WorldWideScience

Sample records for cold-formed stainless steel

  1. The influence of cold work on the oxidation behaviour of stainless steel

    International Nuclear Information System (INIS)

    Langevoort, J.C.

    1985-01-01

    In this thesis the study of the interaction of oxygen gas with stainless steel surfaces is described. Thermogravimetry, microscopy and ellipsometry have been used to follow the oxidation in situ, while EDX, AES and XPS have been used to determine the oxide compositions. The aim of this thesis is to reveal the influence on the oxidation behaviour of stainless steel of i) cold work (rolling, drawing, milling, polishing and Ar ion bombardment) ii) the initially formed oxide and iii) the experimental conditions. Two types of stainless steels have been used (AISI 304 (a 18/8 Cr/Ni steel) and Incoloy 800 H (a 20/30 Cr/Ni steel)). (Auth.)

  2. Effects of cold working on the pitting corrosion behavior s of AISI 304 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kee Min; Kim, Jong Soo; Kim, Young Jun; Kwon, Houk Sang [KAIST, Daejon (Korea, Republic of)

    2015-12-15

    These microstructural changes by cold working can lead improvement of mechanical properties, however from a corrosion resistant point of view, the effects of cold working on the corrosion resistance of stainless steel have been argued. Several studies has been focused on the influence of cold working on the localized corrosion resistance of stainless steels. However, the opinions about the role of cold working on the localized corrosion resistance are highly in consistence. Some studies report that the pitting potential of austenitic stainless steels decreased with cold working level, on the other hands, other studies claimed that the pitting resistance was increased by cold working. Therefore it is necessary to verify how cold working affects pitting corrosion behavior of austenitic stainless steels. In the present work, the influence of cold working on the localized corrosion of AISI 304stainless steel in the neutral chloride solution was studied based on point defect model (PDM). The fraction of deformation-induced martensite was linearly increased with cold rolling level. Through cold rolling, the pitting potential was decreased, the metastable pitting event density was significantly increased and the repassivation potential was decreased. The overall localized corrosion resistance was decreased with cold working, however cold working level increased from 30 % to 50 %, localized corrosion resistance was recovered. The accumulated cation vacancy generates a void at metal/film interface, therefore film breakdown accelerates for cold worked alloys.

  3. Effects of cold working on the pitting corrosion behavior s of AISI 304 stainless steels

    International Nuclear Information System (INIS)

    Jung, Kee Min; Kim, Jong Soo; Kim, Young Jun; Kwon, Houk Sang

    2015-01-01

    These microstructural changes by cold working can lead improvement of mechanical properties, however from a corrosion resistant point of view, the effects of cold working on the corrosion resistance of stainless steel have been argued. Several studies has been focused on the influence of cold working on the localized corrosion resistance of stainless steels. However, the opinions about the role of cold working on the localized corrosion resistance are highly in consistence. Some studies report that the pitting potential of austenitic stainless steels decreased with cold working level, on the other hands, other studies claimed that the pitting resistance was increased by cold working. Therefore it is necessary to verify how cold working affects pitting corrosion behavior of austenitic stainless steels. In the present work, the influence of cold working on the localized corrosion of AISI 304stainless steel in the neutral chloride solution was studied based on point defect model (PDM). The fraction of deformation-induced martensite was linearly increased with cold rolling level. Through cold rolling, the pitting potential was decreased, the metastable pitting event density was significantly increased and the repassivation potential was decreased. The overall localized corrosion resistance was decreased with cold working, however cold working level increased from 30 % to 50 %, localized corrosion resistance was recovered. The accumulated cation vacancy generates a void at metal/film interface, therefore film breakdown accelerates for cold worked alloys

  4. Cold-formed steel design

    CERN Document Server

    Yu, Wei-Wen

    2010-01-01

    The definitive text in the field, thoroughly updated and expanded Hailed by professionals around the world as the definitive text on the subject, Cold-Formed Steel Design is an indispensable resource for all who design for and work with cold-formed steel. No other book provides such exhaustive coverage of both the theory and practice of cold-formed steel construction. Updated and expanded to reflect all the important developments that have occurred in the field over the past decade, this Fourth Edition of the classic text provides you with more of the detailed, up-to-the-minute techni

  5. Review on Cold-Formed Steel Connections

    Science.gov (United States)

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  6. Effect of cold working and aging on high temperature deformation of high Mn stainless steel

    International Nuclear Information System (INIS)

    Yoshikawa, M.; Habara, Y.; Matsuki, R.; Aoyama, H.

    1999-01-01

    By the addition of N, the strength of high Mn stainless steel can be increased. Cold rolling and aging are effective to increase its strength further, and with those treatments this grade is often used for high temperature applications. In this study, creep deformation behavior and high temperature strength of the high Mn stainless steel in cold rolled and aged conditions are discussed as compared to Type 304 stainless steel. It has been revealed that as-rolled specimens show instant elongation at the beginning of creep tests and its amount is larger in the high Mn grade than in Type 304. Also, the creep rate of the high Mn stainless steel is smaller than that of Type 304. These facts may be related to the change in microstructure. (orig.)

  7. Microstructure and wear resistance of spray-formed supermartensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Guilherme Zepon

    2013-06-01

    Full Text Available Since the early 90's the oil industry has been encouraging the development of corrosion and wear resistant alloys for onshore and offshore pipeline applications. In this context supermartensitic stainless steel was introduced to replace the more expensive duplex stainless steel for tubing applications. Despite the outstanding corrosion resistance of stainless steels, their wear resistance is of concern. Some authors reported obtaining material processed by spray forming, such as ferritic stainless steel, superduplex stainless steel modified with boron, and iron-based amorphous alloys, which presented high wear resistance while maintaining the corrosion performance1,2. The addition of boron to iron-based alloys promotes the formation of hard boride particles (M2B type which improve their wear resistances3-9. This work aimed to study the microstructure and wear resistance of supermartensitic stainless steel modified with 0.3 wt. (% and 0.7 wt. (% processed by spray forming (SF-SMSS 0.3%B and SF-SMSS 0.7%B, respectively. These boron contents were selected in order to improve the wear resistance of supermartensitic stainless steel through the formation of uniformly distributed borides maintaining the characteristics of the corrosion resistant matrix. SF-SMSS 0.7%B presents an abrasive wear resistance considerably higher than spray-formed supermartensitic stainless steel without boron addition (SF-SMSS.

  8. Microstructure Evolution During Creep of Cold Worked Austenitic Stainless Steel

    Science.gov (United States)

    Krishan Yadav, Hari; Ballal, A. R.; Thawre, M. M.; Vijayanand, V. D.

    2018-04-01

    The 14Cr–15Ni austenitic stainless steel (SS) with additions of Ti, Si, and P has been developed for their superior creep strength and better resistance to void swelling during service as nuclear fuel clad and wrapper material. Cold working induces defects such as dislocations that interact with point defects generated by neutron irradiation and facilitates recombination to make the material more resistant to void swelling. In present investigation, creep properties of the SS in mill annealed condition (CW0) and 40 % cold worked (CW4) condition were studied. D9I stainless steel was solution treated at 1333 K for 30 minutes followed by cold rolling. Uniaxial creep tests were performed at 973 K for various stress levels ranging from 175-225 MPa. CW4 samples exhibited better creep resistance as compared to CW0 samples. During creep exposure, cold worked material exhibited phenomena of recovery and recrystallization wherein new strain free grains were observed with lesser dislocation network. In contrast CW0 samples showed no signs of recovery and recrystallization after creep exposure. Partial recrystallization on creep exposure led to higher drop in hardness in cold worked sample as compared to that in mill annealed sample. Accelerated precipitation of carbides at the grain boundaries was observed during creep exposure and this phenomenon was more pronounced in cold worked sample.

  9. EDF program on SCC initiation of cold-worked stainless steels in primary water

    Energy Technology Data Exchange (ETDEWEB)

    Huguenin, P.; Vaillant, F.; Couvant, T. [Electricite de France (EDF/RD), Site des Renardieres, 77 - Moret sur loing (France); Buisse, L. [EDF UTO, 93 - Noisy-Le-Grand (France); Huguenin, P.; Crepin, J.; Duhamel, C.; Proudhon, H. [MINES ParisTech, Centre des Materiaux, 91 - Evry (France); Ilevbare, G. [EPRI California (United States)

    2009-07-01

    A few cases of Intergranular Stress Corrosion Cracking (IGSCC) on cold-worked austenitic stainless steels in primary water have been detected in French Pressurized Water Reactors (PWRs). A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with cyclic loading favoured SCC, whereas cracking under static conditions appeared to be difficult. A propagation model was also proposed. The first available results of the present study demonstrate the strong influence of a trapezoidal cyclic loading on the creep of 304L austenitic stainless steel. While no creep was detected under a pure static loading, the creep rate was increased by a factor 102 under a trapezoidal cyclic loading. The first results of SCC initiation performed on notched specimens under a trapezoidal cyclic loading at low frequency are presented. The present study aims at developing an engineering model for IGSCC initiation of 304L, 316L and weld 308L stainless steels. The effect of the pre-straining on the SCC mechanisms is more specifically studied. Such a model will be based on (i) SCC initiation tests on notched and smooth specimens under 'trapezoidal' cyclic loading and, (ii) constant strain rate SCC initiation tests. The influence of stress level, cold-work level, strain path, surface roughness and temperature is particularly investigated. (authors)

  10. A friction model for cold forging of aluminum, steel and stainless steel provided with conversion coating and solid film lubricant

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2011-01-01

    Adopting a simulative tribology test system for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...

  11. Developments of New Lubricants for Cold Forging of Stainless Steel

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Christensen, Erik; Olesen, P.

    1997-01-01

    Two new lubricant systems for cold forging of stainless steel have been developed. The main component of these systems are FeCl3 and ZnCa2(PO4)2, respectively. Both lubricant systems have been tested using a backward extrusion test. The results show excellent lubricating properties with respect...

  12. Tool degradation during sheet metal forming of three stainless steel alloys

    DEFF Research Database (Denmark)

    Wadman, Boel; Nielsen, Peter Søe; Wiklund, Daniel

    2010-01-01

    To evaluate if changes in tool design and tool surface preparation are needed when low-Ni stainless steels are used instead of austenitic stainless steels, the effect on tool degradation in the form of galling was investigated with three different types of stainless steel. The resistance to tool ...

  13. Microstructural evolution and strain hardening behavior of the cold-drawn austenitic stainless steels

    International Nuclear Information System (INIS)

    Choi, Jeom Yong; Jin, Won

    1998-01-01

    The strain induced α ' -martensite formation and the strain hardening behavior of metastable austenitic stainless steel during cold drawing have been investigated. The strain induced α ' -martensite nucleates mainly at the intersection of the mechanical twins rather than ε-martensite. It could be explained by the increase of stacking fault energy which arises from the heat generated during high speed drawing and, for AISI 304/Cu, the additional effect of Cu additions. The strain hardening behavior of austenitic stainless steel is strongly related to the microstructural evolution accompanied by strain induced α ' -martensite. The work hardening rates of cold-drawn 304 increased with increasing interstitial element(C,N) contents which affect the strength of the strain induced α ' -martensite

  14. IGSCC in cold worked austenitic stainless steel in BWR environment

    International Nuclear Information System (INIS)

    Persson, B.; Lindblad, B.

    1989-09-01

    The survey shows that austenitic stainless steels in a cold worked condition can exhibit IGSCC in BWR environment. It is also found that IGSCC often is initiated as a transgranular crack. Local stresses and surface defects very often acts as starting points for IGSCC. IGSCC due to cold working requires a cold working magnitude of at leas 5%. During cold working a formation of mechanical martensite can take place. The transgranular corrosion occurs in the martensitic phase due to sensitation. The crack propagates integranularly due to anodic solvation of α'-martensite. Sensitation of the martensitic phase is fasten in BCC-structures than in a FCC-structures mainly due to faster diffusion of chromium and carbon which cause precipitation of chromium carbides. Experiments show that a carbon content as low as 0.008% is enough for the formation of 68% martensite and for sensitation. Hydrogen induced cracking is regarded as a mechanism which can accelerate IGSCC. Such cracking requires a hydrostatic stress near the crack tip. Since the oxide in the crack tip is relatively impermeable to hydrogen, cracks in the oxide layer are required for such embrittlement. Hydrogen induced embrittlement of the martensitic phase, at the crack tip, can cause crack propagation. Solution heat treated unstabilized stainless steels are regarded to have a good resistance to IGSCC if they have not undergone cold working. In general, though, Mo-alloyed steels have a better resistance to IGSCC in BWR environment. Regarding the causes for IGSCC, the present literature survey shows that many mechanisms are suggested. To provide a safer ground for the estimation of crack propagation rates, SA recommends SKI to finance a project with the aim to determine the crack propagation rate on proper material. (authors) (65 refs.)

  15. Characterization of a cold-rolled 2101 lean duplex stainless steel.

    Science.gov (United States)

    Bassani, Paola; Breda, Marco; Brunelli, Katya; Mészáros, Istvan; Passaretti, Francesca; Zanellato, Michela; Calliari, Irene

    2013-08-01

    Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes σ- and χ-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than ~20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties.

  16. Thermal stability of manganese-stabilized stainless steels

    International Nuclear Information System (INIS)

    Klueh, R.L.; Kenik, E.A.

    1993-01-01

    Previous work on a series of experimental high-manganese reduced-activation austenitic stainless steels demonstrated that they have improved tensile properties relative to type 316 stainless steel in both the annealed and 20% cold-worked conditions. Steels were tested with an Fe-20Mn-12Cr-0.25C (in weight percent) base composition, to which various combinations of Ti, W, V, P, and B were added. Tensile tests have now been completed on these steels after thermal aging at 600 degrees C. Thermal stability varied with composition, but the alloys were as stable or more stable than type 316 stainless steel. the strength of the annealed steels increased slightly after aging to 5000 h, while a strength decrease occurred for the cold worked steel. In both conditions, a steel containing a combination of all the alloying elements was most stable and had the best strength after thermal aging 5000 h at 600 degrees C. Despite having much higher strength than 316 stainless steel after aging, the ductility of the strongest experimental alloy was still as good as that of 316 stainless steel

  17. Strain hardening of cold-rolled lean-alloyed metastable ferritic-austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Papula, Suvi [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland); Anttila, Severi [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Talonen, Juho [Outokumpu Oyj, P.O. Box 245, FI-00181 Helsinki (Finland); Sarikka, Teemu; Virkkunen, Iikka; Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland)

    2016-11-20

    Mechanical properties and strain hardening of two pilot-scale lean-alloyed ferritic-austenitic stainless steels having metastable austenite phase, present at 0.50 and 0.30 volume fractions, have been studied by means of tensile testing and nanoindentation. These ferritic-austenitic stainless steels have high strain-hardening capacity, due to the metastable austenite phase, which leads to an improved uniform elongation and higher tensile strength in comparison with most commercial lean duplex stainless steels. According to the results, even as low as 0.30 volume fraction of austenite seems efficient for achieving nearly 40% elongation. The austenite phase is initially the harder phase, and exhibits more strain hardening than the ferrite phase. The rate of strain hardening and the evolution of the martensite phase were found to depend on the loading direction: both are higher when strained in the rolling direction as compared to the transverse direction. Based on the mechanical testing, characterization of the microstructure by optical/electron microscopy, magnetic balance measurements and EBSD texture analysis, this anisotropy in mechanical properties of the cold-rolled metastable ferritic-austenitic stainless steels can be explained by the elongated dual-phase microstructure, fiber reinforcement effect of the harder austenite phase and the presence and interplay of rolling textures in the two phases.

  18. Recovery in cold-worked alloy under pressure: example of AISI 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yousuf, M; Sahu, P C; Raghunathan, V S; Govinda Rajan, K

    1986-06-01

    In this paper we report the behaviour of defects under high pressure in severely cold-deformed 316 stainless steel. In situ electrical resistivity measurements indicate a minimum in the reduced resistivity ratio at 2 GPa associated with a characteristic relaxation time of 500 + - 5 sec. Microhardness data on pressure-treated and recovered samples are consistent with the electrical resistivity behaviour. X-ray powder diffraction rings indicate sharpening beyond 2 GPa. The decrease in the full width at half maximum (FWHM) of the strongest ring is about 2% at pressures beyond 2 GPa. Transmission electron microscopy reveals that samples pressure treated beyond 2 GPa have a polygonized dislocation structure. This is in sharp contrast to the tangled dislocation structure observed in the cold-worked samples. The experimental results suggest a recovery stage in cold-worked stainless steel at 2 GPa. We propose that the recovery process is activated through an enhanced vacancy concentration caused by deformation, a pressure-induced vacancy-dislocation interaction and consequently a pressure-assisted dislocation mobility leading to polygonization.

  19. The precipitation response of 20%-cold-worked type 316 stainless steel to simulated fusion irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1979-01-01

    The precipitation response of 20%-cold-worked type 316 stainless steel has been examined after irradiation in HFIR at 380-600 0 C, after irradiation in EBR-II at 500 0 C, and after thermal aging at 600 to 750 0 C. Eta phase forms during exposure to all environments. It constitutes a major portion of the precipitation response, and is rich in Ni, Si and Mo relative to M 23 C 6 after thermal aging. It is not normally reported in 20%-cold-worked type 316 stainless steel. The eta, M 23 C 6 , Laves, sigma, and chi precipitate phases appear at similar temperatures after HFIR, EBR-II, or thermal exposure. There are, however, some differences in relative amounts, size, and distribution of phases among the various environments. Eta phase is the only carbide-type phase observed after irradiation in HFIR from 380-550 0 C. The large cavities associated with it at 380 0 C contribute significantly to swelling. Re-solution of fine M 23 C 6 , eta, and Laves particles and re-precipitation of massive particles of sigma, M 23 C 6 and chi are observed after recrystallization in HFIR. (orig.)

  20. Tailoring diffraction technique Rietveld method on residual stress measurements of cold-can oiled 304 stainless steel plates

    International Nuclear Information System (INIS)

    Parikin; Killen, P.; Anis, M.

    2003-01-01

    Tailoring of diffraction technique-Rietveld method on residual stress measurements of cold-canailed stainless steel 304 plates assuming the material is isotopic, the residual stress measurements using X-ray powder diffraction is just performed for a plane lying in a large angle. For anisotropic materials, the real measurements will not be represented by the methods. By Utilizing of all diffraction peaks in the observation region, tailoring diffraction technique-Rietveld analysis is able to cover the limitations. The residual stress measurement using X-ray powder diffraction tailored by Rietveld method, in a series of cold-canailed stainless steel 304 plates deforming; 0, 34, 84, 152, 158, 175, and 196 % reduction in thickness, have been reported. The diffraction data were analyzed by using Rietveld structure refinement method. Also, for all cold-canailed stainless steel 304 plates cuplikans, the diffraction peaks are broader than the uncanailed one, indicating that the strains in these cuplikans are inhomogeneous. From an analysis of the refined peak shape parameters, the average root-mean square strain, which describes the distribution of the inhomogeneous strain field, was calculated. Finally, the average residual stresses in cold-canailed stainless steel 304 plates were shown to be a combination effect of hydrostatic stresses of martensite particles and austenite matrix. The average residual stresses were evaluated from the experimentally determined average lattice strains in each phase. It was found the tensile residual stress in a cuplikan was maximum, reaching 442 MPa, for a cuplikan reducing 34% in thickness and minimum for a 196% cuplikan

  1. Creep rupture properties of solution annealed and cold worked type 316 stainless steel cladding tubes

    International Nuclear Information System (INIS)

    Mathew, M.D.; Latha, S.; Mannan, S.L.; Rodriguez, P.

    1990-01-01

    Austenitic stainless steels (mainly type 316 and its modifications) are used as fuel cladding materials in all current generation fast breeder reactors. For the Fast Breeder Test Reactor (FBTR) at Kalpakkam, modified type 316 stainless steel (SS) was chosen as the material for fuel cladding tubes. In order to evaluate the influence of cold work on the performance of the fuel element, the investigation was carried out on cladding tubes in three metallurgical conditions (solution annealed, ten percent cold worked and twenty percent cold worked). The results indicate that: (i) The creep strength of type 316 SS cladding tube increases with increasing cold work. (ii) The benificial effects of cold work are retained at almost all the test conditions investigated. (iii) The Larson Miller parameter analysis shows a two slope behaviour for 20PCW material suggesting that caution should be exercised in extrapolating the creep rupture life to stresses below 125 MPa. At very low stress levels, the LMP values fall below the values of the 10 PCW material. (author). 6 refs., 19 figs. , 10 tabs

  2. Deformation induced martensite in AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Solomon, N.; Solomon, I.

    2010-01-01

    The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstructure and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g) instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE), which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation. (Author) 21 refs.

  3. SCC growth behavior of cast stainless steels in high-temperature water. Influences of corrosion potential, steel type, thermal aging and cold-work

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2011-01-01

    Recent studies on crack growth rate (CGR) measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry (NWC) in BWRs, using compact tension (CT) type specimens have shown that stainless steel weld metal are susceptible to stress corrosion cracking (SCC). On the other hand, the authors reported that no significant SCC growth was observed on stainless steel weld metals in PWR primary water at temperatures from 250degC to 340degC. Cast austenitic stainless steels are widely used in light water reactors, and there is a similarity between welded and cast stainless steels in terms of the microstructure of the ferrite/austenite duplex structure. However, there are a few reports giving CGR data on cast stainless steels in the BWRs and PWRs. The principal purpose of this study was to examine the SCC growth behavior of cast stainless steels in simulated PWR primary water. A second objective was to examine the effects on SCC growth in hydrogenated and oxygenated water environments at 320degC of: (1) corrosion potential; (2) steels type (Mo in alloy); (3) thermal-aging (up to 400degC x 40 kh); and (4) cold-working (10%). The results were as follows: (1) No significant SCC growth was observed on all types of cast stainless steels: aged (400degC x 40 kh) of SCS14A and SCS13A and 10% cold-working, in hydrogenated (low-potential) water at 320degC. (2) Aging at 400degC x 40 kh SCS14A (10%CW) markedly accelerated the SCC growth of cast material in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after long-term thermal aging (400degC x 40 kh). (3) Thus, cast stainless steels have excellent SCC resistance in PWR primary water. (4) On the other hand, significant SCC growth was observed on all types of cast stainless steels: 10%CW SCS14A and SCS13A, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between SCS14A (Mo) and SCS13A. (6) No

  4. Environmentally assisted cracking of non-sensitized stainless steels - possible affecting phenomena

    International Nuclear Information System (INIS)

    Ehrnsten, Ulla; Haenninen, Hannu

    2006-09-01

    Intergranular, environmentally assisted cracking (EAC) has been observed, not only in sensitized austenitic stainless steels, but also in non-sensitized stainless steels. This type of cracking has so far been connected to cold-worked stainless steels and it has been reported to occur in the oxidising environments, but it may also be a potential degradation mode in non-oxidising environments (i.e., both in BWR and PWR conditions). Localisation of plastic deformation and the interactions between oxidation and strain localisation are most probably playing the key role in cracking of cold-worked stainless steels. In this paper, the possible affecting phenomena are reviewed with the main emphasis on dynamic strain ageing. However, also environmentally enhanced creep, dynamic recovery, microstructures of the cold-worked austenitic stainless steels and relaxation are briefly discussed. Mechanistic understanding of the effects of these main factors affecting intergranular stress corrosion cracking of cold-worked, non-sensitized austenitic stainless steels is important, especially as the trend in the NDE inspection strategy is moving towards risk informed inspection. (authors)

  5. Effect of cold-rolling on pitting corrosion of 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Peguet, L.; Malki, B.; Baroux, B.

    2004-01-01

    Full text of publication follows: This paper deals with a not very often investigated topic on relation between cold-working and stainless steels localized corrosion resistance. It is devoted to the study of the cold-rolling effects on the pitting corrosion behavior of a 304 stainless steel grade in chloride containing aqueous electrolytes. It focus particularly on the analysis of metastable pitting transients observed at Open Circuit Potential using an experimental protocol including two identical working electrodes connected through a zero-impedance. As received the used specimens were heat-treated at 1100 C for 30 s and cold-rolled at 10%, 20%, 30% up to a final reduction pass of 70% inducing a large amount of α'-martensite. Then, current-potential fluctuations measurements were performed at OCP in NaCl 0.1 M + FeCl 3 2.10 -4 M containing aqueous solution during 24 h from the immersion time. As expected, a detrimental effect on corrosion behavior induced by cold rolling has been confirmed. Surprisingly, this is a nonlinear effect as a function of cold-rolling rate which controverts the hypothesis that strain induced martensite is the principal factor to explain this kind of sensibilizing. In particular, the results show a maximum of the metastable pits initiation frequency at 20% of cold-rolling rate. Moreover, the passive film/electrochemical double layer resistance and capacity deduced from the transients study show an analog nonlinear behavior. So, the transfer resistance show a minimum around 10-20% of cold-rolling rate where one can assume an increase of the electrons transfer kinetics through the interface. Conversely, the interfacial capacity is the highest at 20% of cold-rolling rate. Finally, It is expected a combined effect of the cold-rolled induced martensite and the dislocations arrangement via the mechano-chemical theory discussed by Gutman. (authors)

  6. The Corrosion Behavior of Cold-Rolled 304 Stainless Steel In Salt Spray Environments

    International Nuclear Information System (INIS)

    Chiang, M.F.; Young, M.C.; Huang, J.Y.

    2011-01-01

    Saline corrosion is one of the major degradation mechanisms for stainless steel type 304 (SS304) dry storage cask during the spent fuel interim storage period. Slow strain rate test (SSRT) and neutral salt spray test (NSS) were performed at 85 degrees Celsius and 200 degrees Celsius with 0.5 wt% sodium chloride mist sprayed on the cold-rolled SS304 specimens of different degrees of reduction in this study. The weight changes of the NSS specimens tested at 85 degrees Celsius for 2000 hours differed greatly from those at 200 degrees Celsius. The weight loss of NSS specimens was not significant at 85 degrees Celsius but the weight gain decreased gradually with increasing the cold-rolled reduction. The yield strength (YS) and ultimate tensile stress (UTS) values obtained from the SSRT tests for lightly cold-rolled specimens in the salt spray environment at 85 degrees Celsius and 200 degrees Celsius are slightly lower than in air. But for those with 20% reductions, the specimen strengths were no longer changed by the saline corrosion. The preliminary results demonstrated that the quality and performance of cold-rolled SS304 is acceptable for fabrication of dry storage casks. However, more work on the corrosion behavior of cold-rolled stainless steel in the saline atmosphere is needed to better understand its long-term performance.

  7. Influence of cold worked layer on susceptibility to stress corrosion of duplex stainless steel

    International Nuclear Information System (INIS)

    Labanowski, J.; Ossowska, A.; Cwiek, J.

    2001-01-01

    Stress corrosion cracking resistance of cold worked layers on duplex stainless steel was investigated. The surface layers were performed through burnishing treatment. Corrosion tests were performed with the use of Slow Strain Rate Test technique in boiling 35% MgCl 2 solution. It has been shown that burnishing treatment increases corrosion resistance of steel. The factor that improves stress corrosion cracking resistance is crack incubation time. (author)

  8. Clean forming of stainless steel and titanium products by lubricious oxides

    DEFF Research Database (Denmark)

    Heikkilä, Irma; Wadman, Boel; Thoors, Håkan

    2012-01-01

    to industrial forming processes. Preliminary evaluations show a beneficial influence of two oxides types, on stainless steel and on titanium. More work is needed to test the lubricating effect in other forming operations and to analyse the sustainability aspects for products manufactured with this alternative......Big social benefits can be attained through increased use of stainless steel or titanium in new sheet metal applications. Unfortunately, forming of these materials is often a challenging and costly operation, that can lead to environmental and health problems when solving the technical limitations...

  9. Strategic surface topographies for enhanced lubrication in sheet forming of stainless steel

    DEFF Research Database (Denmark)

    Nilsson, Morten Sixten; Olsson, David Dam; Petrushina, Irina

    2010-01-01

    Strategic stainless steel surfaces have been developed for which the tribological properties are significantly improved for sheet-metal forming compared with the as-received surfaces. The improvements have been achieved by modification of the surface to promote Micro-Plasto Hydrodynamic Lubrication....... The technique, which has been developed, is based on an electrochemical treatment changing the topography of the stainless steel surface. Comparative testing of the new surface topographies in ironing and deep drawing of stainless steel sheet shows significant improvements and possibilities of replacing...

  10. Stainless steel-zirconium alloy waste forms

    International Nuclear Information System (INIS)

    McDeavitt, S.M.; Abraham, D.P.; Keiser, D.D. Jr.; Park, J.Y.

