic and oceanographic variability is still unclear. For the first time, we combine the main macrofaunal components of a sediment core from a CWC mound of the Melilla Mounds Field in the Eastern Alboran Sea with the associated microfauna and we highlight the importance of foraminifera and ostracods as indicators of CWC mound evolution in the paleorecord. Abundances of macrofauna along the core reveal alternating periods dominated by distinct CWC taxa (mostly Lophelia pertusa, Madrepora oculata that correspond to major shifts in foraminiferal and ostracod assemblages. The period dominated by M. oculata coincides with a period characterized by increased export of refractory organic matter to the seafloor and rather unstable oceanographic conditions at the benthic boundary layer with periodically decreased water energy and oxygenation, variable bottom water temperature/density and increased sediment flow. The microfaunal and geochemical data strongly suggest that M. oculata and in particular Dendrophylliidae show a higher tolerance to environmental changes than L. pertusa. Finally, we show evidence for sustained CWC growth during the Alleröd-Younger-Dryas in the Eastern Alboran Sea and that this period corresponds to stable benthic conditions with cold/dense and well oxygenated bottom waters, high fluxes of labile organic matter and relatively strong bottom currents.

  6. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    Science.gov (United States)

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  7. Comparing deep-sea fish fauna between coral and non-coral "megahabitats" in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Gianfranco D'Onghia

    Full Text Available Two experimental longline surveys were carried out in the Santa Maria di Leuca (SML cold-water coral province (Mediterranean Sea during May-June and September-October 2010 to investigate the effect of corals on fish assemblages. Two types of "megahabitat" characterized by the virtual absence of fishing were explored. One was characterized by complex topography including mesohabitats with carbonate mounds and corals. The other type of megahabitat, although characterized by complex topographic features, lacks carbonate mounds and corals. The fishing vessel was equipped with a 3,000 m monofilament longline with 500 hooks and snoods of 2.5 m in length. A total of 9 hauls, using about 4,500 hooks, were carried out both in the coral megahabitat and in the non-coral megahabitat during each survey. The fish Leucoraja fullonica and Pteroplatytrygon violacea represent new records for the SML coral province. The coral by-catch was only obtained in the coral megahabitat in about 55% of the stations investigated in both surveys. The total catches and the abundance indices of several species were comparable between the two habitat typologies. The species contributing most to the dissimilarity between the two megahabitat fish assemblages were Pagellus bogaraveo, Galeus melastomus, Etmopterus spinax and Helicolenus dactylopterus for density and P. bogaraveo, Conger conger, Polyprion americanus and G. melastomus for biomass. P. bogaraveo was exclusively collected in the coral megahabitat, whereas C. conger, H. dactylopterus and P. americanus were found with greater abundance in the coral than in the non-coral megahabitat. Differences in the sizes between the two megahabitats were detected in E. spinax, G. melastomus, C. conger and H. dactylopterus. Although these differences most probably related to the presence-absence of corals, both megahabitats investigated play the role of attraction-refuge for deep-sea fish fauna, confirming the important role of the whole

  8. Food selectivity and processing by the cold-water Coral Lophelia pertusa

    NARCIS (Netherlands)

    van Oevelen, Dick; Mueller, Christina E.; Lundälv, Tomas; Middelburg, Jack J.

    2016-01-01

    Cold-water corals form prominent reef ecosystems along ocean margins that depend on suspended resources produced in surface waters. In this study, we investigated food processing of 13C and 15N labelled bacteria and algae by the cold-water coral Lophelia pertusa. Coral respiration, tissue

  9. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; Mueller, C.E.; Struck, U.; Middelburg, J.J.; van Duyl, F.C.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.; Van Oevelen, D.

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and

  10. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: implications for resilience in mounding corals.

    Directory of Open Access Journals (Sweden)

    Stephen J Levas

    Full Text Available Mounding corals survive bleaching events in greater numbers than branching corals. However, no study to date has determined the underlying physiological and biogeochemical trait(s that are responsible for mounding coral holobiont resilience to bleaching. Furthermore, the potential of dissolved organic carbon (DOC as a source of fixed carbon to bleached corals has never been determined. Here, Porites lobata corals were experimentally bleached for 23 days and then allowed to recover for 0, 1, 5, and 11 months. At each recovery interval a suite of analyses were performed to assess their recovery (photosynthesis, respiration, chlorophyll a, energy reserves, tissue biomass, calcification, δ(13C of the skeletal, δ(13C, and δ(15N of the animal host and endosymbiont fractions. Furthermore, at 0 months of recovery, the assimilation of photosynthetically acquired and zooplankton-feeding acquired carbon into the animal host, endosymbiont, skeleton, and coral-mediated DOC were measured via (13C-pulse-chase labeling. During the first month of recovery, energy reserves and tissue biomass in bleached corals were maintained despite reductions in chlorophyll a, photosynthesis, and the assimilation of photosynthetically fixed carbon. At the same time, P. lobata corals catabolized carbon acquired from zooplankton and seemed to take up DOC as a source of fixed carbon. All variables that were negatively affected by bleaching recovered within 5 to 11 months. Thus, bleaching resilience in the mounding coral P. lobata is driven by its ability to actively catabolize zooplankton-acquired carbon and seemingly utilize DOC as a significant fixed carbon source, facilitating the maintenance of energy reserves and tissue biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not only mounding morphologies but species like P. lobata, which have the ability to utilize heterotrophic

  11. Water-mass dynamics of an Arctic cold-water coral reef: First results from a new ocean observatory system

    Science.gov (United States)

    Flögel, Sascha; Karstensen, Johannes; Linke, Peter; Pfannkuche, Olaf; Ashastina, Kseniia; Dullo, Christian

    2015-04-01

    Cold-water coral reefs occur at various sites along the European continental margin, like in the Mediterranean Sea, on carbonate mounds West off Ireland, or at shallower depths between 100 and 350 m on the Norwegian shelf. Their occurrence is related to different physical parameters like temperature, salinity, seawater density, dissolved oxygen, and to other environmental parameters such as internal wave activity, nutrient supply, strong currents, which keep sediment input low, etc. Here, we present first results from a long-term observation in one of the nortnermost cold-water coral reefs at 70.5°N - the Stjernsund in northern Norway. The Stjernsund is a 30 km long and up to 3.5 km wide sound connecting the open North Atlantic with a fjord system. A deep-seated SW-NE oriented morainic sill with varying depths (203-236 m) splits the more than 400 m deep sound into two troughs. Living Lophelia pertusa dominated reef complexes occur on the NW slope between 235 and 305 m water depths and on the SE slope between 245 and 280 m. To investigate the dominating physical and biogeochemical boundary conditions a new modular seafloor observatory, MoLab, consisting of five sea-floor observatories and two moorings was deployed for 100 days during the summer of 2012. The various lander systems and moorimgs were equipped with sensors to measure current velocities and directions, temperature, salinity, pressure, pH, turbidity, fluorescence, oxygen concentration and saturation. Results showed that near-bottom salinities, temperature and current velocities are dominated by a semi-diurnal tidal forcing (pronounced M2 constituent), which cause vertical water mass movements of up to 100 m. These influence large parts of the living reef. Closer examination revealed overturning cells on the south-eastern slope of the sill during high tide, when Atlantic Water flows over the sill. The appearance of living cold-water corals is limited to a density envelope of sigma-theta=27.25-27.50 kg/m-3

  12. The ;Sardinian cold-water coral province; in the context of the Mediterranean coral ecosystems

    Science.gov (United States)

    Taviani, M.; Angeletti, L.; Canese, S.; Cannas, R.; Cardone, F.; Cau, A.; Cau, A. B.; Follesa, M. C.; Marchese, F.; Montagna, P.; Tessarolo, C.

    2017-11-01

    A new cold-water coral (CWC) province has been identified in the Mediterranean Sea in the Capo Spartivento canyon system offshore the southern coast of Sardinia. The 'Sardinia cold-water coral province' is characterized in the Nora canyon by a spectacular coral growth dominated by the branching scleractinian Madrepora oculata at a depth of 380-460 m. The general biohermal frame is strengthened by the common occurrence of the solitary scleractinian Desmophyllum dianthus and the occasional presence of Lophelia pertusa. As documented by Remotely Operated Vehicle survey, this area is a hotspot of megafaunal diversity hosting among other also live specimens of the deep oyster Neopycnodonte zibrowii. The new coral province is located between the central Mediterranean CWC provinces (Bari Canyon, Santa Maria di Leuca, South Malta) and the western and northern ones (Melilla, Catalan-Provençal-Ligurian canyons). As for all the best developed CWC situations in the present Mediterranean Sea, the new Sardinian province is clearly influenced by Levantine Intermediate Water which appears to be a main driver for CWC distribution and viability in this basin.

  13. New Records of Cold-Water Corals from Korea

    Directory of Open Access Journals (Sweden)

    Jun-Im Song

    2016-07-01

    Full Text Available Two cold-water coral taxa, Octocorallia in the class Anthozoa and Stylasteridae in the class Hydrozoa, were identified. Deep-water samples were collected in fishing nets at depths ranging between 20 and 200 m along the coasts of the East Sea in Korea from 1976 to 1993. The two species found in this study represent new records for Korea: Paragorgia arborea (Linnaeus, 1758 in the class Anthozoa, and Stylaster profundiporus Broch, 1936 in the class Hydrozoa. Two families, Paragorgiidae and Stylasteridae, are also newly recorded in Korea. Furthermore, the species name of another cold-water gorgonian species, Primnoa pacifica (Kinoshita, 1907 in the family Primnoidae, is amended in this report. The two newly recorded cold-water coral species from Korea are described in detail based on their morphological characteristics. Paragorgia arborea is characterized by its growth form, medulla and cortex, zooid dimorphism, canal system, and spicule composition. Stylaster profundiporus is distinguished by its external skeletal characteristics, such as the coordination of dactylopores and gastropores, presence or absence of gastrostyles and dactylostyles, cyclosystem orientation, ampullar position, gastropore tube shape, and coenosteal texture.

  14. Sr/Ca ratios in cold-water corals - a 'low-resolution' temperature archive?

    Science.gov (United States)

    Rüggeberg, Andres; Riethdorf, Jan-Rainer; Raddatz, Jacek; López Correa, Matthias; Montagna, Paolo; Dullo, Wolf-Christian; Freiwald, André

    2010-05-01

    One of the basic data to understand global change and past global changes is the measurement and the reconstruction of temperature of marine water masses. E.g. seawater temperature controls the density of seawater and in combination with salinity is the major driving force for the oceans circulation system. Geochemical investigations on cold-water corals Lophelia pertusa and Desmophyllum cristagalli indicated the potential of these organisms as high-resolution archives of environmental parameters from intermediate and deeper water masses (Adkins and Boyle 1997). Some studies tried to use cold-water corals as a high-resolution archive of temperature and salinity (Smith et al. 2000, 2002; Blamart et al. 2005; Lutringer et al. 2005). However, the fractionation of stable isotopes (delta18O and delta13C) and element ratios (Sr/Ca, Mg/Ca, U/Ca) are strongly influenced by vital effects (Shirai et al. 2005; Cohen et al. 2006), and difficult to interpret. Nevertheless, ongoing studies indicate the potential of a predominant temperature dependent fractionation of distinct isotopes and elements (e.g. Li/Ca, Montagna et al. 2008; U/Ca, Mg/Ca, delta18O, Lòpez Correa et al. 2008; delta88/86Sr, Rüggeberg et al. 2008). Within the frame of DFG-Project TRISTAN and Paläo-TRISTAN (Du 129/37-2 and 37-3) we investigated live-collected specimens of cold-water coral L. pertusa from all along the European continental margin (Northern and mid Norwegian shelves, Skagerrak, Rockall and Porcupine Bank, Galicia Bank, Gulf of Cadiz, Mediterranean Sea). These coral samples grew in waters characterized by temperatures between 6°C and 14°C. Electron Microprobe investigations along the growth direction of individual coral polyps were applied to determine the relationship between the incorporation of distinct elements (Sr, Ca, Mg, S). Cohen et al. (2006) showed for L. pertusa from the Kosterfjord, Skagerrak, that ~25% of the coral's Sr/Ca ratio is related to temperature, while 75% are influenced

  15. Shallow water mud-mounds of the Early Devonian Buchan Group, East Gippsland, Australia

    Science.gov (United States)

    Tosolini, A.-M. P.; Wallace, M. W.; Gallagher, S. J.

    2012-12-01

    The Lower Devonian Rocky Camp Member of the Murrindal Limestone, Buchan Group of southeastern Australia consists of a series of carbonate mud-mounds and smaller lagoonal bioherms. The Rocky Camp mound is the best exposed of the mud-mounds and has many characteristics in common with Waulsortian (Carboniferous) mounds. Detailed paleoecological and sedimentological studies indicate that the mound initially accumulated in the photic zone, in contrast to most of the previously recorded mud-mounds. Five facies are present in the mud-mound: a Dasycladacean Wackestone Facies at the base of the mound represents a moderate energy, shallow water bank environment within the photic zone. A Crinioidal Wackestone Facies was deposited in a laterally equivalent foreslope setting. A Poriferan-Crinoidal Mudstone Facies developed in a quiet, deeper water, lee-side mound setting associated with a minor relative sea-level rise. A Stromatoporoid-Coralline Packstone Facies in the upper part of the mound deposited in a high-energy, fair-weather wave base, mound-front environment. The crest of the mound is represented by a Crinoidal-Receptaculitid Packstone Facies indicative of a moderate-energy mound-top environment in the photic zone, sheltered by the mound-front stromatoporoid-coral communities. A mound flank facies is present on the southern side of the mound and this consists of high-energy crinoidal grainstones. Mud-mound deposition was terminated by a transgression that deposited dark gray, fossil-poor marl of the overlying Taravale Formation. The Rocky Camp mound appears to have originated in shallow water photic zone conditions and grew into a high-energy environment, with the mound being eventually colonized by corals and stromatoporoids. The indications of a high-energy environment during later mound growth (growth form of colonial metazoans and grainstones of the flanking facies) suggest that the micrite in the mound was autochthonous and implies the presence of an energy

  16. Effects of cold-water corals on fish diversity and density (European continental margin: Arctic, NE Atlantic and Mediterranean Sea): Data from three baited lander systems

    Science.gov (United States)

    Linley, T. D.; Lavaleye, M.; Maiorano, P.; Bergman, M.; Capezzuto, F.; Cousins, N. J.; D'Onghia, G.; Duineveld, G.; Shields, M. A.; Sion, L.; Tursi, A.; Priede, I. G.

    2017-11-01

    Autonomous photographic landers are a low-impact survey method for the assessment of mobile fauna in situations where methods such as trawling are not feasible or ethical. Three institutions collaborated through the CoralFISH project, each using differing lander systems, to assess the effects of cold-water corals on fish diversity and density. The Biogenic Reef Ichthyofauna Lander (BRIL, Oceanlab), Autonomous Lander for Biological Experiments (ALBEX, NIOZ) and the Marine Environment MOnitoring system (MEMO, CoNISMa) were deployed in four CoralFISH European study regions covering the Arctic, NE Atlantic and Mediterranean, namely Northern Norway (275-310 m depth), Belgica Mound Province (686-1025 m depth), the Bay of Biscay (623-936 m depth), and Santa Maria di Leuca (547-670 m depth). A total of 33 deployments were carried out in the different regions. Both the time of first arrival (Tarr) and the maximum observed number of fish (MaxN) were standardised between the different lander systems and compared between coral and reference stations as indicators of local fish density. Fish reached significantly higher MaxN at the coral stations than at the reference stations. Fish were also found to have significantly lower Tarr in the coral areas in data obtained from the BRIL and MEMO landers. All data indicated that fish abundance is higher within the coral areas. Fish species diversity was higher within the coral areas of Atlantic Ocean while in Northern Norway and Santa Maria di Leuca coral areas, diversity was similar at coral and reference stations but a single dominant species (Brosme brosme and Conger conger respectively) showed much higher density within the coral areas. Indicating that, while cold-water coral reefs have a positive effect on fish diversity and/or abundance, this effect varies across Europe's reefs.

  17. Global habitat suitability for framework-forming cold-water corals.

    Directory of Open Access Journals (Sweden)

    Andrew J Davies

    Full Text Available Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify vulnerable ecosystems and species' distributions in areas that have not been sampled. However, in the deep sea, several limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to control deep-sea species' distributions. To address these problems, global habitat suitability models have been generated for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded data from sources such as World Ocean Atlas to produce continuous 30-arc second (∼1 km(2 global grids for environmental, chemical and physical data of the world's oceans. The increased area and resolution of the environmental variables resulted in a greater number of coral presence records being incorporated into habitat models and higher accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth, temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts, which have not been sampled or identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling efforts to identify vulnerable marine

  18. Predicting drivers and distributions of deep-sea ecosystems: A cold-water coral case study

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Brown, Colin

    2015-01-01

    pertusa as a case study (Rengstorf et al., 2014). The study shows that predictive models incorporating hydrodynamic variables perform significantly better than models based on terrain parameters only. They are a potentially powerful tool to improve our understanding of deep-sea ecosystem functioning......, facilitating species distribution modelling with high spatial detail. In this study, we used high resolution data (250 m grid size) from a newly developed hydrodynamic model to explore linkages between key physical drivers and occurrences of the cold-water coral Lophelia pertusa in selected areas of the NE...... and to provide decision support for marine spatial planning and conservation in the deep sea. Mohn et al., 2014.Linking benthic hydrodynamics and cold water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography 122, 92-104. Rengstorf et...

  19. Calcification of the cold-water coral Lophelia pertusa, under ambient and reduced pH

    Directory of Open Access Journals (Sweden)

    J.-P. Gattuso

    2009-08-01

    Full Text Available The cold-water coral Lophelia pertusa is one of the few species able to build reef-like structures and a 3-dimensional coral framework in the deep oceans. Furthermore, deep cold-water coral bioherms may be among the first marine ecosystems to be affected by ocean acidification. Colonies of L. pertusa were collected during a cruise in 2006 to cold-water coral bioherms of the Mingulay reef complex (Hebrides, North Atlantic. Shortly after sample collection onboard these corals were labelled with calcium-45. The same experimental approach was used to assess calcification rates and how those changed due to reduced pH during a cruise to the Skagerrak (North Sea in 2007. The highest calcification rates were found in youngest polyps with up to 1% d−1 new skeletal growth and average rates of 0.11±0.02% d−1±S.E.. Lowering pH by 0.15 and 0.3 units relative to the ambient level resulted in calcification being reduced by 30 and 56%. Lower pH reduced calcification more in fast growing, young polyps (59% reduction than in older polyps (40% reduction. Thus skeletal growth of young and fast calcifying corallites suffered more from ocean acidification. Nevertheless, L. pertusa exhibited positive net calcification (as measured by 45Ca incorporation even at an aragonite saturation state (Ωa below 1.

  20. End of the century pCO₂ levels do not impact calcification in Mediterranean cold-water corals.

    Directory of Open Access Journals (Sweden)

    Cornelia Maier

    Full Text Available Ocean acidification caused by anthropogenic uptake of CO₂ is perceived to be a major threat to calcifying organisms. Cold-water corals were thought to be strongly affected by a decrease in ocean pH due to their abundance in deep and cold waters which, in contrast to tropical coral reef waters, will soon become corrosive to calcium carbonate. Calcification rates of two Mediterranean cold-water coral species, Lophelia pertusa and Madrepora oculata, were measured under variable partial pressure of CO₂ (pCO₂ that ranged between 380 µatm for present-day conditions and 930 µatm for the end of the century. The present study addressed both short- and long-term responses by repeatedly determining calcification rates on the same specimens over a period of 9 months. Besides studying the direct, short-term response to elevated pCO₂ levels, the study aimed to elucidate the potential for acclimation of calcification of cold-water corals to ocean acidification. Net calcification of both species was unaffected by the levels of pCO₂ investigated and revealed no short-term shock and, therefore, no long-term acclimation in calcification to changes in the carbonate chemistry. There was an effect of time during repeated experiments with increasing net calcification rates for both species, however, as this pattern was found in all treatments, there is no indication that acclimation of calcification to ocean acidification occurred. The use of controls (initial and ambient net calcification rates indicated that this increase was not caused by acclimation in calcification response to higher pCO₂. An extrapolation of these data suggests that calcification of these two cold-water corals will not be affected by the pCO₂ level projected at the end of the century.

  1. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification.

    Science.gov (United States)

    Gori, Andrea; Ferrier-Pagès, Christine; Hennige, Sebastian J; Murray, Fiona; Rottier, Cécile; Wicks, Laura C; Roberts, J Murray

    2016-01-01

    Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for ∼8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.

  2. Glacial cold-water coral growth in the Gulf of Cádiz: Implications of increased palaeo-productivity

    Science.gov (United States)

    Wienberg, Claudia; Frank, Norbert; Mertens, Kenneth N.; Stuut, Jan-Berend; Marchant, Margarita; Fietzke, Jan; Mienis, Furu; Hebbeln, Dierk

    2010-10-01

    A set of 40 Uranium-series datings obtained on the reef-forming scleractinian cold-water corals Lophelia pertusa and Madrepora oculata revealed that during the past 400 kyr their occurrence in the Gulf of Cádiz (GoC) was almost exclusively restricted to glacial periods. This result strengthens the outcomes of former studies that coral growth in the temperate NE Atlantic encompassing the French, Iberian and Moroccan margins dominated during glacial periods, whereas in the higher latitudes (Irish and Norwegian margins) extended coral growth prevailed during interglacial periods. Thus it appears that the biogeographical limits for sustained cold-water coral growth along the NE Atlantic margin are strongly related to climate change. By focussing on the last glacial-interglacial cycle, this study shows that palaeo-productivity was increased during the last glacial. This was likely driven by the fertilisation effect of an increased input of aeolian dust and locally intensified upwelling. After the Younger Dryas cold event, the input of aeolian dust and productivity significantly decreased concurrent with an increase in water temperatures in the GoC. This primarily resulted in reduced food availability and caused a widespread demise of the formerly thriving coral ecosystems. Moreover, these climate induced changes most likely caused a latitudinal shift of areas with optimum coral growth conditions towards the northern NE Atlantic where more suitable environmental conditions established with the onset of the Holocene.

  3. Assessing Oil Spill Impacts to Cold-Water Corals of the Deep Gulf of Mexico

    Science.gov (United States)

    DeLeo, D. M.; Lengyel, S. D.; Cordes, E. E.

    2016-02-01

    The Deepwater Horizon (DWH) disaster and subsequent cleanup efforts resulted in the release of an unprecedented amount of oil and chemical dispersants in the deep waters of the Gulf of Mexico (GoM). Over the years, numerous detrimental effects have been documented including impacts to cold-water coral ecosystems. Assessing and quantifying these effects is crucial to understanding the long-term consequences to affected coral populations as well as their resilience. We conducted live exposure experiments to investigate the toxicity of oil and dispersants on two deep-sea corals, Callogorgia delta and Paramuricea type B3. For both species, the treatments containing dispersants had a more pronounced effect than oil treatments alone. In addition, RNA from unexposed and DWH spill-impacted Paramuricea biscaya was extracted and sequenced using Illumina technology. A de novo reference transcriptome was produced and used to explore stress-induced variations in gene expression. Current findings show overexpression of genes coding for Cytochrome p450 (CYP1A1), Tumor necrosis factor receptor-associated factors (TRAFs), Peroxidasin and additional genes involved in innate immunity and apoptotic pathways. CYP1A1 is involved in the metabolism of xenobiotics and has been previously used as a diagnostic tool for aquatic pollution. TRAFs are responsible for regulating pathways involved in immune and inflammatory responses and were likewise overexpressed in thermally stressed shallow-water corals. Ribosomal proteins were also significantly underexpressed. These genes among others found in our expression data serve as useful biomarker candidates for assessing and monitoring future spill impacts as resource extraction continues in the deep waters of the GoM. Our results also provide insights into the responses of deep-sea corals to toxin exposure, implications of applying dispersants to oil spills and a novel reference assembly for a relatively under-studied group of cold-water corals.

  4. Fishing on cold water coral reefs : A bioeconomic model of habitat-fishery connections

    OpenAIRE

    Kahui, Viktoria; Armstrong, Claire W.

    2008-01-01

    This paper applies a bioeconomic model in order to study different interactions between a harvested renewable resource and a non-renewable resource without commercial value that is negatively affected by the harvesting activity. This enables the analysis of for instance cold water coral habitats and their importance to commercial fish species. The fish is harvested either in a manner that does not damage coral, such as stationary gear, or in a destructive fashion, such as botto...

  5. Carbon mineralization and carbonate preservation in modern cold-water coral reef sediments on the Norwegian shelf

    Directory of Open Access Journals (Sweden)

    L. M. Wehrmann

    2009-04-01

    Full Text Available Cold-water coral ecosystems are considered hot-spots of biodiversity and biomass production and may be a regionally important contributor to carbonate production. The impact of these ecosystems on biogeochemical processes and carbonate preservation in associated sediments were studied at Røst Reef and Traenadjupet Reef, two modern (post-glacial cold-water coral reefs on the Mid-Norwegian shelf. Sulfate and iron reduction as well as carbonate dissolution and precipitation were investigated by combining pore-water geochemical profiles, steady state modeling, as well as solid phase analyses and sulfate reduction rate measurements on gravity cores of up to 3.25 m length. Low extents of sulfate depletion and dissolved inorganic carbon (DIC production, combined with sulfate reduction rates not exceeding 3 nmol S cm−3 d−1, suggested that overall anaerobic carbon mineralization in the sediments was low. These data showed that the coral fragment-bearing siliciclastic sediments were effectively decoupled from the productive pelagic ecosystem by the complex reef surface framework. Organic matter being mineralized by sulfate reduction was calculated to consist of 57% carbon bound in CH2O groups and 43% carbon in -CH2- groups. Methane concentrations were below 1 μM, and failed to support the hypothesis of a linkage between the distribution of cold-water coral reefs and the presence of hydrocarbon seepage. Reductive iron oxide dissolution linked to microbial sulfate reduction buffered the pore-water carbonate system and inhibited acid-driven coral skeleton dissolution. A large pool of reactive iron was available leading to the formation of iron sulfide minerals. Constant pore-water Ca2+, Mg2+ and Sr2+ concentrations in most cores and decreasing Ca2+ and Sr2+ concentrations with depth in core 23–18 GC indicated diagenetic carbonate precipitation. This was

  6. Near-bed environmental conditions influencing cold-water coral growth on Viosca Knoll, Gulf of Mexico

    Science.gov (United States)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Weering, T. V.; Ross, S.; Roberts, M.; Seim, H.

    2010-12-01

    During recent decades research has shown that cold-water coral (CWC) ecosystems are widely distributed on the margins of the Atlantic Ocean, representing the most species rich ecosystems in the upper bathyal zone. On the European continental margin and the continental slope from North Carolina to Florida, CWCs have formed large reef and mound structures. Presently detailed studies on the environmental constraints in CWC areas are limited to the NE Atlantic. This is the first study showing long-term environmental variability in a CWC habitat in the West Atlantic. The most extensive CWC area known in the Gulf of Mexico is found on the Viosca Knoll (480 m), located in the vicinity of the Mississippi River. This source dominates sedimentation patterns, discharging large amounts of sediments and dispersing organic matter and nutrients. In the coral area, CTD transects were made and benthic landers were deployed for a period of 12 months to identify near-bed environmental conditions, seasonal variability and the forcing mechanisms of particle supply. The importance of studying the functioning of deep water ecosystems was underpinned by the recent Deepwater Horizon oil spill, which might pose a risk for the CWC ecosystems. CTD transects showed an oxygen minimum zone at the depth of the corals. Long term deployments of landers revealed intra-annual temperature (6.5-11.6 °C) and salinity fluctuations, which co-vary during the year. Food supply appears not to be driven by surface processes due to low fluorescence (except for two periods in April and June), but an indirect mechanism of transport may be a 24 hour diel vertical migration of zooplankton. The average current speed in the area varies at around 8 cms-1, whilst peak current speeds were recorded up to 38 cms-1. East-west currents are strongest in the area corresponding with flow along isobaths. During westward flow, the amount of particles in the water column increases, while during eastward flow clearer water is

  7. Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification

    Science.gov (United States)

    Hennige, S. J.; Wicks, L. C.; Kamenos, N. A.; Bakker, D. C. E.; Findlay, H. S.; Dumousseaud, C.; Roberts, J. M.

    2014-01-01

    Cold-water corals are associated with high local biodiversity, but despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has decreased from 8.2 to ~8.1, and predicted CO2 emissions will decrease by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Here, we present the first short-term (21 days) data on the effects of increased CO2 (750 ppm) upon the metabolism of freshly collected L. pertusa from Mingulay Reef Complex, Scotland, for comparison with net calcification. Over 21 days, corals exposed to increased CO2 conditions had significantly lower respiration rates (11.4±1.39 SE, μmol O2 g-1 tissue dry weight h-1) than corals in control conditions (28.6±7.30 SE μmol O2 g-1 tissue dry weight h-1). There was no corresponding change in calcification rates between treatments, measured using the alkalinity anomaly technique and 14C uptake. The decrease in respiration rate and maintenance of calcification rate indicates an energetic imbalance, likely facilitated by utilisation of lipid reserves. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.

  8. Barium isotopes in cold-water corals

    Science.gov (United States)

    Hemsing, Freya; Hsieh, Yu-Te; Bridgestock, Luke; Spooner, Peter T.; Robinson, Laura F.; Frank, Norbert; Henderson, Gideon M.

    2018-06-01

    Recent studies have introduced stable Ba isotopes (δ 138 / 134Ba) as a novel tracer for ocean processes. Ba isotopes could potentially provide insight into the oceanic Ba cycle, the ocean's biological pump, water-mass provenance in the deep ocean, changes in activity of hydrothermal vents, and land-sea interactions including tracing riverine inputs. Here, we show that aragonite skeletons of various colonial and solitary cold-water coral (CWC) taxa record the seawater (SW) Ba isotope composition. Thirty-six corals of eight different taxa from three oceanic regions were analysed and compared to δ 138 / 134Ba measurements of co-located seawater samples. Sites were chosen to cover a wide range of temperature, salinity, Ba concentrations and Ba isotope compositions. Seawater samples at the three sites exhibit the well-established anti-correlation between Ba concentration and δ 138 / 134Ba. Furthermore, our data set suggests that Ba/Ca values in CWCs are linearly correlated with dissolved [Ba] in ambient seawater, with an average partition coefficient of DCWC/SW = 1.8 ± 0.4 (2SD). The mean isotope fractionation of Ba between seawater and CWCs Δ138/134BaCWC-SW is -0.21 ± 0.08‰ (2SD), indicating that CWC aragonite preferentially incorporates the lighter isotopes. This fractionation likely does not depend on temperature or other environmental variables, suggesting that aragonite CWCs could be used to trace the Ba isotope composition in ambient seawater. Coupled [Ba] and δ 138 / 134Ba analysis on fossil CWCs has the potential to provide new information about past changes in the local and global relationship between [Ba] and δ 138 / 134Ba and hence about the operation of the past global oceanic Ba cycle in different climate regimes.

  9. Embryogenesis and larval biology of the cold-water coral Lophelia pertusa.

    Directory of Open Access Journals (Sweden)

    Ann I Larsson

    Full Text Available Cold-water coral reefs form spectacular and highly diverse ecosystems in the deep sea but little is known about reproduction, and virtually nothing about the larval biology in these corals. This study is based on data from two locations of the North East Atlantic and documents the first observations of embryogenesis and larval development in Lophelia pertusa, the most common framework-building cold-water scleractinian. Embryos developed in a more or less organized radial cleavage pattern from ∼ 160 µm large neutral or negatively buoyant eggs, to 120-270 µm long ciliated planulae. Embryogenesis was slow with cleavage occurring at intervals of 6-8 hours up to the 64-cell stage. Genetically characterized larvae were sexually derived, with maternal and paternal alleles present. Larvae were active swimmers (0.5 mm s(-1 initially residing in the upper part of the water column, with bottom probing behavior starting 3-5 weeks after fertilization. Nematocysts had developed by day 30, coinciding with peak bottom-probing behavior, and possibly an indication that larvae are fully competent to settle at this time. Planulae survived for eight weeks under laboratory conditions, and preliminary results indicate that these planulae are planktotrophic. The late onset of competency and larval longevity suggests a high dispersal potential. Understanding larval biology and behavior is of paramount importance for biophysical modeling of larval dispersal, which forms the basis for predictions of connectivity among populations.

  10. The influence of near-bed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico

    Science.gov (United States)

    Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Ross, S. W.; Seim, H.; Bane, J.; van Weering, T. C. E.

    2012-01-01

    Near-bed hydrodynamic conditions were recorded for almost one year in the Viosca Knoll area (lease block 826), one of the most well-developed cold-water coral habitats in the Gulf of Mexico. Here, a reef-like cold-water coral ecosystem, dominated by the coral Lophelia pertusa, resembles coral habitats found off the southeastern US coast and the North East Atlantic. Two landers were deployed in the vicinity and outside of the coral habitat and measured multiple near-bed parameters, including temperature, salinity, current speed and direction and optical and acoustic backscatter. Additionally, the lander deployed closest to the coral area was equipped with a sediment trap that collected settling particles over the period of deployment at 27 day intervals. Long-term monitoring showed, that in general, environmental parameters, such as temperature (6.5-11.6 °C), salinity (34.95-35.4) and current speed (average 8 cm s -1, peak current speed up to 38 cm s -1) largely resembled conditions previously recorded within North East Atlantic coral habitats. Major differences between site VK 826 and coral areas in the NE Atlantic were the much higher particle load, and the origin of the particulate matter. Several significant events occurred during the deployment period beginning with an increase in current speed followed by a gradual increase in temperature and salinity, followed by a rapid decrease in temperature and salinity. Simultaneously with the decrease in temperature and salinity, the direction of the current changed from west to east and cold and less turbid water was transported upslope. The most prominent event occurred in July, when a westward flow lasted over 21 days. These events are consistent with bottom boundary layer dynamics influenced by friction (bottom Ekman layer). The Mississippi River discharges large quantities of sediment and dominates sedimentation regimes in the area. Furthermore, the Mississippi River disperses large amounts of terrestrial organic

  11. Characterization of culturable bacteria isolated from the cold-water coral Lophelia pertusa

    Science.gov (United States)

    Galkiewicz, Julia P.; Pratte, Zoe A.; Gray, Michael A.; Kellogg, Christina A.

    2011-01-01

    Microorganisms associated with corals are hypothesized to contribute to the function of the host animal by cycling nutrients, breaking down carbon sources, fixing nitrogen, and producing antibiotics. This is the first study to culture and characterize bacteria from Lophelia pertusa, a cold-water coral found in the deep sea, in an effort to understand the roles that the microorganisms play in the coral microbial community. Two sites in the northern Gulf of Mexico were sampled over 2 years. Bacteria were cultured from coral tissue, skeleton, and mucus, identified by 16S rRNA genes, and subjected to biochemical testing. Most isolates were members of the Gammaproteobacteria, although there was one isolate each from the Betaproteobacteria and Actinobacteria. Phylogenetic results showed that both sampling sites shared closely related isolates (e.g. Pseudoalteromonas spp.), indicating possible temporally and geographically stable bacterial-coral associations. The Kirby-Bauer antibiotic susceptibility test was used to separate bacteria to the strain level, with the results showing that isolates that were phylogenetically tightly grouped had varying responses to antibiotics. These results support the conclusion that phylogenetic placement cannot predict strain-level differences and further highlight the need for culture-based experiments to supplement culture-independent studies.

  12. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH.

    Science.gov (United States)

    Fillinger, Laura; Richter, Claudio

    2013-01-01

    Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.

  13. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH

    Directory of Open Access Journals (Sweden)

    Laura Fillinger

    2013-10-01

    Full Text Available Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.

  14. Ecohydrodynamics of cold-water coral reefs: a case study of the Mingulay Reef Complex (western Scotland.

    Directory of Open Access Journals (Sweden)

    Juan Moreno Navas

    Full Text Available Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.

  15. Geochemical characteristics and early diagenesis of recent carbonate mound sediments in the Gulf of Cadiz

    Science.gov (United States)

    Hamaekers, Helen; Foubert, Anneleen; Wienberg, Claudia; Hebbeln, Dierk; Swennen, Rudy

    2010-05-01

    Cold-water coral carbonate mounds occur in patches along the continental margin of the North Atlantic Ocean, from northern Norway down to Mauretania. Recent research has been focused on carbonate mounds in the Gulf of Cadiz, especially along the Moroccan margin. The Pen Duick, the Renard and the Vernadsky carbonate mound provinces in the Gulf of Cádiz are only some of the mound provinces which have been the subject of several recent research projects (Foubert et al., 2008; Wienberg et al., 2009). No living scleractinians could be found on top of those carbonate mounds. During cruise 64PE284 of RV Pelagia, gravity cores have been taken through carbonate mounds in the Carbonate Mound Provinces (CMP) SE of Yuma mud volcano and N of Meknes mud volcano. These cores have been analysed by several methods such as Magnetic Susceptibility (MS), X-Ray Fluorescence (XRF), Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and X-Ray Diffraction (XRD) to determine the geochemical characteristics of carbonate mounds, which can be used to quantify the effects of early diagenetic processes which may have altered the palaeo-environmental characteristics of the carbonate mounds. Dating has been done with 14C and U/Th methods pointing to mound growth phases being restricted to glacial periods. XRF and ICP-OES measurements give both qualitative and quantitative data of the chemical composition of the core. The main elements that have been analysed are Ca, Si, Fe, Sr, Al, K, Mg, Ti. According to the trend they follow, they can be devided in two groups, representative for the two encountered fraction types. These two fraction types (biogenic carbonate-rich fraction and terrigenous silicate-rich fraction) can be coupled to interglacial/glacial palaeo-environmental conditions. XRD measurements give an overview of the mineralogical composition of the cores. Thin sections, analysed by cathodeluminescence and classical optical petrography, and micro-CT scans are used to

  16. Culture-independent characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico

    Science.gov (United States)

    Kellogg, C.A.; Lisle, J.T.; Galkiewicz, J.P.

    2009-01-01

    Bacteria are recognized as an important part of the total biology of shallow-water corals. Studies of shallow-water corals suggest that associated bacteria may benefit the corals by cycling carbon, fixing nitrogen, chelating iron, and producing antibiotics that protect the coral from other microbes. Cold-water or deep-sea corals have a fundamentally different ecology due to their adaptation to cold, dark, high-pressure environments and as such have novel microbiota. The goal of this study was to characterize the microbial associates of Lophelia pertusa in the northeastern Gulf of Mexico. This is the first study to collect the coral samples in individual insulated containers and to preserve coral samples at depth in an effort to minimize thermal shock and evaluate the effects of environmental gradients on the microbial diversity of samples. Molecular analysis of bacterial diversity showed a marked difference between the two study sites, Viosca Knoll 906/862 (VK906/862) and Viosca Knoll 826 (VK826). The bacterial communities from VK826 were dominated by a variety of unknown mycoplasmal members of the Tenericutes and Bacteroidetes, whereas the libraries from VK906/862 were dominated by members of the Proteobacteria. In addition to novel sequences, the 16S rRNA gene clone libraries revealed many bacterial sequences in common between Gulf of Mexico Lophelia corals and Norwegian fjord Lophelia corals, as well as shallow-water corals. Two Lophelia-specific bacterial groups were identified: a cluster of gammaproteobacteria related to sulfide-oxidizing gill symbionts of seep clams and a group of Mycoplasma spp. The presence of these groups in both Gulf and Norwegian Lophelia corals indicates that in spite of the geographic heterogeneity observed in Lophelia-associated bacterial communities, there are Lophelia-specific microbes. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  17. Distribution of cold-water corals in the Whittard Canyon, NE Atlantic Ocean

    OpenAIRE

    Morris, Kirsty J.; Tyler, Paul A.; Masson, Doug G.; Huvenne, Veerle A.I.; Rogers, Alex D.

    2013-01-01

    The deep-sea floor occupies about 60% of the surface of the planet and is covered mainly by fine sediments. Most studies of deep-sea benthic fauna therefore have concentrated on soft sediments with little sampling of hard substrata, such as rocky outcrops in submarine canyons. Here we assess the distribution and abundance of cold-water corals within the Whittard Canyon (NE Atlantic) using video footage from the ROV Isis. Abundances per 100 m of video transect were calculated and mapped using ...

  18. The Influence of Slope and Shelf Contour Currents On The Growth Pattern of A Cold-water Coral Mound Population Along The Margins of The Rockall Trough

    Science.gov (United States)

    Readman, P. W.; O'Reilly, B. M.; Shannon, P. M.; Jacob, A. W. B.

    The importance of bottom currents along the shelf and slope regions of northeast At- lantic basin margins in controlling sediment transport patterns and the development of carbonate mound ecosystems is now well recognised. The detailed structure of one such large carbonate mound population has been resolved along the western margin of the Porupine Bank west of Ireland with deep-tow (TOBI) sidescan. The mounds which comprise the population are circular to elliptical in shape, 50 - 850 m across and up to about 200 m high. Large scale sedimentary bedforms at 800 m water depth are inferred from backscatter zonation produced by strong NE-flowing contour currents. Streamlining effects control the shape of the mounds as they become more elliptical as their size increases. The frequency distribution follows a general power law which is determined by the biological growth rate of the mounds and the rate at which they colonise the substrate. At first bottom currents aid mound growth until they become so large that hydraulic drag forces retard their growth. In the recent past (late Pleistocene to present) if the number of mounds colonising the slope has increased exponentially with time while their growth rate slowed in response to fluid form drag forces, the observed population curve can be recovered. A model for evolution of the population predicts that these increased forces slow biological growth and cause a sharp fall-off in the number of mounds, also in agreement with observation. Correlation with late Pleistocene and Holocene climatic change suggests that the population is either very robust and relatively insensitive to major environmental change along the continental slope such as a change in current regime, or that the factors controlling its develop- ment were stable over large time intervals. This project was undertaken on behalf of the Irish Petroleum Infrastructure Programme.

  19. Cold-water coral reefs and adjacent sponge grounds: Hotspots of benthic respiration and organic carbon cycling in the deep sea

    Directory of Open Access Journals (Sweden)

    Cecile eCathalot

    2015-06-01

    Full Text Available Cold-water coral reefs and adjacent sponge grounds are distributed widely in the deep ocean, where only a small fraction of the surface productivity reaches the seafloor as detritus. It remains elusive how these hotspots of biodiversity can thrive in such a food-limited environment, as data on energy flow and organic carbon utilization are critically lacking. Here we report in situ community respiration rates for cold-water coral and sponge ecosystems obtained by the non-invasive aquatic Eddy Correlation technique. Oxygen uptake rates over coral reefs and adjacent sponge grounds in the Træna Coral Field (Norway were 9-20 times higher than those of the surrounding soft sediments. These high respiration rates indicate strong organic matter consumption, and hence suggest a local focusing onto these ecosystems of the downward flux of organic matter that is exported from the surface ocean. Overall, our results show that coral reefs and adjacent sponge grounds are hotspots of carbon processing in the food-limited deep ocean, and that these deep-sea ecosystems play a more prominent role in marine biogeochemical cycles than previously recognized.

  20. Isotope analysis of water trapped in fluid inclusions in deep sea corals

    Science.gov (United States)

    Vonhof, Hubert; Reijmer, John; Feenstra, Eline; Mienis, Furu

    2015-04-01

    Extant Lophelia pertusa deep sea coral specimens from the Loachev mound region in the North Atlantic Ocean contain water filled fluid inclusions in their skeleton. This fluid inclusion water was extracted with a crushing device, and its hydrogen and oxygen isotope ratios analysed. The resulting data span a wide range of isotope values which are remarkably different from the seawater isotope composition of the sites studied. Comparison with food source isotope signatures suggests that coral inclusion water contains a high, but variable proportion of metabolic water. The isotope composition of the inclusion water appears to vary with the position on the deep see coral reef, and shows a correlation with the stable isotope composition of the coral aragonite. This correlation seems to suggest that growth rate and other ecological factors play an important role in determining the isotope composition of fluids trapped in the coral skeleton, which can potentially be developed as a proxy for non-equilibrium isotope fractionation observed in the aragonite skeleton of many of the common deep sea coral species.

  1. Multi-proxy experimental calibration in cold water corals for high resolution paleoreconstructions

    Science.gov (United States)

    Pelejero, C.; Martínez-Dios, A.; Ko, S.; Sherrell, R. M.; Kozdon, R.; López-Sanz, À.; Calvo, E.

    2017-12-01

    Cold-water corals (CWCs) display an almost cosmopolitan distribution over a wide range of depths. Similar to their tropical counterparts, they can provide continuous, high-resolution records of up to a century or more. Several CWC elemental and isotopic ratios have been suggested as useful proxies, but robust calibrations under controlled conditions in aquaria are needed. Whereas a few such calibrations have been performed for tropical corals, they are still pending for CWCs. This reflects the technical challenges involved in maintaining these slow-growing animals alive during the long-term experiments required to achieve sufficient skeletal growth for geochemical analyses. We will show details of the set up and initial stages of a long-term experiment being run at the ICM (Barcelona), where live specimens (>150) of Desmophyllum dianthus sampled in Comau Fjord (Chile) are kept under controlled and manipulated physical chemistry (temperature, pH, phosphate, barium, cadmium) and feeding conditions. With this set up, we aim to calibrate experimentally several specific elemental ratios including P/Ca, Ba/Ca, Cd/Ca, B/Ca, U/Ca and Mg/Li as proxies of nutrients dynamics, pH, carbonate ion concentration and temperature. For the trace element analysis, we are analyzing coral skeletons using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), running quantitative analyses on spot sizes of tens of microns, and comparing to micromilling and solution ICP-MS. Preliminary data obtained using these techniques will be presented, as well as measurements of calcification rate. Since coral-water corals are potentially vulnerable to ocean acidification, the same experiment is being exploited to assess potential effects of the pH stressor in D. dianthus; main findings to date will be summarized.

  2. Interactive Effects of Ocean Acidification and Warming on Growth, Fitness and Survival of the Cold-Water Coral Lophelia pertusa under Different Food Availabilities

    Directory of Open Access Journals (Sweden)

    Janina V. Büscher

    2017-04-01

    Full Text Available Cold-water corals are important bioengineers that provide structural habitat for a diverse species community. About 70% of the presently known scleractinian cold-water corals are expected to be exposed to corrosive waters by the end of this century due to ocean acidification. At the same time, the corals will experience a steady warming of their environment. Studies on the sensitivity of cold-water corals to climate change mainly concentrated on single stressors in short-term incubation approaches, thus not accounting for possible long-term acclimatisation and the interactive effects of multiple stressors. Besides, preceding studies did not test for possible compensatory effects of a change in food availability. In this study a multifactorial long-term experiment (6 months was conducted with end-of-the-century scenarios of elevated pCO2 and temperature levels in order to examine the acclimatisation potential of the cosmopolitan cold-water coral Lophelia pertusa to future climate change related threats. For the first time multiple ocean change impacts including the role of the nutritional status were tested on L. pertusa with regard to growth, “fitness,” and survival. Our results show that while L. pertusa is capable of calcifying under elevated CO2 and temperature, its condition (fitness is more strongly influenced by food availability rather than changes in seawater chemistry. Whereas growth rates increased at elevated temperature (+4°C, they decreased under elevated CO2 concentrations (~800 μatm. No difference in net growth was detected when corals were exposed to the combination of increased CO2 and temperature compared to ambient conditions. A 10-fold higher food supply stimulated growth under elevated temperature, which was not observed in the combined treatment. This indicates that increased food supply does not compensate for adverse effects of ocean acidification and underlines the importance of considering the nutritional status

  3. Anthropogenic impact in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea): Observations and conservation straits

    Science.gov (United States)

    D'Onghia, G.; Calculli, C.; Capezzuto, F.; Carlucci, R.; Carluccio, A.; Grehan, A.; Indennidate, A.; Maiorano, P.; Mastrototaro, F.; Pollice, A.; Russo, T.; Savini, A.; Sion, L.; Tursi, A.

    2017-11-01

    The Santa Maria di Leuca (SML) cold-water coral (CWC) province is a proposed priority conservation area according to several conservation initiatives in the Mediterranean Sea. Part of it is a Fisheries Restricted Area (FRA). Anthropogenic impacts due to fishing on this FRA were investigated using a towed camera system during 2005. The geographic distribution of fishing effort in the SML CWC province was examined through an observers' program of longline and trawl fishing activities during 2009 and 2010 and Vessel Monitoring by satellite System (VMS) data from 2008 to 2013. Using the video system, it was possible to observe evidence of impacts in the FRA due to longlines, proved by remains of lines on the bottoms and/or entangled in corals, and those due to trawl nets, proved by trawl door scars on the bottom. The application of Generalized Liner Models indicates that the impacts due to longline were significantly related to a geographic site characterized by carbonate mounds while those from trawl net were significantly related to the soft bottoms, consisting of bioturbated fine-grained sediments. The presence of waste of various types was also observed in the FRA; plastic was the most widespread waste and was significantly related to a macrohabitat characterized by the presence of corals. The geographic distribution of fishing effort for each type of fishing were rather superimposed in the two years of the observers' program and six years of VMS data with a significantly greater fishing effort outside the FRA than inside this area. The trawlers generally fished on the muddy bottoms of the upper and middle slope within the SML CWC province and near and inside the northward limit of the FRA. The longliners fished mainly on the shelf in north and off the FRA. The coral by-catch was only recorded during 2009 in 26% of the trawl hauls. No coral by-catch was recorded from longlining in either year. The catches from longlining mainly consisted of Chelidonichthys lucerna

  4. Cold-water coral ecosystems in Cassidaigne Canyon: An assessment of their environmental living conditions

    OpenAIRE

    Fabri, Marie-claire; Bargain, Annaelle; Pairaud, Ivane; Pedel, Laura; Taupier-letage, I.

    2017-01-01

    The Cassidaigne canyon is one of the two canyons (together with Lacaze-Duthiers) of the French Mediterranean coast in which cold-water corals have settled and formed large colonies, providing a structural habitat for other species. Nevertheless, the communities settled in the Cassidaigne canyon are physically impacted by discharges of bauxite residues. New information on the distribution of the species Madrepora oculata and the associated species diversity in Cassidaigne canyon was provid...

  5. Cold-water coral distributions in the drake passage area from towed camera observations--initial interpretations.

    Directory of Open Access Journals (Sweden)

    Rhian G Waller

    Full Text Available Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean, yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage, using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace and alcyonacean (soft corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these

  6. Fish communities associated with cold-water corals vary with depth and substratum type

    Science.gov (United States)

    Milligan, Rosanna J.; Spence, Gemma; Roberts, J. Murray; Bailey, David M.

    2016-08-01

    Understanding the processes that drive the distribution patterns of organisms and the scales over which these processes operate are vital when considering the effective management of species with high commercial or conservation value. In the deep sea, the importance of scleractinian cold-water corals (CWCs) to fish has been the focus of several studies but their role remains unclear. We propose this may be due to the confounding effects of multiple drivers operating over multiple spatial scales. The aims of this study were to investigate the role of CWCs in shaping fish community structure and individual species-habitat associations across four spatial scales in the NE Atlantic ranging from "regions" (separated by >500 km) to "substratum types" (contiguous). Demersal fish and substratum types were quantified from three regions: Logachev Mounds, Rockall Bank and Hebrides Terrace Seamount (HTS). PERMANOVA analyses showed significant differences in community composition between all regions which were most likely caused by differences in depths. Within regions, significant variation in community composition was recorded at scales of c. 20-3500 m. CWCs supported significantly different fish communities to non-CWC substrata at Rockall Bank, Logachev and the HTS. Single-species analyses using generalised linear mixed models showed that Sebastes sp. was strongly associated with CWCs at Rockall Bank and that Neocyttus helgae was more likely to occur in CWCs at the HTS. Depth had a significant effect on several other fish species. The results of this study suggest that the importance of CWCs to fish is species-specific and depends on the broader spatial context in which the substratum is found. The precautionary approach would be to assume that CWCs are important for associated fish, but must acknowledge that CWCs in different depths will not provide redundancy or replication within spatially-managed conservation networks.

  7. Discoveries and Conservation Efforts of Extensive Deep-Sea Coral Habitat off the Southeastern U.S.

    Science.gov (United States)

    Reed, J. K.; Messing, C. G.; Walker, B. K.; Farrington, S.; Brooke, S.; Correa, T.; Brouwer, M.

    2012-12-01

    The deep-sea floor of the Western Atlantic off the southeastern U.S. supports a variety of deep-sea coral ecosystem (DSCE) habitats, including: coral mounds, rock terraces (Miami and Pourtalès Terraces), canyons (Agassiz and Tortugas Valleys), and island slopes (western Bahamas and northern Cuba). We used NOAA bathymetric contour maps and digital elevation models to identify and delineate the areal extent of potential DSCE habitat (50-1000 m) from northeastern Florida through the Straits of Florida. Recently, shipboard and AUV side-scan and multibeam sonar have further documented portions of the region. The resulting maps have been ground-truthed with over 250 submersible and remotely operated vehicle (ROV) dives, revealing that high-relief topographic features, including steep escarpments and rocky terraces, are good predictors of DSCE habitat in this region. The benthic biota is diverse but locally variable; for example, Lophelia and Enallopsammia stony corals dominate the deep-water mounds, whereas stylasterid corals dominate the rocky terraces where Lophelia is sporadic. Octocorals, black corals, and sponges are common at most sites but different species exhibit site-specific distributional variability. In 2011, the first of two NOAA-sponsored cruises using sonar mapping and an ROV discovered the southernmost Lophelia coral mound in the continental United States, south of the Florida Keys, offering the possibility that more Lophelia mounds may exist in this region where they were previously thought to be absent. The second cruise discovered that deep-water Oculina varicosa coral reefs extend over 70 nmi north of the current boundaries of the Oculina Habitat Area of Particular Concern (OHAPC), which was first designated as a marine protected area in 1984. These studies indicate that cold-water coral mounds are significantly more diverse and abundant in this region than previously thought. These research results were presented to NOAA and the South Atlantic

  8. Cold-Water Coral Distributions in the Drake Passage Area from Towed Camera Observations – Initial Interpretations

    Science.gov (United States)

    Waller, Rhian G.; Scanlon, Kathryn M.; Robinson, Laura F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated

  9. Coral by-catch in shrimp bottom trawl surveys in West Greenland waters (2010 – 2012)

    DEFF Research Database (Denmark)

    Jørgensbye, Helle; Arboe, Nanette Hammeken

    There have been zoological expeditions in Greenland waters since the 19th century documenting the sea life, including cold water corals. Coral trees (vernacular name for Paragorgia arborea) are mentioned as early as 1741 in the first natural history book about Greenland (Egede 1741). Due to the m......There have been zoological expeditions in Greenland waters since the 19th century documenting the sea life, including cold water corals. Coral trees (vernacular name for Paragorgia arborea) are mentioned as early as 1741 in the first natural history book about Greenland (Egede 1741). Due....... The identification of the corals is based on Kenchington et al. (2009). The identification of many specimens has further been verified by Ole Tendal (Zoological Museum, Copenhagen) on the basis of frozen samples. Few corals, mainly soft corals (Alcyonacea) and sea pens (Pennatulacea), were found in the depth range...

  10. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea

    NARCIS (Netherlands)

    Cathalot, C.; Van Oevelen, D.; Cox, T.; Kutti, T.; Lavaleye, M.S.S.; Duineveld, G.C.A.; Meysman, F.J.R.

    2015-01-01

    Cold-water coral reefs and adjacent sponge grounds are distributed widely in the deep ocean, where only a small fraction of the surface productivity reaches the seafloor as detritus. It remains elusive how these hotspots of biodiversity can thrive in such a food-limited environment, as data on

  11. Spatial and tidal variation in food supply to shallow cold-water coral reefs of the Mingulay Reef complex (Outer Hebrides, Scotland)

    NARCIS (Netherlands)

    Duineveld, G.C.A.; Jeffreys, R.M.; Lavaleye, M.S.S.; Davies, A.J.; Bergman, M.J.N.; Watmough, T.; Witbaard, R.

    2012-01-01

    The finding of a previously undescribed cold-water coral reef (Banana Reef) in the Scottish Mingulay reef complex, with denser coverage of living Lophelia pertusa than the principal Mingulay 1 Reef, was the incentive for a comparative study of the food supply to the 2 reefs. Suspended particulate

  12. High Latitude Corals Tolerate Severe Cold Spell

    Directory of Open Access Journals (Sweden)

    Chenae A. Tuckett

    2018-01-01

    Full Text Available Climatically extreme weather events often drive long-term ecological responses of ecosystems. By disrupting the important symbiosis with zooxanthellae, Marine Cold Spells (MCS can cause bleaching and mortality in tropical and subtropical scleractinian corals. Here we report on the effects of a severe MCS on high latitude corals, where we expected to find bleaching and mortality. The MCS took place off the coast of Perth (32°S, Western Australia in 2016. Bleaching was assessed before (2014 and after (2017 the MCS from surveys of permanent plots, and with timed bleaching searches. Temperature data was recorded with in situ loggers. During the MCS temperatures dipped to the coldest recorded in ten years (15.3°C and periods of <17°C lasted for up to 19 days. Only 4.3% of the surveyed coral colonies showed signs of bleaching. Bleaching was observed in 8 species where those most affected were Plesiastrea versipora and Montipora mollis. These findings suggest that high latitude corals in this area are tolerant of cold stress and are not persisting near a lethal temperature minimum. It has not been established whether other environmental conditions are limiting these species, and if so, what the implications are for coral performance on these reefs in a warmer future.

  13. Benthic habitat characterization and distribution from two representative sites of the deep-water SML Coral Province (Mediterranean)

    Science.gov (United States)

    Vertino, A.; Savini, A.; Rosso, A.; Di Geronimo, I.; Mastrototaro, F.; Sanfilippo, R.; Gay, G.; Etiope, G.

    2010-03-01

    Two sites (MS04 and MS06) from the Santa Maria di Leuca (SML) Coral Province were analyzed by a video and acoustic survey during the National Italian Project Apulian Plateau Bank Ecosystem Study (APLABES). Site MS04 (Atlantis Mound) is characterized by a sub-conical mound, 500 m wide and 25 m high, located at a water depth of about 650 m. Site MS06 (Yellow Chain) comprises several elongated reliefs (NNW-SSE-oriented), up to 25 m high and 500 m in maximum lateral extent, located at a depth of between 490 and 540 m. At both sites, two main mesohabitats (mound and intermound) containing several coral-bearing and -barren macrohabitats were observed in recorded videos and detected in side-scan sonographs. The coral-rich macrohabitats, characterized by densely packed colonies of the scleractinians Madrepora oculata and, secondarily, Lophelia pertusa ( M/ L), are typically restricted to the mound areas. The mud-dominated ones, almost devoid of M/L colonies, are more common within the intermound mesohabitat. However, on the most extensive mounds, both macrohabitat typologies exist. They are heterogeneously distributed on the mound surface, often showing a clear differentiation along two opposite flanks of the same topographic feature. M/ L-rich macrohabitats are preferentially located on top and along the mound northeastern flank, showing a typical step-like distribution, probably reflecting the arrangement of hard substrate outcrops. Along this flank, fan-shaped Madrepora colonies and sponges are often oriented NNW-SSE, implying, together with other evidence, a primary southwestern current flow. The hard-bottom macrohabitats of the southwestern mound flank are generally restricted to sparse exposed, subvertical to overhanging scarps as well as to heterometric boulders located at the scarp base. Their fauna is mainly characterized by small-sized organisms (such as sponges and solitary scleractinians) although m-sized boulders may locally host very large antipatharian

  14. Upper Silurian reef mounds on a shallowing carbonate ramp, Devon Island, Arctic Canada

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, O A [Ottawa Univ., ON (Canada); Graf, G C [Chevron Canada Resources, Calgary, AB (Canada)

    1992-03-01

    Near Gascoyne Inlet, the topmost Douro and lowermost Barlow Inlet formations record overall upward shallowing from ramp to shallow shelf conditions. This transitional sequence contains bioherms of various sizes, from small isolated reef mounds 1-2 m across to larger, compound reef mounds over 50 m thick and 60 m across, as well as distictive inter- and pre-reef mound facies. The larger reef mounds show stages intermediate in character between those in sponge-dominated reef mounds of the Douro Formation and in larger stromatoporoid-crinoid dominated reefs in the Barlow Inlet Formation. Three principal reef mounds developed in turn. An initial partly lithified lime mudstone, containing scattered corals and apparently relict sponge-cryptomicrobial fabrics, developed on sheets of oncolitic storm debris in mainly low energy conditions between storm and fairweather wave bases. With gradual shallowing and progressively higher energy conditions above fairweather wave base, a middle facies of coral- and crinoid-rich mudstone developed. An abrupt deepening restored conditions of low energy, and the ensuing upper facies of the reef mounds is more varied, comprising sparsely fossiliferous and locally fenestral lime mudstones, patchy coral bafflestone and bindstone, coarse encrinites and substantially culminating stromatoporoid bindstone. 36 refs., 14 figs., 5 tabs.

  15. Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses

    Science.gov (United States)

    Salvo, Flora; Hamoutene, Dounia; Hayes, Vonda E. Wareham; Edinger, Evan N.; Parrish, Christopher C.