    1996-01-01

    An electrometallurgical treatment process has been developed by Argonne National Laboratory to convert various types of spent nuclear fuels into stable storage forms and waste forms for repository disposal. The first application of this process will be to treat spent fuel alloys from the Experimental Breeder Reactor-II. Three distinct product streams emanate from the electrorefining process: (1) refined uranium; (2) fission products and actinides extracted from the electrolyte salt that are processed into a mineral waste form; and (3) metallic wastes left behind at the completion of the electrorefining step. The third product stream (i.e., the metal waste stream) is the subject of this paper. The metal waste stream contains components of the chopped spent fuel that are unaffected by the electrorefining process because of their electrochemically ''noble'' nature; this includes the cladding hulls, noble metal fission products (NMFP), and, in specific cases, zirconium from metal fuel alloys. The selected method for the consolidation and stabilization of the metal waste stream is melting and casting into a uniform, corrosion-resistant alloy. The waste form casting process will be carried out in a controlled-atmosphere furnace at high temperatures with a molten salt flux. Spent fuels with both stainless steel and Zircaloy cladding are being evaluated for treatment; thus, stainless steel-rich and Zircaloy-rich waste forms are being developed. Although the primary disposition option for the actinides is the mineral waste form, the concept of incorporating the TRU-bearing product into the metal waste form has enough potential to warrant investigation

  11. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    Science.gov (United States)

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-01

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 °C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  12. A Study on the Characteristics of Corrosion in Cold Worked Flexible STS 304 Stainless Steel Pipes

    International Nuclear Information System (INIS)

    Kim, In Soo; Kim, Sung Jin

    1993-01-01

    Effects of cold working on the corrosion resistance of austenitic STS 304 stainless steel pipes were investigated using anodic polarization method, EDX analysis and SEM technique. Corrosion products had a lots of S and Cl - ion. Generally, corrosion patterns as a result of STS 304 stainless steel to concrete environment were proceeded in the order of the pitting to intergranular corrosion. In the case of the flexible pipes were covered tightly with other polymer materials, crevice corrosion occurred to a much greater extent on austenitic than on martensitic region

  13. SCC growth behavior of stainless steel weld metals in high-temperature water. Influence of corrosion potential, weld type, thermal aging, cold-work and temperature

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2009-01-01

    Recent studies on crack growth rate measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry in boiling water reactors, using compact tension type specimens have shown that weld stainless steels are susceptible to stress corrosion cracking. However, to our knowledge, there is no crack growth data of weld stainless steels in pressurized water reactor primary water. The principal purpose of this study was to examine the SCC growth behavior of stainless steel weld metals in simulated PWR primary water. A second objective was to examine the effect of (1) corrosion potential, (2) thermal-aging, (3) Mo in alloy and (4) cold-working on SCC growth in hydrogenated and oxygenated water environments at 320degC. In addition, the temperature dependence of SCC growth in simulated PWR primary water was also studied. The results were as follows: (1) No significant SCC growth was observed on all types of stainless steel weld metals: as-welded, aged (400degC x 10 kh) 308L and 316L, in 2.7 ppm-hydrogenated (low-potential) water at 320degC. (2) 20% cold-working markedly accelerated the SCC growth of weld metals in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after 20% cold-working. (3) No significant SCC growth was observed on stainless steel weld metals in low-potential water at 250degC and 340degC. Thus, stainless steel weld metals have excellent SCC resistance in PWR primary water. On the other hand, (4) significant SCC growth was observed on all types of stainless steel weld metals: as-weld, aged (400degC x 10 kh) and 20% cold-worked 308L and 316L, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between 316L (Mo) and 308L. (6) No large effect on SCC growth was observed between before and after aging up to 400degC for 10 kh. (7) 20% cold-working markedly accelerated the SCC growth of stainless steel weld metals. (author)

  14. Effect of cold working on biocompatibility of Ni-free high nitrogen austenitic stainless steels using Dalton's Lymphoma cell line

    International Nuclear Information System (INIS)

    Talha, Mohd; Kumar, Sanjay; Behera, C.K.; Sinha, O.P.

    2014-01-01

    The aims of the present work are to explore the effect of cold working on in-vitro biocompatibility of indigenized low cost Ni-free nitrogen containing austenitic stainless steels (HNSs) and to compare it with conventionally used biomedical grade, i.e. AISI 316L and 316LVM, using Dalton's Lymphoma (DL) cell line. The MTT assay [3-(4,5-dimethythiazol 2-yl)-2,5-diphenyltetrazolium bromide] was performed on DL cell line for cytotoxicity evaluation and cell adhesion test. As a result, it was observed that the HNS had higher cell proliferation and cell growth and it increases by increasing nitrogen content and degree of cold working. The surface wettability of the alloys was also investigated by water contact angle measurements. The value of contact angles was found to decrease with increase in nitrogen content and degree of cold working. This indicates that the hydrophilic character increases with increasing nitrogen content and degree of cold working which further attributed to enhance the surface free energy (SFE) which would be conducive to cell adhesion which in turn increases the cell proliferation. - Graphical abstract: Effect of cold working on in-vitro biocompatibility of indigenized Ni-free nitrogen bearing austenitic stainless steels was explored using Dalton's Lymphoma cell line. Cell proliferation and cell adhesion increase by increasing the degree of cold working and nitrogen content in steel indicating that indigenized material is more biocompatible and no negative effect of cold working on these steels. - Highlights: • Effect of cold working on biocompatibility of Ni-free austenitic stainless steels • Cell proliferation and adhesion increase with nitrogen and degree of cold working. • Contact angle values decrease with nitrogen and degree of cold working

  15. Effect of cold working and annealing on stress corrosion cracking of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Yeon, Y.M.; Kwun, S.I.

    1983-01-01

    A study was made of the effects of cold working and annealing on the stress corrosion cracking of AISI 304 stainless steel in boiling 42% MgCl 2 solution. When the 60% or 76% of yield stress was applied, the resistance to SCC showed maximum at 30% of cold work. However, when the same load was applied to the annealed specimens after cold working, the resistance to SCC decreased abruptly at 675degC annealing. The fracture mode changed mode change mixed → intergranular → transgranular as the amount of cold work increased. (Author)

  16. Surface analysis of 316 stainless steel treated with cold atmospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Williams, David F., E-mail: david.williams@surrey.ac.uk [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Kellar, Ewen J.C. [TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Jesson, David A.; Watts, John F. [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2017-05-01

    Highlights: • Reduction in carbon contamination from ∼80 at.% to 40 at.% after 15 s treatment. • Associated carbon thickness reduction from 4.5 nm to 0.5 nm. • Area treated by torch has a diameter of 11 mm measured using imaging XPS. - Abstract: The surface of 316 stainless steel has been modified using cold atmospheric plasma (CAP) to increase the surface free energy (by cleaning the and chemically activating the surface)IN preparation for subsequent processes such as painting, coating or adhesive bonding. The analyses carried out, on CAP treated 316 stainless steel surfaces, includes X-ray photoelectron spectroscopy (XPS), imaging XPS (iXPS), and surface free energy (SFE) analysis using contact angle measurements. The CAP treatment is shown to increase the SFE of as-received 316 stainless steel from ∼39 mJ m{sup −1} to >72 mJ m{sup −1} after a short exposure to the plasma torch. This was found to correlate to a reduction in adventitious carbon, as determined by XPS analysis of the surface. The reduction from ∼90 at% to ∼30% and ∼39 at%, after being plasma treated for 5 min and 15 s respectively, shows that the process is relatively quick at changing the surface. It is suggested that the mechanism that causes the increase in surface free energy is chain scission of the hydrocarbon contamination triggered by free electrons in the plasma plume followed by chemical functionalisation of the metal oxide surface and some of the remaining carbon contamination layer.

  17. SCC of cold-worked austenitic stainless steels exposed to PWR primary water conditions: susceptibility to initiation

    International Nuclear Information System (INIS)

    Herms, E.; Raquet, O.; Sejourne, L.; Vaillant, F.

    2009-01-01

    Heavily cold-worked austenitic stainless steels (AISI 304L and 316L types) could be significantly susceptible to Stress Corrosion Cracking (SCC) when exposed to PWR nominal primary water conditions even in absence of any pollutants. Susceptibility to SCC was shown to be related with some conditions such as initial hardness, procedure of cold-work or dynamic straining. A dedicated program devoted to better understand the initiation stage on CW austenitic stainless steels in PWR water is presented. Initiation is studied thanks to SCC test conditions leading to an intergranular cracking propagation mode on a CW austenitic stainless steel which is the mode generally reported after field experience. SCC tests are carried out in typical primary water conditions (composition 1000 ppm B and 2 ppm Li) and for temperature in the range 290 - 340 C. Material selected is 316L cold-worked essentially by rolling (reduction in thickness of 40%). Initiation tests are carried out under various stress levels with the aim to investigate the evolution of the initiation period versus the value of applied stress. SCC tests are performed on cylindrical notched specimens in order to increase the applied stress and allow accelerated testing without modify the exposure conditions to strictly nominal hydrogenated PWR water. Respective influences of cyclic/dynamic conditions on SCC initiation are presented and discussed. Dedicated interrupted tests help to investigate the behaviour of the crack initiation process. These SCC tests have shown that crack initiation could be obtained after a very short time under dynamic loading conditions on heavily pre-strained austenitic stainless steels. Actual results show that the most limiting stage of the cracking process on CW 316L seems to be the transition from slow transgranular propagation of surface initiated cracks to intergranular fast propagation through the thickness of the sample. The duration of this stage during crack initiation tests is

  18. Optimized chemical composition, working and heat treatment condition for resistance to irradiation assisted stress corrosion cracking of cold worked 316 and high-chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Iwamura, Toshihiko; Fujimoto, Koji; Ajiki, Kazuhide

    2000-01-01

    The authors have reported that the primary water stress corrosion cracking (PWSCC) in baffle former bolts made of austenitic stainless steels for PWR after long-term operation is caused by irradiation-induced grain boundary segregation. The resistance to PWSCC of simulated austenitic stainless steels whose chemical compositions are simulated to the grain boundary chemical composition of 316 stainless steel after irradiation increased with decrease of the silicon content, increases of the chromium content, and precipitation of M 23 C 6 carbides at the grain boundaries. In order to develop resistance to irradiation assisted stress corrosion cracking in austenitic stainless steels, optimized chemical compositions and heat treatment conditions for 316CW and high-chromium austenitic stainless steels for PWR baffle former bolts were investigated. For 316CW stainless steel, ultra-low-impurities and high-chromium content are beneficial. About 20% cold working before aging and after solution treatment has also been recommended to recover sensitization and make M 23 C 6 carbides coherent with the matrix at the grain boundaries. Heating at 700 to 725degC for 20 to 50 h was selected as a suitable aging procedure. Cold working of 5 to 10% after aging produced the required mechanical properties. The optimized composition of the high-chromium austenitic stainless steel contents 30% chromium, 30% nickel, and ultra-low impurity levels. This composition also reduces the difference between its thermal expansion coefficient and that of 304 stainless steel for baffle plates. Aging at 700 to 725degC for longer than 40 h and cold working of 10 to 15% after aging were selected to meet mechanical property specifications. (author)

  19. Behavior of stainless steels in pressurized water reactor primary circuits

    International Nuclear Information System (INIS)

    Féron, D.; Herms, E.; Tanguy, B.

    2012-01-01

    Stainless steels are widely used in primary circuits of pressurized water reactors (PWRs). Operating experience with the various grades of stainless steels over several decades of years has generally been excellent. Nevertheless, stress corrosion failures have been reported in few cases. Two main factors contributing to SCC susceptibility enhancement are investigated in this study: cold work and irradiation. Irradiation is involved in the stress corrosion cracking and corrosion of in-core reactor components in PWR environment. Irradiated assisted stress corrosion cracking (IASCC) is a complex and multi-physics phenomenon for which a predictive modeling able to describe initiation and/or propagation is not yet achieved. Experimentally, development of initiation smart tests and of in situ instrumentation, also in nuclear reactors, is an important axis in order to gain a better understanding of IASCC kinetics. A strong susceptibility for SCC of heavily cold worked austenitic stainless steels is evidenced in hydrogenated primary water typical of PWRs. It is shown that for a given cold-working procedure, SCC susceptibility of austenitic stainless steels materials increases with increasing cold-work. Results have shown also strong influences of the cold work on the oxide layer composition and of the maximum stress on the time to fracture.

  20. Measurements of Residual Stresses In Cold-Rolled 304 Stainless Steel Plates Using X-Ray Diffraction with Rietveld Refinement Method

    International Nuclear Information System (INIS)

    Parikin; Killen, P; Rafterry, A.

    2009-01-01

    The determination of the residual stresses using X-ray powder diffraction in a series of cold-rolled 304 stainless steel plates, deforming 0, 34, 84, 152, 158, 175 and 196 % reduction in thickness has been carried out. The diffraction data were analyzed using the Rietveld structure refinement method. The analysis shows that for all specimens, the martensite particles are closely in compression and the austenite matrix is in tension. Both the martensite and austenite, for a sample reducing 34% in thickness (containing of about 1% martensite phase) the average lattice strains are anisotropic and decrease approximately exponential with an increase in the corresponding percent reduction (essentially phase content). It is shown that this feature can be qualitatively understood by taking into consideration the thermal expansion mismatch between the martensite and austenite grains. Also, for all cold-rolled stainless steel specimens, the diffraction peaks are broader than the unrolled one (instrumental resolution), indicating that the strains in these specimens are inhomogeneous. From an analysis of the refined peak shape parameters, the average root-mean square strain, which describes the distribution of the inhomogeneous strain field, was predicted. The average residual stresses in cold-rolled 304 stainless steel plates showed a combination effect of hydrostatic stresses of the martensite particles and the austenite matrix. (author)

  1. Thermal creep and stress-affected precipitation of 20% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Puigh, R.J.; Lovell, A.J.; Garner, F.A.

    1984-01-01

    Measurements of the thermal creep of 20% cold-worked 316 stainless steel have been performed for temperatures from 593 to 760 0 C, stress levels as high as 138 MPa and exposure times as long as 15,000 hours. The creep strains exhibit a complex behavior arising from the combined action of true creep and stress-affected precipitation of intermetallic phases. The latter process is suspected to be altered by neutron irradiation. (orig.)

  2. Study on the effectiveness of Extreme Cold Mist MQL system on turning process of stainless steel AISI 316

    Science.gov (United States)

    Jamaludin, A. S.; Hosokawa, A.; Furumoto, T.; Koyano, T.; Hashimoto, Y.

    2018-03-01

    Cutting process of difficult-to-cut material such as stainless steel, generates immensely excessive heat, which is one of the major causes related to shortening tool life and lower quality of surface finish. It is proven that application of cutting fluid during the cutting process of difficult-to-cut material is able to improve the cutting performance, but excessive application of cutting fluid leads to another problem such as increasing processing cost and environmental hazardous pollution of workplace. In the study, Extreme Cold Mist system is designed and tested along with various Minimum Quantity Lubrication (MQL) systems on turning process of stainless steel AISI 316. In the study, it is obtained that, Extreme Cold Mist system is able to reduce cutting force up to 60N and improve the surface roughness of the machined surface significantly.

  3. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    Science.gov (United States)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971-2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the

  4. Structural integrity of stainless steel components exposed to neutron irradiation. Change in failure strength of cracked components due to cold working

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Hojo, Tomohiro; Mochizuki, Masahito

    2015-01-01

    Load carrying capacity of austenitic stainless steel component is increased due to hardening caused by neutron irradiation if no crack is included in the component. On the other hand, if a crack is initiated in the reactor components, the hardening may decrease the load carrying capacity due to reduction in fracture toughness. In this paper, in order to develop a failure assessment procedure of irradiated cracked components, characteristics of change in failure strength of stainless steels due to cold working were investigated. It was experimentally shown that the proof and tensile strengths were increased by the cold working, whereas the fracture toughness was decreased. The fracture strengths of a cylinder with a circumferential surface crack were analyzed using the obtained material properties. Although the cold working altered the failure mode from plastic collapse to the unsteady ductile crack growth, it did not reduce failure strengths even if 50% cold working was applied. The increase in failure strength was caused not only by increase in flow stress but also by reduction in J-integral value, which was brought by the change in stress-strain curve. It was shown that the failure strength of the hardened stainless steel components could be derived by the two-parameter method, in which the change in material properties could be reasonably considered. (author)

  5. Comparative Study of Hardening Mechanisms During Aging of a 304 Stainless Steel Containing α'-Martensite

    Science.gov (United States)

    Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.

    2012-09-01

    Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.

  6. Fatigue life prediction for a cold worked T316 stainless steel

    International Nuclear Information System (INIS)

    Manjoine, M.J.

    1983-01-01

    Permanent damage curves of initiation-life and propagation-life which predict the fatigue life of specimens of a cold-worked type 316 stainless steel under complex strain-range histories were generated by a limited test program. Analysis of the test data showed that fatigue damage is not linear throughout life and that propagation life is longer than initiation-life at high strain ranges but is shorter at low strain ranges. If permanent damage has been initiated by prior history and/or fabrication, propagation to a given life can occur at a lower strain range than that estimated from the fatigue curves for constant CSR. (author) [pt

  7. The mechanical properties of austenite stainless steel 304 after structural deformation through cold work

    Energy Technology Data Exchange (ETDEWEB)

    Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Notonegoro, Hamdan Akbar [Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa,Cilegon 42435 (Indonesia); Thosin, Kemas Ahmad Zaini [Pusat Penelitian Fisika,LIPI, Serpong (Indonesia)

    2016-06-17

    The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initial hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.

  8. Effect of cold works on creep-rupture life of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, W. G.; Han, C. H.; Ryu, W. S.

    2003-01-01

    Effect of cold works on creep-rupture life of the cold-worked type 316LN stainless steels, which are fabricated with the various reductions ; 0%(solution annealing), 20%, 30%, 40%, and 50%, was investigated. The creep-rupture time increased gradually up to 30% reduction, but it decreased inversely over 30% reduction. The longest rupture time exhibited at cold-worked reduction of 30%. The reason for this is that fine carbide precipitates are uniformly generated in grain boundary and the dislocations are pinned in the precipitates and the dislocations are sustained for a long time at high temperature. However, it is assumed that the higher cold-work reductions over 30% lead to excessive generation of deformation faults. The SEM fractrographs of the cold-worked specimens showed dense fracture micrographs, and they did not show intergranular structures in creep fracture mode. From this result, it is believed that the cold-worked specimens were superior in creep-rupture time to solution annealed ones

  9. Thermal creep properties of alloy D9 stainless steel and 316 stainless steel fuel clad tubes

    International Nuclear Information System (INIS)

    Latha, S.; Mathew, M.D.; Parameswaran, P.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2008-01-01

    Uniaxial thermal creep rupture properties of 20% cold worked alloy D9 stainless steel (alloy D9 SS) fuel clad tubes for fast breeder reactors have been evaluated at 973 K in the stress range 125-250 MPa. The rupture lives were in the range 90-8100 h. The results are compared with the properties of 20% cold worked type 316 stainless steel (316 SS) clad tubes. Alloy D9 SS were found to have higher creep rupture strengths, lower creep rates and lower rupture ductility than 316 SS. The deformation and damage processes were related through Monkman Grant relationship and modified Monkman Grant relationship. The creep damage tolerance parameter indicates that creep fracture takes place by intergranular cavitation. Precipitation of titanium carbides in the matrix and chromium carbides on the grain boundaries, dislocation substructure and twins were observed in transmission electron microscopic investigations of alloy D9 SS. The improvement in strength is attributed to the precipitation of fine titanium carbides in the matrix which prevents the recovery and recrystallisation of the cold worked microstructure

  10. In-reactor creep rupture of 20% cold-worked AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Lovell, A.J.; Chin, B.A.; Gilbert, E.R.

    1981-01-01

    Results of an experiment designed to measure in-reactor stress-to-rupture properties of 20% cold-worked AISI 316 stainless steel are reported. The in-reactor rupture data are compared with postirradiation and unirradiated test results. In-reactor rupture lives were found to exceed rupture predictions of postirradiation tests. This longer in-reactor rupture life is attributed to dynamic point defect generation which is absent during postirradiation testing. The in-reactor stress-to-rupture properties are shown to be equal to or greater than the unirradiated material stress-to-rupture properties for times up to 7000 h. (author)

  11. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  12. Effect of cold working on nitriding process of AISI 304 and 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Pereira, Silvio Andre de Lima

    2012-01-01

    The nitriding behavior of AISI 304 and 316 austenitic stainless steel was studied by different cold work degree before nitriding processes. The microstructure, thickness, microhardness and chemical micro-composition were evaluated through optical microscopy, microhardness, scanner electronic microscopy and x ray diffraction techniques. Through them, it was observed that previous plastic deformations do not have influence on layer thickness. However, a nitrided layer thicker can be noticed in the AISI 304 steel. In addition, two different layers can be identified as resulted of the nitriding, composed for austenitic matrix expanded by nitrogen atoms and another thinner immediately below expanded by Carbon atoms. (author)

  13. Growth Process of Passive Films Formed on Austenitic Stainless Steels under Atmospheric Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Rock-Hoon [Samsung Heavy Industries Co.,Ltd, Seoul (Korea, Republic of); Fujimoto, Shinji [Osaka University, Osaka (Japan)

    2014-06-15

    The excellent protection ability of stainless steel derives from the highly Cr enriched passive film which is formed as a result of selective dissolution of Fe into the bulk solution. On the other hand, the passive films formed under atmospheric conditions do not necessarily exhibit Cr enrichment, because the amount of the solution on a stainless steel as an adsorbed thin water layer is not sufficient for selective dissolution of Fe. Therefore, the modification of passive films may occur as tiny mass transfer between hydroxide layer and oxide layer of the passive films, and/or occasional replace of the adsorbed thin water layer. In the present work, in order to discuss atmospheric corrosion, passive films on stainless steels formed under humid atmospheric environments were characterized using X-ray photoelectron spectroscopy. Optimal conditions for the pulse anodizing were a duty ratio of 91%, a frequency of 0.09 Hz, and an anodizing time of 600 s. Pulse anodizing caused a remarkable decrease in the surface porosity (11-fold) and an increase in the film thickness (1.6-fold) from those obtained under a constant potential of 10 V{sub Ag/AgCl}. Furthermore, an Al-enriched oxide layer was formed on the outer surface of MgO.

  14. Tooling solutions for sheet metal forming and punching of lean duplex stainless steel

    DEFF Research Database (Denmark)

    Wadman, Boel; Madsen, Erik; Bay, Niels

    2012-01-01

    .4509 and lean duplex EN1.4162 in a production designed for austenitic stainless steels, such as EN1.4301 and 1.4401. The result is a guideline that summarizes how stainless material properties may affect tool degradation, and suggests tool solutions for reduced production disturbances and tool maintenance cost.......For producers of advanced stainless components the choice of stainless material influences not only the product properties, but also the tooling solution for sheet metal stamping. This work describes how forming and punching tools will be affected when introducing the stainless alloys ferritic EN1...

  15. Current status of stainless steel industry and development of stainless steel

    International Nuclear Information System (INIS)

    Lee, Yong Deuk; Lee, Chan Soo; Kim Kwang Tae

    2000-01-01

    Stainless steel is not only clean and smooth in its surface, but also it is superior in quality in terms of corrosion resistance and strength. So that, it is widely in use in the field of construction, chemical installations, and other industries. Growth of stainless steel industry started since the steel technology was developed for mass production in 1960s. Since then stainless steel industry grew rapidly on account of diversified development in this field and growth rate went up to 5.8% per year comparable to 2.3% of steel growth. The rapid growth is attributed to significant industry developments in Europe and Japan in the years of 1970s and 1980s. In addition to these the expansion of stainless steel industry in Korea and Taiwan. Presently Korea produces about 120,000 tons of stainless steel and occupies about 8% of international market. This means Korea become the second largest single country in world in stainless steel production. Moreover Korea is to reinforce its domestic production line by affiliating production companies, increasing of production capability, and specializing in types of stainless steel. This paper is to describe activity of material development, and types of stainless steel for industry use. (Hong, J. S.)

  16. Correlation between Fatigue Crack Growth Behavior and Fracture Surface Roughness on Cold-Rolled Austenitic Stainless Steels in Gaseous Hydrogen

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chen

    2018-03-01

    Full Text Available Austenitic stainless steels are often considered candidate materials for use in hydrogen-containing environments because of their low hydrogen embrittlement susceptibility. In this study, the fatigue crack growth behavior of the solution-annealed and cold-rolled 301, 304L, and 310S austenitic stainless steels was characterized in 0.2 MPa gaseous hydrogen to evaluate the hydrogen-assisted fatigue crack growth and correlate the fatigue crack growth rates with the fracture feature or fracture surface roughness. Regardless of the testing conditions, higher fracture surface roughness could be obtained in a higher stress intensity factor (∆K range and for the counterpart cold-rolled specimen in hydrogen. The accelerated fatigue crack growth of 301 and 304L in hydrogen was accompanied by high fracture surface roughness and was associated with strain-induced martensitic transformation in the plastic zone ahead of the fatigue crack tip.

  17. Crack growth testing of cold worked stainless steel in a simulated PWR primary water environment to assess susceptibility to stress corrosion cracking

    International Nuclear Information System (INIS)

    Tice, D.R.; Stairmand, J.W.; Fairbrother, H.J.; Stock, A.

    2007-01-01

    Although austenitic stainless steels do not show a high degree of susceptibility to stress corrosion cracking (SCC) in PWR primary environments, there is limited evidence from laboratory testing that crack propagation may occur under some conditions for materials in a cold-worked condition. A test program is therefore underway to examine the factors influencing SCC propagation in good quality PWR primary coolant. Type 304 stainless steel was subjected to cold working by either rolling (at ambient or elevated temperature) or fatigue cycling, to produce a range of yield strengths. Compact tension specimens were fabricated from these materials and tested in simulated high temperature (250-300 o C) PWR primary coolant. It was observed that the degree of crack propagation was influenced by the degree of cold work, the crack growth orientation relative to the rolling direction and the method of working. (author)

  18. Diffusion and autoradiographic investigations of the tritium--304 stainless steel system

    International Nuclear Information System (INIS)

    Downs, G.L.; Braun, J.D.; Chaney, K.F.; Powell, G.W.

    1975-01-01

    The diffusion coefficient of tritium in 304-stainless steel at low temperatures (100 to 300 0 C) was determined. Autoradiography was used to establish the concentration as well as the distribution of tritium in the alloy. The autoradiographic study shows that tritium is distributed heterogeneously at room temperature in the cold-worked alloy and also in the fusion zone of weldments. Tritium partitions preferentially to the delta ferrite in weldments and to martensite produced by the cold working of 304-stainless steel. (auth)

  19. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.

  20. Influence of delta ferrite on corrosion susceptibility of AISI 304 austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Lawrence O. Osoba

    2016-12-01

    Full Text Available In the current study, the influence of delta (δ ferrite on the corrosion susceptibility of AISI 304 austenitic stainless steel was evaluated in 1Molar concentration of sulphuric acid (H2SO4 and 1Molar concentration of sodium chloride (NaCl. The study was performed at ambient temperature using electrochemical technique—Tafel plots to evaluate the corrosive tendencies of the austenitic stainless steel sample. The as-received (stainless steel specimen and 60% cold-worked (stainless steel specimens were isothermally annealed at 1,100°C for 2 h and 1 h, respectively, and quenched in water. The results obtained show that the heat-treated specimen and the 60% cold-worked plus heat-treated specimen exhibited higher corrosion susceptibility than the as-received specimen, which invariably contained the highest fraction of δ ferrite particles. The finding shows that the presence of δ ferrite, in which chromium (Cr, the main corrosion inhibitor segregates, does not degrade and or reduces the resistance to aqueous corrosion of the austenitic stainless steel material.

  1. Void formation in cold-worked type 316 stainless steel irradiated with 1-MeV protons

    International Nuclear Information System (INIS)

    Keefer, D.W.; Pard, A.G.

    1974-01-01

    Cold-worked Type 316 stainless steel was irradiated at 500 and 600 0 C with 1-MeV protons. The dependence of void formation on displacement damage, irradiation temperature, and microstructure was studied by transmission electron microscopy. Cold working delays the onset of swelling and reduces it, via a reduction in void size, at both irradiation temperatures. Inhomogeneity in the cold-worked microstructure leads to inhomogeneity in the disposition of voids. Swelling at 600 is greater than at 500 0 C; the voids are less numerous but larger at the higher temperature. No change in the cold-worked microstructure can be detected by transmission electron microscopy after 500 0 C irradiation to 23 displacements per atom. Irradiation to a comparable damage level at 600 0 C results in almost complete elimination of the cold-worked microstructure. Comparison of the results is made with data from reactor irradiation experiments

  2. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  3. MM99.70 - MODELS FOR FRICTION AND MATERIAL STRESS STRAIN HARDENING IN COLD FORMING

    DEFF Research Database (Denmark)

    Eriksen, Morten

    1999-01-01

    and tool temperature for four different combination of basic material, conversion layer and lubricant. Furthermore flow stress curves for aluminium, steel and stainless steel are given at varying slug temperatures in the range which can be reached in cold forming (25-200C).The documentation is divided...

  4. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi

    2010-01-01

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  5. Cold deformation effect on the microstructures and mechanical properties of AISI 301LN and 316L stainless steels

    International Nuclear Information System (INIS)

    Silva, Paulo Maria de O.; Abreu, Hamilton Ferreira G. de; Albuquerque, Victor Hugo C. de; Neto, Pedro de Lima; Tavares, Joao Manuel R.S.

    2011-01-01

    As austenitic stainless steels have an adequate combination of mechanical resistance, conformability and resistance to corrosion they are used in a wide variety of industries, such as the food, transport, nuclear and petrochemical industries. Among these austenitic steels, the AISI 301LN and 316L steels have attracted prominent attention due to their excellent mechanical resistance. In this paper a microstructural characterization of AISI 301LN and 316L steels was made using various techniques such as metallography, optical microscopy, scanning electronic microscopy and atomic force microscopy, in order to analyze the cold deformation effect. Also, the microstructural changes were correlated with the alterations of mechanical properties of the materials under study. One of the numerous uses of AISI 301LN and 316L steels is in the structure of wagons for metropolitan surface trains. For this type of application it is imperative to know their microstructural behavior when subjected to cold deformation and correlate it with their mechanical properties and resistance to corrosion. Microstructural analysis showed that cold deformation causes significant microstructural modifications in these steels, mainly hardening. This modification increases the mechanical resistance of the materials appropriately for their foreseen application. Nonetheless, the materials become susceptible to pitting corrosion.

  6. Laves intermetallics in stainless steel-zirconium alloys

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-01-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni) 2+x , have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni) 23 Zr 6 during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy

  7. Irradiation creep and creep rupture of titanium-modified austenitic stainless steels and their dependence on cold work level

    International Nuclear Information System (INIS)

    Garner, F.A.; Hamilton, M.L.; Eiholzer, C.R.; Toloczko, M.B.; Kumar, A.S.

    1991-11-01

    A titanium-modified austenitic type stainless steel was tested at three cold work levels to determine its creep and creep rupture properties under both thermal aging and neutron irradiation conditions. Both the thermal and irradiation creep behavior exhibit a complex non-monotonic relationship with cold work level that reflects the competition between a number of stress-sensitive and temperature-dependent microstructural processes. Increasing the degree of cold work to 30% from the conventional 20% level was detrimental to its performance, especially for applications above 550 degrees c. The 20% cold work level is preferable to the 10% level, in terms of both in-reactor creep rupture response and initial strength

  8. Effect of cold work on low-temperature sensitization behaviour of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Kain, V. E-mail: vivkain@apsara.barc.ernet.in; Chandra, K.; Adhe, K.N.; De, P.K

    2004-09-01

    The effects of cold work and low-temperature sensitization heat treatment of non-sensitized austenitic stainless steels have been investigated and related to the cracking in nuclear power reactors. Types 304, 304L and 304LN developed martensite after 15% cold working. Heat treatment of these cold worked steels at 500 deg. C led to sensitization of grain boundaries and the matrix and a desensitization effect was seen in 11 days due to fast diffusion rate of chromium in martensite. Types 316L and 316LN did not develop martensite upon cold rolling due to its chemical composition suppressing the martensite transformation (due to deformation) temperature, hence these were not sensitized at 500 deg. C. The sensitization of the martensite phase was always accompanied by a hump in the reactivation current peak in the double loop electrochemical potentiokinetic reactivation test, thus providing a test to detect such sensitization. It was shown that bending does not produce martensite and therefore, is a better method to simulate weld heat affected zone. Bending and heating at 500 deg. C for 11 days led to fresh precipitation due to increased retained strain and desensitization of 304LN due to faster diffusion rate of chromium along dislocations. The as received or solution annealed 304 and 304LN with 0.15% nitrogen showed increased sensitization after heat treatment at 500 deg. C, indicating the presence of carbides/nitrides.

  9. Effects of surface treatments on microstructure in stainless steel

    International Nuclear Information System (INIS)

    Mabuchi, Yasuhiro; Tamako, Hiroaki; Kaneda, Junya; Yamashita, Norimichi; Miyakawa, Masahiko

    2009-01-01

    It is revealed that Stress Corrosion Cracking (SCC) on the surface of the L-grade stainless steels in Nuclear Power Plants is caused by heavily cold work of the materials. The microstructure, hardness and residual stress on the surface of the material are factors for SCC initiation. There are surface treatment methods that is effective reduction on SCC such as Flap Wheel (FW) polishing, Clean N Strip (CNS) polishing, Water Jet Peening (WJP) and Shot Peening (SP). In this paper, the characteristics of the surface cold worked layer of the L-grade stainless steels conducted by above-mentioned surface treatments are analyzed, and effects of the surface treatments on the surface layer are discussed. (author)

  10. A comparison of the iraddiated tensile properties of a high-manganese austenitic steel and type 316 stainless steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Grossbeck, M.L.

    1984-01-01

    The USSR steel EP-838 is a high-manganese, low-nickel steel that also has lower chromium and molybdenum than type 316 stainless steel. Tensile specimens of 20%-cold-worked EP-838 and type 316 stainless steel were irradiated in the High Flux Isotope Reactor (HFIR) at the coolant temperature (approx.=50 0 C). A displacement damage level of 5.2 dpa was reached for the EP-838 and up to 9.5 dpa for the type 316 stainless steel. Tensile tests at room temperature and 300 0 C on the two steels indicated that the irradiation led to increased strength and decreased ductility compared to the unirradiated steels. Although the 0.2% yield stress of the type 316 stainless steel in the unirradiated condition was greater than that for the EP-838, after irradiation there was essentially no difference between the strength or ductility of the two steels. The results indicate that the replacement of the majority of the nickel by manganese and a reduction of chromium and molybdenum in an austenitic stainless steel of composition near that for type 316 stainless steel has little effect on the irradiated and unirradiated tensile properties at low temperatures. (orig.)

  11. Variations of fracture toughness and stress-strain curve of cold worked stainless steel and their influence on failure strength of cracked pipe

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2016-01-01

    In order to assess failure probability of cracked components, it is important to know the variations of the material properties and their influence on the failure load assessment. In this study, variations of the fracture toughness and stress-strain curve were investigated for cold worked stainless steel. The variations of the 0.2% proof and ultimate strengths obtained using 8 specimens of 20% cold worked stainless steel (CW20) were 77 MPa and 81 MPa, respectively. The respective variations were decreased to 13 and 21 MPa for 40% cold worked material (CW40). Namely, the variation in the tensile strength was decreased by hardening. The COVs (coefficients of variation) of fracture toughness were 7.3% and 16.7% for CW20 and CW40, respectively. Namely, the variation in the fracture toughness was increased by hardening. Then, in order to investigate the influence of the variations in the material properties on failure load of a cracked pipe, flaw assessments were performed for a cracked pipe subjected to a global bending load. Using the obtained material properties led to variation in the failure load. The variation in the failure load of the cracked pipe caused by the variation in the stress-strain curve was less than 1.5% for the COV. The variation in the failure load caused by fracture toughness variation was relatively large for CW40, although it was less than 2.0% for the maximum case. It was concluded that the hardening induced by cold working does not cause significant variation in the failure load of cracked stainless steel pipe. (author)

  12. SCC susceptibility of cold-worked stainless steel with minor element additions

    International Nuclear Information System (INIS)

    Nakano, Junichi; Nemoto, Yoshiyuki; Tsukada, Takashi; Uchimoto, Tetsuya

    2011-01-01

    To examine the effects of minor elements on stress corrosion cracking (SCC) susceptibility of low carbon stainless steels with a work hardened layer, a high purity type 304 stainless steel was fabricated and minor elements, Si, S, P, C or Ti, were added. A work hardened layer was introduced by shaving on the surface of stainless steels. The specimens were exposed to a boiling 42% MgCl 2 solution for 20 h and the number and the length of initiated cracks were examined. SCC susceptibility of the specimen with P was the highest and that of the specimen with C was the lowest in all specimens. By magnetic force microscope examination, a magnetic phase expected to be a martensitic phase was detected near the surface. Since corrosion resistance of martensite is lower than that of austenite, the minor elements additions would affect SCC susceptibility through the amount of the transformed martensite.

  13. Applications of nitrogen-alloyed stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Sundvall, J.; Olsson, J. [Avesta Sheffield AB (Sweden); Holmberg, B. [Avesta Welding AB (Sweden)

    1999-07-01

    A selected number of applications for different types of nitrogen-alloyed stainless steels are described. The applications and grades are based on how nitrogen improves different properties. Conventional austenitic grades of type 304 and 316 can be alloyed with nitrogen to increase the strength and to maintain the austenite stability after cold deformation when exposed to cryogenic temperatures. Such examples are presented. The addition of nitrogen to duplex grades of stainless steel such as 2205 improves the pitting resistance, among other things, and also enables faster reformation of the austenite in the heat affected zone. This means that heavy plate can be welded without pre-heating or post-weld heating. Such applications are covered. Modern highly alloyed austenitic stainless steels almost always contain nitrogen and all reasons for this are covered, i.e. to stabilise the austenite, to increase the strength, and to improve the pitting resistance. The increased strength is the characteristic exemplified the least, since the higher strength of duplex grades is well known, but examples on austenite stability and improved pitting resistance are presented. (orig.)

  14. Stainless steels for cryogenic bolts and nuts

    International Nuclear Information System (INIS)

    Leroy, F.; Rabbe, P.; Odin, G.

    1975-01-01

    Stainless steel for cryogenic applications are generally austenitic steels which, under the effect of cold-drawing, can or cannot undergo a partial martensitic transformation according to their composition. It has been shown that very high ductility and endurance characteristics at low temperatures, together with very high yield strength and resistances values, can be attained with grades of nitrogenous steels of types Z2CN18-10N and Z3CMN18-8-6N. Optimum ductility values are obtained by employing to the best possible, the martensitic transformations which develop during cold-drawing. From the plotting of the rational traction curves, it is possible to analyse very simply the influence of the composition on the martensitic transformations [fr

  15. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    Science.gov (United States)

    Du, Donghai; Chen, Kai; Yu, Lun; lu, Hui; Zhang, Lefu; Shi, Xiuqiang; Xu, Xuelian

    2015-01-01

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration.

  16. SCC susceptibility of cold-worked stainless steel with minor element additions

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Junichi, E-mail: nakano.junnichi@jaea.go.jp [Japan Atomic Energy Agency, Shirakatashirane 2-4, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Nemoto, Yoshiyuki, E-mail: yoshiyuki.nemoto@oecd.org [OECD Nuclear Energy Agency, Le Seine St-Germain, 12, boulevard des Iles, F-92130 Issy-les-Moulineaux (France); Tsukada, Takashi, E-mail: tsukada.takashi@jaea.go.jp [Japan Atomic Energy Agency, Shirakatashirane 2-4, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Uchimoto, Tetsuya, E-mail: uchimoto@ifs.tohoku.ac.jp [Tohoku University, Aoba-ku, Sendai-shi, Miyagi-ken 980-8577 (Japan)

    2011-10-01

    To examine the effects of minor elements on stress corrosion cracking (SCC) susceptibility of low carbon stainless steels with a work hardened layer, a high purity type 304 stainless steel was fabricated and minor elements, Si, S, P, C or Ti, were added. A work hardened layer was introduced by shaving on the surface of stainless steels. The specimens were exposed to a boiling 42% MgCl{sub 2} solution for 20 h and the number and the length of initiated cracks were examined. SCC susceptibility of the specimen with P was the highest and that of the specimen with C was the lowest in all specimens. By magnetic force microscope examination, a magnetic phase expected to be a martensitic phase was detected near the surface. Since corrosion resistance of martensite is lower than that of austenite, the minor elements additions would affect SCC susceptibility through the amount of the transformed martensite.

  17. Application of a non-dynamometric method to the measurement of the coefficient of static friction in cold and hot water between stainless steel and two alloys of zirconium

    International Nuclear Information System (INIS)

    D'Agraives, B.C.; Toornvliet, J.

    1977-01-01

    A method is proposed to perform comparative measurements of the coefficient of friction, either in cold water (25 0 C) or in hot pressurized water (240 0 C). For the purpose, a pin-on-disc tribometer, working with no force transducer, in which the coefficient of friction μ is measured through an angle 0, and given by μ=K sin 0 is used. The method is presently applied to the determination of the incipient friction along a distance of few millimetres. At low speed (1 mm/s) and with light contacts loads (from 50 to 150 g), two different friction mechanisms are observed for the following couples of materials; Zircalloy 2/304L stainless steel, Zirconium Niobium 2.5/304L stainless steel, 304L stainless steel/304L stainless steel. The first mechanism, which is observed essentially in cold conditions, is characterized by a regular sliding since friction starts, whereas the second appears mostly in hot conditions and shows peaks of friction with irregular and scattered values of μ. These two mechanisms seem to be related to intermetallic affinity of the mating materials, and also to the existence of preoxydized surface layers, and, to a large extent, to the change in the water viscosity. In such conditions, it appears that it is not possible to replace friction experiments in hot water by easier experiments in cold water

  18. Finite element analysis of composite beam-to-column connection with cold-formed steel section

    Science.gov (United States)

    Firdaus, Muhammad; Saggaff, Anis; Tahir, Mahmood Md

    2017-11-01

    Cold-formed steel (CFS) sections are well known due to its lightweight and high structural performance which is very popular for building construction. Conventionally, they are used as purlins and side rails in the building envelopes of the industrial buildings. Recent research development on cold-formed steel has shown that the usage is expanded to the use in composite construction. This paper presents the modelling of the proposed composite connection of beam-to-column connection where cold-formed steel of lipped steel section is positioned back-to-back to perform as beam. Reinforcement bars is used to perform the composite action anchoring to the column and part of it is embedded into a slab. The results of the finite element and numerical analysis has showed good agreement. The results show that the proposed composite connection contributes to significant increase to the moment capacity.

  19. Tritium distributing in stainless steel determined by chemical etchin

    International Nuclear Information System (INIS)

    Xiong Yifu; Luo Deli; Chen Changan; Chen Shicun; Jing Wenyong

    2009-01-01

    The depth distribution of tritium in stainless steel was measured by chemical etching. The results show that the method can more quantitatively evaluate the tritium distributing in stainless steel. The maximum amount of tritium which distributed in crystal lattice of stainless steel is limitted by its solubility at room temperature. The other form of tritium in stainless steel is gaseous tritium that are trapped by defects, impurities, fractures, etc. within it. The gaseous tritium is several times more than the solid-dissolved tritium. (authors)

  20. Cold rolling texture development of α/γ duplex stainless steels

    International Nuclear Information System (INIS)

    Akdut, N.; Foct, J.; Gottstein, G.

    1996-01-01

    The cold rolling texture development of two α/γ duplex stainless steels (DSS) with similar volume fractions of both phases but with totally different microstructures were investigated. Due to the limited number of available pole figures using X-rays, for the calculation of the ODFs both a direct method and a recent iterative series expansion method were used. The results were checked by neutron diffraction measurements. The austenitic phases of both DSS behave similarly to single phase materials with a low stacking fault energy which develop a brass-type rolling texture. In contrast, the texture development of the ferritic phases strongly differs from those of single phase ferrites. Instead of a fibre type texture the α-phase in both DSS exhibits a peak dominated texture regardless of whether it is the matrix phase or not. These differences, as well as the sharpness of both phases, are explained by the presence of the second phase. (orig.)

  1. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana

    2015-05-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  3. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  4. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers.

    Science.gov (United States)

    Bae, Young-Min; Baek, Seung-Youb; Lee, Sun-Young

    2012-02-15

    Various bacteria including food spoilage bacteria and pathogens can form biofilms on different food processing surfaces, leading to potential food contamination or spoilage. Therefore, the survival of foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, Cronobacter sakazakii) in different forms (adhered cells, biofilm producing in TSB, biofilm producing at RH 100%) on the surface of stainless steel and stored at various relative humidities (RH 23%, 43%, 68%, 85%, and 100%) at room temperature for 5 days was investigated in this study. Additionally, the efficacy of chemical sanitizers (chlorine-based and alcohol-based commercial sanitizers) on inhibiting various types of biofilms of E. coli O157:H7 and S. aureus on the surface of stainless steel was investigated. The number of pathogens on the surface of stainless steel in TSB stored at 25°C for 7 days or RH 100% at 25°C for 7 days was significantly increased and resulted in the increase of 3 log(10) CFU/coupon after 1 day, and these levels were maintained for 7 days. When stainless steel coupons were stored at 25°C for 5 days, the number of pathogens on the surface of stainless steel was significantly reduced after storage at RH 23%, 43%, 68%, and 85%, but not at 100%. When the bacteria formed biofilms on the surface of stainless steel in TSB after 6 days, the results were similar to those of the attached form. However, levels of S. aureus and C. sakazakii biofilms were more slowly reduced after storage at RH 23%, 43%, 68%, and 85% for 5 days than were those of the other pathogens. Formation of biofilms stored at RH 100% for 5 days displayed the highest levels of resistance to inactivation. Treatment with the alcohol sanitizer was very effective at inactivating attached pathogens or biofilms on the surface of stainless steel. Reduction levels of alcohol sanitizer treatment ranged from 1.91 to 4.77 log and from 4.35 to 5.35 log CFU/coupon in E. coli

  5. Mass transfer behavior of a modified austenitic stainless steel in lithium

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1983-01-01

    An austenitic stainless steel that was developed to resist neutron damage was exposed to lithium in the high-temperature part of a thermal convection loop for 6700 h. Specimens of this Prime Candidate Alloy (PCA) composed of 65.0 Fe-15.9 Ni-13.0 Cr-1.9 Mo-1.9 Mn-1.7 Si-0.5 Ti-0.05 C (wt %) were exposed at 600 and 570 0 C in both solution annealed and cold worked forms. The dissolution process was found to be similar to other austenitic alloys in flowing lithium: weight losses of PCA eventually became linearly proportional to exposure time with the specimen surfaces exhibiting porous layers depleted in nickel and chromium. However, the measured weight losses and dissolution rates of these PCA specimens were higher than those of type 316 stainless steel exposed under similar conditions and can be attributed to the higher nickel concentration of the former alloy. The effect of cold work on dissolution rates was less definitive, particularly at 570 0 C. At longer exposure times, the annealed PCA specimen exposed at 600 0 C suffered greater dissolution than the cold worked material, while no effect of prior deformation was observed by analysis of the respective surfaces

  6. High Cycle Fatigue of Metastable Austenitic Stainless Steels

    OpenAIRE

    Fargas Ribas, Gemma; Zapata Dederle, Ana Cristina; Anglada Gomila, Marcos Juan; Mateo García, Antonio Manuel

    2009-01-01

    Metastable austenitic stainless steels are currently used in applications where severe forming operations are required, such as automotive bodies, due to its excellent ductility. They are also gaining interest for its combination of high strength and formability after forming. The biggest disadvantage is the difficulty to predict the mechanical response, which depends heavily on the amount of martensite formed. The martensitic transformation in metastable stainless steels can b...

  7. Effect of cold working on the corrosion resistance of JPCA stainless steel in flowing Pb–Bi at 450 °C

    International Nuclear Information System (INIS)

    Rivai, Abu Khalid; Saito, Shigeru; Tezuka, Masao; Kato, Chiaki; Kikuchi, Kenji

    2012-01-01

    Development of a high performance proton beam window material is one of the critical issues for the deployment of the accelerator-driven transmutation system (ADS) with liquid Pb–Bi eutectic as a spallation target and coolant. In the present study, we applied 20% cold work treatment to JPCA austenitic stainless steel and investigated it from the corrosion behavior viewpoint. The corrosion test of 20% cold-worked JPCA SS has been carried in the JLBL-1 (JAEA Lead–Bismuth Loop-1) apparatus. The maximum temperature, the temperature difference, the flow velocity and the exposure time of the liquid Pb–Bi were 450 °C, 100 °C, 1 m/s, and 1000 h, respectively. For comparison analysis, JPCA SS without cold working was also tested in the same time and conditions with the 20% cold-worked JPCA SS. The results showed a different corrosion behavior between the JPCA SS without and with cold working. As for the JPCA SS without cold working, Pb–Bi penetrated into the matrix through a ferrite layer which was formed because of constituent metals dissolution from the matrix into Pb–Bi. As for the 20% cold-worked JPCA SS, dissolution attack occurred only partially and formed localized superficial pitting corrosion. It was found that the different corrosion behavior occurred because the cold working induced a structure transformation from γ-austenite to α′-martensite and affected the corrosion resistance of the JPCA SS in flowing Pb–Bi at 450 °C.

  8. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  9. Effect of cold working on the aging and corrosion behavior of Fe-Mn-Al stainless steel

    International Nuclear Information System (INIS)

    Ghayad, I.M.; Girgis, N.N.; Ghanem, W.; Hamada, A.S.

    2004-01-01

    The cold working; aging process; and corrosion behavior of the Fe-Mn-Al stainless steel having a composition of Fe-29wt%Mn-3.5wt%Al-0.5wt%C were investigated. Three different groups of specimens of the alloy were subjected to different procedures of cold working and aging. The first group were cold worked then solution treated at 1100 deg. C for 24 hr, coded as CW+ST. The second group were cold worked, solution treated at 1100 deg. C for 24 hr then cold worked again, coded as CW+ST+CW. The third group were solution treated at 1100 deg. C for 24 hr then cold worked, coded as ST+CW. Subsequent aging treatments of the controlled-worked alloy showed age hardening similar to that reported for the solution-treated alloys. The strengthening of the experimental alloy due to the controlled-working and aging is discussed on the basis of microstructural observations and X-ray diffraction analysis. The corrosion behavior of the different groups of the alloy, CW+ST; CW+ST+CW; ST+CW, with their peak aged and over aged conditions has been examined in 3.5% NaCl solution. The electrochemical techniques, potentiodynamic polarization and Tafel plots were employed. All the alloy groups did not passivate in 3.5% NaCl solution and the major corrosion type observed was general corrosion. The peak aged and over aged of the CW+ST+CW exhibited higher corrosion rates due to the formation of ferrite phase that formed a galvanic couple with the austenitic matrix. (authors)

  10. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel

    International Nuclear Information System (INIS)

    Vijayanand, V.D.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Laha, K.; Mathew, M.D.

    2013-01-01

    Prior cold worked (PCW) titanium-modified 14Cr–15Ni austenitic stainless steel (SS) is used as a core-structural material in fast breeder reactor because of its superior creep strength and resistance to void swelling. In this study, the influence of PCW in the range of 16–24% on creep properties of IFAC-1 SS, a titanium modified 14Cr–15Ni austenitic SS, at 923 K and 973 K has been investigated. It was found that PCW has no appreciable effect on the creep deformation rate of the steel at both the test temperatures; creep rupture life increased with PCW at 923 K and remained rather unaffected at 973 K. The dislocation structure along with precipitation in the PCW steel was found to change appreciably depending on creep testing conditions. A well-defined dislocation substructure was observed on creep testing at 923 K; a well-annealed microstructure with evidences of recrystallization was observed on creep testing at 973 K

  11. Tribological study in roll forming of lean duplex stainless steel sheets

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Nielsen, Morten Strogaard; Bay, Niels

    2012-01-01

    . Production tests show that galling can be a problem but pick-up formation on the tools seems to reach a consistent level. Improvements to tool surfaces and lubricant quality are proposed with a view to optimizing the tribo-system in order to increase the produced length before galling initiates and tool...... are relatively low and surface expansion is more or less non-existent, long roll forming production runs imply large sliding/contact lengths due to relative movement between steel strip and rolls. This requires an efficient tribological system to prevent pick-up formation on the forming tools. The present work...... focus on tribological issues are galling and pick-up formation as well as tool life in roll forming of stainless duplex steel sheets. The roll forming process is exemplified by production of an s-shaped profile used in interlock carcass production for flexible pipes used in off-shore oil extraction...

  12. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Directory of Open Access Journals (Sweden)

    Wenning Shen

    Full Text Available The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel. Keywords: Stainless steel, Carbon steel, Anti-corrosion, Conductivity, Electrochemical, EIS

  13. Testing new tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    of a methodology for off-line testing of new tribo-systems for advanced high strength steels and stainless steels. The methodology is presented and applied to an industrial case, where different tribo-systems are tested. A universal sheet tribotester has been developed, which can run automatically repetitive......Testing of new tribo-systems in sheet metal forming has become an important issue due to new legislation, which forces industry to replace current, hazardous lubricants. The present paper summarizes the work done in a recent PhD project at the Technical University of Denmark on the development...

  14. Study of 316 stainless steel swelling due to neutron irradiation

    International Nuclear Information System (INIS)

    Furutani, Gen; Konishi, Takao

    2000-01-01

    Large stresses will be generated in the austenitic stainless steel core internals of pressurized water reactors (PWRs) if excessive swelling occurs after long periods of operation. As a result, deformation or stress corrosion cracking (SCC) could occur in the core internals. However, data on the swelling of irradiated austenitic stainless steel in actual PWRs is limited. In this study, mechanical tests, measurement of produced helium amount and analysis using transmission electron microscopes were carried out on a cold-worked (CW) 316 stainless steel flux thimble tube irradiated up to approximately 35 dpa in a Japanese PWR. The swelling was evaluated to be approximately 0.02%. This level of swelling was much lower than the swelling of the more than several percent that has been observed in fast breeder reactors. (author)

  15. Dependence of irradiation creep on temperature and atom displacements in 20% cold worked type 316 stainless steel

    International Nuclear Information System (INIS)

    Gilbert, E.R.

    1976-04-01

    Irradiation creep studies with pressurized tubes of 20 percent cold worked Type 316 stainless steel were conducted in EBR-2. Results showed that as atom displacements are extended above 5 dpa and temperatures are increased above 375 0 C, the irradiation induced creep rate increases with both increasing atom displacements and increasing temperature. The stress exponent for irradiation induced creep remained near unity. Irradiation-induced effective creep strains up to 1.8 percent were observed without specimen failure. 13 figures

  16. Influence of stainless steel Internals on Corrosion of tower wall materials

    Science.gov (United States)

    Chen, Bing; Ren, Ke

    2017-12-01

    In view of the galvanic corrosion of the tower wall material in the tower of a refinery atmospheric vacuum distillation unit, the electrochemical behavior of Q345R steel, stainless steel (201, 304 cold-rolled plate, 304 hot rolled plate and 316L) in 3.5%NaCl solution was studied by electrochemical method. The results show that the corrosion potential of Q345R is much lower than that of stainless steel, and the corrosion rate of Q345R is higher than that of stainless steel. As the anode is etched as the anode corrosion, the anode polarizability of stainless steel shows strong polarization ability, which is anodic polarization control, and Q345R is anode Active polarization control; Q345R / 201 galvanic pair may be the most serious corrosion, and Q345R/316L galvanic couple may be relatively slight. Therefore, in the actual production of tower equipment, material design or tower to upgrade the replacement, it are recommended to use the preferred anode and cathode potential difference with the use of materials.

  17. Novel process chain for hot metal gas forming of ferritic stainless steel 1.4509

    Science.gov (United States)

    Mosel, André; Lambarri, Jon; Degenkolb, Lars; Reuther, Franz; Hinojo, José Luis; Rößiger, Jörg; Eurich, Egbert; Albert, André; Landgrebe, Dirk; Wenzel, Holger

    2018-05-01

    Exhaust gas components of automobiles are often produced in ferritic stainless steel 1.4509 due to the low thermal expansion coefficient and the low material price. Until now, components of the stainless steel with complex geometries have been produced in series by means of multi-stage hydroforming at room temperature with intermediate annealing operations. The application of a single-stage hot-forming process, also referred to as hot metal gas forming (HMGF), offers great potential to significantly reduce the production costs of such components. The article describes a novel process chain for the HMGF process. Therefore the tube is heated in two steps. After pre-heating of the semi-finished product outside the press, the tube is heated up to forming start temperature by means of a tool-integrated conductive heating before forming. For the tube of a demonstrator geometry, a simulation model for the conduction heating was set up. In addition to the tool development for this process, experimental results are also described for the production of the demonstrator geometry.