    2018-03-01

    The trophic behavior of some deep-sea Newfoundland cold-water corals was explored using fatty acid (FA) and lipid profiles. No significant effect of geographic location and/or depth was identified in lipid or FA composition. However, differences were detected between and within taxon groups in hexa- or octocoral subclasses. Phospholipids constituted the main lipid class in all groups except black-thorny corals which had less structural lipids likely due to their morphology (stiff axes) and slower growth rates. Within each subclass, major differences in the identity of dominant FAs were detected at the order level, whereas differences between species and taxon groups of the same order were mainly driven by a variation in proportions of the dominant FA. Soft corals and gorgonians (Order Alcyonacea) were close in composition and are likely relying on phytodetritus resulting from algae, macrophytes and/or foraminifera, while sea pens (Order Pennatulacea) seem to consume more diatoms and/or herbivorous zooplankton with the exception of Pennatula sp. In the hexacoral subclass, black-thorny corals ( Stauropathes arctica) differed significantly from the stony-cup corals ( Flabellum alabastrum); S. arctica was seemingly more carnivorous (zooplankton markers) than F. alabastrum, which appears omnivorous (phyto- and zooplankton markers). Our results suggest that deep-sea corals are not as opportunistic as expected but have some selective feeding associated with taxonomy.

  16. Resistance of Two Mediterranean Cold-Water Coral Species to Low-pH Conditions

    Directory of Open Access Journals (Sweden)

    Juancho Movilla

    2013-12-01

    Full Text Available Deep-water ecosystems are characterized by relatively low carbonate concentration values and, due to ocean acidification (OA, these habitats might be among the first to be exposed to undersaturated conditions in the forthcoming years. However, until now, very few studies have been conducted to test how cold-water coral (CWC species react to such changes in the seawater chemistry. The present work aims to investigate the mid-term effect of decreased pH on calcification of the two branching CWC species most widely distributed in the Mediterranean, Lophelia pertusa and Madrepora oculata. No significant effects were observed in the skeletal growth rate, microdensity and porosity of both species after 6 months of exposure. However, while the calcification rate of M. oculata was similar for all colony fragments, a heterogeneous skeletal growth pattern was observed in L. pertusa, the younger nubbins showing higher growth rates than the older ones. A higher energy demand is expected in these young, fast-growing fragments and, therefore, a reduction in calcification might be noticed earlier during long-term exposure to acidified conditions.

  17. Benthic O-2 uptake of two cold-water coral communities estimated with the non-invasive eddy correlation technique

    DEFF Research Database (Denmark)

    Rovelli, Lorenzo; Attard, Karl M.; Bryant, Lee D.

    2015-01-01

    , was a channel-like sound in Northern Norway at a depth of 220 m. Both sites were characterized by the presence of live mounds of the reef framework-forming scleractinian Lophelia pertusa and reef-associated fauna such as sponges, crustaceans and other corals. The measured O-2 uptake at the 2 sites varied...... times higher than the global mean for soft sediment communities at comparable depths. The measurements document the importance of CWC communities for local and regional carbon cycling and demonstrate that the EC technique is a valuable tool for assessing rates of benthic O2 uptake in such complex...

  18. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress

    Directory of Open Access Journals (Sweden)

    Jiayuan Liang

    2017-06-01

    Full Text Available It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on. In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress.

  19. Linking benthic dynamics and cold-water coral occurrences: A high-resolution model study at three carbonate mound provinces in the NE Atlantic

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Grehan, Anthony

    . The model bathymetry was taken from highresolution INSS (Irish National Seabed Survey) seafloor mapping data. The model output of 6 hourly benthic currentsm, temperature and salinity was validated against in-situ measurements and compared with main coral assemblage patterns from in-situ Coral...

  20. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway

    Science.gov (United States)

    De Clippele, L. H.; Huvenne, V. A. I.; Orejas, C.; Lundälv, T.; Fox, A.; Hennige, S. J.; Roberts, J. M.

    2018-03-01

    This study demonstrates how cold-water coral morphology and habitat distribution are shaped by local hydrodynamics, using high-definition video from Tisler Reef, an inshore reef in Norway. A total of 334 video frames collected on the north-west (NW) and south-east (SE) side of the reef were investigated for Lophelia pertusa coral cover and morphology and for the cover of the associated sponges Mycale lingua and Geodia sp. Our results showed that the SE side was a better habitat for L. pertusa (including live and dead colonies). Low cover of Geodia sp. was found on both sides of Tisler Reef. In contrast, Mycale lingua had higher percentage cover, especially on the NW side of the reef. Bush-shaped colonies of L. pertusa with elongated branches were the most abundant coral morphology on Tisler Reef. The highest abundance and density of this morphology were found on the SE side of the reef, while a higher proportion of cauliflower-shaped corals with short branches were found on the NW side. The proportion of very small L. pertusa colonies was also significantly higher on the SE side of the reef. The patterns in coral spatial distribution and morphology were related to local hydrodynamics—there were more frequent periods of downwelling currents on the SE side—and to the availability of suitable settling substrates. These factors make the SE region of Tisler Reef more suitable for coral growth. Understanding the impact of local hydrodynamics on the spatial extent and morphology of coral, and their relation to associated organisms such as sponges, is key to understanding the past and future development of the reef.

  1. Radiocarbon dating of large termite mounds of the miombo woodland of Katanga, DR Congo

    Science.gov (United States)

    Erens, Hans; Boudin, Mathieu; Mees, Florias; Dumon, Mathijs; Mujinya, Basile; Van Strydonck, Mark; Baert, Geert; Boeckx, Pascal; Van Ranst, Eric

    2015-04-01

    The miombo woodlands of South Katanga (D.R. Congo) are characterized by a high spatial density of large conic termite mounds built by Macrotermes falciger (3 to 5 ha-1, ~5 m high, ~15 m in diameter). The time it takes for these mounds to attain this size is still largely unknown. In this study, the age of four of these mounds is determined by 14C-dating the acid-insoluble organic carbon fraction of samples taken along the central vertical axis of two active and two abandoned mounds. The age sequence in the active mounds is erratic, but the results for the abandoned mounds show a logical increase of 14C-age with depth. The ages measured at 50 cm above ground level were 2335 - 2119 cal yr BP for the large abandoned mound (630 cm high), and 796 - 684 cal yr BP for the small abandoned mound (320 cm high). Cold-water-extractable organic carbon (CWEOC) measurements combined with spectroscopic analysis revealed that the lower parts of the active mounds may have been contaminated with recent carbon that leached from the active nest. Nonetheless, this method appears to provide reliable age estimates of large, abandoned termite mounds, which are older than previously estimated. Furthermore, historical mound growth rates seem to correspond to past temperature changes, suggesting a relation between past environmental conditions and mound occupancy. Keywords : 14C, water-extractable carbon, low-temperature combustion

  2. Cold-water corals and large hydrozoans provide essential fish habitat for Lappanella fasciata and Benthocometes robustus

    Science.gov (United States)

    Gomes-Pereira, José Nuno; Carmo, Vanda; Catarino, Diana; Jakobsen, Joachim; Alvarez, Helena; Aguilar, Ricardo; Hart, Justin; Giacomello, Eva; Menezes, Gui; Stefanni, Sergio; Colaço, Ana; Morato, Telmo; Santos, Ricardo S.; Tempera, Fernando; Porteiro, Filipe

    2017-11-01

    Many fish species are well-known obligatory inhabitants of shallow-water tropical coral reefs but such associations are difficult to study in deep-water environments. We address the association between two deep-sea fish with low mobility and large sessile invertebrates using a compilation of 20 years of unpublished in situ observations. Data were collected on Northeast Atlantic (NEA) island slopes and seamounts, from the Azores to the Canary Islands, comprising 127 new records of the circalittoral Labridae Lappanella fasciata and 15 of the upper bathyal Ophiididae Benthocometes robustus. Observations by divers, remote operated vehicles (ROV SP, Luso, Victor, Falcon Seaeye), towed vehicles (Greenpeace) and manned submersibles (LULA, Nautile) validated the species association to cold water corals (CWC) and large hydrozoans. L. fasciata occurred from lower infralittoral (41 m) throughout the circalittoral, down to the upper bathyal at 398 m depth. Smaller fishes (fishes (10-15 cm) occurring alone or in smaller groups at greater depths. The labrids favoured areas with large sessile invertebrates (> 10 cm) occurring at habitat and this predator. Gathered evidence renders CWC and hydroid gardens as Essential Fish Habitats for both species, being therefore sensitive to environmental and anthropogenic impacts on these Vulnerable Marine Ecosystems. The Mediterranean distribution of L. fasciata is extended to NEA seamounts and island slopes and the amphi-Atlantic distribution of B. robustus is bridged with molecular data support. Both species are expected to occur throughout the Macaronesia and Mediterranean island slopes and shallow seamounts on habitats with large sessile invertebrates.

  3. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef

    Directory of Open Access Journals (Sweden)

    N. Tisnérat-Laborde

    2012-03-01

    Full Text Available Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 ± 1.1 mm yr−1 (2.6 polyps per year. Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions. For the 80 cm-long L. pertusa colony, metal-oxide contamination remained in both the middle and basal part of the coral skeleton despite cleaning, inhibiting similar age and growth rate estimates. The youngest part of the colony was free of metal oxides and this 15 cm section had an estimated a growth rate of 8 mm yr−1, with high uncertainty (~1 polyp every two to three years. We are less certain of this 210Pb growth rate estimate which is within the lowermost

  4. Micro-X-ray fluorescence-based comparison of skeletal structure and P, Mg, Sr, O and Fe in a fossil of the cold-water coral Desmophyllum sp., NW Pacific

    Science.gov (United States)

    Yoshimura, Toshihiro; Suzuki, Atsushi; Tamenori, Yusuke; Kawahata, Hodaka

    2014-02-01

    Micro-scale distributions of trace and minor elements in, for example, coral skeletons are crucial as geochemical tracers of past environmental conditions, because they have the inherent advantage of accounting for confounding diagenetic and physiological effects. To extract reproducible paleoceanographic records from coral skeletons, a selective measurement of specific ultrastructures at high spatial resolution is required. Compared to warm-water reef-building corals, such data are limited in cold-water corals and, to the best of the authors' knowledge, the latter have to date not been examined by means of micro-X-ray fluorescence. This technique was used for micrometer-scale imaging of P, Mg, Sr, O, and Fe intensities (counts per unit time) in a fossil specimen (as yet unknown age) of the cold-water coral Desmophyllum sp. from surface sediments of the NW Pacific. Cross plots confirmed that the micro-XRF signals were associated with corresponding trends in elemental concentration (ppm). Two major structural components of the septum—centers of calcification (COCs) and the surrounding fibrous aragonite portion—differed in composition. The COCs were characterized by higher intensities of P and Mg (650 and 220 counts per 5 s, respectively), and lower intensities of Sr (2,800) and O (580; corresponding values for the fibrous aragonite are 370, 180, 3,300 and 620 counts per 5 s, respectively). Oxygen intensity values were mostly homogeneous, but slightly lower in COCs and substantially higher in a well-defined patch in the fibrous aragonite. The mostly homogeneous P signals in the fibrous aragonite confirm the utility of this structural component and of coral septa in general for tracer studies of oceanic P. Nevertheless, spot occurrences of elevated P (>950 counts per 5 s) spanning tens of micrometers in specific parts of the fibrous region of the septum would cause overestimates of oceanic P, and should evidently not be overlooked in future research. The

  5. Cold-seep-driven carbonate deposits at the Central American forearc: contrasting evolution and timing in escarpment and mound settings

    Science.gov (United States)

    Liebetrau, V.; Augustin, N.; Kutterolf, S.; Schmidt, M.; Eisenhauer, A.; Garbe-Schönberg, D.; Weinrebe, W.

    2014-10-01

    Continuous surface cores of cold-seep carbonates were recovered offshore Pacific Nicaragua and Costa Rica from 800 to 1,500-m water depths (Meteor 66/3) in order to decipher their evolution and methane enriched fluid emanation in contrasting geological settings. Cores from the mounds Iguana, Perezoso, Baula V and from the Jaco Scarp escarpment were used for a multi-method approach. For both settings aragonite was revealed as dominant authigenic carbonate phase in vein fillings and matrix cementation, followed by Mg-calcite as second most abundant. This common precipitation process of CaCO3 polymorphs could be ascribed as indirectly driven by chemical changes of the advecting pore water due to anaerobic oxidation of methane. A more direct influence of seep-related microbial activity on the authigenic mineral assemblage in both settings is probably reflected by the observed minor amounts of dolomite and a dolomite-like CaMg carbonate (MgCO3 ~ 42 %). δ13C data of Jaco Scarp samples are significantly lower (-43 to -56 ‰ PDB) than for mound samples (-22 to -36 ‰ PDB), indicating differences in fluid composition and origin. Noteworthy, δ18O values of Scarp samples correlate most closely with the ocean signature at their time of formation. Documenting the archive potential, a high resolution case study of a mound core implies at least 40 changes in fluid supply within a time interval of approximately 14 ky. As most striking difference, the age data indicate a late-stage downward-progressing cementation front for all three mound cap structures (approx. 2-5 cm/ky), but a significantly faster upward carbonate buildup in the bulging sediments on top of the scarp environment (approx. 120 cm/ky). The latter data set leads to the hypothesis of chemoherm carbonate emplacement in accord with reported sedimentation rates until decompression of the advective fluid system, probably caused by the Jaco Scarp landslide and dating this to approximately 13,000 years ago.

  6. Intra-Specific Variation Reveals Potential for Adaptation to Ocean Acidification in a Cold-Water Coral from the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Melissa D. Kurman

    2017-05-01

    Full Text Available Ocean acidification, the decrease in seawater pH due to the absorption of atmospheric CO2, profoundly threatens the survival of a large number of marine species. Cold-water corals are considered to be among the most vulnerable organisms to ocean acidification because they are already exposed to relatively low pH and corresponding low calcium carbonate saturation states (Ω. Lophelia pertusa is a globally distributed cold-water scleractinian coral that provides critical three-dimensional habitat for many ecologically and economically significant species. In this study, four different genotypes of L. pertusa were exposed to three pH treatments (pH = 7.60, 7.75, and 7.90 over a short (2-week experimental period, and six genotypes were exposed to two pH treatments (pH = 7.60 and 7.90 over a long (6-month experimental period. Their physiological response was measured as net calcification rate and the activity of carbonic anhydrase, a key enzyme in the calcification pathway. In the short-term experiment, net calcification rates did not significantly change with pH, although they were highly variable in the low pH treatment, including some genotypes that maintained positive net calcification in undersaturated conditions. In the 6-month experiment, average net calcification was significantly reduced at low pH, with corals exhibiting net dissolution of skeleton. However, one of the same genotypes that maintained positive net calcification (+0.04% day−1 under the low pH treatment in the short-term experiment also maintained positive net calcification longer than the other genotypes in the long-term experiment, although none of the corals maintained positive calcification for the entire 6 months. Average carbonic anhydrase activity was not affected by pH, although some genotypes exhibited small, insignificant, increases in activity after the sixth month. Our results suggest that while net calcification in L. pertusa is adversely affected by ocean

  7. Assessing the living and dead proportions of cold-water coral colonies: implications for deep-water Marine Protected Area monitoring in a changing ocean

    Directory of Open Access Journals (Sweden)

    Johanne Vad

    2017-10-01

    Full Text Available Coral growth patterns result from an interplay of coral biology and environmental conditions. In this study colony size and proportion of live and dead skeletons in the cold-water coral (CWC Lophelia pertusa (Linnaeus, 1758 were measured using video footage from Remotely Operated Vehicle (ROV transects conducted at the inshore Mingulay Reef Complex (MRC and at the offshore PISCES site (Rockall Bank in the NE Atlantic. The main goal of this paper was to explore the development of a simple method to quantify coral growth and its potential application as an assessment tool of the health of these remote habitats. Eighteen colonies were selected and whole colony and dead/living layer size were measured. Live to dead layer ratios for each colony were then determined and analysed. The age of each colony was estimated using previously published data. Our paper shows that: (1 two distinct morphotypes can be described: at the MRC, colonies displayed a ‘cauliflower-shaped’ morphotype whereas at the PISCES site, colonies presented a more flattened ‘bush-shaped’ morphotype; (2 living layer size was positively correlated with whole colony size; (3 live to dead layer ratio was negatively correlated to whole colony size; (4 live to dead layer ratio never exceeded 0.27. These results suggest that as a colony develops and its growth rate slows down, the proportion of living polyps in the colony decreases. Furthermore, at least 73% of L. pertusa colonies are composed of exposed dead coral skeleton, vulnerable to ocean acidification and the associated shallowing of the aragonite saturation horizon, with significant implications for future deep-sea reef framework integrity. The clear visual contrast between white/pale living and grey/dark dead portions of the colonies also gives a new way by which they can be visually monitored over time. The increased use of marine autonomous survey vehicles offers an important new platform from which such a surveying

  8. The addition of hydrodynamic variables to predictive cold water coral habitat modeling: The Bari Canyon case-study, southwestern Adriatic Sea

    Science.gov (United States)

    Foglini, Federica; Bargain, Annaëlle; Angeletti, Lorenzo; Bonaldo, Davide; Carniel, Sandro; Taviani, Marco

    2017-04-01

    Predictive habitat modeling is gaining momentum because of its usefulness to recognize potential distributional patterns of ecosystems thus facilitating their proper governance when required, as it is for instance the case of the Marine Strategy Framework Directive (MSFD). This holds particularly true for the deep-sea in front of its overwhelming areal extent on a global scale and intrinsic technological difficulties (with related costs) for its direct exploration. Cold Water Corals (CWC) is one emblematic, virtually cosmopolitan, ecosystem in the deep, that is under international attention because of its multifaceted ecological importance. CWC is currently represented in the Mediterranean basin by habitats engineered by the arborescent scleractinians Madrepora oculata and Lophelia pertusa associated with a number of other benthic invertebrates. One major CWC hotspot located on the southwestern Adriatic margin, the Bari Canyon cold water coral province, has been targeted for producing habitat suitability maps. Initially the evaluation of the theoretical distribution of CWC in this area has been based upon visual observations, mainly extracted from geo-referenced underwater ROV imagery, coupled with the eco-geographic information derived from bathymetry. This approach relies upon the compilation and comparison of presence-only models (MaxEnt and ENFA), but also presence-absence model (GLMs). However, the pivotal role played by oceanographic factors has been soon added in order to achieve more robust predictive models. In fact, the Bari Canyon CWC province is situated on the main path of the North Adriatic Dense Water cascading, and hypothesized to be sensitive to hydrological factors. Accordingly, the statistical models to assess potential habitat extent have been implemented using hydrodynamic fields provided by ROMS for ocean currents, coupled with SWAN within the COAWST modelling system to account for wave-current interactions. The integration of results is

  9. Reprint of - Deep-sea coral and hardbottom habitats on the west Florida slope, eastern Gulf of Mexico

    Science.gov (United States)

    Ross, Steve W.; Rhode, Mike; Brooke, Sandra

    2017-09-01

    Until recently, benthic habitats dominated by deep-sea corals (DSC) appeared to be less extensive on the slope of the Gulf of Mexico (GOM) than in the northeast Atlantic Ocean or off the southeastern US. There are relatively few bioherms (i.e., coral-built mounds) in the northern GOM, and most DSCs are attached to existing hard substrata (e.g., authigenically formed carbonate). The primary structure-forming, DSC in the GOM is Lophelia pertusa, but structure is also provided by other living and dead scleractinians, antipatharians (black corals), octocorals (gorgonians, soft corals), hydrocorals and sponges, as well as abundant rocky substrata. The best development of DSCs in the GOM was previously documented within Viosca Knoll oil and gas lease blocks 826 and 862/906 (north-central GOM) and on the Campeche Bank (southern GOM in Mexican waters). This paper documents extensive deep reef ecosystems composed of DSC and rocky hard-bottom recently surveyed on the West Florida Slope (WFS, eastern GOM) during six research cruises (2008-2012). Using multibeam sonar, CTD casts, and video from underwater vehicles, we describe the physical and oceanographic characteristics of these deep reefs and provide size or area estimates of deep coral and hardground habitats. The multibeam sonar analyses revealed hundreds of mounds and ridges, some of which were subsequently surveyed using underwater vehicles. Mounds and ridges in <525 m depths were usually capped with living coral colonies, dominated by L. pertusa. An extensive rocky scarp, running roughly north-south for at least 229 km, supported lower abundances of scleractinian corals than the mounds and ridges, despite an abundance of settlement substrata. Areal comparisons suggested that the WFS may exceed other parts of the GOM slope in extent of living deep coral coverage and other deep-reef habitat (dead coral and rock). The complex WFS region warrants additional studies to better understand the influences of oceanography and

  10. First biological measurements of deep-sea corals from the Red Sea

    OpenAIRE

    C. Roder; M. L. Berumen; J. Bouwmeester; E. Papathanassiou; A. Al-Suwailem; C. R. Voolstra

    2013-01-01

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ?deep-sea? and ?cold-water? corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20?C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the ...

  11. First biological measurements of deep-sea corals from the Red Sea.

    Science.gov (United States)

    Roder, C; Berumen, M L; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, A; Voolstra, C R

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with 'deep-sea' and 'cold-water' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  12. First biological measurements of deep-sea corals from the Red Sea.

    KAUST Repository

    Roder, Cornelia

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with \\'deep-sea\\' and \\'cold-water\\' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  13. Physiological and Biogeochemical Traits of Bleaching and Recovery in the Mounding Species of Coral Porites lobata: Implications for Resilience in Mounding Corals

    Science.gov (United States)

    2013-05-02

    Franzisket L (1978) Coral growth: buoyant weight technique. In: Stoddart DR, Johannes RE, editors. Coral Reefs : Research Methods. Paris, France...biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not...Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, United States of America Introduction Coral reefs are

  14. The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching.

    Science.gov (United States)

    Higuchi, Tomihiko; Agostini, Sylvain; Casareto, Beatriz Estela; Suzuki, Yoshimi; Yuyama, Ikuko

    2015-12-18

    The distribution of corals in Japan covers a wide range of latitudes, encompassing tropical to temperate zones. However, coral communities in temperate zones contain only a small subset of species. Among the parameters that determine the distribution of corals, temperature plays an important role. We tested the resilience to cold stress of three coral species belonging to the genus Acropora in incubation experiments. Acropora pruinosa, which is the northernmost of the three species, bleached at 13 °C, but recovered once temperatures were increased. The two other species, A. hyacinthus and A. solitaryensis, which has a more southerly range than A. pruinosa, died rapidly after bleaching at 13 °C. The physiological effects of cold bleaching on the corals included decreased rates of photosynthesis, respiration, and calcification, similar to the physiological effects observed with bleaching due to high temperature stress. Contrasting hot bleaching, no increases in antioxidant enzyme activities were observed, suggesting that reactive oxygen species play a less important role in bleaching under cold stress. These results confirmed the importance of resilience to cold stress in determining the distribution and northern limits of coral species, as cold events causing coral bleaching and high mortality occur regularly in temperate zones.

  15. Evidence for the bioerosion of deep-water corals by echinoids in the Northeast Atlantic

    Science.gov (United States)

    Stevenson, Angela; Rocha, Carlos

    2013-01-01

    In situ video observations of echinoids interacting with deep-sea coral are common in the deep-sea, but paradoxically the deep-sea literature is devoid of reports of bioerosion by extant echinoids. Here we present evidence of contemporary bioerosion of cold-water coral by four species of deep-sea echinoids, Gracilechinus elegans, Gracilechinus alexandri, Cidaris cidaris, and Araeosoma fenestratum, showing that they actively predate on the living framework of reef building corals, Lophelia pertusa and Madrepora oculata, in the NE Atlantic. Echinoid specimens were collected in six canyons located in the Bay of Biscay, France and two canyons on the north side of the Porcupine Bank and Goban Spur, Ireland. A total of 44 live specimens from the four taxa (9 of G. elegans, 4 of G. alexandri, 21 of C. cidaris and 10 of A. fenestratum) showed recent ingestion of the coral infrastructure. Upon dissection, live coral skeleton was observed encased in a thick mucus layer within the gastrointestinal tract of G. elegans and G. alexandri while both live and dead coral fragments were found in C. cidaris and A. fenestratum. Echinoid bioerosion limits the growth of shallow-water reefs. Our observations suggest that echinoids may also play an important role in the ecology of deep-water coral reefs.

  16. Deep-Sea Soft Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  17. Deep-Sea Stony Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  18. Patterns of bacteria-host associations suggest different ecological strategies between two reef building cold-water coral species

    Science.gov (United States)

    Meistertzheim, Anne.-Leila; Lartaud, Franck; Arnaud-Haond, Sophie; Kalenitchenko, Dimitri; Bessalam, Manon; Le Bris, Nadine; Galand, Pierre E.

    2016-08-01

    Cold-water corals (CWC) are main ecosystem engineers of the deep sea, and their reefs constitute hot-spots of biodiversity. However, their ecology remains poorly understood, particularly, the nature of the holobiont formed by corals with their associated bacterial communities. Here, we analyzed Madrepora oculata and Lophelia pertusa samples, collected from one location in a Mediterranean canyon in two different seasons (autumn and spring), in order to test for species specificity and temporal stability of the host-bacteria associations. The 16S rRNA sequencing revealed host-specific patterns of bacterial communities associated with L. pertusa and M. oculata, both in terms of community composition and diversity. All analyzed M. oculata polyps exhibited temporally and spatially similar bacterial communities dominated by haplotypes homologous to the known cnidarians-associated genus Endozoicomonas. In contrast, the bacterial communities associated with L. pertusa varied among polyps from the same colony, as well as among distinct colonies and between seasons. While the resilient consortium formed by M. oculata and its bacterial community fit the definition of holobiont, the versatility of the L. pertusa microbiome suggests that this association is more influenced by the environmental conditions or nutritional status. Our results thus highlight distinct host/microbes association strategies for these two closely related Scleractinians sharing the same habitat, suggesting distinct sensitivity to environmental change.

  19. Two ;pillars; of cold-water coral reefs along Atlantic European margins: Prevalent association of Madrepora oculata with Lophelia pertusa, from reef to colony scale

    Science.gov (United States)

    Arnaud-Haond, S.; Van den Beld, I. M. J.; Becheler, R.; Orejas, C.; Menot, L.; Frank, N.; Grehan, A.; Bourillet, J. F.

    2017-11-01

    The scleractinian coral Lophelia pertusa has been the focus of deep-sea research since the recognition of the vast extent of coral reefs in North Atlantic waters two decades ago, long after their existence was mentioned by fishermen. These reefs where shown to provide habitat, concentrate biomass and act as feeding or nursery grounds for many species, including those targeted by commercial fisheries. Thus, the attention given to this cold-water coral (CWC) species from researchers and the wider public has increased. Consequently, new research programs triggered research to determine the full extent of the corals geographic distribution and ecological dynamics of ;Lophelia reefs;. The present study is based on a systematic standardised sampling design to analyze the distribution and coverage of CWC reefs along European margins from the Bay of Biscay to Iceland. Based on Remotely Operated Vehicle (ROV) image analysis, we report an almost systematic occurrence of Madrepora oculata in association with L. pertusa with similar abundances of both species within explored reefs, despite a tendency of increased abundance of L. pertusa compared to M. oculata toward higher latitudes. This systematic association occasionally reached the colony scale, with ;twin; colonies of both species often observed growing next to each other when isolated structures were occurring off-reefs. Finally, several ;false chimaera; were observed within reefs, confirming that colonial structures can be ;coral bushes; formed by an accumulation of multiple colonies even at the inter-specific scale, with no need for self-recognition mechanisms. Thus, we underline the importance of the hitherto underexplored M. oculata in the Eastern Atlantic, re-establishing a more balanced view that both species and their yet unknown interactions are required to better elucidate the ecology, dynamics and fate of European CWC reefs in a changing environment.

  20. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas

    International Nuclear Information System (INIS)

    McCulloch, Malcolm; Taviani, Marco; Lopez Correa, Matthias; Remia, Alessandro; Montagna, Paolo; Mortimer, Graham

    2010-01-01

    Uranium-series and radiocarbon ages are reported for deep-sea corals Madrepora oculata, Desmophyllum dianthus, Lophelia pertusa and Caryophyllia smithii from the Mediterranean Sea. U-series dating indicates that deep-sea corals have persisted in the Mediterranean for over 480, 000 years, especially during cool inter-stadial periods. The most prolific period of growth however appears to have occurred within the Younger Dryas (YD) period from 12, 900 to 11, 700 years BP followed by a short (∼ 330 years) phase of post-YD coral growth from 11, 230 to 10, 900 years BP. This indicates that deep-sea corals were prolific in the Mediterranean not only during the return to the more glacial-like conditions of the YD, but also following the rapid deglaciation and transition to warmer conditions that followed the end of the YD. Surprisingly, there is a paucity Last Glacial Maximum (LGM) coral ages, implying they were largely absent during this period when cold-water conditions were more prevalent. Radiocarbon ages show that the intermediate depth waters of the Mediterranean generally had Δ 14 C compositions similar to surface waters, indicating that these waters were extremely well ventilated. The only exception is a narrow period in the YD (12, 500 ± 100 years BP) when several samples of Lophelia pertusa from the Ionian Sea had Δ 14 C values falling significantly below the marine curve. Using a refined approach, isolation ages (T isol ) of 300 years to 500 years are estimated for these intermediate (800-1000 m) depth waters relative to surface marine waters, indicating a reduction or absence of deep-water formation in the Ionian and adjacent Adriatic Seas during the YD. Contrary to previous findings, we find no evidence for widespread intrusion of low Δ 14 C Atlantic waters into the Mediterranean. Prolific growth of deep-sea corals in the Mediterranean ended abruptly at ∼ 10, 900 years BP, with many of the coral-bearing mounds on the continental slopes being draped in

  1. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, Malcolm [ARC Centre of Excellence for Coral Reef Studies, School of Earth and Environment, The University of Western Australian, Crawley, 6009, Western Australia (Australia); Research School of Earth Sciences, Australian National University, Canberra, 0200 (Australia); Taviani, Marco; Lopez Correa, Matthias; Remia, Alessandro [ISMAR-CNR, via Gobetti 101, I-40129 Bologna (Italy); Montagna, Paolo [LSCE, Av. de la Terrasse, 91198 Gif-sur-Yvette, France, ISMAR-CNR, via Gobetti 101, I-40129 Bologna (Italy); Mortimer, Graham [Research School of Earth Sciences, Australian National University, Canberra, 0200 (Australia)

    2010-07-01

    Uranium-series and radiocarbon ages are reported for deep-sea corals Madrepora oculata, Desmophyllum dianthus, Lophelia pertusa and Caryophyllia smithii from the Mediterranean Sea. U-series dating indicates that deep-sea corals have persisted in the Mediterranean for over 480, 000 years, especially during cool inter-stadial periods. The most prolific period of growth however appears to have occurred within the Younger Dryas (YD) period from 12, 900 to 11, 700 years BP followed by a short ({approx} 330 years) phase of post-YD coral growth from 11, 230 to 10, 900 years BP. This indicates that deep-sea corals were prolific in the Mediterranean not only during the return to the more glacial-like conditions of the YD, but also following the rapid deglaciation and transition to warmer conditions that followed the end of the YD. Surprisingly, there is a paucity Last Glacial Maximum (LGM) coral ages, implying they were largely absent during this period when cold-water conditions were more prevalent. Radiocarbon ages show that the intermediate depth waters of the Mediterranean generally had {Delta}{sup 14}C compositions similar to surface waters, indicating that these waters were extremely well ventilated. The only exception is a narrow period in the YD (12, 500 {+-} 100 years BP) when several samples of Lophelia pertusa from the Ionian Sea had {Delta}{sup 14}C values falling significantly below the marine curve. Using a refined approach, isolation ages (T{sub isol}) of 300 years to 500 years are estimated for these intermediate (800-1000 m) depth waters relative to surface marine waters, indicating a reduction or absence of deep-water formation in the Ionian and adjacent Adriatic Seas during the YD. Contrary to previous findings, we find no evidence for widespread intrusion of low {Delta}{sup 14}C Atlantic waters into the Mediterranean. Prolific growth of deep-sea corals in the Mediterranean ended abruptly at {approx} 10, 900 years BP, with many of the coral-bearing mounds

  2. Differential response of two Mediterranean cold-water coral species to ocean acidification

    Science.gov (United States)

    Movilla, Juancho; Orejas, Covadonga; Calvo, Eva; Gori, Andrea; López-Sanz, Àngel; Grinyó, Jordi; Domínguez-Carrió, Carlos; Pelejero, Carles

    2014-09-01

    Cold-water coral (CWC) reefs constitute one of the most complex deep-sea habitats harboring a vast diversity of associated species. Like other tropical or temperate framework builders, these systems are facing an uncertain future due to several threats, such as global warming and ocean acidification. In the case of Mediterranean CWC communities, the effect may be exacerbated due to the greater capacity of these waters to absorb atmospheric CO2 compared to the global ocean. Calcification in these organisms is an energy-demanding process, and it is expected that energy requirements will be greater as seawater pH and the availability of carbonate ions decrease. Therefore, studies assessing the effect of a pH decrease in skeletal growth, and metabolic balance are critical to fully understand the potential responses of these organisms under a changing scenario. In this context, the present work aims to investigate the medium- to long-term effect of a low pH scenario on calcification and the biochemical composition of two CWCs from the Mediterranean, Dendrophyllia cornigera and Desmophyllum dianthus. After 314 d of exposure to acidified conditions, a significant decrease of 70 % was observed in Desmophyllum dianthus skeletal growth rate, while Dendrophyllia cornigera showed no differences between treatments. Instead, only subtle differences between treatments were observed in the organic matter amount, lipid content, skeletal microdensity, or porosity in both species, although due to the high variability of the results, these differences were not statistically significant. Our results also confirmed a heterogeneous effect of low pH on the skeletal growth rate of the organisms depending on their initial weight, suggesting that those specimens with high calcification rates may be the most susceptible to the negative effects of acidification.

  3. Gulf of Mexico Deep-Sea Coral Ecosystem Studies, 2008-2011

    Science.gov (United States)

    Kellogg, Christina A.

    2009-01-01

    Most people are familiar with tropical coral reefs, located in warm, well-illuminated, shallow waters. However, corals also exist hundreds and even thousands of meters below the ocean surface, where it is cold and completely dark. These deep-sea corals, also known as cold-water corals, have become a topic of interest due to conservation concerns over the impacts of trawling, exploration for oil and gas, and climate change. Although the existence of these corals has been known since the 1800s, our understanding of their distribution, ecology, and biology is limited due to the technical difficulties of conducting deep-sea research. DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) is a new U.S. Geological Survey (USGS) program focused on deep-water coral ecosystems in the Gulf of Mexico. This integrated, multidisciplinary, international effort investigates a variety of topics related to unique and fragile deep-sea coral ecosystems from the microscopic level to the ecosystem level, including components of microbiology, population genetics, paleoecology, food webs, taxonomy, community ecology, physical oceanography, and mapping.

  4. Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century

    Science.gov (United States)

    Maier, C.; Bils, F.; Weinbauer, M. G.; Watremez, P.; Peck, M. A.; Gattuso, J.-P.

    2013-08-01

    The rise of CO2 has been identified as a major threat to life in the ocean. About one-third of the anthropogenic CO2 produced in the last 200 yr has been taken up by the ocean, leading to ocean acidification. Surface seawater pH is projected to decrease by about 0.4 units between the pre-industrial revolution and 2100. The branching cold-water corals Madrepora oculata and Lophelia pertusa are important, habitat-forming species in the deep Mediterranean Sea. Although previous research has investigated the abundance and distribution of these species, little is known regarding their ecophysiology and potential responses to global environmental change. A previous study indicated that the rate of calcification of these two species remained constant up to 1000 μatm CO2, a value that is at the upper end of changes projected to occur by 2100. We examined whether the ability to maintain calcification rates in the face of rising pCO2 affected the energetic requirements of these corals. Over the course of three months, rates of respiration were measured at a pCO2 ranging between 350 and 1100 μatm to distinguish between short-term response and longer-term acclimation. Respiration rates ranged from 0.074 to 0.266 μmol O2 (g skeletal dry weight)-1 h-1 and 0.095 to 0.725 μmol O2 (g skeletal dry weight)-1 h-1 for L. pertusa and M. oculata, respectively, and were independent of pCO2. Respiration increased with time likely due to regular feeding, which may have provided an increased energy supply to sustain coral metabolism. Future studies are needed to confirm whether the insensitivity of respiration to increasing pCO2 is a general feature of deep-sea corals in other regions.

  5. Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century

    Directory of Open Access Journals (Sweden)

    C. Maier

    2013-08-01

    Full Text Available The rise of CO2 has been identified as a major threat to life in the ocean. About one-third of the anthropogenic CO2 produced in the last 200 yr has been taken up by the ocean, leading to ocean acidification. Surface seawater pH is projected to decrease by about 0.4 units between the pre-industrial revolution and 2100. The branching cold-water corals Madrepora oculata and Lophelia pertusa are important, habitat-forming species in the deep Mediterranean Sea. Although previous research has investigated the abundance and distribution of these species, little is known regarding their ecophysiology and potential responses to global environmental change. A previous study indicated that the rate of calcification of these two species remained constant up to 1000 μatm CO2, a value that is at the upper end of changes projected to occur by 2100. We examined whether the ability to maintain calcification rates in the face of rising pCO2 affected the energetic requirements of these corals. Over the course of three months, rates of respiration were measured at a pCO2 ranging between 350 and 1100 μatm to distinguish between short-term response and longer-term acclimation. Respiration rates ranged from 0.074 to 0.266 μmol O2 (g skeletal dry weight−1 h−1 and 0.095 to 0.725 μmol O2 (g skeletal dry weight−1 h−1 for L. pertusa and M. oculata, respectively, and were independent of pCO2. Respiration increased with time likely due to regular feeding, which may have provided an increased energy supply to sustain coral metabolism. Future studies are needed to confirm whether the insensitivity of respiration to increasing pCO2 is a general feature of deep-sea corals in other regions.

  6. Low incidence of clonality in cold water corals revealed through the novel use of a standardized protocol adapted to deep sea sampling

    Science.gov (United States)

    Becheler, Ronan; Cassone, Anne-Laure; Noël, Philippe; Mouchel, Olivier; Morrison, Cheryl L.; Arnaud-Haond, Sophie

    2017-11-01

    Sampling in the deep sea is a technical challenge, which has hindered the acquisition of robust datasets that are necessary to determine the fine-grained biological patterns and processes that may shape genetic diversity. Estimates of the extent of clonality in deep-sea species, despite the importance of clonality in shaping the local dynamics and evolutionary trajectories, have been largely obscured by such limitations. Cold-water coral reefs along European margins are formed mainly by two reef-building species, Lophelia pertusa and Madrepora oculata. Here we present a fine-grained analysis of the genotypic and genetic composition of reefs occurring in the Bay of Biscay, based on an innovative deep-sea sampling protocol. This strategy was designed to be standardized, random, and allowed the georeferencing of all sampled colonies. Clonal lineages discriminated through their Multi-Locus Genotypes (MLG) at 6-7 microsatellite markers could thus be mapped to assess the level of clonality and the spatial spread of clonal lineages. High values of clonal richness were observed for both species across all sites suggesting a limited occurrence of clonality, which likely originated through fragmentation. Additionally, spatial autocorrelation analysis underlined the possible occurrence of fine-grained genetic structure in several populations of both L. pertusa and M. oculata. The two cold-water coral species examined had contrasting patterns of connectivity among canyons, with among-canyon genetic structuring detected in M. oculata, whereas L. pertusa was panmictic at the canyon scale. This study exemplifies that a standardized, random and georeferenced sampling strategy, while challenging, can be applied in the deep sea, and associated benefits outlined here include improved estimates of fine grained patterns of clonality and dispersal that are comparable across sites and among species.

  7. Formation and Control of Self-Sealing High Permeability Groundwater Mounds in Impermeable Sediment: Implications for SUDS and Sustainable Pressure Mound Management

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2009-10-01

    Full Text Available A groundwater mound (or pressure mound is defined as a volume of fluid dominated by viscous flow contained within a sediment volume where the dominant fluid flow is by Knudsen Diffusion. High permeability self-sealing groundwater mounds can be created as part of a sustainable urban drainage scheme (SUDS using infiltration devices. This study considers how they form, and models their expansion and growth as a function of infiltration device recharge. The mounds grow through lateral macropore propagation within a Dupuit envelope. Excess pressure relief is through propagating vertical surge shafts. These surge shafts can, when they intersect the ground surface result, in high volume overland flow. The study considers that the creation of self-sealing groundwater mounds in matrix supported (clayey sediments (intrinsic permeability = 10–8 to 10–30 m3 m–2 s–1 Pa–1 is a low cost, sustainable method which can be used to dispose of large volumes of storm runoff (<20→2,000 m3/24 hr storm/infiltration device and raise groundwater levels. However, the inappropriate location of pressure mounds can result in repeated seepage and ephemeral spring formation associated with substantial volumes of uncontrolled overland flow. The flow rate and flood volume associated with each overland flow event may be substantially larger than the associated recharge to the pressure mound. In some instances, the volume discharged as overland flow in a few hours may exceed the total storm water recharge to the groundwater mound over the previous three weeks. Macropore modeling is used within the context of a pressure mound poro-elastic fluid expulsion model in order to analyze this phenomena and determine (i how this phenomena can be used to extract large volumes of stored filtered storm water (at high flow rates from within a self-sealing high permeability pressure mound and (ii how self-sealing pressure mounds (created using storm water infiltration can be used to

  8. Influence of Eunice norvegica on feeding and calcification in the coral Lophelia pertusa

    Science.gov (United States)

    Mueller, C. E.; van Oevelen, D.; Middelburg, J. J.; Lundälv, T.

    2012-04-01

    Lophelia pertusa is the main framework building cold-water coral in the North Atlantic. It forms complex reef structures, extending up to several km in length and several meters in hight. Many species are attracted by the coral frame work, forming a highly diverse community within the reef. Although most work has focused on the corals, the functioning of the system also depends on interactions between corals and associated species. A particular example is the Polychaete Eunice norvegica that lives in close association with the coral host. The Polychaete builds a thin texture-tube between living coral branches and stimulates the coral to calcify the tube. This process strengthens the reef framwork by thickening and connecting coral brances and thereby acts as a positive feedback on the development of large reef structures. This comes however at an metabolic cost for the coral due to the enhanced calcificationrates. Another negative feedback for cold-water coral may be food related, since aquaria observations have shown that Eunice occasionally steels food from its host coral. In this study we investigated the interactions between the coral and polychaete related to calcification and food partitioning for two food types (algae and Artemia). The uptake of 13C and 15N labeled food sources by the worm and the coral was studied in chambers with only corals, only the polychaete and both species present. After 7 days, corals and worms were analyzed for isotope incorporation in bulk tissue and skeleton samples and specific fatty acids (13C) using GC-c-IRMS (gas-chromatography-combustion-isotope ratio mass spectrometry). Corals that were kept in the presence of Eunice indeed showed a higher calcification rates of 7.4 ug C (day* g dw coral)-1, evidencing the stimulation of calcification by Eunice. Interestingly, food uptake of algae and Artemia was higher in the coral-worm treatment for both species as compared to the single species treatments. These results shed new light on

  9. NWFSC Coral Data Collected off West Coast of US (1980-2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains the locations of some observations of cold-water/deep-sea corals off the west coast of the United States. Records of coral catch originate from...

  10. A new classification scheme of European cold-water coral habitats: Implications for ecosystem-based management of the deep sea

    Science.gov (United States)

    Davies, J. S.; Guillaumont, B.; Tempera, F.; Vertino, A.; Beuck, L.; Ólafsdóttir, S. H.; Smith, C. J.; Fosså, J. H.; van den Beld, I. M. J.; Savini, A.; Rengstorf, A.; Bayle, C.; Bourillet, J.-F.; Arnaud-Haond, S.; Grehan, A.

    2017-11-01

    Cold-water corals (CWC) can form complex structures which provide refuge, nursery grounds and physical support for a diversity of other living organisms. However, irrespectively from such ecological significance, CWCs are still vulnerable to human pressures such as fishing, pollution, ocean acidification and global warming Providing coherent and representative conservation of vulnerable marine ecosystems including CWCs is one of the aims of the Marine Protected Areas networks being implemented across European seas and oceans under the EC Habitats Directive, the Marine Strategy Framework Directive and the OSPAR Convention. In order to adequately represent ecosystem diversity, these initiatives require a standardised habitat classification that organises the variety of biological assemblages and provides consistent and functional criteria to map them across European Seas. One such classification system, EUNIS, enables a broad level classification of the deep sea based on abiotic and geomorphological features. More detailed lower biotope-related levels are currently under-developed, particularly with regards to deep-water habitats (>200 m depth). This paper proposes a hierarchical CWC biotope classification scheme that could be incorporated by existing classification schemes such as EUNIS. The scheme was developed within the EU FP7 project CoralFISH to capture the variability of CWC habitats identified using a wealth of seafloor imagery datasets from across the Northeast Atlantic and Mediterranean. Depending on the resolution of the imagery being interpreted, this hierarchical scheme allows data to be recorded from broad CWC biotope categories down to detailed taxonomy-based levels, thereby providing a flexible yet valuable information level for management. The CWC biotope classification scheme identifies 81 biotopes and highlights the limitations of the classification framework and guidance provided by EUNIS, the EC Habitats Directive, OSPAR and FAO; which largely

  11. Biogeochemical analysis of the calcification patterns of cold-water corals Madrepora oculata and Lophelia pertusa along contact surfaces with calcified tubes of the symbiotic polychaete Eunice norvegica: Evaluation of a 'mucus' calcification hypothesis

    Science.gov (United States)

    Oppelt, Alexandra; López Correa, Matthias; Rocha, Carlos

    2017-09-01

    The scleractinian cold-water corals (CWCs), including the species Madrepora oculata and especially Lophelia pertusa, have been studied extensively in an attempt to decipher environmental signals recorded during biomineralisation in order to extract environmental chronologies. However, understanding the mechanisms of carbonate precipitation is a prerequisite to interpret variations in geochemical signatures locked into the skeleton during coral growth; to date results are still inconclusive. Here a novel approach, comparing the calcification patterns within the coral microstructure of species L. pertusa and M. oculata and the geochemistry along the contact surfaces with calcified polychaete tubes is undertaken to provide additional information on the mechanisms of biomineralisation in colonial corals. The fact that no significant difference in microstructures, variations in growth rate, or geochemical composition between the corallite theca and the calcified polychaete tube was detectable leads to the conclusion that both have been deposited by the coral tissue in L. pertusa and M. oculata. Based on prior knowledge on the symbiotic relationship between CWCs and the polychaete Eunice norvegica, an involvement of mucus in the calcification of the parchment tubes had been suspected. However, we found only evidence for aragonite precipitated by coral tissue, without evidence for an involvement of mucus in the calcification.

  12. Evidence of mud diapirism and coral colonies in the ionian sea (central mediterranean from high resolution chirp sonar survey

    Directory of Open Access Journals (Sweden)

    C. Corselli

    2006-06-01

    Full Text Available A chirp sonar survey in the Ionian Sea investigated the Calabrian margin, the Calabrian accretionary wedge, the Taranto Trench and the Apulian foreland. Shallow tectonics structures have been related to deeper ones, recognised on CROP seismic profiles. The identified echo characters have been compared with those described in the modern literature and have been related to different kinds of sediments, on the basis of core samples. Based on echo character and morphology we have recognised: 1 A widespread presence of mounds, up to 50 m high, occurring on the Apulian plateau as isolated mounds in the deepest zones (1600-800 m and in groups in the shallower ones (800-600 m; they have been interpreted as coral mounds, according to a recent discovery of living deep water coral colonies in this zone. 2 Some mud diapirs, isolated or in groups of two or three elements, widespread in the whole study area. In analogy of what has been observed on the Mediterranean Ridge, their presence suggests the activity of deep tectonic structures (thrusts and faults and a reduced thickness (or absence of Messinian evaporites in this part of the Ionian Sea.

  13. First description of a Lophelia pertusa reef complex in Atlantic Canada

    Science.gov (United States)

    Buhl-Mortensen, Pål; Gordon, Don C.; Buhl-Mortensen, Lene; Kulka, Dave W.

    2017-08-01

    For the first time, we describe a cold-water coral reef complex in Atlantic Canada, discovered at the shelf break, in the mouth of the Laurentian Channel. The study is based on underwater video and sidescan sonar. The reef complex covered an area of approximately 490×1300 m, at 280-400 m depth. It consisted of several small mounds (skeletal rubble. On the mounds, a total of 67 live colonies occurred within 14 patches at 300-320 m depth. Most of these (67%) were small (system data indicate that the closure is generally respected by the fishing industry.

  14. Coral Reef Ecosystems under Climate Change and Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Ove Hoegh-Guldberg

    2017-05-01

    Full Text Available Coral reefs are found in a wide range of environments, where they provide food and habitat to a large range of organisms as well as providing many other ecological goods and services. Warm-water coral reefs, for example, occupy shallow sunlit, warm, and alkaline waters in order to grow and calcify at the high rates necessary to build and maintain their calcium carbonate structures. At deeper locations (40–150 m, “mesophotic” (low light coral reefs accumulate calcium carbonate at much lower rates (if at all in some cases yet remain important as habitat for a wide range of organisms, including those important for fisheries. Finally, even deeper, down to 2,000 m or more, the so-called “cold-water” coral reefs are found in the dark depths. Despite their importance, coral reefs are facing significant challenges from human activities including pollution, over-harvesting, physical destruction, and climate change. In the latter case, even lower greenhouse gas emission scenarios (such as Representative Concentration Pathway RCP 4.5 are likely drive the elimination of most warm-water coral reefs by 2040–2050. Cold-water corals are also threatened by warming temperatures and ocean acidification although evidence of the direct effect of climate change is less clear. Evidence that coral reefs can adapt at rates which are sufficient for them to keep up with rapid ocean warming and acidification is minimal, especially given that corals are long-lived and hence have slow rates of evolution. Conclusions that coral reefs will migrate to higher latitudes as they warm are equally unfounded, with the observations of tropical species appearing at high latitudes “necessary but not sufficient” evidence that entire coral reef ecosystems are shifting. On the contrary, coral reefs are likely to degrade rapidly over the next 20 years, presenting fundamental challenges for the 500 million people who derive food, income, coastal protection, and a range of

  15. Simulation of Groundwater Mounding Beneath Hypothetical Stormwater Infiltration Basins

    Science.gov (United States)

    Carleton, Glen B.

    2010-01-01

    Groundwater mounding occurs beneath stormwater management structures designed to infiltrate stormwater runoff. Concentrating recharge in a small area can cause groundwater mounding that affects the basements of nearby homes and other structures. Methods for quantitatively predicting the height and extent of groundwater mounding beneath and near stormwater Finite-difference groundwater-flow simulations of infiltration from hypothetical stormwater infiltration structures (which are typically constructed as basins or dry wells) were done for 10-acre and 1-acre developments. Aquifer and stormwater-runoff characteristics in the model were changed to determine which factors are most likely to have the greatest effect on simulating the maximum height and maximum extent of groundwater mounding. Aquifer characteristics that were changed include soil permeability, aquifer thickness, and specific yield. Stormwater-runoff variables that were changed include magnitude of design storm, percentage of impervious area, infiltration-structure depth (maximum depth of standing water), and infiltration-basin shape. Values used for all variables are representative of typical physical conditions and stormwater management designs in New Jersey but do not include all possible values. Results are considered to be a representative, but not all-inclusive, subset of likely results. Maximum heights of simulated groundwater mounds beneath stormwater infiltration structures are the most sensitive to (show the greatest change with changes to) soil permeability. The maximum height of the groundwater mound is higher when values of soil permeability, aquifer thickness, or specific yield are decreased or when basin depth is increased or the basin shape is square (and values of other variables are held constant). Changing soil permeability, aquifer thickness, specific yield, infiltration-structure depth, or infiltration-structure shape does not change the volume of water infiltrated, it changes the

  16. Self-recognition in corals facilitates deep-sea habitat engineering

    Science.gov (United States)

    Hennige, Sebastian J; Morrison, Cheryl L.; Form, Armin U.; Buscher, Janina; Kamenos, Nicholas A.; Roberts, J. Murray

    2014-01-01

    The ability of coral reefs to engineer complex three-dimensional habitats is central to their success and the rich biodiversity they support. In tropical reefs, encrusting coralline algae bind together substrates and dead coral framework to make continuous reef structures, but beyond the photic zone, the cold-water coral Lophelia pertusa also forms large biogenic reefs, facilitated by skeletal fusion. Skeletal fusion in tropical corals can occur in closely related or juvenile individuals as a result of non-aggressive skeletal overgrowth or allogeneic tissue fusion, but contact reactions in many species result in mortality if there is no ‘self-recognition’ on a broad species level. This study reveals areas of ‘flawless’ skeletal fusion in Lophelia pertusa, potentially facilitated by allogeneic tissue fusion, are identified as having small aragonitic crystals or low levels of crystal organisation, and strong molecular bonding. Regardless of the mechanism, the recognition of ‘self’ between adjacent L. pertusa colonies leads to no observable mortality, facilitates ecosystem engineering and reduces aggression-related energetic expenditure in an environment where energy conservation is crucial. The potential for self-recognition at a species level, and subsequent skeletal fusion in framework-forming cold-water corals is an important first step in understanding their significance as ecological engineers in deep-seas worldwide.

  17. Fluctuations in coral health of four common inshore reef corals in response to seasonal and anthropogenic changes in water quality.

    Science.gov (United States)

    Browne, Nicola K; Tay, Jason K L; Low, Jeffrey; Larson, Ole; Todd, Peter A

    2015-04-01

    Environmental drivers of coral condition (maximum quantum yield, symbiont density, chlorophyll a content and coral skeletal growth rates) were assessed in the equatorial inshore coastal waters of Singapore, where the amplitude of seasonal variation is low, but anthropogenic influence is relatively high. Water quality variables (sediments, nutrients, trace metals, temperature, light) explained between 52 and 83% of the variation in coral condition, with sediments and light availability as key drivers of foliose corals (Merulina ampliata, Pachyseris speciosa), and temperature exerting a greater influence on a branching coral (Pocillopora damicornis). Seasonal reductions in water quality led to high chlorophyll a concentrations and maximum quantum yields in corals, but low growth rates. These marginal coral communities are potentially vulnerable to climate change, hence, we propose water quality thresholds for coral growth with the aim of mitigating both local and global environmental impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Are pre-crater mounds gas-inflated?

    Science.gov (United States)

    Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Babkina, Elena; Arefiev, Stanislav; Khairullin, Rustam

    2017-04-01

    Gas-emission craters (GEC) on Yamal peninsula, which occupied minds of researches for the last couple of years since first discovered in 2014, appeared to form on the place of specifically shaped mounds. There was a number of hypotheses involving pingo as an origin of these mounds. This arouse an interest in mapping pingo thus marking the areas of GEC formation risk. Our field research allows us to suggest that remote-sensing-based mapping of pingo may result in mix up of mounds of various origin. Thus, we started with classification of the mounds based on remote-sensing, field observations and survey from helicopter. Then we compared indicators of mounds of various classes to the properties of pre-crater mounds to conclude on their origin. Summarizing field experience, there are three main mound types on Yamal. (1) Outliers (remnant hills), separated from the main geomorphic landform by erosion. Often these mounds comprise polygonal blocks, kind of "baydzherakh". Their indicators are asymmetry (short gentle slope towards the main landform, and steep slope often descending into a small pond of thermokarst-nivation origin), often quadrangle or conic shape, and large size. (2) Pingo, appear within the khasyrei (drain lake basin); often are characterized by open cracks resulting from expansion of polygonal network formed when re-freezing of lake talik prior to pingo formation; old pingo may bear traces of collapse on the top, with depression which differs from the GEC by absence of parapet. (3) Frost-heave mounds (excluding pingo) may form on deep active layer, reducing due to moss-peat formation and forming ice lenses from an active layer water, usually they appear in the drainage hollows, valley bottoms, drain-lake basins periphery. These features are smaller than the first two types of mounds. Their tops as a rule are well vegetated. We were unable to find a single or a set of indicators unequivocally defining any specific mound type, thus indicators of pre

  19. Coral skeletal geochemistry as a monitor of inshore water quality

    International Nuclear Information System (INIS)

    Saha, Narottam; Webb, Gregory E.; Zhao, Jian-Xin

    2016-01-01

    Coral reefs maintain extraordinary biodiversity and provide protection from tsunamis and storm surge, but inshore coral reef health is degrading in many regions due to deteriorating water quality. Deconvolving natural and anthropogenic changes to water quality is hampered by the lack of long term, dated water quality data but such records are required for forward modelling of reef health to aid their management. Reef corals provide an excellent archive of high resolution geochemical (trace element) proxies that can span hundreds of years and potentially provide records used through the Holocene. Hence, geochemical proxies in corals hold great promise for understanding changes in ancient water quality that can inform broader oceanographic and climatic changes in a given region. This article reviews and highlights the use of coral-based trace metal archives, including metal transported from rivers to the ocean, incorporation of trace metals into coral skeletons and the current ‘state of the art’ in utilizing coral trace metal proxies as tools for monitoring various types of local and regional source-specific pollution (river discharge, land use changes, dredging and dumping, mining, oil spills, antifouling paints, atmospheric sources, sewage). The three most commonly used coral trace element proxies (i.e., Ba/Ca, Mn/Ca, and Y/Ca) are closely associated with river runoff in the Great Barrier Reef, but considerable uncertainty remains regarding their complex biogeochemical cycling and controlling mechanisms. However, coral-based water quality reconstructions have suffered from a lack of understanding of so-called vital effects and early marine diagenesis. The main challenge is to identify and eliminate the influence of extraneous local factors in order to allow accurate water quality reconstructions and to develop alternate proxies to monitor water pollution. Rare earth elements have great potential as they are self-referencing and reflect basic terrestrial input

  20. Coral skeletal geochemistry as a monitor of inshore water quality

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Narottam, E-mail: n.saha@uq.edu.au; Webb, Gregory E.; Zhao, Jian-Xin

    2016-10-01

    Coral reefs maintain extraordinary biodiversity and provide protection from tsunamis and storm surge, but inshore coral reef health is degrading in many regions due to deteriorating water quality. Deconvolving natural and anthropogenic changes to water quality is hampered by the lack of long term, dated water quality data but such records are required for forward modelling of reef health to aid their management. Reef corals provide an excellent archive of high resolution geochemical (trace element) proxies that can span hundreds of years and potentially provide records used through the Holocene. Hence, geochemical proxies in corals hold great promise for understanding changes in ancient water quality that can inform broader oceanographic and climatic changes in a given region. This article reviews and highlights the use of coral-based trace metal archives, including metal transported from rivers to the ocean, incorporation of trace metals into coral skeletons and the current ‘state of the art’ in utilizing coral trace metal proxies as tools for monitoring various types of local and regional source-specific pollution (river discharge, land use changes, dredging and dumping, mining, oil spills, antifouling paints, atmospheric sources, sewage). The three most commonly used coral trace element proxies (i.e., Ba/Ca, Mn/Ca, and Y/Ca) are closely associated with river runoff in the Great Barrier Reef, but considerable uncertainty remains regarding their complex biogeochemical cycling and controlling mechanisms. However, coral-based water quality reconstructions have suffered from a lack of understanding of so-called vital effects and early marine diagenesis. The main challenge is to identify and eliminate the influence of extraneous local factors in order to allow accurate water quality reconstructions and to develop alternate proxies to monitor water pollution. Rare earth elements have great potential as they are self-referencing and reflect basic terrestrial input

  1. Zoantharians (Hexacorallia: Zoantharia Associated with Cold-Water Corals in the Azores Region: New Species and Associations in the Deep Sea

    Directory of Open Access Journals (Sweden)

    Marina Carreiro-Silva

    2017-04-01

    Full Text Available Zoantharians are a group of cnidarians that are often found in association with marine invertebrates, including corals, in shallow and deep-sea environments. However, little is known about deep-sea zoantharian taxonomy, specificity and nature of their associations with their coral hosts. In this study, analyses of molecular data (mtDNA COI, 16S, and 12S rDNA coupled with ecological and morphological characteristics were used to examine zoantharian specimens associated with cold-water corals (CWC at depths between 110 and 800 m from seamounts and island slopes in the Azores region. The zoantharians examined were found living in association with stylasterids, antipatharians and octocorals. From the collected specimens, four new species were identified: (1 Epizoanthus martinsae sp. n. associated with the antipatharian Leiopathes sp.; (2 Parazoanthus aliceae sp. n. associated with the stylasterid Errina dabneyi (Pourtalès, 1871; (3 Zibrowius alberti sp. n. associated with octocorals of the family Primnoidae [Paracalyptrophora josephinae (Lindström, 1877] and the family Plexauridae (Dentomuricea aff. meteor Grasshoff, 1977; (4 Hurlizoanthus hirondelleae sp. n. associated with the primnoid octocoral Candidella imbricata (Johnson, 1862. In addition, based on newly collected material, morphological and molecular data and phylogenic reconstruction, the zoantharian Isozoanthus primnoidus Carreiro-Silva, Braga-Henriques, Sampaio, de Matos, Porteiro & Ocaña, 2011, associated with the primnoid octocoral Callogorgia verticillata (Pallas, 1766, was reclassified as Zibrowius primnoidus comb. nov. The zoantharians, Z. primnoidus comb. nov., Z. alberti sp. n., and H. hirondelleae sp. n. associated with octocorals showed evidence of a parasitic relationship, where the zoantharian progressively eliminates gorgonian tissue and uses the gorgonian axis for structure and support, and coral sclerites for protection. In contrast, the zoantharian P. aliceae sp. n

  2. Facies architecture and diagenesis of Belgian Late Frasnian carbonate mounds

    OpenAIRE

    Boulvain, Frédéric

    2001-01-01

    Late Frasnian Petit-Mont Member carbonate mounds occur in the southern pail of the Dinant Synclinorium and in the Philippeville Anticline (SW Belgium). These mounds are 30 to 80 m thick and 100 to 250 m in diameter. They are embedded in shale, nodular shale and argillaceous limestone. Based on facies mapping of 14 buildups and related off-mound sediments, these mounds typically started from below the photic and storm wave base zones and builtup into shallow water environments. Above an argill...