  18. Effects of cold working ratio and stress intensity factor on intergranular stress corrosion cracking susceptibility of non-sensitized austenitic stainless steels in simulated BWR and PWR primary water

    International Nuclear Information System (INIS)

    Yaguchi, Seiji; Yonezawa, Toshio

    2012-01-01

    To evaluate the effects of cold working ratio, stress intensity factor and water chemistry on an IGSCC susceptibility of non-sensitized austenitic stainless steel, constant displacement DCB specimens were applied to SCC tests in simulated BWR and PWR primary water for the three types of austenitic stainless steels, Types 316L, 347 and 321. IGSCC was observed on the test specimens in simulated BWR and PWR primary water. The observed IGSCC was categorized into the following two types. The one is that the IGSCC observed on the same plane of the pre-fatigue crack plane, and the other is that the IGSCC observed on a plane perpendicular to the pre-fatigue crack plane. The later IGSCC fractured plane is parallel to the rolling plane of a cold rolled material. Two types of IGSCC fractured planes were changed according to the combination of the testing conditions (cold working ratio, stress intensity factor and simulated water). It seems to suggest that the most susceptible plane due to fabrication process of materials might play a significant role of IGSCC for non-sensitized cold worked austenitic stainless steels, especially, in simulated PWR primary water. Based upon evaluating on the reference crack growth rate (R-CGR) of the test specimens, the R-CGR seems to be mainly affected by cold working ratio. In case of simulated PWR primary water, it seems that the effect of metallurgical aspects dominates IGSCC susceptibility. (author)

  19. Swelling in cold-worked 316 stainless steels irradiated in a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Fukuya, Koji; Fujii, Katsuhiko [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Swelling behavior in a cold-worked 316 stainless steel irradiated up to 53 dpa in a PWR at 290-320degC was examined using high resolution transmission electron microscopy. Small cavities with the average diameter of 1 nm were observed in the samples irradiated to doses above 3 dpa. The average diameter did not increase with increasing in dose. The maximum swelling was as low as 0.042%. The measured helium content and the cavity morphology led to the conclusion that the cavities were helium bubbles. A comparison of the observed cavity microstructure with data from FBR, HFIR and ATR irradiation showed that the cavity structure in PWR at 320degC or less was similar to those in HFIR and ATR irradiation but quite different from those in FBR condition. From a calculation based on the cavity data and kinetic models the incubation dose of swelling was estimated to be higher than 80dpa in the present irradiation condition. (author)

  20. Design Optimization of Long-Span Cold-Formed Steel Portal Frames Accounting for Effect of Knee Brace Joint Configuration

    OpenAIRE

    Thanh Duoc Phan; James B. P. Lim; Meheron Selowara Joo; Hieng-Ho Lau

    2017-01-01

    The application of cold-formed steel channel sections for portal frames becomes more popular for industrial and residential purposes. Experimental tests showed that such structures with long-span up to 20 m can be achieved when knee brace joints are included. In this paper, the influence of knee brace configuration on the optimum design of long-span cold-formed steel portal frames is investigated. The cold-formed steel portal frames are designed using Eurocode 3 under ultimate limit states. A...

  1. Phase formation at bonded vanadium and stainless steel interfaces

    International Nuclear Information System (INIS)

    Summers, T.S.E.

    1992-01-01

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 μm thick was present at the interface. This layer grew to about 50 μm thick during heat treatment at 1000 degrees C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the ω phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000 degrees C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be ω phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000 degrees C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the ω phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications

  2. Study of irradiation effects in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, A. [GPM UMR CNRS 6634, Universite et INSA de Rouen (France); Material Department, University of California, Santa Barbara (United States); Pareige, P.; Radiguet, B. [GPM UMR CNRS 6634, Universite et INSA de Rouen (France); Cunningham, N.J.; Odette, G.O. [Material Department, University of California, Santa Barbara (United States); Pokor, C. [EDF RD, departement MMC, site des Renardieres, Moret-sur-Loing (France)

    2011-07-01

    Chemical analyses using Atom Probe Tomography were performed on a bolt made of cold worked 316 austenitic stainless steel, extracted from the internal structures of a pressurized water reactor after seventeen years of reactor service. The irradiation temperature of these samples was 633 K and the irradiation dose was estimated to 12 dpa. These analyses have shown that neutron irradiation has a strong effect on the intragranular distribution of solute atoms. A very high number density (6.10{sup 23} m{sup -3}) of Ni-Si enriched and Cr-Fe depleted clusters was detected after irradiation. In order to bring complementary experimental results and to determine the mechanism of formation of these Ni-Si nano-clusters, Fe{sup 5+} ion irradiations have been performed on a 316 austenitic stainless steel. As after neutron irradiation, the formation of solute enriched features is observed. Linear features and two kinds of clusters, rounded and torus shaped, are present. Considering that solute enriched features are probably formed by radiation induced segregation on point defect sinks, these different shapes are due to the nature of the sinks where segregation occurs. (authors)

  3. Semiconducting properties of oxide and passive films formed on AISI 304 stainless steel and Alloy 600

    Directory of Open Access Journals (Sweden)

    Ferreira M. G. S.

    2002-01-01

    Full Text Available The semiconducting properties of passive films formed on AISI 304 stainless steel and Alloy 600 in borate buffer solution were studied by capacitance (Mott-Schottky approach and photocurrent measurements. Oxide films formed on 304 stainless steel in air at 350 ºC have also been studied. The results obtained show that, in all cases the electronic structure of the films is comparable to that of a p-n heterojunction in which the space charges developed at the metal-film and film-electrolyte interfaces have also to be considered. This is in accordance with analytical results showing that the oxide films are in all cases composed of an inner region rich in chromium oxide and an outer region rich in iron oxide.

  4. Stress corrosion cracking of stainless steel under deaerated high-temperature water. Influence of cold work and processing orientation

    International Nuclear Information System (INIS)

    Terachi, Takumi; Yamada, Takuyo; Chiba, Goro; Arioka, Koji

    2006-01-01

    The influence of cold work and processing orientation on the propagation of stress corrosion cracking (SCC) of stainless steel under hydrogenated high-temperature water was examined. It was shown that (1) the crack growth rates increased with heaviness of cold work, and (2) processing orientation affected crack growth rate with cracking direction. Crack growth rates showed anisotropy of T-L>>T-S>L-S, with T-S and L-S branches representing high shear stress direction. Geometric deformation of crystal grains due to cold work caused the anisotropy and shear stress also assisted the SCC propagation. (3) The step intervals of slip like patterns observed on intergranular facets increased cold work. (4) Nano-indentation hardness of the crack tip together with EBSD measurement indicated that the change of hardness due to crack propagation was less than 5% cold-work, even though the distance from the crack tip was 10μm. (author)

  5. The role of cold work and applied stress on surface oxidation of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Perez, Sergio, E-mail: sergio.lozano-perez@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Kruska, Karen [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Iyengar, Ilya [Winchester College, College Street, Winchester SO23 9LX (United Kingdom); Terachi, Takumi; Yamada, Takuyo [Institute of Nuclear Safety System (INSS), 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FIB 3D sequential sectioning is an ideal technique to characterize surface oxidation. Black-Right-Pointing-Pointer 3D models of the oxide can be produced with nanometre resolution. Black-Right-Pointing-Pointer The effects of stress and cold work in grain boundary oxidation have been analysed. Black-Right-Pointing-Pointer At least three different oxidation modes are observed when stress is applied. - Abstract: FIB 3-dimensional (3D) sequential sectioning has been used to characterize environmental degradation of 304 stainless steels in pressurized water reactor (PWR) simulated primary water. In particular, the effects of cold work and applied stress on oxidation have been studied in detail. It was found that a description of the oxidation behaviour of this alloy is only complete if it is treated statistically, since it can suffer from high variability depending on the feature described.

  6. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Serdar, Marijana [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Meral, Cagla [Middle East Technical University, Department of Civil Engineering, Ankara (Turkey); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bjegovic, Dubravka [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Wenk, Hans-Rudolf [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  7. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    International Nuclear Information System (INIS)

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM

  8. Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design

    Science.gov (United States)

    2013-08-23

    Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel , Acta...Alumina- Forming Austenitic Stainless Steels Strengthened by LAves Phase and MC Carbide Precipitates , Metallurgical and Materials Transactions A...nano- precipitate engineering---of nanotwinned stainless steels . This preliminary work has provided valuable insight into the mechanisms responsible

  9. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    International Nuclear Information System (INIS)

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    Highlights: • The morphology of the corrosion of steel in cement paste was studied in situ. • During galvanostatic corrosion, carbon steel reinforcement corroded homogeneously. • On ferritic stainless steel, deep corrosion pits formed and caused wider cracks. • The measured rate of steel loss correlated well with Faraday’s law of electrolysis. - Abstract: In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover

  10. Development of new high-performance stainless steels

    International Nuclear Information System (INIS)

    Park, Yong Soo

    2002-01-01

    This paper focused on high-performance stainless steels and their development status. Effect of nitrogen addition on super-stainless steel was discussed. Research activities at Yonsei University, on austenitic and martensitic high-performance stainless, steels, and the next-generation duplex stainless steels were introduced

  11. Aluminide Coating on Stainless Steel for Nuclear Reactor Application: A Preliminary Study

    International Nuclear Information System (INIS)

    Hishamuddin Husain; Zaifol Samsu; Yusof Abdullah; Muhamad Daud

    2015-01-01

    Stainless steels have been used as structural materials in the nuclear reactor since its first generation. Stainless steels type 304 and 316 are commonly used in structural components. Since the first generation materials, improvements were made on Stainless steels. This includes addition of stabilizing elements and by modification of metallurgical structure. This study investigates the formation of aluminide coating on Stainless steels by diffusion to help improve corrosion resistance. Stainless steels type 304 and 316 substrates were immersed in molten aluminium at 750 degree Celsius for 5 minutes. Interaction between molten aluminium and solid to form the outer aluminide coating by hot dipped aluminizing is studied. (Author)

  12. Preparation Femtosecond Laser Prevention for the Cold-Worked Stress Corrosion Crackings on Reactor Grade Low Carbon Stainless Steel

    CERN Document Server

    John Minehara, Eisuke

    2004-01-01

    We report here that the femtosecond lasers like low average power Ti:Sapphire lasers, the JAERI high average power free-electron laser and others could peel off and remove two stress corrosion cracking (SCC) origins of the cold-worked and the cracking susceptible material, and residual tensile stress in hardened and stretched surface of low-carbon stainless steel cubic samples for nuclear reactor internals as a proof of principle experiment except for the third origin of corrosive environment. Because a 143 °C and 43% MgCl2 hot solution SCC test was performed for the samples to simulate the cold-worked SCC phenomena of the internals to show no crack at the laser-peered off strip on the cold-worked side and ten-thousands of cracks at the non-peeled off on the same side, it has been successfully demonstrated that the femtosecond lasers could clearly remove the two SCC origins and could resultantly prevent the cold-worked SCC.

  13. Cause-specific mortality in Finnish ferrochromium and stainless steel production workers.

    Science.gov (United States)

    Huvinen, M; Pukkala, E

    2016-04-01

    Although stainless steel has been produced for more than a hundred years, exposure-related mortality data for production workers are limited. To describe cause-specific mortality in Finnish ferrochromium and stainless steel workers. We studied Finnish stainless steel production chain workers employed between 1967 and 2004, from chromite mining to cold rolling of stainless steel, divided into sub-cohorts by production units with specific exposure patterns. We obtained causes of death for the years 1971-2012 from Statistics Finland. We calculated standardized mortality ratios (SMRs) as ratios of observed and expected numbers of deaths based on population mortality rates of the same region. Among 8088 workers studied, overall mortality was significantly decreased (SMR 0.77; 95% confidence interval [CI] 0.70-0.84), largely due to low mortality from diseases of the circulatory system (SMR 0.71; 95% CI 0.61-0.81). In chromite mine, stainless steel melting shop and metallurgical laboratory workers, the SMR for circulatory disease was below 0.4 (SMR 0.33; 95% CI 0.07-0.95, SMR 0.22; 95% CI 0.05-0.65 and SMR 0.16; 95% CI 0.00-0.90, respectively). Mortality from accidents (SMR 0.84; 95% CI 0.67-1.04) and suicides (SMR 0.72; 95% CI 0.56-0.91) was also lower than in the reference population. Working in the Finnish ferrochromium and stainless steel industry appears not to be associated with increased mortality. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine.

  14. Processing of fine grained AISI 304L austenitic stainless steel by cold rolling and high-temperature short-term annealing

    Science.gov (United States)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-05-01

    An advanced thermomechanical process based on the formation and reversion of deformation-induced martensite was used to refine the grain size and enhance the hardness of an AISI 304L austenitic stainless steel. Both low and high reversion annealing temperatures and also the repetition of the whole thermomechanical cycle were considered. While a microstructure with average austenite grain size of a few micrometers was achieved based on cold rolling and high-temperature short-term annealing, an extreme grain refinement up to submicrometer regime was obtained by cold rolling followed by low-temperature long-term annealing. However, the required annealing time was found to be much longer, which negates its appropriateness for industrial production. While a magnificent grain refinement was achieved by one pass of the high-temperature thermomechanical process, the reduction in grain size was negligible by the repetition of the whole cycle. It was found that the hardness of the thermomechanically processed material is much higher than that of the as-received material. The results of the present work were shown to be compatible with the general trend of grain size dependence of hardness for AISI 304L stainless steel based on the Hall-Petch relationship. The results were also discussed based on the X-ray evaluation of dislocation density by modified Williamson-Hall plots.

  15. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    Science.gov (United States)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-06-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  16. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Science.gov (United States)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  17. Analysis of the influence of the anisotropy induced by cold rolling on duplex and super-austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    Martino Labanti

    2010-07-01

    Full Text Available This report contains the results obtained from the mechanical characterization tests carried out on two different stainless steel (duplex 6%Ni, 22%Cr and super-austenitic 31%Ni, 28%Cr used for the manufacturing of pipes which are employed in the oil production. The activity has been performed in order to evaluate the effects of anisotropy, induced by cold rolling, on the mechanical characteristics of the investigated steels, measured in the three main directions. Considering the small size of the component, the method and the specimens used for the tests were not the standard one. The procedure carried out provided the strain measurement of the specimen during testing by means of resistive strain gages, bonded on the specimens.

  18. Austenitic stainless steel bulk property considerations for fusion reactors

    International Nuclear Information System (INIS)

    Mattas, R.F.

    1979-04-01

    The bulk properties of annealed 304, 316, and 20% cold-worked 316 stainless steels are evaluated for the temperature and radiation conditions expected in a near-term fusion reactor. Of interest are the thermophysical properties, void swelling produced by neutron radiaion, and the tensile, creep, and fatigue properties before and after irradiation

  19. Hydrogen effects in stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1983-01-01

    The effects of hydrogen on stainless steels have been reviewed and are summarized in this paper. Discussion covers hydrogen solution and transport in stainless steels as well as the effects of hydrogen on deformation and fracture under various loading conditions. Damage is caused also by helium that arises from decay of the hydrogen isotope tritium. Austenitic, ferritic, martensite, and precipitation-hardenable stainless steels are included in the discussion. 200 references

  20. Characterization of friction stir welded joint of low nickel austenitic stainless steel and modified ferritic stainless steel

    Science.gov (United States)

    Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar

    2017-09-01

    Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.

  1. Forming limit and fracture mechanism of ferritic stainless steel sheets

    International Nuclear Information System (INIS)

    Xu Le; Barlat, Frederic; Ahn, Deok Chan; Bressan, Jose Divo

    2011-01-01

    Research highlights: → Forming limit curves of two ferritic stainless steel sheets were well predicted. → Failure occurs by necking in uniaxial and plane strain tension for both materials. → Failure occurs by shearing in balanced biaxial tension for both materials. → Strain rate sensitivity does not affect the limit strains a lot for both materials. → Strain rate sensitivity likely influences the failure mode for both materials. - Abstract: In this work, the forming limit curves (FLCs) of two ferritic stainless steel sheets, AISI409L and AISI430, were predicted with the Marciniak-Kuczynski (MK) and Bressan-William-Hill (BWH) models, combined with the Yld2000-2d yield function and the Swift hardening law. Uniaxial tension, disk compression and hydraulic bulge tests were performed to determine the yield loci and hardening curves of both materials. Meanwhile, the strain rate sensitivity (SRS) coefficient was measured through uniaxial tension tests carried out at different strain rates. Out-of-plane stretching tests were conducted in sheet specimens to obtain the surface limit strains under different linear strain paths. Micrographs of the specimens fractured in different stress states were obtained by optical and scanning electron microscopy. The overall results show that the BWH model can predict the FLC better than the MK model, and that the SRS does not have much effect on the limit strains for both materials. The predicted FLCs and micrograph analysis both indicate that failure occurs by surface localized necking in uniaxial and plane strain tension states, whereas it occurs by localized shearing in the through thickness direction in balanced biaxial tension state.

  2. Stress relaxation characteristics of type 304 stainless steel

    International Nuclear Information System (INIS)

    Manjoine, M.J.

    1975-01-01

    The stress relaxation of type 304 stainless steel below 900 0 F (482 0 C) is practically time independent after 100 h and has a maximum of about 18 per cent. The per cent relaxation decreases with increasing degree of cold work and with decreasing stress. Above 900 0 F the per cent relaxation increases with time, temperature, and cold work. The initial stress can also be increased for cold work materials so that the remaining stress can be maintained at a higher value even up to 1200 0 F (649 0 C). Time-temperature parameters are practical to correlate and extrapolate the data in the higher temperature range. (author)

  3. Fatigue life of high strength steel for cold forming

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests carried out on STRENX-type high-strength cold forming steel. For high-cycle fatigue tests carried out using low cycle loading frequencies of around 30 Hz, a ROTOFLEX machine was used. For ultra high-cycle tests, a KAUP-ZU testing machine was employed, which enables fatigue tests to be performed with symetric specimen loading (R = -1 and at a frequency of f ≈ 20 kHz. The relationships σa = f(N were determined experimentally in the high and ultra high-cycle region for STRENX high-strength steel. To determine the fatigue crack initiation mechanism, the fractographic analysis of fatigue fractures was made.

  4. Stress corrosion cracking of austenitic stainless steels in high temperature water and alternative stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, T.

    2015-01-01

    In order to clarify the effect of SFE on SCC resistance of austenitic stainless steels and to develop the alternative material of Type 316LN stainless steel for BWR application, the effect of chemical composition and heat treatment on SFE value and SCCGR in oxygenated high temperature water were studied. The correlation factors between SFE values for 54 heats of materials and their chemical compositions for nickel, molybdenum, chromium, manganese, nitrogen, silicon and carbon were obtained. From these correlation factors, original formulae for SFE values calculation of austenitic stainless steels in the SHTWC, SHTFC and AGG conditions were established. The maximum crack length, average crack length and cracked area of the IGSCC for 33 heats were evaluated as IGSCC resistance in oxygenated high temperature water. The IGSCC resistance of strain hardened nonsensitized austenitic stainless steels in oxygenated high temperature water increases with increasing of nickel contents and SFE values. From this study, it is suggested that the SFE value is a key parameter for the IGSCC resistance of non-sensitized strain hardened austenitic stainless steels. As an alternative material of Type 316LN stainless steel, increased SFE value material, which is high nickel, high chromium, low silicon and low nitrogen material, is recommendable. (author)

  5. Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality

    Science.gov (United States)

    Liu, Bo

    2017-03-01

    Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.

  6. Stainless austenitic steels strengthened due to reversible phase transformations and by ageing

    International Nuclear Information System (INIS)

    Sagaradze, V.V.; Kositsyna, I.I.; Ozhiganov, A.V.

    1981-01-01

    The effect of the reversible phase transformations, consisting in the conduction of the direct and reverse martensite transformations and aging, during which the intermetallide γ'-phase of the composition Ni 3 Ti is formed, on the streng-thening of alloys in the Fe-Cr-Ni-Ti system is considered. Stainless austenitic steels Kh12N12T3 and Kh12N14T3, which acquire high mechanical properties: σsub(0.2)=685-785 MPa, σsub(B)=1275 MPa, delta >= 20%, as a result of reversible phase transformations and aging, are suggested. After the reversible phase transformations and ageing the steels possess a high resistance to γ-α-transformation during cold treatment [ru

  7. Influence of alloying elements on the corrosion properties of shape memory stainless steels

    International Nuclear Information System (INIS)

    Della Rovere, C.A.; Alano, J.H.; Silva, R.; Nascente, P.A.P.; Otubo, J.; Kuri, S.E.

    2012-01-01

    Highlights: ► The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape-memory stainless steels (SMSSs) were compared with those of a type 304 (SS 304) austenitic stainless steel. ► A considerably high Si content (about 40 at%) is present in the anodic passive films formed on SMSSs in 0.5 M H 2 SO 4 solution. ► The high protectiveness of the anodic passive film formed on SMSSs in 0.5 M H 2 SO 4 solution results from a protective film consisting of a (Fe, Cr)–mixed silicate. ► The SMSSs exhibited higher corrosion resistance than SS 304 in highly oxidizing environments. ► The SMSSs showed poor corrosion resistance in 3.5% NaCl solution compared to that of SS 304. - Abstract: The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape memory stainless steels were studied based on X-ray photoelectron spectroscopy (XPS) analyses, immersion and polarization tests. The test results were compared with those of a type 304 austenitic stainless steel. The XPS analyses indicated substantial Si content in the anodic passive films formed on shape memory stainless steels in sulfuric acid solution and that the high protectiveness of these films results from a protective film consisting of a (iron, chromium)–mixed silicate. The corrosion rate of the shape memory stainless steels in boiling nitric acid solution was lower than that of austenitic stainless steel. The high silicon content was found to play an important role in the corrosion behavior of these shape memory alloys in highly oxidizing environments. Due to their high manganese content, the shape memory stainless steels showed poor corrosion behavior in 3.5% sodium chloride solution when compared with austenitic stainless steel.

  8. Improved swelling resistance for PCA austenitic stainless steel under HFIR irradiation through microstructural control

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1984-01-01

    Swelling evaluation of PCA variants and 20%-cold-worked (N-Lot) type 316 stainless steel (CW 316) at 300 to 600 0 C was extended to 44 dpa. Swelling was negligible in all the steels at 300 0 C after approx. 44 dpa. At 500 to 600 0 C 25%-cold-worked PCA showed better void swelling resistance than type 316 at approx. 44 dpa. There was less swelling variation among alloys at 400 0 C, but again 25%-cold-worked PCA was the best

  9. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, Tien-Wei, E-mail: twshyr@fcu.edu.tw [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Huang, Shih-Ju [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Wur, Ching-Shuei [Department of Physics, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China)

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α′-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α′-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy. - Highlights: • The martensitic transformation of the 316L SS fiber occurred during the cold drawn. • The grain sizes of γ-austenite and α′-martensite were reduced to the nanoscale. • The newly formed martensitic grains were closely arrayed in the drawing direction. • The drawing process caused the magnetic easy axis to be aligned with the fiber axis. • The microstructure anisotropy strongly contributed to the magnetic anisotropy.

  10. SRS stainless steel beneficial reuse program

    Energy Technology Data Exchange (ETDEWEB)

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  11. Characterization of microstructures in austenitic stainless steels by ultrasonics

    International Nuclear Information System (INIS)

    Raj, Baldev; Palanichamy, P.; Jayakumar, T.; Kumar, Anish; Vasudevan, M.; Shankar, P.

    2000-01-01

    Recently, many nondestructive techniques have been considered for microstructural characterization of materials to enable in-situ component assessment for pre-service quality and in-service performance. Ultrasonic parameters have been used for estimation of average grain size, evaluation of recrystallization after cold working, and characterization of Cr2N precipitation during thermal aging in different grades of austenitic stainless steels. Ultrasonic first back wall echo signals were obtained from several specimens of AISI type 316 stainless steel with different grain sizes. Shift in the spectral peak frequency and the change in the full width at half maximum of the autopower spectrum of the first back wall echo are correlated with the grain size in the range 30-150 microns. The advantages of this method are: (i) independence of variation in couplant conditions (ii), applicable even to highly attenuating materials, (iii) direct correlation of the ultrasonic parameters with yield strength and (iv) suitability for shop-floor applications. Recrystallization behavior (temperature range 973-1173 K and time durations 0.5-1000 h) of cold worked titanium modified 316 stainless steel (D9) has been characterized using ultrasonic velocity measurements. A velocity parameter derived using a combination of shear and longitudinal wave velocities is correlated with the degree of recrystallization. These velocity measurement could also identify onset, progress and completion of recrystallization more accurately as compared to hardness and strength measurements. Ultrasonic velocity measurements were performed in thermally aged (at 1123 K for 10 to 2000 h) nuclear grade 316 LN stainless steel. Change in velocity due to thermal aging treatment could be used to reveal the formation of (i) Cr-N clusters associated with high lattice strains, (ii) coherent Cr2N precipitation, (iii) loss of coherency and (iv) growth of incoherent Cr2N precipitates. Microstructural characterization by

  12. Embrittlement and life prediction of aged duplex stainless steel

    International Nuclear Information System (INIS)

    Kuwano, Hisashi

    1996-01-01

    The stainless steel, for which the durability for long term in high temperature corrosive environment is demanded, is a complex plural alloy. Cr heightens the oxidation resistance, Ni improves the ductility and impact characteristics, Si improves the fluidity of the melted alloy and heightens the resistance to stress corrosion cracking, and Mo suppresses the pitting due to chlorine ions. These alloy elements are in the state of nonequilibrium solid solution in Fe base at practical temperature, and cause aging phenomena such as segregation, concentration abnormality and precipitation during the use for long term. The characteristics of stainless steel deteriorate due to this. Two-phase stainless cast steel, the example of the embrittlement of the material for an actual machine, the accelerated test of embrittlement, the activation energy for embrittlement, and as the mechanism of aging embrittlement, the spinodal decomposition of ferrite, the precipitation of G phase and the precipitation of carbides and nitrides are described. Also in the welded parts of austenitic stainless steel, delta-ferrite is formed during cooling, therefore, the condition is nearly same as two-phase stainless steel, and the embrittlement due to long term aging occurs. (K.I.)

  13. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  14. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  15. Effect of overload on SCC growth in stainless steels in high temperature water

    International Nuclear Information System (INIS)

    Xue, He; Peng, Qunjia; Shoji, Tetsuo

    2009-01-01

    By incorporating the film slip-dissolution/oxidation model and the elastic-plastic finite element method (EPFEM), the effect of the overload on stress corrosion cracking (SCC) growth rate of stainless steel in high temperature water is discussed in this paper. Results show that SCC growth rate of a 20% cold worked 316L stainless steel in high temperature water decrease in the overload affected zone ahead of the growing crack tip. Therefore, a reasonable overload could availably reduce the SCC growth rate during a certain in-service period. (author)

  16. Thermogalvanic corrosion and galvanic effects of copper and AISI 316L stainless steel pairs in heavy LiBr brines under hydrodynamic conditions

    International Nuclear Information System (INIS)

    Sánchez-Tovar, R.; Montañés, M.T.; García-Antón, J.

    2012-01-01

    Highlights: ► Thermogalvanic corrosion results in an increase of the current densities. ► Thermogalvanic effect increases as temperature difference between tubes is higher. ► Potentials fit linearly with increase in temperature. ► ZRA shows hot cathodes for AISI 316L while cold ones for copper and galvanic pairs. ► Weight loss tests show a combined effect between thermogalvanic and galvanic effects. - Abstract: Thermogalvanic corrosion of the copper/copper and AISI 316L/AISI 316L stainless steel pairs was studied in heavy lithium bromide brines under hydrodynamic conditions. The galvanic coupling effect between copper and stainless steel was also analysed. The cold electrode (25 °C) was the stainless steel for the galvanic pair, whereas copper temperature varied (25, 50 and 75 °C). A hydrodynamic circuit was designed to study thermogalvanic corrosion by means of the zero resistance ammeter technique. Hot cathodes take place in stainless steel pairs while cold cathodes are present in copper/copper and stainless steel/copper pairs; this agrees with the thermal temperature coefficient of the potential sign. Thermogalvanic corrosion increases corrosion rates, especially working with copper. Weight loss measurements show that there is a combined effect due to the thermogalvanic and the galvanic effects.

  17. Influence of temperature, cold deformation and a constant mechanical load on the microstructural stability of a nitrogen alloyed duplex stainless steel

    International Nuclear Information System (INIS)

    Weisbrodt-Reisch, A.; Brummer, M.; Hadler, B.; Wolbank, B.; Werner, E.A.

    2006-01-01

    The influence of temperature, cold deformation and constant mechanical load on the microstructural stability and the kinetics of phase decomposition of a nitrogen-alloyed duplex stainless steel (0.34 wt.% N) was investigated. Calculation of the phase equilibria was done with THERMOCALC using the steel database TCFE3 in order to predict the stability of the phases and to estimate the influence of temperature on the fraction and chemical composition of the phases. Various ageing treatments between 800 deg. C and 1300 deg. C were performed for different time intervals with controlled heating and cooling rates. In order to determine the influence of deformation, annealing at 800 deg. C after cold deformation as well as dilatometry experiments were performed under a constant mechanical compressive load at 800 deg. C and 900 deg. C. Microstructural characterization was carried out by means of light microscopy, electron microscopy and X-ray diffractometry. It was found that the microstructural evolution under a thermal load alone in the temperature range above 950 deg. C concerns mainly the transformation of austenite to ferrite, while below 950 deg. C ferrite decomposition and precipitation of nitrides occur. Since duplex stainless steels possess a microstructure consisting of paramagnetic austenite and ferromagnetic ferrite, the kinetics of ferrite decomposition can be determined easily by magnetic inductive measurements. The results of the microstructural investigations and the measurements of the saturation magnetization show that there is a satisfactory agreement with the theoretical predictions based on THERMOCALC. Ferrite decomposition is significantly accelerated by strain introduced during cold deformation. Furthermore, even under a small mechanical load the kinetics of phase decomposition behaviour at 900 deg. C is drastically changed. Whereas during short annealing times the microstructure remains nearly stable the same annealing conditions under a constant

  18. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Ehrnsten, U.; Toivonen, A.; Ivanchenko, M.; Nevdacha, V.; Yagozinskyy, Y.; Haenninen, H.

    2004-01-01

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  19. Monitoring of Fatigue Degradation in Austenitic Stainless Steels

    International Nuclear Information System (INIS)

    Kalkhof, D.; Niffenegger, M.; Leber, H.J.

    2004-01-01

    During cyclic loading of austenitic stainless steel, it was observed that microstructural changes occurred; these affect both the mechanical and physical properties of the material. For certain steels, a strain-induced martensite phase transformation was seen. The investigations showed that, for the given material and loading conditions, the volume fraction of martensite depends on the cycle number, temperature and initial material state. It was also found that the martensite content continuously increased with the cycle number. Therefore, the volume fraction of martensite was used as an indication of fatigue usage. It was noted that the temperature dependence of the martensite formation could be described by a Boltzmann function, and that the martensite content decreased with increasing temperature. Two different heats of the austenitic stainless steel X6CrNiTi18-10 (AISI 321, DIN 1.4541) were investigated. It was found that the martensite formation rate was much higher for the cold-worked than for the solution-annealed material. All applied techniques - neutron diffraction and advanced magnetic methods - were successful in detecting the presence of martensite in the differently fatigued specimens. (author)

  20. Phase transformation of 316L stainless steel from wire to fiber

    International Nuclear Information System (INIS)

    Shyr, Tien-Wei; Shie, Jing-Wen; Huang, Shih-Ju; Yang, Shun-Tung; Hwang, Weng-Sing

    2010-01-01

    In this work, quantitative crystalline phase analysis of 316L stainless steel from wire to fiber using a multi-pass cold drawing process was studied using the Rietveld whole XRD profile fitting technique. The different diameters of the fibers: 179, 112, 75, 50, 34, 20, and 8 μm, were produced from an as-received wire with a diameter of 190 μm. The crystalline phases were identified using MDI Jade 5.0 software. The volume fractions of crystalline phases were estimated using a Materials Analysis Using Diffraction software. XRD analysis revealed that the crystal structure of as-received wire is essentially a γ-austenite crystalline phase. The phase transformation occurred during the 316L stainless steel from wire to fiber. Three crystalline phases such as γ-austenite, α'-martensite, and sigma phase of the fine fiber were observed. A cold drawing accelerates the sigma phase precipitates, particularly during the heat treatment of the fiber.

  1. Cold-rolled sheets production of stainless martensite-ageing steel smelted by vacuum arc and electroslag techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, A A; Grishkov, A I; Suslin, A P; Nesterenko, A A; Lola, V N [Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR)

    1975-05-01

    In cooperation with a number of metallurgical works the production of a high strength sheet stainless maraging steel EHP678 (000KH11N10M2T) has been tested by rolling cylindrical ingots of vacuum arc smelting at the blooming (the mass of rough ingots was 5.1 to 6.0 t, that of cleaned ingots - 3.8 to 5.1 t) or rectangular ingots of electroslag smelting (13 t) at the slabbing. The recommended regimes of heating and deformation are much similar to those used for the steel-KH18N10T. The output of valid cold-rolled sheets proved to be rather low (0.24 t/t for the vacuum arc smelting and 0.30 t/t for the electroslag smelting) mainly due to the losses on cleaning and a considerable portion of wrong-size slabs. The data are presented on the steel-EHP678 properties after various heat treatments. For the production of wide cold-rolled sheets of the steel EHP678 it is recommended to use steelmaking procedure with electroslag smelting including open-hearth melting in arc furnaces, rolling of ingots at the slabbing with heating up to 1260-1280 deg C (hold-up of 4.5 to 5 hrs); electroslag smelting for rectangular section slabs, rolling of ingots of electroslag smelting at the slabbing with their heating up to 1250 deg C (hold-up of 5.5 to 6 hrs), rolling at the 1680-type mill with heating up to 1250-1260 deg C (hold-up of 4 to 4.5 hrs ensuring the rolling temperature after a rough group not below 1100 deg C), quenching of hot-rolled sheets heating up to 920-940 deg C (hold-up of 3 to 3.5 min/mm), shot peening of sheets for descaling (provided the respective equipment is available) with a subsequent short-time pickling in an acid solution and cold rolling with a summary deformation of 35 to 45 %. The steelmaking with the electroslag smelting is much more profitable as regards to the fine technology of number of the main procedures, convenient cooperation of the works and a considerably greater output of the final products out of one ton of the steel produced.

  2. Design Optimization of Long-Span Cold-Formed Steel Portal Frames Accounting for Effect of Knee Brace Joint Configuration

    Directory of Open Access Journals (Sweden)

    Thanh Duoc Phan

    2017-12-01

    Full Text Available The application of cold-formed steel channel sections for portal frames becomes more popular for industrial and residential purposes. Experimental tests showed that such structures with long-span up to 20 m can be achieved when knee brace joints are included. In this paper, the influence of knee brace configuration on the optimum design of long-span cold-formed steel portal frames is investigated. The cold-formed steel portal frames are designed using Eurocode 3 under ultimate limit states. A novel method in handling design constraints integrated with genetic algorithm is proposed for searching the optimum design of cold-formed steel portal frames. The result showed that the proposed routine for design optimization effectively searched the near global optimum solution with the computational time is approximate 50% faster than methods being popularly used in literature. The optimum configuration for knee brace joint can reduce the section size of rafter and so the lighter frame could be obtained especially for long-span portal frame. The minimum weight of main frame obtained from optimization process is approximate 19.72% lighter than a Benchmark Frame used in the full-scale experimental test.

  3. Cold rolled texture and microstructure in types 304 and 316L austenitic stainless steels

    International Nuclear Information System (INIS)

    Wasnik, D.N.; Samajdar, I.; Gopalakrishnan, I.K.; Yakhmi, J.V.; Kain, V.

    2003-01-01

    Two grades of austenitic stainless steel (ASS), types 304 (UNS S 30400) and 316L (UNS S 31603), were cold rolled to different reductions by unidirectional and by cross-rolling. The steels had reasonable difference in stacking fault energy (estimated respectively as 15 and 61 mJ/m 2 in types 304 and 316L) and also in starting (or pre-deformation) crystallographic texture-being relatively weak and reasonably strong in types 304 and 316L respectively. The cold rolling increased texturing in type 304, but not in type 316L ASS. The more significant effect of cold rolled texture development was in the relative increase of Brass ({011} ) against Copper ({112} ) and S ({231} ) orientations. In type 304 the increase in Brass was significant, while in type 316L the increase in Copper and S was stronger. This effect could be captured by Taylor type deformation texture simulations considering stronger twinning contributions in type 304 - for example the respective 'best-fits' (in terms of matching the changes in the volume fractions of Brass against Copper and S) were obtained by full constraint Taylor model with 1:100 and 1:10 slip:twin activities in types 304 and 316L ASS respectively. Microstructural developments during cold rolling were generalized as strain induced martensite formation and developments of dislocation substructure. The former, as estimated by vibrating sample magnetometer (VSM), increased with cold reduction, being significantly more in type 304 and was also noticeably stronger in both grades under cross-rolling. The most significant aspect of substructural developments was the formation of strain localizations. These were observed as dense dislocation walls (DDWs), micro-bands (MBs) and twin lamellar structures (TLS). The TLS contribution gained significance at higher reductions and during cross-rolling, especially in type 304. Large misorientation development and the accompanying grain splittings were always associated with such strain localizations

  4. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-01-01

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  5. Resistance of bacterial biofilms formed on stainless steel surface to disinfecting agent.

    Science.gov (United States)

    Królasik, Joanna; Zakowska, Zofia; Krepska, Milena; Klimek, Leszek

    2010-01-01

    The natural ability of microorganisms for adhesion and biofilm formation on various surfaces is one of the factors causing the inefficiency of a disinfection agent, despite its proven activity in vitro. The aim of the study was to determine the effectiveness of disinfecting substances on bacterial biofilms formed on stainless steel surface. A universally applied disinfecting agent was used in the tests. Bacterial strains: Listeria innocua, Pseudomonas putida, Micrococcus luteus, Staphylococcus hominis strains, were isolated from food contact surfaces, after a cleaning and disinfection process. The disinfecting agent was a commercially available acid specimen based on hydrogen peroxide and peroxyacetic acid, the substance that was designed for food industry usage. Model tests were carried out on biofilm formed on stainless steel (type 304, no 4 finish). Biofilms were recorded by electron scanning microscope. The disinfecting agent in usable concentration, 0.5% and during 10 minutes was ineffective for biofilms. The reduction of cells in biofilms was only 1-2 logarithmic cycles. The use of the agent in higher concentration--1% for 30 minutes caused reduction of cell number by around 5 logarithmic cycles only in the case of one microorganism, M. luteus. For other types: L. innocua, P. putida, S. hominis, the requirements placed on disinfecting agents were not fulfilled. The results of experiments proved that bacterial biofilms are resistant to the disinfectant applied in its operational parameters. Disinfecting effectiveness was achieved after twofold increase of the agent's concentration.

  6. Swelling and swelling resistance possibilities of austenitic stainless steels in fusion reactors

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1983-01-01

    Fusion reactor helium generation rates in stainless steels are intermediate to those found in EBR-II and HFIR, and swelling in fusion reactors may differ from the fission swelling behavior. Advanced titanium-modified austenitic stainless steels exhibit much better void swelling resistance than AISI 316 under EBR-II (up to approx. 120 dpa) and HFIR (up to approx. 44 dpa) irradiations. The stability of fine titanium carbide (MC) precipitates plays an important role in void swelling resistance for the cold-worked titanium-modified steels irradiated in EBR-II. Futhermore, increased helium generation in these steels can (a) suppress void conversion, (b) suppress radiation-induced solute segregation (RIS), and (c) stabilize fine MC particles, if sufficient bubble nucleation occurs early in the irradation. The combined effects of helium-enhanced MC stability and helium-suppressed RIS suggest better void swelling resistance in these steels for fusion service than under EBR-II irradiation

  7. Intergranular penetration of liquid gold into stainless steel

    OpenAIRE

    Favez, Denis; Deillon, Léa; Wagnière, Jean-Daniel; Rappaz, Michel

    2011-01-01

    Intergranular penetration of liquid 18 K gold into a superaustenitic stainless steel, which occurs during laser welding of these two materials, has been studied using a C-ring device which can be put under tensile stresses by a screw. It is shown that liquid gold at 1000 degrees C penetrates the immersed stainless steel C-ring at grain boundaries, but only when tensile stresses are applied. Based on the thickness of the peritectic phase that forms all along the liquid crack and on the transve...

  8. Corrosion behaviour of laser clad stainless steels

    International Nuclear Information System (INIS)

    Damborenea, J.J. de; Weerasinghe, V.M.; West, D.R.F.

    1993-01-01

    The present paper is focussed in the study of the properties of a clad layer of stainless steel on a mild steel. By blowing powder of the alloy into a melt pool generated by a laser of 2 KW, an homogeneous layer of 316 stainless steel can be obtained. Structure, composition and corrosion behaviour are similar to those of a stainless steel in as-received condition. (Author)

  9. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  10. Influence of Welding Strength Matching Coefficient and Cold Stretching on Welding Residual Stress in Austenitic Stainless Steel

    Science.gov (United States)

    Lu, Yaqing; Hui, Hu; Gong, Jianguo

    2018-05-01

    Austenitic stainless steel is widely used in pressure vessels for the storage and transportation of liquid gases such as liquid nitrogen, liquid oxygen, and liquid hydrogen. Cryogenic pressure vessel manufacturing uses cold stretching technology, which relies heavily on welding joint performance, to construct lightweight and thin-walled vessels. Residual stress from welding is a primary factor in cases of austenitic stainless steel pressure vessel failure. In this paper, on the basis of Visual Environment 10.0 finite element simulation technology, the residual stress resulting from different welding strength matching coefficients (0.8, 1, 1.2, 1.4) for two S30408 plates welded with three-pass butt welds is calculated according to thermal elastoplastic theory. In addition, the stress field was calculated under a loading as high as 410 MPa and after the load was released. Path 1 was set to analyze stress along the welding line, and path 2 was set to analyze stress normal to the welding line. The welding strength matching coefficient strongly affected both the longitudinal residual stress (center of path 1) and the transverse residual stress (both ends of path 1) after the welding was completed. However, the coefficient had little effect on the longitudinal and transverse residual stress of path 2. Under the loading of 410 MPa, the longitudinal and transverse stress decreased and the stress distribution, with different welding strength matching coefficients, was less diverse. After the load was released, longitudinal and transverse stress distribution for both path 1 and path 2 decreased to a low level. Cold stretching could reduce the effect of residual stress to various degrees. Transverse strain along the stretching direction was also taken into consideration. The experimental results validated the reliability of the partial simulation.

  11. Design considerations in the use of stainless steel for vacuum and cryogenic equipment

    CERN Document Server

    Geyari, C

    1976-01-01

    The properties making austenitic stainless steel a preferred material for the construction of high vacuum equipment are reviewed. Best results are obtained if attention is paid to the improvement of welding properties, particularly with a view to prevent intercrystalline disintegration. A review of mechanical properties, the effect of cold working and cryogenic temperatures on the strength and magnetic characteristics of stainless steel is given. During material selection for very high vacuum, attention must be paid to the porosity problem. A practical example shows the application of these considerations to the choice of materials for the CERN-ISR intersecting storage rings. (19 refs).

  12. Design considerations in the use of stainless steel for vacuum and cryogenic equipment

    International Nuclear Information System (INIS)

    Geyari, C.

    1976-01-01

    The properties making austenitic stainless steel a preferred material for the construction of high vacuum equipment are reviewed. Best results are obtained if attention is paid to the improvement of welding properties, particularly with a view to preventing intercrystalline disintegration. A review of mechanical properties, the effect of cold working and cryogenic temperatures on the strength and magnetic characteristics of stainless steel is given. During material selection for very high vacuum, attention must be paid to the porosity problem. A practical example shows the application of these considerations to the choice of materials for the CERN-ISR Intersecting Storage Rings. (author)

  13. Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels

    Science.gov (United States)

    Park, Seung Hwan C.; Sato, Yutaka S.; Kokawa, Hiroyuki; Okamoto, Kazutaka; Hirano, Satoshi; Inagaki, Masahisa

    2009-03-01

    The wear of polycrystalline cubic boron nitride (pcBN) tool and its effect on second phase formation were investigated in stainless steel friction-stir (FS) welds. The nitrogen content and the flow stress were analyzed in these welds to examine pcBN tool wear. The nitrogen content in stir zone (SZ) was found to be higher in the austenitic stainless steel FS welds than in the ferritic and duplex stainless steel welds. The flow stress of austenitic stainless steels was almost 1.5 times larger than that of ferritic and duplex stainless steels. These results suggest that the higher flow stress causes the severe tool wear in austenitic stainless steels, which results in greater nitrogen pickup in austenitic stainless steel FS welds. From the microstructural observation, a possibility was suggested that Cr-rich borides with a crystallographic structure of Cr2B and Cr5B3 formed through the reaction between the increased boron and nitrogen and the matrix during FS welding (FSW).

  14. Welding Metallurgy and Weldability of Stainless Steels

    Science.gov (United States)

    Lippold, John C.; Kotecki, Damian J.

    2005-03-01

    Welding Metallurgy and Weldability of Stainless Steels, the first book in over twenty years to address welding metallurgy and weldability issues associated with stainless steel, offers the most up-to-date and comprehensive treatment of these topics currently available. The authors emphasize fundamental metallurgical principles governing microstructure evolution and property development of stainless steels, including martensistic, ferric, austenitic, duplex, and precipitation hardening grades. They present a logical and well-organized look at the history, evolution, and primary uses of each stainless steel, including detailed descriptions of the associated weldability issues.

  15. Effect of cold work on tensile behavior of irradiated type 316 stainless steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1986-01-01

    Tensile specimens were irradiated in ORR at 250, 290, 450, and 500 0 C to produce a displacement damage of approx.5 dpa and 40 at. ppM He. Irradiation at 250 and 290 0 C caused an increase in yield stress and ultimate tensile strength and a decrease in ductility relative to unaged and thermally aged controls. The changes were greatest for the 20%-cold-worked steel and lowest for the 50%-cold-worked steel. Irradiation at 450 0 C caused a slight relative decrease in strength for all cold-worked conditions. A large decrease was observed at 500 0 C, with the largest decrease occurring for the 50%-cold-worked specimen. No bubble, void, or precipitate formation was observed for specimens examined by transmission electron microscopy (TEM). The irradiation hardening was correlated with Frank-loop and ''black-dot'' loop damage. A strength decrease at 500 0 C was correlated with dislocation network recovery. Comparison of tensile and TEM results from ORR-irradiated steel with those from steels irradiated in the High Flux Isotope Reactor and the Experimental Breeder Reactor indicated consistent strength and microstructure changes

  16. Study on micro fabricated stainless steel surface to anti-biofouling using electrochemical fabrication

    Science.gov (United States)

    Hwang, Byeong Jun; Lee, Sung Ho

    2017-12-01

    Biofilm formed on the surface of the object by the microorganism resulting in fouling organisms. This has led to many problems in daily life, medicine, health and industrial community. In this study, we tried to prevent biofilm formation on the stainless steel (SS304) sheet surface with micro fabricated structure. After then forming the microscale colloid patterns on the surface of stainless steel by using an electrochemical etching forming a pattern by using a FeCl3 etching was further increase the surface roughness. Culturing the Pseudomonas aeruginosa on the stainless steel fabricated with a micro structure on the surface was observed a relationship between the surface roughness and the biological fouling of the micro structure. As a result, the stainless steel surface with a micro structure was confirmed to be the biological fouling occurs less. We expect to be able to solve the problems caused by biological fouling in various fields such as medicine, engineering, using this research.

  17. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  18. Effect of Low-Temperature Sensitization on Hydrogen Embrittlement of 301 Stainless Steel

    OpenAIRE

    Chieh Yu; Ren-Kae Shiue; Chun Chen; Leu-Wen Tsay

    2017-01-01

    The effect of metastable austenite on the hydrogen embrittlement (HE) of cold-rolled (30% reduction in thickness) 301 stainless steel (SS) was investigated. Cold-rolled (CR) specimens were hydrogen-charged in an autoclave at 300 or 450 °C under a pressure of 10 MPa for 160 h before tensile tests. Both ordinary and notched tensile tests were performed in air to measure the tensile properties of the non-charged and charged specimens. The results indicated that cold rolling caused the transforma...

  19. Characterization of oxide films formed on steels in a BWR environment

    International Nuclear Information System (INIS)

    Honda, Takashi; Ohashi, Kenya; Kashimura, Eiji; Furutani, Yasumasa

    1988-01-01

    Environmental effects on corrosion bahaviors and properties of oxide films were evaluated for austenitic stainless and carbon steels in high-temperature water simulating a Boiling Water Reactor condition. The existence ratios of Cr and OH - in oxide films formed on stainless steel decreased and those of Fe, Ni and O 2- increased with increases of temperature and dissolved oxygen concentration. Changes of pH in the test region did not affect the composition of these species. These results indicated that Cr tended to combine with OH - , i.e., Cr existed as hydroxides or oxyhydroxides. Further, Fe and Ni tended to form spinel type oxides, which were indentified by XRD. In addition, the corrosion resistance of stainless steel was higher than that of carbon steel in all environments. The protectivity of magnetite films on carbon steel increased with temperature, dissolved oxygen concentration and pH. However, Ni ferrite, formed on stainless steel, further improved the corrosion resistance under such conditions. On the other hand, as the solubility of magnetite increased with decreases in the above mentioned factors, the corrosion resistance of carbon steel decreased. But, even under such conditions Cr, contained in stainless steel, tended to form stable films and suppressed corrosion. (author)

  20. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450 0 C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the α' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450 0 C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450 0 C. 18 refs., 13 figs

  1. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1986-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' and Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of G phase to loss of toughness is now known. Microstructural data also indicate that weakening of ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 450 0 C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450 0 C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  2. Testing and modelling of new tribo-systems for industrial sheet forming of stainless steels

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Friis, Kasper Storgaard; Bay, Niels

    2011-01-01

    Sheet metal forming of stainless steels is known to be tribologically demanding. To ensure satisfactory production without pick-up and galling, lubrication with environmentally hazardous chlorinated paraffin oil is normally required and in the most severe cases combined with ceramic tool coatings...... as well as the production test in order to estimate the critical interface temperature for lubricant film breakdown. Simulation results show good agreement with experimental measurements of tool temperature close to the interface....

  3. Overview of Strategies for High-Temperature Creep and Oxidation Resistance of Alumina-Forming Austenitic Stainless Steels

    Science.gov (United States)

    Yamamoto, Y.; Brady, M. P.; Santella, M. L.; Bei, H.; Maziasz, P. J.; Pint, B. A.

    2011-04-01

    A family of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys is under development for structural use in fossil energy conversion and combustion system applications. The AFA alloys developed to date exhibit comparable creep-rupture lives to state-of-the-art advanced austenitic alloys, and superior oxidation resistance in the ~923 K to 1173 K (650 °C to 900 °C) temperature range due to the formation of a protective Al2O3 scale rather than the Cr2O3 scales that form on conventional stainless steel alloys. This article overviews the alloy design approaches used to obtain high-temperature creep strength in AFA alloys via considerations of phase equilibrium from thermodynamic calculations as well as microstructure characterization. Strengthening precipitates under evaluation include MC-type carbides or intermetallic phases such as NiAl-B2, Fe2(Mo,Nb)-Laves, Ni3Al-L12, etc. in the austenitic single-phase matrix. Creep, tensile, and oxidation properties of the AFA alloys are discussed relative to compositional and microstructural factors.

  4. Radiation-heterogeneous processes on the surface of stainless steel in contact with water

    International Nuclear Information System (INIS)

    Garibov, A.; Agayev, T.N.; Velibekova, G.Z.; Ismayilov, Sh.S.; Aliyev, A.G.

    2003-01-01

    Full text: Stainless steels are one of prevailing materials of nuclear power engineering. Under operating conditions in real systems they are exposed to influence of ionizing radiation in contact with various environments. Therefore in the processes of corrosion and destruction of stainless steels special significance takes on surface processes and subsequent heterogeneous processes with their participation. In this report the results of research of nuclear-heterogeneous processes regularities in contact with stainless steel of nuclear reactors with water under influence of γ-quanta in the temperature range 300-573 K are given. Radiolytic processes in water are investigated comprehensively and therefore it was taken as modelling system for titration of surface defects and secondary electrons, emitted from metal. It was determined, that radiation processes in stainless steel give rise to the increasing of energy output of molecular hydrogen at water radiolysis from 0.45 molecule/100 eV at pure water radiolysis at 296 K up to 3.4 molecule/100 eV at the presence of stainless steel at 300 K. With increase of temperature the output of molecular hydrogen increases up to 8.2 molecule/100 eV at 573 K. Processes of lattice damage in samples of stainless steel under influence of γ-rays were investigated by electrophysical method. Influence of γ-radiation on stainless steel in contact with water at temperatures T ≤ 423 K and initial values of radiation dose D ≤ 200 kGy given rise to the reduction of electrical resistivity of samples. At doses D≥200 kGy electrical resistivity is increased. Increase of temperature from 333 K up to 423 K lead to the reduction of dose value, at which the transition to resistance increase, from 200 kGy up to 100 kGy occurs. At T≥523 K insoluble oxide phase is formed on a surface of metal which give rise to the increase of electrical resistivity of stainless steel samples. Surface oxide film formed in contact of stainless steel + H 2 O

  5. Chemical decontamination of stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The present invention concerns a method for chemical decontamination of radioactive metal waste materials contaminated with radioactive materials on the surface, generated in radioactive materials-handling facilities. The invention is comprised of a method of chemical decontamination of stainless steel, characterized by comprising a first process of immersing a stainless steel-based metal waste material contaminated by radioactive materials on the surface in a sulfuric acid solution and second process of immersing in an aqueous solution of sulfuric acid and oxidizing metal salt, in which a portion of the surface of the stainless steel to be decontaminated is polished mechanically to expose a portion of the base material before the above first and second processes. 1 figs., 2 tabs

  6. Initiation of stress corrosion cracking in pre-stained austenitic stainless steels exposed to primary water

    International Nuclear Information System (INIS)

    Huguenin, P.

    2012-01-01

    Austenitic stainless steels are widely used in primary circuits of Pressurized Water Reactors (PWR) plants. However, a limited number of cases of Intergranular Stress Corrosion Cracking (IGSCC) has been detected in cold-worked (CW) areas of non-sensitized austenitic stainless steel components in French PWRs. A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with a cyclic loading favoured SCC. The present study aims at better understanding the role of pre-straining on crack initiation and at developing an engineering model for IGSCC initiation of 304L and 316L stainless steels in primary water. Such model will be based on SCC initiation tests on notched (not pre-cracked) specimens under 'trapezoidal' cyclic loading. The effects of pre-straining (tensile versus cold rolling), cold-work level and strain path on the SCC mechanisms are investigated. Experimental results demonstrate the dominating effect of strain path on SCC susceptibility for all pre-straining levels. Initiation can be understood as crack density and crack depth. A global criterion has been proposed to integrate both aspects of initiation. Maps of SCC initiation susceptibility have been proposed. A critical crack depth between 10 and 20 μm has been demonstrated to define transition between slow propagation and fast propagation for rolled materials. For tensile pre-straining, the critical crack depth is in the range 20 - 50 μm. Experimental evidences support the notion of a KISCC threshold, whose value depends on materials, pre-straining ant load applied. The initiation time has been found to depend on the applied loading as a function of (σ max max/YV) 11,5 . The effect of both strain path and surface hardening is indirectly taken into account via the yield stress. In this study, material differences rely on strain path effect on mechanical properties. As a result, a stress

  7. Stainless steels low temperature nitriding

    International Nuclear Information System (INIS)

    Roux, T.; Darbeida, A.; Von Stebut, J.; Michel, H.; Lebrun, J.P.; Hertz, D.

    1995-01-01

    Nitrogen ions implantation of 316L stainless steel leads to monophasic diffusion layers, which are constituted of a solid solution (γ N ) fcc, metastable, nitrogen sur-saturated, and without order. This article shows that for 316L stainless steels,these layers improve the tribological properties without degradation of the corrosion resistance. (A.B.). 13 refs. 6 figs

  8. 76 FR 87 - Grant of Authority for Subzone Status; ThyssenKrupp Steel and Stainless USA, LLC; (Stainless and...

    Science.gov (United States)

    2011-01-03

    ... at the stainless and carbon steel products manufacturing facility of ThyssenKrupp Steel and Stainless... to the manufacturing of stainless and carbon steel products at the facility of ThyssenKrupp Steel and... Status; ThyssenKrupp Steel and Stainless USA, LLC; (Stainless and Carbon Steel Products) Calvert, AL...

  9. Hardness survey of cold-worked and heat-treated JBK-75 stainless steel alloy

    International Nuclear Information System (INIS)

    Jackson, R.J.; Lucas, R.L.

    1977-01-01

    The alloy JBK-75, an age-hardenable austenitic stainless steel, is similar to commercial A-286, but has certain chemistry modifications to improve weldability and hydrogen compatibility. The principal changes are an increase in nickel and a decrease in manganese with lower limits on carbon, phosphorus, sulfur, silicon, and boron. In this study, the effects of solutionizing time and temperature, quench rate, cold working, and the effects of cold working on precipitation kinetics were examined. Findings show that the solutionizing temperature has a moderate effect on the as-quenched hardness, while times greater than that required for solutionizing do not significantly affect hardness. Quench rate was found to have a small effect on as-quenched hardness, however, hardness gradients did not develop in small bars. It was found that JBK-75 can be significantly strengthened by cold working. Cold working alone produced hardness increases from Rockwell-A 49 to R/sub A/ 68. A recovery-related hardness change was noted on heat treating at 300 and 400 0 C for both as-quenched and as-worked JBK-75. Significant age-hardening was observed at temperatures as low as 500 0 C for as-worked metal. Aging at 600 0 C resulted in maximum hardness in the 75 percent worked sample at about 6 hours (R/sub A/ 73.5) while the 50 percent worked sample was near maximum hardness (R/sub A 72.5) after seven days. THE 25 and 0 percent worked samples were considerably underaged after seven days. Similar type kinetic data were obtained for worked and nonworked metal at 650, 700, 800, 850, 900, 1000, and 1100 0 C for times from 10 minutes to 10,000 minutes (6.7 days). The overall purpose of the hardness survey was to better define the effects of cold work on the stress-relieving range, coherent precipitation range, incoherent precipitation range, recrystallization range, solutionizing range, and grain-growth range

  10. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    International Nuclear Information System (INIS)

    Li, D.; Korinko, P.; Spencer, W.; Stein, E.