  3. Hamacantha (Hamacantha) boomerang sp. nov. from deep-sea coral mounds at Campos Basin, SW Atlantic, and redescription of H. (H.) schmidtii (Carter, 1882) (Hamacanthidae, Poecilosclerida, Demospongiae).

    Science.gov (United States)

    Hajdu, Eduardo; Castello-Branco, Cristiana

    2014-01-08

    There are 22 species of Hamacantha registered from all over the world, and frequently from deep-waters, only two of which had previously been reported from the SW Atlantic. Here we describe a third species for this area, Hamacantha (H.) boomerang sp. nov., collected from deep-sea coral mounds at Campos Basin (off Rio de Janeiro state). We found oxeas 271-630 µm long, diancistras in three size classes, 125-155, 45-69 and 20-29 µm, and toxas, 58-82 µm. This is the only Hamacantha combining oxeas and toxas, but the latter are very rare. The species approaches the Caribbean H. (H.) schmidtii (Carter, 1882), where we observed oxeas 390-495 µm long, and diancistras in three size classes, 109-124,  44-54 and 26-41 μm, however toxas appear to be absent. Both species are clearly distinct by micrometric values, as well as the overall morphology of the smaller diancistras, distinct from the intermediate category in the new species, but quite similar in H. (H.) schmidtii. Hamacantha (Vomerula) falcula approaches the new species very closely in microsclere dimensions and morphology, but is set apart by its styloid and smaller megascleres.

  4. Mound technology for isolation of decommissioned NPPs

    International Nuclear Information System (INIS)

    Korovkin, S.V.; Tutunina, E.V.

    2012-01-01

    The problem of NPPs' decommissioning calls for immediate attention. Today the most socially acceptable solution is green lawn, but due to the difficulty of this option, alternative solutions are being developed as well. The authors believe that the option is isolation of shut-down NPPs in-situ by covering them with layers of inert materials, resulting in the formation of a mound. In this case the reactor building itself becomes a repository that holds solid radioactive wastes generated over the time of unit operation. Spent fuel is to be shipped out of the site. A layer of inert materials several meters thick guarantees secure protection against ionising radiation and unauthorised access to the structures in isolation. The structures inside the mound are also inaccessible to ground waters. The green mound concept is considered as well as the mound backfilling technology which excludes collapse under the weight of inert materials that form the mound. It is pointed out that never-completed Voronezh nuclear heating plant is the optimal object for field-testing of the suggested technology [ru

  5. Food supply mechanisms for cold-water corals along a continental shelf edge

    Science.gov (United States)

    Thiem, Øyvind; Ravagnan, Elisa; Fosså, Jan Helge; Berntsen, Jarle

    2006-05-01

    In recent years it has been documented that deep-water coral reefs of the species Lophelia pertusa are a major benthic habitat in Norwegian waters. However, basic information about the biology and ecology of this species is still unknown. Lophelia live and thrive under special environmental conditions of which factors such as temperature, water depth, water movement and food supply are important. The present work explores the hypothesis that Lophelia forms reefs in places where the encounter rate of food particles is sufficiently high and stable over long periods of time for continuous growth. This is done by relating the distribution of reefs with the results of numerical ocean modelling. Numerical simulations have been performed with an idealized bottom topography similar to what is found outside parts of the Norwegian coast. In the simulations the model is first forced with an along slope jet and then with an idealized atmospheric low pressure. The model results show that the encounter rates between the particles and the water layer near the seabed are particularly high close to the shelf break. This may indicate that many Lophelia reefs are located along the shelf edges because the supply of food is particularly good in these areas. A sensitivity study of the particle supply in the area close to the seabed for increasing latitude has also been done. This shows that the Ekman transport in the benthic layer tends to create a steady supply of food for benthic organisms near the shelf edge away from the equator.

  6. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  7. Identification of Coral Reefs in Mamburit Waters, Sumenep Regency

    OpenAIRE

    Sawiya, Sawiya; Mahmudi, Mohammad; Guntur, Guntur

    2014-01-01

    This research was conducted in September to October 2013 in Mamburit Waters, Sumenep Regency. This study was aimed to assess the percentage of coral reefs and acknowkedge the type of the coral reefs. Coral reefs was observed with the Line Intercept (LIT) method laid parallel to the coastline in the depth of 3 m and 10 m in windward and leeward area. Total of 59.88% coral reefs lived in leeward area in 3 m depth includes in good category and the percentage of dead coral reefs and other fauna f...

  8. Mound site environmental monitoring report for calendar year 1993

    International Nuclear Information System (INIS)

    1994-08-01

    The purpose of this report is to inform the public about the impact of Mound operations on the population and the environment. Mound is a government-owned facility operated by EG ampersand G Mound Applied Technologies for the U.S. Department of Energy (DOE). This integrated production, development, and research site performs work in support of DOE's weapon and energy related programs, with emphasis on explosive, nuclear and energy technologies. The Mound Plant, named after the Miamisburg Indian Mound adjacent to the site, comprises 120 buildings on 124 hectares (306 acres) of land in Miamisburg, Ohio, approximately 16 km (10 mi) southwest of Dayton. The Great Miami River, which flows through the city of Miamisburg, dominates the landscape of the five-county region surrounding Mound. The river valley is highly industrialized. The rest of the region is predominately farm land dotted with light industry and small communities. The climate is moderate. The geologic record preserved in the rocks underlying Mound indicates that the area has been relatively stable since the beginning of the Paleozoic Era more than 500 million years ago. No buildings at Mound are located in a floodplain or in areas considered wetlands. Included in the report are the following: perspective on radiation; radionuclide releases from Mound; Dose limites; doses from Mound Operations; Results of the environmental Monitoring Program; Ground water monitoring program; environmental restoration program; quality assurance for environmental data

  9. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range

    Science.gov (United States)

    Naumann, Malik S.; Orejas, Covadonga; Ferrier-Pagès, Christine

    2014-01-01

    The scleractinian cold-water corals (CWC) Lophelia pertusa and Madrepora oculata represent two major deep-sea reef-forming species that act as key ecosystem engineers over a wide temperature range, extending from the northern Atlantic (ca. 5-9 °C) to the Mediterranean Sea (ca. 11-13 °C). Recent research suggests that environmental parameters, such as food supply, settling substrate availability or aragonite saturation state may represent important precursors controlling habitat suitability for CWC. However, the effect of one principal environmental factor, temperature, on CWC key physiological processes is still unknown. In order to evaluate this effect on calcification, respiration, and dissolved organic carbon (DOC) net flux, colonies of Mediterranean L. pertusa and M. oculata were acclimated in aquaria to three temperatures (12, 9 and 6 °C), by consecutive decrements of 1 month duration. L. pertusa and M. oculata maintained at Mediterranean control conditions (i.e. 12 °C) displayed constant rates, on average respiring 4.8 and 4.0 μmol O2 cm-2 coral surface area d-1, calcifying 22.3 and 12.3 μmol CaCO3 g-1 skeletal dry weight d-1 and net releasing 2.6 and 3.1 μmol DOC cm-2 coral surface area d-1, respectively. Respiration of L. pertusa was not affected by lowered temperatures, while M. oculata respiration declined significantly (by 48%) when temperature decreased to 9 °C and 6 °C relative to controls. L. pertusa calcification at 9 °C was similar to controls, but decreased significantly (by 58%) at 6 °C. For M. oculata, calcification declined by 41% at 9 °C and by 69% at 6 °C. DOC net flux was similar throughout the experiment for both CWC. These findings reveal species-specific physiological responses by CWC within their natural temperature range. L. pertusa shows thermal acclimation in respiration and calcification, while these mechanisms appear largely absent in M. oculata. Conclusively, species-specific thermal acclimation may significantly affect

  10. Grainstones and cementstone mounds: The Trogkofel summit section (Lower Permian, Carnic Alps, Austria).

    Science.gov (United States)

    Schaffhauser, M.; Sanders, D.; Krainer, K.

    2009-04-01

    In the Carnic Alps, Austria, an Artinskian succession 400 m thick of shallow-water bioclastic limestones and of mounds composed of ?Archaeolithophyllum, Archaeolithoporella and abundant fibrous cementstone (after former aragonite) records deposition along a "grainstone-dominated" platform margin. The section was taken along the route through the east-facing cliff of Trogkofel. The Trogkofel Limestone (Artinskian pro parte) is excellently exposed and preserved the most complete along this route, but no section has hitherto been logged. The total thickness of the Trogkofel Limestone probably is about 550 meters; the summit section comprises its upper 400 meters. The section consists mainly of shallow-water bioclastic limestones (grainstones, packstones, rudstones) intercalated with cementstone mounds. Both the bioclastic limestones and the mounds typically are thick-bedded to, more commonly, unbedded. Throughout the section, intervals a few tens of meters in thickness dominated by bioclastic limestones change vertically with intervals dominated by cementstone mounds. Up-section, no clear-cut trend with respect to prevalent facies, mean depositional water depth, and energy index is obvious. Furthermore, no lime-muddy, meter-scale peritidal cycles, and no teepee structures and no pisolite levels were identified; thin intervals of fenestral lime mudstones and/or of cryptmicrobially-laminated limestones are very rare. The bioclastic limestones commonly weather out unstratified, or show subhorizontal stratification or, more rarely, low-angle cross-stratification. In the upper 100 meters of section, grainstones to fine-grained rudstones rich in keystone vugs are prevalent. The cementstone mounds comprise intervals up to a few meters in thickness; the biogenic component is characterized by foliose crusts pertaining to ?Archaeolithophyllum hidensis and Archaeolithoporella, overgrown by Tubiphytes and fenestrate bryozoans. The ?Archaeolithophyllum-Archaeolithoporella crusts

  11. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.

    Science.gov (United States)

    Zlotnik, Vitaly A; Kacimov, Anvar; Al-Maktoumi, Ali

    2017-11-01

    Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip. The solution, based on the Dupiuit-Forchheimer approximation, Green's function method, and coordinate transformations is convenient for computing. This solution reveals important MAR traits in variance with Hantush's solution: mounding is limited in time and space; elevation of the mound is strongly affected by the dip angle; and the peak of the mound moves over time. These findings have important practical implications for assessment of various MAR scenarios, including waterlogging potential and determining proper rates of recharge. Computations are illustrated for several characteristic MAR settings. © 2017, National Ground Water Association.

  12. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    KAUST Repository

    Wang, Yong

    2015-10-20

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  13. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  14. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    KAUST Repository

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  15. Beaufort Sea deep-water gas hydrate recovery from a seafloor mound in a region of widespread BSR occurrence

    Science.gov (United States)

    Hart, Patrick E.; Pohlman, John W.; Lorenson, T.D.; Edwards, Brian D.

    2011-01-01

    Gas hydrate was recovered from the Alaskan Beaufort Sea slope north of Camden Bay in August 2010 during a U.S. Coast Guard Cutter Healy expedition (USCG cruise ID HLY1002) under the direction of the U.S. Geological Survey (USGS). Interpretation of multichannel seismic (MCS) reflection data collected in 1977 by the USGS across the Beaufort Sea continental margin identified a regional bottom simulating reflection (BSR), indicating that a large segment of the Beaufort Sea slope is underlain by gas hydrate. During HLY1002, gas hydrate was sampled by serendipity with a piston core targeting a steep-sided bathymetric high originally thought to be an outcrop of older, exposed strata. The feature cored is an approximately 1100m diameter, 130 m high conical mound, referred to here as the Canning Seafloor Mound (CSM), which overlies the crest of a buried anticline in a region of sub-parallel compressional folds beneath the eastern Beaufort outer slope. An MCS profile shows a prominent BSR upslope and downslope from the mound. The absence of a BSR beneath the CSM and occurrence of gas hydrate near the summit indicates that free gas has migrated via deep-rooted thrust faults or by structural focusing up the flanks of the anticline to the seafloor. Gas hydrate recovered from near the CSM summit at a subbottom depth of about 5.7 meters in a water depth of 2538 m was of nodular and vein-filling morphology. Although the hydrate was not preserved, residual gas from the core liner contained >95% methane by volume when corrected for atmospheric contamination. The presence of trace C4+hydrocarbons (extrusion contributing to the development of the mound. Blister-like inflation of the seafloor caused by formation and accumulation of shallow hydrate lenses is also a likely factor in CSM growth. Pore water analysis shows the sulfate-methane transition to be very shallow (0-1 mbsf), also supporting an active high-flux interpretation. Pore water with chloride concentrations as low as 160 m

  16. Water Quality Standards for Coral Reef Protection

    Science.gov (United States)

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  17. Carbonate chemistry, water quality, coral measurements

    Data.gov (United States)

    U.S. Environmental Protection Agency — Carbonate chemistry parameters (pH, total alkalinity, and pCO2), water quality parameters (Temperature, salinity, Ca, Mg, PO4, NH3 and NO3) as well as all coral...

  18. Cold-water acclimation does not modify whole-body fluid regulation during subsequent cold-water immersion.

    Science.gov (United States)

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-06-01

    We investigated the impact of cold-water acclimation on whole-body fluid regulation using tracer-dilution methods to differentiate between the intracellular and extracellular fluid compartments. Seven euhydrated males [age 24.7 (8.7) years, mass 74.4 (6.4) kg, height 176.8 (7.8) cm, sum of eight skinfolds 107.4 (20.4) mm; mean (SD)] participated in a 14-day cold-water acclimation protocol, with 60-min resting cold-water stress tests [CWST; 18.1 (0.1) degrees C] on days 1, 8 and 15, and 90-min resting cold-water immersions [18.4 (0.4) degrees C] on intervening days. Subjects were immersed to the 4th intercostal space. Intracellular and extracellular fluid compartments, and plasma protein, electrolyte and hormone concentrations were investigated. During the first CWST, the intracellular fluid (5.5%) and plasma volumes were reduced (6.1%), while the interstitial fluid volume was simultaneously expanded (5.4%). This pattern was replicated on days 8 and 15, but did not differ significantly among test days. Acclimation did not produce significant changes in the pre-immersion distribution of total body water, or changes in plasma osmolality, total protein, electrolyte, atrial natriuretic peptide or aldosterone concentrations. Furthermore, a 14-day cold-water acclimation regimen did not elicit significant changes in body-fluid distribution, urine production, or the concentrations of plasma protein, electrolytes or the fluid-regulatory hormones. While acclimation trends were not evident, we have confirmed that fluid from extravascular cells is displaced into the interstitium during acute cold-water immersion, both before and after cold acclimation.

  19. Implementing Biocriteria: Coral Reef Protection Using the Clean Water Act

    Science.gov (United States)

    Biological assessments (surveying the presence, number, size and condition of fish, coral and other biota) provide important information about the health and integrity of coral reef ecosystems. Biological criteria are one means under the Clean Water Act (CWA) that managers can us...

  20. The Bahrain Burial Mound Project

    DEFF Research Database (Denmark)

    Laursen, Steffen; Johansen, Kasper Lambert

    2007-01-01

    the majority of burial mounds have been removed to make way for roads and housing, and in this process about 8000 mounds have been excavated; of these only c. 265 have been published. In 2006 the Bahrain Directorate for Culture & National Heritage and Moesgaard Museum decided on a collaborative project...... process of linking relevant information to the mounds have been initiated in the course of which excavation data of individual monument is being fed into a relational database. Our preliminary study of the digital maps of the mound cemeteries has revealed an abundance of interesting patterns...... that immediately gave rise to puzzling new questions that will direct the future explorations of the project. Of particular interest is a distinctive new type of elite monuments situated to the south of the so-called Royal Mounds in the centre of the island. The newly discovered type of mounds apparently reflect...

  1. Water contamination reduces the tolerance of coral larvae to thermal stress.

    Directory of Open Access Journals (Sweden)

    Andrew P Negri

    Full Text Available Coral reefs are highly susceptible to climate change, with elevated sea surface temperatures (SST posing one of the main threats to coral survival. Successful recruitment of new colonies is important for the recovery of degraded reefs following mortality events. Coral larvae require relatively uncontaminated substratum on which to metamorphose into sessile polyps, and the increasing pollution of coastal waters therefore constitutes an additional threat to reef resilience. Here we develop and analyse a model of larval metamorphosis success for two common coral species to quantify the interactive effects of water pollution (copper contamination and SST. We identify thresholds of temperature and pollution that prevent larval metamorphosis, and evaluate synergistic interactions between these stressors. Our analyses show that halving the concentration of Cu can protect corals from the negative effects of a 2-3°C increase in SST. These results demonstrate that effective mitigation of local impacts can reduce negative effects of global stressors.

  2. Colonial life under the Humboldt Current System: deep-sea corals from O'Higgins I seamount

    OpenAIRE

    Cañete,Juan I; Haussermann,Verena

    2012-01-01

    A benthic community constituted by an assemblage of at least four species of deep-sea corals collected in only one trawl carried-out on the summit of the O'Higgins I seamount, central Chile. The corals were collected in only one trawl carried-out during a Chilean-Japanese cruise onboard the R/V" Koyo Maru" in December 29, 2004. Presence of oxygenated and cold Antarctic Intermediate Water (>400 m depth) on the plateau was recorded under of the Equatorial Subsurface Water associated to the o...

  3. Colonial life under the Humboldt Current System: deep-sea corals from O'Higgins I seamount

    OpenAIRE

    Cañete, Juan I; Haussermann, Verena

    2012-01-01

    A benthic community constituted by an assemblage of at least four species of deep-sea corals collected in only one trawl carried-out on the summit of the O'Higgins I seamount, central Chile. The corals were collected in only one trawl carried-out during a Chilean-Japanese cruise onboard the R/V" Koyo Maru" in December 29, 2004. Presence of oxygenated and cold Antarctic Intermediate Water (>400 m depth) on the plateau was recorded under of the Equatorial Subsurface Water associated to the oxyg...

  4. Cold water recovery reduces anaerobic performance.

    Science.gov (United States)

    Crowe, M J; O'Connor, D; Rudd, D

    2007-12-01

    This study investigated the effects of cold water immersion on recovery from anaerobic cycling. Seventeen (13 male, 4 female) active subjects underwent a crossover, randomised design involving two testing sessions 2 - 6 d apart. Testing involved two 30-s maximal cycling efforts separated by a one-hour recovery period of 10-min cycling warm-down followed by either passive rest or 15-min cold water immersion (13 - 14 degrees C) with passive rest. Peak power, total work and postexercise blood lactate were significantly reduced following cold water immersion compared to the first exercise test and the control condition. These variables did not differ significantly between the control tests. Peak exercise heart rate was significantly lower after cold water immersion compared to the control. Time to peak power, rating of perceived exertion, and blood pH were not affected by cold water immersion compared to the control. Core temperature rose significantly (0.3 degrees C) during ice bath immersion but a similar increase also occurred in the control condition. Therefore, cold water immersion caused a significant decrease in sprint cycling performance with one-hour recovery between tests.

  5. Antarctic Mirabilite Mounds as Mars Analogs: The Lewis Cliffs Ice Tongue Revisited

    Science.gov (United States)

    Socki, Richard A.; Sun, Tao; Niles, Paul B.; Harvey, Ralph P.; Bish, David L.; Tonui, Eric

    2012-01-01

    It has been proposed, based on geomorphic and geochemical arguments, that subsurface water has played an important role in the history of water on the planet Mars [1]. Subsurface water, if present, could provide a protected and long lived environment for potential life. Discovery of gullies [2] and recurring slopes [3] on Mars suggest the potential for subsurface liquid water or brines. Recent attention has also focused on small (the mid to high latitudes on the surface of Mars which may be caused by eruptions of subsurface fluids [4, 5]. We have identified massive but highly localized Na-sulfate deposits (mirabilite mounds, Na2SO4 .10H2O) that may be derived from subsurface fluids and may provide insight into the processes associated with subsurface fluids on Mars. The mounds are found on the end moraine of the Lewis Cliffs Ice Tongue (LCIT) [6] in the Transantarctic Mountains, Antarctica, and are potential terrestrial analogs for mounds observed on the martian surface. The following characteristics distinguish LCIT evaporite mounds from other evaporite mounds found in Antarctic coastal environments and/or the McMurdo Dry Valleys: (1) much greater distance from the open ocean (approx.500 km); (2) higher elevation (approx.2200 meters); and (3) colder average annual temperature (average annual temperature = -30 C for LCIT [7] vs. 20 C at sea level in the McMurdo region [8]. Furthermore, the recent detection of subsurface water ice (inferred as debris-covered glacial ice) by the Mars Reconnaissance Orbiter [9] supports the use of an Antarctic glacial environment, particularly with respect to the mirabilite deposits described in this work, as an ideal terrestrial analog for understanding the geochemistry associated with near-surface martian processes. S and O isotopic compositions.

  6. Colonial life under the Humboldt Current System: deep-sea corals from O'Higgins I seamount La vida colonial bajo el sistema de la corriente de Humboldt: corales de aguas profundas en el monte submarino O'Higgins I

    OpenAIRE

    Juan I Cañete; Verena Haussermann

    2012-01-01

    A benthic community constituted by an assemblage of at least four species of deep-sea corals collected in only one trawl carried-out on the summit of the O'Higgins I seamount, central Chile. The corals were collected in only one trawl carried-out during a Chilean-Japanese cruise onboard the R/V" Koyo Maru" in December 29, 2004. Presence of oxygenated and cold Antarctic Intermediate Water (>400 m depth) on the plateau was recorded under of the Equatorial Subsurface Water associated to the oxyg...

  7. Deep Water Coral (HB1402, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The cruise will survey and collect samples of deep-sea corals and related marine life in the canyons in the northern Gulf of Maine in U.S. and Canadian waters. The...

  8. 21 CFR 880.6085 - Hot/cold water bottle.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold water...

  9. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in American Samoa from Water Samples collected since 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  10. Thermoregulation and ventilation of termite mounds

    Science.gov (United States)

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO2 concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  11. Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem

    Science.gov (United States)

    Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah

    2016-10-01

    Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant

  12. Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Tullis, J.A.

    1995-09-01

    Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, <0.5 m in height, and from 8 to 14 m in diameter. They are found on flat and sloped surfaces, and appear less frequently in lowland areas. The mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dug to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a open-quotes floorclose quotes of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief

  13. Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Tullis, J.A.

    1995-09-01

    Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, <0.5 m in height, and from 8 to 14 m in diameter. They are found on flat and sloped surfaces, and appear less frequently in lowland areas. The mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dug to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a {open_quotes}floor{close_quotes} of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief.

  14. Water column correction for coral reef studies by remote sensing.

    Science.gov (United States)

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-09-11

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  15. Coral-Associated Bacterial Diversity is Conserved Across Two Deep-Sea Anthothela Species

    Directory of Open Access Journals (Sweden)

    Stephanie Nichole Lawler

    2016-04-01

    Full Text Available Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12 and Baltimore Canyons (n = 11 from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp. and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp. had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

  16. Climate Change in the Seychelles: Implications for Water and Coral Reefs

    Energy Technology Data Exchange (ETDEWEB)

    Payet, Rolph; Agricole, Wills [National Meteorological Services Mahe (Seychelles). Div. of Policy, Planning and Services

    2006-06-15

    The Seychelles is a small island state in the western Indian Ocean that is vulnerable to the effects of climate change. This vulnerability led the Intergovernmental Panel on Climate Change (IPCC) in 2001 to express concern over the potential economic and social consequences that may be faced by small island states. Small island states should be prepared to adapt to such changes, especially in view of their dependence on natural resources, such as water and coral reefs, to meet basic human welfare needs. Analysis of long-term data for precipitation, air temperature, and sea-surface temperature indicated that changes are already observable in the Seychelles. The increase in dry spells that resulted in drought conditions in 1999 and the 1998 mass coral bleaching are indicative of the events that are likely to occur under future climate change. Pre-IPCC Third Assessment Report scenarios and the new SRES scenarios are compared for changes in precipitation and air surface temperature for the Seychelles. These intercomparisons indicate that the IS92 scenarios project a much warmer and wetter climate for the Seychelles than do the SRES scenarios. However, a wetter climate does not imply readily available water, but rather longer dry spells with more intense precipitation events. These observations will likely place enormous pressures on water-resources management in the Seychelles. Similarly, sea-surface temperature increases predicted by the HADCm{sup 3} model will likely trigger repeated coral-bleaching episodes, with possible coral extinctions within the Seychelles region by 2040. The cover of many coral reefs around the Seychelles have already changed, and the protection of coral-resilient areas is a critical adaptive option.

  17. Effects of herbicides on coral and seasonal distribution in water and sediments collected from rivers and coral reefs of the Ryukyu Archipelago, Japan

    Science.gov (United States)

    Kaneshiro, A.; Fujimura, H.; Oomori, T.; Gima, S.; Suzuki, Y.; Casareto, B. E.; Higuchi, T.; Sagawa, T.

    2011-12-01

    Introduction Coral reefs are subjected to artificial chemicals such as herbicide and pesticides. Diuron [N'-(3, 4-dichlorophenyl)-N, N-dimethylurea] is one of the active constituent contained in a herbicide. Although acute effects of diuron on coral are reported by several researchers, longer-period toxicity with lower level concentration and synergistic effect between the herbicide and soil sedimentation from river water have not been studied. We investigated the concentration level, distribution, seasonal variation and accumulation of several herbicides and pesticides in coral reef and river in Ishigaki Island and Okinawa Island, and estimated the rates of carbon production of calcification and photosynthesis to access the effects of herbicides on coral. Materials and Methods Water and sediment samples were collected from Todoroki river and Shiraho coral reef in Ishigaki Island and several rivers from Okinawa Island in August 2010 to August 2011. Diuron and other active constituents were extracted using a solid-phase column and measured with a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Corals for the experiment were collected from Okinawa Island and incubated in glass bottles. Seawater adjusted several concentrations of herbicide was continuously supplied to the bottles. Coral calcification and photosynthesis were estimated based on the change in total alkalinity and pH during a few hours when we temporary cease the water flow. Results and Discussion Higher diuron of 563 ng/L in water and 26 μg/kg in sediment was detected at the headwater of the Todoroki river in Ishigaki. in June. Sugarcane plantation is prevailing in Todoroki river area and rainwater can tend to gather topographically to upstream of the river. The higher concentration at the headwater decreased to 23 ng/L toward the river mouth. On the whole, the concentrations were higher during summer and lower in the other seasons in Ishigaki. On the other hand, seasonal variation was not

  18. Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.

    Directory of Open Access Journals (Sweden)

    Juan L Torres-Pérez

    Full Text Available Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

  19. Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.

    Science.gov (United States)

    Torres-Pérez, Juan L; Guild, Liane S; Armstrong, Roy A; Corredor, Jorge; Zuluaga-Montero, Anabella; Polanco, Ramón

    2015-01-01

    Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

  20. Crater Mound Formation by Wind Erosion on Mars

    Science.gov (United States)

    Steele, L. J.; Kite, E. S.; Michaels, T. I.

    2018-01-01

    Most of Mars' ancient sedimentary rocks by volume are in wind-eroded sedimentary mounds within impact craters and canyons, but the connections between mound form and wind erosion are unclear. We perform mesoscale simulations of different crater and mound morphologies to understand the formation of sedimentary mounds. As crater depth increases, slope winds produce increased erosion near the base of the crater wall, forming mounds. Peak erosion rates occur when the crater depth is ˜2 km. Mound evolution depends on the size of the host crater. In smaller craters mounds preferentially erode at the top, becoming more squat, while in larger craters mounds become steeper sided. This agrees with observations where smaller craters tend to have proportionally shorter mounds and larger craters have mounds encircled by moats. If a large-scale sedimentary layer blankets a crater, then as the layer recedes across the crater it will erode more toward the edges of the crater, resulting in a crescent-shaped moat. When a 160 km diameter mound-hosting crater is subject to a prevailing wind, the surface wind stress is stronger on the leeward side than on the windward side. This results in the center of the mound appearing to "march upwind" over time and forming a "bat-wing" shape, as is observed for Mount Sharp in Gale crater.

  1. Morphology and spatial patterns of Macrotermes mounds in the SE Katanga, D.R. Congo

    Science.gov (United States)

    Bazirake Mujinya, Basile; Mees, Florias; Erens, Hans; Baert, Geert; Van Ranst, Eric

    2015-04-01

    The spatial distribution patterns and morphological characteristics of Macrotermes falciger mounds were investigated in the Lubumbashi area, D.R. Congo. Examination of the spatial patterns of M. falciger mounds on high resolution satellite images reveals a mean areal number density of 2.9 ± 0.4 mounds ha-1. The high relative number of inactive mounds in the region, along with their regular distribution pattern, suggests that current termite mound occurrences are largely palaeostructures. Mound positions in the habitat are consistent with intraspecific competition rather than soil and substrate characteristics as controlling factor. Detailed morphological description of five deep termite-mound profiles (~7 m height/depth) shows that carbonate pedofeatures are present in all studied profiles, in contrast to the control soils. They mainly occur in the form of soft powdery masses, nodules and coatings on ped faces, all clearly pedogenic. Carbonate coatings occur mainly between 1 m above the soil surface and 1 m below that level in all mound profiles. Carbonate nodules do show a different distribution pattern at each site. Furthermore, when the studied profiles are considered to represent a toposequence, the stone layer occurs at greater depth in topographically low areas compared to crest and slope positions, which is mainly conditioned by erosion. The clay content of epigeal mounds increases from the summit to the toe slope, which can be largely related to differences in parent material. The Mn-Fe oxide concentrations occurring in all studied termite mound profiles reflect a seasonally high perched water table beneath the mound, which is more pronounced at the lower slope positions.

  2. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Hawaiian Archipelago from Water Samples collected since 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  3. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Mariana Archipelago from Water Samples collected in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  4. Aura-biomes are present in the water layer above coral reef benthic macro-organisms

    Directory of Open Access Journals (Sweden)

    Kevin Walsh

    2017-08-01

    Full Text Available As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1 the coral Mussismilia braziliensis, (2 fleshy macroalgae (Stypopodium, Dictota and Canistrocarpus, (3 turf algae, and (4 the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific “aura-biome”. The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria, Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.

  5. Aura-biomes are present in the water layer above coral reef benthic macro-organisms.

    Science.gov (United States)

    Walsh, Kevin; Haggerty, J Matthew; Doane, Michael P; Hansen, John J; Morris, Megan M; Moreira, Ana Paula B; de Oliveira, Louisi; Leomil, Luciana; Garcia, Gizele D; Thompson, Fabiano; Dinsdale, Elizabeth A

    2017-01-01

    As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis , (2) fleshy macroalgae ( Stypopodium , Dictota and Canistrocarpus ), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific "aura-biome". The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria , Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.

  6. Bleaching susceptibility and recovery of Colombian Caribbean corals in response to water current exposure and seasonal upwelling.

    Directory of Open Access Journals (Sweden)

    Elisa Bayraktarov

    Full Text Available Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an upwelling influenced region. Therefore, coral bleaching susceptibility and recovery patterns were compared during a moderate and a mild bleaching event in December 2010 and 2011, and at the end of the subsequent upwelling periods at a water current-exposed and -sheltered site of an exemplary bay using permanent transect and labeling tools. This was accompanied by parallel monitoring of key environmental variables. Findings revealed that in 2010 overall coral bleaching before upwelling was significantly higher at the sheltered (34% compared to the exposed site (8%. Whereas 97% of all previously bleached corals at the water current-exposed site had recovered from bleaching by April 2011, only 77% recovered at the sheltered site, but 12% had died there. In December 2011, only mild bleaching (<10% at both sites was observed, but corals recovered significantly at both sites in the course of upwelling. No differences in water temperatures between sites occurred, but water current exposure and turbidity were significantly higher at the exposed site, suggesting that these variables may be responsible for the observed site-specific mitigation of coral bleaching. This indicates the existence of local resilience patterns against coral bleaching in Caribbean reefs.

  7. Bleaching susceptibility and recovery of Colombian Caribbean corals in response to water current exposure and seasonal upwelling.

    Science.gov (United States)

    Bayraktarov, Elisa; Pizarro, Valeria; Eidens, Corvin; Wilke, Thomas; Wild, Christian

    2013-01-01

    Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP) in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an upwelling influenced region. Therefore, coral bleaching susceptibility and recovery patterns were compared during a moderate and a mild bleaching event in December 2010 and 2011, and at the end of the subsequent upwelling periods at a water current-exposed and -sheltered site of an exemplary bay using permanent transect and labeling tools. This was accompanied by parallel monitoring of key environmental variables. Findings revealed that in 2010 overall coral bleaching before upwelling was significantly higher at the sheltered (34%) compared to the exposed site (8%). Whereas 97% of all previously bleached corals at the water current-exposed site had recovered from bleaching by April 2011, only 77% recovered at the sheltered site, but 12% had died there. In December 2011, only mild bleaching (corals recovered significantly at both sites in the course of upwelling. No differences in water temperatures between sites occurred, but water current exposure and turbidity were significantly higher at the exposed site, suggesting that these variables may be responsible for the observed site-specific mitigation of coral bleaching. This indicates the existence of local resilience patterns against coral bleaching in Caribbean reefs.

  8. Effects of reduced water quality on coral reefs in and out of no-take marine reserves.

    Science.gov (United States)

    Wenger, Amelia S; Williamson, David H; da Silva, Eduardo T; Ceccarelli, Daniela M; Browne, Nicola K; Petus, Caroline; Devlin, Michelle J

    2016-02-01

    Near-shore marine environments are increasingly subjected to reduced water quality, and their ability to withstand it is critical to their persistence. The potential role marine reserves may play in mitigating the effects of reduced water quality has received little attention. We investigated the spatial and temporal variability in live coral and macro-algal cover and water quality during moderate and major flooding events of the Fitzroy River within the Keppel Bay region of the Great Barrier Reef Marine Park from 2007 to 2013. We used 7 years of remote sensing data on water quality and data from long-term monitoring of coral reefs to quantify exposure of coral reefs to flood plumes. We used a distance linear model to partition the contribution of abiotic and biotic factors, including zoning, as drivers of the observed changes in coral and macro-algae cover. Moderate flood plumes from 2007 to 2009 did not affect coral cover on reefs in the Keppel Islands, suggesting the reef has intrinsic resistance against short-term exposure to reduced water quality. However, from 2009 to 2013, live coral cover declined by ∼ 50% following several weeks of exposure to turbid, low salinity water from major flood plume events in 2011 and subsequent moderate events in 2012 and 2013. Although the flooding events in 2012 and 2013 were smaller than the flooding events between 2007 to 2009, the ability of the reefs to withstand these moderate floods was lost, as evidenced by a ∼ 20% decline in coral cover between 2011 to 2013. Although zoning (no-take reserve or fished) was identified a significant driver of coral cover, we recorded consistently lower coral cover on reserve reefs than on fished reefs throughout the study period and significantly lower cover in 2011. Our findings suggest that even reefs with an inherent resistance to reduced water quality are not able to withstand repeated disturbance events. The limitations of reserves in mitigating the effects of reduced water

  9. Water Column Correction for Coral Reef Studies by Remote Sensing

    Directory of Open Access Journals (Sweden)

    Maria Laura Zoffoli

    2014-09-01

    Full Text Available Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  10. Water Column Correction for Coral Reef Studies by Remote Sensing

    Science.gov (United States)

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-01-01

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941

  11. Layered hydrothermal barite-sulfide mound field, East Diamante Caldera, Mariana volcanic arc

    Science.gov (United States)

    Hein, James R.; de Ronde, Cornel E. J.; Koski, Randolph A.; Ditchburn, Robert G.; Mizell, Kira; Tamura, Yoshihiko; Stern, Robert J.; Conrad, Tracey; Ishizuka, Osamu; Leybourne, Matthew I.

    2014-01-01

    East Diamante is a submarine volcano in the southern Mariana arc that is host to a complex caldera ~5 × 10 km (elongated ENE-WSW) that is breached along its northern and southwestern sectors. A large field of barite-sulfide mounds was discovered in June 2009 and revisited in July 2010 with the R/V Natsushima, using the ROV Hyper-Dolphin. The mound field occurs on the northeast flank of a cluster of resurgent dacite domes in the central caldera, near an active black smoker vent field. A 40Ar/39Ar age of 20,000 ± 4000 years was obtained from a dacite sample. The mound field is aligned along a series of fractures and extends for more than 180 m east-west and >120 m north-south. Individual mounds are typically 1 to 3 m tall and 0.5 to 2 m wide, with lengths from about 3 to 8 m. The mounds are dominated by barite + sphalerite layers with the margins of each layer composed of barite with disseminated sulfides. Rare, inactive spires and chimneys sit atop some mounds and also occur as clusters away from the mounds. Iron and Mn oxides are currently forming small (caldera, mineralization resulted from focused flow along small segments of linear fractures rather than from a point source, typical of hydrothermal chimney fields. Based on the mineral assemblage, the maximum fluid temperatures were ~260°C, near the boiling point for the water depths of the mound field (367–406 m). Lateral fluid flow within the mounds precipitated interstitial sphalerite, silica, and Pb minerals within a network of barite with disseminated sulfides; silica was the final phase to precipitate. The current low-temperature precipitation of Fe and Mn oxides and silica may represent rejuvenation of the system.

  12. Coral Patch seamount (NE Atlantic – a sedimentological and megafaunal reconnaissance based on video and hydroacoustic surveys

    Directory of Open Access Journals (Sweden)

    C. Wienberg

    2013-05-01

    Full Text Available The present study provides new knowledge about the so far largely unexplored Coral Patch seamount which is located in the NE Atlantic Ocean half-way between the Iberian Peninsula and Madeira. For the first time a detailed hydroacoustic mapping (MBES in conjunction with video surveys (ROV, camera sled were performed to describe the sedimentological and biological characteristics of this sub-elliptical ENE-WSW elongated seamount. Video observations were restricted to the southwestern summit area of Coral Patch seamount (water depth: 560–760 m and revealed that this part of the summit is dominated by exposed hard substrate, whereas soft sediment is just a minor substrate component. Although exposed hardgrounds are dominant for this summit area and, thus, offer suitable habitat for settlement by benthic organisms, the benthic megafauna shows rather scarce occurrence. In particular, scleractinian framework-building cold-water corals are apparently rare with very few isolated and small-sized live occurrences of the species Lophelia pertusa and Madrepora oculata. In contrast, dead coral framework and coral rubble are more frequent pointing to a higher abundance of cold-water corals on Coral Patch during the recent past. This is even supported by the observation of fishing lines that got entangled with rather fresh-looking coral frameworks. Overall, long lines and various species of commercially important fish were frequently observed emphasising the potential of Coral Patch as an important target for fisheries that may have impacted the entire benthic community. Hydroacoustic seabed classification covered the entire summit of Coral Patch and its northern and southern flanks (water depth: 560–2660 m and revealed extended areas dominated by mixed and soft sediments at the northern flank and to a minor degree at its easternmost summit and southern flank. Nevertheless, these data also predict most of the summit area to be dominated by exposed bedrock

  13. Processes Driving Natural Acidification of Western Pacific Coral Reef Waters

    Science.gov (United States)

    Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.

    2013-12-01

    Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem

  14. The Surales, Self-Organized Earth-Mound Landscapes Made by Earthworms in a Seasonal Tropical Wetland.

    Directory of Open Access Journals (Sweden)

    Anne Zangerlé

    Full Text Available The formation, functioning and emergent properties of patterned landscapes have recently drawn increased attention, notably in semi-arid ecosystems. We describe and analyze a set of similarly spectacular landforms in seasonal tropical wetlands. Surales landscapes, comprised of densely packed, regularly spaced mounds, cover large areas of the Orinoco Llanos. Although descriptions of surales date back to the 1940's, their ecology is virtually unknown. From data on soil physical and chemical properties, soil macrofauna, vegetation and aerial imagery, we provide evidence of the spatial extent of surales and how they form and develop. Mounds are largely comprised of earthworm casts. Recognizable, recently produced casts account for up to one-half of total soil mass. Locally, mounds are relatively constant in size, but vary greatly across sites in diameter (0.5-5 m and height (from 0.3 m to over 2 m. This variation appears to reflect a chronosequence of surales formation and growth. Mound shape (round to labyrinth varies across elevational gradients. Mounds are initiated when large earthworms feed in shallowly flooded soils, depositing casts that form 'towers' above water level. Using permanent galleries, each earthworm returns repeatedly to the same spot to deposit casts and to respire. Over time, the tower becomes a mound. Because each earthworm has a restricted foraging radius, there is net movement of soil to the mound from the surrounding area. As the mound grows, its basin thus becomes deeper, making initiation of a new mound nearby more difficult. When mounds already initiated are situated close together, the basin between them is filled and mounds coalesce to form larger composite mounds. Over time, this process produces mounds up to 5 m in diameter and 2 m tall. Our results suggest that one earthworm species drives self-organizing processes that produce keystone structures determining ecosystem functioning and development.

  15. The Surales, Self-Organized Earth-Mound Landscapes Made by Earthworms in a Seasonal Tropical Wetland.

    Science.gov (United States)

    Zangerlé, Anne; Renard, Delphine; Iriarte, José; Suarez Jimenez, Luz Elena; Adame Montoya, Kisay Lorena; Juilleret, Jérôme; McKey, Doyle

    2016-01-01

    The formation, functioning and emergent properties of patterned landscapes have recently drawn increased attention, notably in semi-arid ecosystems. We describe and analyze a set of similarly spectacular landforms in seasonal tropical wetlands. Surales landscapes, comprised of densely packed, regularly spaced mounds, cover large areas of the Orinoco Llanos. Although descriptions of surales date back to the 1940's, their ecology is virtually unknown. From data on soil physical and chemical properties, soil macrofauna, vegetation and aerial imagery, we provide evidence of the spatial extent of surales and how they form and develop. Mounds are largely comprised of earthworm casts. Recognizable, recently produced casts account for up to one-half of total soil mass. Locally, mounds are relatively constant in size, but vary greatly across sites in diameter (0.5-5 m) and height (from 0.3 m to over 2 m). This variation appears to reflect a chronosequence of surales formation and growth. Mound shape (round to labyrinth) varies across elevational gradients. Mounds are initiated when large earthworms feed in shallowly flooded soils, depositing casts that form 'towers' above water level. Using permanent galleries, each earthworm returns repeatedly to the same spot to deposit casts and to respire. Over time, the tower becomes a mound. Because each earthworm has a restricted foraging radius, there is net movement of soil to the mound from the surrounding area. As the mound grows, its basin thus becomes deeper, making initiation of a new mound nearby more difficult. When mounds already initiated are situated close together, the basin between them is filled and mounds coalesce to form larger composite mounds. Over time, this process produces mounds up to 5 m in diameter and 2 m tall. Our results suggest that one earthworm species drives self-organizing processes that produce keystone structures determining ecosystem functioning and development.

  16. The Surales, Self-Organized Earth-Mound Landscapes Made by Earthworms in a Seasonal Tropical Wetland

    Science.gov (United States)

    Iriarte, José; Suarez Jimenez, Luz Elena; Adame Montoya, Kisay Lorena; Juilleret, Jérôme; McKey, Doyle

    2016-01-01

    The formation, functioning and emergent properties of patterned landscapes have recently drawn increased attention, notably in semi-arid ecosystems. We describe and analyze a set of similarly spectacular landforms in seasonal tropical wetlands. Surales landscapes, comprised of densely packed, regularly spaced mounds, cover large areas of the Orinoco Llanos. Although descriptions of surales date back to the 1940’s, their ecology is virtually unknown. From data on soil physical and chemical properties, soil macrofauna, vegetation and aerial imagery, we provide evidence of the spatial extent of surales and how they form and develop. Mounds are largely comprised of earthworm casts. Recognizable, recently produced casts account for up to one-half of total soil mass. Locally, mounds are relatively constant in size, but vary greatly across sites in diameter (0.5–5 m) and height (from 0.3 m to over 2 m). This variation appears to reflect a chronosequence of surales formation and growth. Mound shape (round to labyrinth) varies across elevational gradients. Mounds are initiated when large earthworms feed in shallowly flooded soils, depositing casts that form ‘towers’ above water level. Using permanent galleries, each earthworm returns repeatedly to the same spot to deposit casts and to respire. Over time, the tower becomes a mound. Because each earthworm has a restricted foraging radius, there is net movement of soil to the mound from the surrounding area. As the mound grows, its basin thus becomes deeper, making initiation of a new mound nearby more difficult. When mounds already initiated are situated close together, the basin between them is filled and mounds coalesce to form larger composite mounds. Over time, this process produces mounds up to 5 m in diameter and 2 m tall. Our results suggest that one earthworm species drives self-organizing processes that produce keystone structures determining ecosystem functioning and development. PMID:27168157

  17. Water column productivity and temperature predict coral reef regeneration across the Indo-Pacific

    Science.gov (United States)

    Riegl, B.; Glynn, P. W.; Wieters, E.; Purkis, S.; D'Angelo, C.; Wiedenmann, J.

    2015-02-01

    Predicted increases in seawater temperatures accelerate coral reef decline due to mortality by heat-driven coral bleaching. Alteration of the natural nutrient environment of reef corals reduces tolerance of corals to heat and light stress and thus will exacerbate impacts of global warming on reefs. Still, many reefs demonstrate remarkable regeneration from past stress events. This paper investigates the effects of sea surface temperature (SST) and water column productivity on recovery of coral reefs. In 71 Indo-Pacific sites, coral cover changes over the past 1-3 decades correlated negative-exponentially with mean SST, chlorophyll a, and SST rise. At six monitoring sites (Persian/Arabian Gulf, Red Sea, northern and southern Galápagos, Easter Island, Panama), over half of all corals were coral reefs presently have the best chances for survival. However, reefs best buffered against temperature and nutrient effects are those that current studies suggest to be most at peril from future ocean acidification.

  18. Stochastic spatio-temporal model of coral cover as a function of herbivorous grazers, water quality, and coral demographics

    Science.gov (United States)

    Neuhausler, R.; Robinson, M.; Bruna, M.

    2017-12-01

    Over the last 60 years we have seen an increased amount of ecological regime shifts in tropical coastal zones, from coral reefs to macroalgae dominated states, as a result of natural and anthropogenic stresses. However, these shifts are not always immediate- macroalgae are generally present in coral reefs, with their distribution regulated by herbivorous fish. This is especially true in Moorea, French Polynesia, where macroalgae are shown to flourish in spaces that provide refuge from roaming herbivores. While there are currently modeling efforts in projecting ecological regime shifts in Moorea, temporal deterministic models have been utilized, which fail to capture metastability between multiple steady states and can have issues when dealing with very small populations. To address these concerns, we build on these models to account for spatial variations and individual organisms, as well as stochasticity. Our model can project the percent cover of coral, macroalgae, and algae turf as a function of herbivorous grazers, water quality, and coral demographics. Grazers, included as individual fish (particles), evolve according to a kinetic model and interact with neighbouring benthic assemblages, represented as nodes. Water quality and coral demographics are input parameters that can vary over time, allowing our model to be run for temporally changing scenarios and to be adjusted for different reefs. We plan to engage with previous Moorea Reef Resilience Models through a comparative analysis of our models' outcomes and existing Moorea data. Coupling projective models with available data is useful for informing environmental policy and advancing the modeling field.

  19. The big squeeze: ecosystem change and contraction of habitat for newly discovered deep-water reefs off the U.S. West Coast

    Science.gov (United States)

    Wickes, L.; Etnoyer, P. J.; Lauermann, A.; Rosen, D.

    2016-02-01

    Cold-water reefs are fragile, complex ecosystems that extend into the bathyal depths of the ocean, creating three dimensional structure and habitat for a diversity of deep-water invertebrates and fishes. The cold waters of the California Current support a diverse assemblage of these corals at relatively shallow depths close to shore. At these depths and locations the communities face a multitude of stressors, including low carbonate saturations, hypoxia, changing temperature, and coastal pollution. The current study employed ROV surveys (n=588, 2003-2015) to document the distribution of deep-sea corals in the Southern California Bight, including the first description of a widespread reef-building coral in the naturally acidified waters off the U.S. West Coast. We provide empirical evidence of species survival in the corrosive waters (Ωarag 0.67-1.86), but find loss of reef integrity. Recent publications have implied acclimation, resistance, and resilience of cold-water reef-building corals to ocean acidification, but results of this study indicate a cost to skeletal framework development with a subsequent loss of coral habitat. While ocean acidification and declines in oxygen are expected to further impinge on Lophelia at depth (𝑥̅=190 m), surface warming and coastal polution may affect shallower populations and mesophotic reef assemblages, resulting in a contraction of available coral habitat. Recent observations of die offs of gorgonians and antipatharians from surveys in shallow (50 m) and deep water (500 m) provide compelling evidence of ongoing ecosystem changes. Concurrent losses in habitat quality in deep and mesophotic waters suggest that corals may be "squeezed" into a more restricted depth range. New monitoring efforts aim to characterize the health and condition of deep corals with respect to gradients in carbonate chemistry, coastal pollution and changing temperatures, to assess vulnerability and both current and future habitat suitability.

  20. Solar-powered ventilation of African termite mounds.

    Science.gov (United States)

    Ocko, Samuel A; King, Hunter; Andreen, David; Bardunias, Paul; Turner, J Scott; Soar, Rupert; Mahadevan, L

    2017-09-15

    How termite mounds function to facilitate climate control is still only partially understood. Recent experimental evidence in the mounds of a single species, the south Asian termite Odontotermes obesus , suggests that the daily oscillations of radiant heating associated with diurnal insolation patterns drive convective flow within them. How general this mechanism is remains unknown. To probe this, we consider the mounds of the African termite Macrotermes michaelseni , which thrives in a very different environment. By directly measuring air velocities and temperatures within the mound, we see that the overall mechanisms and patterns involved are similar to that in the south Asian species. However, there are also some notable differences between the physiology of these mounds associated with the temporal variations in radiant heating patterns and CO 2 dynamics. Because of the difference between direct radiant heating driven by the position of the sun in African conditions, and the more shaded south Asian environments, we see changes in the convective flows in the two types of mounds. Furthermore, we also see that the south Asian mounds show a significant overturning of stratified gases, once a day, while the African mounds have a relatively uniform concentration of CO 2 Overall, our observations show that despite these differences, termite architectures can harness periodic solar heating to drive ventilation inside them in very different environments, functioning as an external lung, with clear implications for human engineering. © 2017. Published by The Company of Biologists Ltd.

  1. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Pacific Remote Island Areas from Water Samples collected since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  2. Archaeological mounds as analogs of engineered covers for waste disposal sites: Literature review and progress report. [Appendix contains bibliography and data on archaeological mounds

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J C; Gard, H A

    1991-09-01

    Closure caps for low-level radioactive waste disposal facilities are typically designed as layered earthen structures, the composition of which is intended to prevent the infiltration of water and the intrusion of the public into waste forms. Federal regulations require that closure caps perform these functions well enough that minimum exposure guidelines will be met for at least 500 years. Short-term experimentation cannot mimic the conditions that will affect closure caps on the scale of centuries, and therefore cannot provide data on the performance of cap designs over long periods of time. Archaeological mounds hundreds to thousands of years old which are closely analogous to closure caps in form, construction details, and intent can be studied to obtain the necessary understanding of design performance. Pacific Northwest Laboratory conducted a review and analysis of archaeological literature on ancient human-made mounds to determine the quality and potential applicability of this information base to assessments of waste facility design performance. A bibliography of over 200 English-language references was assembled on mound structures from the Americas, Europe, and Asia. A sample of these texts was read for data on variables including environmental and geographic setting, condition, design features, construction. Detailed information was obtained on all variables except those relating to physical and hydrological characteristics of the mound matrix, which few texts presented. It is concluded that an extensive amount of literature and data are available on structures closely analogous to closure caps and that this information is a valuable source of data on the long-term performance of mounded structures. Additional study is recommended, including an expanded analysis of design features reported in the literature and field studies of the physical and hydraulic characteristics of different mound designs. 23 refs., 10 figs., 12 tabs.

  3. Rubble Mound Breakwater Failure Modes

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Z., Liu

    1995-01-01

    The RMBFM-Project (Rubble Mound Breakwater Failure Modes) is sponsored by the Directorate General XII of the Commission of the European Communities under the Contract MAS-CT92- 0042, with the objective of contributing to the development of rational methods for the design of rubble mound breakwate...

  4. Bleaching Susceptibility and Recovery of Colombian Caribbean Corals in Response to Water Current Exposure and Seasonal Upwelling

    Science.gov (United States)

    Bayraktarov, Elisa; Pizarro, Valeria; Eidens, Corvin; Wilke, Thomas; Wild, Christian

    2013-01-01

    Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP) in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an upwelling influenced region. Therefore, coral bleaching susceptibility and recovery patterns were compared during a moderate and a mild bleaching event in December 2010 and 2011, and at the end of the subsequent upwelling periods at a water current-exposed and -sheltered site of an exemplary bay using permanent transect and labeling tools. This was accompanied by parallel monitoring of key environmental variables. Findings revealed that in 2010 overall coral bleaching before upwelling was significantly higher at the sheltered (34%) compared to the exposed site (8%). Whereas 97% of all previously bleached corals at the water current-exposed site had recovered from bleaching by April 2011, only 77% recovered at the sheltered site, but 12% had died there. In December 2011, only mild bleaching (bleaching. This indicates the existence of local resilience patterns against coral bleaching in Caribbean reefs. PMID:24282551

  5. Design And Construction Of Mounds For Breakwaters And Coastal Protection

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Barends, F.B.J.; Brebner, A.

    Design and construction of mound breakwaters has during the last 5 to 10 years entered a new era. The major reason for that is the realization of problems encountered as it became necessary to erect port structures on more exposed shores and in deeper waters. As a consequence of that the P.I.A.N....... they were exposed to. The following sections discuss the stability of mound breakwaters, reasons for failure and design principles. A number of major failures are mentioned specifically. In each case an attempt has been made to explore and explain the reason for the failure....

  6. The long term sustainability of Mound Springs in South Australia : implications for olympic dam

    International Nuclear Information System (INIS)

    Mudd, G.M.

    1998-01-01

    The Mound Springs of South Australia are unique groundwater discharge features of the Great Artesian Basin, a deep regigonal groundwater system that covers over one-fifth of the Australia continent. They are the principal sources of water in the arid and semi-arid inland heart of Australia, and have great ecological, scientific, anthropological and economic significance. Excessive development of the Great Artesian Basin over the past century by European activity has seen an overall decline in the flows from the mound springs, and recent development of the water supply borefields for the WMC Olympic Dam Operations copper-uranium mine in the midst of the most important spring groups has exacerbated this problem. A review of the history of the borefields, an analysis of the impacts on the mound springs, and future recommendations for protection of the springs is presented. (orig.)

  7. Feasibility of a Mound-designed transportable calorimeter

    International Nuclear Information System (INIS)

    Duff, M.F.; Fellers, C.L.

    1979-01-01

    The feasibility of operating a Mound twin resistance bridge calorimeter outside a temperature-controlled water bath was demonstrated. An existing calorimeter was retrofit with two additional jackets through which water was transferred from an external reservoir. Comparison of test results collected before and after the retrofit indicated that the calorimeter performance was not degraded by this modification. Similarly designed calorimeters have potential applications in laboratories where equipment space is limited for inspectors who are required to transport their assay instrumentation

  8. Transient turbid water mass reduces temperature-induced coral bleaching and mortality in Barbados

    Science.gov (United States)

    Vallès, Henri

    2016-01-01

    Global warming is seen as one of the greatest threats to the world’s coral reefs and, with the continued rise in sea surface temperature predicted into the future, there is a great need for further understanding of how to prevent and address the damaging impacts. This is particularly so for countries whose economies depend heavily on healthy reefs, such as those of the eastern Caribbean. Here, we compare the severity of bleaching and mortality for five dominant coral species at six representative reef sites in Barbados during the two most significant warm-water events ever recorded in the eastern Caribbean, i.e., 2005 and 2010, and describe prevailing island-scale sea water conditions during both events. In so doing, we demonstrate that coral bleaching and subsequent mortality were considerably lower in 2010 than in 2005 for all species, irrespective of site, even though the anomalously warm water temperature profiles were very similar between years. We also show that during the 2010 event, Barbados was engulfed by a transient dark green turbid water mass of riverine origin coming from South America. We suggest that reduced exposure to high solar radiation associated with this transient water mass was the primary contributing factor to the lower bleaching and mortality observed in all corals. We conclude that monitoring these episodic mesoscale oceanographic features might improve risk assessments of southeastern Caribbean reefs to warm-water events in the future. PMID:27326377

  9. Analysis of Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Mettam, J.D.; Allsop, N.W.H.; Bonafous, P.

    Working Group 12 was set up to consider the analysis of rubble mound breakwaters with a view to achieving a better understanding of safety aspects. The working group decided to develop the practical application of risk analysis in the design of rubble mound breakwaters by using partial coefficien...

  10. A comparison between the 2010 and 2016 El-Ninō induced coral bleaching in the Indonesian waters

    Science.gov (United States)

    Wouthuyzen, Sam; Abrar, M.; Lorwens, J.

    2018-02-01

    Severe coral bleaching events are always associated with El-Ninō phenomenon which caused a rise in ocean temperature between 1-2°C and that they potentially kill the corals worldwide. There were at least four severe coral bleaching events occurred in the Indonesian waters. This study aims to compare the coral bleaching events of the 2010 and 2016 and their impact on corals in Indonesian waters. Long-term (2002-2017) remotely sensed night time sea surface temperature (SST) data acquired from Aqua MODIS Satellite were used in the analysis. Here, we calculated the mean monthly maximum (MMM)of SST as SST in normal condition in which coral can adapt to temperature; the differences between high SST in each pixel during coral bleaching events of the 2010/2016 and MMM SST, called hot spot (HS); and how long has HS occupied a certain water body, called degree of heating weeks (DHW, °C-week) and then mapped it. Results show that the MMM SST for the Indonesian waters is 29.1°C. Both bleaching events of 2010 and 2016 started and finished in the same periods of Mar-Jun and they nearly have the same pattern, but bleaching magnitude of the 2016 was stronger than 2010 with the mean SST about 0.4°C higher in May-June. The percentage of impacted areas of strong thermal stress on corals of Alert-1 plus Alert-2 status was higher in 2016 (39.4%) compared to 2010 (31.3%). Coral bleaching events in the 2010 and 2016 spread in almost all Indonesian waters and relatively occurred in the same places but with small variation in the bleaching sites that was caused by the strength/weakness of El-Ninō and upwelling phenomenon as well as the role of Indonesian through flow (ITF).

  11. Temporal and spatial distributions of cold-water corals in the Drake Passage: insights from the last 35,000 years

    Science.gov (United States)

    Margolin, Andrew R.; Robinson, Laura F.; Burke, Andrea; Waller, Rhian G.; Scanlon, Kathryn M.; Roberts, Mark L.; Auro, Maureen E.; van de Flierdt, Tina

    2014-01-01

    Scleractinian corals have a global distribution ranging from shallow tropical seas to the depths of the Southern Ocean. Although this distribution is indicative of the corals having a tolerance to a wide spectrum of environmental conditions, individual species seem to be restricted to a much narrower range of ecosystem variables. One way to ascertain the tolerances of corals, with particular focus on the potential impacts of changing climate, is to reconstruct their growth history across a range of environmental regimes. This study examines the spatial and temporal distribution of the solitary scleractinian corals Desmophyllum dianthus, Gardineria antarctica, Balanophyllia malouinensis, Caryophyllia spp. and Flabellum spp. from five sites in the Drake Passage which cross the major frontal zones. A rapid reconnaissance radiocarbon method was used to date more than 850 individual corals. Coupled with U-Th dating, an age range of present day back to more than 100 thousand years was established for corals in the region. Within this age range there are distinct changes in the temporal and spatial distributions of these corals, both with depth and latitude, and on millennial timescales. Two major patterns that emerge are: (1) D. dianthus populations show clear variability in their occurrence through time depending on the latitudinal position within the Drake Passage. North of the Subantarctic Front, D. dianthus first appears in the late deglaciation (~17,000 years ago) and persists to today. South of the Polar Front, in contrast, early deglacial periods, with a few modern occurrences. A seamount site between the two fronts exhibits characteristics similar to both the northern and southern sites. This shift across the frontal zones within one species cannot yet be fully explained, but it is likely to be linked to changes in surface productivity, subsurface oxygen concentrations, and carbonate saturation state. (2) at locations where multiple genera were dated, differences

  12. Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth

    International Nuclear Information System (INIS)

    Zhang, Ruijie; Zhang, Ruiling; Yu, Kefu; Wang, Yinghui; Huang, Xueyong; Pei, Jiying; Wei, Chaoshuai; Pan, Ziliang; Qin, Zhenjun; Zhang, Gan

    2018-01-01

    Laboratory research has indicated that antibiotics had negative effects on coral growth by disturbing natural microbiota; however, no field studies have reported antibiotic contamination levels and their influence on coral growth in natural coral reef regions (CRRs). This study investigated antibiotic occurrence and sources in the surface water from CRRs that have suffered from rapid coral degradation and evaluated their risk to coral growth. These regions are in the South China Sea, including four coastal and two offshore CRRs. The results show that 13 antibiotics were detected in the coastal CRRs with concentrations ranging from 10 −2 –10 0  ng L −1 , while 5 antibiotics occurred in offshore CRRs (300–950 km from the mainland), with concentrations ranging from 10 −2 to 10 −1  ng L −1 . Their concentrations decreased gradually from the coast to offshore in the transport process. However, Yongxing Island, which is approximately 300 km from the mainland, was an exception with relatively higher concentrations than the surrounding reefs because of the ever-increasing human activity on the island. The presence of anthropogenic contaminants antibiotics in CRRs may be a potential risk to coral growth. - Highlights: • The study first studied antibiotic contamination in seawater from coral reef regions. • Thirteen antibiotics were detected at the level of 10 −2 - 10 0  ng L −1 . • The antibiotic concentrations decreased gradually from the coast to offshore. • Higher concentrations were detected in one offshore reef with more human activities. • Potential risk of the antibiotics to the coral could be ruled out. - Antibiotic contamination level, sources and their potential risk to coral growth were first studied in the surface water of natural coral reef regions.