    2016-01-01

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivity with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H 2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H 2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH 3 ) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H 2 and adsorbed H 2 O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H 2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10 -14 l mbar/s cm 2 , while H 2 O off-gas rate was on the level of 10 -15 l mbar/s cm 2 , consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their SilTek coated bottles tested under a different research project exhibited very little hydrogen off-gassing and

  11. Stainless steel fabrications: past and present

    International Nuclear Information System (INIS)

    Daniels, R.

    1986-01-01

    The paper deals with stainless steel fabrications of Fairey Engineering Company for the nuclear industry. The manufacture of stainless steel containers for Magnox and Advanced Gas Cooled Reactors, flexible fabrication facility, and welding development, are all briefly described. (U.K.)

  12. On Necking, Fracture and Localization of Plastic Flow in Austenitic Stainless Steel Sheets

    International Nuclear Information System (INIS)

    Korhonen, A. S.; Manninen, T.; Kanervo, K.

    2007-01-01

    The forming limits of austenitic stainless steel sheets were studied in this work. It was found that the observed limit of straining in stretch forming, when both of the principal stresses are positive, is not set by localized necking, but instead by inclined shearing fracture in the through thickness direction. It appears that the forming limits of austenitic stainless steels may be predicted fairly well by using the classical localized and diffuse necking criteria developed by Hill. The strain path-dependence may be accounted for by integrating the effective strain along the strain path. The fracture criteria of Rice and Tracey and Cockcroft, Latham and Oh were also studied. The results were in qualitative agreement with the experimental observations. Recent experiments with high-velocity electrohydraulic forming of austenitic stainless steels revealed localized necks in stretch formed parts, which are not commonly observed in conventionally formed sheet metal parts

  13. Immobilization of mesoporous silica particles on stainless steel plates

    International Nuclear Information System (INIS)

    Pasqua, Luigi; Morra, Marco

    2017-01-01

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  14. Immobilization of mesoporous silica particles on stainless steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Pasqua, Luigi, E-mail: luigi.pasqua@unical.it [University of Calabria, Department of Environmental and Chemical Engineering (Italy); Morra, Marco, E-mail: mmorra@nobilbio.com [Via Valcastellana 26 (Italy)

    2017-03-15

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  15. TEM study of microstructure in explosive welded joints between Zircaloy-4 and stainless steel

    International Nuclear Information System (INIS)

    Zhou Hairong; Zhou Bangxin

    1996-10-01

    The microstructure of explosive welded joints between Zircaloy-4 and 18/8 stainless steel has been investigated by transmission electron microscopy (TEM). The metallurgical bonding was achieved by combining effect of diffusion and local melting when the explosive parameters were selected correctly. The molten region which consists of amorphous and crystalline with hexagonal crystal structure is hard and brittle. But the welded joints can be pulled, bent and cold rolled without cracks formed on the bonding layer, so as the molten regions are small and distributed as isolated islands. (6 refs., 6 figs., 1 tab.)

  16. Passivation behavior of a ferritic stainless steel in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Arash Fattah-alhosseini

    2015-10-01

    Full Text Available The passivation behavior of AISI 430 ferritic stainless steel was investigated in concentrated alkaline solutions in relation to several test parameters, using electrochemical techniques. Increasing solution pH (varying from 11.5 to 14.0 leads to an increase in the corrosion rate of the alloy. Mott–Schottky analysis revealed that passive films formed on AISI 430 ferritic stainless steel behave as n-type semiconductor and the donor densities increased with pH. Electrochemical impedance spectroscopy (EIS results showed that the reciprocal capacitance of the passive film is directly proportional to its thickness, which decreases with pH increase. The results revealed that for this ferritic stainless steel in concentrated alkaline solutions, decreasing the solution pH offers better conditions for forming passive films with higher protection behavior, due to the growth of a much thicker and less defective film.

  17. Effect of nitrogen alloying on the microstructure and abrasive wear of stainless steels

    International Nuclear Information System (INIS)

    Hawk, J.A.; Simmons, J.W.; Rawers, J.C.

    1994-01-01

    Alloying stainless steels with nitrogen has distinct advantages. Nitrogen is a strong austenite stabilizer and a potent solid-solution strengthener, and nitrogen has greater solubility than carbon iron. This study investigates the relationship among nitrogen concentration, precipitate microstructure, and abrasive wear using two high-nitrogen stainless steel alloys: Fe-19Cr-5Mn-5Ni-3Mo (SS1) and Fe-16Cr-7Mn-5Ni(SS2). Alloy SS1 contained 0.7 wt% N and was solution annealed at 1,150 C, thereby dissolving the nitrogen interstitially in the austenite. Subsequent aging, or cold work and aging, at 900 C led to the grain-boundary, cellular, and transgranular precipitation of Cr 2 N. Alloy SS2 was remelted in a high-pressure (200 MPa) N 2 atmosphere, leading to a spatial gradient of nitrogen in the alloy in the form of interstitial nitrogen and Cr 2 N and CrN precipitates. Nitrogen contents varied from a low of approximately 0.7 wt% at the bottom of the billet to a high of 3.6 wt% at the top. Nitrogen in excess of approximately 0.7 wt% formed increasingly coarser and more numerous Cr 2 N and CrN precipitates. The precipitate morphology created in alloy SS1 due to aging, or cold work and aging, had little effect on the abrasive wear of the alloy. However, a decrease in the abrasive wear rate in alloy SS2 was observed to correspond to the increase in number and size of the Cr 2 N and CrN precipitates

  18. Assessment on Ultimate Load of Cold-formed Steel Channel (CFSC Stub Column

    Directory of Open Access Journals (Sweden)

    Mohd Sani Mohd Syahrul Hisyam

    2015-01-01

    Full Text Available Cold-formed steel is used as the non-structural and structural material in civil engineering work and building. Cold-formed steel channel is selected and cut into 100 mm, 200 mm, 300 mm, 400 mm and 500 mm. The slenderness ratio is calculated and noted as a stub or short column because below 40. The column is tested by using Universal Testing Machine to determine the ultimate load of the stub column. Besides, the CFSC is determined the material properties of CFSC for checking it’s the originality of steel based material. The experimental data are tested and compared with the Direct Strength Method (DSM. It showed that the CFSC1 with a height of 100 mm is reported to have a higher value of ultimate load when compared with other samples. When the height of the stub column increased, the ultimate load of the sample is decreased. Then, the CFSC1 also showed a higher in initial stiffness when compared with other samples. All samples are shown having a higher data in ultimate load when compared with the Direct Strength Method prediction. The ultimate load of experimental and DSM all gave a ratio below 1.03. Finally, all samples can further recommend determining the relation between the ultimate loads with variations of height of the column.

  19. Tensile behavior of borated stainless steels

    International Nuclear Information System (INIS)

    Stephens, J.J. Jr.; Sorenson, K.B.

    1991-01-01

    Borated stainless steel tensile testing is being conducted at Sandia National Laboratories (SNL). The goal of the test program is to provide data to support a code case inquiry to the ASME Boiler and Pressure Vessel Code, Section III. The adoption by ASME facilitates a material's qualification for structural use in transport cask applications. For transport cask basket applications, the potential advantage to using borated stainless steel arises from the fact that the structural and criticality control functions can be combined into one material. This can result in a decrease in net section thickness of the basket web (increased payload capacity) and eliminates the fabrication process and cost of attaching a discrete boron poison material to the basket web. In addition, adding borate stainless steel to the inventory of acceptable structural material provides the Department of Energy (DOE) and its cask contractors an alternative to current proposed materials which have not been qualified for structural service. The test program at SNL involves procuring material, machining test specimens, and conducting the tensile tests. From test measurements obtained so far, general trends indicate that tensile properties (yield strength and ultimate strength) increase with boron content and are in all cases superior to the minimum required properties established in A-240, Type 304, a typical grade of austenitic stainless steel. Therefore, in a designed basket, web thicknesses using borated stainless steel would be comparable to or thinner tan an equivalent basket manufactured from a typical stainless steel without boron additions. General trends from test results indicate that ductilities decrease with increasing boron content

  20. Evaluation of the low corrosion resistant phase formed during the sigma phase precipitation in duplex stainless steels

    Directory of Open Access Journals (Sweden)

    Darlene Yuko Kobayashi

    1999-10-01

    Full Text Available The duplex stainless steels, having a volumetric fraction of 50% ferrite and 50% austenite, conciliate high corrosion resistance with good mechanical properties. But, in many circumstances different phase transformations may occur, such as that responsible for sigma phase precipitation, which make the steel susceptible to localized corrosion. During the sigma phase precipitation a new austenitic phase is formed with a very low corrosion resistance. In the present research the composition of this new austenitic phase was evaluated in four duplex stainless steels, with different Mo, N and Cu contents. After the solution anneal at 1050 °C, samples of these steels were aged at 850 °C during 1 h and 5 h for sigma phase precipitation. Using the ferritoscope and an image analyzer it was possible to determine the volumetric fractions of ferrite and sigma phase, respectively, while those of austenite and the new austenitic phase were determined by difference to 100% volume. Finally, by using mass balance it was possible to determine theoretically the composition of the new austenitic phase. This phase is poor in Cr and Mo free, which explains its poor corrosion resistance.

  1. Effect of Preaging Deformation on Aging Characteristics of 2507 Super Duplex Stainless Steel

    Science.gov (United States)

    Mishra, M. K.; Rao, A. G.; Sarkar, R.; Kashyap, B. P.; Prabhu, N.

    2016-02-01

    In the present study, precipitation of sigma (σ) phase was investigated over the temperature range of 700-850 °C in undeformed and deformed (60% cold rolling) samples of 2507 super duplex stainless steel. The fraction of sigma phase formed as a result of the transformation α → σ + γ2 increases with increasing time and temperature. The increase in sigma phase leads to increase in yield strength and decrease in ductility. Preaging deformation leads to accelerated precipitation of sigma phase. The activation energy for sigma phase precipitation in deformed sample is found to be lower than that in undeformed sample.

  2. Tritiated Water Interaction with Stainless Steel

    International Nuclear Information System (INIS)

    Glen R. Longhurst

    2007-01-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water

  3. Stainless steels: general considerations and rates of crack growth

    International Nuclear Information System (INIS)

    Chator, T.

    1992-05-01

    This report describes the different types of stainless steels, and presents the laws governing the rates of crack growth for several stainless steels extensively used for the manufacture of structures in nuclear power plants. The laws are not discussed in detail in the report. After a brief review of the development of stainless steels, the main categories of stainless steels, their mechanical characteristics and corrosion resistance, are presented. Finally, the rates of crack growth are presented for various stainless steels, mainly austenitic. The study overall aim is an investigation of the cracking in the 900 MWe primary pump thermal barriers and shafts

  4. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    Directory of Open Access Journals (Sweden)

    Maíra Maciel Mattos de Oliveira

    2010-03-01

    Full Text Available An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4 stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ºC and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  5. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential.

    Science.gov (United States)

    de Oliveira, Maíra Maciel Mattos; Brugnera, Danilo Florisvaldo; Alves, Eduardo; Piccoli, Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 °C and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM) after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  6. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular......, the morphology, microstructure and characteristics of so-called expanite “layers” on stainless steel are addressed....

  7. Analysis of polypyrrole-coated stainless steel electrodes

    Indian Academy of Sciences (India)

    Analysis of polypyrrole-coated stainless steel electrodes - Estimation of specific ... is carried out on stainless steel electrodes using -toluene sulphonic acid. ... The feasibility of the electrode for supercapacitor applications is investigated.

  8. Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating

    Science.gov (United States)

    Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong

    2017-03-01

    The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating coating coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.

  9. Plasma assisted nitriding for micro-texturing onto martensitic stainless steels*

    Directory of Open Access Journals (Sweden)

    Katoh Takahisa

    2015-01-01

    Full Text Available Micro-texturing method has grown up to be one of the most promising procedures to form micro-lines, micro-dots and micro-grooves onto the mold-die materials and to duplicate these micro-patterns onto metallic or polymer sheets via stamping or injection molding. This related application requires for large-area, fine micro-texturing onto the martensitic stainless steel mold-die materials. A new method other than laser-machining, micro-milling or micro-EDM is awaited for further advancement of this micro-texturing. In the present paper, a new micro-texturing method is developed on the basis of the plasma assisted nitriding to transform the two-dimensionally designed micro-patterns to the three dimensional micro-textures in the martensitic stainless steels. First, original patterns are printed onto the surface of stainless steel molds by using the dispenser or the ink-jet printer. Then, the masked mold is subjected to high density plasma nitriding; the un-masked surfaces are nitrided to have higher hardness, 1400 Hv than the matrix hardness, 200 Hv of stainless steels. This nitrided mold is further treated by sand-blasting to selectively remove the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel mold is fabricated as a tool to duplicate these micro-patterns onto the plastic materials by the injection molding.

  10. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes

    International Nuclear Information System (INIS)

    Dumas, Claire; Basseguy, Regine; Bergel, Alain

    2008-01-01

    Stainless steel and graphite electrodes were individually addressed and polarized at -0.60 V vs. Ag/AgCl in reactors filled with a growth medium that contained 25 mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75 A m -2 for graphite and 20.5 A m -2 for stainless steel. Cyclic voltammetry performed at the end of the experiment indicated that the reduction started at around -0.30 V vs. Ag/AgCl on stainless steel. Removing the biofilm formed on the electrode surface made the current totally disappear, confirming that the G.sulfurreducens biofilm was fully responsible for the electrocatalysis of fumarate reduction. Similar current densities were recorded when the electrodes were polarized after being kept in open circuit for several days. The reasons for the bacteria presence and survival on non-connected stainless steel coupons were discussed. Chronoamperometry experiments performed at different potential values suggested that the biofilm-driven catalysis was controlled by electrochemical kinetics. The high current density obtained, quite close to the redox potential of the fumarate/succinate couple, presents stainless steel as a remarkable material to support biocathodes

  11. Tensile-property characterization of thermally aged cast stainless steels

    International Nuclear Information System (INIS)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components

  12. Feasibility study on decontamination of the contaminated stainless steel with HBF4 solution

    International Nuclear Information System (INIS)

    Dong Ruilin; Zhang Yuan; Qiu Dangui; Huang Yuying; Ren Xianwen

    2002-01-01

    Decontamination experiments were carried out with HBF 4 solution on the following four kinds of sample: 1Cr18Ni9Ti stainless steel with and without welding line, 1Cr18Ni9Ti stainless steel with oxide layer formed in boiling concentrated nitric acid solution, natural uranium and 230 Th contaminated stainless steel pipe sample from one decommissioning nuclear facility. The results indicated that the oxide layer, the welding line of the 1Cr18Ni9Ti stainless steel and itself can be dissolved in the HBF 4 decontamination solution. The solubility of the 1Cr18Ni9Ti stainless steel in the HBF 4 solution used in the test is more than 5 g/L, which means that the 0.13 m 2 stainless steel could be dissolved up to a thickness of 5 μm in one liter of decontamination solution. The decontamination efficiency is more than 85% in 30 minutes for the 230 Th contaminated sample, and 87% in 2 hours for the natural uranium contaminated sample. Both samples could be decontaminated to the background level after several runs of the decontamination

  13. CEMS of Sb+ implanted stainless steels

    International Nuclear Information System (INIS)

    Roy-Poulsen, H.; Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Hayashi, H.

    1986-01-01

    Martensitic transformations have been analyzed in a series of antimony implanted austenitic stainless steels using CEMS. The implanted samples contain about 70 vol% martensite, which is considerably more than can be formed conventionally by plastic deformation of cooling below the martensite start temperature. CEM spectra from implantation induced martensite and from martensite formed in conventional processes are virtually identical. In both cases the hyperfine field is ∼ 25T. (Auth.)

  14. CEMS of Sb+ implanted stainless steels

    International Nuclear Information System (INIS)

    Roy-Poulsen, H.; Copenhagen Univ.; Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Hayashi, H.

    1985-01-01

    Martensitic transformations have been analyzed in a series of antimony implanted austenitic stainless steels using CEMS. The implanted samples contain about 70 vol% martensite, which is considerably more than can be formed conventionally by plastic deformation or cooling below the martensite start temperature. CEM spectra from implantation induced martensite and from martensite formed in conventional processes are virtually identical. In both cases the hyperfine field is ∝25 T. (orig.)

  15. A review of hot cracking in austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    Shankar, V.; Gill, T.P.S.; Mannan, S.L.; Rodriguez, P.

    1991-01-01

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  16. The temperature dependence of void swelling of fast reactor irradiated 316 stainless steel

    International Nuclear Information System (INIS)

    Bramman, J.I.; Brown, C.

    The swelling versus temperature profile for cold-worked M316 stainless steel irradiated in DFR to fluences around 6.5 x 10 22 n.cm -2 (E > 0.1 MeV) is singly-peaked with maximum swelling at just below 600 0 C. The underlying microstructural features are discussed

  17. Micromechanics-based damage model for failure prediction in cold forming

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.Z.; Chan, L.C., E-mail: lc.chan@polyu.edu.hk

    2017-04-06

    The purpose of this study was to develop a micromechanics-based damage (micro-damage) model that was concerned with the evolution of micro-voids for failure prediction in cold forming. Typical stainless steel SS316L was selected as the specimen material, and the nonlinear isotropic hardening rule was extended to describe the large deformation of the specimen undergoing cold forming. A micro-focus high-resolution X-ray computed tomography (CT) system was employed to trace and measure the micro-voids inside the specimen directly. Three-dimensional (3D) representative volume element (RVE) models with different sizes and spatial locations were reconstructed from the processed CT images of the specimen, and the average size and volume fraction of micro-voids (VFMV) for the specimen were determined via statistical analysis. Subsequently, the micro-damage model was compiled as a user-defined material subroutine into the finite element (FE) package ABAQUS. The stress-strain responses and damage evolutions of SS316L specimens under tensile and compressive deformations at different strain rates were predicted and further verified experimentally. It was concluded that the proposed micro-damage model is convincing for failure prediction in cold forming of the SS316L material.

  18. Case histories of microbiologically influenced corrosion of austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    Borenstein, S.W.; Buchanan, R.A.; Dowling, N.J.E.

    1990-01-01

    Microbiologically influenced corrosion (MIC) is initiated or accelerated by microorganisms and is currently recognized as a serious problem affecting the construction and operation of many industrial facilities, including nuclear power plants. The purpose of this paper is to review how biofouling and MIC can occur and discuss current mechanistic theories. A case history of MIC attack in power plants is examined with emphasis on the role of welding and heat treatment variables using laboratory electrochemical analyses. Although MIC can occur on a variety of alloys, pitting corrosion failures of austenitic stainless steels are often associated with weldments. MIC occurs as the result of a consortium of microorganisms colonizing on the metal surface and their variety (fungi, bacteria, algae, mold, and slimes) enables them to form support systems for cross feeding to enhance survival. The metabolic processes influence corrosion behaviour of materials by destroying protective coatings, producing a localized acid environment, creating corrosive deposits, or altering anodic and cathodic reactions. On stainless steels, biofilms destroy the passive oxide film on the surface of the steels and subject them to localized forms of corrosion. Many of the MIC failures in industry result in pitting to austenitic stainless steel weldments. Pitting primarily occurs in the weld metal, heat affected zones, and adjacent to the weld in the base metal. Depending on the conditions of the concentration cell created by the biofilm, either phase of the two-phase duplex stainless steel, austenite or delta ferrite, may be selectively attacked. Theories have been proposed about the mechanism of MIC on austenitic stainless steel and and a general understanding is that some function associated with the biofilm formation directly affects the electrochemical process

  19. Microstructural investigations of fast reactor irradiated austenitic and ferritic-martensitic stainless steel fuel cladding

    International Nuclear Information System (INIS)

    Agueev, V.S.; Medvedeva, E.A.; Mitrofanova, N.M.; Romanueev, V.V.; Tselishev, A.V.

    1992-01-01

    Electron microscopy has been used to characterize the microstructural changes induced in advanced fast reactor fuel claddings fabricated from Cr16Ni15Mo3NbB and Cr16Ni15Mo2Mn2TiVB austenitic stainless steels in the cold worked condition and Cr13Mo2NbVB ferritic -martensitic steel following irradiation in the BOR-60, BN-350 and BN-600 fast reactors. The data are compared with the results obtained from a typical austenitic commercial cladding material, Cr16Ni15Mo3Nb, in the cold worked condition. The results reveal a beneficial effect of boron and other alloying elements in reducing void swelling in 16Cr-15Ni type austenitic steels. The high resistance of ferritic-martensitic steels to void swelling has been confirmed in the Cr13Mo2NbVB steel. (author)

  20. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  1. Study of irradiation damage structures in austenitic stainless steels

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs

  2. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Korinko, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stein, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-15

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivity with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH3) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H2 and adsorbed H2O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10-14 l mbar/s cm2, while H2O off-gas rate was on the level of 10-15 l mbar/s cm2, consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their Sil

  3. Irradiation-induced creep in 316 and 304L stainless steels

    International Nuclear Information System (INIS)

    Walters, L.C.; McVay, G.L.; Hudman, G.D.

    1977-01-01

    Recent results are presented from the in-reactor creep experiments that are being conducted by Argonne National Laboratory. The experiments consist of four subassemblies that contain helium-pressurized as well as unstressed capsules of 316 and 304L stainless steels in several metallurgical conditions. Experiments are being irradiated in row 7 of the EBR-II sodium-cooled fast breeder reactor. Three of the subassemblies are being irradiated at temperatures near 400 0 C, and the fourth subassembly is being irradiated at a temperature of 550 0 C. Creep and swelling strains were determined by profilometer measurements on the full length of the capsules after each irradiation cycle. The accumulated neutron dose on the 304L capsules at 385 0 C was 45 dpa; on the 316 capsules at 400 0 C, 40 dpa; and on the 316 capsules at 550 0 C, 25 dpa. It was found that the in-reactor creep rates were linearly dependent on hoop stress, with the exception being capsules of 316 stainless steel that had been given long-term carbide aging treatment and then irradiated at 550 0 C. Those capsules exhibited much higher creep and swelling rates than their unaged counterparts. For the metallurgical conditions where significant swelling was observed (solution-annealed 304L and aged 316 stainless steels), it was found that the in-reactor creep rates were readily fit to a model that related the creep rates to accumulated swelling. Additionally, it was found that the stress-normalized creep rate for 20%-cold-worked 316 stainless steel at a temperature of 550 0 C was 1.6 times that observed at 400 0 C

  4. Modern high strength QT, TM and duplex-stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, P. [Industeel (France); Luxenburger, G. [Aktiengesellschaft der Dillinger Huettenwerke, Dillingen/Saar (Germany); Porter, D. [Rautaruukki (Finland); Ericsson, C. [Avesta Polarit (Sweden)

    2003-07-01

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  5. Modern high strength QT, TM and duplex-stainless steels

    International Nuclear Information System (INIS)

    Bocquet, P.; Luxenburger, G.; Porter, D.; Ericsson, C.

    2003-01-01

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  6. Damping Capacity of High Manganese Austenitic Stainless Steel with a Two Phase Mixed Structure of Martensite and Austenite

    International Nuclear Information System (INIS)

    Hwang, Tae Hyun; Kang, Chang-Yong

    2013-01-01

    The damping capacity of high manganese austenitic stainless steel with a two phase mixed structure of deformation-induced martensite and reversed austenite was studied. Reversed austenite with an ultra-fine grain size of less than 0.2 μm was obtained by reversion treatment. The two phase structure of deformation-induced martensite and reversed austenite was obtained by annealing treatment at a range of 500-700 °C and various times in cold rolled high manganese austenitic stainless steel. The damping capacity increased with an increasing annealing temperature and time. In high manganese stainless steel with the two phase mixed structure of martensite and austenite, the damping capacity decreased with an increasing volume fraction of deformation-induced martensite. Thus, the damping capacity was strongly affected by deformation-induced martensite. The results confirmed that austenitic stainless steel with a good combination of strength and damping capacity was obtained from the two phase mixed structure of austenite and martensite.

  7. Stainless Steel Round Robin Test: Centrifugally cast stainless steel screening phase

    Energy Technology Data Exchange (ETDEWEB)

    Bates, D J; Doctor, S R; Heasler, P G; Burck, E

    1987-10-01

    This report presents the results of the Centrifugally Cast Stainless Steel Round Robin Test (CCSSRRT). The CCSSRRT is the first phase of an effort to investigate and improve the capability and reliability of NDE inspections of light water reactor piping systems. This phase was a screening test to identify the most promising procedures presently available for CCSS. The next phase will be an in-depth program to evaluate the capability and reliability of inservice inspections (ISI) for piping. In the CCSSRRT, 15 centrifugally cast stainless steel pipe sections containing welds and laboratory-grown thermal fatigue cracks in both columnar and equiaxed base material were used. These pipe specimens were inspected by a total of 18 teams from Europe and the United States using a variety of NDE techniques, mostly ultrasonic (UT). The inspections were carried out at the team's facilities and included inspections from both sides of the weld and inspections restricted to one side of the weld. The results of the CCSSRRT make it apparent that a more detailed study on the capability and reliability of procedures to inspect stainless steel materials is needed to better understand the specific material and flaw properties and how they affect the outcome of an inspection.

  8. Rietveld and impedance analysis of cold and hot rolled duplex and lean duplex steels for application in paper and pulp industry

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Luiza; Lins, Vanessa de Freitas Cunha, E-mail: luizaeq@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Quimica; Paiva, Paulo Renato Perdigao [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil); Viana, Adolfo Kalergis do Nascimento [APERAM South America, Timoteo, MG (Brazil)

    2017-01-15

    In this study, X-Ray Diffraction (XRD) and Rietveld Refinement were performed to identify and quantify the ferrite and austenite phase of cold and hot rolled duplex stainless steels (UNS S31803) and lean duplex stainless steels (UNS S32304). Electrochemical impedance spectroscopy (EIS) was applied to evaluate the chemical behavior of duplex and lean duplex stainless steels in white, green, and black liquors of paper and pulp industry. Rietveld analysis results showed a higher austenite content than the standard limit for duplex steels in the hot rolled condition. The hot rolling condition plays a major role in improving corrosion resistance in white liquor mainly for the lean duplex steel. (author)

  9. Rietveld and impedance analysis of cold and hot rolled duplex and lean duplex steels for application in paper and pulp industry

    International Nuclear Information System (INIS)

    Esteves, Luiza; Lins, Vanessa de Freitas Cunha; Viana, Adolfo Kalergis do Nascimento

    2017-01-01

    In this study, X-Ray Diffraction (XRD) and Rietveld Refinement were performed to identify and quantify the ferrite and austenite phase of cold and hot rolled duplex stainless steels (UNS S31803) and lean duplex stainless steels (UNS S32304). Electrochemical impedance spectroscopy (EIS) was applied to evaluate the chemical behavior of duplex and lean duplex stainless steels in white, green, and black liquors of paper and pulp industry. Rietveld analysis results showed a higher austenite content than the standard limit for duplex steels in the hot rolled condition. The hot rolling condition plays a major role in improving corrosion resistance in white liquor mainly for the lean duplex steel. (author)

  10. Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for SCWR in superheated steam

    International Nuclear Information System (INIS)

    Abe, Hiroshi; Hong, Seung Mo; Watanabe, Yutaka

    2014-01-01

    Highlights: • Effect of cold work on oxidation kinetics was clearly observed for 15Cr–20Ni SS. • The tube-shaped 15Cr–20Ni SS showed very good oxidation resistance. • The machined layer by cold drawing has a significant role to mitigate oxidation. - Abstract: Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for supercritical-water-cooled reactor (SCWR), including three types of 15Cr–20Ni stainless steels (1520 SSs), in the temperature range of 700–780 °C superheated steam have been investigated. Effect of temperature, dissolved oxygen (DO), degree of cold work (CW), and machined layer by cold drawing process on the oxidation kinetics assuming power-law kinetics are discussed. Characteristics of oxide layers and its relation to oxidation behaviors are also discussed. The effect of DO on the weight gain behavior in superheated steam at 700 °C was minor for all specimens at least up to 200 ppb DO. The tube-shaped specimens of 1520 SSs showed very good oxidation resistance at 700–780 °C. There was no clear difference in the oxidation kinetics among the three investigated types of 1520 SSs. The machined layer formed at the tube surface has a significant role to mitigate oxidation in superheated steam. A fine-grained microstructure near the surface due to recrystallization by cold drawing process is effective to form the protective Cr 2 O 3 layer. It has been suggested that since Cr diffusion in the outside surface of tubes is accelerated as a result of an increased dislocation density and/or grain refinement by cold drawing, tube specimens show very slow oxidation kinetics. Breakdown of the protective Cr 2 O 3 layer and nodule oxide formation were partly observed on the tube-shaped specimens of 15Cr–20Ni SSs. The reliability of Cr 2 O 3 layer has to be carefully examined to predict the oxidation kinetics after long-term exposure

  11. Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for SCWR in superheated steam

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroshi, E-mail: hiroshi.abe@qse.tohoku.ac.jp; Hong, Seung Mo; Watanabe, Yutaka

    2014-12-15

    Highlights: • Effect of cold work on oxidation kinetics was clearly observed for 15Cr–20Ni SS. • The tube-shaped 15Cr–20Ni SS showed very good oxidation resistance. • The machined layer by cold drawing has a significant role to mitigate oxidation. - Abstract: Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for supercritical-water-cooled reactor (SCWR), including three types of 15Cr–20Ni stainless steels (1520 SSs), in the temperature range of 700–780 °C superheated steam have been investigated. Effect of temperature, dissolved oxygen (DO), degree of cold work (CW), and machined layer by cold drawing process on the oxidation kinetics assuming power-law kinetics are discussed. Characteristics of oxide layers and its relation to oxidation behaviors are also discussed. The effect of DO on the weight gain behavior in superheated steam at 700 °C was minor for all specimens at least up to 200 ppb DO. The tube-shaped specimens of 1520 SSs showed very good oxidation resistance at 700–780 °C. There was no clear difference in the oxidation kinetics among the three investigated types of 1520 SSs. The machined layer formed at the tube surface has a significant role to mitigate oxidation in superheated steam. A fine-grained microstructure near the surface due to recrystallization by cold drawing process is effective to form the protective Cr{sub 2}O{sub 3} layer. It has been suggested that since Cr diffusion in the outside surface of tubes is accelerated as a result of an increased dislocation density and/or grain refinement by cold drawing, tube specimens show very slow oxidation kinetics. Breakdown of the protective Cr{sub 2}O{sub 3} layer and nodule oxide formation were partly observed on the tube-shaped specimens of 15Cr–20Ni SSs. The reliability of Cr{sub 2}O{sub 3} layer has to be carefully examined to predict the oxidation kinetics after long-term exposure.

  12. Effect of nitrogen and boron on weldability of austenitic stainless steels

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Albert, S.K.; Srinivasan, G.; Divya, M.; Das, C.R.

    2012-01-01

    Hot cracking is a major problem in the welding of austenitic stainless steels, particularly the fully austenitic grades. A group of alloys of enhanced-nitrogen 316LN austenitic stainless steel is being developed for structural components of the Indian Fast Reactor programme. Studying the hot cracking behaviour of this nitrogen-enhanced austenitic stainless steel is an important consideration during welding, as this material solidifies without any residual delta ferrite in the primary austenitic mode. Nitrogen has potent effects on the solidification microstructure, and hence has a strong influence on the hot cracking behaviour. Different heats of this material were investigated, which included fully austenitic stainless steels containing 0.070.22 wt% nitrogen. Also, borated austenitic stainless steels, such as type 304B4, have been widely used in the nuclear applications primarily due to its higher neutron absorption efficiency. Weldability is a major concern for this alloy due to the formation of low melting eutectic phase that is enriched with iron, chromium, molybdenum and boron. Fully austenitic stainless steels are prone to hot cracking during welding in the absence of a small amount of delta ferrite, especially for compositions rich in elements like boron that increases the tendency to form low melting eutectics. Detailed weldability investigations were carried out on a grade 304B4 stainless steel containing 1.3 wt% boron. Among the many approaches that have been used to determine the hot cracking susceptibility of different alloys, Variable-Restraint (Varestraint) weld test and Hot Ductility (Gleeble) tests are commonly used to evaluate the weldability of austenitic alloys. Hence, investigations on these materials consisted of detailed metallurgical characterization and weldability studies that included studying both the fusion zone and liquation cracking susceptibility, using Varestraint tests at 0.254.0%, strain levels and Gleeble (thermo

  13. Stress corrosion cracking behavior of annealed and cold worked 316L stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sáez-Maderuelo, A., E-mail: alberto.saez@ciemat.es; Gómez-Briceño, D.

    2016-10-15

    Highlights: • The alloy 316L is susceptible to stress corrosion cracking in supercritical water. • The susceptibility of alloy 316L increases with temperature and plastic deformation. • Dynamic strain ageing processes may be active in the material. - Abstract: The supercritical water reactor (SCWR) is one of the more promising designs considered by the Generation IV International Forum due to its high thermal efficiency and improving security. To build this reactor, standardized structural materials used in light water reactors (LWR), like austenitic stainless steels, have been proposed. These kind of materials have shown an optimum behavior to stress corrosion cracking (SCC) under LWR conditions except when they are cold worked. It is known that physicochemical properties of water change sharply with pressure and temperature inside of the supercritical region. Owing to this situation, there are several doubts about the behavior of candidate materials like austenitic stainless steel 316L to SCC in the SCWR conditions. In this work, alloy 316L was studied in deaerated SCW at two different temperatures (400 °C and 500 °C) and at 25 MPa in order to determine how changes in this variable influence the resistance of this material to SCC. The influence of plastic deformation in the behavior of alloy 316L to SCC in SCW was also studied at both temperatures. Results obtained from these tests have shown that alloy 316L is susceptible to SCC in supercritical water reactor conditions where the susceptibility of this alloy increases with temperature. Moreover, prior plastic deformation of 316L SS increased its susceptibility to environmental cracking in SCW.

  14. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    Science.gov (United States)

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  15. Simulation of Drawing of Small Stainless Steel Platinum Medical Tubes--Influence of the Tool Parameters on the Forming Limit

    International Nuclear Information System (INIS)

    Linardon, Camille; Affagard, Jean-Sebastien; Chagnon, Gregory; Favier, Denis; Gruez, Benoit

    2011-01-01

    Tube cold drawing processes are used to reduce tube diameters and thickness, while pulling them through a conical converging die with or without inner plug. An accurate modelling of the material deformation and friction behaviour is required in order to well describe these processes.The study concerns a stainless steel platinum alloy. The material behaviour is characterised through tensile tests at strain rates as close as possible to the high strain rates reached during the drawing process. The results are fitted with an isotropic temperature-independent Johnson Cook constitutive equation. The modelling of floating plug drawing is performed on a ABAQUS/Explicit model. Friction coefficient is difficult to estimate with mechanical experimental tests, thus an inverse analysis is carried out to fit this parameter thanks to finite element simulation and experimental drawing tests. Drawing force measurements are recorded during the forming process. The Cockroft-Latham criterion is applied to understand the different process parameters influence on tube drawing and its accuracy for drawing process is evaluated.

  16. Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Magudeeswaran, G.; Balasubramanian, V. [Centre for Materials Joining Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu (India); Madhusudhan Reddy, G. [Metal Joining Section, Defence Metallurgical Research Laboratory (DMRL), Kanchanbagh (P.O.) Hyderabad 560 058 Andhra Pradesh (India)

    2008-04-15

    Quenched and tempered (Q and T) steels are prone to hydrogen induced cracking (HIC) in the heat affected zone after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q and T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic (LHF) steel consumables can be used to weld Q and T steels, which can give very low hydrogen levels in the weld deposits. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on hydrogen induced cold cracking of armour grade Q and T steel welds by implant testing. Shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes were used for making welds using ASS and LHF welding consumables. ASS welds made using FCAW process offered a higher resistance to HIC than all other welds considered in this investigation. (author)

  17. Chromium-Makes stainless steel stainless

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  18. Development of nondestructive measurement of cold work rate, (2)

    International Nuclear Information System (INIS)

    Kamimura, Hideaki; Igarashi, Miyuki; Satoh, Masakazu; Miura, Makoto

    1978-01-01

    Cold-worked type 316 stainless steel will be used as fuel cladding material for the proto-type fast reactor MONJU. Cold work rate is an important parameter in swelling behavior of fuel cladding. It has been shown that austenitic stainless steel undergoes martensitic transformation during cold working. Nondestructive evaluation of cold work rate will be expected by measuring residual magnetism produced in the presence of martensitic phase when cold worked austenitic stainless steel is magnetized. In the previous work, the residual magnetism of cladding tubes of type 316 stainless steel was measured. The results have shown high degree of the correlation between residual magnetism and cold work rate. This paper reports the results of measurement on cold-rolled type 316 stainless steel plate samples. Dimensions of the specimens are 100 mm long and 3.5 and 7 mm wide. The apparatus and experimental procedures were similar to the previous work. Good agreement was found between the estimated cold work rate obtained in the previous work and that for cold rolled plate specimens. Measurement of residual magnetism in identical direction with magnetization showed smaller dispersion of data as compared with that in transverse direction. The residual magnetism near specimen surface hardly decreased when the surface of specimen was chemically removed. The reason for the comparative decrease in residual magnetism at 10% and 15% cold work rate is not clear. (Wakatsuki, Y.)

  19. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution

    International Nuclear Information System (INIS)

    Marcelin, Sabrina; Pébère, Nadine; Régnier, Sophie

    2013-01-01

    Highlights: ► A better knowledge of the electrochemical behaviour of a martensitic stainless steel in bulk electrolyte was obtained. ► Quantitative parameters were obtained from impedance measurements. ► The study will be used as reference to investigate crevice corrosion using a thin layer cell. - Abstract: This paper focuses on the characterisation of the electrochemical behaviour of a martensitic stainless steel in 0.1 M NaCl + 0.04 M Na 2 SO 4 solution and is a part of a study devoted to crevice corrosion resistance of stainless steels. Polarisation curves and electrochemical impedance measurements were obtained for different experimental conditions in bulk electrolyte. X-ray photoelectron spectroscopy (XPS) was used to analyse the passive films. At the corrosion potential, the stainless steel was in the passive state and the corrosion process was controlled by the properties of the passive film formed during air exposure. During immersion in the deaerated solution, the passive film was only slightly modified, whereas it was altered both in composition and thickness during immersion in the aerated solution. After cathodic polarisation of the stainless steel electrode surface, the oxide film was almost totally removed and the surface appeared to be uniformly active for oxygen reduction. The new passive film, formed at the corrosion potential, was enriched with iron species and less protective. Impedance diagrams allowed the characterisation of both the oxide film (high-frequency range) and the charge transfer process (low-frequency range).

  20. Stainless steel recycle FY94 progress report

    International Nuclear Information System (INIS)

    Imrich, K.J.

    1994-01-01

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft 3 ) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program

  1. Prediction of Irradiation Damage by Artificial Neural Network for Austenitic Stainless Steels

    International Nuclear Information System (INIS)

    Kim, Won Sam; Kim, Dae Whan; Hwang, Seong Sik

    2007-01-01

    The internal structures of pressurized water reactors (PWR) located close to the reactor core are used to support the fuel assemblies, to maintain the alignment between assemblies and the control bars and to canalize the primary water. In general these internal structures consist of baffle plates in solution annealed (SA) 304 stainless steel and baffle bolts in cold worked (CW) 316 stainless steel. These components undergo a large neutron flux at temperatures between 280 and 380 .deg. C. Well-controlled irradiation-assisted stress corrosion cracking (IASCC) data from properly irradiated, and properly characterized, materials are sorely lacking due to the experimental difficulties and financial limitations related to working with highly activated materials. In this work, we tried to apply the artificial neural network (ANN) approach, predicted the susceptibility to an IASCC for an austenitic stainless steel SA 304 and CW 316. G.S. Was and J.-P. Massoud experimental data are used. Because there is fewer experimental data, we need to prediction for radiation damage under the internal structure of PWR. Besides, we compared experimental data with prediction data by the artificial neural network

  2. Stainless steel anodes for alkaline water electrolysis and methods of making

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  3. Tensile behavior of irradiated manganese-stabilized stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Tensile tests were conducted on seven experimental, high-manganese austenitic stainless steels after irradiation up to 44 dpa in the FFTF. An Fe-20Mn-12Cr-0.25C base composition was used, to which various combinations of Ti, W, V, B, and P were added to improve strength. Nominal amounts added were 0.1% Ti, 1% W, 0.1% V, 0.005% B, and 0.03% P. Irradiation was carried out at 420, 520, and 600{degrees}C on the steels in the solution-annealed and 20% cold-worked conditions. Tensile tests were conducted at the irradiation temperature. Results were compared with type 316 SS. Neutron irradiation hardened all of the solution-annealed steels at 420, 520, and 600{degrees}C, as measured by the increase in yield stress and ultimate tensile strength. The steel to which all five elements were added to the base composition showed the least amount of hardening. It also showed a smaller loss of ductility (uniform and total elongation) than the other steels. The total and uniform elongations of this steel after irradiation at 420{degrees}C was over four times that of the other manganese-stabilized steels and 316 SS. There was much less difference in strength and ductility at the two higher irradiation temperatures, where there was considerably less hardening, and thus, less loss of ductility. In the cold-worked condition, hardening occured only after irradiation at 420{degrees}C, and there was much less difference in the properties of the steels after irradiation. At the 420{degrees}C irradiation temperature, most of the manganese-stabilized steels maintained more ductility than the 316 SS. After irradiation at 420{degrees}C, the temperature of maximum hardening, the steel to which all five of the elements were added had the best uniform elongation.

  4. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H.H.; Liu, L.; Liu, X.Z.; Guo, Q.; Meng, T.X.; Wang, Z.X.; Yang, H.J.; Liu, X.P., E-mail: liuxiaoping@tyut.edu.cn

    2016-12-01

    Highlights: • A Zr/ZrC modified layer was formed on AISI 440B stainless steel using plasma surface Zr-alloying. • The thickness of the modified layer increases with alloying temperature and time. • Formation mechanism of the modified layer is dependent on the mutual diffusion of Zr and substrate elements. • The modified surface shows an improved wear resistance. - Abstract: The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  5. Corrosion resistance of Ultra-Low-Carbon 19% Cr-11% Ni stainless steel for nuclear fuel reprocessing plants in nitric acid

    International Nuclear Information System (INIS)

    Ariga, Tamako; Takagi, Yoshio; Inazumi, Toru; Masamura, Katsumi; Sukekawa, M.

    1995-01-01

    An Ultra-Low-Carbon 19% Cr-11% Ni Stainless Steels used in nuclear fuel reprocessing plants where highly corrosion resistance in nitric acid is required has been developed. This steel has optimized the chemistry composition to decrease inclusions and deformation-induced martensitic transformation. The formation of deformation-induced martensite has the potential danger of accelerating corrosion in nitric acid. In this paper, effects of cold reduction and martensitic transformation on corrosion resistance of Ultra-Low-Carbon Stainless Steels in nitric acid are discussed. The developed steel showed excellent corrosion resistance during long-term exposure to nitric acid. (author)

  6. Magnetic detection of sigma phase in duplex stainless steel UNS S31803

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, S.S.M., E-mail: ssmtavares@terra.com.b [Universidade Federal Fluminense, Departamento de Engenharia Mecanica, PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi (Brazil); Pardal, J.M.; Guerreiro, J.L. [Universidade Federal Fluminense, Departamento de Engenharia Mecanica, PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi (Brazil); Gomes, A.M. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Silva, M.R. da [Universidade Federal de Itajuba, Instituto de Ciencias (Brazil)

    2010-09-15

    Duplex stainless steels are high strength and corrosion resistant steels extensively used in the chemical and petrochemical industry. The best mechanical properties and corrosion resistance are obtained with a microstructure composed by equal parts of ferrite and austenite and free from tertiary phases. Sigma phase is one of these deleterious tertiary phases. In the present work different amounts of sigma phase were precipitated by heat treatments in a UNS S31803 stainless steel. Some specimens were cold rolled before sigma phase precipitation in order to evaluate the effect of deformation on the magnetic measurements. The amount of sigma phase was precisely determined by microscopy and image analysis for each heat treatment condition. The effects of sigma phase on the steel properties were investigated, confirming the detrimental effects of very small percentages on corrosion resistance and toughness. Two magnetic methods were used to detect sigma phase: magnetization saturation measurements in a Vibrating Sample Magnetometer and ferritoscope testing. Both methods were found to be sensitive to small percentages of sigma phase in the microstructure.

  7. Experimental Investigation of Tensile Test on Connection of Cold-formed Cut-curved Steel Section

    Science.gov (United States)

    Sani, Mohd Syahrul Hisyam Mohd; Muftah, Fadhluhartini; Rahman, Nurul Farraheeda Abdul; Fakri Muda, Mohd

    2017-08-01

    Cold-formed steel (CFS) is widely used as structural and non-structural components such as roof trusses and purlin. A CFS channel section with double intermediate web stiffener and lipped is chosen based on the broader usage in roof truss construction. CFS section is cut to form cold-formed pre-cut-curved steel section and lastly strengthened by several types of method or likely known as connection to establish the cold-formed cut-curved steel (CFCCS) section. CFCCS is proposed to be used as a top chord section in the roof truss system. The CFCCS is to resist the buckling phenomena of the roof truss structure and reduced the compression effect on the top chord. The tensile test connection of CFCCS section, especially at the flange element with eight types of connection by welding, plate with self-drilling screw and combination is investigated. The flange element is the weakest part that must be solved first other than the web element because they are being cut totally, 100% of their length for curving process. The testing is done using a universal testing machine for a tensile load. From the experiment, specimen with full welding has shown as a good result with an ultimate load of 13.37 kN and reported having 35.41% when compared with normal specimen without any of connection methods. Furthermore, the experimental result is distinguished by using Eurocode 3. The failure of a full welding specimen is due to breaking at the welding location. Additionally, all specimens with either full weld or spot weld or combination failed due to breaking on weld connection, but specimen with flange plate and self-drilling screw failed due to tilting and bearing. Finally, the full welding specimen is chosen as a good connection to perform the strengthening method of CFCCS section.

  8. Characterization of sensitization and stress corrosion cracking behavior of stabilized stainless steels under BWR conditions

    International Nuclear Information System (INIS)

    Kilian, R.; Ilg, U.; Meier, V.; Teichmann, H.; Wachter, O.

    1995-01-01

    Stress corrosion cracking occurs if the three parameters -- material condition, tensile stress and water chemistry -- are in a critical range. In this study the material conditions especially of Ti- and Nb-stabilized steels are considered. The purpose of this work is to show the influence of the degree of sensitization of Ti- and Nb-stabilized stainless steels on stress corrosion cracking susceptibility in BWR water chemistry. This is an on-going research program. Preliminary results will be presented. Different types of stabilized, and for comparison unstabilized, stainless steels are examined in various heat treatment conditions with regard to their sensitization behavior by EPR tests (double loop) and TEM. The results are plotted in sensitization diagrams. The sensitization behavior depends on many parameters such as carbon content, stabilization element, stabilization ratio and materials history, e.g. solution heat treatment or cold working. The obtained EPR sensitization diagrams are compared with the well known sensitization diagrams from the literature, which were determined by standard IC test according to e.g. German standard DIN 50914 (equivalent to ASTM A 262, Pract. E). Based on the obtained EPR sensitization diagrams material conditions for SSRT tests were selected. The EPR values (Ir/Ia x 100%) of the tested Ti-stabilized stainless steel are in the range of ∼ 0.1--20%. The SSRT tests are carried out in high-temperature water with 0.4 ppm O 2 , a conductivity of 0.5 microS/cm and a strain rate of 1x10 -6-1 . The test temperature is 280 C. Ti-stabilized stainless steel with Ir/Ia x 100% > 1% suffered intergranular stress corrosion cracking under these conditions. The SCC tests for Nb-stabilized stainless steel are still in progress. The correlation between EPR value, chromium depletion and SSRT result will be shown for a selected material condition of sensitized Ti-stabilized stainless steel

  9. Reduced-activation austenitic stainless steels: The Fe--Mn--Cr--C system

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1988-01-01

    Nickel-free manganese-stabilized steels are being developed for fusion-reactor applications. As the first part of this effort, the austenite-stable region in the Fe--Mn--Cr--C system was determined. Results indicated that the Schaeffler diagram developed for Fe--Ni--Cr--C alloys cannot be used to predict the constituents expected for high-manganese steels. This is true because manganese is not as strong an austenite stabilizer relative to δ-ferrite formation as predicted by the diagram, but it is a stronger austenite stabilizer relative to martensite than predicted. Therefore, the austenite-stable region for Ne--Mn--Cr--C alloys occurs at lower chromium and hugher combinations of manganese and carbon than predicted by the Schaeffler diagram. Development of a manganese-stabilized stainless steel should be possible in the composition range of 20 to 25% Mn, 10 to 15% Cr, and 0.01 to 0.25%C. Tensile behavior of an Fe--20%Mn--12%Cr--0.25%C alloy was determined. The strength and ductility of this possible base composition was comparable to type 316 stainless steel in both the solution-annealed and cold-worked condition

  10. Development of commercial nitrogen-rich stainless steels

    International Nuclear Information System (INIS)

    Liljas, M.

    1999-01-01

    This paper reviews the development of nitrogen alloyed stainless steels. Nitrogen alloying of austenitic stainless steels started at an early stage and was to a large extent caused by nickel shortage. However, direct technical advantages such as increased strength of the nitrogen alloyed steels made them attractive alternatives to the current steels. It was not until the advent of the AOD (argon oxygen decarburisation) process in the late 1960s that nitrogen alloying could be controlled to such accuracy that it became successful commercially on a broader scale. The paper describes production aspects and how nitrogen addition influences microstructure and the resulting properties of austenitic and duplex stainless steels. For austenitic steels there are several reasons for nitrogen alloying. Apart from increasing strength nitrogen also improves structural stability, work hardening and corrosion resistance. For duplex steels nitrogen also has a decisive effect in controlling the microstructure during thermal cycles such as welding. (orig.)

  11. The effect of cold work on grain boundary precipitation and sensitization in nitrogen added type 316L stainless steels

    International Nuclear Information System (INIS)

    Seo, Moo Hong; Chun, Byong Sun; Oh, Yong Jun; Ryu, Woo Seog; Hong, Jun Hwa

    1998-01-01

    The precipitation and sensitization behavior of nitrogen added type 316L Stainless Steels (SS) were investigated by using specimens cold worked for 0∼40%. The alloys had a variation in nitrogen content from 0.04 to 0.15%. To quantify the degree of sensitization, Double-Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test was performed in a 0.1M H 2 SO 4 + 0.01M KSCN solution at 30 .deg. C. The addition of nitrogen increased sensitization resistance by retarding the onset of M 23 C 6 precipitation and shifted Time-Temperature-Sensitization(TTS) curve to higher temperature and longer time range. Cold work accelerated the M 23 C 6 precipitation and sensitization kinetic due to the increase in dislocation density. However, the acceleration of sensitization was found to depend on the added nitrogen content in the alloys. The alloys with high nitrogen(>0.1%N) content exhibited higher acceleration of the sensitization as a function of the cold work than that with low nitrogen content. From the microstructural analysis, this was found to be attributed to the development of intensive slip bands during cold work and retardation of dislocation annihilation during subsequent aging in the alloys with high nitrogen content

  12. Effect of metal surface composition on deposition behavior of stainless steel component dissolved in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1988-01-01

    Deposition behavior of corrosion products has been investigated to clarify the effect of metal surface composition on the deposition process in liquid sodium. For the study a sodium loop made of Type 304 stainless steel was employed. Deposition test pieces, which were Type 304 stainless steel, iron, nickel or Inconel 718, were immersed in the sodium pool of the test pot. Corrosion test pieces, which were Type 304 stainless steel, 50 at% Fe-50 at%Mn and Inconel 718, were set in a heater pin assembly along the axial direction of the heater pin surface. Sodium temperatures at the outlet and inlet of the heater pin assembly were controlled at 943 and 833 K, respectively. Sodium was purified at a cold trap temperature of 393 K and the deposition test was carried out for 4.3 x 10 2 - 2.9 x 10 4 ks. Several crystallized particles were observed on the surface of the deposition test pieces. The particles had compositions and crystal structures which depended on both the composition of deposition test pieces and the concentration of iron and manganese in sodium. Only iron-rich particles having a polyhedral shape deposited on the iron surface. Two types of particles, iron-rich α-phase and γ-phase with nearly the same composition as stainless steel, were deposited on Type 304 stainless steel. A Ni-Mn alloy was deposited on the nickel surface in the case of a higher concentration of manganese in sodium. On the other hand, for a lower manganese concentration, a Fe-Ni alloy was precipitated on the nickel surface. Particles deposited on nickel had a γ-phase crystal structure similar to the deposition test piece of nickel. Hence, the deposition process can be explained as follows: Corrosion products in liquid sodium were deposited on the metal surface by forming a metal alloy selectively with elements of the metal surface. (author)

  13. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders

    DEFF Research Database (Denmark)

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni

    2015-01-01

    PURPOSE: The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. METHODS: A Danish national company-based historical cohort of 5,303 male ever...... was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95 % confidence intervals (CIs) were...... nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95 % CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95 % CI 1...

  14. Austenitic stainless steel weld inspection

    International Nuclear Information System (INIS)

    Mech, S.J.; Emmons, J.S.; Michaels, T.E.

    1978-01-01

    Analytical techniques applied to ultrasonic waveforms obtained from inspection of austenitic stainless steel welds are described. Experimental results obtained from a variety of geometric and defect reflectors are presented. Specifically, frequency analyses parameters, such as simple moments of the power spectrum, cross-correlation techniques, and adaptive learning network analysis, all represent improvements over conventional time domain analysis of ultrasonic waveforms. Results for each of these methods are presented, and the overall inspection difficulties of austenitic stainless steel welds are discussed

  15. Deformation induced martensite in AISI 316 stainless steel

    Directory of Open Access Journals (Sweden)

    Solomon, N.

    2010-04-01

    Full Text Available The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstrusture and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a’ martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE, which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation.

    El proceso de conformación da a lugar a una considerable diferenciación del campo de tensiones dentro de una barra de extrusión y, finalmente, causa una distribución no uniforme de la tensión total, la microestructura y propiedades del material sobre el corte transversal. En este trabajo se estudia la influencia de los estados de tensión sobre la transformación martensítica inducida por deformación en un acero inoxidable austenítico tipo AISI 316. La formación de martensita inducida por

  16. Structure and microstructure evolution of a ternary Fe–Cr–Ni alloy akin to super martensitic stainless steel

    International Nuclear Information System (INIS)

    Ravi Kumar, B.; Sharma, Sailaja; Munda, Parikshit; Minz, R.K.

    2013-01-01

    Highlights: • Reaustenisation by recrystallisation rather by a diffusion controlled process. • Ultrafine grained austenite formation in martensite matrix by recrystallisation. • In situ high temperature austenite transformation studies by X-ray diffraction. • Microstructure tailoring to achieve tensile strength (∼1 GPa) with good ductility. - Abstract: A ternary Fe–Cr–Ni alloy, akin to super martensitic stainless steels was prepared in vacuum induction furnace. The as cast ingot was solution treated at 1200 °C for 25 h and then hot forged and rolled to reduce into plate form. The hot rolled plate of martensitic microstructure was then cold rolled to 80% of thickness reduction. The phase transformation studies by X-ray diffraction analysis of hot and cold rolled specimens showed presence of retained austenite in air cooled as well as in water quenched state after annealing/austenising temperature of 1060 °C. The reaustenisation behaviour of the cold rolled alloy in water quenched state was studied by high temperature X-ray diffraction analysis. It showed very stable martensitic phase and the completion of reaustenisation process were observed to occur at about 950 °C. The recrystallisation behaviour of cold rolled material under isothermal and repeated annealing treatment was studied in detail by electron microscope. The tensile properties of the material were evaluated after various annealing treatments. The study revealed that by a suitable sequence of repetitive annealing process microstructure could be tailored to achieve tensile strength above 1 GPa with good ductility in a super martensitic stainless steel

  17. Stainless steel leaches nickel and chromium into foods during cooking.

    Science.gov (United States)

    Kamerud, Kristin L; Hobbie, Kevin A; Anderson, Kim A

    2013-10-02

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan, cooking times of 2-20 h, 10 consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After 6 h of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold, respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34-fold and Cr increased approximately 35-fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, although significant metal contributions to foods were still observed. The tenth cooking cycle resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage.

  18. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    Science.gov (United States)

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2014-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan; cooking times of 2 to 20 hours, ten consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After six hours of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34 fold and Cr increased approximately 35 fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, though significant metal contributions to foods were still observed. The tenth cooking cycle, resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage. PMID:23984718

  19. Localized corrosion of high alloyed austenitic stainless steels

    International Nuclear Information System (INIS)

    Morach, R.; Schmuki, P.; Boehni, H.

    1992-01-01

    The susceptibility of several high alloyed stainless steels against localized corrosion was investigated by traditional potentiostatic and -kinetic methods and the current transient technique. Different test cells, proposed in literature, were evaluated for use in testing of plate materials. The AVESTA-cell showed to be not useful for potentiokinetic current density potential curves, but useable for pitting experiments. After pickling and prepassivation epoxy embedded materials proved to be resistant to crevice corrosion at the metal-resin interface. The electrode in form of a wire was the most reliable crevice free cell design. The grinding of the samples in the pretreatment procedure was found to have a large effect on the pitting corrosion behaviour. Using different paper types with varying grit, a drop in pitting potential for rougher surfaces and an increase in metastable pitting activity was found. Increasing surface roughness led also to changes in the electronic structure of the passive film reflected by a lower bandgap energy. High alloyed stainless steels showed no breakdown potential within the examined potential range. Compared to 18/8 type stainless steels significantly less transients were found. The number of transients decreases with increasing molybdenum and chromium content

  20. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    OpenAIRE

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2013-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel sau...