  13. Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway.

    Science.gov (United States)

    Jensen, Sigmund; Neufeld, Josh D; Birkeland, Nils-Kåre; Hovland, Martin; Murrell, John Colin

    2008-11-01

    Deep-water coral reefs are seafloor environments with diverse biological communities surrounded by cold permanent darkness. Sources of energy and carbon for the nourishment of these reefs are presently unclear. We investigated one aspect of the food web using DNA stable-isotope probing (DNA-SIP). Sediment from beneath a Lophelia pertusa reef off the coast of Norway was incubated until assimilation of 5 micromol 13CH4 g(-1) wet weight occurred. Extracted DNA was separated into 'light' and 'heavy' fractions for analysis of labelling. Bacterial community fingerprinting of PCR-amplified 16S rRNA gene fragments revealed two predominant 13C-specific bands. Sequencing of these bands indicated that carbon from 13CH4 had been assimilated by a Methylomicrobium and an uncultivated member of the Gammaproteobacteria. Cloning and sequencing of 16S rRNA genes from the heavy DNA, in addition to genes encoding particulate methane monooxygenase and methanol dehydrogenase, all linked Methylomicrobium with methane metabolism. Putative cross-feeders were affiliated with Methylophaga (Gammaproteobacteria), Hyphomicrobium (Alphaproteobacteria) and previously unrecognized methylotrophs of the Gammaproteobacteria, Alphaproteobacteria, Deferribacteres and Bacteroidetes. This first marine methane SIP study provides evidence for the presence of methylotrophs that participate in sediment food webs associated with deep-water coral reefs.

  14. Ballast water as a vector of coral pathogens in the Gulf of Mexico: the case of the Cayo Arcas coral reef.

    Science.gov (United States)

    Aguirre-Macedo, M Leopoldina; Vidal-Martinez, Victor M; Herrera-Silveira, Jorge A; Valdés-Lozano, David S; Herrera-Rodríguez, Miguel; Olvera-Novoa, Miguel A

    2008-09-01

    The discharge of nutrients, phytoplankton and pathogenic bacteria through ballast water may threaten the Cayo Arcas reef system. To assess this threat, the quality of ballast water and presence of coral reef pathogenic bacteria in 30 oil tankers loaded at the PEMEX Cayo Arcas crude oil terminal were determined. The water transported in the ships originated from coastal, oceanic or riverine regions. Statistical associations among quality parameters and bacteria were tested using redundancy analysis (RDA). In contrast with coastal or oceanic water, the riverine water had high concentrations of coliforms, including Vibrio cholerae 01 and, Serratia marcescens and Sphingomona spp., which are frequently associated with "white pox" and "white plague type II" coral diseases. There were also high nutrient concentrations and low water quality index values (WQI and TRIX). The presence of V. cholerae 01 highlights the need for testing ballast water coming from endemic regions into Mexican ports.

  15. Genetic susceptibility, colony size, and water temperature drive white-pox disease on the coral Acropora palmata.

    Science.gov (United States)

    Muller, Erinn M; van Woesik, Robert

    2014-01-01

    Outbreaks of coral diseases are one of the greatest threats to reef corals in the Caribbean, yet the mechanisms that lead to coral diseases are still largely unknown. Here we examined the spatial-temporal dynamics of white-pox disease on Acropora palmata coral colonies of known genotypes. We took a Bayesian approach, using Integrated Nested Laplace Approximation algorithms, to examine which covariates influenced the presence of white-pox disease over seven years. We showed that colony size, genetic susceptibility of the coral host, and high-water temperatures were the primary tested variables that were positively associated with the presence of white-pox disease on A. palmata colonies. Our study also showed that neither distance from previously diseased individuals, nor colony location, influenced the dynamics of white-pox disease. These results suggest that white-pox disease was most likely a consequence of anomalously high water temperatures that selectively compromised the oldest colonies and the most susceptible coral genotypes.

  16. Genetic susceptibility, colony size, and water temperature drive white-pox disease on the coral Acropora palmata.

    Directory of Open Access Journals (Sweden)

    Erinn M Muller

    Full Text Available Outbreaks of coral diseases are one of the greatest threats to reef corals in the Caribbean, yet the mechanisms that lead to coral diseases are still largely unknown. Here we examined the spatial-temporal dynamics of white-pox disease on Acropora palmata coral colonies of known genotypes. We took a Bayesian approach, using Integrated Nested Laplace Approximation algorithms, to examine which covariates influenced the presence of white-pox disease over seven years. We showed that colony size, genetic susceptibility of the coral host, and high-water temperatures were the primary tested variables that were positively associated with the presence of white-pox disease on A. palmata colonies. Our study also showed that neither distance from previously diseased individuals, nor colony location, influenced the dynamics of white-pox disease. These results suggest that white-pox disease was most likely a consequence of anomalously high water temperatures that selectively compromised the oldest colonies and the most susceptible coral genotypes.

  17. Geology and biology of the "Sticky Grounds," shelf-margin carbonate mounds, and mesophotic ecosystem in the eastern Gulf of Mexico

    Science.gov (United States)

    Locker, Stanley D.; Reed, John K.; Farrington, Stephanie; Harter, Stacey; Hine, Albert C.; Dunn, Shane

    2016-01-01

    Shelf-margin carbonate mounds in water depths of 116–135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the “Sticky Grounds”, trend along slope, are 5–15 m in relief with base diameters of 5–30 m, and suggest widespread potential for mesophotic reef habitat along the west Florida outer continental shelf. Possible origins are sea-level lowstand coral patch reefs, oyster reefs, or perhaps more recent post-lowstand biohermal development. Rock dredging recovered bioeroded carbonate-rock facies comprised of bored and cemented bioclastics. Rock sample components included calcified worm tubes, pelagic sediment, and oysters normally restricted to brackish nearshore areas. Several reef sites were surveyed at the Sticky Grounds during a cruise in August 2010 with the R/V Seward Johnson using the Johnson-Sea-Link II submersible to ground truth the swath-sonar maps and to quantify and characterize the benthic habitats, benthic macrofauna, fish populations, and coral/sponge cover. This study characterizes for the first time this mesophotic reef ecosystem and associated fish populations, and analyzes the interrelationships of the fish assemblages, benthic habitats and invertebrate biota. These highly eroded rock mounds provide extensive hard-bottom habitat for reef invertebrate species as well as essential fish habitat for reef fish and commercially/recreationally important fish species. The extent and significance of associated living resources with these bottom types is particularly important in light of the 2010 Deepwater Horizon oil spill in the northeastern Gulf and the proximity of the Loop Current. Mapping the distribution of these mesophotic-depth ecosystems is important for quantifying essential fish habitat and describing benthic resources. These activities can improve

  18. Rayleigh-based, multi-element coral thermometry: A biomineralization approach to developing climate proxies

    Science.gov (United States)

    Gaetani, G.A.; Cohen, A.L.; Wang, Z.; Crusius, John

    2011-01-01

    This study presents a new approach to coral thermometry that deconvolves the influence of water temperature on skeleton composition from that of “vital effects”, and has the potential to provide estimates of growth temperatures that are accurate to within a few tenths of a degree Celsius from both tropical and cold-water corals. Our results provide support for a physico-chemical model of coral biomineralization, and imply that Mg2+ substitutes directly for Ca2+ in biogenic aragonite. Recent studies have identified Rayleigh fractionation as an important influence on the elemental composition of coral skeletons. Daily, seasonal and interannual variations in the amount of aragonite precipitated by corals from each “batch” of calcifying fluid can explain why the temperature dependencies of elemental ratios in coral skeleton differ from those of abiogenic aragonites, and are highly variable among individual corals. On the basis of this new insight into the origin of “vital effects” in coral skeleton, we developed a Rayleigh-based, multi-element approach to coral thermometry. Temperature is resolved from the Rayleigh fractionation signal by combining information from multiple element ratios (e.g., Mg/Ca, Sr/Ca, Ba/Ca) to produce a mathematically over-constrained system of Rayleigh equations. Unlike conventional coral thermometers, this approach does not rely on an initial calibration of coral skeletal composition to an instrumental temperature record. Rather, considering coral skeletogenesis as a biologically mediated, physico-chemical process provides a means to extract temperature information from the skeleton composition using the Rayleigh equation and a set of experimentally determined partition coefficients. Because this approach is based on a quantitative understanding of the mechanism that produces the “vital effect” it should be possible to apply it both across scleractinian species and to corals growing in vastly different environments. Where

  19. Bleaching Susceptibility and Recovery of Colombian Caribbean Corals in Response to Water Current Exposure and Seasonal Upwelling

    OpenAIRE

    Bayraktarov, Elisa; Pizarro, Valeria; Eidens, Corvin; Wilke, Thomas; Wild, Christian

    2013-01-01

    Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP) in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an u...

  20. Functional traits of trees on and off termite mounds : Understanding the origin of biotically-driven heterogeneity in savannas

    NARCIS (Netherlands)

    van der Plas, F.; Howison, R.; Reinders, J.; Fokkema, W.; Olff, H.

    Questions In African savannas, Macrotermes termites contribute to small-scale heterogeneity by constructing large mounds. Operating as islands of high nutrient and water availability and low fire frequency, these mounds support distinct, diverse communities of trees that have been shown to be highly

  1. Water quality and herbivory interactively drive coral-reef recovery patterns in American Samoa.

    Directory of Open Access Journals (Sweden)

    Peter Houk

    Full Text Available BACKGROUND: Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s of spatial variation in the recovery process. METHODOLOGY/PRINCIPAL FINDINGS: This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of 'recovery status', defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. CONCLUSIONS/SIGNIFICANCE: Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management.

  2. Permanent groundwater storage in basaltic dyke fractures and termite mound viability

    Science.gov (United States)

    Mège, Daniel; Rango, Tewodros

    2010-04-01

    Many basaltic dykes of the Ethiopian flood basalt province are observed in the northwestern Ethiopian lowlands. In this area, the termites preferentially build their epigeous mounds on the top of dolerite dykes. The relationship between termite mounds and dykes is investigated from the analysis of their distribution along one of these dykes, of thickness 2-5 m, that we could follow over 2000 m. Termite mounds are periodically spaced (mean distance 63 m, R2 = 0.995), and located exclusively where the topographic relief of the dyke is not more than 2 m above the surrounding area. From these observations and from the geological context, a hydrological circuit model is proposed in which (1) dykes are preferential conduits for groundwater drainage during the rainy season due to pervasive jointing, (2) during the dry season, the portion of the dyke forming a local topographic relief area dries up more quickly than the surroundings, the elevation difference between the dyke summit and the surroundings being a factor restricting termite mound development. For dyke topographic relief >2 m, drying is an obstacle for maintaining the appropriate humidity for the termite colony life. Periodic termite mound spacing is unlikely to be related to dyke or other geological properties. It is more likely related to termite population behaviour, perhaps to clay shortage, which restricts termite population growth by limiting the quantity of building material available for mound extension, and triggers exploration for a new colonization site that will be located along the dyke at a distance from the former colony that may be controlled by the extent of the zone covered by its trail pheromones. This work brings out the importance of dykes in channelling and storing groundwater in semiarid regions, and shows that dykes can store groundwater permanently in such settings even though the dry season is half the year long. It contributes also to shedding light on water supply conditions

  3. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Northwestern Hawaiian Islands from Water Samples collected in 2015 (NCEI Accession 0160330)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  4. Cold leg condensation tests. Task C. Steam--water interaction tests

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Loiselle, V.

    1974-03-01

    A report is presented of tests to determine the condensation efficiency of ECC water injected into a quality fluid mixture flowing through the cold leg. In particular, a specific objective was to determine if the mixture of ECC water and quality fluid reached thermodynamic equilibrium before exiting the cold leg. Further, the stability of the ECC water/quality fluid interaction would be assessed by interpretation of thermocouple records and utilization of a section of cold leg piping with view ports to film the interaction whenever possible. The cold leg condensation tests showed complete condensation of the 5 lbm/sec steam quality mixtures in the cold leg by the ECC water flows of the test matrix. The cold leg exit fluid temperature remained below the saturation temperature and had good agreement with the predicted cold leg outlet temperature, calculated assuming total condensation. (U.S.)

  5. Temperature fluctuations inside savanna termite mounds: Do size and plant shade matter?

    Science.gov (United States)

    Ndlovu, M; Pérez-Rodríguez, A

    2018-05-01

    Mound building termites are key ecosystem engineers of subtropical savanna regions. Mounds allow termites to maintain suitable conditions for termite reproduction and food cultivation ('fungus gardens'). We studied how the internal mound temperature of Macrotermes natalensis, a dominant mound-building termite of the subtropical savanna of southern Africa, responds to a number of environmental variables. We used general additive mixed models (GAMM) to determine how external temperature, mound size (volume) and the amount of vegetation shade affects mound internal temperature over a 24-h period. Internal mound temperature varied daily following changes of the external temperature, although the range of variation was much smaller. Active termite mounds maintained a higher internal temperature than inactive ones, and mound activity reinforced the positive effect of mound size and moderated the negative effect of vegetation shade on internal temperatures. In turn, external temperature fluctuations equally affected active and inactive mounds. Large mounds maintained near optimal internal temperatures compared to smaller sized mounds. We therefore conclude that termite mound size is a stronger determinant of internal mound temperature stability compared to plant shade cover. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Water column productivity and temperature predict coral reef regeneration across the Indo-Pacific.

    Science.gov (United States)

    Riegl, B; Glynn, P W; Wieters, E; Purkis, S; d'Angelo, C; Wiedenmann, J

    2015-02-05

    Predicted increases in seawater temperatures accelerate coral reef decline due to mortality by heat-driven coral bleaching. Alteration of the natural nutrient environment of reef corals reduces tolerance of corals to heat and light stress and thus will exacerbate impacts of global warming on reefs. Still, many reefs demonstrate remarkable regeneration from past stress events. This paper investigates the effects of sea surface temperature (SST) and water column productivity on recovery of coral reefs. In 71 Indo-Pacific sites, coral cover changes over the past 1-3 decades correlated negative-exponentially with mean SST, chlorophyll a, and SST rise. At six monitoring sites (Persian/Arabian Gulf, Red Sea, northern and southern Galápagos, Easter Island, Panama), over half of all corals were <31 years, implying that measured environmental variables indeed shaped populations and community. An Indo-Pacific-wide model suggests reefs in the northwest and central Indian Ocean, as well as the central west Pacific, are at highest risk of degradation, and those at high latitudes the least. The model pinpoints regions where coral reefs presently have the best chances for survival. However, reefs best buffered against temperature and nutrient effects are those that current studies suggest to be most at peril from future ocean acidification.

  7. Aerodynamics of Ventilation in Termite Mounds

    Science.gov (United States)

    Bailoor, Shantanu; Yaghoobian, Neda; Turner, Scott; Mittal, Rajat

    2017-11-01

    Fungus-cultivating termites collectively build massive, complex mounds which are much larger than the size of an individual termite and effectively use natural wind and solar energy, as well as the energy generated by the colony's own metabolic activity to maintain the necessary environmental condition for the colony's survival. We seek to understand the aerodynamics of ventilation and thermoregulation of termite mounds through computational modeling. A simplified model accounting for key mound features, such as soil porosity and internal conduit network, is subjected to external draft conditions. The role of surface flow conditions in the generation of internal flow patterns and the ability of the mound to transport gases and heat from the nursery are examined. The understanding gained from our study could be used to guide sustainable bio-inspired passive HVAC system design, which could help optimize energy utilization in commercial and residential buildings. This research is supported by a seed Grant from the Environment, Energy Sustainability and Health Institute of the Johns Hopkins University.

  8. Water/ionic liquid/organic three-phase interfacial synthesis of coral-like polypyrrole toward enhanced electrochemical capacitance

    International Nuclear Information System (INIS)

    Hou Linrui; Yuan Changzhou; Li Diankai; Yang Long; Shen Laifa; Zhang Fang; Zhang Xiaogang

    2011-01-01

    Highlights: → Interfacial synthesis strategies are proposed to synthesize PPy samples. → Water/ionic liquid /organic three-phase interface for preparing coral-like PPy. → Coral-like PPy with more ordered structure and better electronic conductivity. → Coral-like PPy owns higher rate performance and better electrochemical stability. - Abstract: Two interfacial synthesis strategies are proposed to synthesize polypyrrole samples for electrochemical capacitors (ECs). In contrast to water/organic two-phase route, unique water/ionic liquid (IL)/organic three-phase interface strategy is first performed to prepare coral-like polypyrrole with even better electrochemical capacitance, where 1-Ethyl-3-methylimidazolium tetrafluoroborate IL, as a 'buffering zone', is set between the water and organic phases to control the morphology and micro-structure of the polypyrrole phase during polymerization. The polypyrrole synthesized by three-phase interfacial route owns more ordered structure, less charge transfer resistance and better electronic conductivity, compared with two-phase method, and delivers larger specific capacitance, higher rate performance and better electrochemical stability at large current densities in 3 M KCl aqueous electrolyte.

  9. Revealing Holobiont Structure and Function of Three Red Sea Deep-Sea Corals

    KAUST Repository

    Yum, Lauren

    2014-12-01

    Deep-sea corals have long been regarded as cold-water coral; however a reevaluation of their habitat limitations has been suggested after the discovery of deep-sea coral in the Red Sea where temperatures exceed 20˚C. To gain further insight into the biology of deep-sea corals at these temperatures, the work in this PhD employed a holotranscriptomic approach, looking at coral animal host and bacterial symbiont gene expression in Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus sp. sampled from the deep Red Sea. Bacterial community composition was analyzed via amplicon-based 16S surveys and cultured bacterial strains were subjected to bioprospecting in order to gauge the pharmaceutical potential of coralassociated microbes. Coral host transcriptome data suggest that coral can employ mitochondrial hypometabolism, anaerobic glycolysis, and surface cilia to enhance mass transport rates to manage the low oxygen and highly oligotrophic Red Sea waters. In the microbial community associated with these corals, ribokinases and retron-type reverse transcriptases are abundantly expressed. In its first application to deep-sea coral associated microbial communities, 16S-based next-generation sequencing found that a single operational taxonomic unit can comprise the majority of sequence reads and that a large number of low abundance populations are present, which cannot be visualized with first generation sequencing. Bioactivity testing of selected bacterial isolates was surveyed over 100 cytological parameters with high content screening, covering several major organelles and key proteins involved in a variety of signaling cascades. Some of these cytological profiles were similar to those of several reference pharmacologically active compounds, which suggest that the bacteria isolates produce compounds with similar mechanisms of action as the reference compounds. The sum of this work offers several mechanisms by which Red Sea deep-sea corals cope with environmental

  10. CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN ...

    Science.gov (United States)

    Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inhabitants of coral reefs. The objective of the CWA is to restore and maintain the chemical, physical and biological integrity of water resources. Coral reef protection and restoration under the Clean Water Act begins with water quality standards - provisions of state or Federal law that consist of a designated use(s) for the waters of the United States and water quality criteria sufficient to protect the uses. Aquatic life use is the designated use that is measured by biological criteria (biocriteria). Biocriteria are expectations set by a jurisdiction for the quality and quantity of living aquatic resources in a defined waterbody. Biocriteria are an important addition to existing management tools for coral reef ecosystems. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework to aid States and Territories in their development, adoption, and implementation of coral reef biocriteria in their respective water quality standards. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework for coral re

  11. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Pacific Remote Island Areas from Water Samples collected in 2015 (NCEI Accession 0159169)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  12. Coral Bleaching Assessment Through Remote Sensing and Integrated Citizen Science (CoralBASICS): Engaging Dive Instructors on Reef Characterization in Southwest, Puerto Rico Coupled with the Analysis of Water Quality Using NASA Earth Observations

    Science.gov (United States)

    Torres-Perez, J. L.; Armstrong, R.; Detres, Y.; Aragones-Fred, C.; Melendez, J.

    2017-12-01

    As recurrences of extreme sea water thermal events increase with climate change, the need for continuous monitoring of coral reefs becomes even more evident. Enabling properly trained members from the local communities to actively participate in scientific programs/research projects, provides for such monitoring at little cost once the citizens are properly trained and committed. Further, the possibility of obtaining high temporal resolution data with citizen scientists can provide for new venues to answer questions that may not be answered with traditional research approaches. The CoralBASICS project engages members of the local diving industry in Puerto Rico on the assessment of coastal water quality and the status of Puerto Rico's coral reefs in an age of climate change and in particular, an increase in the frequency and magnitude of coral bleaching events. The project complements remote sensing data with community-based field assessments strictly supervised by the PI's. The study focuses on training citizen scientists (dive instructors) on the collection of benthic information related to the state of coral reefs using the Reef Check (fish and invertebrates ID and substrate composition) and video transects methodologies, monitoring of coral bleaching events, and collecting of water quality data using a smartphone ocean color application. The data collected by citizen scientists complements the validation of Landsat-8 (OLI) imagery for water quality assessment. At the same time, researchers from the University of Puerto Rico conduct field assessment of the bio-optical properties of waters surrounding the coral reef study areas. Dive instructors have been collecting benthic and water quality data for the past 4 months. Initial analysis using the Coral Point Count with excel extension (CPCe) software showed a dominance of gorgonians at most sites (up to 32.8%) with hard coral cover ranging between 5.5-13.2% of the hard substrates. No coral diseases or bleaching

  13. Cold Water Vapor in the Barnard 5 Molecular Cloud

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Persson, C. M.; Buckle, J. V.; Cordiner, M. A.; Takakuwa, S.

    2014-01-01

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  14. COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Wirström, E. S.; Persson, C. M. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Charnley, S. B.; Cordiner, M. A. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); Buckle, J. V. [Astrophysics Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Takakuwa, S., E-mail: eva.wirstrom@chalmers.se [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2014-06-20

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (∼10 K) water vapor has been detected—L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work—likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H{sub 2}O (J = 1{sub 10}-1{sub 01}) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  15. Las bioconstrucciones de corales y sus facies asociadas durante el Malm en la Cordillera Ibérica Central (provincia de Zaragoza

    Directory of Open Access Journals (Sweden)

    Meléndez, A.

    1987-08-01

    Full Text Available The differents types of bioconstructions and associated facies in the Central Iberian Chain (Higueruelas Formation, Upper Kimmeridgian have been studied. Biohermes of different thickness (decimetric to metric and less lateral continuity are developped, highly colonized by corals, that are associated to oncolitic, bioclastic and oolitic of high energy facies, in marginal areas, near the litoral developpment. At the same time takes place an important set up of mud mounds, with a small coral colonisation, in protected arcas in a inner shelf, or in outer areas, where the action of the waves is not so effective. The environment protection is been generated in some places due to the appearance of oolitic barrier islands.Se estudian los diferentes tipos de bioconstrucciones de corales, y sus facies asociadas, presentes en el sector central de la rama aragonesa de la Cordillera Ibérica, en la Formación Higueruelas (Kimmeridgiense superior. Se desarrollan biohermos de potencias métricas a decimétricas y escasa continuidad lateral, intensamente colonizados por corales coloniales, que se encuentran asociados a facies oncolíticas, bioclásticas y oolíticas de alta energía en zonas marginales, próximas al desarrollo litoral. Al mismo tiempo tiene lugar una importante instalación de mud mounds, con escasa colonización de corales, en zonas protegidas dentro de la plataforma interna o en zonas más externas, donde la acción del oleaje no es efectiva. La protección del medio viene condicionada en algunos puntos por la aparición de islas barrera oolíticas.

  16. Diurnal respiration of a termite mound

    Science.gov (United States)

    King, Hunter; Ocko, Samuel; Mahadevan, L.

    2014-11-01

    Many species of fungus-harvesting termites build largely empty, massive mound structures which protrude from the ground above their subterranean nests. It has been long proposed that the function of these mounds is to facilitate exchange of heat, humidity, and respiratory gases; this would give the colony a controlled climate in which to raise fungus and brood. However, the specific mechanism by which the mound achieves ventilation has remained a topic of debate, as direct measurement of internal air flows has remained difficult. By directly measuring these elusive, tiny flows with a custom sensor, we find that the mound architecture of the species Odontotermes obesus takes advantage of daily oscillations in ambient temperature to drive convection and gas transport. This contradicts previous theories, which point to internal metabolic heating and external wind as driving forces. Our result, a novel example of deriving useful work from a fluctuating scalar parameter, should contribute to better understanding insect swarm construction and possible development in passive human architecture, both of which have been spurred by previous research on termites. We acknowledge support from HFSP.

  17. Cold Lake-Beaver River water management study update: Report of the Cold Lake Regional Water Management Task Force

    International Nuclear Information System (INIS)

    1994-01-01

    The Cold Lake Regional Water Management Task Force was formed in 1992, comprising representatives from local governments, aboriginal groups, the oil industry, and the public. The Task Force's mandate was to advise Alberta Environmental Protection on updating the Cold Lake-Beaver River Water Management Plan, taking into acocunt the views and concerns of the public, industry, and local governments. Industrial water use was found to be the key issue to be addressed in the plan update, so the Task Force focused on reviewing industrial water supply options and developing recommendations on the appropriate water supply to meet long-term requirements. A subcommittee was established to monitor groundwater use by the heavy oil industry. This committee took readings at Imperial Oil's water production and observation wells on a biweekly basis. Nine options for supplying industrial water requirements were examined and evaluated using criteria including supply reliability, economic factors, and impacts on other users and the environment. The Task Force found that the preferred source of water for industrial use is the North Saskatchewan River, to be accessed by a water pipeline. The second and less desirable source of water for industrial use would be a system of weirs on Cold or Primrose Lakes and Wolf Lake, supplemented by the use of brackish water to the maximum extent possible. In the interim, industry was recommended to maximize its use of brackish water and continue to use surface and ground water within existing license limits. Other recommendations were to form provincial or regional boards to oversee water use and issue water licenses, to treat water as a resource, and to establish a fee for industrial use of water. 3 figs., 5 tabs

  18. New record of Scleractinian coral Astrangia sp. from Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    Anil, A.C.; Wagh, A.B.

    The scleractinian coral Astrangia was found to have settled on aluminium and mild steel panels exposed at the two stations at Cortalim beach and oil jetty of Marmugao harbour, Goa, India. This is a new record of the specimen in these waters...

  19. Termite Mounds Effects on Soil Properties in the Atlantic Forest Biome

    Directory of Open Access Journals (Sweden)

    Sandra Santana de Lima

    2018-03-01

    Full Text Available ABSTRACT Termites have peculiar activities in the soil, inducing significant changes in the soil properties. The objective of this study was to assess physical and chemical properties and soil organic matter to evaluate the effect of termite activity and termite mounds on the soil. Two toposequences were selected and divided in slope thirds (shoulder, backslope, and footslope. In each of these, four termite mounds were selected. Samples were taken from the soils and termite mounds (top, center, and base along with a variety of termites for identification. Analyses were carried out for physical, soil texture, and chemical properties, as well as for particle size and chemical fractioning of organic matter. The species Cornitermes cumulans was found in all mounds. Soil with termite mound presented higher clay content, acidity, and Al3+ content. Phosphorus contents differed considerably between mound material and soil. Sum of bases and cation exchange capacity of the soil were higher in mounds, and differed within the mounds, according to the sampling height. Total organic carbon and particulate carbon content were highest at the mound base. A marked disparity was observed between the contents of humic substances in the mounds and surrounding soil, with humin fraction differences in distinct topographic position. The high nutrient contents detected in the termite mounds confirm the importance of termites in concentrating nutrients.

  20. Mound site environmental report for calendar year 1992

    International Nuclear Information System (INIS)

    Bauer, L.R.

    1993-07-01

    The purpose of this report is to inform the public about the impact of Mound operations on the population and the environment. Mound is a government-owned facility operated by EG ampersand G Mound Applied Technologies for the US Department of Energy (DOE). This integrated production, development, and research site performs work in support of DOE's weapon and energy related programs, with emphasis on explosive, nuclear and energy technologies

  1. Changes in landing mechanics after cold-water immersion.

    Science.gov (United States)

    Wang, He; Toner, Michael M; Lemonda, Thomas J; Zohar, Mor

    2010-06-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 degrees C) and in cold water (20 degrees C) to the ankle (low level), knee (medium level), and hip (high level) joints. Sagittal plane kinematics and kinetics were determined. One-way repeated measures multivariate analysis of variance was used for statistical analysis. Compared to the control, the low-level condition had similar joint mechanics, the medium level showed 26% less ankle mechanical work (p = .003), and the high level showed 9% less vertical ground reaction force (p = .025) and 23% less ankle mechanical work (p = .023) with 18% greater trunk flexion (p = .024). In summary, the low-level cold-water immersion had no effect on landing mechanics. The medium- and high-level cold-water immersion resulted in a reduction in impact absorption at the ankle joint during landing. The increased trunk flexion after high-level immersion helped dissipate landing impact.

  2. Temporal variability in shell mound formation at Albatross Bay, northern Australia.

    Directory of Open Access Journals (Sweden)

    Simon J Holdaway

    Full Text Available We report the results of 212 radiocarbon determinations from the archaeological excavation of 70 shell mound deposits in the Wathayn region of Albatross Bay, Australia. This is an intensive study of a closely co-located group of mounds within a geographically restricted area in a wider region where many more shell mounds have been reported. Valves from the bivalve Tegillarca granosa (Linnaeus, 1758 were dated. The dates obtained are used to calculate rates of accumulation for the shell mound deposits. These demonstrate highly variable rates of accumulation both within and between mounds. We assess these results in relation to likely mechanisms of shell deposition and show that rates of deposition are affected by time-dependent processes both during the accumulation of shell deposits and during their subsequent deformation. This complicates the interpretation of the rates at which shell mound deposits appear to have accumulated. At Wathayn, there is little temporal or spatial consistency in the rates at which mounds accumulated. Comparisons between the Wathayn results and those obtained from shell deposits elsewhere, both in the wider Albatross Bay region and worldwide, suggest the need for caution when deriving behavioural inferences from shell mound deposition rates, and the need for more comprehensive sampling of individual mounds and groups of mounds.

  3. Termite mounds harness diurnal temperature oscillations for ventilation.

    Science.gov (United States)

    King, Hunter; Ocko, Samuel; Mahadevan, L

    2015-09-15

    Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations.

  4. Large-scale deep-water seafloor mapping from the Rockall to the Hatton basins, NE Atlantic

    Science.gov (United States)

    Monteys, X.; Thébaudeau, B.; Murcia, C.; Duncan, N.

    2016-02-01

    Multibeam data acquired in 2000 and 2001 during the Irish National Seabed Survey (INSS) are used for the first detailed investigation of the seabed geomorphology and sediment type in the Hatton-Rockall basin area of the North East Atlantic Ocean, covering an area of approximately 80,000 km². The original multibeam survey produced bathymetric and backscatter datasets that allowed the creation of a Digital Terrain Models of approximately 50 m in resolution in water depths between 500 and 3500 m. Near-surface sediments for the entire region haven been classified using features derived from multibeam angular backscatter data (12kHz) and robust unsupervised clustering techniques. Additionally, sub bottom data imaging the shallow stratigraphy and geomagnetic measurements collected at the time of the MBES survey are combined to further characterise some of the features identified. The features presented in detail include parts of the Hatton and Gardar contourite drifts, volcanic mounds identified by their morphology and magnetic signature, deep-water coral mounds, iceberg scours as well as canyons, gullies and escarpments along and down the slopes of the banks and mounds. This study highlights for the first time the variety and complexity of the seafloor present at the seabed in the Irish Hatton-Rockall basin area

  5. Shallow-water Benthic Habitat Map (2013) for Coral Bay, St. John

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This shapefile contains information about the shallow-water (<40 meters) geology and biology of the seafloor in Coral Bay, St. John in the U.S. Virgin Islands...

  6. Mound facility physical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  7. Geophysical Survey of Poverty Point UNESCO World Heritage Site Mound A

    Science.gov (United States)

    Frazer, W.; Bourke, J. R.; De Smet, T.; Nikulin, A.

    2017-12-01

    Poverty Point is an UNESCO World Heritage Site located in northern Louisiana, known for its six earthwork ridges and mounds of archeological significance. The largest of these earthworks and most significant feature on the site, Mound A is over 70 feet (21 m) high and 640 feet (200 m) long. To construct this mound, it would have taken about 16 million basket loads of dirt which weight approximately 50 lbs. each (23 kg). The current archeological theory describing the construction of Mound A states it was built in three months at most, with some suggesting construction times as short as a month, but beyond this not much else is known about Mound A or Poverty Point. The pace of Mound A's construction has been used as evidence to support the idea that there was a central leader directing its construction and that the population inhabiting the site was more socio-politically complex than previous hunter-gatherer populations in North America. Evidence of heterogeneity and stratigraphic layering, however, is an indication of a slow mound construction over centuries by a relatively egalitarian hunter-gather society. A greater understanding of the construction style and timeline for the construction of Mound A will lead to a greater understanding to the site, its people their lifestyles. Mound Builders have been known to cap mounds they have built if they were to be built in stages so if Mound A was built in stages it is likely capped with some more dense material than the dirt surrounding it. To better understand the construction history of Mound A we collected photogrammetry, seismic reflection, ground-penetrating radar, frequency-domain electromagnetic-induction, resistivity, and magnetometry data over the mound. The seismic data had a normal moveout correction, it was stacked and migrated. Additionally, with the application of quadcopter-based photogrammetry a three-dimensional digital model of Mound A was developed to display and assist in further understanding and

  8. Spectral response of the coral rubble, living corals, and dead corals: study case on the Spermonde Archipelago, Indonesia

    Science.gov (United States)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Yamano, Hiroya; Arafat, Gulam; Rani, Chair; Akbar AS, M.

    2012-10-01

    Coral reefs play important ecological services such as providing foods, biodiversity, nutrient recycling etc. for human society. On the other hand, they are threatened by human impacts such as illegal fishing and environmental changes such as rises of sea water temperature and sea level due to global warming. Thus, it is very important to monitor dynamic spatial distributions of coral reefs and related habitats such as coral rubble, dead coral, bleached corals, seagrass, etc. Hyperspectral data, in particular, offer high potential for characterizing and mapping coral reefs because of their capability to identify individual reef components based on their detailed spectral response. We studied the optical properties by measuring in situ spectra of living corals, dead coral and coral rubble covered with algae. Study site was selected in Spermonde archipelago, South Sulawesi, Indonesia because this area is included in the highest diversity of corals in the world named as Coral Triangle, which is recognized as the global centre of marine biodiversity and a global priority for conservation. Correlation analysis and cluster analysis support that there are distinct differences in reflectance spectra among categories. Common spectral characteristic of living corals, dead corals and coral rubble covered with algae was a reflectance minimum at 674 nm. Healthy corals, dead coral covered with algae and coral rubble covered with algae showed high similarity of spectral reflectance. It is estimated that this is due to photsynthetic pigments.

  9. Iron microbial communities in Belgian Frasnian carbonate mounds

    OpenAIRE

    Boulvain, F.; De Ridder, C.; Mamet, B.; Preat, A.; Gillan, D.

    2001-01-01

    The Belgian Frasnian carbonate mounds occur in three stratigraphic levels in an overall backstepping succession. Petit-Mont and Arche Members form the famous red and grey “marble” exploited for ornamental stone since Roman times. The evolution and distribution of the facies in the mounds is thought to be associated with ecologic evolution and relative sea-level fluctuations. Iron oxides exist in five forms in the Frasnian mounds; four are undoubtedly endobiotic organized structures: (1) micro...

  10. Giant polygons and mounds in the lowlands of Mars: signatures of an ancient ocean?

    Science.gov (United States)

    Oehler, Dorothy Z; Allen, Carlton C

    2012-06-01

    This paper presents the hypothesis that the well-known giant polygons and bright mounds of the martian lowlands may be related to a common process-a process of fluid expulsion that results from burial of fine-grained sediments beneath a body of water. Specifically, we hypothesize that giant polygons and mounds in Chryse and Acidalia Planitiae are analogous to kilometer-scale polygons and mud volcanoes in terrestrial, marine basins and that the co-occurrence of masses of these features in Chryse and Acidalia may be the signature of sedimentary processes in an ancient martian ocean. We base this hypothesis on recent data from both Earth and Mars. On Earth, 3-D seismic data illustrate kilometer-scale polygons that may be analogous to the giant polygons on Mars. The terrestrial polygons form in fine-grained sediments that have been deposited and buried in passive-margin, marine settings. These polygons are thought to result from compaction/dewatering, and they are commonly associated with fluid expulsion features, such as mud volcanoes. On Mars, in Chryse and Acidalia Planitiae, orbital data demonstrate that giant polygons and mounds have overlapping spatial distributions. There, each set of features occurs within a geological setting that is seemingly analogous to that of the terrestrial, kilometer-scale polygons (broad basin of deposition, predicted fine-grained sediments, and lack of significant horizontal stress). Regionally, the martian polygons and mounds both show a correlation to elevation, as if their formation were related to past water levels. Although these observations are based on older data with incomplete coverage, a similar correlation to elevation has been established in one local area studied in detail with newer higher-resolution data. Further mapping with the latest data sets should more clearly elucidate the relationship(s) of the polygons and mounds to elevation over the entire Chryse-Acidalia region and thereby provide more insight into this

  11. Changes in Landing Mechanics after Cold-Water Immersion

    Science.gov (United States)

    Wang, He; Toner, Michael M.; Lemonda, Thomas J.; Zohar, Mor

    2010-01-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 [degrees]C) and in cold water…

  12. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States

    Science.gov (United States)

    Henry, Lea-Anne; Nizinski, Martha S.; Ross, Steve W.

    2008-06-01

    Deep-water coral habitats off the southeastern USA (SEUS) support diverse fish and invertebrate assemblages, but are poorly explored. This study is the first to report on the hydroids collected from these habitats in this area. Thirty-five species, including two species that are likely new to science, were identified from samples collected primarily by manned submersible during 2001-2005 from deep-water coral habitats off North Carolina to east-central Florida. Eleven of the species had not been reported since the 19th to mid-20th century. Ten species, and one family, the Rosalindidae, are documented for the first time in the SEUS. Latitudinal ranges of 15 species are extended, and the deepest records in the western North Atlantic for 10 species are reported. A species accumulation curve illustrated that we continue to add to our knowledge of hydroid diversity in these habitats. Sexually mature individuals were collected for 19 species during the summer to early autumn months. Most of the observed species (89%) liberate planula larvae as part of their life cycles, suggesting that these species exhibit a reproductive strategy that reduces the risk of dispersal to sub-optimal habitats. Hydroids occurred across various substrata including coral rubble, live corals, rock and other animal hosts including hydroids themselves. All observed species were regionally widespread with typically deep-neritic to bathyal sub-tropical/tropical distributions. Hydroid assemblages from deep-water SEUS coral habitats were most similar to those from adjacent deep-water habitats off the SEUS (17 shared species), and those in the Straits of Florida/Bahamas and Caribbean/West Indian regions (14 and 8 shared species, respectively). The similarity to sub-tropical and tropical assemblages and the richness of plumularioids in the SEUS deep-water coral habitats support the idea of a Pleistocene intrusion of tropical species northwards following an intensification of the Gulf Stream from the

  13. Are termite mounds biofilters for methane? - Challenges and new approaches to quantify methane oxidation in termite mounds

    Science.gov (United States)

    Nauer, Philipp A.; Hutley, Lindsay B.; Bristow, Mila; Arndt, Stefan K.

    2015-04-01

    Methane emissions from termites contribute around 3% to global methane in the atmosphere, although the total source estimate for termites is the most uncertain among all sources. In tropical regions, the relative source contribution of termites can be far higher due to the high biomass and relative importance of termites in plant decomposition. Past research focused on net emission measurements and their variability, but little is known about underlying processes governing these emissions. In particular, microbial oxidation of methane (MOX) within termite mounds has rarely been investigated. In well-studied ecosystems featuring an oxic matrix above an anoxic methane-producing habitat (e.g. landfills or sediments), the fraction of oxidized methane (fox) can reach up to 90% of gross production. However, conventional mass-balance approaches to apportion production and consumption processes can be challenging to apply in the complex-structured and almost inaccessible environment of a termite mound. In effect, all field-based data on termite-mound MOX is based on one study that measured isotopic shifts in produced and emitted methane. In this study a closed-system isotope fractionation model was applied and estimated fox ranged from 10% to almost 100%. However, it is shown here that by applying an open-system isotope-pool model, the measured isotopic shifts can also be explained by physical transport of methane alone. Different field-based methods to quantify MOX in termite mounds are proposed which do not rely on assumptions of physical gas transport. A simple approach is the use of specific inhibitors for MOX, e.g. difluoromethane (CH2F2), combined with chamber-based flux measurements before and after their application. Data is presented on the suitability of different inhibitors and first results of their application in the field. Alternatively, gas-tracer methods allow the quantification of methane oxidation and reaction kinetics without knowledge of physical gas

  14. Lithium in the aragonite skeletons of massive Porites corals: A new tool to reconstruct tropical sea surface temperatures

    Science.gov (United States)

    Hathorne, Ed C.; Felis, Thomas; Suzuki, Atsushi; Kawahata, Hodaka; Cabioch, Guy

    2013-01-01

    Previous studies have demonstrated the potential for the Li content of coral aragonite to record information about environmental conditions, but no detailed study of tropical corals exists. Here we present the Li and Mg to Ca ratios at a bimonthly to monthly resolution over 25 years in two modern Porites corals, the genus most often used for paleoclimate reconstructions in the tropical Indo-Pacific. A strong relationship exists between coral Li/Ca and locally measured SST, indicating that coral Li/Ca can be used to reconstruct tropical SST variations. However, Li/Ca ratios of the skeleton deposited during 1979-1980 do not track local SST well and are anomalously high in places. The Mg/Ca ratios of this interval are also anomalously high, and we suggest Li/Ca can be used to reconstruct tropical SST only when Mg/Ca data are used to carefully screen for relatively rare biological effects. Mg/Li or Li/Mg ratios provide little advantage over Li/Ca ratios, except that the slope of the Li/Mg temperature relationship is more similar between the two corals. The Mg/Li temperature relationship for the coral that experienced a large temperature range is similar to that found for cold water corals and aragonitic benthic foraminifera in previous studies. The comparison with data from other biogenic aragonites suggests the relationship between Li/Mg and water temperature can be described by a single exponential relationship. Despite this hint at an overarching control, it is clear that biological processes strongly influence coral Li/Ca, and more calibration work is required before widely applying the proxy.

  15. Environmental assessment for Mound Plant decontamination and decommissioning projects, Mound Plant, Miamisburg, Ohio

    International Nuclear Information System (INIS)

    1995-05-01

    The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA) for seven decontamination and decommissioning (D ampersand D) projects at the Mound Plant in Miamisburg, Ohio, that have not been previously addressed in the Final Environmental Impact Statement for the Mound Facility (June 1979). Based on the information presented in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and the Department is issuing this Finding of No Significant Impact (FONSI)

  16. Additive diversity partitioning of fish in a Caribbean coral reef undergoing shift transition.

    Science.gov (United States)

    Acosta-González, Gilberto; Rodríguez-Zaragoza, Fabián A; Hernández-Landa, Roberto C; Arias-González, Jesús E

    2013-01-01

    Shift transitions in dominance on coral reefs from hard coral cover to fleshy macroalgae are having negative effects on Caribbean coral reef communities. Data on spatiotemporal changes in biodiversity during these modifications are important for decision support for coral reef biodiversity protection. The main objective of this study is to detect the spatiotemporal patterns of coral reef fish diversity during this transition using additive diversity-partitioning analysis. We examined α, β and γ fish diversity from 2000 to 2010, during which time a shift transition occurred at Mahahual Reef, located in Quintana Roo, Mexico. Data on coral reef fish and benthic communities were obtained from 12 transects per geomorphological unit (GU) in two GUs (reef slope and terrace) over six years (2000, 2005, 2006, 2007, 2008, 2010). Spatial analysis within and between the GUs indicated that the γ-diversity was primarily related to higher β-diversity. Throughout the six study years, there were losses of α, β and γ-diversity associated spatially with the shallow (reef slope) and deeper (reef terrace) GUs and temporally with the transition in cover from mound corals to fleshy macroalgae and boulder corals. Despite a drastic reduction in the number of species over time, β-diversity continues to be the highest component of γ-diversity. The shift transition had a negative effect on α, β and γ-diversity, primarily by impacting rare species, leading a group of small and less vulnerable fish species to become common and an important group of rare species to become locally extinct. The maintenance of fish heterogeneity (β-diversity) over time may imply the abetment of vulnerability in the face of local and global changes.

  17. Additive diversity partitioning of fish in a Caribbean coral reef undergoing shift transition.

    Directory of Open Access Journals (Sweden)

    Gilberto Acosta-González

    Full Text Available Shift transitions in dominance on coral reefs from hard coral cover to fleshy macroalgae are having negative effects on Caribbean coral reef communities. Data on spatiotemporal changes in biodiversity during these modifications are important for decision support for coral reef biodiversity protection. The main objective of this study is to detect the spatiotemporal patterns of coral reef fish diversity during this transition using additive diversity-partitioning analysis. We examined α, β and γ fish diversity from 2000 to 2010, during which time a shift transition occurred at Mahahual Reef, located in Quintana Roo, Mexico. Data on coral reef fish and benthic communities were obtained from 12 transects per geomorphological unit (GU in two GUs (reef slope and terrace over six years (2000, 2005, 2006, 2007, 2008, 2010. Spatial analysis within and between the GUs indicated that the γ-diversity was primarily related to higher β-diversity. Throughout the six study years, there were losses of α, β and γ-diversity associated spatially with the shallow (reef slope and deeper (reef terrace GUs and temporally with the transition in cover from mound corals to fleshy macroalgae and boulder corals. Despite a drastic reduction in the number of species over time, β-diversity continues to be the highest component of γ-diversity. The shift transition had a negative effect on α, β and γ-diversity, primarily by impacting rare species, leading a group of small and less vulnerable fish species to become common and an important group of rare species to become locally extinct. The maintenance of fish heterogeneity (β-diversity over time may imply the abetment of vulnerability in the face of local and global changes.

  18. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia

    Science.gov (United States)

    Uthicke, S.; Thompson, A.; Schaffelke, B.

    2010-03-01

    Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.

  19. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in American Samoa from Water Samples collected between 2015-02-15 and 2015-03-28 (NCEI Accession 0157716)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  20. Decadal- to interannual-scale source water variations in the Caribbean Sea recorded by Puerto Rican coral radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Kilbourne, K H; Quinn, T M; Guilderson, T P; Webb, R S; Taylor, F W

    2006-12-05

    Water that forms the Florida Current, and eventually the Gulf Stream, coalesces in the Caribbean from both subtropical and equatorial sources. The equatorial sources are made up of, in part, South Atlantic water moving northward and compensating for southward flow at depth related to meridional overturning circulation. Subtropical surface water contains relatively high amounts of radiocarbon ({sup 14}C), whereas equatorial waters are influenced by the upwelling of low {sup 14}C water and have relatively low concentrations of {sup 14}C. We use a 250-year record of {Delta}{sup 14}C in a coral from southwestern Puerto Rico along with previously published coral {Delta}{sup 14}C records as tracers of subtropical and equatorial water mixing in the northern Caribbean. Data generated in this study and from other studies indicate that the influence of either of the two water masses can change considerably on interannual to interdecadal time scales. Variability due to ocean dynamics in this region is large relative to variability caused by atmospheric {sup 14}C changes, thus masking the Suess effect at this site. A mixing model produced using coral {Delta}{sup 14}C illustrates the time varying proportion of equatorial versus subtropical waters in the northern Caribbean between 1963 and 1983. The results of the model are consistent with linkages between multidecadal thermal variability in the North Atlantic and meridional overturning circulation. Ekman transport changes related to tradewind variability are proposed as a possible mechanism to explain the observed switches between relatively low and relatively high {Delta}{sup 14}C values in the coral radiocarbon records.

  1. Assessing land use, sedimentation, and water quality stressors as predictors of coral reef condition in St. Thomas, U.S. Virgin Islands.

    Science.gov (United States)

    Oliver, L M; Fisher, W S; Fore, L; Smith, A; Bradley, P

    2018-03-13

    Coral reef condition on the south shore of St. Thomas, U.S. Virgin Islands, was assessed at various distances from Charlotte Amalie, the most densely populated city on the island. Human influence in the area includes industrial activity, wastewater discharge, cruise ship docks, and impervious surfaces throughout the watershed. Anthropogenic activity was characterized using a landscape development intensity (LDI) index, sedimentation threat (ST) estimates, and water quality (WQ) impairments in the near-coastal zone. Total three-dimensional coral cover, reef rugosity, and coral diversity had significant negative coefficients for LDI index, as did densities of dominant species Orbicella annularis, Orbicella franksi, Montastraea cavernosa, Orbicella faveolata, and Porites porites. However, overall stony coral colony density was not significantly correlated with stressors. Positive relationships between reef rugosity and ST, between coral diversity and ST, and between coral diversity and WQ were unexpected because these stressors are generally thought to negatively influence coral growth and health. Sponge density was greater with higher disturbance indicators (ST and WQ), consistent with reports of greater resistance by sponges to degraded water quality compared to stony corals. The highest FoRAM (Foraminifera in Reef Assessment and Monitoring) indices indicating good water quality were found offshore from the main island and outside the harbor. Negative associations between stony coral metrics and LDI index have been reported elsewhere in the Caribbean and highlight LDI index potential as a spatial tool to characterize land-based anthropogenic stressor gradients relevant to coral reefs. Fewer relationships were found with an integrated stressor index but with similar trends in response direction.

  2. Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth.

    Science.gov (United States)

    Zhang, Ruijie; Zhang, Ruiling; Yu, Kefu; Wang, Yinghui; Huang, Xueyong; Pei, Jiying; Wei, Chaoshuai; Pan, Ziliang; Qin, Zhenjun; Zhang, Gan

    2018-01-01

    Laboratory research has indicated that antibiotics had negative effects on coral growth by disturbing natural microbiota; however, no field studies have reported antibiotic contamination levels and their influence on coral growth in natural coral reef regions (CRRs). This study investigated antibiotic occurrence and sources in the surface water from CRRs that have suffered from rapid coral degradation and evaluated their risk to coral growth. These regions are in the South China Sea, including four coastal and two offshore CRRs. The results show that 13 antibiotics were detected in the coastal CRRs with concentrations ranging from 10 -2 -10 0  ng L -1 , while 5 antibiotics occurred in offshore CRRs (300-950 km from the mainland), with concentrations ranging from 10 -2 to 10 -1  ng L -1 . Their concentrations decreased gradually from the coast to offshore in the transport process. However, Yongxing Island, which is approximately 300 km from the mainland, was an exception with relatively higher concentrations than the surrounding reefs because of the ever-increasing human activity on the island. The presence of anthropogenic contaminants antibiotics in CRRs may be a potential risk to coral growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Prey and mound disassembly, manipulation and transport by fire ant collectives

    Science.gov (United States)

    Dutta, Bahnisikha; Monaenkova, Daria; Goodisman, Michael A.; Goldman, Daniel

    Fire ants inhabit subterranean nests covered by a hemispherical mound of soil permeated by narrow ( 1 body length diameter) tunnels. Fire ants can use their mound for long-term food storage [Gayahan &Tschinkel, J. Insect Sci.,2008]. Since mound tunnels are narrow, we expect that in addition to prey manipulation, mound reconfiguration could also be an important aspect of the food storage strategy. Ant colonies collected from wild were allowed to build nests in containers filled with clay soil in the laboratory. These colonies were offered diverse prey embedded with lead markers, including mealworms, crickets and shrimp. Ant-prey-soil interactions on the nest surface were recorded using overhead video and subsurface using x-ray imaging. Individual ants involved in prey storage exhibited three distinct behaviors: prey maneuvering, prey dissection and mound reconfiguration. Small prey (e.g. mealworms) were collectively carried intact into the mound through a tunnel, and then disassembled within the mound. Larger prey (e.g. shrimp) were dismantled into small pieces above the surface and carried to mound tunnels. The bodies of hard medium-sized prey (e.g. crickets) were buried after limb removal and then disassembled and moved into tunnels. Soil reconfiguration occurred in all cases.

  4. Forecasting decadal changes in sea surface temperatures and coral bleaching within a Caribbean coral reef

    Science.gov (United States)

    Li, Angang; Reidenbach, Matthew A.

    2014-09-01

    Elevated sea surface temperature (SST) caused by global warming is one of the major threats to coral reefs. While increased SST has been shown to negatively affect the health of coral reefs by increasing rates of coral bleaching, how changes to atmospheric heating impact SST distributions, modified by local flow environments, has been less understood. This study aimed to simulate future water flow patterns and water surface heating in response to increased air temperature within a coral reef system in Bocas del Toro, Panama, located within the Caribbean Sea. Water flow and SST were modeled using the Delft3D-FLOWcomputer simulation package. Locally measured physical parameters, including bathymetry, astronomic tidal forcing, and coral habitat distribution were input into the model and water flow, and SST was simulated over a four-month period under present day, as well as projected warming scenarios in 2020s, 2050s, and 2080s. Changes in SST, and hence the thermal stress to corals, were quantified by degree heating weeks. Results showed that present-day reported bleaching sites were consistent with localized regions of continuous high SST. Regions with highest SST were located within shallow coastal sites adjacent to the mainland or within the interior of the bay, and characterized by low currents with high water retention times. Under projected increases in SSTs, shallow reef areas in low flow regions were found to be hot spots for future bleaching.

  5. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  6. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S.

    2007-04-01

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method

  7. Impairment of exercise performance following cold water immersion is not attenuated after 7 days of cold acclimation.

    Science.gov (United States)

    Jones, Douglas M; Roelands, Bart; Bailey, Stephen P; Buono, Michael J; Meeusen, Romain

    2018-03-19

    It is well-documented that severe cold stress impairs exercise performance. Repeated immersion in cold water induces an insulative type of cold acclimation, wherein enhanced vasoconstriction leads to greater body heat retention, which may attenuate cold-induced exercise impairments. The purpose of this study, therefore, was to investigate changes in exercise performance during a 7-day insulative type of cold acclimation. Twelve healthy participants consisting of eight males and four females (mean ± SD age: 25.6 ± 5.2 years, height: 174.0 ± 8.9 cm, weight: 75.6 ± 13.1 kg) performed a 20 min self-paced cycling test in 23 °C, 40% humidity without prior cold exposure. Twenty-four hours later they began a 7-day cold acclimation protocol (daily 90 min immersion in 10 °C water). On days one, four, and seven of cold acclimation, participants completed the same cycling test. Measurements of work completed, core and skin temperatures, heart rate, skin blood flow, perceived exertion, and thermal sensation were measured during each cycling test. Successful insulative cold acclimation was observed. Work produced during the baseline cycling test (220 ± 70 kJ) was greater (p immersions (195 ± 58, 197 ± 60, and 194 ± 62 kJ) despite similar ratings of perceived exertion during each test, suggesting that cold exposure impaired cycling performance. This impairment, however, was not attenuated over the cold acclimation period. Results suggest that insulative cold acclimation does not attenuate impairments in exercise performance that were observed following acute cold water immersion.

  8. CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN WATER ACT TO PROTECT A NATIONAL TREASURE

    Science.gov (United States)

    Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inh...

  9. Influence of soil pedological properties on termite mound stability

    OpenAIRE

    Jouquet, Pascal; Guilleux, N.; Caner, L.; Chintakunta, S.; Ameline, M.; Shanbhag, R. R.

    2016-01-01

    This study investigated the influence of soil properties on the density and shape of epigeous fungus-growing termite nests in a dry deciduous forest in Karnataka, India. In this environment, Odontotermes obesus produces cathedral shaped mounds. Their density, shape (height and volume) and soil physicochemical properties were analyzed in ferralsol and vertisol environments. No significant difference was observed in O. obesus mound density (n = 2.7 mound ha(-1) on average in the vertisol and fe...

  10. Soil Physical and Chemical Properties in Epigeal Termite Mounds in Pastures

    Directory of Open Access Journals (Sweden)

    Sandra Santana de Lima

    2018-03-01

    Full Text Available ABSTRACT We characterized soil physical and chemical properties and soil organic matter in epigeal termite mounds in pastures to evaluate the changes promoted by termites in comparison to an adjacent area. We selected seven active epigeal termite mounds in the municipality of Seropédica, state of Rio de Janeiro, Brazil. Soil samples were collected from top, center and base positions of each mound, at 0.50 and 1.50 m distance from the base of the mound. We identified individuals of the genus Embiratermes, Velocitermes, and Orthognathotermes. The humin fraction predominated over the humic and fulvic acid fractions both in mounds and adjacent soil. The amount of organic matter and the mineral fractions (mineral-associated organic carbon - MOC varied among builder species. The studied chemical attributes point to a higher concentration of nutrients in the mounds than in the adjacent soil.

  11. Intraspecific diversity among partners drives functional variation in coral symbioses.

    Science.gov (United States)

    Parkinson, John Everett; Banaszak, Anastazia T; Altman, Naomi S; LaJeunesse, Todd C; Baums, Iliana B

    2015-10-26

    The capacity of coral-dinoflagellate mutualisms to adapt to a changing climate relies in part on standing variation in host and symbiont populations, but rarely have the interactions between symbiotic partners been considered at the level of individuals. Here, we tested the importance of inter-individual variation with respect to the physiology of coral holobionts. We identified six genetically distinct Acropora palmata coral colonies that all shared the same isoclonal Symbiodinium 'fitti' dinoflagellate strain. No other Symbiodinium could be detected in host tissues. We exposed fragments of each colony to extreme cold and found that the stress-induced change in symbiont photochemical efficiency varied up to 3.6-fold depending on host genetic background. The S. 'fitti' strain was least stressed when associating with hosts that significantly altered the expression of 184 genes under cold shock; it was most stressed in hosts that only adjusted 14 genes. Key expression differences among hosts were related to redox signaling and iron availability pathways. Fine-scale interactions among unique host colonies and symbiont strains provide an underappreciated source of raw material for natural selection in coral symbioses.

  12. On the Choice of Structure and Layout of Rubble Mound Breakwater Heads

    DEFF Research Database (Denmark)

    Maciñeira, Enrique; Burcharth, Hans F.

    2006-01-01

     The paper discusses the various functional, environmental and structural conditions to consider related to the choice of breakwater head type. Results from hydraulic model tests of rubble mound and caisson head solutions for the new deep water port at Punto Langosteira, La Coruña, Spain, are pre...

  13. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Mariana Archipelago from Water Samples collected between 2014-03-24 and 2014-05-05 (NCEI Accession 0157715)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  14. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Hawaiian Archipelago from Water Samples collected between 2013-07-13 and 2013-10-30 (NCEI Accession 0157714)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  15. Developing a multi-stressor gradient for coral reefs

    Science.gov (United States)

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be es...

  16. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County).

    Science.gov (United States)

    Walker, Brian K; Gilliam, David S

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  17. Coral reefs and eutrophication

    International Nuclear Information System (INIS)

    Stambler, N.

    1999-01-01

    Coral reefs are found in oligotrophic waters, which are poor in nutrients such as nitrogen, phosphate, and possibly iron. In spite of this, coral reefs exhibit high gross primary productivity rates. They thrive in oligotrophic conditions because of the symbiotic relationship between corals and dinoflagellate algae (zooxanthellae) embedded in the coral tissue. In their mutualistic symbiosis, the zooxanthellae contribute their photosynthetic capability as the basis for the metabolic energy of the whole association, and eventually of a great part of the entire reef ecosystem

  18. Environmental survey preliminary report, Mound Plant, Miamisburg, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Mound Plant, conducted August 18 through 29, 1986. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Mound Plant. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Mound Plant, and interviews with site personnel. The Survey found no environmental problems at the Mound Plant that represent an immediate threat to human life. The environmental problems identified at the Mound Plant by the Survey confirm that the site is confronted with a number of environmental problems which are by and large a legacy from past practices at a time when environmental problems were less well understood. Theses problems vary in terms of their magnitude and risk, as described in this report. Although the sampling and analysis performed by the Mound Plant Survey will assist in further identifying environmental problems at the site, a complete understanding of the significance of some of the environmental problems identified requires a level of study and characterization that is beyond the scope of the Survey. Actions currently under way or planned at the site, particularly the Phase II activities of the Comprehensive Environmental Analysis and Response Program (CEARP) as developed and implemented by the Albuquerque Operations Office, will contribute toward meeting this requirement. 85 refs., 24 figs., 20 tabs.

  19. Evaluation of Stony Coral Indicators for Coral Reef ...

    Science.gov (United States)

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for their response to gradients of human disturbance. The purpose of the study was to identify indicators that could be used for regulatory assessments under authority of the Clean Water Act--this requires that indicators distinguish anthropogenic disturbances from natural variation. Stony coral indicators were tested for correlation with human disturbance across gradients located on three different sides of the island. At the most intensely disturbed location, five of eight primary indicators were highly correlated with distance from the source of disturbance: Coral taxa richness, average colony size, the coefficient of variation of colony size (an indicator of colony size heterogeneity), total topographic coral surface area, and live coral surface area. An additional set of exploratory indicators related to rarity, reproductive and spawning mode, and taxonomic identity were also screened for association with disturbance at the same location. For the other two locations, there were no significant changes in indicator values and therefore no discernible effects of human activity. Coral indicators demonstrated sufficient precision to detect levels of change that would be applicable in a regio

  20. Rainfall and soil properties influence termite mound abundance and height: A case study with Odontotermes obesus (Macrotermitinae) mounds in the Indian Western Ghats forests

    OpenAIRE

    Kabbaj, Meyssoun; Sundararaj, Ramachandran; Jouquet, Pascal

    2017-01-01

    Several fungus-growing termite species build mounds, or termitaria, that are conspicuous features of African and Asian landscapes. Studies of the genus Macrotermes in Africa have established that their mounds provide an environment buffered against extremes of temperature and humidity, as well as protection from predators, and are correspondingly modified in composition. However, no studies are available in the specific context of the Asian continent where termite mounds are also abundant. He...

  1. Rainfall and soil properties influence termite mound abundance and height : a case study with Odontotermes obesus (Macrotermitinae) mounds in the Indian Western Ghats forests

    OpenAIRE

    Shanbhag, R. R.; Kabbaj, M.; Sundararaj, R.; Jouquet, Pascal

    2017-01-01

    Several fungus-growing termite species build mounds, or termitaria, that are conspicuous features of African and Asian landscapes. Studies of the genus Macrotermes in Africa have established that their mounds provide an environment buffered against extremes of temperature and humidity, as well as protection from predators, and are correspondingly modified in composition. However, no studies are available in the specific context of the Asian continent where termite mounds are also abundant. He...

  2. A sea water barrier to coral gene flow.

    Science.gov (United States)

    Lessios, H A

    2012-11-01

    Land is not the only barrier to dispersal encountered by marine organisms. For sedentary shallow water species, there is an additional, marine barrier, 5000 km of uninterrupted deep-water stretch between the central and the eastern Pacific. This expanse of water, known as the ‘Eastern Pacific Barrier’, has been separating faunas of the two oceanic regions since the beginning of the Cenozoic. Species with larvae that cannot stay in the plankton for the time it takes to cross between the two sides have been evolving independently. That the eastern Pacific does not share species with the rest of the Pacific was obvious to naturalists two centuries ago (Darwin 1860). Yet, this rule has exceptions. A small minority of species are known to straddle the Eastern Pacific Barrier. One such exception is the scleractinian coral Porites lobata (Fig. 1). This species is spread widely throughout the Indo-Pacific, where it is one of the major reef-builders, but it is also encountered in the eastern Pacific. Are eastern and central Pacific populations of this coral connected by gene flow? In this issue of Molecular Ecology, Baums et al. (2012) use microsatellite data to answer this question. They show that P. lobata populations in the eastern Pacific are cut off from genetic influx from the rest of the Pacific. Populations within each of the two oceanic regions are genetically connected (though those in the Hawaiian islands are also isolated). Significantly, the population in the Clipperton Atoll, the westernmost island in the eastern Pacific, genetically groups with populations from the central Pacific, suggesting that crossing the Eastern Pacific Barrier by P. lobata propagules does occasionally occur.

  3. Summary review of Mound Facility's experience in decontamination of concrete

    International Nuclear Information System (INIS)

    Combs, A.B.; Davis, W.P.; Garner, J.M.; Geichman, J.R.

    1980-01-01

    Most of the current concrete decontamination work at Mound Facility involves surfaces that are contaminated with plutonium-238. Approximately 60,000 sq. ft. of concrete floors will have to be decontaminated in Mound's current Decontamination and Decommissioning (D and D) Project. Although most of these surfaces are partially protected by a barrier (tile or paint), contaminated water and acid have penetrated these barriers. The technique for decontaminating these floors is desribed. The initial cleaning of the floor involes standard water and detergent. Acids are not used in cleaning as they tend to drive the contamination deeper into the concrete surface. Next, the floor tile is manually removed inside a temporary enclosure under negative and filtered ventilation. Finally, layers of contaminated concrete are mechanically removed inside the ventilated enclosure. The suspected depth and surface area of contamination determines the type of mechanical tool used. In summary, several generic methods of concrete decontamination can be utilized: chemical, such as water, detergent, acids, paint remover, strippable paints, etc.; rotary using sanders, grinders, scarifiers, etc.; impact such as pressure washers (hydrolasers), particle blasters, scabblers, needlers, spallers, paving and rock breakers, ram hoes, etc. The particular method used depends on several factors: surface and area involved; depth of contamination; cost and availability of equipment; usage safety and radiological control; and waste generated

  4. Contact area calculation between elastic solids bounded by mound rough surfaces

    NARCIS (Netherlands)

    Palasantzas, G

    In this work, we investigate the influence of mound roughness on the contact area between elastic bodies. The mound roughness is described by the r.m.s. roughness amplitude w, the average mound separation Lambda, and the system correlation length xi. In general, the real contact area has a complex

  5. Warm-water coral reefs and climate change.

    Science.gov (United States)

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak. Copyright © 2015, American Association for the Advancement of Science.

  6. Hyperspectral Distinction of Two Caribbean Shallow-Water Corals Based on Their Pigments and Corresponding Reflectance

    Directory of Open Access Journals (Sweden)

    Juan L. Torres-Pérez

    2012-11-01

    Full Text Available The coloration of tropical reef corals is mainly due to their association with photosynthetic dinoflagellates commonly known as zooxanthellae. Combining High Performance Liquid Chromatography (HPLC, spectroscopy and derivative analysis we provide a novel approach to discriminate between the Caribbean shallow-water corals Acropora cervicornis and Porites porites based on their associated pigments. To the best of our knowledge, this is the first time that the total array of pigments found within the coral holobiont is reported. A total of 20 different pigments were identified including chlorophylls, carotenes and xanthophylls. Of these, eleven pigments were common to both species, eight were present only in A. cervicornis, and three were present only in P. porites. Given that these corals are living in similar physical conditions, we hypothesize that this pigment composition difference is likely a consequence of harboring different zooxanthellae clades with a possible influence of endolithic green or brown algae. We tested the effect of this difference in pigments on the reflectance spectra of both species. An important outcome was the correlation of total pigment concentration with coral reflectance spectra up to a 97% confidence level. Derivative analysis of the reflectance curves showed particular differences between species at wavelengths where several chlorophylls, carotenes and xanthophylls absorb. Within species variability of spectral features was not significant while interspecies variability was highly significant. We recognize that the detection of such differences with actual airborne or satellite remote sensors is extremely difficult. Nonetheless, based on our results, the combination of these techniques (HPLC, spectroscopy and derivative analysis can be used as a robust approach for the development of a site specific spectral library for the identification of shallow-water coral species. Studies (Torres-Pérez, NASA Postdoctoral

  7. Fluid-chemical evidence for one billion years of fluid flow through Mesoproterozoic deep-water carbonate mounds (Nanisivik zinc district, Nunavut)

    Science.gov (United States)

    Hahn, K. E.; Turner, E. C.; Kontak, D. J.; Fayek, M.

    2018-02-01

    Ancient carbonate rocks commonly contain numerous post-depositional phases (carbonate minerals; quartz) recording successive diagenetic events that can be deciphered and tied to known or inferred geological events using a multi-pronged in situ analytical protocol. The framework voids of large, deep-water microbial carbonate seep-mounds in Arctic Canada (Mesoproterozoic Ikpiarjuk Formation) contain multiple generations of synsedimentary and late cement. An in situ analytical study of the post-seafloor cements used optical and cathodoluminescence petrography, SEM-EDS analysis, fluid inclusion (FI) microthermometry and evaporate mound analysis, LA-ICP-MS analysis, and SIMS δ18O to decipher the mounds' long-term diagenetic history. The six void-filling late cements include, in paragenetic order: inclusion-rich euhedral dolomite (ED), finely crystalline clear dolomite (FCD), hematite-bearing dolomite (HD), coarsely crystalline clear dolomite (CCD), quartz (Q), replacive calcite (RC) and late calcite (LC). Based on the combined analytical results, the following fluid-flow history is defined: (1) ED precipitation by autocementation during shallow burial (fluid 1; Mesoproterozoic); (2) progressive mixing of Ca-rich hydrothermal fluid with the connate fluid, resulting in precipitation of FCD followed by HD (fluid 2; also Mesoproterozoic); (3) precipitation of hydrothermal dolomite (CCD) from high-Ca and K-rich fluids (fluid 3; possibly Mesoproterozoic, but timing unclear); (4) hydrothermal Q precipitation (fluid 4; timing unclear), and (5) RC and LC precipitation from a meteoric-derived water (fluid 5) in or since the Mesozoic. Fluids associated with FCD, HD, and CCD may have been mobilised during deposition of the upper Bylot Supergroup; this time interval was the most tectonically active episode in the region's Mesoproterozoic to Recent history. The entire history of intermittent fluid migration and cement precipitation recorded in seemingly unimportant void

  8. Assessment of coral health in the coastal areas of the Persian Gulf

    Science.gov (United States)

    Kourandeh, Mehdi Bolouki; Nabavi, S. Mohammad Bagher; Sinaei, Mahmood

    2013-09-01

    In this study, Zooxanthellae density, chlorophyll a concentration, and mitotic index (MI) were measured in the coral Porites compressa obtained from coastal areas of the Persian Gulf in early February to September 2008. During the summer, zooxanthellae density declined by approximately 30% compared to the winter peak (3,607,849 ± 229,894, n = 15) and reached a minimum of 2,536,732 ± 169,776, n = 15. The highest value of chlorophyll a (0.828 ± 0.043 μg/cm2) was recorded in the south while the lowest (0.604 ± 0.048 μg/cm2) was measured in the north sampling site at the cold season. There was a higher level of MI in the warm season followed by cold > and temperate seasons. The MI were significantly higher (p < 0.05) in the warm and cold seasons in comparison with the temperate season. Differences in response may be attributed to the drastic seasonal temperature changes. However, the significant decline found in the north sampling site indicates that anthropogenic stressors may adversely affect coral P. compressa. These results imply that there were negative impacts on coral P. compressa in our study site.

  9. Use of termite mounds in geochemical exploration in North Ethiopia [rapid communication

    Science.gov (United States)

    Kebede, Fassil

    2004-09-01

    The geochemistry of the termite mounds was studied in lower Giba River basin, Kolla Tambien district, northern Ethiopia to show that they are useful in searching for metals. Specimens from the termite mounds and parent materials were collected to quantify gold, silver, copper, zinc, cobalt, manganese, iron and nickel. The results of the geochemical analysis of the samples indicated that these metals exist both in the termite mound and the parent material in the surrounding area. Correlation analysis shows that termite mounds and the parent materials are positively correlated for gold ( r = 0.75∗), copper ( r = 0.77∗), silver ( r = 0.56∗) and manganese ( r = 0.72). This positive correlation leads to the conclusion that there is a direct relation between the concentration of metals in termite mound and the parent rocks. Termite mounds can therefore be used as tools in exploring for these metals.

  10. Cold water injection into two-phase mixtures

    International Nuclear Information System (INIS)

    1989-07-01

    This report presents the results of a review of the international literature regarding the dynamic loadings associated with the injection of cold water into two-phase mixtures. The review placed emphasis on waterhammer in nuclear power plants. Waterhammmer incidence data were reviewed for information related to thermalhydraulic conditions, underlying causes and consequential damage. Condensation induced waterhammer was found to be the most significant consequence of injecting cold water into a two-phase system. Several severe waterhammer incidents have been attributed to slug formation and steam bubble collapse under conditions of stratified steam and cold water flows. These phenomena are complex and not well understood. The current body of experimental and analytical knowledge is not large enough to establish maps of expected regimes of condensation induced waterhammer. The Electric Power Research Institute, in the United States, has undertaken a major research and development programme to develop the knowledge base for this area. The limited models and data currently available show that mechanical parameters are as important as thermodynamic conditions for the initiation of condensation induced waterhammer. Examples of bounds for avoiding two-phase waterhammer are given. These bounds are system specific and depend upon parameters such as pump capacity, pipe length and pipe orientation

  11. The circulation of deep water in the Tasman and Coral seas

    International Nuclear Information System (INIS)

    Harries, J.R.

    1976-07-01

    The physical oceanography of the Tasman and Coral Seas is reviewed with an emphasis on the deep currents. There are many uncertainties in the deep circulation pattern. The available data are used to develop an idealised circulation to estimate the likely path taken by water flowing from a depth of 5000 m in the Tasman Sea. The model suggests that the water would finally reach the surface layers south of the Antarctic Convergence with a median delay of 600 years. (author)

  12. 76 FR 66273 - Snapper-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the...

    Science.gov (United States)

    2011-10-26

    ...-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the South Atlantic... the South Atlantic Region and the FMP for Coral, Coral Reefs, and Live/Hard Bottom Habitats of the... Aquariums to collect, with certain conditions, various species of reef fish and live rock in Federal waters...

  13. Independent technical review of the Mound Plant

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report documents an Independent Technical Review (ITR) of the facilities, organizations, plans, and activities required to transition particular elements of the Mound Plant from Defense Program (DP) funded operation as appropriate either to community developed reuse or safe deactivation leading to decontamination and decommissioning (D&D). The review was conducted at the request of the Dr. Willis Bixby, Deputy Assistant Secretary, U.S. Department of Energy EM-60, Office of Facility Transition and Management and is a consensus of the nine member ITR Team. Information for the review was drawn from documents provided to the ITR Team by the Miamisburg Area Office (MB) of the DOE, EG&G, the City of Miamisburg, and others; and from presentations, discussions, interviews, and facility inspections at the Mound Plant during the weeks of March 14 and March 28, 1994. During the week of April 25, 1994, the ITR Team met at Los Alamos, New Mexico to develop consensus recommendations. A presentation of the core recommendations was made at the Mound Plant on May 5, 1994. This is an independent assessment of information available to, and used by, the Mound Plant personnel. Repetition of the information is not meant to imply discovery by the ITR Team. Team members, however, acting as independent reviewers, frequently assess the information from a perspective that differs significantly from that of the Mound Plant personnel. The report is based on information obtained and conditions observed during the March 1994 review interval. The ITR process and normal site work often initiate rapid, beneficial changes in understanding and organization immediately following the review. These changes frequently alter conditions observed during the review, but the report does not address changes subsequent to the review interval.

  14. Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection

    International Nuclear Information System (INIS)

    Ortiz, M.G.; Ghan, L.S.

    1991-01-01

    Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA's), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of liquid may then be accelerated towards each other or against the piping structure. The possibility of this phenomenon is of concern to us because it may become a dominant phenomenon and change the character of the transient. In performing the code scaling, applicability, and uncertainty study (CSAU) on a SBLOCA scenario, we had to examine the possibility that the transient being analyzed could experience water-hammer and thus depart from the scope of the study. Two criteria for water-hammer initiation were investigated and tested using a RELAP5/MOD3 simulation of the transient. Our results indicated a very low likelihood of occurrence of the phenomenon. 8 refs., 6 figs

  15. The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: Colony growth recruitment and environmental controls on distribution

    Energy Technology Data Exchange (ETDEWEB)

    Gass, S.E.; Roberts, J.M. [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll (United Kingdom)

    2006-05-15

    This study reports a newly established sub-population of Lophelia pertusa, the dominant reef-framework forming coral species in the north-east Atlantic, on oil and gas platforms in the northern North Sea. L. pertusa was positively identified on 13 of 14 platforms examined using existing oil and gas industry visual inspections. Two platforms were inspected in more detail to examine depth and colony size distributions. We recorded 947 colonies occurring between 59 and 132 m depth that coincides with cold Atlantic water at depths below the summer thermocline in the northern North Sea. We suggest that these colonies provide evidence for a planktonic larval stage of L. pertusa with recruits initially originating from populations in the north-east Atlantic and now self recruiting to the platforms. Size class distribution showed a continuous range of size classes, but with few outlying large colonies. The break between the largest colonies and the rest of the population is considered as the point when colonies began self recruiting to the platforms, resulting in greater colonization success. We present the first documented in situ colony growth rate estimate (26 {+-} 5 mm yr{sup -1}) for L. pertusa based on 15 colonies from the Tern Alpha platform with evidence for yearly recruitment events starting the year the platform was installed. Evidence of contamination from drill muds and cuttings was observed on the Heather platform but appeared limited to regions close to drilling discharge points, where colonies experience partial as well as whole colony mortality. (author)

  16. The main chemical properties of hot and cold mineral waters in Bayankhongor, Mongolia

    Directory of Open Access Journals (Sweden)

    D Oyuntsetseg

    2014-12-01

    Full Text Available In the current study, hot and cold mineral springs and sub mineral waters in the Bayankhongor province were examined for their chemical characteristics and identified cold mineral waters classification according to mineral water classification of Mongolia. The hot spring waters belong to Na+-HCO3- and Na+-SO42- types. The cold mineral spring of Lkham belongs to Ca2+-HCO3- type. All sub mineral waters are generally located in the two areas (northern part or mountain forest area and the southern part or Gobi desert area. TDS concentrations of cold springs of the southern part in the study area were higher than northern part’s cold springs. The total dissolved silica content of cold spring was ranged from 4.5mg/L to 26 mg/L which did not correspond to requirements of mineral water standard of Mongolia. Thus, these cold springs are belonging to sub mineral water classification. The sub mineral waters were characterized into four types such as a Ca2+-SO42-, Na+-SO42-, Na+-HCO3 and Ca2+ - HCO3 by their chemical composition in the study area. The values for the quartz, chalcedony geothermometer and the Na/K geothermometer were quite different. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 124 and 197°C and most of the hot waters have been  probably mixed with cold water. The result shows that an averaged value of calculated temperature ranges from 77°C to 119°C which indicates that studied area has low temperature geothermal resources. DOI: http://doi.dx.org/10.5564/mjc.v15i0.324 Mongolian Journal of Chemistry 15 (41, 2014, p56-62

  17. Plant Mounds as Concentration and Stabilization Agents for Actinide Soil Contaminants in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Shafer; J. Gommes

    2009-02-03

    Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around the base of shrubs and are common features in deserts in the southwestern United States. An important factor in their formation is that shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, 241Am, and U in plant mounds at safety experiment and storage-transportation test sites of nuclear devices. Although aerial concentrations of these contaminants were highest in the intershrub or desert pavement areas, the concentration in mounds were higher than in equal volumes of intershrub or desert pavement soil. The NAEG studies found the ratio of contaminant concentration of actinides in soil to be greater (1.6 to 2.0) in shrub mounds than in the surrounding areas of desert pavement. At Project 57 on the NTTR, 17 percent of the area was covered in mounds while at Clean Slate III on the TTR, 32 percent of the area was covered in mounds. If equivalent volumes of contaminated soil were compared between mounds and desert pavement areas at these sites, then the former might contain as much as 34 and 62 percent of the contaminant inventory, respectively. Not accounting for radionuclides associated with shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. In addition, preservation of shrub mounds could be important part of long-term stewardship if these sites are closed by fencing and posting with administrative controls.

  18. Ft-Ir Spectroscopic Analysis of Potsherds Excavated from the First Settlement Layer of Kuriki Mound, Turkey

    Science.gov (United States)

    Bayazit, Murat; Isik, Iskender; Cereci, Sedat; Issi, Ali; Genc, Elif

    The region covering Southeastern Anatolia takes place in upper Mesopotamia, so it has numerous cultural heritages due to its witness to various social movements of different civilizations in ancient times. Kuruki Mound is located on the junction point of Tigris River and Batman Creek, near Oymatas village which is almost 15 km to Batman, Turkey. The mound is dated back to Late Chalcolithic. Archaeological excavations are carried out on two hills named as “Kuriki Mound-1” and “Kuriki Mound-2” in which 4-layer and 2-layer settlements have been revealed, respectively. This region will be left under the water by the reservoir lake of Ilısu Dam when its construction is completed. Thus, characterization of ancient materials such as potsherds, metals and skeleton ruins should be rapidly done. In this study, 12 potsherds excavated from Layer-1 (the first settlement layer after the surface) in Kuriki Mound-2 were investigated by FT-IR spectrometry. Energy dispersive X-ray fluorescence (EDXRF) and X-ray diffraction (XRD) analyses were used as complementary techniques in order to expose chemical and mineralogical/phase contents, respectively. Obtained results showed that the potteries have been produced with calcareous clays and they include moderate amounts of MgO, K2O, Na2O and Fe2O3 in this context. Additionally, high temperature phases have also been detected with XRD analyses in some samples.

  19. Coral reef health response to chronic and acute changes in water quality in St. Thomas, United States Virgin Islands.

    Science.gov (United States)

    Ennis, Rosmin S; Brandt, Marilyn E; Wilson Grimes, Kristin R; Smith, Tyler B

    2016-10-15

    It is suspected that land cover alteration on the southern coast of St. Thomas, USVI has increased runoff, degrading nearshore water quality and coral reef health. Chronic and acute changes in water quality, sediment deposition, and coral health metrics were assessed in three zones based upon perceived degree of human influence. Chlorophyll (pturbidity (p=0.0113) were significantly higher in nearshore zones and in the high impact zone during heavy precipitation. Net sediment deposition and terrigenous content increased in nearshore zones during periods of greater precipitation and port activity. Macroalgae overgrowth significantly increased along a gradient of decreasing water quality (p<0.0001). Coral bleaching in all zones peaked in November with a regional thermal stress event (p<0.0001). However, mean bleaching prevalence was significantly greater in the most impacted zone compared to the offshore zone (p=0.0396), suggesting a link between declining water quality and bleaching severity. Published by Elsevier Ltd.

  20. The rate of 45Ca uptake by two corals species at waters of Burung island, Bangka-Belitung province

    International Nuclear Information System (INIS)

    Zulkifli Dahlan; Gusti Diansyah; T Zia Ulqodry; Ania Citraresmini

    2010-01-01

    Coral reefs transplantation is the most technique used for coral reefs rehabilitation, at the present. Recently the 45 Ca technique has been using for determining growth appearances in corals because of its ability to calculate the calcification process. For this reason, the study on the rate of 45 Ca uptake by natural corals Acropora Formosa and Acropora nobilis was carried out between June and December 2009 at the waters of Burung Island, Bangka-Belitung Province. The coral fragments of about 5 cm were harvested and put into a PVC container filled with 2 liters of fresh sea water, then incubated with 45 CaCl 2 solutions with an activity of 11.04 μCi/ml for 8 hour under fluorescent light. After the incubation, the “labeled” coral fragments were transplanted to where they have been taken from, and after such period will be re-harvested to determine their 45 Ca uptake content. The results showed that the 45 Ca technique was a reliable method to calculate the rate 45 Ca uptake by coral fragments, which were studied in different depths and time periods of light exposure. There was a significant difference in the 45 Ca uptake by the two different coral species. A. Formosa up took more 45 Ca than A. nobilis did. The highest 45 Ca uptake was shown by A. Formosa at 5 m. This was true for all the lengths of time to light exposure (1, 3, 5 and 7 hours). Different pattern of 45 Ca uptake showed by A. nobilisat 10 m depth, where it could be recognized that after a drop of 45 Ca the uptake increase continuously until the end of the light exposure (7 hours). The difference in 45 Ca uptake between the coral fragments is assumed to be influence by light and the algae species living symbiotically with the coral species that will further influence the CO 2 -fixation. This process will influence the calcification process, which is expressed in 45 Ca uptake. Further studies should be carried out to exactly gathered data of all the factors which could influence the calcification

  1. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival

    Science.gov (United States)

    Barwood, Martin J.; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R. D.

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3–5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [fc], respiratory frequency [fR], tidal volume [VT], minute ventilation [E]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the fc component of the CSR in unhabituated participants (CON1; p anxiety rating predicted the f

  2. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival.

    Science.gov (United States)

    Barwood, Martin J; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R D

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3-5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [ f c ], respiratory frequency [ f R ], tidal volume [ V T ], minute ventilation [ E ]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1 st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the f c component of the CSR in unhabituated participants (CON1; p CSR when anxiety

  3. Oxytocin decreases colonic motility of cold water stressed rats via oxytocin receptors.

    Science.gov (United States)

    Yang, Xiao; Xi, Tao-Fang; Li, Yu-Xian; Wang, Hai-Hong; Qin, Ying; Zhang, Jie-Ping; Cai, Wen-Ting; Huang, Meng-Ting; Shen, Ji-Qiao; Fan, Xi-Min; Shi, Xuan-Zheng; Xie, Dong-Ping

    2014-08-21

    To investigate whether cold water intake into the stomach affects colonic motility and the involvement of the oxytocin-oxytocin receptor pathway in rats. Female Sprague Dawley rats were used and some of them were ovariectomized. The rats were subjected to gastric instillation with cold (0-4 °C, cold group) or room temperature (20-25 °C, control group) saline for 14 consecutive days. Colon transit was determined with a bead inserted into the colon. Colonic longitudinal muscle strips were prepared to investigate the response to oxytocin in vitro. Plasma concentration of oxytocin was detected by ELISA. Oxytocin receptor expression was investigated by Western blot analysis. Immunohistochemistry was used to locate oxytocin receptors. Colon transit was slower in the cold group than in the control group (P cold water intake (0.69 ± 0.08 vs 0.88 ± 0.16, P receptors were located in the myenteric plexus, and their expression was up-regulated in the cold group (P Cold water intake increased blood concentration of oxytocin, but this effect was attenuated in ovariectomized rats (286.99 ± 83.72 pg/mL vs 100.56 ± 92.71 pg/mL, P Cold water intake inhibits colonic motility partially through oxytocin-oxytocin receptor signaling in the myenteric nervous system pathway, which is estrogen dependent.

  4. [Progress of heterotrophic studies on symbiotic corals].

    Science.gov (United States)

    Yang, Yang-Chu-Qiao; Hong, Wen Ting; Wang, Shu Hong

    2017-12-01

    Heterotrophy of zooxanthellae symbiotic corals refers to the nutrition directly coming from food absorption, not the nutrition obtained from photosynthesis. Most ex situ propagation of symbiotic corals focused on the effects of irradiation, flow rate and water quality on corals, few of them involved in the demand and supply of coral heterotrophic nutrition. This paper reviewed the significance of heterotrophic nutrient supply to symbiotic corals from the sources of coral heterotrophic nutrition, the factors affecting the supply of coral heterotrophic nutrient, and the methods of how to study the coral heterotrophy. In general, the research of coral heterotrophy is just at the beginning stage, and future studies should focus on the inherent mechanism of coral feeding selection and developing more effective research methods.

  5. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in American Samoa from 2012 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  6. Food preferences and mound-building behaviour of the mound-building mice Mus spicilegus

    Science.gov (United States)

    Hölzl, Michaela; Krištofík, Ján; Darolová, Alžbeta; Hoi, Herbert

    2011-10-01

    Optimal foraging strategies and food choice are influenced by various factors, e.g. availability, size and caloric content of the food type and predation risk. However, food choice criteria may change when food is not eaten immediately but has to be carried to a storage site for later use. For example, handling time in terms of harvesting and transport time should be optimized, particularly when the risk of predation is high. Thus, it is not clear whether food selected by hoarding animals reflects their food preference due to intrinsic features of the food type, e.g. size, caloric or lipid content, or whether the food type selected is a compromise that also considers the handling time required for harvesting and transport. We investigate this question in relation to food hoarding behaviour in mound-building mice. In autumn, mound-building mice Mus spicilegus collect seeds and other plant material and cover it with soil. Such above-ground storage is quite unusual for rodents. Here, we investigated whether there is a relationship between the seed species preferred as building materials and those preferred for food. We conducted a seed preference test using three most collected weed species for mound building. Controlling factors like food availability or predation risk, mice prefer Setaria spp. as food, although Amaranthus spp. and Chenopodium spp. were preferentially harvested and stored. By including the availability of the three species, our experimental results were confirmed, namely, a clear preference for Setaria spp. Also, handling time and seed size revealed to influence plant choice.

  7. Innovative rubble mound breakwaters for wave energy conversion

    International Nuclear Information System (INIS)

    Contestabile, Pasquale; Vicinanza, Diego; Iuppa, Claudio; Cavallaro, Luca; Foti, Enrico

    2015-01-01

    This paper presents a new Wave Energy Converter named Overtopping BReakwater for Energy Conversion (OBREC) which consists of a rubble mound breakwater with a front reservoir designed with the aim of capturing the wave overtopping in order to produce electricity. The energy is extracted via low head turbines, using the difference in water levels between the reservoir and the mean sea water level. The new design should be capable of adding a revenue generation function to a breakwater while adding cost sharing benefits due to integration. The design can be applied to harbour expansions, existing breakwater maintenance or upgrades due to climate change for a relatively low cost, considering the breakwater would be built regardless of the inclusion of a WEC [it

  8. Transition and Closeout of the Former DOE Mound Plant Site: Lessons Learned

    International Nuclear Information System (INIS)

    Carpenter, C. P.; Marks, M. L.; Smiley, S.L.; Gallaher, D. M.

    2006-01-01

    The U.S. Department of Energy's (DOE's) Office of Environmental Management (EM) manages the Miamisburg Closure Project (MCP) by cleaning up the Mound site, located in Miamisburg, Ohio, to specific environmental standards, conveying all excess land parcels to the Miamisburg Mound Community Improvement Corporation, and transferring all continuing DOE post-closure responsibilities to the Office of Legacy Management (LM). Presently, the EM cleanup contract of the Mound site with CH2M Hill Mound Inc. is scheduled for completion on March 31, 2006. LM manages the Mound transition efforts and also post-closure responsibilities at other DOE sites via a contract with the S.M. Stoller Corporation. The programmatic transfer from EM to LM is scheduled to take place on October 1, 2006. The transition of the Mound site has required substantial integration and coordination between the EM and LM. Several project management principles have been implemented to help facilitate the transfer of programmatic responsibility. As a result, several lessons learned have been identified to help streamline and improve integration and coordination of the transfer process. Lessons learned from the Mound site transition project are considered a work in progress and have been summarized according to a work breakdown structure for specific functional areas in the transition schedule. The functional areas include program management, environmental, records management, information technology, property management, stakeholder and regulatory relations, procurement, worker pension and benefits, and project closeout. Specific improvements or best practices have been recognized and documented by the Mound transition team. The Mound site is one of three major cleanup sites within the EM organization scheduled for completion in 2006. EM, EM cleanup contractor, LM, and LM post-closure contractor have identified lessons learned during the transition and closure of the Mound site. The transition effort from

  9. Geochemical prospecting for rare earth elements using termite mound materials

    Science.gov (United States)

    Horiuchi, Yu; Ohno, Tetsuji; Hoshino, Mihoko; Shin, Ki-Cheol; Murakami, Hiroyasu; Tsunematsu, Maiko; Watanabe, Yasushi

    2014-12-01

    The Blockspruit fluorite prospect, located in North West State of the Republic of South Africa, occurs within an actinolite rock zone that was emplaced into the Kenkelbos-type granite of Proterozoic age. There are a large number of termite mounds in the prospect. For geochemical prospecting for rare earth elements (REEs), in total, 200 samples of termite mound material were collected from actinolite rock and granite zones in the prospect. Geochemical analyses of these termite mound materials were conducted by two methods: portable X-ray fluorescence (XRF) spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). Comparison of the two methods broadly indicates positive correlations of REEs (La, Ce, Pr, Nd, and Y), in particular Y and La having a strong correlation. As the result of modal abundance analyses, the actinolite rock at surface mainly consists of ferro-actinolite (89.89 wt%) and includes xenotime (0.26 wt%) and monazite (0.21 wt%) grains as REE minerals. Termite mound materials from actinolite rock also contain xenotime (0.27 wt%) and monazite (0.41 wt%) grains. In addition, termite mound materials from the actinolite rock zone have high hematite and Fe silicate contents compared to those from granite zone. These relationships suggest that REE minerals in termite mound materials originate form actinolite rock. Geochemical anomaly maps of Y, La, and Fe concentrations drawn based on the result of the portable XRF analyses show that high concentrations of these elements trend from SW to NE which broadly correspond to occurrences of actinolite body. These results indicate that termite mounds are an effective tool for REE geochemical prospection in the study area for both light REEs and Y, but a more detailed survey is required to establish the distribution of the actinolite rock body.

  10. Cold-water immersion (cryotherapy for preventing and treating muscle soreness after exercise

    Directory of Open Access Journals (Sweden)

    Chris Bleakley

    Full Text Available BACKGROUND: Many strategies are in use with the intention of preventing or minimizing delayed onset muscle soreness and fatigue after exercise. Cold-water immersion, in water temperatures of less than 15 °C, is currently one of the most popular interventional strategies used after exercise. OBJECTIVES: To determine the effects of cold-water immersion in the management of muscle soreness after exercise. SEARCH METHODS: In February 2010, we searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials (The Cochrane Library (2010, Issue 1, Medline, Embase, Cumulative Index to Nursing and Allied Health (CINAHL, British Nursing Index and archive (BNI, and the Physiotherapy Evidence Database (PEDro. We also searched the reference lists of articles, handsearched journals and conference proceedings and contacted experts. In November 2011, we updated the searches of Central (2011, Issue 4, Medline (up to November Week 3 2011, Embase (to 2011 Week 46 and CINAHL (to 28 November 2011 to check for more recent publications. SELECTION CRITERIA: Randomized and quasi-randomized trials comparing the effect of using cold-water immersion after exercise with: passive intervention (rest/no intervention, contrast immersion, warm-water immersion, active recovery, compression, or a different duration/dosage of cold-water immersion. Primary outcomes were pain (muscle soreness or tenderness (pain on palpation, and subjective recovery (return to previous activities without signs or symptoms. DATA COLLECTION AND ANALYSIS: Three authors independently evaluated study quality and extracted data. Some of the data were obtained following author correspondence or extracted from graphs in the trial reports. Where possible, data were pooled using the fixed-effect model. MAIN RESULTS: Seventeen small trials were included, involving a total of 366 participants. Study quality was low. The temperature, duration and

  11. Mesophotic mushroom coral records at Brunei Darussalam support westward extension of the Coral Triangle to the South China Sea waters of Northwest Borneo

    NARCIS (Netherlands)

    Lane, D.J.W.; Hoeksema, B.W.

    2016-01-01

    This communication reports the discovery of two additional fungiid coral species, Cycloseris hexagonalis and Lithophyllon spinifer, from a relatively deep shelf reef in Brunei waters. These new records plus two earlier excluded ones, Cycloseris explanulata and C. wellsi, raise the known number of

  12. Cold Vacuum Drying facility potable water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system

  13. Beads from Inhumation Rite Burials of Gnezdovo Burial Mound

    Directory of Open Access Journals (Sweden)

    Dobrova Olga P.

    2017-12-01

    Full Text Available The beads from 33 inhumation burials at Gnezdovo burial mound are examined in the article. The beads (total 367 were crafted from stretched tube (258, stretched stick (3, winding (45, press molding (2 pcs., welding (2 pcs., and mosaic beads (9 pcs.. The burial mound contains virtually no broken beads, including the settlement's most common yellow glass beads. Besides glass beads, cornelian, crystal, amber and faience beads have been registered among the burial mound material, as well as beads crafted with metal. Apart from beads, grave inventories contained a series of pendants with a bead strung on a wire ring. The considered complexes contain five pendants of this type. Besides Gnezdovo, similar pendants have been discovered in Kiev, Timerev, Pskov and Vladimir barrows. A comparison between bead sets from Gnezdovo and Kiev burial mounds allows to conclude that the general composition and occurrence frequency of beads is identical for these burials. At the same time, beads crafted with rock crystal, cornelian and metal are more frequently discovered in Kiev inhumations.

  14. "Magnetic" termite mound surfaces are oriented to suit wind and shade conditions.

    Science.gov (United States)

    Jacklyn, Peter M

    1992-09-01

    The termites Amitermes meridionalis and A. laurensis construct remarkable meridional or "magnetic" mounds in northern Australia. These mounds vary geographically in mean orientation in a manner that suggests such variation is an adaptive response to local environmental conditions. Theoretical modelling of solar irradiance and mound rotation experiments show that maintenance of an eastern face temperature plateau during the dry season is the most likely physical basis for the mound orientation response. Subsequent heat transfer analysis shows that habitat wind speed and shading conditions also affect face temperature gradients such as the rate of eastern face temperature change. It is then demonstrated that the geographic variation in mean mound orientation follows the geographic variation in long-term wind speed and shading conditions across northern Australia such that an eastern face temperature plateau is maintained in all locations.

  15. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Hawaiian Archipelago from 2010 to 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  16. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Marianas Archipelago from 2011 to 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  17. Mound-ACT*DE*CONSM feasibility study. Phase 2: Final report

    International Nuclear Information System (INIS)

    1994-12-01

    A portion of the abandoned Miami-Erie Canal paralleling the Greater Miami River receives the runoff and storm-water discharge from Mound Laboratory. In 1969, a low-level plutonium leak contaminated sediment as far away as 1.5 mi from the Mound site along the old canal system. An estimated one million cubic feet of sediment requires remediation. The technology being evaluated for the remediation of the low-level plutonium-238 contamination of the sediment involves two processes: washing the sediments with ACT*DE*CON SM solution to dissolve the contaminant, followed by extraction of the solution and processing with the MAG*SEP SM process to concentrate the contaminant and allow reuse of the ACT*DE*CON SM solution. The processes are being optimized for pilot-scale and field demonstration. Phase 2 of the project primarily involved identification at the laboratory scale of the optimal ACT*DE*CON SM formulation, identification of the ion-exchanger and MAG*SEP SM particles, verification of the plutonium mobility in the treated soil, and evaluation of other process parameters according to a series of tasks

  18. Air dehumidification by membrane with cold water for manned spacecraft environmental control

    Directory of Open Access Journals (Sweden)

    Shang Yonghong

    2017-01-01

    Full Text Available The traditional condensation dehumidification method requires additional gas-liquid separation and water recovery process in the manned spacecraft humidity control system, which would increase weight and complexity of systems. A new membrane dehumidification with cold water is proposed, which uses water vapor partial pressure difference to promote water vapor transmembrane mass transfer for dehumidification. The permeability of the membrane was measured and the experimental results agree well with the theoretical calculations. Based on the simulation of dehumidification process of cold water-membrane, the influence of module structure and working condition on dehumidification performance was analyzed, which provided reference for the design of membrane module construct. It can be seen from the simulation and experiments that the cold water-membrane dehumidification can effectively reduce the thermal load of the manned spacecraft.

  19. Variability of soil properties within large termite mounds in South Katanga, DRC - origins and applications.

    Science.gov (United States)

    Erens, Hans; Bazirake Mujinya, Basile; Boeckx, Pascal; Baert, Geert; Mees, Florias; Van Ranst, Eric

    2014-05-01

    The miombo woodlands of South Katanga (D.R. Congo) are characterized by a high spatial density of large conic termite mounds built by Macrotermes falciger (3 to 5 ha-1). With an average height of 5.05 m and diameter of 14.88 m, these are some of the largest biogenic structures in the world. The mound material is known to differ considerably from the surrounding Ferralsols. Specifically, mound material exhibits a finer texture, higher CEC and exchangeable basic cation content, lower organic matter content, and an accumulation of phosphorous, nitrate and secondary carbonates. However, as demonstrated by the present study, these soil properties are far from uniform within the volume of the mound. The termites' nesting and foraging activity, combined with pedogenic processes over extended periods of time, generates a wide range of physical, chemical, and biological conditions in different parts of the mound. Analysis of samples taken along a cross-section of a large active mound allowed generating contour plots, thus visualizing the variability of soil properties within the mound. The central columns of three other mounds were sampled to confirm apparent trends. The contour plots show that the mounds comprise four functional zones: (i) the active nest, found at the top; (ii) an accumulation zone , in more central parts of the mound; (iii) a dense inactive zone, surrounding the accumulation zone and consisting of accumulated erosion products from former active nests; and (iv) the outer mantle, characterized by intense varied biological activity and by a well-developed soil structure. Intermittent leaching plays a key role in explaining these patterns. Using radiocarbon dating, we found that some of these mounds are at least 2000 years old. Their current size and shape is likely the result of successive stages of erosion and rebuilding, in the course of alternating periods of mound abandonment and recolonization. Over time, termite foraging combined with limited leaching

  20. Incidence of lesions on Fungiidae corals in the eastern Red Sea is related to water temperature and coastal pollution

    KAUST Repository

    Furby, K.A.; Apprill, A.; Cervino, J.M.; Ossolinski, J.E.; Hughen, K.A.

    2014-01-01

    As sea surface temperatures rise and the global human population increases, large-scale field observations of marine organism health and water quality are increasingly necessary. We investigated the health of corals from the family Fungiidae using visual observations in relation to water quality and microbial biogeochemistry parameters along 1300 km of the Red Sea coast of Saudi Arabia. At large scales, incidence of lesions caused by unidentified etiology showed consistent signs, increasing significantly from the northern to southern coast and positively correlated to annual mean seawater temperatures. Lesion abundance also increased to a maximum of 96% near the populous city of Jeddah. The presence of lesioned corals in the region surrounding Jeddah was strongly correlated with elevated concentrations of ammonium and changes in microbial communities that are linked to decreased water quality. This study suggests that both high seawater temperatures and nutrient pollution may play an indirect role in the formation of lesions on corals. © 2014 Elsevier Ltd.

  1. Incidence of lesions on Fungiidae corals in the eastern Red Sea is related to water temperature and coastal pollution

    KAUST Repository

    Furby, K.A.

    2014-07-01

    As sea surface temperatures rise and the global human population increases, large-scale field observations of marine organism health and water quality are increasingly necessary. We investigated the health of corals from the family Fungiidae using visual observations in relation to water quality and microbial biogeochemistry parameters along 1300 km of the Red Sea coast of Saudi Arabia. At large scales, incidence of lesions caused by unidentified etiology showed consistent signs, increasing significantly from the northern to southern coast and positively correlated to annual mean seawater temperatures. Lesion abundance also increased to a maximum of 96% near the populous city of Jeddah. The presence of lesioned corals in the region surrounding Jeddah was strongly correlated with elevated concentrations of ammonium and changes in microbial communities that are linked to decreased water quality. This study suggests that both high seawater temperatures and nutrient pollution may play an indirect role in the formation of lesions on corals. © 2014 Elsevier Ltd.

  2. Surface water processes in the Indonesian throughflow as documented by a high-resolution coral Δ14C record

    Science.gov (United States)

    Fallon, Stewart J.; Guilderson, Thomas P.

    2008-09-01

    To explore the seasonal to decadal variability in surface water masses that contribute to the Indonesian throughflow, we have generated a 115-year bimonthly coral-based radiocarbon time series from a coral in the Makassar Straits. In the pre-bomb (pre-1955) era from 1890 to 1954, the radiocarbon time series occasionally displays a small seasonal signal (10-15‰). After 1954 the radiocarbon record increases rapidly, in response to the increased atmospheric 14C content caused by nuclear weapons testing. From 1957 to 1986 the record displays clear seasonal variability from 15 to 60‰ and the post-bomb peak (163 per mil) occurred in 1974. The seasonal cycle of radiocarbon can be attributed to variations of surface waters passing through the South Makassar Strait. Southern Makassar is under the influence of the Northwest Monsoon, which is responsible for the high austral summer radiocarbon (North Pacific waters) and the Southeast Monsoon that flushes back a mixture of low (South Pacific and upwelling altered) radiocarbon water from the Banda Sea. The coral record also shows a significant 14C peak in 1955 due to the bomb-14C water advected into this region from nuclear weapons tests in the Marshall Islands in 1954.

  3. Models of formation and activity of spring mounds in the mechertate-chrita-sidi el hani system, eastern Tunisia: implications for the habitability of Mars.

    Science.gov (United States)

    Essefi, Elhoucine; Komatsu, Goro; Fairén, Alberto G; Chan, Marjorie A; Yaich, Chokri

    2014-08-28

    Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early) to the islet ("island") stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i) the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii) the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii) indurated eolian sedimentation and erosional remnants are common features on Mars

  4. Models of Formation and Activity of Spring Mounds in the Mechertate-Chrita-Sidi El Hani System, Eastern Tunisia: Implications for the Habitability of Mars

    Directory of Open Access Journals (Sweden)

    Elhoucine Essefi

    2014-08-01

    Full Text Available Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early to the islet (“island” stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii indurated eolian sedimentation and erosional remnants are common

  5. A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan

    International Nuclear Information System (INIS)

    Meng, P.-J.; Lee, H.-J.; Wang, J.-T.; Chen, C.-C.; Lin, H.-J.; Tew, K.S.; Hsieh, W.-J.

    2008-01-01

    Before 2001, the ecological protection area in the Kenting National Park (KTNP), southern Taiwan, was poorly described. In this study, a set of four-year data (2001-2004) of seawater qualities at 19 sampling sites around the Nanwan Bay in the KTNP was used to explore anthropogenic impacts to ecological environment, especially coral reefs. The parameters of water quality were analyzed immediately after collection. The results showed that higher values of nutrients and suspended solids were attributed to the higher run-off around Nanwan Bay. The fluxes of nutrients and suspended solids were consistently correlated to rainfall. Hence, equations were developed to calculate nutrient fluxes and suspended solids by using only rainfall data. Our results show that suspended solids and ammonia were the dominant factors leading to the drop in coral coverage. In summary, the water quality in the intertidal zone of Nanwan Bay has been degraded and required greater attention. - Suspended solids and ammonium in discharge derived from anthropogenic activities are two main factors causing drop in coral coverage

  6. A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Meng, P.-J. [National Museum of Marine Biology and Aquarium, Checheng, Pingtung 944, Taiwan (China); Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Checheng, Pingtung 944, Taiwan (China)], E-mail: pjmeng@nmmba.gov.tw; Lee, H.-J. [Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Wang, J.-T. [Tajen University, Pingtung 907, Taiwan (China)], E-mail: jtw@mail.tajen.edu.tw; Chen, C.-C. [Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan (China); Lin, H.-J. [Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Tew, K.S. [National Museum of Marine Biology and Aquarium, Checheng, Pingtung 944, Taiwan (China); Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Checheng, Pingtung 944, Taiwan (China); Hsieh, W.-J. [National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan (China)

    2008-11-15

    Before 2001, the ecological protection area in the Kenting National Park (KTNP), southern Taiwan, was poorly described. In this study, a set of four-year data (2001-2004) of seawater qualities at 19 sampling sites around the Nanwan Bay in the KTNP was used to explore anthropogenic impacts to ecological environment, especially coral reefs. The parameters of water quality were analyzed immediately after collection. The results showed that higher values of nutrients and suspended solids were attributed to the higher run-off around Nanwan Bay. The fluxes of nutrients and suspended solids were consistently correlated to rainfall. Hence, equations were developed to calculate nutrient fluxes and suspended solids by using only rainfall data. Our results show that suspended solids and ammonia were the dominant factors leading to the drop in coral coverage. In summary, the water quality in the intertidal zone of Nanwan Bay has been degraded and required greater attention. - Suspended solids and ammonium in discharge derived from anthropogenic activities are two main factors causing drop in coral coverage.

  7. Effects of vertical wall and tetrapod weights on wave overtopping in rubble mound breakwaters under irregular wave conditions

    Directory of Open Access Journals (Sweden)

    Park Sang Kil

    2014-12-01

    Full Text Available Rubble mound breakwaters protect the coastal line against severe erosion caused by wave action. This study examined the performance of different sizes and properties (i.e. height of vertical wall and tetrapod size of rubble mound breakwaters on reducing the overtopping discharge. The physical model used in this study was derived based on an actual rubble mound in Busan Yacht Harbor. This research attempts to fill the gap in practical knowledge on the combined effect of the armor roughness and vertical wall on wave overtopping in rubble mound breakwaters. The main governing parameters used in this study were the vertical wall height, variation of the tetrapod weights, initial water level elevation, and the volume of overtopping under constant wave properties. The experimental results showed that the roughness factor differed according to the tetrapod size. Furthermore, the overtopping discharge with no vertical wall was similar to that with relatively short vertical walls ( 1 γv = 1. Therefore, the experimental results highlight the importance of the height of the vertical wall in reducing overtopping discharge. Moreover, a large tetrapod size may allow coastal engineers to choose a shorter vertical wall to save cost, while obtaining better performance.

  8. Effects of vertical wall and tetrapod weights on wave overtopping in rubble mound breakwaters under irregular wave conditions

    Directory of Open Access Journals (Sweden)

    Sang Kil Park

    2014-12-01

    Full Text Available Rubble mound breakwaters protect the coastal line against severe erosion caused by wave action. This study examined the performance of different sizes and properties (i.e. height of vertical wall and tetrapod size of rubble mound breakwaters on reducing the overtopping discharge. The physical model used in this study was derived based on an actual rubble mound in Busan Yacht Harbor. This research attempts to fill the gap in practical knowledge on the combined effect of the armor roughness and vertical wall on wave overtopping in rubble mound breakwaters. The main governing parameters used in this study were the vertical wall height, variation of the tetrapod weights, initial water level elevation, and the volume of overtopping under constant wave properties. The experimental results showed that the roughness factor differed according to the tetrapod size. Furthermore, the overtopping discharge with no vertical wall was similar to that with relatively short vertical walls (γν = 1. Therefore, the experimental results highlight the importance of the height of the vertical wall in reducing overtopping discharge. Moreover, a large tetrapod size may allow coastal engineers to choose a shorter vertical wall to save cost, while obtaining better performance.

  9. Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea.

    Science.gov (United States)

    Tkachenko, Konstantin S; Soong, Keryea

    2017-06-01

    Dongsha Atoll (also known as the Pratas Islands), the northernmost atoll in the South China Sea, experiences two contrasting physical phenomena: repetitive anomalies of the sea surface temperature exceeding the coral bleaching threshold and regular effects of the world's strongest internal waves resulting in the rhythmic upwelling of cold deep waters at the outer reef slopes of the atoll. This unique combination may result in significant differences in coral species composition and structure between the lagoon and forereef. Surveys conducted in August-September 2016 at 12 study sites in the 2-15 m depth range at Dongsha Atoll revealed a clear spatial separation between 'thermally-susceptible' stony coral genera, including Acropora, Pocillopora and Montipora, which mainly inhabited the forereef, and 'thermally-resistant' genera, including massive Porites, foliaceous Echinopora, Pavona and Turbinaria, which mainly resided in the lagoon. The mean coral cover and species richness on the forereef were respectively 1.8 and 1.4 times higher than those in the lagoon (61.3% and 98 species on the forereef vs. 34.2% and 69 species in the lagoon). Coral mortality rates, expressed as the ratio of dead to live stony corals, showed the same pattern (0.4 in the lagoon vs. 0.009 on the forereef). Furthermore, in a laboratory experiment, 'thermally-susceptible' taxa from the lagoon, (e.g. Pocillopora verrucosa and P. damicornis), exhibited higher resistance to bleaching than did their counterparts from the forereef. The present findings indicate that Dongsha Atoll is a potential thermal refuge for reef-building corals in the northern South China Sea and reveal the development of resilience and resistance to bleaching in coral communities of the lagoon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Environmental assessment for commercialization of the Mound Plant

    International Nuclear Information System (INIS)

    1994-01-01

    In November 1993 US DOE decided to phase out operations at the Mound Plant in Miamisburg, Ohio, with the goal of releasing the site for commercial use. The broad concept is to transform the plant into an advanced manufacturing center with the main focus on commercializing products and other technology. DOE proposes to lease portions of the Mound Plant to commercial enterprises. This Environmental Impact statement has a finding of no significant impact in reference to such action

  11. How Termite Mounds Breath?

    Science.gov (United States)

    Saxena, Saurabh; Yaghoobian, Neda

    2017-11-01

    Fungus-cultivating termites of the subfamily Macrotermitinae that are extensively found throughout sub-Saharan Africa and south East Asia are one species of termites that collectively build massive, uninhabited, complex structures. These structures, which are much larger than the size of an individual termite, effectively use natural wind and solar energies and the energy embodied in colony's metabolic activity to maintain the necessary condition for termite survival. These mounds enclose a subterranean nest, where the termite live and cultivate fungus, as well as a complex network of tunnels consisting of a large, vertically oriented central chimney, surface conduits, and lateral connectives that connect the chimney and the surface conduits. In this study, we use computational modeling to explore the combined interaction of geometry, heterogeneous thermal mass, and porosity with the external turbulent wind and solar radiation to investigate the physical principles and fundamental aero-thermodynamics underlying the controlled and stable climate of termite mounds. Exploitation of natural resources of wind and solar energies in these natural systems for the purpose of ventilation will lead to new lessons for improving human habitats conditions.

  12. Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane

    Science.gov (United States)

    Sugimoto, Atsuko; Inoue, Tetsushi; Kirtibutr, Nit; Abe, Takuya

    1998-12-01

    Emission rates and carbon isotope ratios of CH4, emitted by workers of termites, and of CH4, emitted from their mounds, were observed in a dry evergreen forest in Thailand to estimate the proportion of CH4 oxidized during emission through the mound. The δ13C of CH4 emitted from a termite mound (-70.9 to -82.4‰) was higher than that of CH4 emitted by workers in the mound (-85.4 to -97. l‰). Using a fractionation factor (a = 0.987) for oxidation of CH4 which was obtained in the incubation experiment, an emission factor defined as (CH4 emitted from a termite mound/CH4 produced by termites) was calculated. The emission factor obtained in each termite mound was nearly zero for Macrotermes (fungus-growing termites), of which the nest has a thick soil wall and subterrannean termites, and 0.17 to 0.47 for Termitinae (small-mound-making termites). Global CH4 emission by termites was estimated on the basis of the CH4 emission rates by workers and termite biomass with the emission factors. The calculated result was 1.5 to 7.4 Tg/y (0.3 to 1.3% of total source), which is considerably smaller than the estimate by the IPCC [1994].

  13. Monthly fluctuation of termite caste proportions (Isoptera) within fire ant mounds (hymenoptera: formicidae)

    Science.gov (United States)

    Thomas G. Shelton; J.T. Vogt; Marla J. Tanley; Arthur G. Appel

    2003-01-01

    Monthly abundance and caste proportions of subterranean termites (Reticulitennes spp.) inhabiting red imported fire ant (Solenopsis invicta Buren) mounds were recorded during 1999 and 2000 from a relatively undisturbed forest edge in Tuskegee, Alabama. Temperature data were also recorded at these mounds; mean air, soil, and mound temperatures followed a sine model over...

  14. Mass coral bleaching in the northern Persian Gulf, 2012

    Directory of Open Access Journals (Sweden)

    Javid Kavousi

    2014-09-01

    Full Text Available Coral bleaching events due to elevated temperatures are increasing in both frequency and magnitude worldwide. Mass bleaching was recorded at five sites in the northern Persian Gulf during August and September 2012. Based on available seawater temperature data from field, satellite and previous studies, we suggest that the coral bleaching threshold temperature in the northern Persian Gulf is between 33.5 and 34°C, which is about 1.5 to 2.5°C lower than that in the southern part. To assess the bleaching effects, coral genera counted during 60-minute dives were categorized into four groups including healthy, slightly bleached ( 50% bleached tissue and fully bleached colonies. The anomalously high sea surface temperature resulted in massive coral bleaching (~84% coral colonies affected. Acropora spp. colonies, which are known as the most vulnerable corals to thermal stress, were less affected by the bleaching than massive corals, such as Porites, which are among the most thermo-tolerant corals. Turbid waters, suggested as coral refugia against global warming, did not protect corals in this study since most affected corals were found in the most turbid waters. The 2012 bleaching in the northern Persian Gulf was relatively strong from the viewpoint of coral bleaching severity. Long-term monitoring is needed to understand the actual consequences of the bleaching event on the coral reefs and communities.

  15. Voluntary water intake during and following moderate exercise in the cold.

    Science.gov (United States)

    Mears, Stephen A; Shirreffs, Susan M

    2014-02-01

    Exercising in cold environments results in water losses, yet examination of resultant voluntary water intake has focused on warm conditions. The purpose of the study was to assess voluntary water intake during and following exercise in a cold compared with a warm environment. Ten healthy males (22 ± 2 years, 67.8 ± 7.0 kg, 1.77 ± 0.06 m, VO₂peak 60.5 ± 8.9 ml·kg⁻¹·min⁻¹) completed two trials (7-8 days). In each trial subjects sat for 30 min before cycling at 70% VO₂peak (162 ± 27W) for 60 min in 25.0 ± 0.1 °C, 50.8 ± 1.5% relative humidity (RH; warm) or 0.4 ± 1.0 °C, 68.8 ± 7.5% RH (cold). Subjects then sat for 120 min at 22.2 ± 1.2 °C, 50.5 ± 8.0% RH. Ad libitum drinking was allowed during the exercise and recovery periods. Urine volume, body mass, serum osmolality, and sensations of thirst were measured at baseline, postexercise and after 60 and 120 min of the recovery period. Sweat loss was greater in the warm trial (0.96 ± 0.18 l v 0.48 ± 0.15 l; p cold) v 1.03 ± 0.26% (warm)). More water was consumed throughout the duration of the warm trial (0.81 ± 0.42 l v 0.50 ± 0.49 l; p = .001). Cumulative urine output was greater in the cold trial (0.81 ± 0.46 v 0.54 ± 0.31 l; p = .036). Postexercise serum osmolality was higher compared with baseline in the cold (292 ± 2 v 287 ± 3 mOsm.kg⁻¹, p sensations were similar between trials (p > .05). Ad libitum water intake adjusted so that similar body mass losses occurred in both trials. In the cold there appeared to a blunted thirst response.

  16. Coral reef fish predator maintains olfactory acuity in degraded coral habitats.

    Directory of Open Access Journals (Sweden)

    Michael Natt

    Full Text Available Coral reefs around the world are rapidly degrading due to a range of environmental stressors. Habitat degradation modifies the sensory landscape within which predator-prey interactions occur, with implications for olfactory-mediated behaviours. Predator naïve settlement-stage damselfish rely on conspecific damage-released odours (i.e., alarm odours to inform risk assessments. Yet, species such as the Ambon damselfish, Pomacentrus amboinensis, become unable to respond appropriately to these cues when living in dead-degraded coral habitats, leading to increased mortality through loss of vigilance. Reef fish predators also rely on odours from damaged prey to locate, assess prey quality and engage in prey-stealing, but it is unknown whether their responses are also modified by the change to dead-degraded coral habitats. Implications for prey clearly depend on how their predatory counterparts are affected, therefore the present study tested whether olfactory-mediated foraging responses in the dusky dottyback, Pseudochromis fuscus, a common predator of P. amboinensis, were similarly affected by coral degradation. A y-maze was used to measure the ability of Ps. fuscus to detect and move towards odours, against different background water sources. Ps. fuscus were exposed to damage-released odours from juvenile P. amboinensis, or a control cue of seawater, against a background of seawater treated with either healthy or dead-degraded hard coral. Predators exhibited an increased time allocation to the chambers of y-mazes injected with damage-released odours, with comparable levels of response in both healthy and dead-degraded coral treated waters. In control treatments, where damage-released odours were replaced with a control seawater cue, fish showed no increased preference for either chamber of the y-maze. Our results suggest that olfactory-mediated foraging behaviours may persist in Ps. fuscus within dead-degraded coral habitats. Ps. fuscus may

  17. Chemotaxis by natural populations of coral reef bacteria.

    Science.gov (United States)

    Tout, Jessica; Jeffries, Thomas C; Petrou, Katherina; Tyson, Gene W; Webster, Nicole S; Garren, Melissa; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2015-08-01

    Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont.

  18. Extreme Longevity in Proteinaceous Deep-Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  19. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of

  20. Variation in the health and biochemical condition of the coral Acropora tenuis along two water quality gradients on the Great Barrier Reef, Australia.

    Science.gov (United States)

    Rocker, Melissa M; Francis, David S; Fabricius, Katharina E; Willis, Bette L; Bay, Line K

    2017-06-30

    This study explores how plasticity in biochemical attributes, used as indicators of health and condition, enables the coral Acropora tenuis to respond to differing water quality regimes in inshore regions of the Great Barrier Reef. Health attributes were monitored along a strong and weak water quality gradient, each with three reefs at increasing distances from a major river source. Attributes differed significantly only along the strong gradient; corals grew fastest, had the least dense skeletons, highest symbiont densities and highest lipid concentrations closest to the river mouth, where water quality was poorest. High nutrient and particulate loads were only detrimental to skeletal density, which decreased as linear extension increased, highlighting a trade-off. Our study underscores the importance of assessing multiple health attributes in coral reef monitoring. For example, autotrophic indices are poor indicators of coral health and condition, but improve when combined with attributes like lipid content and biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Environmental assessment of coal waste mounds in Japan using remote sensing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A J; Gotoh, K; Aoyama, K; Aoki, S [Louisiana State University, Baton Rouge, LA (United States). Department of Geography and Anthropology

    1993-01-01

    Focuses on the application of remote sensing techniques to the study of coal waste mounds. The situation at the coal waste mounds in Fukuoka, Japan is cited. Guidelines on film parameters, photographic keys and tasks required to inventory, monitor and manage coal waste mounds in Japan are addressed. Application of photogrammetry, remote sensing, aerial photography and satellite imagery techniques in monitoring spoil banks is reviewed. Applicability of the techniques is discussed. 24 refs.

  2. Coral Reefs: Beyond Mortality?

    Directory of Open Access Journals (Sweden)

    Charles Sheppard

    2000-01-01

    Full Text Available The scale of the collapse of coral reef communities in 1998 following a warming episode (Wilkinson, 2000 was unprecedented, and took many people by surprise. The Indian Ocean was the worst affected with a coral mortality over 75% in many areas such as the Chagos Archipelago (Sheppard, 1999, Seychelles (Spencer et al., 2000 and Maldives (McClanahan, 2000. Several other locations were affected at least as much, with mortality reaching 100% (to the nearest whole number; this is being compiled by various authors (e.g., CORDIO, in press. For example, in the Arabian Gulf, coral mortality is almost total across many large areas of shallow water (Sheppard, unpublished; D. George and D. John, personal communication. The mortality is patchy of course, depending on currents, location inside or outside lagoons, etc., but it is now possible to swim for over 200 m and see not one remaining living coral or soft coral on some previously rich reefs.

  3. Human activities threaten coral reefs

    International Nuclear Information System (INIS)

    Tveitdal, Svein; Bjoerke, Aake

    2002-01-01

    Research indicates that 58 per cent of the coral reefs of the world are threatened by human activities. Pollution and global heating represent some of the threats. Coral reefs just beneath the surface of the sea are very sensitive to temperature changes. Since 1979, mass death of coral reefs has been reported increasingly often. More than 1000 marine species live in the coral reefs, among these are one fourth of all marine species of fish. It is imperative that the coral reefs be preserved, as coastal communities all over the world depend on them as sources of food and as they are the raw materials for important medicines. The article discusses the threats to the coral reefs in general and does not single out any particular energy-related activity as the principal threat. For instance, the El-Nino phenomenon of the Pacific Ocean is probably involved in mass death of coral reefs and in the North Sea large parts of deep-water reefs have been crushed by heavy beam trawlers fishing for bottom fish

  4. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Directory of Open Access Journals (Sweden)

    H. Jamali

    2013-04-01

    Full Text Available We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the

  5. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2013-04-01

    We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e) basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past) would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but

  6. Localised hydrodynamics influence vulnerability of coral communities to environmental disturbances

    Science.gov (United States)

    Shedrawi, George; Falter, James L.; Friedman, Kim J.; Lowe, Ryan J.; Pratchett, Morgan S.; Simpson, Christopher J.; Speed, Conrad W.; Wilson, Shaun K.; Zhang, Zhenlin

    2017-09-01

    The movement of water can have a significant influence on the vulnerability of hermatypic corals to environmental disturbances such as cyclone damage, heat stress and anoxia. Here, we explore the relationship between small reef-scale water circulation patterns and measured differences in the abundance, composition and vulnerability of coral assemblages over decades. Changes in coral cover and community structure within Bill's Bay (Ningaloo Reef, Western Australia) over a 22-yr period, during which multiple disturbance events (including mass bleaching, anoxia, and tropical cyclones) have impacted the area, were compared with spatial variation in water residence times (WRT). We found that reef sites associated with longer water residence times (WRT >15 h) experienced higher rates of coral mortality during acute environmental disturbances compared to reef sites with shorter WRT. Shifts in coral community composition from acroporid to faviid-dominated assemblages were also more prominent at sites with long WRT compared to reef sites with shorter WRT, although shifts in community composition were also observed at sites close to shore. Interestingly, these same long-WRT sites also tended to have the fastest recovery rates so that coral cover was returned to original levels of approximately 20% over two decades. This study provides empirical evidence that spatial patterns in water circulation and flushing can influence the resilience of coral communities, thus identifying areas sensitive to emerging threats associated with global climate change.

  7. The occurrence and development of peat mounds on King George Island (Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    Jerzy Fabiszewski

    2014-01-01

    Full Text Available On King George Island, South Shetlands Islands, a type of peat formation has been discovered which has not previously been reported from the Antarctic. These formations are in shape of mounds up to 7x 15 m in area, with a peat layer of about I m thick. About twenty five cm below the surface there is a layer of permanently frozen peat. The mounds are covered by living mosses (Polytrichum alpinum and Drepanocladus uncinatus, Antarctic hair grass (Deschampsia antarctica and lichens. Erosion fissures occurring on the surface are evidence of contemporary drying and cessation of the mound's growth. The initial phase of the development of the mounds began with a community dominated by Calliergidium austro-stramineum and Deschampsia antarctica, and their further development has been due to peat accumulation formed almost entirely by Calliergidium. The location of the mounds is near a penguin rookery, which clearly conditioned the minerotrophic character of these formations, as compared with the "moss peat banks" formed by Chorisodontium aciphyllum and Polytrichum al-pestre. Moreover, the peat mounds differ from the latter in several ways, e.g. rate of growth and floristic composition. Radiocarbon dating of peat from the base of one mound gave an age of 4090±60 years B.P. This suggests that the age of the tundra on King George Island is about 5000-4000 years.

  8. Process optimization of ultrasound-assisted alcoholic-alkaline treatment for granular cold water swelling starches.

    Science.gov (United States)

    Zhu, Bo; Liu, Jianli; Gao, Weidong

    2017-09-01

    This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.

  9. Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery [v3; ref status: indexed, http://f1000r.es/2zg

    Directory of Open Access Journals (Sweden)

    Tom C. L. Bridge

    2014-02-01

    Full Text Available Coral bleaching caused by rising sea temperature is a primary cause of coral reef degradation. However, bleaching patterns often show significant spatial variability, therefore identifying locations where local conditions may provide thermal refuges is a high conservation priority. Coral bleaching mortality often diminishes with increasing depth, but clear depth zonation of coral communities and putative limited overlap in species composition between deep and shallow reef habitats has led to the conclusion that deeper reef habitats will provide limited refuge from bleaching for most species. Here, we show that coral mortality following a severe bleaching event diminished sharply with depth. Bleaching-induced mortality of Acropora was approximately 90% at 0-2m, 60% at 3-4 m, yet at 6-8m there was negligible mortality. Importantly, at least two-thirds of the shallow-water (2-3 m Acropora assemblage had a depth range that straddled the transition from high to low mortality. Cold-water upwelling may have contributed to the lower mortality observed in all but the shallowest depths. Our results demonstrate that, in this instance, depth provided a refuge for individuals from a high proportion of species in this Acropora-dominated assemblage. The persistence of deeper populations may provide a critical source of propagules to assist recovery of adjacent shallow-water reefs.

  10. Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery [v2; ref status: indexed, http://f1000r.es/26m

    Directory of Open Access Journals (Sweden)

    Tom C. L. Bridge

    2013-10-01

    Full Text Available Coral bleaching caused by rising sea temperature is a primary cause of coral reef degradation. However, bleaching patterns often show significant spatial variability, therefore identifying locations where local conditions may provide thermal refuges is a high conservation priority. Coral bleaching mortality often diminishes with increasing depth, but clear depth zonation of coral communities and putative limited overlap in species composition between deep and shallow reef habitats has led to the conclusion that deeper reef habitats will provide limited refuge from bleaching for most species. Here, we show that coral mortality following a severe bleaching event diminished sharply with depth. Bleaching-induced mortality of Acropora was approximately 90% at 0-2m, 60% at 3-4 m, yet at 6-8m there was negligible mortality. Importantly, at least two-thirds of the shallow-water (2-3 m Acropora assemblage had a depth range that straddled the transition from high to low mortality. Cold-water upwelling may have contributed to the lower mortality observed in all but the shallowest depths. Our results demonstrate that, in this instance, depth provided a refuge for individuals from a high proportion of species in this Acropora-dominated assemblage. The persistence of deeper populations may provide a critical source of propagules to assist recovery of adjacent shallow-water reefs.

  11. Stability Of Rubble Mound Breakwaters Using High Density Rock

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Beck, J. B.

    2000-01-01

    The present paper discusses the effect of mass density on stability of rubble mound breakwaters. A short literature review of existing knowledge is give to establish a background for the ongoing research. Furthermore, several model tests are described in which the stability of rubble mound...... breakwaters with armour stones of different densities are investigated. The results from the model test are discussed with respect to application and further research....

  12. Ecological Processes and Contemporary Coral Reef Management

    Directory of Open Access Journals (Sweden)

    Angela Dikou

    2010-05-01

    Full Text Available Top-down controls of complex foodwebs maintain the balance among the critical groups of corals, algae, and herbivores, thus allowing the persistence of corals reefs as three-dimensional, biogenic structures with high biodiversity, heterogeneity, resistance, resilience and connectivity, and the delivery of essential goods and services to societies. On contemporary reefs world-wide, however, top-down controls have been weakened due to reduction in herbivory levels (overfishing or disease outbreak while bottom-up controls have increased due to water quality degradation (increase in sediment and nutrient load and climate forcing (seawater warming and acidification leading to algal-dominated alternate benthic states of coral reefs, which are indicative of a trajectory towards ecological extinction. Management to reverse common trajectories of degradation for coral reefs necessitates a shift from optimization in marine resource use and conservation towards building socio-economic resilience into coral reef systems while attending to the most manageable human impacts (fishing and water quality and the global-scale causes (climate change.

  13. Focused risk assessment: Mound Plant, Miami-Erie Canal Operable Unit 4

    International Nuclear Information System (INIS)

    Rogers, D.R.; Dunning, D.F.

    1994-01-01

    In 1969, an underground waste line at Mound Plant ruptured and released plutonium-238 in a dilute nitric acid solution to the surrounding soils. Most of the acid was neutralized by the native soils. The plutonium, which in a neutral solution is tightly sorbed onto clay particles, remained within the spill area. During remediation, a severe storm eroded some of the contaminated soil. Fine grained plutonium-contaminated clay particles were carried away through the natural drainage courses to the remnants of the Miami-Erie Canal adjacent to Mound Plant, and then into the Great Miami River. This focused risk assessment considers exposure pathways relevant to site conditions, including incidental ingestion of contaminated soils, ingestion of drinking water and fish, and inhalation of resuspended soils and sediments. For each potential exposure pathway, a simplified conceptual model and exposure scenarios have been used to develop conservative estimates of potential radiation dose equivalents and health risks. The conservatism of the dose and risk estimates provides a substantive margin of safety in assuring that the public health is protected

  14. Harpacticoida (Crustacea: Copepoda associated with cold-water coral substrates in the Porcupine Seabight (NE Atlantic: species composition, diversity and reflections on the origin of the fauna

    Directory of Open Access Journals (Sweden)

    Hendrik Gheerardyn

    2009-12-01

    Full Text Available The harpacticoid copepod fauna associated with the coral degradation zone of Lophelia pertusa (Linnaeus, 1758 reefs was investigated for the first time in the Porcupine Seabight (NE Atlantic. The species list of the coral degradation zone includes 157 species, 62 genera and 19 families, and the most species-rich families were Ectinosomatidae (36 species, Ameiridae (29 species and Argestidae (17 species. At least 80% of the species were considered new to science. Most of the 23 known species have been reported from NE Atlantic coastlines and from higher latitudes in northern Subpolar and Polar Seas. At the family level, the harpacticoid fauna in the Porcupine Seabight did not seem to differ markedly from other deep-sea areas, with essentially the same abundant families. However, the presence of typically epifaunal taxa indicates that the hard substrates of the coral degradation zone provide an exceptional habitat. Further, harpacticoid composition and diversity of sediment and coral fragments were compared with similar substrates in a tropical reef lagoon (Zanzibar, Tanzania. Both regions harboured different fauna and the difference between coral and sediment was more obvious in the tropical lagoon. Species richness and evenness of the two microhabitats in the tropical lagoon were lower than in the deep sea.

  15. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Pacific Remote Island Areas from 2011 to 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  16. Cold Vacuum Drying facility deionized water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit

  17. U-series vs 14C ages of deep-sea corals from the southern Labrador Sea: Sporadic development of corals and geochemical processes hampering estimation of ambient water ventilation ages

    Science.gov (United States)

    Hillaire-Marcel, Claude; Maccali, Jenny; Ménabréaz, Lucie; Ghaleb, Bassam; Blénet, Aurélien; Edinger, Evan

    2017-04-01

    Deep-sea scleractinian corals were collected with the remotely operated ROPOS vehicle off Newfounland. Fossil specimens of Desmophyllum dianthus were raised from coral graveyards at Orphan Knoll (˜1700m depth) and Flemish cap (˜2200 m depth), while live specimens were collected directly in overlying steep rock slopes. D. dianthus has an aragonitic skeleton and is thus particularly suited for U-Th dating. We obtained > 70 U-series ages along with > 20 14C measurements. Results display a discrete age distribution with two age clusters: a Bølling-Allerød and Holocene cluster with > 20 samples, and a Marine Isotope Stage (MIS) 5c cluster with ˜50 samples. Only two samples lay outside these clusters, at ˜ 64 ka and at ˜181 ka. Contrary to the New England seamounts where coral presence seems to have been continue through the last 70 ka, Orphan Knoll and Flemish Cap graveyards are marked by the absence of preserved specimens from MIS 2 to MIS 4 and throughout MIS 6. For filter-feeding deep-sea corals, access to food-rich waters is essential. Hence the Holocene and MIS 5 clusters observed in the Labrador basin might represent intervals linked to high food availability, either through production in the overlying water column, more effectively in relation to particulate and dissolved organic carbon transport via an active Western Boundary Undercurrent. Comparison of 230Th-ages vs 14C-ages in order to document changes in ventilation ages of the ambient water masses is equivocal due to the presence of some diagenetic and/or initial 230Th-excess. In addition, discrete diagenetic U-fluxes can be documented from 234U/238U vs 230Th/238U data. They point to a recent winnowing of sediment overlying the fossil corals that we link to the Holocene intensification of the Western Boundary Undercurrent, which resulted in driving Fe-Mn coatings.

  18. Phytochemical content of hot and cold water extracts of Orthosiphon stamineus leaves

    Science.gov (United States)

    Habboo, Maysam Dahham; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2018-04-01

    Orthosiphon stamineus Benth (Lamiaceae) is a plant with ethnobotanical applications including antifungal and antibacterial properties. This study aimed to evaluate the phytochemical contents of Orthosiphon stamineus leaves water extract prepared in cold and hot distilled water. Phytochemical screening revealed the presence of phytochemicals components such as a flavonoid, terpenoid and steroid in both extracts. Cold water extract has two extra components: saponin and alkaloid that may be destroyed by the exposure to heat.

  19. Testing the fidelity of the Sr/Ca proxy in recording ocean temperature in a western Atlantic coral

    Science.gov (United States)

    Kuffner, I. B.; Roberts, K.; Flannery, J. A.; Richey, J. N.; Morrison, J. M.

    2017-12-01

    Massive corals provide a useful archive of environmental variability, but careful testing of geochemical proxies in corals is necessary to validate the relationship between each proxy and environmental parameter throughout the full range of conditions experienced by the recording organisms. Here we use samples from a field-based coral-growth study to test the hypothesis that Sr/Ca in the coral Siderastrea siderea accurately records sea-surface temperature (SST) in the subtropics (Florida, USA) along 350 km of reef tract. We test calcification rate, measured via buoyant weight, and linear extension (LE) rate, estimated with Alizarin Red-S staining, as predictors of variance in the Sr/Ca records of 39 individual S. siderea corals grown at four outer-reef locations next to in-situ temperature loggers during two, year-long periods. We found that corals with calcification rates less than 1.7 mg cm-2 d-1 or LE rates less than 1.7 mm yr-1 returned spuriously high Sr/Ca values, leading to a cold bias in Sr/Ca-based SST estimates. The threshold-type response curves suggest that LE rate can be used as a quality-control indicator during sample and microdrill-path selection when using long cores for SST paleoreconstruction. For our corals that passed this quality control step, the Sr/Ca-SST proxy performed well in estimating mean annual SST across three sites spanning 350 km of the Florida reef tract. However, there was some evidence that extreme temperature stress in 2010 (cold snap) and 2011 (SST above coral-bleaching threshold) may have caused the corals not to record the temperature extremes. Known stress events could be avoided during modern calibrations of paleoproxies.

  20. Coral calcification and ocean acidification

    Science.gov (United States)

    Jokiel, Paul L.; Jury, Christopher P.; Kuffner, Ilsa B.

    2016-01-01

    Over 60 years ago, the discovery that light increased calcification in the coral plant-animal symbiosis triggered interest in explaining the phenomenon and understanding the mechanisms involved. Major findings along the way include the observation that carbon fixed by photosynthesis in the zooxanthellae is translocated to animal cells throughout the colony and that corals can therefore live as autotrophs in many situations. Recent research has focused on explaining the observed reduction in calcification rate with increasing ocean acidification (OA). Experiments have shown a direct correlation between declining ocean pH, declining aragonite saturation state (Ωarag), declining [CO32_] and coral calcification. Nearly all previous reports on OA identify Ωarag or its surrogate [CO32] as the factor driving coral calcification. However, the alternate “Proton Flux Hypothesis” stated that coral calcification is controlled by diffusion limitation of net H+ transport through the boundary layer in relation to availability of dissolved inorganic carbon (DIC). The “Two Compartment Proton Flux Model” expanded this explanation and synthesized diverse observations into a universal model that explains many paradoxes of coral metabolism, morphology and plasticity of growth form in addition to observed coral skeletal growth response to OA. It is now clear that irradiance is the main driver of net photosynthesis (Pnet), which in turn drives net calcification (Gnet), and alters pH in the bulk water surrounding the coral. Pnet controls [CO32] and thus Ωarag of the bulk water over the diel cycle. Changes in Ωarag and pH lag behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet, rather than concentration-based parameters (e.g., Ωarag, [CO3 2], pH and [DIC]:[H+] ratio) is the primary driver of Gnet. Daytime coral metabolism rapidly removes DIC from the bulk seawater. Photosynthesis increases the bulk seawater pH while providing the energy that drives

  1. SPATIAL VARIABILITY AND VITALITY OF EPIGEOUS TERMITE MOUNDS IN PASTURES OF MATO GROSSO DO SUL, BRAZIL

    Directory of Open Access Journals (Sweden)

    Sandra Santana Lima

    2015-02-01

    Full Text Available Epigeous termite mounds are frequently observed in pasture areas, but the processes regulating their population dynamics are poorly known. This study evaluated epigeous termite mounds in cultivated grasslands used as pastures, assessing their spatial distribution by means of geostatistics and evaluating their vitality. The study was conducted in the Cerrado biome in the municipality of Rio Brilhante, Mato Grosso do Sul, Brazil. In two pasture areas (Pasture 1 and Pasture 2, epigeous mounds (nests were georeferenced and analyzed for height, circumference and vitality (inhabited or not. The area occupied by the mounds was calculated and termite specimens were collected for taxonomic identification. The spatial distribution pattern of the mounds was analyzed with geostatistical procedures. In both pasture areas, all epigeous mounds were built by the same species, Cornitermes cumulans. The mean number of mounds per hectare was 68 in Pasture 1 and 127 in Pasture 2, representing 0.4 and 1 % of the entire area, respectively. A large majority of the mounds were active (vitality, 91 % in Pasture 1 and 84 % in Pasture 2. A “pure nugget effect” was observed in the semivariograms of height and nest circumference in both pastures reflecting randomized spatial distribution and confirming that the distribution of termite mounds in pastures had a non-standard distribution.

  2. The beneficial role of rubble mound coastal structures on seawater oxygenation

    Directory of Open Access Journals (Sweden)

    E. I. Daniil

    2000-10-01

    Full Text Available The beneficial role of rubble mound coastal structures on oxygenation under the effect of waves is discussed, based on analytical considerations and experimental data from laboratory experiments with permeable and impermeable structures. Significant oxygenation of the wave-protected area was observed as a result of horizontal transport through the permeable structure. A two-cell model describing the transport of dissolved oxygen (DO near a rubble mound breakwater structure was developed and used for the determination of the oxygen transfer coefficients from the experimental data. Oxygen transfer through the air–water interface is considered a source term in the transport equation and the oxygen flux through the structure is taken into account. The mass transport equations for both sides of the structure are solved analytically in terms of time evolution of DO concentration. The behaviour of the solution is illustrated for three different characteristic cases of initial conditions. The oxygen transfer through the air-water interface in the wave-influenced area increases the DO content in the area; the resulting oxygen flux through the structure is discussed. The analytical results depend on the initial conditions, the oxygen transfer coefficient and the exchange flow rate through the structure. Experiments with impermeable structures show that air water oxygen transfer in the harbour area is negligible in the absence of waves. In addition the ratio of the horizontal DO flux to the vertical flux into the seaward side tends towards a constant value, independent of the initial conditions.Key words: Oceanography: physical (air-sea interactions; surface waves and tides

  3. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D.W.; Shedd, A.C. [D.W. Abrams, P.E. and Associates, Atlanta, GA (United States)

    1996-11-01

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building, and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.

  4. Elimination of the Mound-Building Termite, Nasutitermes exitiosus (Isoptera: Termitidae) in South-Eastern Australia Using Bistrifluron Bait.

    Science.gov (United States)

    Webb, Garry A; Mcclintock, Charles

    2015-12-01

    Bistrifluron, a benzoylphenylurea compound, was evaluated for efficacy against Nasutitermes exitiosus (Hill), a mound-building species in southern Australia. Bistrifluron bait (trade name Xterm) was delivered as containerized pellets inserted into plastic feeding stations implanted in the sides of mounds-60 g for bistrifluron bait-treated mounds and 120 g of blank bait for untreated mounds. Termites actively tunneled in the gaps between pellets and removed bait from the canisters. All five treated mounds were eventually eliminated, and all five untreated mounds remained active at the end of the trial. Four of the five treated mounds were considered dead and excavated after 26 wk, but there were earlier signs of mound distress-reduced repair of experimental casement damage and reduced activity in bait canisters by 22 wk and reduced internal mound temperature after 11 wk. One treated mound showed activity in the bait station right through until almost the end of the trial (47 wk), but excavation at 49 wk showed no further activity in the mound. The five untreated colonies removed on average 97% of blank bait offered, while the five treated colonies removed on average 39.1% of bait offered. There was a wide variation in temperature profiles of mounds (up to 15°C for both minimum and maximum internal temperatures), from the beginning of the trial and even before the effects of baiting were evident. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Discovery of a living coral reef in the coastal waters of Iraq

    OpenAIRE

    Pohl, Thomas; Al-Muqdadi, Sameh W.; Ali, Malik H.; Fawzi, Nadia Al-Mudaffar; Ehrlich, Hermann; Merkel, Broder

    2014-01-01

    Until now, it has been well-established that coral complex in the Arabian/Persian Gulf only exist in the coastal regions of Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia, and United Arab Emirates and it was thought that there are no coral reefs in Iraq. However, here for the first time we show the existence of a living 28 km2 large coral reef in this country. These corals are adapted to one of the most extreme coral-bearing environments on earth: the seawater temperature in this area range...

  6. Sub-kilometre (intra-crater) mounds in Utopia Planitia, Mars: character, occurrence and possible formation hypotheses

    Science.gov (United States)

    Soare, Richard J.; Conway, Susan J.; Pearce, Geoffrey D.; Costard, François; Séjourné, Antoine

    2013-08-01

    At the middle latitudes of Utopia Planitia (˜35-45°N; ˜65-101°E) hundreds of small-sized mounds located in sub-kilometre impact craters dot the landscape. Their shape varies from circular to crescentic and their height ranges from ˜10 to 50 m. Often, metre to decametre pitting is observed, as is metres-thick banding or stratification. Mound albedo is relatively high, i.e. ˜0.16. The plain's terrain in the region, previously linked to the latitude-dependent mantle (LDM) of ice-dust, displays pitting and albedo similar to the small intra-crater mounds. Some workers have suggested that the mounds and the plain's terrain share a common ice-dust origin. If so, then scrutinising the mounds could provide analogical insight on the key geological characteristics and spatial distribution of the LDM itself. Other workers have hypothesised that the mounds are eroded sedimentary landforms or periglacial mounds underlain by a perennial ice-core (closed-system pingos). In this article we develop and then discuss each of the three mound-hypotheses in a much more substantial manner than has been done hitherto. Towards this end we use high-resolution images, present a detailed regional-map of mound distribution and establish a regional platform of topographical analysis using MOLA data superposed on a large-scale CTX mosaic. Although the ice-dust hypothesis is consistent with some observations and measurements, we find that a (loess-based) sedimentary hypothesis shows greater plausibility. Of the three hypotheses evaluated, the pingo or periglacial one is the weakest.

  7. Molluskan fauna in two shell mounds in the State of Parana coast, Brazil

    Directory of Open Access Journals (Sweden)

    Marcos de Vasconcellos Gernet

    2011-09-01

    Full Text Available The shell mounds are artificial formations consisting mostly of mollusk shells used in the feeding of the prehistoric peoples which inhabited our coast. These sites are found throughout the Brazilian coast, and hundreds of them were cataloged in the State of Paraná since the 1940s. The fragility of these sites, their importance as evidences of our prehistoric period, and its abrupt disappearance, justify the need for new researches which contribute to contextualize and draw up plans to preserve this heritage. The works related to the molluskan fauna found in the shell mounds are restricted to refer to the most common species and, sometimes, just their popular names. A greater knowledge on these prehistoric inhabitants’ diet allows a better understanding of ancient natural ecosystems. The survey of mollusks was carried out in the shell mounds Guaraguaçu and Boguaçu, in the towns of Pontal do Parana and Guaratuba, respectively, and performed through visual inspection, reading of specialized bibliography and comparison to previous works on the fauna of the shell mounds in the State of Parana coast. Altogether, 29 species were observed in the shell mound Guaraguaçu and 17 species were observed in the shell mound Boguaçu, resulting in a total of 31 species.

  8. SPECTRAL CHARACTERISTICS OF SELECTED HERMATYPIC CORALS FROM GULF OF KACHCHH, INDIA

    Directory of Open Access Journals (Sweden)

    N. Ray Chaudhury

    2012-07-01

    Full Text Available Hermatypic, scleractinian corals are the most important benthic substrates in a coral reef ecosystem. The existing, high (spatial resolution, broad-band, multi-spectral, space-borne sensors have limited capability to spatially detect and spectrally discriminate coral substrates. In situ hyperspectral signatures of eight coral targets were collected with the help of Analytical Spectral Devices FieldSpec spectroradiometer from Paga and Laku Point reefs of Gulf of Kachchh, India to study the spectral behaviour of corals. The eight coral targets consisted of seven live corals representing four distinct colony morphologies and one bleached coral target. The coral spectra were studied over a continuous range of 350 to 1350 nm. The corals strongly reflected in the NIR and MIR regions with regional central maximas located at 820 and 1070 nm respectively. In the visible region the live coral spectra conformed to "brown mode" of coral reflectance with triple-peaked pattern at 575, 600 and 650 nm. All coral spectra are characterized with two distinct absorption features: chlorophyll absorption at 675 nm and water absorption at 975 nm. The live and the bleached corals get distinguished in the visible region over 400 to 600 nm region. Water column over the targets modifies the spectral shape and magnitude. First and second-order derivatives help in identifying spectral windows to distinguish live and bleached corals.

  9. The relationship between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2012-12-01

    1. We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of Northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. 2. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. 3. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux, however, these relationships were clearly termite species specific. 4. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in past) would result in errors of more than 5-fold for CH4 and 3-fold for CO2. 5. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a~mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but these relationships vary greatly among termite species. Consequently, there is no generic relationship that will allow for the prediction of CH4 fluxes from termite mounds of all species.

  10. Greener management practices - ash mound reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, S.L.; Shyam, A.K.; Soni, R. [National Thermal Power Corp. Ltd., New Delhi (India)

    2002-12-01

    The dry ash handling system at Dadri has been pioneered for the first time in India by the National Thermal Power Corporation (NTPC). The system is similar to that at the Drax power station in England. The paper reports the successful experimental trials carried out on vegetation of temporary ash mounds to assess the growth potential of local herbs, shrubs, trees and grasses directly on ash with no soil cover or fertiliser. These were extended to trials directly on the available (completed) mound surfaces. The grass Cynodon dactylon germinated well as did seeds of tree species including the Casurarina and Eucalyptus. It is hoped that efforts at Dadri will ultimately transform the ash into a productive and self sustaining ecosystem, as leaf fall adds additional organic material and the weathering process continues. 6 refs., 6 figs.

  11. Stability of Monolithic Rubble Mound Breakwater Crown Walls Subjected to Impulsive Loading

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Lars Vabbersgaard; Andersen, Thomas Lykke

    2012-01-01

    This paper evaluates the validity of a simple onedimensional dynamic analysis as well as a FEM model to determine the sliding of a rubble mound breakwater crown wall. The evaluation is based on a case example with real wave load time series and displacements measured from two-dimensional physical...... model tests. The outcome is a more reliable evaluation of the applicability of simple dynamic calculations for the estimation of sliding distances of rubble mound superstructures. This is of great practical importance since many existing rubble mound crown walls are subjected to increasing wave loads...

  12. Using reefcheck monitoring database to develop the coral reef index of biological integrity

    DEFF Research Database (Denmark)

    Nguyen, Hai Yen T.; Pedersen, Ole; Ikejima, Kou

    2009-01-01

    The coral reef indices of biological integrity was constituted based on the reef check monitoring data. Seventy six minimally disturbed sites and 72 maximallv disturbed sites in shallow water and 39 minimally disturbed sites and 37 maximally disturbed sites in deep water were classified based...... on the high-end and low-end percentages and ratios of hard coral, dead coral and fieshy algae. A total of 52 candidate metrics was identified and compiled, Eight and four metrics were finally selected to constitute the shallow and deep water coral reef indices respectively. The rating curve was applied.......05) and coral damaged by other factors -0.283 (pcoral reef indices were sensitive responses to stressors and can be capable to use as the coral reef biological monitoring tool....

  13. Coral Reef Guidance

    Science.gov (United States)

    Guidance prepared by EPA and Army Corps of Engineers concerning coral reef protection under the Clean Water Act, Marine Protection, Research, and Sanctuaries Act, Rivers and Harbors Act, and Federal Project Authorities.

  14. Virus-host interactions and their roles in coral reef health and disease.

    Science.gov (United States)

    Thurber, Rebecca Vega; Payet, Jérôme P; Thurber, Andrew R; Correa, Adrienne M S

    2017-04-01

    Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.

  15. Is proximity to land-based sources of coral stressors an appropriate measure of risk to coral reefs? An example from the Florida Reef Tract.

    Science.gov (United States)

    Lirman, Diego; Fong, Peggy

    2007-06-01

    Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species

  16. Natural disease resistance in threatened staghorn corals.

    Directory of Open Access Journals (Sweden)

    Steven V Vollmer

    Full Text Available Disease epidemics have caused extensive damage to tropical coral reefs and to the reef-building corals themselves, yet nothing is known about the abilities of the coral host to resist disease infection. Understanding the potential for natural disease resistance in corals is critically important, especially in the Caribbean where the two ecologically dominant shallow-water corals, Acropora cervicornis and A. palmata, have suffered an unprecedented mass die-off due to White Band Disease (WBD, and are now listed as threatened under the US Threatened Species Act and as critically endangered under the IUCN Red List criteria. Here we examine the potential for natural resistance to WBD in the staghorn coral Acropora cervicornis by combining microsatellite genotype information with in situ transmission assays and field monitoring of WBD on tagged genotypes. We show that six percent of staghorn coral genotypes (3 out of 49 are resistant to WBD. This natural resistance to WBD in staghorn corals represents the first evidence of host disease resistance in scleractinian corals and demonstrates that staghorn corals have an innate ability to resist WBD infection. These resistant staghorn coral genotypes may explain why pockets of Acropora have been able to survive the WBD epidemic. Understanding disease resistance in these corals may be the critical link to restoring populations of these once dominant corals throughout their range.

  17. Short-term assessment of the sediment deposition rate and water conditions during a rainy season on La Azufrada coral reef, Gorgona Island, Colombia

    Directory of Open Access Journals (Sweden)

    Diego F. Lozano-Cortés

    2014-02-01

    Full Text Available One of the major stresses on corals is the settlement of suspended sediment on their surfaces. This leads to the blocking of light, the covering of the coral mucus surface and an increased risk of disease. For this reason sediment deposition on a reef is considered a highly important variable in coral reef studies. With the use of sediment traps and oceanographic sensors, the sediment deposition rate and water conditions during a rainy season (April-May 2009 on a Tropical Eastern Pacific coral reef (La Azufrada at Gorgona Island in Colombia were investigated. To quantify sediment deposition, sediment traps were established in nine stations along the coral reef (three stations per reef zone: backreef, flat and slope. To minimize disturbance by aquatic organisms in the sediment traps these were filled with hypersaline borax-buffered 10% formaline solution before their deployment; animals found in the filter contents were fixed and stored in a 4% formalin solution, frozen and identified in the laboratory. To determine the water conditions, discrete samples of water from 1 m and 10 m depths were collected using a Niskin bottle. Oceanographic variables (temperature, salinity and dissolved oxygen as well as turbidity, chlorophyll and nutrient concentration (nitrite, nitrate and phosphorus were measured in the samples from both depths. Vertical records of temperature and salinity were carried out with a Seabird-19 CTD nearest to La Azufrada and water transparency was measured using a Secchi disk. We found a mean trap collection rate of 23.30±4.34gm-2d-1 and did not detect a significant difference in the trap collection rate among reef zones. The mean temperature and salinity in the coral reef depth zone (0-10m layer were 26.98±0.19°C and 32.60±0.52, respectively. Fourteen taxonomic groups of invertebrates were detected inside the sediment traps with bivalves and copepods being the most abundant and frequen. The findings presented here constitute

  18. Short-term assessment of the sediment deposition rate and water conditions during a rainy season on La Azufrada coral reef, Gorgona Island, Colombia

    KAUST Repository

    Lozano-Cortés, Diego F

    2014-02-01

    One of the major stresses on corals is the settlement of suspended sediment on their surfaces. This leads to the blocking of light, the covering of the coral mucus surface and an increased risk of disease. For this reason sediment deposition on a reef is considered a highly important variable in coral reef studies. With the use of sediment traps and oceanographic sensors, the sediment deposition rate and water conditions during a rainy season (April-May 2009) on a Tropical Eastern Pacific coral reef (La Azufrada) at Gorgona Island in Colombia were investigated. To quantify sediment deposition, sediment traps were established in nine stations along the coral reef (three stations per reef zone: backreef, flat and slope). To minimize disturbance by aquatic organisms in the sediment traps these were filled with hypersaline borax-buffered 10% formaline solution before their deployment; animals found in the filter contents were fixed and stored in a 4% formalin solution, frozen and identified in the laboratory. To determine the water conditions, discrete samples of water from 1 m and 10 m depths were collected using a Niskin bottle. Oceanographic variables (temperature, salinity and dissolved oxygen) as well as turbidity, chlorophyll and nutrient concentration (nitrite, nitrate and phosphorus) were measured in the samples from both depths. Vertical records of temperature and salinity were carried out with a Seabird-19 CTD nearest to La Azufrada and water transparency was measured using a Secchi disk. We found a mean trap collection rate of 23.30±4.34gm-2d-1 and did not detect a significant difference in the trap collection rate among reef zones. The mean temperature and salinity in the coral reef depth zone (0-10m layer) were 26.98±0.19°C and 32.60±0.52, respectively. Fourteen taxonomic groups of invertebrates were detected inside the sediment traps with bivalves and copepods being the most abundant and frequen. The findings presented here constitute the first report

  19. Lipid-induced thermogenesis is up-regulated by the first cold-water immersions in juvenile penguins.

    Science.gov (United States)

    Teulier, Loïc; Rey, Benjamin; Tornos, Jérémy; Le Coadic, Marion; Monternier, Pierre-Axel; Bourguignon, Aurore; Dolmazon, Virginie; Romestaing, Caroline; Rouanet, Jean-Louis; Duchamp, Claude; Roussel, Damien

    2016-07-01

    The passage from shore to marine life is a critical step in the development of juvenile penguins and is characterized by a fuel selection towards lipid oxidation concomitant to an enhancement of lipid-induced thermogenesis. However, mechanisms of such thermogenic improvement at fledging remain undefined. We used two different groups of pre-fledging king penguins (Aptenodytes patagonicus) to investigate the specific contribution of cold exposure during water immersion to lipid metabolism. Terrestrial penguins that had never been immersed in cold water were compared with experimentally cold-water immersed juveniles. Experimentally immersed penguins underwent ten successive immersions at approximately 9-10 °C for 5 h over 3 weeks. We evaluated adaptive thermogenesis by measuring body temperature, metabolic rate and shivering activity in fully immersed penguins exposed to water temperatures ranging from 12 to 29 °C. Both never-immersed and experimentally immersed penguins were able to maintain their homeothermy in cold water, exhibiting similar thermogenic activity. In vivo, perfusion of lipid emulsion at thermoneutrality induced a twofold larger calorigenic response in experimentally immersed than in never-immersed birds. In vitro, the respiratory rates and the oxidative phosphorylation efficiency of isolated muscle mitochondria were not improved with cold-water immersions. The present study shows that acclimation to cold water only partially reproduced the fuel selection towards lipid oxidation that characterizes penguin acclimatization to marine life.

  20. Possible effects of water pollution on the community structure of Red Sea corals

    Energy Technology Data Exchange (ETDEWEB)

    Loya, Y

    1975-02-28

    The community structure and species diversity of hermatypic corals was studied during 1969 to 1973, in 2 reef flats in the northern Gulf of Eilat, Red Sea: the reef flat of the mature reserve at Eilat, which is chronically polluted by oil and minerals, and a control reef, located 5 km further S, which is free of oil pollution. In 1969, the nature reserve and the control reef had similar coral community structure. In Sept. 1970, both reefs suffered approximately 90 percent mortality of corals, as a result of an unexpected and extremely low tide. In 1973 the control reef was blooming with a highly diverse coral community, while almost no signs of coral recolonization have been observed at the nature reserve, and it is significantly lower in diversity. Phosphate eutrophication and chronic oil pollution are probably the major man-made disturbances that interfere with coral colonization of the reef flat at the nature reserve. Although no direct evidence is provided that oil damages hermatypic corals, the data strongly suggest that chronic oil spills prevent normal settlement and development of coral larvae. Chronic oil pollution results in either one or a combination of the following: damage to the reproductive system of corals, decreased viability of coral larvae, or changes in some physical properties of the reef flat which interfere with normal settlement of coral larvae.

  1. Global change and modern coral reefs: New opportunities to understand shallow-water carbonate depositional processes

    Science.gov (United States)

    Hallock, Pamela

    2005-04-01

    Human activities are impacting coral reefs physically, biologically, and chemically. Nutrification, sedimentation, chemical pollution, and overfishing are significant local threats that are occurring worldwide. Ozone depletion and global warming are triggering mass coral-bleaching events; corals under temperature stress lose the ability to synthesize protective sunscreens and become more sensitive to sunlight. Photo-oxidative stress also reduces fitness, rendering reef-building organisms more susceptible to emerging diseases. Increasing concentration of atmospheric CO 2 has already reduced CaCO 3 saturation in surface waters by more than 10%. Doubling of atmospheric CO 2 concentration over pre-industrial concentration in the 21st century may reduce carbonate production in tropical shallow marine environments by as much as 80%. As shallow-water reefs decline worldwide, opportunities abound for researchers to expand understanding of carbonate depositional systems. Coordinated studies of carbonate geochemistry with photozoan physiology and calcification, particularly in cool subtropical-transition zones between photozoan-reef and heterotrophic carbonate-ramp communities, will contribute to understanding of carbonate sedimentation under environmental change, both in the future and in the geologic record. Cyanobacteria are becoming increasingly prominent on declining reefs, as these microbes can tolerate strong solar radiation, higher temperatures, and abundant nutrients. The responses of reef-dwelling cyanobacteria to environmental parameters associated with global change are prime topics for further research, with both ecological and geological implications.

  2. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Robert [Lockheed Martin Corporation, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates, Houston, TX (United States); Johnson, Peter [BMT Scientific Marine Services, Inc., Houston, TX (United States); Shi, Shan [Houston Offshore Engineering, Houston, TX (United States); Marinho, Thiago [Federal Univ. of Rio de Janeiro (Brazil). LabOceano

    2014-05-09

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to final design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.

  3. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat.

    Science.gov (United States)

    Vaile, Joanna; Halson, Shona; Gill, Nicholas; Dawson, Brian

    2008-03-01

    To assess the effect of cold water immersion and active recovery on thermoregulation and repeat cycling performance in the heat, ten well-trained male cyclists completed five trials, each separated by one week. Each trial consisted of a 30-min exercise task, one of five 15-min recoveries (intermittent cold water immersion in 10 degrees C, 15 degrees C and 20 degrees C water, continuous cold water immersion in 20 degrees C water or active recovery), followed by 40 min passive recovery, before repeating the 30-min exercise task. Recovery strategy effectiveness was assessed via changes in total work in the second exercise task compared with that in the first. Following active recovery, a mean 4.1% (s = 1.8) less total work (P = 0.00) was completed in the second than in the first exercise task. However, no significant differences in total work were observed between any of the cold water immersion protocols. Core and skin temperature, blood lactate concentration, heart rate, rating of thermal sensation, and rating of perceived exertion were recorded. During both exercise tasks there were no significant differences in blood lactate concentration between interventions; however, following active recovery blood lactate concentration was significantly lower (P immersion protocols. All cold water immersion protocols were effective in reducing thermal strain and were more effective in maintaining subsequent high-intensity cycling performance than active recovery.

  4. Human thermal responses during leg-only exercise in cold water.

    Science.gov (United States)

    Golden, F S; Tipton, M J

    1987-10-01

    1. Exercise during immersion in cold water has been reported by several authors to accelerate the rate of fall of core temperature when compared with rates seen during static immersion. The nature of the exercise performed, however, has always been whole-body in nature. 2. In the present investigation fifteen subjects performed leg exercise throughout a 40 min head-out immersion in water at 15 degrees C. The responses obtained were compared with those seen when the subjects performed an identical static immersion. 3. Aural and rectal temperatures were found to fall by greater amounts during static immersion. 4. It is concluded that 'the type of exercise performed' should be included in the list of factors which affect core temperature during cold water immersion.

  5. Indigenous utilization of termite mounds and their sustainability in a rice growing village of the central plain of Laos.

    Science.gov (United States)

    Miyagawa, Shuichi; Koyama, Yusaku; Kokubo, Mika; Matsushita, Yuichi; Adachi, Yoshinao; Sivilay, Sengdeaune; Kawakubo, Nobumitsu; Oba, Shinya

    2011-08-18

    The objective of this study was to investigate the indigenous utilization of termite mounds and termites in a rain-fed rice growing village in the central plain of Laos, where rice production is low and varies year-to-year, and to assess the possibility of sustainable termite mound utilization in the future. This research was carried out from 2007 to 2009. The termites were collected from their mounds and surrounding areas and identified. Twenty villagers were interviewed on their use of termites and their mounds in the village. Sixty-three mounds were measured to determine their dimensions in early March, early July and middle to late November, 2009. Eleven species of Termitidae were recorded during the survey period. It was found that the villagers use termite mounds as fertilizer for growing rice, vegetable beds and charcoal kilns. The villagers collected termites for food and as feed for breeding fish. Over the survey period, 81% of the mounds surveyed increased in volume; however, the volume was estimated to decrease by 0.114 m3 mound(-1) year(-1) on average due to several mounds being completely cut out. It was concluded that current mound utilization by villagers is not sustainable. To ensure sustainable termite utilization in the future, studies should be conducted to enhance factors that promote mound restoration by termites. Furthermore, it will be necessary to improve mound conservation methods used by the villagers after changes in the soil mass of mounds in paddy fields and forests has been measured accurately. The socio-economic factors that affect mound utilization should also be studied.

  6. Changes in the content of water-soluble vitamins in Actinidia chinensis during cold storage

    Directory of Open Access Journals (Sweden)

    Zhu Xian-Bo

    2016-01-01

    Full Text Available We assessed the effects of cold storage on nine water-soluble vitamins in 7 cultivars of Actinidia chinensis (kiwifruit using high-performance liquid chromatography. Samples were collected at three time points during cold storage: one day, 30 days, and when edible. We found that vitamin C in most cultivars was raised with cold storage, but there was no consistent increased or decreased trend for other water-soluble vitamins across cultivars in storage. After one day of cold storage, vitamins B1 and B2 were the most prevalent vitamins in Control (wild fruit, while vitamins B5 and B6 were most prevalent in the Hongyang and Qihong cultivars. However, B12 was the most prevalent vitamin in the Qihong cultivar after 30 days of cold storage. Vitamins B3, B7, B9, and C were detected at the edible time point in Huayou, Hongyang, Jinnong-2, and Control fruit. Vitamin contents varied significantly among cultivars of kiwifruit following different durations of cold storage. Out of the three durations tested, a period of 30 days in cold storage was the most suitable for the absorption of water-soluble vitamins by A. chinensis.

  7. Coral reefs as fixers of CO2. Sangosho ni yoru nisanka tanso no kotei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, M [Geological Survey of Japan, Tsukuba (Japan)

    1992-07-25

    This paper explains CO2 fixing mechanisms in coral reefs and technologies to construct coral reef eco-factories. A coral reef fists CO2 through two routes of photosynthesis and calcification, with both processes proceeding conjugately. Calcification is driven by the photosynthesis that proceeds at a rate more than ten times faster than the calcification. The Geological Survey of Japan is working on elucidating CO2 fixing mechanisms in coral reefs and studying coral reef eco-factory structuring technologies to utilize the capability of the mechanisms at a possible maximum extent. This study is directed to optimizing site conditions for coral reefs, optimal arrangements and environmental conditions for clusters, and production process determining factors. The structuring technologies may include controlling water temperatures, water flows, nutritious salts, and suspended substances that match optimal CO2 fixing conditions in coral reefs; seeding technologies for coral reef organisms; aquaculture techniques utilizing fixed CO2; combination with cultivating techniques; and combination with new energy technologies including sea water temperature difference power generation to control water flows and maintain facilities. 4 refs., 5 figs.

  8. Multiple mechanisms of transmission of the Caribbean coral disease white plague

    Science.gov (United States)

    Clemens, E.; Brandt, M. E.

    2015-12-01

    White plague is one of the most devastating coral diseases in the Caribbean, and yet important aspects of its epidemiology, including how the disease transmits, remain unknown. This study tested potential mechanisms and rates of transmission of white plague in a laboratory setting. Transmission mechanisms including the transport of water, contact with macroalgae, and predation via corallivorous worms and snails were tested on the host species Orbicella annularis. Two of the tested mechanisms were shown to transmit disease: water transport and the corallivorous snail Coralliophila abbreviata. Between these transmission mechanisms, transport of water between a diseased coral and a healthy coral resulted in disease incidence significantly more frequently in exposed healthy corals. Transmission via water transport also occurred more quickly and was associated with higher rates of tissue loss (up to 3.5 cm d-1) than with the corallivorous snail treatment. In addition, water that was in contact with diseased corals but was filtered with a 0.22-μm filter prior to being introduced to apparently healthy corals also resulted in the transmission of disease signs, but at a much lower rate than when water was not filtered. This study has provided important information on the transmission potential of Caribbean white plague disease and highlights the need for a greater understanding of how these processes operate in the natural environment.

  9. Including the influence of waves in the overall slope stability analysis of rubble mound breakwaters

    OpenAIRE

    Mollaert, J.; Tavallali, A.

    2016-01-01

    An offshore breakwater is designed for the construction of a LNG-terminal. For the slope stability analysis of the rubble mound breakwater the existing and the extreme wave climate are considered. Pore water pressure variations exist in the breakwater and its permeable foundation. A wave trough combined with the moment of maximum wave run-up results in a decrease and increase of the pore water pressure, respectively. Therefore, the wave actions have on overall effect on the slope stability of...

  10. Indigenous utilization of termite mounds and their sustainability in a rice growing village of the central plain of Laos

    Directory of Open Access Journals (Sweden)

    Sivilay Sengdeaune

    2011-08-01

    Full Text Available Abstract Background The objective of this study was to investigate the indigenous utilization of termite mounds and termites in a rain-fed rice growing village in the central plain of Laos, where rice production is low and varies year-to-year, and to assess the possibility of sustainable termite mound utilization in the future. This research was carried out from 2007 to 2009. Methods The termites were collected from their mounds and surrounding areas and identified. Twenty villagers were interviewed on their use of termites and their mounds in the village. Sixty-three mounds were measured to determine their dimensions in early March, early July and middle to late November, 2009. Results Eleven species of Termitidae were recorded during the survey period. It was found that the villagers use termite mounds as fertilizer for growing rice, vegetable beds and charcoal kilns. The villagers collected termites for food and as feed for breeding fish. Over the survey period, 81% of the mounds surveyed increased in volume; however, the volume was estimated to decrease by 0.114 m3 mound-1 year-1 on average due to several mounds being completely cut out. Conclusion It was concluded that current mound utilization by villagers is not sustainable. To ensure sustainable termite utilization in the future, studies should be conducted to enhance factors that promote mound restoration by termites. Furthermore, it will be necessary to improve mound conservation methods used by the villagers after changes in the soil mass of mounds in paddy fields and forests has been measured accurately. The socio-economic factors that affect mound utilization should also be studied.

  11. Effects of whole body cryotherapy and cold water immersion on knee skin temperature.

    Science.gov (United States)

    Costello, J T; Donnelly, A E; Karki, A; Selfe, J

    2014-01-01

    This study sought to (a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of -110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and (b) establish whether either protocol was capable of achieving a skin temperature (cryotherapy (19.0±0.9 °C) compared to cold water immersion (20.5±0.6 °C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p<0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the rat...

  13. Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas

    Science.gov (United States)

    Storlazzi, C. D.; Field, M. E.; Cheriton, O. M.; Presto, M. K.; Logan, J. B.

    2013-12-01

    Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased

  14. Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas

    Science.gov (United States)

    Storlazzi, Curt D.; Field, Michael E.; Cheriton, Olivia M.; Presto, M.K.; Logan, J.B.

    2013-01-01

    Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased

  15. Effect of a 5-min cold-water immersion recovery on exercise performance in the heat.

    Science.gov (United States)

    Peiffer, J J; Abbiss, C R; Watson, G; Nosaka, K; Laursen, P B

    2010-05-01

    This study examined the effect of a 5-min cold-water immersion (14 degrees C) recovery intervention on repeated cycling performance in the heat. 10 male cyclists performed two bouts of a 25-min constant-paced (254 (22) W) cycling session followed by a 4-km time trial in hot conditions (35 degrees C, 40% relative humidity). The two bouts were separated by either 15 min of seated recovery in the heat (control) or the same condition with 5-min cold-water immersion (5th-10th minute), using a counterbalanced cross-over design (CP(1)TT(1) --> CWI or CON --> CP(2)TT(2)). Rectal temperature was measured immediately before and after both the constant-paced sessions and 4-km timed trials. Cycling economy and Vo(2) were measured during the constant-paced sessions, and the average power output and completion times were recorded for each time trial. Compared with control, rectal temperature was significantly lower (0.5 (0.4) degrees C) in cold-water immersion before CP(2) until the end of the second 4-km timed trial. However, the increase in rectal temperature (0.5 (0.2) degrees C) during CP(2) was not significantly different between conditions. During the second 4-km timed trial, power output was significantly greater in cold-water immersion (327.9 (55.7) W) compared with control (288.0 (58.8) W), leading to a faster completion time in cold-water immersion (6.1 (0.3) min) compared with control (6.4 (0.5) min). Economy and Vo(2) were not influenced by the cold-water immersion recovery intervention. 5-min cold-water immersion recovery significantly lowered rectal temperature and maintained endurance performance during subsequent high-intensity exercise. These data indicate that repeated exercise performance in heat may be improved when a short period of cold-water immersion is applied during the recovery period.

  16. The hydrology and preservation condition in the flat topped burial mound Klangshøj at Vennebjerg in Vendsyssel

    DEFF Research Database (Denmark)

    Breuning-Madsen, Henrik; Henriksen, Peter Steen; Kristensen, Jeppe Ågård

    2016-01-01

    Klangshøj is a flat-topped burial mound similar to the Royal Jelling mounds, although smaller. The myths tell that a well has existed on top of the mound as at Jelling and a spring had flown at the base of the mound. In order to verify the myths and a similar hydrology in Klangshøj as found...... borings, where undecomposed plant remnants, occasionally greenish, were observed. A 14C-dating showed that the mound was built in the Viking Age. The hydrology in Klangshøj is the same as in the Jelling mounds, with a permeable bioturbation zone covering almost impermeable, distinct sod layers. This form...

  17. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    Science.gov (United States)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  18. Calcite/aragonite-biocoated artificial coral reefs for marine parks

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2017-08-01

    Full Text Available Natural formation of the coral reefs is complicated by slow biomediated precipitation of calcium carbonate from seawater. Therefore, manufactured artificial coral reefs can be used for the formation of “underwater gardens” in marine parks for the recreational fishing and diving that will protect natural coral reefs from negative anthropogenic effects. Additionally, the coating of the concrete, plastic or wooden surfaces of artificial coral reef with calcium carbonate layer could promote attachment and growth of coral larvae and photosynthetic epibiota on these surfaces. Three methods of biotechnological coating of the artificial coral reefs have been tested: (1 microbially induced calcium carbonate precipitation from concentrated calcium chloride solution using live bacterial culture of Bacillus sp. VS1 or dead but urease-active cells of Yaniella sp. VS8; (2 precipitation from calcium bicarbonate solution; (3 precipitation using aerobic oxidation of calcium acetate by bacteria Bacillus ginsengi strain VSA1. The thickness of biotechnologically produced calcium carbonate coating layer was from 0.3 to 3 mm. Biocoating using calcium salt and urea produced calcite in fresh water and aragonite in seawater. The calcium carbonate-coated surfaces were colonized in aquarium with seawater and hard corals as inoculum or in aquarium with fresh water using cyanobacteria Chlorella sorokiana as inoculum. The biofilm on the light-exposed side of calcium carbonate-coated surfaces was formed after six weeks of incubation and developed up to the average thickness of 250 µm in seawater and about 150 µm in fresh water after six weeks of incubation. The biotechnological manufacturing of calcium carbonate-coated concrete, plastic, or wooden surfaces of the structures imitating natural coral reef is technologically feasible. It could be commercially attractive solution for the introduction of aesthetically pleasant artificial coral reefs in marine parks and

  19. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds.

    Science.gov (United States)

    Fall, Saliou; Hamelin, Jérôme; Ndiaye, Farma; Assigbetse, Komi; Aragno, Michel; Chotte, Jean Luc; Brauman, Alain

    2007-08-01

    In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.

  20. Towards the Automatic Detection of Pre-Existing Termite Mounds through UAS and Hyperspectral Imagery.

    Science.gov (United States)

    Sandino, Juan; Wooler, Adam; Gonzalez, Felipe

    2017-09-24

    The increased technological developments in Unmanned Aerial Vehicles (UAVs) combined with artificial intelligence and Machine Learning (ML) approaches have opened the possibility of remote sensing of extensive areas of arid lands. In this paper, a novel approach towards the detection of termite mounds with the use of a UAV, hyperspectral imagery, ML and digital image processing is intended. A new pipeline process is proposed to detect termite mounds automatically and to reduce, consequently, detection times. For the classification stage, several ML classification algorithms' outcomes were studied, selecting support vector machines as the best approach for their role in image classification of pre-existing termite mounds. Various test conditions were applied to the proposed algorithm, obtaining an overall accuracy of 68%. Images with satisfactory mound detection proved that the method is "resolution-dependent". These mounds were detected regardless of their rotation and position in the aerial image. However, image distortion reduced the number of detected mounds due to the inclusion of a shape analysis method in the object detection phase, and image resolution is still determinant to obtain accurate results. Hyperspectral imagery demonstrated better capabilities to classify a huge set of materials than implementing traditional segmentation methods on RGB images only.

  1. Quantifying bamboo coral growth rate nonlinearity with the radiocarbon bomb spike: A new model for paleoceanographic chronology development

    Science.gov (United States)

    Frenkel, M. M.; LaVigne, M.; Miller, H. R.; Hill, T. M.; McNichol, A.; Gaylord, M. Lardie

    2017-07-01

    Bamboo corals, long-lived cold water gorgonin octocorals, offer unique paleoceanographic archives of the intermediate ocean. These Isididae corals are characterized by alternating gorgonin nodes and high Mg-calcite internodes, which synchronously extend radially. Bamboo coral calcite internodes have been utilized to obtain geochemical proxy data, however, growth rate uncertainty has made it difficult to construct precise chronologies for these corals. Previous studies have relied upon a single tie point from records of the anthropogenic Δ14C bomb spike preserved in the gorgonin nodes of live-collected corals to calculate a mean radial extension rate for the outer 50 years of skeletal growth. Bamboo coral chronologies are typically constructed by applying this mean extension rate to the entire coral record, assuming constant radial extension with coral age. In this study, we aim to test this underlying assumption by analyzing the organic nodes of six California margin bamboo corals at high enough resolution (bomb spike, including two tie points at 1957 and 1970, plus the coral collection date (2007.5) for four samples. Radial extension rates between tie points ranged from 10 to 204 μm/year, with a decrease in growth rate evident between the 1957-1970 and 1970-2007.5 periods for all four corals. A negative correlation between growth rate and coral radius (r =-0.7; p=0.04) was determined for multiple bamboo coral taxa and individuals from the California margin, demonstrating a decline in radial extension rate with specimen age and size. To provide a mechanistic basis for these observations, a simple mathematical model was developed based on the assumption of a constant increase in circular cross sectional area with time to quantify this decline in radial extension rate with coral size between chronological tie points. Applying the area-based model to our Δ14C bomb spike time series from individual corals improves chronology accuracy for all live-collected corals

  2. Ant and termite mound coinhabitants in the wetlands of Santo Antonio da Patrulha, Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    E. Diehl

    Full Text Available This paper reports on ant and termite species inhabiting the mounds (murundus found in three wetland sites in Santo Antonio da Patrulha. Ants and termites were found in 100% of the mounds of two sites and in 20% of those in the third site. Colonies of Camponotus fastigatus were found inhabiting all the mounds, while colonies of Brachymyrmex sp., Linepithema sp., Pheidole sp., and/or Solenopsis sp. were collected in less than 30% of the mounds. In the mounds of the three sites, colonies of Anoplotermes sp. and/or Aparatermes sp. termites were found together with the ant colonies. Another cohabiting termite species, Cortaritermes sp., was found only in the mounds of one site. The results suggest that C. fastigatus is the species building the mounds, with the other species, whether ants or termites, being the inquilines.

  3. Ant and termite mound coinhabitants in the wetlands of Santo Antonio da Patrulha, Rio Grande do Sul, Brazil.

    Science.gov (United States)

    Diehl, E; Junqueira, L K; Berti-Filho, E

    2005-08-01

    This paper reports on ant and termite species inhabiting the mounds (murundus) found in three wetland sites in Santo Antonio da Patrulha. Ants and termites were found in 100% of the mounds of two sites and in 20% of those in the third site. Colonies of Camponotus fastigatus were found inhabiting all the mounds, while colonies of Brachymyrmex sp., Linepithema sp., Pheidole sp., and/or Solenopsis sp. were collected in less than 30% of the mounds. In the mounds of the three sites, colonies of Anoplotermes sp. and/or Aparatermes sp. termites were found together with the ant colonies. Another cohabiting termite species, Cortaritermes sp., was found only in the mounds of one site. The results suggest that C. fastigatus is the species building the mounds, with the other species, whether ants or termites, being the inquilines.

  4. Water Quality Study on the Hot and Cold Water Supply Systems at Vietnamese Hotels

    Directory of Open Access Journals (Sweden)

    Kanako Toyosada

    2017-04-01

    Full Text Available This study was conducted as part of the Joint Crediting Mechanism (JCM of the Japanese Ministry of Economy, Trade and Industry, and the Ministry of the Environment project’s preparation in Vietnam. Samples were taken from hot and cold water supplies from guest rooms’ faucets in 12 hotels in Hanoi city, Vietnam, and 13 hotels in Japan for comparison. A simple water quality measurement and determination of Legionella was carried out. The results showed that residual effective chlorine—which guarantees bactericidal properties—was not detected in tap water supplied in hotel rooms in Vietnam, and nitrite (an indicator of water pollution was detected in 40% of buildings. In the hotels in Japan, the prescribed residual chlorine concentration met the prescribed levels, and nitrite was not detected. Additionally, while there was no Legionella detected in the Japanese cases, it was detected in most of the Vietnamese hotels, which were found to manage the hot water storage tank at low temperatures of 40–50 °C. It was found that there were deficiencies in cold and hot water supply quality, and that there was no effective system in place for building operation maintenance and management.

  5. Predicting dredging-associated effects to coral reefs in Apra Harbor, Guam - Part 2: Potential coral effects.

    Science.gov (United States)

    Nelson, Deborah Shafer; McManus, John; Richmond, Robert H; King, David B; Gailani, Joe Z; Lackey, Tahirih C; Bryant, Duncan

    2016-03-01

    Coral reefs are in decline worldwide due to anthropogenic stressors including reductions in water and substratum quality. Dredging results in the mobilization of sediments, which can stress and kill corals via increasing turbidity, tissue damage and burial. The Particle Tracking Model (PTM) was applied to predict the potential impacts of dredging-associated sediment exposure on the coral reef ecosystems of Apra Harbor, Guam. The data were interpreted using maps of bathymetry and coral abundance and distribution in conjunction with impact parameters of suspended sediment concentration (turbidity) and sedimentation using defined coral response thresholds. The results are presented using a "stoplight" model of negligible or limited impacts to coral reefs (green), moderate stress from which some corals would be expected to recover while others would not (yellow) and severe stress resulting in mortality (red). The red conditions for sediment deposition rate and suspended sediment concentration (SSC) were defined as values exceeding 25 mg cm(-2) d(-1) over any 30 day window and >20 mg/l for any 18 days in any 90 day period over a column of water greater than 2 m, respectively. The yellow conditions were defined as values >10 mg cm(-2) d(-1) and <25 mg cm(-2) d(-1) over any 30 day period, and as 20% of 3 months' concentration exceeding 10 mg/l for the deposition and SSC, respectively. The model also incorporates the potential for cumulative effects on the assumption that even sub-lethal stress levels can ultimately lead to mortality in a multi-stressor system. This modeling approach can be applied by resource managers and regulatory agencies to support management decisions related to planning, site selection, damage reduction, and compensatory mitigation. Published by Elsevier Ltd.

  6. Stochastic Design of Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Burcharth, Hans F.

    The paper presents a level III reliability method from which the armour layer of rubble mound breakwaters can be designed, so that the total costs of construction price and expected maintaince expenses are minimized. Since the physics of the wave-structure interaction are not yet fully understood...

  7. 77 FR 32572 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the...

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA935 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the Southern Atlantic... conditions, various species of reef fish, crabs, and lobsters in Federal waters off South Carolina and North...

  8. Three-dimensional architecture and development of Danianbryozoan mounds at Limhamn, south-west Sweden, usingground-penetrating radar

    DEFF Research Database (Denmark)

    Nielsen, Lars; Schack von Brockdorff, A.; Bjerager, Morten Gustav Erik

    2009-01-01

    in the Limhamn limestone quarry, south-west Sweden, obtained from combined reflected ground-penetrating radar signals and outcrop analysis provide new information about the architecture and growth development of such mounds. The mounds are composed of bryozoan limestone and dark-grey to black flint bands which...... outline mound geometries. Ground-penetrating radar data sections are collected over a 120 m by 60 m grid of data lines with trace spacing of 0·25 m, providing a depth penetration of 7 to 12 m and a vertical resolution of ca 0·30 m. The ground-penetrating radar images outline the geometry of the internal...... layering of the mounds which, typically, have widths and lengths of 30 to 60 m and heights of 5 to 10 m. Mound architecture and growth show great variability in the ground-penetrating radar images. Small-scale mound structures with a palaeorelief of only a few metres may constitute the basis for growth...

  9. Dynamic environments of fungus-farming termite mounds exert growth-modulating effects on fungal crop parasites.

    Science.gov (United States)

    Katariya, Lakshya; Ramesh, Priya B; Borges, Renee M

    2018-03-01

    This study investigated for the first time the impact of the internal mound environment of fungus-growing termites on the growth of fungal crop parasites. Mounds of the termite Odontotermes obesus acted as (i) temperature and relative humidity (RH) 'stabilisers' showing dampened daily variation and (ii) 'extreme environments' exhibiting elevated RH and CO 2 levels, compared to the outside. Yet, internal temperatures exhibited seasonal dynamics as did daily and seasonal CO 2 levels. During in situ experiments under termite-excluded conditions within the mound, the growth of the crop parasite Pseudoxylaria was greater inside than outside the mound, i.e., Pseudoxylaria is 'termitariophilic'. Also, ex situ experiments on parasite isolates differing in growth rates and examined under controlled conditions in the absence of termites revealed a variable effect with fungal growth decreasing only under high CO 2 and low temperature conditions, reflecting the in situ parasite growth fluctuations. In essence, the parasite appears to be adapted to survive in the termite mound. Thus the mound microclimate does not inhibit the parasite but the dynamic environmental conditions of the mound affect its growth to varying extents. These results shed light on the impact of animal-engineered structures on parasite ecology, independent of any direct role of animal engineers. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. The role of fire on soil mounds and surface roughness in the Mojave Desert

    Science.gov (United States)

    Soulard, Christopher E.; Esque, Todd C.; Bedford, David R.; Bond, Sandra

    2013-01-01

    A fundamental question in arid land management centers on understanding the long-term effects of fire on desert ecosystems. To assess the effects of fire on surface topography, soil roughness, and vegetation, we used terrestrial (ground-based) LiDAR to quantify the differences between burned and unburned surfaces by creating a series of high-resolution vegetation structure and bare-earth surface models for six sample plots in the Grand Canyon-Parashant National Monument, Arizona. We find that 11 years following prescribed burns, mound volumes, plant heights, and soil-surface roughness were significantly lower on burned relative to unburned plots. Results also suggest a linkage between vegetation and soil mounds, either through accretion or erosion mechanisms such as wind and/or water erosion. The biogeomorphic implications of fire-induced changes are significant. Reduced plant cover and altered soil surfaces from fire likely influence seed residence times, inhibit seed germination and plant establishment, and affect other ecohydrological processes.

  11. Effective Climate Refugia for Cold-water Fishes

    Science.gov (United States)

    Ebersole, J. L.; Morelli, T. L.; Torgersen, C.; Isaak, D.; Keenan, D.; Labiosa, R.; Fullerton, A.; Massie, J.

    2015-12-01

    Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in mid-latitude salmonid distributions under future climates range from modest to severe, depending on modeling approaches, assumptions, and spatial context of analyses. Given these projected losses, increased emphasis on management for ecosystem resilience to help buffer cold-water fish populations and their habitats against climate change is emerging. Using terms such as "climate-proofing", "climate-ready", and "climate refugia", such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, such approaches will need to address critical uncertainties in both the physical basis for projected landscape changes in water temperature and streamflow, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on projected streamflows, air temperatures, and associated water temperature changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local hydrological responses and thermal dynamics. Yet important questions remain. Drawing on case studies throughout the Pacific Northwest, we illustrate some key uncertainties in the responses of salmonids and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. Key uncertainties include biotic interactions, organismal adaptive capacity, local climate decoupling due to groundwater-surface water interactions, the influence of human engineering responses, and synergies between climatic and other stressors. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted

  12. Bacterial assemblages differ between compartments within the coral holobiont

    Science.gov (United States)

    Sweet, M. J.; Croquer, A.; Bythell, J. C.

    2011-03-01

    It is widely accepted that corals are associated with a diverse and host species-specific microbiota, but how they are organized within their hosts remains poorly understood. Previous sampling techniques (blasted coral tissues, coral swabs and milked mucus) may preferentially sample from different compartments such as mucus, tissue and skeleton, or amalgamate them, making comparisons and generalizations between studies difficult. This study characterized bacterial communities of corals with minimal mechanical disruption and contamination from water, air and sediments from three compartments: surface mucus layer (SML), coral tissue and coral skeleton. A novel apparatus (the `snot sucker') was used to separate the SML from tissues and skeleton, and these three compartments were compared to swab samples and milked mucus along with adjacent environmental samples (water column and sediments). Bacterial 16S rRNA gene diversity was significantly different between the various coral compartments and environmental samples (PERMANOVA, F = 6.9, df = 8, P = 0.001), the only exceptions being the complete crushed coral samples and the coral skeleton, which were similar, because the skeleton represents a proportionally large volume and supports a relatively rich microflora. Milked mucus differed significantly from the SML collected with the `snot sucker' and was contaminated with zooxanthellae, suggesting that it may originate at least partially from the gastrovascular cavity rather than the tissue surface. A common method of sampling the SML, surface swabs, produced a bacterial community profile distinct from the SML sampled using our novel apparatus and also showed contamination from coral tissues. Our results indicate that microbial communities are spatially structured within the coral holobiont, and methods used to describe these need to be standardized to allow comparisons between studies.

  13. A too acid world for coral reefs

    International Nuclear Information System (INIS)

    Allemand, D.; Reynaud, St.; Salvat, B.

    2010-01-01

    While briefly presenting how corals grow and exchange with their environment and after having recalled that temperature increase was already a threat for them, this article outlines that ocean acidification is now considered as another danger. This acidification is due to the dissolution in sea water of CO 2 produced by human activities. This entails a slower calcification which is the process by which corals grow their skeleton. But, some researches showed that some corals manage to survive normally in such acid conditions, and even without skeleton for some other species. Anyhow, coral reefs will tend to disappear with environmental and socio-economical consequences

  14. Biological impacts of oil pollution: coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    Knap, A H [Bermuda Biological Station, Ferry Reach (Bermuda)

    1992-01-01

    Coral reefs are the largest structures made by living things and exist as extremely productive ecosystems in tropical and sub-tropical areas of the world. Their location in nearshore waters means that there is a potential danger to corals from tanker accidents, refinery operations, oil exploration and production. There are now a number of published scientific papers concerning the effects of oils on corals. This report summarises and interprets the findings, and provides background information on the structure and ecology of coral reefs. Clean-up options and their implications are discussed in the light of the latest evidence from case histories and field experiments. (author)

  15. Distribution of planktonic foraminifera in waters of the submarine coral banks in southeast Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, K.K.; Jayalakshmy, K.V.; Balasubramanian, T.

    Twentyfive species of planktonic foraminifera are recorded from 36 plankton tows collected from waters of the submerged coral banks- Bassas de Pedro, Sesostris and Cora Divh-located at northern end of the Laccadive group of islands in southeastern...

  16. Cold vacuum drying residual free water test description

    International Nuclear Information System (INIS)

    Pajunen, A.L.

    1997-01-01

    Residual free water expected to remain in a Multi-Canister Overpack (MCO) after processing in the Cold Vacuum Drying (CVD) Facility is investigated based on three alternative models of fuel crevices. Tests and operating conditions for the CVD process are defined based on the analysis of these models. The models consider water pockets constrained by cladding defects, water constrained in a pore or crack by flow through a porous bed, and water constrained in pores by diffusion. An analysis of comparative reaction rate constraints is also presented indicating that a pressure rise test can be used to show MCO's will be thermally stable at operating temperatures up to 75 C

  17. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    Science.gov (United States)

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  18. Biogeochemical study of termite mounds: a case study from Tummalapalle area of Andhra Pradesh, India.

    Science.gov (United States)

    Arveti, Nagaraju; Reginald, S; Kumar, K Sunil; Harinath, V; Sreedhar, Y

    2012-04-01

    Termite mounds are abundant components of Tummalapalle area of uranium mineralization of Cuddapah District of Andhra Pradesh, India. The systematic research has been carried out on the application of termite mound sampling to mineral exploration in this region. The distribution of chemical elements Cu, Pb, Zn, Ni, Co, Cr, Li, Rb, Sr, Ba, and U were studied both in termite soils and adjacent surface soils. Uranium accumulations were noticed in seven termite mounds ranging from 10 to 36 ppm. A biogeochemical parameter called "Biological Absorption Coefficient" of the termite mounds indicated the termite affected soils contained huge amounts of chemical elements than the adjacent soils.

  19. Chronicles of the deep : ageing deep-sea corals in New Zealand waters

    International Nuclear Information System (INIS)

    Tracey, D.; Neil, H.; Gordon, D.; O'Shea, S.

    2003-01-01

    How old is a coral? Finding the answer requires some rather complex steps. We need to understand: the source of carbonate; the effects of climatic events; how to interpret growth zones; the effect of 14 C and biological processes such as feeding and reproduction; and how to overcome the lack of deep-sea environmental data records. We also need to find out where on the coral we should be sampling to get the best estimates of age. At the moment we know little about how deep-sea corals deposit their calcite, but we will be exploring this further so that we can have greater confidence in our age estimates. To confirm and validate age and growth, it will be necessary to use a combination of some of the the possible methods for ageing coral. In addition to ageing the corals, this work should yield a high-resolution record of ocean temperature during the past 100 years by using stable-isotope signatures preserved in the corals' carbonate skeletons. (author). 4 figs

  20. Carbon dioxide addition to coral reef waters suppresses net community calcification

    Science.gov (United States)

    Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A.; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken

    2018-03-01

    Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.

  1. Effect of cold water injection on operation of and oil production from formations of Romashkino field

    Energy Technology Data Exchange (ETDEWEB)

    Mingareev, R Sh; Vakhitov, G G; Sultanov, S A

    1968-11-01

    Each year about 130 million cu m of cold water are injected into this field. Since cold water can lower reservoir temperature, increase oil viscosity, deposit paraffin in the formation, and reduce oil recovery, a thermal survey of this field was conducted. The survey showed that the average reservoir temperature was not reduced by cold-water injection for 15 yr. However, local cooling was observed at distances less than 400 m from the water injection well. Through these wells more than 4 PV of water have passed. The thermal front lags 1,500 m behind the advancing water front. For this reason, cold-water injection does not reduce oil recovery where there is uniform advance of the floodwater. When the formation is heterogeneous so that water advances more rapidly in high-permeability sand than in adjoining low-permeability sand, then the cooling effect can reduce oil recovery. For this reason, it is advisable to force water into the entire interval of the oil formation. An isotherm map of the Romashkino field is shown.

  2. Impacts of the Deepwater Horizon oil spill on deep-sea coral-associated sediment communities

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Cordes, Erik E.; Stamler, Katherine

    2016-01-01

    Cold-water corals support distinct populations of infauna within surrounding sediments that provide vital ecosystem functions and services in the deep sea. Yet due to their sedentary existence, infauna are vulnerable to perturbation and contaminant exposure because they are unable to escape disturbance events. While multiple deep-sea coral habitats were injured by the 2010 Deepwater Horizon (DWH) oil spill, the extent of adverse effects on coral-associated sediment communities is unknown. In 2011, sediments were collected adjacent to several coral habitats located 6 to 183 km from the wellhead in order to quantify the extent of impact of the DWH spill on infaunal communities. Higher variance in macrofaunal abundance and diversity, and different community structure (higher multivariate dispersion) were associated with elevated hydrocarbon concentrations and contaminants at sites closest to the wellhead (MC294, MC297, and MC344), consistent with impacts from the spill. In contrast, variance in meiofaunal diversity was not significantly related to distance from the wellhead and no other community metric (e.g. density or multivariate dispersion) was correlated with contaminants or hydrocarbon concentrations. Concentrations of polycyclic aromatic hydrocarbons (PAH) provided the best statistical explanation for observed macrofaunal community structure, while depth and presence of fine-grained mud best explained meiofaunal community patterns. Impacts associated with contaminants from the DWH spill resulted in a patchwork pattern of infaunal community composition, diversity, and abundance, highlighting the role of variability as an indicator of disturbance. These data represent a useful baseline for tracking post-spill recovery of these deep-sea communities.

  3. EFFECTS OF GLOBAL CHANGE ON CORAL REEF ECOSYSTEMS

    Science.gov (United States)

    Corals and coral reefs of the Caribbean and through the world are deteriorating at an accelerated rate. Several stressors are believed to contrbute to this decline, including global changes in atmospheric gases and land use patterns. In particular, warmer water temperatures and...

  4. Innovative rubble mound breakwaters for overtopping wave energy conversion

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Contestabile, Pasquale; Nørgaard, Jørgen Quvang Harck

    2014-01-01

    to the sea through turbines. Wave loadings and average wave overtopping rate at the rear side of the rubble mound breakwater and in the front reservoir are discussed on the basis of physical 2-D model tests carried out at Aalborg University (DK). The experiments have been analyzed and compared with results...... from model tests and wave load design formulae by Nørgaard et al. (2013) for traditional rubble mound crown walls. The existing prediction methods seem unable to predict the hydraulic performances and loadings on the front reservoir and thus new prediction formulae are proposed based on the new...

  5. The Assimilation of Diazotroph-Derived Nitrogen by Scleractinian Corals Depends on Their Metabolic Status

    Directory of Open Access Journals (Sweden)

    Vanessa N. Bednarz

    2017-01-01

    Full Text Available Tropical corals are associated with a diverse community of dinitrogen (N2-fixing prokaryotes (diazotrophs providing the coral an additional source of bioavailable nitrogen (N in oligotrophic waters. The overall activity of these diazotrophs changes depending on the current environmental conditions, but to what extent it affects the assimilation of diazotroph-derived N (DDN by corals is still unknown. Here, in a series of 15N2 tracer experiments, we directly quantified DDN assimilation by scleractinian corals from the Red Sea exposed to different environmental conditions. We show that DDN assimilation strongly varied with the corals’ metabolic status or with phosphate availability in the water. The very autotrophic shallow-water (~5 m corals showed low or no DDN assimilation, which significantly increased under elevated phosphate availability (3 µM. Corals that depended more on heterotrophy (i.e., bleached and deep-water [~45 m] corals assimilated significantly more DDN, which contributed up to 15% of the corals’ N demand (compared to 1% in shallow corals. Furthermore, we demonstrate that a substantial part of the DDN assimilated by deep corals was likely obtained from heterotrophic feeding on fixed N compounds and/or diazotrophic cells in the mucus. Conversely, in shallow corals, the net release of mucus, rich in organic carbon compounds, likely enhanced diazotroph abundance and activity and thereby the release of fixed N to the pelagic and benthic reef community. Overall, our results suggest that DDN assimilation by corals varies according to the environmental conditions and is likely linked to the capacity of the coral to acquire nutrients from seawater.

  6. Spatio-temporal transmission patterns of black-band disease in a coral community.

    Directory of Open Access Journals (Sweden)

    Assaf Zvuloni

    Full Text Available BACKGROUND: Transmission mechanisms of black-band disease (BBD in coral reefs are poorly understood, although this disease is considered to be one of the most widespread and destructive coral infectious diseases. The major objective of this study was to assess transmission mechanisms of BBD in the field based on the spatio-temporal patterns of the disease. METHODOLOGY/PRINCIPAL FINDINGS: 3,175 susceptible and infected corals were mapped over an area of 10x10 m in Eilat (northern Gulf of Aqaba, Red Sea and the distribution of the disease was examined monthly throughout almost two full disease cycles (June 2006-December 2007. Spatial and spatio-temporal analyses were applied to infer the transmission pattern of the disease and to calculate key epidemiological parameters such as (basic reproduction number. We show that the prevalence of the disease is strongly associated with high water temperature. When water temperatures rise and disease prevalence increases, infected corals exhibit aggregated distributions on small spatial scales of up to 1.9 m. Additionally, newly-infected corals clearly appear in proximity to existing infected corals and in a few cases in direct contact with them. We also present and test a model of water-borne infection, indicating that the likelihood of a susceptible coral becoming infected is defined by its spatial location and by the relative spatial distribution of nearby infected corals found in the site. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence that local transmission, but not necessarily by direct contact, is likely to be an important factor in the spread of the disease over the tested spatial scale. In the absence of potential disease vectors with limited mobility (e.g., snails, fireworms in the studied site, water-borne infection is likely to be a significant transmission mechanism of BBD. Our suggested model of water-borne transmission supports this hypothesis. The spatio-temporal analysis also points

  7. Formation of Burial Mounds of the Sarmatian Time in the Basin of the Esaulovsky Aksai River

    Directory of Open Access Journals (Sweden)

    Elena A. Korobkova

    2017-09-01

    Full Text Available The article deals with the features of the formation of the burial mounds in the basin of the Esaulovsky Aksai river in the Sarmatian period. Most of the burial mounds of the region begin to form in the Bronze Age and continue to function throughout the early, middle and early late-Sarmatian periods. Most of the burial mounds were located on the watersheds and above-flood terraces of different levels. All of them are characterized by same principles of planning, barrows in them are stretched in a chain in the natural form of the terrace on which the burial mound was built. The territories developed already in the Bronze Age were chosen for creating mounds in the early Sarmatian period. The main part of them is concentrated on a small section landplot of the middle course of the Esaulovsky Aksai river. During the Middle Sarmatian period, the main part of barrows were also located in the middle course of the Esaulovsky Aksai, but represented 2 plots. One of these plots continues to use large burial mounds of the previous period, and the other one undergoes the creation of small barrow groups consisting usually of two-three barrows containing the richest burials of the region with the “classical” set of Middle Sarmatian features. In the late Sarmatian period, as well as in the previous stages of the Sarmatian culture, the burial mounds of the middle course of the Esaulovsky Aksai continue to be used, which cease to function no later than at the first half of the 3rd century AD. But the territory of actively used burial mounds changes, and the main complexes of that time concentrate in the upper reaches, where new burial mounds are created and continue to function until the end of the Sarmatian era.

  8. Effect of Cold-Water Irrigation on Grain Quality Traits in japonica Rice Varieties from Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Guo-zhen ZHAO

    2009-09-01

    Full Text Available The response of grain quality traits to cold-water irrigation and its correlation with cold tolerance were studied in 11 japonica rice varieties from Yunnan Province, China. The results indicated that the response of grain quality traits to the cold-water stress varied with rice varieties and grain quality traits. Under the cold-water stress, grain width, chalky rice rate, whiteness, 1000-grain weight, brown rice rate, taste meter value, peak viscosity, trough viscosity, breakdown viscosity and final viscosity significantly decreased, whereas grain length-width ratio, head rice rate, alkali digestion value, protein content and setback viscosity markedly increased. However, the other traits such as grain length, amylose content, milled rice rate, peak viscosity time and pasting temperature were not significantly affected by the cold-water stress. Significant correlations were discovered between phenotypic acceptability and cold response indices of taste meter value, protein content, peak viscosity and breakdown viscosity. Therefore, it would be very important to improve the cold tolerance of Yunnan rice varieties in order to stabilize and improve their eating quality.

  9. Investigating Coral Disease Spread Across the Hawaiian Archipelago

    Science.gov (United States)

    Sziklay, Jamie

    Coral diseases negatively impact reef ecosystems and they are increasing worldwide; yet, we have a limited understanding of the factors that influence disease risk and transmission. My dissertation research investigated coral disease spread for several common coral diseases in the Hawaiian archipelago to understand how host-pathogenenvironment interactions vary across different spatial scales and how we can use that information to improve management strategies. At broad spatial scales, I developed forecasting models to predict outbreak risk based on depth, coral density and temperature anomalies from remotely sensed data (chapter 1). In this chapter, I determined that host density, total coral density, depth and winter temperature variation were important predictors of disease prevalence for several coral diseases. Expanding on the predictive models, I also found that colony size, wave energy, water quality, fish abundance and nearby human population size altered disease risk (chapter 2). Most of the model variation occurred at the scale of sites and coastline, indicating that local coral composition and water quality were key determinants of disease risk. At the reef scale, I investigated factors that influence disease transmission among individuals using a tissue loss disease outbreak in Kane'ohe Bay, O'ahu, Hawai'i as a case study (chapter 3). I determined that host size, proximity to infected neighbors and numbers of infected neighbors were associated with disease risk. Disease transmission events were very localized (within 15 m) and rates changed dramatically over the course of the outbreak: the transmission rate initially increased quickly during the outbreak and then decreased steadily until the outbreak ended. At the colony scale, I investigated disease progression between polyps within individual coral colonies using confocal microscopy (chapter 4). Here, I determined that fragmented florescent pigment distributions appeared adjacent to the disease front

  10. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in American Samoa from 2012-04-08 to 2013-04-03 (NCEI Accession 0162220)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  11. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in American Samoa from 2012-03-21 to 2015-03-25 (NCEI Accession 0162246)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  12. White syndrome on massive corals: A case study in Paiton power plant, East Java

    Science.gov (United States)

    Muzaki, Farid Kamal; Saptarini, Dian; Riznawati, Aida Efrini

    2017-06-01

    As a stenothermal organism, coral easily affected by high-temperature cooling water discharged by a power plant into surrounding waters; which may lead to a rapid spread and transmission of coral disease, including White Syndrome. This study aimed to measure the prevalence of WS on massive corals in Paiton Power Plant waters. Research was conductedduring May 2015 at three observation stations; west and east side of water discharge canal (DB and DT) and water intake canal (WI). Observed parameters including ambient environmental variables (sea surface and bottom temperature, salinity, dissolved oxygen/DO, pH, and visibility); the cover of life corals (percent and genera composition) and prevalence of coral disease at 5 m depth. One-way ANOVA (analysis of variance, p=0.05) was performed to test the difference of coral disease prevalence from different observation stations. As the results, Coral coverage percentage in WI (85.75%), DB (60.75%), and DT (40.8%). Prevalence of WS in DB was highest (40.49±2.12% in DB, 13.53±11.5% in DT and 6.44±3.6 %, respectively). It can be assumed that prevalence of White Syndrome in those locations may be correlated to temperature which highest average temperature occurred in DB stations.

  13. ASSESSING UV IRRADIANCE IN CARIBBEAN REEF CORAL AND DNA DAMAGE IN THEIR CORAL AND ZOOXANTHELLAE

    Science.gov (United States)

    UV penetration into the water near coral reefs may be increasing as a consequence of global climate change. Calm waters associated with ENSO conditions can enhance stratification that increases the amount of photobleaching of chromophoric dissolved organic matter (CDOM) in surfa...

  14. Mine waste disposal leads to lower coral cover, reduced species richness and a predominance of simple coral growth forms on a fringing coral reef in Papua New Guinea.

    Science.gov (United States)

    Haywood, M D E; Dennis, D; Thomson, D P; Pillans, R D

    2016-04-01

    A large gold mine has been operating at the Lihir Island Group, Papua New Guinea since 1997. The mine disposes of waste rock in nearshore waters, impacting nearby coral communities. During 2010, 2012 we conducted photographic surveys at 73 sites within 40 km of the mine to document impacts of mining operations on the hard coral communities. Coral communities close to the mine (∼2 km to the north and south of the mine) were depaurperate, but surprisingly, coral cover and community composition beyond this range appeared to be relatively similar, suggesting that the mine impacts were limited spatially. In particular, we found mining operations have resulted in a significant decrease in coral cover (4.4% 1.48 km from the disposal site c.f. 66.9% 10.36 km from the disposal site), decreased species richness and a predominance of less complex growth forms within ∼2 km to the north and south of the mine waste disposal site. In contrast to the two 'snapshot' surveys of corals performed in 2010 and 2012, long term data (1999-2012) based on visual estimates of coral cover suggested that impacts on coral communities may have been more extensive than this. With global pressures on the world's coral reefs increasing, it is vital that local, direct anthropogenic pressures are reduced, in order to help offset the impacts of climate change, disease and predation. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. Reef coral δ18O thermometer in Hainan island waters, south China sea

    International Nuclear Information System (INIS)

    He Xuexian; Peng Zicheng; Wang Zhaorong; Huo Weiguo; Tan Jun; Nie Baofu; Chen Tegu; Zhong Jinliang

    2000-01-01

    An 18-year-long (1981-1998) study was conducted in Hainan Island waters (22 degree 22'N, 110 degree 39'E) to determine the relationship between δ 18 O in skeletal aragonite carbonate and sea surface temperature (SST) in porites lutea of reef-building corals. δ 18 O values in skeletal aragonite carbonate were measured by means of mass spectrometry. Coral samples grew at 5 m depth at Longwan Bay. Monthly measurements of the SST from 1960 to 1998 were taken at Qinglan Bay adjacent to the place of the collected samples. The thermometer shows that SST = -4.16 δ 18 O PDB + 4.9 (r = 0.80) and dδ 18 O/dT = -0.24 per mil/degree C. The δ 18 O thermometer is strongly influenced by the rainfall and runoff. Using the thermometer, the SST in the past hundred years with monthly resolution will be reconstructed and the climatic change in the northern area of South China Sea will be hind cast

  16. Plutonium, americium, and uranium in blow-sand mounds of safety-shot sites at the Nevada Test Site and the Tonopah Test Range

    International Nuclear Information System (INIS)

    Essington, E.H.; Gilbert, R.O.; Wireman, D.L.; Brady, D.N.; Fowler, E.B.

    1977-01-01

    Blow-sand mounds or miniature sand dunes and mounds created by burrowing activities of animals were investigated by the Nevada Applied Ecology Group (NAEG) to determine the influence of mounds on plutonium, americium, and uranium distributions and inventories in areas of the Nevada Test Site and Tonopah Test Range. Those radioactive elements were added to the environment as a result of safety experiments of nuclear devices. Two studies were conducted. The first was to estimate the vertical distribution of americium in the blow-sand mounds and in the desert pavement surrounding the mounds. The second was to estimate the amount or concentration of the radioactive materials accumulated in the mound relative to the desert pavement. Five mound types were identified in which plutonium, americium, and uranium concentrations were measured: grass, shrub, complex, animal, and diffuse. The mount top (that portion above the surrounding land surface datum), the mound bottom (that portion below the mound to a depth of 5 cm below the surrounding land surface datum), and soil from the immediate area surrounding the mound were compared separately to determine if the radioactive elements had concentrated in the mounds. Results of the studies indicate that the mounds exhibit higher concentrations of plutonium, americium, and uranium than the immediate surrounding soil. The type of mound does not appear to have influenced the amount of the radioactive material found in the mound except for the animal mounds where the burrowing activities appear to have obliterated distribution patterns

  17. INVENTORY AND DISTRIBUTION OF MOLLUSC IN CORAL REEF OF BACAN ISLAND WATERS, NORTH MALUKU PROVINCE

    Directory of Open Access Journals (Sweden)

    Hendrik A.W. Cappenberg

    2017-11-01

    Full Text Available Bacan Island waters of North Maluku Province consisted of three main tropical ecosystems, namely mangrove, seagrass, and coral reef with the highest marine biodiversity. Mollusc is a group of marine fauna that most of them associated with coral reef.  However, little is known about their information in the Bacan Island due to lack of study conducted there. The purpose of this study is to observe the diversity and distribution of mollusc fauna in the coral reef flat of Bacan Island. Mollusc inventory was done using Rapid Reef Resource Assessment (RRA method by snorkling in the reefs of east coast (25 sites and west coast (10 sites of Bacan Island. The molluscs found were directly identified into species level and recorded.  Results of inventory show that there are 47 species belong to 19 families with the family of Muricidae is the highest diversity (6 species, while the lowest are Buccinidae, Bursidae, Haliotidae, Olividae, Cardiidae, Isognomonidae and Spondylidae, respectively with only 1 species in each of those families. The highest species number of mollusc was distributed along the east coast of the island (40 species, and the lowest one was in the west coast (37 species. Some species such as Tridacna spp., Pinctada margaritifera and Pteria penguin are important species, because they have economical values. Keywords:       biodiversity, molluscs, coral reef, Bacan Island, North Maluku

  18. Shifting paradigms in restoration of the world's coral reefs.

    Science.gov (United States)

    van Oppen, Madeleine J H; Gates, Ruth D; Blackall, Linda L; Cantin, Neal; Chakravarti, Leela J; Chan, Wing Y; Cormick, Craig; Crean, Angela; Damjanovic, Katarina; Epstein, Hannah; Harrison, Peter L; Jones, Thomas A; Miller, Margaret; Pears, Rachel J; Peplow, Lesa M; Raftos, David A; Schaffelke, Britta; Stewart, Kristen; Torda, Gergely; Wachenfeld, David; Weeks, Andrew R; Putnam, Hollie M

    2017-09-01

    Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine-protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014-2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs. © 2017 John Wiley & Sons Ltd.

  19. Influence of pyridostigmine bromide on human thermoregulation during cold-water immersion

    Energy Technology Data Exchange (ETDEWEB)

    Cadarette, B.S.; Prusaczyk, W.K.; Sawka, M.N. (Army Research Inst. of Environmental Medicine, Natick, MA (United States))

    1991-03-11

    This study examined the effects of an oral 30 mg dose of pyridostigmine bromide (PYR) on thermoregulatory and physiological responses during cold stress. Six men were immersed in chilled stirred water for up to 180 minutes; once 2 hours following ingestion of PYR and once 2 hours following ingestion of a placebo (CON). With PYR, mean ({plus minus} SD) red blood cell cholinesterase inhibition was 33 ({plus minus}12)% at 110 minutes post-ingestion. Cholinesterase inhibition was negatively related to lean body mass. Abdominal discomfort caused termination in 3 of 6 PYR experiments ({bar X} immersion time = 117 min) but in no CON experiments ({bar X} immersion time = 142 min, p > 0.05). During immersion, metabolic rate increased significantly over pre-immersion levels, and increased with duration of immersion, but did not differ between conditions. PYR had no significant effect on rectal temperature, mean body temperature, thermal sensation, heart rate, or plasma cortisol concentration. It was concluded that a 30 mg dose of PYR does not increase susceptibility to hypothermia in humans immersed in cold-water; however, in combination with cold-stress, PYR may result in marked abdominal cramping and limit cold tolerance.

  20. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  1. Coral reefs - sources or sinks of atmospheric CO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J R; Smith, S V; Reakakudla, M L [Hawaii University, Honolulu, HI (USA). Dept. of Oceanography

    1992-09-01

    Because the precipitation of calcium carbonate results in the sequestering of carbon, it frequently has been thought that coral reefs function as sinks of global atmospheric CO[sub 2]. However, the precipitation of calcium carbonate is accompanied by a shift of pH that results in the release of CO[sub 2]. This release of CO[sub 2] is less in buffered sea water than fresh water systems; nevertheless, coral reefs are sources, not sinks, of atmospheric carbon. Using estimated rates of coral reef carbonate production, we compute that coral reefs release 0.02 to 0.08 Gt C as CO[sub 2] annually. This is approximately 0.4% to 1.4% of the current anthropogenic CO[sub 2] production due to fossil fuel combustion.

  2. Mound cyclone incinerator. Volume I. Description and performance

    International Nuclear Information System (INIS)

    Klingler, L.M.

    1981-01-01

    The Mound cyclone incinerator was developed to fill a need for a simple, relaible incinerator for volume reduction of dry solid waste contaminated with plutonium-238. Although the basic design of the incinerator is for batch burning of solid combustible waste, the incinerator has also been adapted to volume reduction of other waste forms. Specialized waste feeding equipment enables continuous burning of both solid and liquid waste, including full scintillation vials. Modifications to the incinerator offgas system enable burning of waste contaminated with isotopes other than plutonium-238. This document presents the design and performance characteristics of the Mound Cyclone Incinerator for incineration of both solid and liquid waste. Suggestions are included for adaptation of the incinerator to specialized waste materials

  3. Abundance of Corals on Offshore Oil and Gas Platforms in the Gulf of Mexico

    Science.gov (United States)

    Kolian, Stephan R.; Sammarco, Paul W.; Porter, Scott A.

    2017-08-01

    Scleractinian, octocoral, and antipatharian corals have colonized many of the offshore oil and gas platforms in the northern Gulf of Mexico. We surveyed 25 offshore oil and gas platforms for these cnidarians. Few to no corals were detected on inshore, shallow-water structures at data suggest that the offshore platforms located in waters of >25-30 m in the study area are often colonized by these corals. We recommend that structures located in deeper waters should be surveyed for coral and, if the populations are substantial, consider alternate uses for the retired platforms, and leaving them in place, when feasible.

  4. Microbial ecology of corals, sponges, and algae in mesophotic coral environments

    Science.gov (United States)

    Olson, Julie B.; Kellogg, Christina A.

    2010-01-01

    Mesophotic coral ecosystems that occur at depths from 30 to 200 m have historically been understudied and yet appear to support a diverse biological community. The microbiology of these systems is particularly poorly understood, especially with regard to the communities associated with corals, sponges, and algae. This lack of information is partly due to the problems associated with gaining access to these environments and poor reproducibility across sampling methods. To summarize what is known about the microbiology of these ecosystems and to highlight areas where research is urgently needed, an overview of the current state of knowledge is presented. Emphasis is placed on the characterization of microbial populations, both prokaryotic and eukaryotic, associated with corals, sponges, and algae and the factors that influence microbial community structure. In topic areas where virtually nothing is known from mesophotic environments, the knowledge pertaining to shallow-water ecosystems is summarized to provide a starting point for a discussion on what might be expected in the mesophotic zone.

  5. Threatened corals provide underexplored microbial habitats.

    Directory of Open Access Journals (Sweden)

    Shinichi Sunagawa

    2010-03-01

    Full Text Available Contemporary in-depth sequencing of environmental samples has provided novel insights into microbial community structures, revealing that their diversity had been previously underestimated. Communities in marine environments are commonly composed of a few dominant taxa and a high number of taxonomically diverse, low-abundance organisms. However, studying the roles and genomic information of these "rare" organisms remains challenging, because little is known about their ecological niches and the environmental conditions to which they respond. Given the current threat to coral reef ecosystems, we investigated the potential of corals to provide highly specialized habitats for bacterial taxa including those that are rarely detected or absent in surrounding reef waters. The analysis of more than 350,000 small subunit ribosomal RNA (16S rRNA sequence tags and almost 2,000 nearly full-length 16S rRNA gene sequences revealed that rare seawater biosphere members are highly abundant or even dominant in diverse Caribbean corals. Closely related corals (in the same genus/family harbored similar bacterial communities. At higher taxonomic levels, however, the similarities of these communities did not correlate with the phylogenetic relationships among corals, opening novel questions about the evolutionary stability of coral-microbial associations. Large proportions of OTUs (28.7-49.1% were unique to the coral species of origin. Analysis of the most dominant ribotypes suggests that many uncovered bacterial taxa exist in coral habitats and await future exploration. Our results indicate that coral species, and by extension other animal hosts, act as specialized habitats of otherwise rare microbes in marine ecosystems. Here, deep sequencing provided insights into coral microbiota at an unparalleled resolution and revealed that corals harbor many bacterial taxa previously not known. Given that two of the coral species investigated are listed as threatened under

  6. Mound Plant Environmental Monitoring Plan

    International Nuclear Information System (INIS)

    Bauer, L.R.; Tullis, M.S.; Paulick, R.P.; Roush, L.L.

    1994-07-01

    The purpose of this Environmental Monitoring Plan (EMP) is to describe the environmental monitoring and surveillance programs in place at Mound. The Plan is required by DOE Order 5400.1 (DOE, 1990). The programs described in the EMP are required by the DOE 5400 Order series and by the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environment Surveillance (DOE 1991a), referred to as the Regulatory Guide throughout this Plan

  7. Manipulation/Extraction of Adatom on a Mound: AG(111)

    International Nuclear Information System (INIS)

    Yildirim, H.

    2004-01-01

    We present results of an extensive study of the manipulation/extraction of an atom from a small Ag mound on Ag(111) using a Ag tip. Molecular dynamics (MD) and molecular static (MS) simulations were carried out using interaction potentials from the embedded atom method. In order to evaluate the manipulation capabilities of the tip, we first examine in detail the characteristics of the energy landscape in the absence of the tip. We find that the energy barrier for the extraction of the Ag atom, either through lateral (sliding downwards) or through vertical (climbing upwards) diffusion, to be about 0.3 eV. We show that the presence of the tip lowers the energy barrier for both lateral and vertical diffusion. We find that when the tip is above the edge of the mound (at a height of 2.43 A A from the Ag atom) the barrier for diffusion drops to 0.032 eV for lateral and 0.18 eV for vertical manipulation. We discuss the effect of the tip shape and geometry on the energetics, and present a detailed explanation of how the adatom is extracted from a mound in good agreement with experimental observations

  8. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA

    International Nuclear Information System (INIS)

    Liu Heping; Blanken, Peter D; Weidinger, Tamas; Nordbo, Annika; Vesala, Timo

    2011-01-01

    Understanding seasonal variations in the evaporation of inland waters (e.g., lakes and reservoirs) is important for water resource management as well as the prediction of the hydrological cycles in response to climate change. We analyzed eddy covariance-based evaporation measurements from the Ross Barnett Reservoir (32 deg. 26'N, 90 0 02'W; which is always ice-free) in central Mississippi during the cool months (i.e., September-March) of 2007 and 2008, and found that the variability in cold front activities (i.e., passages of cold fronts and cold/dry air masses behind cold fronts) played an important role in modulating the exchange of sensible (H) and latent (λE) heat fluxes. Our analysis showed that 2007's warmer cool season had smaller mean H and λE than 2008's cooler cool season. This implies that the warmer cool season did not accelerate evaporation and heat exchange between the water surface and the atmosphere. Instead, more frequent cold fronts and longer periods of cold/dry air masses behind the cold fronts in 2008 resulted in overall larger H and λE as compared with 2007, this primarily taking the form of sporadic short-term rapid 'pulses' of H and λE losses from the water's surface. These results suggest that future climate-induced changes in frequency of cold fronts and the meteorological properties of the air masses behind cold fronts (e.g., wind speeds, temperature, and humidity), rather than other factors of climate change, would produce significant variations in the water surface's energy fluxes and subsequent evaporation rates.

  9. Diverse coral communities in naturally acidified waters of a Western Pacific reef

    Science.gov (United States)

    Shamberger, Kathryn E. F.; Cohen, Anne L.; Golbuu, Yimnang; McCorkle, Daniel C.; Lentz, Steven J.; Barkley, Hannah C.

    2014-01-01

    Anthropogenic carbon dioxide emissions are acidifying the oceans, reducing the concentration of carbonate ions ([CO32-]) that calcifying organisms need to build and cement coral reefs. To date, studies of a handful of naturally acidified reef systems reveal depauperate communities, sometimes with reduced coral cover and calcification rates, consistent with results of laboratory-based studies. Here we report the existence of highly diverse, coral-dominated reef communities under chronically low pH and aragonite saturation state (Ωar). Biological and hydrographic processes change the chemistry of the seawater moving across the barrier reefs and into Palau's Rock Island bays, where levels of acidification approach those projected for the western tropical Pacific open ocean by 2100. Nevertheless, coral diversity, cover, and calcification rates are maintained across this natural acidification gradient. Identifying the combination of biological and environmental factors that enable these communities to persist could provide important insights into the future of coral reefs under anthropogenic acidification.

  10. Performance on Water Stability of Cement-Foamed Asphalt Cold Recycled Mixture

    Directory of Open Access Journals (Sweden)

    Li Junxiao

    2018-01-01

    Full Text Available Through designing the mixture proportion of foamed asphalt cold in-place recycled mixture combined with the water stability experiment, it shows that the addition of cement can obviously improve foamed asphalt mixture’s water stability and the best cement admixture is between 1% ~ 2%; Using digital imaging microscope and SEM technology, the mechanism of increasing on the intensity of foamed asphalt mixture resulted by adding cement was analyzed. It revealed that the cement hydration products contained in the foamed asphalt mixture hydrolyzed into space mesh structure and wrapped up the aggregate particle, this is the main reason that the cement can enhance the mixture’s intensity as well as the water stability. This research provides reference for cement admixture’s formulation in the designing of foamed asphalt cold in-place recycled mixture.

  11. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  12. Microbial ecology of four coral atolls in the Northern Line Islands.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Dinsdale

    Full Text Available Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp. and heterotrophs. In contrast, Kiritimati, a large and populated ( approximately 5500 people atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1 oceaonographic and/or hydrographic conditions or 2 human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation

  13. Microbial Ecology of Four Coral Atolls in the Northern Line Islands

    Science.gov (United States)

    Smriga, Steven; Edwards, Robert A.; Angly, Florent; Wegley, Linda; Hatay, Mark; Hall, Dana; Brown, Elysa; Haynes, Matthew; Krause, Lutz; Sala, Enric; Sandin, Stuart A.; Thurber, Rebecca Vega; Willis, Bette L.; Azam, Farooq; Knowlton, Nancy; Rohwer, Forest

    2008-01-01

    Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated (∼5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems

  14. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Marianas Archipelago from 2011-04-09 to 2014-05-06 (NCEI Accession 0162244)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  15. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Hawaiian Archipelago from 2013-07-13 to 2016-09-28 (NCEI Accession 0162216)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  16. Struktur Komunitas Ikan Karang di Perairan Kendari (Community Structure of Coral Reef Fishes at Kendari Waters

    Directory of Open Access Journals (Sweden)

    Muhammad Adrim

    2012-09-01

    Full Text Available Keberadaan ikan karang merupakan salah satu bioindikator terhadap kondisi terumbu karang yang baik. Penelitian ikan karang di perairan Kendari bertujuan untuk mengetahui komposisi jenis, kelimpahan, sebaran, dan struktur komunitas ikan karang di perairan tersebut. Pengumpulan data dilakukan bulan Juli 2011 pada lima lokasi di bagian utara dan selatan Kendari. Data dihimpun dengan menggunakan teknik Underwater Visual Census (UVC dan metode transek (Line Intersept Transect, LIT dengan peralatan SCUBA. Total jenis ikan karang terkumpul sebanyak 111 jenis yang mewakili 24 famili, terdiri dari 31 jenis ikan target (ikan konsumsi, 17 jenis ikan indikator (indicator species, dan kelompok major 63 jenis. Kelornpok ikan pangan (target yang dominan; Caesio cuning, Siganus vulpinus dan Ctenochaetus striatus. Jenis yang paling dominan dari ikan indikator adalah Chaetodon octofasciatus. Sedangkan kelompok lainnya (major yang dominan adalah Pomacentrus smithii, Chrysiptera rollandi, Chrysiptera springeri, dan Pomacentrus alexanderae. Nilai Indeks keanekaragaman berkisar 1,36– 3,23. Indeks dominasi Margalef (d berkisar 4,74–8,66. Indeks kemerataan Pielou (J’=H’/logeS diperololeh pada kisaran 0,38–0,81 . Hasil analisis kluster pada matrik kesamaan Bray-Curtis 37 % diperoleh dendrograrn yang menunjukkan dua pengelompokan stasiun. Berdasarkan ordinasi sampel dengan MDS diperoleh dari kesamaan (stress= 0 dengan jelas menunjukkan dua komunitas yang berbeda. Hasil penelitian ini diharapkan dapat menjadi masukan sebagai data dasar untuk pengelolaan daerah pesisir bagi pemerintahan daerah (PEMDA. Kata kunci: ikan karang, struktur komunitas, indeks ekologi, perairan Kendari. Coral reef Fishes is one of bio-indicators for good condition coral reef ecosystem. A study on coral reef fishes in the Kendari waters was aimed to find out species composition, abundance, distribution and community structure of coral reef fishes in that area. The study was conducted in

  17. Can resistant coral-Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input

    Directory of Open Access Journals (Sweden)

    Shashank Keshavmurthy

    2014-04-01

    Full Text Available Climate change has led to a decline in the health of corals and coral reefs around the world. Studies have shown that, while some corals can cope with natural and anthropogenic stressors either through resistance mechanisms of coral hosts or through sustainable relationships with Symbiodinium clades or types, many coral species cannot. Here, we show that the corals present in a reef in southern Taiwan, and exposed to long-term elevated seawater temperatures due to the presence of a nuclear power plant outlet (NPP OL, are unique in terms of species and associated Symbiodinium types. At shallow depths (<3 m, eleven coral genera elsewhere in Kenting predominantly found with Symbiodinium types C1 and C3 (stress sensitive were instead hosting Symbiodinium type D1a (stress tolerant or a mixture of Symbiodinium type C1/C3/C21a/C15 and Symbiodinium type D1a. Of the 16 coral genera that dominate the local reefs, two that are apparently unable to associate with Symbiodinium type D1a are not present at NPP OL at depths of <3 m. Two other genera present at NPP OL and other locations host a specific type of Symbiodinium type C15. These data imply that coral assemblages may have the capacity to maintain their presence at the generic level against long-term disturbances such as elevated seawater temperatures by acclimatization through successful association with a stress-tolerant Symbiodinium over time. However, at the community level it comes at the cost of some coral genera being lost, suggesting that species unable to associate with a stress-tolerant Symbiodinium are likely to become extinct locally and unfavorable shifts in coral communities are likely to occur under the impact of climate change.

  18. Parallel evolution of mound-building and grass-feeding in Australian nasute termites.

    Science.gov (United States)

    Arab, Daej A; Namyatova, Anna; Evans, Theodore A; Cameron, Stephen L; Yeates, David K; Ho, Simon Y W; Lo, Nathan

    2017-02-01

    Termite mounds built by representatives of the family Termitidae are among the most spectacular constructions in the animal kingdom, reaching 6-8 m in height and housing millions of individuals. Although functional aspects of these structures are well studied, their evolutionary origins remain poorly understood. Australian representatives of the termitid subfamily Nasutitermitinae display a wide variety of nesting habits, making them an ideal group for investigating the evolution of mound building. Because they feed on a variety of substrates, they also provide an opportunity to illuminate the evolution of termite diets. Here, we investigate the evolution of termitid mound building and diet, through a comprehensive molecular phylogenetic analysis of Australian Nasutitermitinae. Molecular dating analysis indicates that the subfamily has colonized Australia on three occasions over the past approximately 20 Myr. Ancestral-state reconstruction showed that mound building arose on multiple occasions and from diverse ancestral nesting habits, including arboreal and wood or soil nesting. Grass feeding appears to have evolved from wood feeding via ancestors that fed on both wood and leaf litter. Our results underscore the adaptability of termites to ancient environmental change, and provide novel examples of parallel evolution of extended phenotypes. © 2017 The Author(s).

  19. The 2014 summer coral bleaching event in subtropical Hong Kong.

    Science.gov (United States)

    Xie, James Y; Lau, Dickey C C; Kei, Keith; Yu, Vriko P F; Chow, Wing-Kuen; Qiu, Jian-Wen

    2017-11-30

    We reported a coral bleaching event that occurred in August-September 2014 in Hong Kong waters based on video transect surveys conducted at eight sites. The bleaching affected eight species of corals with different growth forms. Bleaching at seven of the eight study sites was minor, affecting only 0.4-5.2% colonies and 0.8-10.0% coral-covered area. Sharp Island East, however, suffered from a moderate level of bleaching, with 13.1% colonies and 30.1% coral-covered area affected. Examination of the government's environmental monitoring data indicated abnormal water quality conditions preceding and during the bleaching event. Follow-up field surveys of tagged colonies showed that 76% of them had fully recovered, 12% partially recovered, and 12% suffered from mortality. These results indicate that the subtropical corals of Hong Kong are not immune to bleaching, and there is a need to study their responses under climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sulphur Extraction at Bryan Mound

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Carolyn L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, Anna C. Snider [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The Bryan Mound caprock was subjected to extens ive sulphur mining prior to the development of the Strategic Petroleum Reserve. Undoubtedl y, the mining has modified the caprock integrity. Cavern wells at Bryan Mound have been subject to a host of well integr ity concerns with many likely compromised by the cavernous capro ck, surrounding corrosive environment (H 2 SO 4 ), and associated elevated residual temperatures al l of which are a product of the mining activities. The intent of this study was to understand the sulphur mining process and how the mining has affected the stability of the caprock and how the compromised caprock has influenced the integrity of the cavern wells. After an extensiv e search to collect pert inent information through state agencies, literature sear ches, and the Sandia SPR librar y, a better understanding of the caprock can be inferred from the knowledge gaine d. Specifically, the discovery of the original ore reserve map goes a long way towards modeling caprock stability. In addition the gained knowledge of sulphur mining - subs idence, superheated corrosive wa ters, and caprock collapse - helps to better predict the post mi ning effects on wellbore integrity. This page intentionally left blank

  1. Predicting the occurrence of cold water patches at intermittent and ephemeral tributary confluences with warm rivers

    Science.gov (United States)

    Small, cold tributary streams can provide important thermal refuge habitat for cold-water fishes such as Pacific salmon (Oncorhynchus spp.) residing in warm, downstream receiving waters. We investigated the potential function of small perennial and non-perennial tributary stream...

  2. Spent nuclear fuel project cold vacuum drying facility tempered water and tempered water cooling system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Tempered Water (TW) and Tempered Water Cooling (TWC) System . The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the TW and TWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SOD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  3. Cruise Summary Report - MEDWAVES survey (MEDiterranean out flow WAter and Vulnerable EcosystemS)

    OpenAIRE

    Orejas, Covadonga; Addamo, Anna; Alvarez, Marta; Aparicio, Alberto; Alcoverro, Daniel; Arnaud-Haond, Sophie; Bilan, Meri; Boavida, Joana; Cainzos, Veronica; Calderon, Ruben; Cambeiro, Peregrino; Castano, Monica; Fox, Alan; Gallardo, Marina; Gori, Andrea

    2017-01-01

    The MEDWAVES (MEDiterranean out flow WAter and Vulnerable EcosystemS) cruise targeted areas under the potential influence of the MOW within the Mediterranean and Atlantic realms. These include seamounts where Cold-water corals (CWCs) have been reported but that are still poorly known, and which may act as essential “stepping stones” connecting fauna of seamounts in the Mediterranean with those of the continental shelf of Portugal, the Azores and the Mid-Atlantic Ridge. During MEDWAVES samplin...

  4. Survey of public knowledge and responses to educational slogans regarding cold-water immersion.

    Science.gov (United States)

    Giesbrecht, Gordon G; Pretorius, Thea

    2008-01-01

    Cold water temperature is a significant factor in North American drownings. These deaths are usually attributed to hypothermia. Survey questions were administered to 661 attendees of cold-stress seminars-including medical, rescue, law enforcement and lay attendees-to determine general knowledge of the effects of ice water immersion and responses to 2 public service educational slogans. Five questions were posed at the beginning of seminars to 8 groups (ranging in size from 46 to 195) during a 2-year period. Pi(2) analyses were used to determine if responses within any occupational category differed from the group responses. A high portion of respondents greatly underestimated the time to become hypothermic in ice water (correct answer >30 minutes; 84% stated 15 minutes or less) and the time until cooling was life threatening (correct answer >60 minutes; 85% stated 30 minutes or less). There were no occupational differences in these responses. Most of the respondents identified a correct cause of death during cold stress (81% stated cardiac arrest, hypothermia, or drowning). Although both educational slogans had some advantages, between 40% (Slogan #1) to 50% (Slogan #2) of respondents did not respond correctly. The majority of respondents underestimated the time available for survival during ice water immersion. It is important to educate the public accurately to decrease the probability of panic under these circumstances. More work is required to develop effective educational slogans that provide proper information and actions for victims of cold-water immersion.

  5. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea

    Science.gov (United States)

    Feldman, Bar; Shlesinger, Tom; Loya, Yossi

    2018-03-01

    With more than 450 studied species, coral reproduction is a well-known research field. However, the vast majority of coral reproduction research has focused exclusively on shallow reefs. The incentive for the present study was: (1) the recent accelerated global degradation of coral reefs; (2) the growing interest in mesophotic coral ecosystems (MCEs; 30-120 m depth) and their potential to serve as a larval source for shallow reefs; and (3) the lack of information on MCE coral reproduction. Here, we compare the reproduction and ecology of the depth-generalist coral Paramontastraea peresi between shallow (5-10 m) and mesophotic (40-45 m) habitats in the Gulf of Eilat/Aqaba, Red Sea. Field surveys were conducted to assess the living cover, abundance, and size frequency distribution of P. peresi. Four to six colonies from each habitat were sampled monthly between April 2015 and January 2017, and the gametogenesis cycles, fecundity, and oocyte sizes were measured. The reproductive cycle in the MCEs was shorter than in the shallow reef. Despite having larger polyps, the mesophotic colonies contained significantly smaller and fewer oocytes per polyp. In spite of the relatively stable environmental conditions of the MCEs, which may contribute to coral survival, scarcity of sunlight is probably a major energetic impediment to investment in reproduction by P. peresi at mesophotic depths. Further intensive reproductive studies in mesophotic reefs are thus required to assess the ability of corals in this environment to reproduce and constitute a larval source for depleted shallow-water reefs.

  6. Pre-Columbian landscape impact and agriculture in the Monumental Mound region of the Llanos de Moxos, lowland Bolivia

    Science.gov (United States)

    Whitney, Bronwen S.; Dickau, Ruth; Mayle, Francis E.; Soto, J. Daniel; Iriarte, José

    2013-09-01

    We present a multiproxy study of land use by a pre-Columbian earth mounds culture in the Bolivian Amazon. The Monumental Mounds Region (MMR) is an archaeological sub-region characterized by hundreds of pre-Columbian habitation mounds associated with a complex network of canals and causeways, and situated in the forest-savanna mosaic of the Llanos de Moxos. Pollen, phytolith, and charcoal analyses were performed on a sediment core from a large lake (14 km2), Laguna San José (14°56.97'S, 64°29.70'W). We found evidence of high levels of anthropogenic burning from AD 400 to AD 1280, corroborating dated occupation layers in two nearby excavated habitation mounds. The charcoal decline pre-dates the arrival of Europeans by at least 100 yr, and challenges the notion that the mounds culture declined because of European colonization. We show that the surrounding savanna soils were sufficiently fertile to support crops, and the presence of maize throughout the record shows that the area was continuously cultivated despite land-use change at the end of the earth mounds culture. We suggest that burning was largely confined to the savannas, rather than forests, and that pre-Columbian deforestation was localized to the vicinity of individual habitation mounds, whereas the inter-mound areas remained largely forested.

  7. Investing in sustainability at Coral World

    International Nuclear Information System (INIS)

    Jackson, O.

    2000-01-01

    Now open and operational for several years, Coral World offers a unique environmental model for other tourism-related facilities throughout the Caribbean and beyond. The extensive energy conservation program has yielded a 40 to 50% reduction in energy use and costs. The facility's unique on-site storm water absorption system virtually eliminates silt runoff to the coastal waters. The innovative, highly cost-effective series of renewable energy installations include a photovoltaic-powered restaurant kitchen, solar hot water systems and one of the world's first hydroelectric systems that uses wastewater drainage for turbine source waters. The extensive marine environmental conservation program protects fragile local ecosystems while also protecting the owners' investment in tourism. By investing aggressively in sustainability, Coral World's owners are reaping the benefits not only in reduced operating costs and improved profitability, but also in increased visitor volume and satisfaction

  8. The cumulative impacts of repeated heavy rainfall, flooding and altered water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia.

    Science.gov (United States)

    Butler, I R; Sommer, B; Zann, M; Zhao, J-X; Pandolfi, J M

    2015-07-15

    Terrestrial runoff and flooding have resulted in major impacts on coral communities worldwide, but we lack detailed understanding of flood plume conditions and their ecological effects. Over the course of repeated flooding between 2010 and 2013, we measured coral cover and water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia. In 2013, salinity, total suspended solids, total nitrogen and total phosphorus were altered for up to six months post-flooding. Submarine groundwater caused hypo-saline conditions for a further four months. Despite the greater magnitude of flooding in 2013, declines in coral abundance (∼28%) from these floods were lower than the 2011 flood (∼40%), which occurred immediately after a decade of severe drought. There was an overall cumulative decrease of coral by ∼56% from 2010 to 2013. Our study highlights the need for local scale monitoring and research to facilitate informed management and conservation of catchments and marine environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience.

    Directory of Open Access Journals (Sweden)

    Roberta M Bonaldo

    Full Text Available Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving allelopathic and non-allelopathic macroalgae on three, spatially grouped pairs of no-take Marine Protected Areas (MPAs and non-MPAs in Fiji. In non-MPAs, biomass of herbivorous fishes was 70-80% lower, macroalgal cover 4-9 fold higher, macroalgal-coral contacts 5-15 fold more frequent and 23-67 fold more extensive (measured as % of colony margin contacted by macroalgae, and coral cover 51-68% lower than in MPAs. Coral contacts with allelopathic macroalgae occurred less frequently than expected by chance across all sites, while contact with non-allelopathic macroalgae tended to occur more frequently than expected. Transplants of allelopathic macroalgae (Chlorodesmis fastigiata and Galaxaura filamentosa against coral edges inflicted damage to Acropora aspera and Pocillopora damicornis more rapidly and extensively than to Porites cylindrica and Porites lobata, which appeared more resistant to these macroalgae. Montipora digitata experienced intermediate damage. Extent of damage from macroalgal contact was independent of coral colony size for each of the 10 macroalgal-coral pairings we established. When natural contacts with Galaxaura filamentosa were removed in the field, recovery was rapid for Porites lobata, but Pocillopora damicornis did not recover and damage continued to expand. As macroalgae increase on overfished tropical reefs, allelopathy could produce feedbacks that suppress coral resilience, prevent coral recovery, and promote the stability of algal beds in habitats previously available to corals.

  10. 207 EFFECTS OF HOT AND COLD WATER PRE- TREATMENTS ...

    African Journals Online (AJOL)

    The treatments used were immersion of the seeds in cold water (at room o temperature) for 8, 12 and ... goat, sheep and cattle in the semi arid regions due to the palatability of its ... visible signs of infestation were selected out of the total seeds ...

  11. Pleistocene corals of the Florida keys: Architects of imposing reefs - Why?

    Science.gov (United States)

    Lidz, B.H.

    2006-01-01

    Five asymmetrical, discontinuous, stratigraphically successive Pleistocene reef tracts rim the windward platform margin off the Florida Keys. Built of large head corals, the reefs are imposing in relief (???30 m high by 1 km wide), as measured from seismic profiles. Well dated to marine oxygen isotope substages 5c, 5b, and 5a, corals at depth are inferred to date to the Stage 6/5 transition. The size of these reefs attests to late Pleistocene conditions that repeatedly induced vigorous and sustained coral growth. In contrast, the setting today, linked to Florida Bay and the Gulf of Mexico, is generally deemed marginal for reef accretion. Incursion onto the reef tract of waters that contain seasonally inconsistent temperature, salinity, turbidity, and nutrient content impedes coral growth. Fluctuating sea level and consequent settings controlled deposition. The primary dynamic was position of eustatic zeniths relative to regional topographic elevations. Sea level during the past 150 ka reached a maximum of ???10.6 m higher than at present ???125 ka, which gave rise to an inland coral reef (Key Largo Limestone) and ooid complex (Miami Limestone) during isotope substage 5e. These formations now form the Florida Keys and a bedrock ridge beneath The Quicksands (Gulf of Mexico). High-precision radiometric ages and depths of dated corals indicate subsequent apices remained ???15 to 9 m, respectively, below present sea level. Those peaks provided accommodation space sufficient for vertical reef growth yet exposed a broad landmass landward of the reefs for >100 ka. With time, space, lack of bay waters, and protection from the Gulf of Mexico, corals thrived in clear oceanic waters of the Gulf Stream, the only waters to reach them.

  12. Estimating total 239240Pu in blow-sand mounds of two safety-shot sites

    International Nuclear Information System (INIS)

    Gilbert, R.O.; Essington, E.H.

    1977-01-01

    A study for estimating the total amount (inventory) of 239 240 Pu in blow-sand mounds at two safety-shot sites (Area 13-Project 57 on the Nellis Air Force Base and Clean Slate 3 on the Tonopah Test Range in Nevada) is described. The total amount in blow-sand mounds at these two sites is estimated to be 5.8 +- 1.3 (total +- standard error) and 10.6 +- 2.5 curies, respectively. The total 239 240 Pu in mounds plus desert pavement areas, both to a depth of 5 cm below desert pavement level, is estimated to be 39 +- 5.7 curies at the Project 57 site and 36 +- 4.8 curies at Clean Slate 3. These estimates are compared with the somewhat higher estimates of 46 +- 9 and 37 +- 5.4 curies reported that pertain to only the top 5 cm of mounds and desert pavement. The possibility is discussed that these differences are due to sampling variability arising from the skewed nature of plutonium concentrations, particularly near ground zero

  13. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands

    Science.gov (United States)

    Miller, J.; Muller, E.; Rogers, C.; Waara, R.; Atkinson, A.; Whelan, K.R.T.; Patterson, M.; Witcher, B.

    2009-01-01

    In the northeast Caribbean, doldrum-like conditions combined with elevated water temperatures in the summer/fall 2005 created the most severe coral bleaching event ever documented within this region. Video monitoring of 100 randomly chosen, permanent transects at five study sites in the US Virgin Islands revealed over 90% of the scleractinian coral cover showed signs of thermal stress by paling or becoming completely white. Lower water temperatures in October allowed some re-coloring of corals; however, a subsequent unprecedented regional outbreak of coral disease affected all sites. Five known diseases or syndromes were recorded; however, most lesions showed signs similar to white plague. Nineteen scleractinian species were affected by disease, with >90% of the disease-induced lesions occurring on the genus Montastraea. The disease outbreak peaked several months after the onset of bleaching at all sites but did not occur at the same time. The mean number of disease-induced lesions increased 51-fold and the mean area of disease-associated mortality increased 13-fold when compared with pre-bleaching disease levels. In the 12 months following the onset of bleaching, coral cover declined at all sites (average loss: 51.5%, range: 42.4-61.8%) reducing the five-site average from 21.4% before bleaching to 10.3% with most mortality caused by white plague disease, not bleaching. Continued losses through October 2007 reduced the average coral cover of the five sites to 8.3% (average 2-year loss: 61.1%, range: 53.0-79.3%). Mean cover by M. annularis (complex) decreased 51%, Colpophyllia natans 78% and Agaricia agaricites 87%. Isolated disease outbreaks have been documented before in the Virgin Islands, but never as widespread or devastating as the one that occurred after the 2005 Caribbean coral-bleaching event. This study provides insight into the effects of continued seawater warming and subsequent coral bleaching events in the Caribbean and highlights the need to

  14. Slumping of brine mounds : bounds on behaviour

    NARCIS (Netherlands)

    Philips, J.R.; Duijn, van C.J.

    1996-01-01

    Two modifications of the approximate analysis of interface motion during two-fluid density-driven flows of De Josselin de Jong (Proc. Euromech., 143: 75–82, 1981) are applied to the slumping of finite two-dimensional and axisymmetric brine mounds. Both lead to simple similarity solutions. One

  15. Application of 5700.6B, quality assurance, to ES and H programs: Mound's approach and results

    International Nuclear Information System (INIS)

    Edling, D.A.

    1985-01-01

    Quality Assurance has always been integral to Mound's production and support operations. Weapons material and other designated material for WR programs are processed and controlled per the requirements of DOE/AL Quality Control Policy QC-1. Mound's non-WR activities, such as siting, design, construction, testing, operation, maintenance, development and production of materials, components, and systems, and acquisition of research and technology data are to be processed and controlled per the requirements of AL Order 5700.6. This paper presents an overview of the entire Quality Assurance Program at Mound and specifically addresses Mound's formal application of Quality Assurance to our comprehensive Environmental, Safety and Health (ES and H) Programs. 4 figures, 1 table

  16. Do Epigeal Termite Mounds Increase the Diversity of Plant Habitats in a Tropical Rain Forest in Peninsular Malaysia?

    Science.gov (United States)

    Beaudrot, Lydia; Du, Yanjun; Rahman Kassim, Abdul; Rejmánek, Marcel; Harrison, Rhett D.

    2011-01-01

    The extent to which environmental heterogeneity can account for tree species coexistence in diverse ecosystems, such as tropical rainforests, is hotly debated, although the importance of spatial variability in contributing to species co-existence is well recognized. Termites contribute to the micro-topographical and nutrient spatial heterogeneity of tropical forests. We therefore investigated whether epigeal termite mounds could contribute to the coexistence of plant species within a 50 ha plot at Pasoh Forest Reserve, Malaysia. Overall, stem density was significantly higher on mounds than in their immediate surroundings, but tree species diversity was significantly lower. Canonical correspondence analysis showed that location on or off mounds significantly influenced species distribution when stems were characterized by basal area. Like studies of termite mounds in other ecosystems, our results suggest that epigeal termite mounds provide a specific microhabitat for the enhanced growth and survival of certain species in these species-rich tropical forests. However, the extent to which epigeal termite mounds facilitate species coexistence warrants further investigation. PMID:21625558

  17. A novel method for coral explant culture and micropropagation.

    Science.gov (United States)

    Vizel, Maya; Loya, Yossi; Downs, Craig A; Kramarsky-Winter, Esti

    2011-06-01

    We describe here a method for the micropropagation of coral that creates progeny from tissue explants derived from a single polyp or colonial corals. Coral tissue explants of various sizes (0.5-2.5 mm in diameter) were manually microdissected from the solitary coral Fungia granulosa. Explants could be maintained in an undeveloped state or induced to develop into polyps by manipulating environmental parameters such as light and temperature regimes, as well as substrate type. Fully developed polyps were able to be maintained for a long-term in a closed sea water system. Further, we demonstrate that mature explants are also amenable to this technique with the micropropagation of second-generation explants and their development into mature polyps. We thereby experimentally have established coral clonal lines that maintain their ability to differentiate without the need for chemical induction or genetic manipulation. The versatility of this method is also demonstrated through its application to two other coral species, the colonial corals Oculina patigonica and Favia favus.

  18. 2014 Strategic Petroleum Reserve Bryan Mound Well Integrity Grading Report.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Barry L; Lord, David; Lord, Anna C. Snider; Bettin, Giorgia; Sobolik, Steven R.; Rudeen, David Keith; Eldredge, Lisa L. (FFPO); Wynn, Karen (FFPO); Checkai, Dean (FFPO); Osborne, Gerad (FFPO); Moore, Darryl (FFPO)

    2015-04-01

    This report summarizes the work performed in the prioritization of cavern access wells for remediation and monitoring at the Bryan Mound Strategic Petroleum Reserve site. The grading included consideration of all 47 wells at the Bryan Mound site, with each well receiving a separate grade for remediation and monitoring. Numerous factors affecting well integrity were incorporated into the grading including casing survey results, cavern pressure history, results from geomechanical simulations, and site geologic factors. The factors and grading framework used here are the same as those used in developing similar well remediation and monitoring priorities at the Big Hill Strategic Petroleum Reserve Site.

  19. Shrub mound formation and stability on semi-arid slopes in the Northern Negev Desert of Israel: A field and simulation study

    NARCIS (Netherlands)

    Buis, E.; Temme, A.J.A.M.; Veldkamp, A.; Boeken, B.; Jongmans, A.G.; Breemen, van N.; Schoorl, J.M.

    2010-01-01

    In semi-arid areas vegetation is scarce and often dominated by individual shrubs on raised mounds. The processes of formation of these mounds are diverse and still debated. Often, shrub mound formation is directly related to the formation of vegetation patterns, thereby assuming that shrub mound

  20. Comparison of two carbonate mound sequences in the Lower Ordovician El Paso Formation, west Texas and southern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, R.E.

    1985-01-01

    The El Paso Formations consists of four members, in ascending order: Hitt Canyon, Jose McKelligon and Padre. Mounds in the McKelligon Member exposed in the southern Franklin Mountains were described by Toomey (1970). Most of these mounds are small but one large one is 5.8 m thick and about 13.7 m long in outcrop. The mound rock is chiefly bioclastic wackestone with minor packstone and boundstone. The varied fauna contains echinoderms, sponges and spicules, gastropods, trilobites, digitate algae, Nuia, Girvanella, Pulchrilamina, Calathium, and minor brachiopods and cephalopods. Intraclastic, bioclastic grainstone fills channels cut in the mounds. Similar, but smaller and less spectacular mounds occur in the McKelligon Member in the Florida, Big Hatchet, and Caballo Mountains, Lone Mountain, Cooke's Range, and elsewhere in southwestern New Mexico. A second type of mound is common in the upper part of the Hitt Canyon Member in the Cooke's Range, Red Hills, Caballo and Big Hatchet Mountains. These mounds also are typically small but one in the Red Hills is 13.7 m thick and about 30 m long in outcrop. The mound complex is about 75-80% SH-C and LLH-C stromatolite boundstone and bioclastic wackestone. The remaining 20-25% is bioclastic packstone and grainstone between the SH-C stromatolites and filling channels cut in the mound complex. The limited fauna contains small fragments of echinoderms, gastropods, trilobites, spicules, and Nuia.

  1. Modeling Surface Water Transport in the Central Pacific Ocean With 129I Records From Coral Skeletons

    Science.gov (United States)

    Beck, W.; Biddulph, D. L.; Russell, J. L.; Burr, G. S.; Jull, T. J.; Correge, T.; Roeder, B.

    2008-12-01

    129I occurs naturally in extremely low abundance via cosmic ray interactions in the atmosphere as well as by spontaneous fission of uranium. Oceanic concentrations of 129I have risen by several orders of magnitude during the last half century largely from environmental pollution coming from several point-source nuclear fuel reprocessing plants. In the Pacific basin, much of the increase has apparently come from the Hanford Nuclear reprocessing plant in the United States, with iodine primarily arriving via the Columbia River. Coral skeletons preserve records of 129I concentration of the surface waters from which they were deposited, yielding records with annual resolution or better. We will present three such records from different locations in the Pacific Ocean: the Solomon Islands, Easter Island and Clipperton Atoll. For this study, drill cores from living massive coral skeletons of the species Porites Lobata were collected from these sites. 129I/127I values were measured using accelerator mass spectrometry (AMS) at the University of Arizona with an NEC 3 MV Pelletron accelerator. Results from the analysis of the corals will be compared to the distribution of other mixed-layer tracers (chloro-fluorocarbons and tritium) collected during the World Ocean Circulation Experiment cruises conducted between 1990 and 2002. The 129I/127I records observed in these corals will also be compared to tracer transit time calculations determined from a 20th century simulation of the GFDL coupled-climate passive-tracer model.

  2. Elimination of Coptotermes lacteus (Froggatt) (Blattodea: Rhinotemitidae) Colonies Using Bistrifluron Bait Applied through In-Ground Bait Stations Surrounding Mounds.

    Science.gov (United States)

    Webb, Garry

    2017-09-12

    The efficacy of bistrifluron termite bait was evaluated using in-ground bait stations placed around Coptotermes lacteus mounds in south-eastern Australia during late summer and autumn (late February to late May 2012). Four in-ground bait stations containing timber billets were placed around each of twenty mounds. Once sufficient numbers of in-ground stations were infested by termites, mounds were assigned to one of four groups (one, two, three or four 120 g bait canisters or 120 to 480 g bait in total per mound) and bait canisters installed. One mound, nominally assigned treatment with two canisters ultimately had no termite interception in any of the four in-ground stations and not treated. Eighteen of the remaining 19 colonies were eliminated by 12 weeks after bait placement, irrespective of bait quantity removed (range 43 to 480 g). Measures of colony decline-mound repair capability and internal core temperature-did not accurately reflect the colony decline, as untreated colonies showed a similar pattern of decline in both repair capability and internal mound core temperature. However, during the ensuing spring-summer period, capacity to repair the mound was restored in untreated colonies and the internal core temperature profile was similar to the previous spring-summer period which indicated that these untreated colonies remained healthy.

  3. Modelling of Cold Water Hammer with WAHA code

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2003-01-01

    The Cold Water Hammer experiment described in the present paper is a simple facility where overpressure accelerates a column of liquid water into the steam bubble at the closed vertical end of the pipe. Severe water hammer with high pressure peak occurs when the vapor bubble condenses and the liquid column hits the closed end of the pipe. Experimental data of Forschungszentrum Rossendorf are being used to test the newly developed computer code WAHA and the computer code RELAP5. Results show that a small amount of noncondensable air in the steam bubble significantly affects the magnitude of the calculated pressure peak, while the wall friction and condensation rate only slightly affect the simulated phenomena. (author)

  4. Hypoxia tolerance and air-breathing ability correlate with habitat preference in coral-dwelling fishes

    Science.gov (United States)

    Nilsson, G. E.; Hobbs, J.-P. A.; Östlund-Nilsson, S.; Munday, P. L.

    2007-06-01

    Hypoxia tolerance and air-breathing occur in a range of freshwater, estuarine and intertidal fishes. Here it is shown for the first time that coral reef fishes from the genera Gobiodon, Paragobiodon and Caracanthus, which all have an obligate association with living coral, also exhibit hypoxia tolerance and a well-developed air-breathing capacity. All nine species maintained adequate respiration in water at oxygen concentrations down to 15-25% air saturation. This hypoxia tolerance is probably needed when the oxygen levels in the coral habitat drops sharply at night. Air-breathing abilities of the species correlated with habitat association, being greatest (equaling oxygen uptake in water) in species that occupy corals extending into shallow water, where they may become air exposed during extreme low tides. Air-breathing was less well-developed or absent in species inhabiting corals from deeper waters. Loss of scales and a network of subcutaneous capillaries appear to be key adaptations allowing cutaneous respiration in air. While hypoxia tolerance may be an ancestral trait in these fishes, air-breathing is likely to be a more recent adaptation exemplifying convergent evolution in the unrelated genera Gobiodon and Caracanthus in response to coral-dwelling lifestyles.

  5. Evaluation of brine disposal from the Bryan Mound site of the strategic petroleum reserve program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Case, Robert J.; Chittenden, Jr, Mark E.; Harper, Jr, Donald E.; Kelly, Jr, Francis J.; Loeblich, Laurel A.; McKinney, Larry D.; Minello, Thomas J.; Park, E. Taisoo; Randall, Robert E.; Slowey, J. Frank

    1981-01-01

    On March 10, 1980, the Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging the resulting brine into the coastal waters off Freeport, Texas. During the months of March and April, a team of scientists and engineers from Texas A and M University conducted an intensive environmental study of the area surrounding the diffuser site. A pipeline has been laid from the Bryan Mound site to a location 12.5 statute miles (20 km) offshore. The last 3060 ft (933 m) of this pipeline is a 52-port diffuser through which brine can be discharged at a maximum rate of 680,000 barrels per day. Initially, 16 ports were open which permitted a maximum discharge rate of 350,000 barrels per day and a continuous brine discharge was achieved on March 13, 1980. The purpose of this report is to describe the findings of the project team during the intensive postdisposal study period of March and April, 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management.

  6. On the anomalous concentrations of uranium in sediments from hydrothermal mounds. A geochemical roll-type mechanism

    International Nuclear Information System (INIS)

    Bernat, M.; Benhassaine, A.

    1987-01-01

    Sediments close to the nontronite formations of hydrothermal mounds often show anomalously high concentrations of uranium. This is frequently interpreted as being due to seeping of low temperature U bearing hydrothermal water through the basal basalt and into the overlying sediments. But we think that this phenomenon is the consequence of leaching of the sediment by hydrothermal water initially depleted in uranium. The migration of U is favoured by the pH of these water which dissolve the iron oxides and hydroxides giving Fe +++ ions in solution. The location and strength of the formed U anomalies are controlled by geochemical and hydrodynamicals factors. 22 refs [fr

  7. Validation of OMA formation in cold brackish and sea waters

    International Nuclear Information System (INIS)

    Khelifa, A.; Hill, P.S.

    2005-01-01

    This study addressed the challenge of cleaning oil spilled in cold, ice-infested waters in the St. Lawrence estuary in the winter. The main objective was to develop an environmentally safe and efficient cleansing method. The use of an oil-mineral agglomeration (OMA) process has been proposed to improve dispersion and biodegradation of the spilled oil. This bench-scale study was conducted to validate this proposed remedial method. The theory for this natural attenuation process for oil spills on shores is that oil droplets and suspended sediments disperse in the water column and aggregate into OMAs. OMA formation involves floc break and aggregation by differential settling. This study examined the formation time and the concentration of OMA in a typical turbulent estuarine environment and determined the effect of sediment size and concentration on OMA formation. It also verified if OMA forms in cold brackish water considering 2 types of oils which are commonly transported along the St. Lawrence estuary to Quebec City. OMA formation was validated with Heidrun and IF30 crude oils and 2 types of engineered sediments to determine the best sediment to form OMA and to determine the minimum sediment concentration needed to maximize OMA formation. The minimum agitation time to reach this maximizing condition of OMA formation was also determined. It was concluded that OMAs form readily in cold brackish and seawater when Heidrun or IF30 crude oils are mixed with chalk or bentonite sediment. 23 refs., 2 tabs., 8 figs

  8. Safe shutdown of Defense Program facilities at the Mound Plant, Miamisburg, Ohio

    International Nuclear Information System (INIS)

    Anderson, H.F.; Bantz, P.D.; Luthy, D.F.

    1996-01-01

    The Mound Plant was one of several production sites in the US Department of Energy's Defense Programs (DP) Weapons Complex. As a result of the downsizing of the weapons program, certain operations at Mound are being transferred to other DOE sites and the DP buildings at Mound are being shutdown. The objectives of the program are to reduce the hazardous and financial liabilities to DOE and to foster the reuse of facilities for economic development. The overall program is described. The process began with the categorization of excess DP buildings into three groups depending on their anticipated future use. The draft DOE/EM-60 Acceptance Criteria were used to develop a detailed shutdown checklist as the foundation of the process. The overall program budget, schedule, ad options for disposition of materials and components is presented. Accomplishments in FY94 and FY95 are described. By the end of FY95, all excess energetic materials and components, all excess chemicals (from non-radiation areas) and significant amounts of radioactive materials have been removed from the site. By the end of FY95, 47 of the 72 buildings in the program have been taken through all ten of the draft EM-60 acceptance criteria. Lessons learned, based on experience at Mound to date, are summarized

  9. Hot Water after the Cold War – Water Policy Dynamics in (Semi-Authoritarian States

    Directory of Open Access Journals (Sweden)

    Peter P. Mollinga

    2010-10-01

    Full Text Available This introductory article of the special section introduces the central question that the section addresses: do water policy dynamics in (semi-authoritarian states have specific features as compared to other state forms? The article situates the question in the post-Cold War global water governance dynamics, argues that the state is a useful and required entry point for water policy analysis, explores the meaning of (semi-authoritarian as a category, and finally introduces the three papers, which are on China, South Africa and Vietnam.

  10. Predicting climate-driven regime shifts versus rebound potential in coral reefs.

    Science.gov (United States)

    Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K

    2015-02-05

    Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.

  11. Echinoid associations with coral habitats differ with taxon in the deep sea and the influence of other echinoids, depth, and fishing history on their distribution

    Science.gov (United States)

    Stevenson, Angela; Davies, Jaime S.; Williams, Alan; Althaus, Franziska; Rowden, Ashley A.; Bowden, David A.; Clark, Malcolm R.; Mitchell, Fraser J. G.

    2018-03-01

    Patterns of habitat use by animals and knowledge of the environmental factors affecting these spatial patterns are important for understanding the structure and dynamics of ecological communities. Both aspects are poorly known for deep-sea habitats. The present study investigates echinoid distributions within cold water coral (CWC) habitats on continental margins off France, Australia, and New Zealand. It further examines the influence of habitat-related variables that might help explain the observed distribution of echinoid taxa. Six echinoid taxa were examined from video and photographic transects to reveal taxon-specific distribution patterns and habitat-related influences. The Echinoidea were found in all habitats studied, but tended to aggregate in architecturally complex habitats associated with living cold-water corals. However, a taxon-specific investigation found that such associations were largely an artefact of the dominant taxa observed in a specific region. Despite the food and shelter resources offered to echinoids by matrix-forming coral habitats, not all taxa were associated with these habitats, and some had a random association with the habitats examined, while others displayed non-random associations. Echinoid distribution was correlated with several variables; the presence of other echinoids, depth, and fishing history were the most influential factors. This study indicates that image data can be a useful tool to detect trends in echinoid habitat associations. It also suggests that refinement of the methods, in particular with studies conducted at a more precise taxon and habitat scale, would facilitate better quantitative analyses of habitat associations and paint a more realistic picture of a population's ecology. Most deep-sea ecological studies to date have been conducted at a relatively coarse taxonomic and habitat resolution, and lack sufficient resolution to provide useful information for the conservation of vulnerable deep-sea habitats.

  12. The physiological response to cold-water immersion following a mixed martial arts training session.

    Science.gov (United States)

    Lindsay, Angus; Carr, Sam; Cross, Sean; Petersen, Carl; Lewis, John G; Gieseg, Steven P

    2017-05-01

    Combative sport is one of the most physically intense forms of exercise, yet the effect of recovery interventions has been largely unexplored. We investigated the effect of cold-water immersion on structural, inflammatory, and physiological stress biomarkers following a mixed martial arts (MMA) contest preparation training session in comparison with passive recovery. Semiprofessional MMA competitors (n = 15) were randomly assigned to a cold-water immersion (15 min at 10 °C) or passive recovery protocol (ambient air) completed immediately following a contest preparation training session. Markers of muscle damage (urinary myoglobin), inflammation/oxidative stress (urinary neopterin + total neopterin (neopterin + 7,8-dihydroneopterin)), and hypothalamic-pituitary axis (HPA) activation (saliva cortisol) were determined before, immediately after, and 1, 2, and 24 h postsession. Ratings of perceived soreness and fatigue, counter movement jump, and gastrointestinal temperature were also measured. Concentrations of all biomarkers increased significantly (p < 0.05) postsession. Cold water immersion attenuated increases in urinary neopterin (p < 0.05, d = 0.58), total neopterin (p < 0.05, d = 0.89), and saliva cortisol after 2 h (p < 0.05, d = 0.68) and urinary neopterin again at 24 h (p < 0.01, d = 0.57) in comparison with passive recovery. Perceived soreness, fatigue, and gastrointestinal temperatures were also lower for the cold-water immersion group at several time points postsession whilst counter movement jump did not differ. Combative sport athletes who are subjected to impact-induced stress may benefit from immediate cold-water immersion as a simple recovery intervention that reduces delayed onset muscle soreness as well as macrophage and HPA activation whilst not impairing functional performance.

  13. Preliminary geochemical results of corals from the Puerto Morelos Reef, Southeastern Mexico

    Science.gov (United States)

    Marquez, N.; Kasper, J.

    2012-04-01

    A microprobe (MB), major, trace and rare earth elements (REE) analyses were carried out in three coral species Acropora palmata, Acropora cervicornis and Gorgonia ventalina at Puerto Morelos, Reef, Southeastern Mexico. This was done to assess the degree in which the corals developed under the different chemical-physical natural and artificial conditions. The corals were cut at the top and middle and based upon the observations by using the MB analysis, results showed the highest concentrations of Ag, Cu, Cr, Ni, S, Sr, Zn y Zr in Gorgonia Ventalina suggesting an impact coming from the industrial discharges and/or rusting of boats in the area. The results of X-ray fluorescence analysis for major and trace elements showed that the Fe , Sr and Zr increase their content in the skeletons of Acropora palmata y Gorgonia ventalina also asociated with the presence of human activity since the area is composed mainly by carbonate source sediments. The rare earth elements (REE) analysis showed that the negative anomaly of Ce suggests a well oxygenated, highly oxidative modern shallow waters, and high nutrients related to suspended matter for Acropora Palmata, Acropora cervicornis y Gorgonia ventalina, The Positive Eu anomaly in the corals are due to the development of the reef linked to the concentration of waters enriched in La. The Nd/Yb ratio indicates a shallow water development for the corals. This is also supported by the Ce/Ce* vs. Pr/Pr* ratios that indicate shallow marine waters in the development of the three corals studied (Ce*= 0.5La+0.5Pr and Pr*= 0.5Ce+0.5Nd). Enrichment of heavy rare earth elements (Gd-Lu) in the corals may be associated with high pH values and CO, OH- ions in the sea water.

  14. Contaminants assessment in the coral reefs of Virgin Islands National Park and Virgin Islands Coral Reef National Monument

    Science.gov (United States)

    Bargar, Timothy A.; Garrison, Virginia H.; Alvarez, David A.; Echols, Kathy

    2013-01-01

    Coral, fish, plankton, and detritus samples were collected from coral reefs in Virgin Islands National Park (VIIS) and Virgin Islands Coral Reef National Monument (VICR) to assess existing contamination levels. Passive water sampling using polar organic chemical integrative samplers (POCIS) and semi-permeable membrane devices found a few emerging pollutants of concern (DEET and galaxolide) and polynuclear aromatic hydrocarbons. Very little persistent organic chemical contamination was detected in the tissue or detritus samples. Detected contaminants were at concentrations below those reported to be harmful to aquatic organisms. Extracts from the POCIS were subjected to the yeast estrogen screen (YES) to assess potential estrogenicity of the contaminant mixture. Results of the YES (estrogen equivalency of 0.17–0.31 ng/L 17-β-estradiol) indicated a low estrogenicity likelihood for contaminants extracted from water. Findings point to low levels of polar and non-polar organic contaminants in the bays sampled within VICR and VIIS.

  15. Influence of cold water immersion on limb and cutaneous blood flow at rest.

    Science.gov (United States)

    Gregson, Warren; Black, Mark A; Jones, Helen; Milson, Jordon; Morton, James; Dawson, Brian; Atkinson, Greg; Green, Daniel J

    2011-06-01

    Cold water immersion reduces exercise-induced muscle damage. Benefits may partly arise from a decline in limb blood flow; however, no study has comprehensively investigated the influence of different degrees of cooling undertaken via cold water immersion on limb blood flow responses. To determine the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow. Controlled laboratory study. Nine men were placed in a semireclined position and lowered into 8°C or 22°C water to the iliac crest for two 5-minute periods interspersed with 2 minutes of nonimmersion. Rectal and thigh skin temperature, deep and superficial muscle temperature, heart rate, mean arterial pressure, thigh cutaneous blood velocity (laser Doppler), and superficial femoral artery blood flow (duplex ultrasound) were measured during immersion and for 30 minutes after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). Reductions in rectal temperature (8°C, 0.2° ± 0.1°C; 22°C, 0.1° ± 0.1°C) and thigh skin temperature (8°C, 6.2° ± 0.5°C; 22°C, 3.2° ± 0.2°C) were greater in 8°C water than in 22°C (P water compared with 22°C (P = .01). These data suggest that immersion at both temperatures resulted in similar whole limb blood flow but, paradoxically, more blood was distributed to the skin in the colder water. This suggests that colder temperatures may be associated with reduced muscle blood flow, which could provide an explanation for the benefits of cold water immersion in alleviating exercise-induced muscle damage in sports and athletic contexts. Colder water temperatures may be more effective in the treatment of exercise-induced muscle damage and injury rehabilitation because of greater reductions in muscle blood flow.

  16. Symbiosis regulation in a facultatively symbiotic temperate coral: zooxanthellae division and expulsion

    Science.gov (United States)

    Dimond, J.; Carrington, E.

    2008-09-01

    Zooxanthellae mitotic index (MI) and expulsion rates were measured in the facultatively symbiotic scleractinian Astrangia poculata during winter and summer off the southern New England coast, USA. While MI was significantly higher in summer than in winter, mean expulsion rates were comparable between seasons. Corals therefore appear to allow increases in symbiont density when symbiosis is advantageous during the warm season, followed by a net reduction during the cold season when zooxanthellae may draw resources from the coral. Given previous reports that photosynthesis in A. poculata symbionts does not occur below approximately 6°C, considerable zooxanthellae division at 3°C and in darkness suggests that zooxanthellae are heterotrophic at low seasonal temperatures. Finally, examination of expulsion as a function of zooxanthellae density revealed that corals with very low zooxanthellae densities export a significantly greater proportion of their symbionts, apparently allowing them to persist in a stable azooxanthellate state.

  17. The ecotoxicology of vegetable versus mineral based lubricating oils 3. Coral fertilization and adult corals

    International Nuclear Information System (INIS)

    Mercurio, Philip; Negri, Andrew P.; Burns, Kathryn A.; Heyward, Andrew J.

    2004-01-01

    Biodegradable vegetable-derived lubricants (VDL) might be less toxic to marine organisms than mineral-derived oils (MDL) due to the absence of high molecular weight aromatics, but this remains largely untested. In this laboratory study, adult corals and coral gametes were exposed to various concentrations of a two-stroke VDL-1A and a corresponding MDL to determine which lubricant type was more toxic to each life stage. In the fertilization experiment, gametes from the scleractinian coral Acropora microphthalma were exposed to water-accommodated fractions (WAF) of VDL-1A and MDL for four hours. The MDL and VDL-1A WAFs inhibited normal fertilization of the corals at 200 μg l -1 total hydrocarbon content (THC) and 150 μg l -1 THC respectively. Disturbance of a stable coral-dinoflagellate symbiosis is regarded as a valid measure of sub-lethal stress in adult corals. The state of the symbiosis in branchlets of adult colonies of Acropora formosa was monitored using indicators such as dinoflagellate expulsion and dark-adapted photosystem II yields of dinoflagellate (using pulse amplitude modulation fluorescence). An effect on symbiosis was measurable following 48 h exposure to the lubricants at concentrations of 190 μg l -1 and 37 μg l -1 THC for the MDL and VDL-1A respectively. GC/MS revealed that the main constituent of the VDL-1A WAF was the compound coumarin, added by the manufacturer to improve odour. The fragrance containing coumarin was removed from the lubricant formulation and the toxicity towards adult corals re-examined. The coumarin-free VDL-2 exhibited significantly less toxicity towards the adult corals than all of the other oil types tested, with the only measurable effect being a slight but significant drop in photosynthetic efficiency at 280 μg l -1 . - Vegetable-derived lubricants were less toxic to adult corals than their mineral counterparts

  18. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises

    Directory of Open Access Journals (Sweden)

    Kane J. Hayter

    2016-03-01

    Full Text Available This study examined the effects of cold-water immersion (CWI and cold air therapy (CAT on maximal cycling performance (i.e. anaerobic power and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10 and female (n = 10 participants were randomised into either: CWI (15 min in 14 °C water to iliac crest or CAT (15 min in 14 °C air immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively. Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24, 48 (T48 and 72 (T72 h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05. However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90, T48 (8% ± 2%, ES = 0.64 and T72 (8% ± 7%, ES = 0.76. The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone.

  19. Cross-shore velocity shear, eddies and heterogeneity in water column properties over fringing coral reefs: West Maui, Hawaii

    Science.gov (United States)

    Storlazzi, C.D.; McManus, M.A.; Logan, J.B.; McLaughlin, B.E.

    2006-01-01

    A multi-day hydrographic survey cruise was conducted to acquire spatially extensive, but temporally limited, high-resolution, three-dimensional measurements of currents, temperature, salinity and turbidity off West Maui in the summer of 2003 to better understand coastal dynamics along a complex island shoreline with coral reefs. These data complement long-term, high-resolution tide, wave, current, temperature, salinity and turbidity measurements made at a number of fixed locations in the study area starting in 2001. Analyses of these hydrographic data, in conjunction with numerous field observations, evoke the following conceptual model of water and turbidity flux along West Maui. Wave- and wind-driven flows appear to be the primary control on flow over shallower portions of the reefs while tidal and subtidal currents dominate flow over the outer portions of the reefs and insular shelf. When the direction of these flows counter one another, which is quite common, they cause a zone of cross-shore horizontal shear and often form a front, with turbid, lower-salinity water inshore of the front and clear, higher-salinity water offshore of the front. It is not clear whether these zones of high shear and fronts are the cause or the result of the location of the fore reef, but they appear to be correlated alongshore over relatively large horizontal distances (orders of kilometers). When two flows converge or when a single flow is bathymetrically steered, eddies can be generated that, in the absence of large ocean surface waves, tend to accumulate material. Areas of higher turbidity and lower salinity tend to correlate with regions of poor coral health or the absence of well-developed reefs, suggesting that the oceanographic processes that concentrate and/or transport nutrients, contaminants, low-salinity water or suspended sediment might strongly influence coral reef ecosystem health and sustainability.

  20. Geochemical study of coral skeletons from the Puerto Morelos Reef, southeastern Mexico

    Science.gov (United States)

    Kasper-Zubillaga, Juan J.; Armstrong-Altrin, John S.; Rosales-Hoz, Leticia

    2014-12-01

    Geochemical analyses in coral skeletons have been used as a proxy of marine environmental conditions and to understand the mechanisms of adsorption of chemical elements into the coral skeletons and growth forms. However, little attention has been given to show the possible differences in the growth rates of corals based upon major, trace, rare earth element and microprobe analyses to examine the physical-chemical conditions influencing those differences. Our goal is to show how branch and fan corals incorporate elements into their skeletons comparing them with their coral growth rates. We determine the development of the skeletons of two branching (Acropora palmata, Acropora cervicornis) and one fan shaped (Gorgonia ventalina) colonies in the Puerto Morelos Reef, southeastern Mexico based upon geochemical data and the influence of terrigenous input into the species. Mg and Sr concentrations were the most statistically significant elements among the species studied suggesting that Mg concentration in Gorgonia ventalina is probably not linked to its growth rate. Mn content in the sea water is adsorbed by the three corals during past growth rates during high rainfall events. Sr concentration may be associated with the growth rate of Acropora palmata. Little differences in the growth rate in Acropora palmata may be associated with low rates of calcitization, negligible changes in the Sr concentration and little influence of temperature and water depth in its growth. Trace elements like Cr, Co, Ni and V adsorbed by the corals are influenced by natural concentration of these elements in the sea-water. Rare earth elements in the corals studied suggests abundant inorganic ions CO32- with variable pH in modern shallow well-oxygenated sea water. Lack of terrigenous input seawards is supported by geochemical, geomorphological and biological evidences. This study is an example of how geochemical data are useful to observe the differences in environmental conditions related to

  1. Methane fluxes from the mound-building termite species of North Australian savannas

    Science.gov (United States)

    Jamali, H.; Livesely, S. J.; Arndt, S. K.; Dawes-Gromadzki, T.; Cook, G. D.; Hutley, L.

    2009-04-01

    Termites are estimated to contribute 3-19% to the global methane emissions. These estimates have large uncertainties because of the limited number of field-based studies and species studied, as well as issues of diel and seasonal variation. We measured methane fluxes from four common mound-building termite species (Microcerotermes nervosus, n=26; M. serratus, n=4; Tumulitermes pastinator, n=5; and Amitermes darwini, n=4) in tropical savannas near Darwin in the Northern Territory, Australia. Methane fluxes from replicated termite mounds were measured in the field using manual chambers with fluxes reported on a mound volume basis. Methane flux was measured in both wet and dry seasons and diel variation was investigated by measuring methane flux every 4 hours over a 24 hour period. Mound temperature was measured concurrently with flux to examine this relationship. In addition, five M. nervosus mounds removed from the field and incubated under controlled temperature conditions over a 24 hour period to remove the effect of varying temperature. During the observation campaigns, mean monthly minimum and maximum temperatures for February (wet season) were 24.7 and 30.8°C, respectively, and were 20.1 to 31.4 °C in June (dry season). Annual rainfall in 2008 for Darwin was 1970.1 mm, with a maximum of 670 mm falling in February and no rain in May and June. Methane fluxes were greatest in the wet season for all species, ranging from 265.1±101.1 (T. pastinator) to 2256.6±757.1 (M. serratus) µg CH4-C/m3/h. In the dry season, methane fluxes were at their lowest, ranging from 10.0±5.5 (T. pastinator) to 338.0±165.9 (M. serratus) µg CH4-C/m3/h. On a diel basis, methane fluxes were smallest at the coolest time of the day (~0700 hrs) and greatest at the warmest (~1400 hrs) for all species, and for both wet and dry seasons. Typical diel variation in flux from M. serratus dominated mounds ranged from 902.6±261.9 to 1392.1±408.1 µg CH4-C/m3/h in wet season and 99.6±57.4 to

  2. PhyloChip™ microarray comparison of sampling methods used for coral microbial ecology

    Science.gov (United States)

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Zawada, David G.; Andersen, Gary L.

    2012-01-01

    Interest in coral microbial ecology has been increasing steadily over the last decade, yet standardized methods of sample collection still have not been defined. Two methods were compared for their ability to sample coral-associated microbial communities: tissue punches and foam swabs, the latter being less invasive and preferred by reef managers. Four colonies of star coral, Montastraea annularis, were sampled in the Dry Tortugas National Park (two healthy and two with white plague disease). The PhyloChip™ G3 microarray was used to assess microbial community structure of amplified 16S rRNA gene sequences. Samples clustered based on methodology rather than coral colony. Punch samples from healthy and diseased corals were distinct. All swab samples clustered closely together with the seawater control and did not group according to the health state of the corals. Although more microbial taxa were detected by the swab method, there is a much larger overlap between the water control and swab samples than punch samples, suggesting some of the additional diversity is due to contamination from water absorbed by the swab. While swabs are useful for noninvasive studies of the coral surface mucus layer, these results show that they are not optimal for studies of coral disease.

  3. Biological impacts of oil pollution: coral reefs. V. 3

    International Nuclear Information System (INIS)

    1997-01-01

    Coral reefs are the largest structures made by living things and exist as extremely productive ecosystems in tropical and sub-tropical areas of the world. Their location in nearshore waters means that there is a potential danger to corals from tanker accidents, refinery operations, oil exploration and production. There are now a number of published scientific papers concerning the effects of oils on corals, but results are not entirely consistent. This report summarizes and interprets the findings, and provides background information on the structure and ecology of coral reefs. Clean-up options and their implications are discussed in the light of the latest evidence from case histories and field experiments. (UK)

  4. A Preliminary Study on Termite Mound Soil as Agricultural Soil for Crop Production in South West, Nigeria

    Directory of Open Access Journals (Sweden)

    O. E. Omofunmi

    2017-08-01

    Full Text Available It is a popular belief of the people in the Southern region of Nigeria that a land infested with termite usually brings prosperity to the land owner regardless of the type of its usage. Therefore, the present study assessed termite mounds soil properties which are important to crop production. Two soil samples were collected and their physical and chemical properties determined in accordance with American Public Health Association (APHA, 2005. Data were analyzed using descriptive statistics. The textural classes showed that the termite mound soil was sand clay loam while the surrounding soil was clay loam. This results revealed that: Termites’ activity induced significant chemical changes in the soil possible due to the materials used in building their nests. There was increase the concentrations of nitrogen, phosphorus, Potassium, calcium and magnesium higher in the termite’s mounds, while the micro-nutrients (zinc, iron and copper except sulphur and manganese lower in the soil infested by termites. There were significant differences (p ≥ 0.05 between termite mound soil and surrounding soil. It showed highly positive correlation between termite mound and surrounding soil (r= 0.92. The concentration of the soil properties around the termite mound are within the range of soil nutrients suitable for arable crop production. Termite mound soil is recommended to be used as an alternative to local farmers who cannot afford to buy expensive inorganic fertilizers.

  5. Elimination of Coptotermes lacteus (Froggatt (Blattodea: Rhinotemitidae Colonies Using Bistrifluron Bait Applied through In-Ground Bait Stations Surrounding Mounds

    Directory of Open Access Journals (Sweden)

    Garry Webb

    2017-09-01

    Full Text Available The efficacy of bistrifluron termite bait was evaluated using in-ground bait stations placed around Coptotermes lacteus mounds in south-eastern Australia during late summer and autumn (late February to late May 2012. Four in-ground bait stations containing timber billets were placed around each of twenty mounds. Once sufficient numbers of in-ground stations were infested by termites, mounds were assigned to one of four groups (one, two, three or four 120 g bait canisters or 120 to 480 g bait in total per mound and bait canisters installed. One mound, nominally assigned treatment with two canisters ultimately had no termite interception in any of the four in-ground stations and not treated. Eighteen of the remaining 19 colonies were eliminated by 12 weeks after bait placement, irrespective of bait quantity removed (range 43 to 480 g. Measures of colony decline—mound repair capability and internal core temperature—did not accurately reflect the colony decline, as untreated colonies showed a similar pattern of decline in both repair capability and internal mound core temperature. However, during the ensuing spring–summer period, capacity to repair the mound was restored in untreated colonies and the internal core temperature profile was similar to the previous spring–summer period which indicated that these untreated colonies remained healthy.

  6. Postexercise cold-water immersion improves intermittent high-intensity exercise performance in normothermia.

    Science.gov (United States)

    McCarthy, Avina; Mulligan, James; Egaña, Mikel

    2016-11-01

    A brief cold water immersion between 2 continuous high-intensity exercise bouts improves the performance of the latter compared with passive recovery in the heat. We investigated if this effect is apparent in normothermic conditions (∼19 °C), employing an intermittent high-intensity exercise designed to reflect the work performed at the high-intensity domain in team sports. Fifteen young active men completed 2 exhaustive cycling protocols (Ex1 and Ex2: 12 min at 85% ventilatory threshold (VT) and then an intermittent exercise alternating 30-s at 40% peak power (P peak ) and 30 s at 90% P peak to exhaustion) separated by 15 min of (i) passive rest, (ii) 5-min cold-water immersion at 8 °C, and (iii) 10-min cold-water immersion at 8 °C. Core temperature, heart rate, rates of perceived exertion, and oxygen uptake kinetics were not different during Ex1 among conditions. Time to failure during the intermittent exercise was significantly (P immersions (7.2 ± 3.5 min and 7.3 ± 3.3 min, respectively) compared with passive rest (5.8 ± 3.1 min). Core temperature, heart rate, and rates of perceived exertion were significantly (P immersions compared with passive rest. The time constant of phase II oxygen uptake response during the 85% VT bout of Ex2 was not different among the 3 conditions. A postexercise, 5- to 10-min cold-water immersion increases subsequent intermittent high-intensity exercise compared with passive rest in normothermia due, at least in part, to reductions in core temperature, circulatory strain, and effort perception.

  7. Predicting Heat Stress to Inform Reef Management: NOAA Coral Reef Watch's 4-Month Coral Bleaching Outlook

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2018-03-01

    Full Text Available The U.S. National Oceanic and Atmospheric Administration's (NOAA Coral Reef Watch (CRW operates a global 4-Month Coral Bleaching Outlook system for shallow-water coral reefs in collaboration with NOAA's National Centers for Environmental Prediction (NCEP. The Outlooks are generated by applying the algorithm used in CRW's operational satellite coral bleaching heat stress monitoring, with slight modifications, to the sea surface temperature (SST predictions from NCEP's operational Climate Forecast System Version 2 (CFSv2. Once a week, the probability of heat stress capable of causing mass coral bleaching is predicted for 4-months in advance. Each day, CFSv2 generates an ensemble of 16 forecasts, with nine runs out to 45-days, three runs out to 3-months, and four runs out to 9-months. This results in 28–112 ensemble members produced each week. A composite for each predicted week is derived from daily predictions within each ensemble member. The probability of each of four heat stress ranges (Watch and higher, Warning and higher, Alert Level 1 and higher, and Alert Level 2 is determined from all the available ensemble members for the week to form the weekly probabilistic Outlook. The probabilistic 4-Month Outlook is the highest weekly probability predicted among all the weekly Outlooks during a 4-month period for each of the stress ranges. An initial qualitative skill analysis of the Outlooks for 2011–2015, compared with CRW's satellite-based coral bleaching heat stress products, indicated the Outlook has performed well with high hit rates and low miss rates for most coral reef areas. Regions identified with high false alarm rates will guide future improvements. This Outlook system, as the first and only freely available global coral bleaching prediction system, has been providing critical early warning to marine resource managers, scientists, and decision makers around the world to guide management, protection, and monitoring of coral reefs

  8. NORTH PORTAL - DOMESTIC COLD WATER CALCULATION - CHANGE HOUSE FACILITY NO.5008

    International Nuclear Information System (INIS)

    Blackstone, R.

    1996-01-01

    The purpose of this design analysis and calculation is to determine the demand for domestic cold water and to size the supply main piping for the Change House Facility No.5008 in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculations is based on the Uniform Plumbing Code (UPC), Section 4.4.1. The first step is to determine the maximum pressure drop between the most remote cold water plumbing fixture and the main distribution supply. The developed length of pipe from the supply to the fixture is then determined from the plumbing drawings. The maximum pressure drop is then divided by the developed length which results in the friction loss per 100 feet of pipe. Equivalent fixture units are assigned from the UPC based on the actual fixture count which when totaled determines the water flow rate. The water flow rate and pressure drop are used to determine the pipe size based on a given velocity of flow

  9. Efficiency of fipronil in the control of the mound-building termite, Nasutitermes sp. (Isoptera: Termitidae) in sugarcane

    OpenAIRE

    Melo Fo, Reinaldo M.; Veiga, Antônio F.S.L.

    1998-01-01

    The efficiency of fipronil was evaluated in field conditions at different dosages and two formulations, against Nasutitermes sp. (isopteran: Termitidae) in sugarcane (Sccharum sp.). Termite mounds were indentified, measured and drilled until cellulosic chamber to allow insecticide application. Nine treatments were tested with ten replications in a completely randomized design and each termite mound considered as an experimental unit. after 50 days the termite mounds were opened and the mortal...

  10. Possible pingos and a periglacial landscape in northwest Utopia Planitia

    Science.gov (United States)

    Soare, R.J.; Burr, D.M.; Wan, Bun Tseung J.-M.

    2005-01-01

    Hydrostatic (closed-system) pingos are small, elongate to circular, ice-cored mounds that are perennial features of some periglacial landscapes. The growth and development of hydrostatic pingos is contingent upon the presence of surface water, freezing processes and of deep, continuous, ice-cemented permafrost. Other cold-climate landforms such as small-sized, polygonal patterned ground also may occur in the areas where pingos are found. On Mars, landscapes comprising small, elongate to circular mounds and other possible periglacial features have been identified in various areas, including Utopia Planitia, where water is thought to have played an important role in landscape evolution. Despite the importance of the martian mounds as possible markers of water, most accounts of them in the planetary science literature have been brief and/or based upon Viking imagery. We use a high-resolution Mars Orbiter Camera image (EO300299) and superposed Mars Orbiter Laser Altimeter data tracks to describe and characterise a crater-floor landscape in northwest Utopia Planitia (64.8?? N/292.7?? W). The landscape comprises an assemblage of landforms that is consistent with the past presence of water and of periglacial processes. This geomorphological assemblage may have formed as recently as the last episode of high obliquity. A similar assemblage of landforms is found in the Tuktoyaktuk peninsula of northern Canada and other terrestrial cold-climate landscapes. We point to the similarity of the two assemblages and suggest that the small, roughly circular mounds on the floor of the impact crater in northwest Utopia Planitia are hydrostatic pingos. Like the hydrostatic pingos of the Tuktoyaktuk peninsula, the origin of the crater-floor mounds could be tied to the loss of ponded, local water, permafrost aggradation and the evolution of a sub-surface ice core. ?? 2004 Elsevier Inc. All rights reserved.

  11. A methodology for the analysis of damage progression in rubble mound breakwaters

    OpenAIRE

    Campos Duque, Álvaro

    2016-01-01

    Nowadays, risk based designs as well as reliable rehabilitation and maintenance strategies are essential when dealing with coastal structures. In this sense, the probability of failure due to instability of the armour layer is one of the main issues in rubble mound breakwaters, and so is improving the knowledge on its deterioration rate. Both stability and damage progression on rubble mound breakwaters have been studied for more than 80 years, using different approaches, under regular/irregul...

  12. Turning up the heat: increasing temperature and coral bleaching at the high latitude coral reefs of the Houtman Abrolhos Islands.

    Science.gov (United States)

    Abdo, David A; Bellchambers, Lynda M; Evans, Scott N

    2012-01-01

    Coral reefs face increasing pressures particularly when on the edge of their distributions. The Houtman Abrolhos Islands (Abrolhos) are the southernmost coral reef system in the Indian Ocean, and one of the highest latitude reefs in the world. These reefs have a unique mix of tropical and temperate marine fauna and flora and support 184 species of coral, dominated by Acropora species. A significant La Niña event during 2011 produced anomalous conditions of increased temperature along the whole Western Australian coastline, producing the first-recorded widespread bleaching of corals at the Abrolhos. We examined long term trends in the marine climate at the Abrolhos using historical sea surface temperature data (HadISST data set) from 1900-2011. In addition in situ water temperature data for the Abrolhos (from data loggers installed in 2008, across four island groups) were used to determine temperature exposure profiles. Coupled with the results of coral cover surveys conducted annually since 2007; we calculated bleaching thresholds for monitoring sites across the four Abrolhos groups. In situ temperature data revealed maximum daily water temperatures reached 29.54°C in March 2011 which is 4.2°C above mean maximum daily temperatures (2008-2010). The level of bleaching varied across sites with an average of ∼12% of corals bleached. Mortality was high, with a mean ∼50% following the 2011 bleaching event. Prior to 2011, summer temperatures reached a mean (across all monitoring sites) of 25.1°C for 2.5 days. However, in 2011 temperatures reached a mean of 28.1°C for 3.3 days. Longer term trends (1900-2011) showed mean annual sea surface temperatures increase by 0.01°C per annum. Long-term temperature data along with short-term peaks in 2011, outline the potential for corals to be exposed to more frequent bleaching risk with consequences for this high latitude coral reef system at the edge of its distribution.

  13. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates

    International Nuclear Information System (INIS)

    Rosset, Sabrina; Wiedenmann, Jörg; Reed, Adam J.; D'Angelo, Cecilia

    2017-01-01

    Enrichment of reef environments with dissolved inorganic nutrients is considered a major threat to the survival of corals living in symbiosis with dinoflagellates (Symbiodinium sp.). We argue, however, that the direct negative effects on the symbiosis are not necessarily caused by the nutrient enrichment itself but by the phosphorus starvation of the algal symbionts that can be caused by skewed nitrogen (N) to phosphorus (P) ratios. We exposed corals to imbalanced N:P ratios in long-term experiments and found that the undersupply of phosphate severely disturbed the symbiosis, indicated by the loss of coral biomass, malfunctioning of algal photosynthesis and bleaching of the corals. In contrast, the corals tolerated an undersupply with nitrogen at high phosphate concentrations without negative effects on symbiont photosynthesis, suggesting a better adaptation to nitrogen limitation. Transmission electron microscopy analysis revealed that the signatures of ultrastructural biomarkers represent versatile tools for the classification of nutrient stress in symbiotic algae. Notably, high N:P ratios in the water were clearly identified by the accumulation of uric acid crystals. - Highlights: • Undersupply with dissolved inorganic phosphate causes coral bleaching. • Ultrastructural biomarkers in algal symbionts identify nutrient stress in reef corals. • Uric acid crystals in zooxanthellae identify high N:P ratios in the water column. • Nitrate enrichment of the water causes phosphate deficiency in Symbiodinium. • Coral symbionts tolerate nitrogen limitation better than phosphorus limitation.

  14. High-Resolution Topographic Analyses of Mounds in Southern Acidalia Planitia, Mars: Implications for Possible Mud Volcanism in Submarine and Subaerial Environments

    Directory of Open Access Journals (Sweden)

    Ryodo Hemmi

    2018-04-01

    Full Text Available A northern ocean of Mars is still debated and, if it existed, it may have accompanied valley networks and/or outflow channels, which may have led to the emplacement of a large amount of water to the northern lowlands during the Noachian and/or Hesperian times. However, it is unclear how and under what conditions (submarine or subaerial geologic features such as mounds and giant polygons formed in the northern lowlands. The densely-distributed mounds in Chryse and Acidalia Planitia, >1000 km-wide basins of the northern plains, were suggested to be ancient mud volcanoes formed in an aqueous setting, which is controversial (i.e., mud vs. igneous and submarine vs. subaerial. However, these mounds have not been quantitatively well characterized, particularly with respect to their detailed topography. Here we generated forty digital elevation models (DEMs with resolution of up to 1 m/pixel from High Resolution Imaging Science Experiment (HiRISE stereo image pairs, and we accurately measured the morphometric parameters of ~1300 mounds within the southern part of the Acidalia basin. Their heights and diameters resulted in good accordance with those of mud and igneous volcanoes in submarine/subaerial settings on Earth. Maximum depths of their source reservoirs vary from ~30 to ~450 m for a subaqueous setting and from ~110 to ~860 m for a subaerial setting, both of which are consistent with fluid expulsion from the ~100–4500 m-thick flood deposits (Vastitas Borealis Formation, VBF. On the basis of the morphometric values, we estimated rheological properties of materials forming the mounds and found them consistent with a mud flow origin, which does not rule out an igneous origin. The conditions of possible submarine mud or igneous volcanoes may have harbored less hazardous environments for past life on Mars than those on an ocean-free surface.

  15. Effect of cold work hardening on stress corrosion cracking of stainless steels in primary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Raquet, O.; Herms, E.; Vaillant, F.; Couvant, T.; Boursier, J.M.

    2004-01-01

    A R and D program is carried out in CEA and EDF laboratories to investigate separately the effects of factors which could contribute to IASCC mechanism. In the framework of this study, the influence of cold work on SCC of ASSs in primary water is studied to supply additional knowledge concerning the contribution of radiation hardening on IASCC of ASSs. Solution annealed ASSs, essentially of type AISI 304(L) and AISI 316(L), are generally considered very resistant to SCC in nominal primary water. However, Constant Extension Rate Tests (CERTs), performed on cold pressed humped specimens in nominal primary water at 360 deg. C, reveal that these materials can exhibit a high SCC susceptibility: deepest cracks reach 1 mm (mean crack growth rate about 1 μm.h -1 ) and propagation is mainly intergranular for 304L and mainly transgranular for 316L. Indeed, work hardening in conjunction with high localized deformation can promote SCC. The influence of the nature of the cold work (shot peening, reaming, cold rolling, counter sinking, fatigue work hardening and tensile deformation) is investigated by means of screening CERTs performed with smooth specimens in 304L at 360 deg. C. For a given cold work hardening level, the susceptibility to crack initiation strongly depends on the cold working process, and no propagation is observed for a hardness level lower than 300 ±10 HV(0.49N). The propagation of cracks is observed only for dynamic loadings like CERT, traction/relaxation tests and crack growth rate tests performed with CT specimens under trapezoidal loading. Although crack initiation is observed for constant load and constant deformation tests, crack propagation do not seem to occur under these mechanical solicitations for 17000 hours of testing, even for hardness levels higher than 450 HV(0.49N). The mean crack growth rate increases when the hardness increases. An important R and D program is in progress to complement these results and to develop a SCC model for ASSs in

  16. Coral Reef Biological Criteria

    Science.gov (United States)

    Coral reefs worldwide are experiencing decline from a variety of stressors. Some important stressors are land-based sources of pollution and human activities in the coastal zone. However, few tools are available to offset the impact of these stressors. The Clean Water Act (CWA...

  17. Conservation genetics and the resilience of reef-building corals.

    Science.gov (United States)

    van Oppen, Madeleine J H; Gates, Ruth D

    2006-11-01

    Coral reefs have suffered long-term decline due to a range of anthropogenic disturbances and are now also under threat from climate change. For appropriate management of these vulnerable and valuable ecosystems it is important to understand the factors and processes that determine their resilience and that of the organisms inhabiting them, as well as those that have led to existing patterns of coral reef biodiversity. The scleractinian (stony) corals deposit the structural framework that supports and promotes the maintenance of biological diversity and complexity of coral reefs, and as such, are major components of these ecosystems. The success of reef-building corals is related to their obligate symbiotic association with dinoflagellates of the genus Symbiodinium. These one-celled algal symbionts (zooxanthellae) live in the endodermal tissues of their coral host, provide most of the host's energy budget and promote rapid calcification. Furthermore, zooxanthellae are the main primary producers on coral reefs due to the oligotrophic nature of the surrounding waters. In this review paper, we summarize and critically evaluate studies that have employed genetics and/or molecular biology in examining questions relating to the evolution and ecology of reef-building corals and their algal endosymbionts, and that bear relevance to coral reef conservation. We discuss how these studies can focus future efforts, and examine how these approaches enhance our understanding of the resilience of reef-building corals.

  18. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    Science.gov (United States)

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  19. Measurements of cold and hot water in ten dwellings; Maetning av kall- och varmvatten i tio hushaall

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, Aasa; Nordman, Roger; Pettersson, Ulrik (Swedish National Testing and Research Inst., Boraas (Sweden))

    2008-07-01

    Reducing tap water consumption has considerable potential for reducing overall environmental impact. It not only saves fresh water, but also gives significant savings of energy that would otherwise have been needed to heat hot water. However, in order to improve the energy efficiency of building services systems and to help occupants act more energy-efficiently, more knowledge is needed on how water is used in our homes. Today, we actually know very little about usage patterns from one tapping point to another, or the division between cold and hot water use, and this study aims to help provide appropriate information. The aim of this project is to increase the knowledge of how tap water is used in Swedish households. The main purpose is to gain knowledge of how to decrease the energy use and for that reason the description of the use of hot water is essential. Measurement has been made of hot and cold water use at each tapping point in ten dwellings: four apartments in apartment buildings, and six single-family buildings. The households were of the following categories; single, young couple, middle-aged couple and families with children. The number of households is too low to represent the water use at national level, but can still contribute with important knowledge of how we use water in our homes. The results show the following division of tap water use: - wash basin: 19% (11 % hot water and 8 % cold water); - kitchen sink 41% (23 % hot water and 18 % cold water); - shower/bathtub 40% (27 % hot water and 13 % cold water). About 61% of the total water quantity is hot water (note that cold water for toilet flushing and for laundry is not included in the total water use). The proportions between tapping points are very similar for the dwellings in the apartment buildings and single-family houses, and the use of water in the shower/bathtub is essentially the same as the use in the kitchens. In the single-family buildings the water use in laundry rooms was measured

  20. Effects of menthol application on the skin during prolonged immersion in cool and cold water.

    Science.gov (United States)

    Botonis, P G; Kounalakis, S N; Cherouveim, E D; Koskolou, M D; Geladas, N D

    2018-03-01

    The aim of the study was to compare the effect of skin surface menthol application on rectal temperature (Tre) during prolonged immersion in cool and cold water. We hypothesized that menthol application would lead to a slower Tre decline due to the reduced heat loss as a consequence of the menthol-induced vasoconstriction and that this effect would be attenuated during cold-water immersion. Six male subjects were immersed for 55 minutes in stirred cool (24°C) or cold (14°C) water immediately after attaining a Tre of 38°C by cycling at 60% of maximum heart rate on two occasions: without (ΝM) and with (M) whole-body skin application of menthol cream. Tre, the proximal-distal skin temperature gradient, and oxygen uptake were continuously measured. ANOVA with repeated measures was employed to detect differences among variables. Significance level was set at 0.05. The area under the curve for Tre was calculated and was greater in 24°C M (-1.81 ± 8.22 a.u) compared to 24°C NM (-27.09 ± 19.09 a.u., P = .03, r = .90), 14°C NM (-18.08 ± 10.85 a.u., P = .03, r = .90), and 14°C M (-11.71 ± 12.58 a.u, P = .05, r = .81). In cool water, oxygen uptake and local vasoconstriction were increased (P ≤ .05) by 39 ± 25% and 56 ± 37%, respectively, with menthol compared to ΝM, while no differences were observed in cold water. Menthol application on the skin before prolonged immersion reduces heat loss resulting in a blunted Tre decline. However, such a response is less obvious at 14°C water immersion, possibly because high-threshold cold-sensitive fibers are already maximally recruited and the majority of cold receptors saturated. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.