  1. Electrochemical aspects of stainless steel behaviour in biocorrosive environment

    International Nuclear Information System (INIS)

    Feron, D.

    1990-01-01

    Electrochemical measurements have been used to evaluate and follow, to understand and control microbial induced corrosion of stainless steels. Results include seawater loop tests and laboratory-based microbiological experiments. With natural flowing seawater, impedance spectroscopy measurements have been used to evaluate and follow biofilms on stainless steel tube-electrodes. With batch cultures of single bacterial strain (Sulphate Reducing Bacteria), open-circuit potential measurements and polarization curves performed on 316 L and 430 Ti stainless steels, have shown that the corrosion behaviour of these stainless steels is mainly dependent on the sulphide content of the culture media [fr

  2. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  3. Electrochemical study of corrosion inhibition of stainless steel in phosphoric medium

    Energy Technology Data Exchange (ETDEWEB)

    Hnini, K.; Chtaini, A. [Laboratoire d' Electrochimie et de Bio Corrosion, Faculte des Sciences et Techniques, Beni-Mellal (Morocco); Khouili, M.; Elbouadili, A. [Laboratoire de Chimie Organique et Analytique, Faculte des Sciences et Techniques, Beni-Mellal (Morocco)

    2004-07-01

    The corrosion of metals represents a terrible waste of both natural resources and money, the failure of some stainless steel resulting from pitting corrosion is some times considered a technological problem, consequently, much effort has been expended in attempting to understand and overcome the corrosion therefore, many stainless steel/ environment combinations have been studied. The use of heterocyclic compounds as inhibitors is one of the most practical methods for protection against corrosion in acidic media. In continuation of our work on development of macrocyclic compounds as corrosion inhibitors we report in our study the corrosion inhibiting behaviour of organic compound Methoxy-2-Allyl-4 Phenol (MAP) containing coordinating and conjugation groups, at three forms (natural, polymerized and chemically treated) on the corrosion of stainless steel in phosphoric acid. This study focused on the comparison for corrosion inhibition proprieties of these different applications using potentiodynamic polarization, electrochemical impedance spectroscopy and SEM. The specimen was evaluated to determine change in his corrosion potential and resistance polarization; These MAP products have exhibited corrosion inhibition by maintaining a high resistance polarization (low corrosion rate) in each application. These results reveal that this compound is efficient inhibitor in all forms; the most inhibition efficiency is obtained with polymerized form. To further evaluate the test data, the steel surfaces were analyzed using scanning electron microscopy, SEM observations of surface treated concrete confirmed presence of inhibitor on the steel surfaces. (authors)

  4. Study to define NDE research for inspection of stainless steels

    International Nuclear Information System (INIS)

    Reinhart, E.R.

    1978-08-01

    After the boiling water reactor (BWR) stress corrosion cracking incidents on 4- and 10-inch stainless steel piping, the Electric Power Research Institute (EPRI) organized a round-robin ultrasonic examination of piping removed from service (TPS-75-609). Five inspection teams participated in this program, using both a standard procedure and the individual team procedure. The original intent was to section the piping after the program to evaluate the effectiveness of state-of-the-art ultrasonics in finding stress corrosion cracking. The sectioning was delayed, however, to allow research and development (R and D) groups time to perform basic measurements aimed at determining optimum search unit and instrument characteristics for the ultrasonic examination of stainless steel piping and to study the applicability of various advanced inspection methods. This additional effort was funded as part of an EPRI technical planning study (TPS-75-620), A Study to Define NDE Research for Inspection of Stainless Steels. Inspection methods evaluated in this study included (1) processing of manual scan data using a miniature programmable calculator (Aerojet Nuclear); (2) investigation into the performance characteristics of three experimental ultrasonic transducers (Battelle-Columbus Laboratories); (3) analysis of fundamental ultrasonic response data from intergranular stress corrosion cracks in stainless steels (Southwest Research Institute); and (4) a feasibility study of advanced signal processing and pattern recognition for analyzing flaws in stainless steel piping (Ultrasonics International). The results of the studies compiled in the report have indicated the direction for future research and development and have formed the basis for the recently initiated EPRI Research Project 892, Ultrasonic System Optimization

  5. Corrosion And Thermal Processing In Cold Gas Dynamic Spray Deposited Austenitic Stainless Steel Coatings

    Science.gov (United States)

    2016-06-01

    Champagne have demonstrated this use of the cold spray technique in the repair of helicopter mast supports in U.S. Army aircraft, with over 50...Process: Fundamentals and Applications, Champagne , V. K., Ed., Woodhead, Boca Raton, FL Chap. 3. [3] Schiel, J. F., 2014, “The cold gas-dynamic spray... Champagne , V. K., Ed., Woodhead, Boca Raton, FL Chap. 2. [15] Han, W., Meng, X. M., Zhang, J. B., and Zhao, J., 2012, “Elastic modulus of 304 stainless

  6. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  7. Radiation-induced sensitisation of stainless steels

    International Nuclear Information System (INIS)

    Norris, D.I.R.

    1987-01-01

    The book contains the proceedings of a symposium on radiation-induced sensitization of stainless steels, which took place at Berkeley, United Kingdom, 1986. The purpose of the symposium was to examine the mechanism leading to inter-granular corrosion of 20%Cr/25% Ni/Nb stainless steel cladding of AGR fuel following irradiation. Nine papers are presented, of which three are theoretical, two papers are based upon corrosion studies of 20%Cr/25%Ni/Nb steel, and the remaining are concerned with compositional redistribution and its measurement. (U.K.)

  8. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    Science.gov (United States)

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  9. SCC growth behavior of stainless steel weld heat-affected zone in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2010-01-01

    It is known that the SCC growth rate of stainless steels in high-temperature water is accelerated by cold-work (CW). The weld heat-affected-zone (HAZ) of stainless steels is also deformed by weld shrinkage. However, only little have been reported on the SCC growth of weld HAZ of SUS316 and SUS304 in hydrogenated high-temperature water. Thus, in this present study, SCC growth experiments were performed using weld HAZ of stainless steels, especially to obtain data on the dependence of SCC growth on (1) temperature and (2) hardness in hydrogenated water at temperatures from 250degC to 340degC. And then, the SCC growth behaviors were compared between weld HAZ and CW stainless steels. The following results have been obtained. Significant SCC growth were observed in weld HAZ (SUS316 and SUS304) in hydrogenated water at 320degC. The SCC growth rates of the HAZ are similar to that of 10% CW non-sensitized SUS316, in accordance with that the hardness of weld HAZ is also similar to that of 10% CW SUS316. Temperature dependency of SCC growth of weld HAZ (SUS316 and SUS304) is also similar to that of 10% CW non-sensitized SUS316. That is, no significant SCC were observed in the weld HAZ (SUS316 and SUS304) in hydrogenated water at 340degC. This suggests that SCC growth behaviors of weld HAZ and CW stainless steels are similar and correlated with the hardness or yield strength of the materials, at least in non-sensitized regions. And the similar temperature dependence between the HAZ and CW stainless steels suggests that the SCC growth behaviors are also attributed to the common mechanism. (author)

  10. Features of residual stresses in duplex stainless steel butt welds

    Science.gov (United States)

    Um, Tae-Hwan; Lee, Chin-Hyung; Chang, Kyong-Ho; Nguyen Van Do, Vuong

    2018-04-01

    Duplex stainless steel finds increasing use as an alternative to austenitic stainless steel, particularly where chloride or sulphide stress corrosion cracking is of primary concern, due to the excellent combination of strength and corrosion resistance. During welding, duplex stainless steel does not create the same magnitude or distribution of weld-induced residual stresses as those in welded austenitic stainless steel due to the different physical and mechanical properties between them. In this work, an experimental study on the residual stresses in butt-welded duplex stainless steel is performed utilizing the layering technique to investigate the characteristics of residual stresses in the weldment. Three-dimensional thermos-mechanical-metallurgical finite element analysis is also performed to confirm the residual stress measurements.

  11. Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces

    Science.gov (United States)

    Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.

    2018-06-01

    The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.

  12. Special stainless steels for sea water service

    International Nuclear Information System (INIS)

    Tomaselli, A.C.

    1983-01-01

    Very exacting demands are made on the corrosion resistance and mechanical properties of materials which in their service come into contact with seawater, and in many cases simultaneously with corrosive process solutions. The demand for higher alloy stainless steels for seawater application is rising in pace with the increasing requirements for safety and operation economy. The corrosion conditions in seawater and the resistance of stainless steels in this medium will be dealt with in the following. Sanicro 28 will then be compared with stainless steels, types AISI 304, 316 and 317, as well as with Alloy 20, Alloy 825 and SANDVIK 2RK65. (Author) [pt

  13. Comparison of radiographic density and compaction index of root canal obturation using nickel titanium or stainless-steel spreaders

    Directory of Open Access Journals (Sweden)

    M. Adel

    2016-08-01

    Full Text Available Background: Both nickel titanium and stainless-steel spreaders are available. The obvious advantage of nickel titanium spreader over stainless steel spreaders is greater penetration in curved canals. Objective: To compare the radiographic density and compaction index of root canal obturation using nickel-titanium or stainless-steel spreaders in curved canals. Methods: In this experimental study the primary weight of 30 acrylic blocks with 45o degrees of apical curvature were measured by a scale (W1. After canals were prepared by step back master apical up to file #30 all blocks were weighed again (W2 and randomly divided in two groups of 15each. All canals were obturated by Cold lateral compaction technique (with nickel-titanium in one group and stainless-steel finger spreaders in another group. After all blocks were reweighed (W3, compaction index (W3-W2/W1-W2 was calculated. One radiograph was taken for each sample. Apical density of the apical third of each canal was measured by digital transmission densitometer. Data were analyzed statistically using T-test. Findings: Mean compaction index for nickel-titanium group was 7.67±2.38 and for stainless-steel group was 9.14±4.06. There was no significant difference between two groups. Mean radiographic density of obturation was 2.05±0.14 in nickel-titanium group and was 2.07±0.21 in stainless-steel group. There was no significant difference between two groups. Conclusion: It is concluded that nickel-titanium spreaders are not superior than stainless-steel spreaders in obturating curved canal.

  14. Characterization of oxides of stainless steel UNS S30400 formed in offshore environment

    Energy Technology Data Exchange (ETDEWEB)

    Cindra Fonseca, M. [Universidade Federal Fluminense, PGMEC - Programa de Pos-Graduacao em Engenharia Mecanica, Rua Passo da Patria, 156, Bl. D, Sala 302, 24210-240 Niteroi-RJ (Brazil); Bastos, I.N. [Instituto Politecnico/UERJ, Rua Alberto Rangel s/n, 28630-050 Nova Friburgo-RJ (Brazil); Baggio-Saitovitch, E., E-mail: esaitovitch@yahoo.com.br [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud, 150, 22290-180 Rio de Janeiro-RJ (Brazil); Sanchez, D.R. [Instituto de Fisica, Universidade Federal Fluminense, Campus da Praia Vermelha, 24210-346 Niteroi-RJ (Brazil)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Thick corrosion products of stainless steel were characterized by Moessbauer spectroscopy. Black-Right-Pointing-Pointer High content of akaganeite on the surface exposed to marine environment. Black-Right-Pointing-Pointer Nanoparticles of akaganeite were always observed. - Abstract: Thick corrosion products of austenitic stainless steel obtained from a steam turbine structure exposed in offshore environment were studied by optical stereomicroscopy, X-ray diffraction, Moessbauer and energy-dispersive X-ray spectroscopy. The external surface of mechanical structure was exposed to a marine atmosphere and the internal one to a combustion gas for two decades. Characterization of corrosion products showed high content of akaganeite in the outer region and a mixture of akaganeite and hematite in the inner surface. Besides these characteristics, a distribution of nanosized superparamagnetic particles of akaganeite was found in the rusts.

  15. Design optimization of cold-formed steel portal frames taking into account the effect of building topology

    Science.gov (United States)

    Phan, Duoc T.; Lim, James B. P.; Sha, Wei; Siew, Calvin Y. M.; Tanyimboh, Tiku T.; Issa, Honar K.; Mohammad, Fouad A.

    2013-04-01

    Cold-formed steel portal frames are a popular form of construction for low-rise commercial, light industrial and agricultural buildings with spans of up to 20 m. In this article, a real-coded genetic algorithm is described that is used to minimize the cost of the main frame of such buildings. The key decision variables considered in this proposed algorithm consist of both the spacing and pitch of the frame as continuous variables, as well as the discrete section sizes. A routine taking the structural analysis and frame design for cold-formed steel sections is embedded into a genetic algorithm. The results show that the real-coded genetic algorithm handles effectively the mixture of design variables, with high robustness and consistency in achieving the optimum solution. All wind load combinations according to Australian code are considered in this research. Results for frames with knee braces are also included, for which the optimization achieved even larger savings in cost.

  16. Phase transformation system of austenitic stainless steels obtained by permanent compressive strain

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Tomida, Sai

    2017-01-27

    In order to understand more completely the formation of strain-induced martensite, phase structures were investigated both before and after plastic deformation, using austenitic stainless steels of various chemical compositions (carbon C=0.007–0.04 mass% and molybdenum Mo=0–2.10 mass%) and varying pre-strain levels (0–30%). Although the stainless steels consisted mainly of γ austenite, two martensite structures were generated following plastic deformation, comprising ε and α′ martensite. The martensitic structures were obtained in the twin deformation and slip bands. The severity of martensite formation (ε and α′) increased with increasing C content. It was found that α′ martensite was formed mainly in austenitic stainless steel lacking Mo, whereas a high Mo content led to a strong ε martensite structure, i.e. a weak α′ martensite. The formation of α′ martensite occurred from γ austenite via ε martensite, and was related to the slip deformation. Molybdenum in austenitic stainless steel had high slip resistance (or weak stress-induced martensite transformation), because of the stacking fault energy of the stainless steel affecting the austenite stability. This resulted in the creation of weak α′ martensite. Models of the martensitic transformations γ (fcc)→ε (hcp)→α′ (bcc) were proposed on both the microscopic and nanoscopic scales. The α′ martensite content of austenitic stainless steel led to high tensile strength; conversely, ε martensite had a weak effect on the mechanical strength. The influence of martensitic formation on the mechanical properties was evaluated quantitatively by statistical analysis.

  17. Pitting and stress corrosion cracking of stainless steel

    Science.gov (United States)

    Saithala, Janardhan R.

    An investigation has been performed to determine the pitting resistance of stainless steels and stress corrosion cracking of super duplex stainless steels in water containing chloride ions from 25 - 170°C. The steels studied are 12% Cr, FV520B, FV566, 304L, Uranus65, 2205, Ferallium Alloy 255, and Zeron 100. All these commercial materials used in very significant industrial applications and suffer from pitting and stress corrosion failures. The design of a new experimental setup using an autoclave enabled potentiodynamic polarisation experiments and slow strain rate tests in dilute environments to be conducted at elevated temperatures. The corrosion potentials were controlled using a three electrode cell with computer controlled potentiostat.The experimental programme to determine pitting potentials was designed to simulate the service conditions experienced in most industrial plants and develop mathematical model equations to help a design engineer in material selection decision. Stress corrosion resistance of recently developed Zeron100 was evaluated in dilute environments to propose a mechanism in chloride solutions at high' temperatures useful for the nuclear and power generation industry. Results have shown the significance of the composition of alloying elements across a wide range of stainless steels and its influence on pitting. Nitrogen and molybdenum added to modern duplex stainless steels was found to be unstable at higher temperatures. The fractographic results obtained using the scanning electron microscope (SEM) has given insight in the initiation of pitting in modem duplex and super duplex stainless steels. A mathematical model has been proposed to predict pitting in stainless steels based on the effect of environmental factors (temperature, chloride concentration, and chemical composition). An attempt has been made to identify the mechanism of SCC in Zeron100 super duplex stainless steel.The proposed empirical models have shown good correlation

  18. Nitrogen effect on precipitation and sensitization in cold-worked Type 316L(N) stainless steels

    International Nuclear Information System (INIS)

    Oh, Yong Jun; Hong, Jun Hwa

    2000-01-01

    The precipitation behavior and sensitization resistance of Type 316L(N) stainless steels containing different concentrations of nitrogen have been investigated at the aging condition of 700 deg. C for cold work (CW) levels ranging from 0% (as solution annealed) to 40% reduction in thickness. The precipitation of M 23 C 6 carbide and intermetallic compounds (χ, Laves and σ phase) was accelerated by increasing the CW level. Nitrogen in the deformed alloys retarded the inter- and intra-granular precipitation of the carbides at low and high CW levels respectively, whereas it increased the relative amount of the χ phase. Quantitative assessment of the degree of sensitization (DOS) using the double loop-electrochemical potentiokinetic reactivation (DL-EPR) tests indicated that CW levels up to 20% enhanced sensitization while 40% CW suppressed sensitization for all aging times. The increase in nitrogen content accelerated the sensitization at CW levels below 20%. This might be associated with the homogeneous distribution of dislocations and the lower tendency toward recrystallization exhibited in the alloys having higher nitrogen content

  19. Improved swelling resistance for PCA austenitic stainless steel under HFIR irradiation through microstructural control

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1983-01-01

    Six microstructural variants of Prime Candidate Alloy (PCA) were evaluated for swelling resistance during HFIR irradiation, together with several heats of type 316 stainless steel (316). Swelling was negligible in all the steels at 300 0 C after approx. 44 dpa. At 500 to 600 0 C 25%-cold-worked PCA showed better void swelling resistance than type 316 at approx. 44 dpa. There was less swelling variability among alloys at 400 0 C, but again 25%-cold-worked PCA was the best. Microstructurally, swelling resistance correlated with development of fine, stable bubbles whereas high swelling was due to coarser distributions of bubbles becoming unstable and converting to voids (bias-driven cavities)

  20. Prediction on flexural strength of encased composite beam with cold-formed steel section

    Science.gov (United States)

    Khadavi, Tahir, M. M.

    2017-11-01

    A flexural strength of composite beam designed as boxed shaped section comprised of lipped C-channel of cold-formed steel (CFS) facing each other with reinforcement bars is proposed in this paper. The boxed shaped is kept restrained in position by a profiled metal decking installed on top of the beam to form a slab system. This profiled decking slab is cast by using self-compacting concrete where the concrete is in compression when load is applied to the beam. Reinforcement bars are used as shear connector between slab and CFS as beam. A numerical analysis method proposed by EC4 is used to predict the flexural strength of the proposed composite beam. It was assumed that elasto-plastic behaviour is developed in the cross -sectional of the proposed beam. The calculated predicted flexural strength of the proposed beam shows reasonable flexural strength for cold-formed composite beam.

  1. Effects of Cr2N Precipitation on the Antibacterial Properties of AISI 430 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Je-Kang Du

    2016-03-01

    Full Text Available Based on their mechanical properties and good corrosion resistance, some commercial Ni-Cr stainless steels have been widely applied as biomaterials, including the austenitic 304 stainless steel, the austenitic 316 stainless steel, the duplex 2205 stainless steel, and the ferritic 430 stainless steel. In order to reduce the occurrence of infections resulting from biomaterial implants, instruments, and medical devices, Cu2+ and Ag2+ ions have been added onto biomaterials for increasing the antibacterial properties, but they are known to damage biofilm. The occurrence of nanoparticles can also improve the antibacterial properties of biomaterials through various methods. In this study, we used Escherichia coli and analyzed the microstructures of American Iron and Steel Institute (AISI 430 stainless steel with a 0.18 mass % N alloy element. During a lower temperature aging, the microstructure of the as-quenched specimen is essentially a ferrite and martensite duplex matrix with some Cr2N precipitates formed. Additionally, the antibacterial properties of the alloy for E. coli ranged from 3% to 60%, consistent with the presence of Cr2N precipitates. When aged at a lower temperature, which resulted in nano-Cr2N precipitation, the specimen possessed the highest antibacterial activity.

  2. Substitution of modified 9 Cr-1 Mo steel for austentic stainless steels

    International Nuclear Information System (INIS)

    Sikka, V.K.

    1982-04-01

    This report describes the current program to develop a high-strength ferritic-martensitic steel. The alloy is essentially Fe-9% Cr-1% Mo with small additions of V and Nb and is known as modifed 9 Cr-1 Mo steel. Its elevated-temperature properties and design allowable stresses match those of type 304 stainless steel for temperatures up to 600 0 C and exceed those of other ferritic steels by factors of 2 to 3. The improved strength of this alloy permits its use in place of stainless steels for many applications

  3. New Tribo-systems for Cold Forming of Steel, Stainless Steel and Aluminium Alloys

    DEFF Research Database (Denmark)

    Bay, Niels

    2013-01-01

    Globalisation of industrial production and increasing demands for environmentally benign solutions has forced cold forging industry to search for new, economically optimized tribo-systems, which are less harmful to the working as well as the global environment. The present paper describes efforts...

  4. Fusion welding of borated stainless steels

    International Nuclear Information System (INIS)

    Robino, C.V.; Cieslak, M.J.

    1993-01-01

    Borated austenitic stainless steels have been developed for use in the nuclear industry where storage, transport, and reprocessing of nuclear materials are required. The objective of this work is to develop appropriate joining technology for borated stainless steels based upon understanding the response of these materials to thermal processing involving melting. This understanding is being developed through the application of physical metallurgy techniques to determine the evolution of microstructure and mechanical properties within the various regions of the HAZ. Initial investigations include development of the kinetics of boride coarsening in the solid-state region of HAZ and the effect of boride coarsening on the impact properties of this region of the weld zone. Microstructures of the borated stainless steels, their response to high temperature isothermal heat treatments, and the implications of these heat treatments with respect to welding behavior will be presented

  5. HIP bonding between niobium/copper/stainless steel materials

    International Nuclear Information System (INIS)

    Inoue, Hitoshi; Fujino, Takeo; Hitomi, Nobuteru; Saito, Kenji; Yamada, Masahiro; Shibuya, Junichi; Ota, Tomoko

    2000-01-01

    We have used niobium flanges for the niobium bulk superconducting RF cavities, however, they are expensive. Stainless steel flanges instead of the niobium flanges will be used in the future large scale production of sc cavities like the KEK/JAERI joint project. For a future R and D of the vacuum sealing related to the clean horizontal assembly method or development of cavities welded a helium vessel in the KEK/JAERI joint project, a converter section of niobium material to stainless steel is required. From these requirements we need to develop the converter. We have tried a HIP bonding method between niobium materials and stainless steel or copper material. It was made clear that the technology could offer an enough bonding strength even higher than niobium tensile strength in the joined surface between niobium and stainless steel or copper. (author)

  6. XPS and SEM studies of chromium oxide films chemically formed on stainless steel 316 L

    International Nuclear Information System (INIS)

    Stefanov, P.; Marinova, T.

    2000-01-01

    The structure and composition of chromium oxide films formed on stainless steel by immersion in a chromium electrolyte have been studied by SEM and XPS. Cr 2 O 3 crystallites in the range 30-150 nm are fully developed and cover the whole surface. The chemical composition in the depth and the thickness of the oxide layer have been determined by XPS sputter profiles. The oxide film can be described within the framework of a double layer consisting of a thin outer hydrated layer and an inner layer of Cr 2 O 3 . (orig.)

  7. Properties of high temperature low cycle fatigue in austenitic stainless steel

    International Nuclear Information System (INIS)

    Kim, D. H.; Han, C. H.; Ryu, W. S.

    2002-01-01

    Tensile and fatigue tests were conducted at R. T. and 300 .deg. C for type 304 and 316 stainless steel. Tensile strength and elongation decreased and fatigue life increased with temperature for both type 304 and 316 stainless steel. Dislocation structures were mixed with cell and planar at R. T. and 300 .deg. C for both type 304 and 316 stainless steel. Strain induced martensite of type 316 stainless steel was less than that of type 304 stainless steel and decreased with temperature. It is considered that strain induced martensite is an important factor to increase fatigue life at 300 .deg. C

  8. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE presen...

  9. Environment-Assisted Cracking in Custom 465 Stainless Steel

    Science.gov (United States)

    Lee, E. U.; Goswami, R.; Jones, M.; Vasudevan, A. K.

    2011-02-01

    The influence of cold work and aging on the environment-assisted cracking (EAC) behavior and mechanical properties of Custom 465 stainless steel (SS) was studied. Four sets of specimens were made and tested. All specimens were initially solution annealed, rapidly cooled, and refrigerated (SAR condition). The first specimen set was steel in the SAR condition. The second specimen set was aged to the H1000 condition. The third specimen set was 60 pct cold worked, and the fourth specimen set was 60 pct cold worked and aged at temperatures ranging from 755 K to 825 K (482 °C to 552 °C) for 4 hours in air. The specimens were subsequently subjected to EAC and mechanical testing. The EAC testing was conducted, using the rising step load (RSL) technique, in aqueous solutions of NaCl of pH 7.3 with concentrations ranging from 0.0035 to 3.5 pct at room temperature. The microstructure, dislocation substructure, and crack paths, resulting from the cold work, aging, or subsequent EAC testing, were examined by optical microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The aging of the cold-worked specimens induced carbide precipitation within the martensite lath, but not at the lath or packet boundaries. In the aged specimens, as aging temperature rose, the threshold stress intensity for EAC (KIEAC), elongation, and fracture toughness increased, but the strength and hardness decreased. The KIEAC also decreased with increasing yield strength and NaCl concentration. In the SAR and H1000 specimens, the EAC propagated along the prior austenite grain boundary, while in the cold-worked and cold-worked and aged specimens, the EAC propagated along the martensite lath, and its packet and prior austenite grain boundaries. The controlling mechanism for the observed EAC was identified to be hydrogen embrittlement.

  10. Effect of shot peening on metastable austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fargas, G., E-mail: gemma.fargas@upc.edu [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Roa, J.J.; Mateo, A. [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain)

    2015-08-12

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor.

  11. The effect of low dose rate irradiation on the swelling of 12% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Allen, T. R.

    1999-01-01

    In pressurized water reactors (PWRs), stainless steel components are irradiated at temperatures that may reach 400 C due to gamma heating. If large amounts of swelling (>10%) occur in these reactor internals, significant swelling related embrittlement may occur. Although fast reactor studies indicate that swelling should be insignificant at PWR temperatures, the low dose rate conditions experienced by PWR components may possibly lead to significant swelling. To address these issues, JNC and ANL have collaborated to analyze swelling in 316 stainless steel, irradiated in the EBR-II reactor at temperatures from 376-444 C, at dose rates between 4.9 x 10 -8 and 5.8 x 10 -7 dpa/s, and to doses of 56 dpa. For these irradiation conditions, the swelling decreases markedly at temperatures less than approximately 386 C, with the extrapolated swelling at 100 dpa being around 3%. For temperatures greater than 386 C, the swelling extrapolated to 100 dpa is around 9%. For a factor of two difference in dose rate, no statistically significant effect of dose rate on swelling was seen. For the range of dose rates analyzed, the swelling measurements do not support significant (>10%) swelling of 316 stainless steel in PWRs

  12. Joining dissimilar stainless steels for pressure vessel components

    International Nuclear Information System (INIS)

    Zheng Sun; Huai-Yue Han

    1994-01-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCrl3Ni4Mo) and AISI 347, respectively. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. Based on the weldability tests, a welding procedure - tungsten inert gas (TIG) welding for root passes with HNiCrMo-2B wire followed by manual metal arc (MMA) welding using coated electrode ENiCrFe-3B - was developed and a PWHT at 600 deg C/2h was recommended. Furthermore, the welding of tube/tube joints between these dissimilar steels is described. (21 refs., 11 figs., 14 tabs.)

  13. Properties of super stainless steels for orthodontic applications.

    Science.gov (United States)

    Oh, Keun-Taek; Kim, Young-Sik; Park, Yong-Soo; Kim, Kyoung-Nam

    2004-05-15

    Orthodontic stainless-steel appliances are considered to be corrosion resistant, but localized corrosion can occur in the oral cavity. This study was undertaken to evaluate the properties of super stainless steels in orthodontic applications. Accordingly, the metallurgical properties, mechanical properties, corrosion resistance, amount of the released nickel, cytotoxicity, and characteristics of the passive film were investigated. Corrosion resistances of the specimens were high and in the following order: super austenitic stainless steel (SR-50A) > super ferritic stainless steel (SFSS) = super duplex stainless steel (SR-6DX) > 316L SS > super martensitic stainless steel (SR-3Mo) in artificial saliva, 37 degrees C. At 500 mV (SCE), current densities of SR-50A, SFSS, SR-6DX, 316L SS, and SR-3Mo were 5.96 microA/cm(2), 20.3 microA/cm(2), 31.9 microA/cm(2), 805 microA/cm(2), and 5.36 mA/cm(2), respectively. Open circuit potentials of SR-50A, 316L SS, SR-6DX, SR-3Mo, and SFSS were - 0.2, - 0.22, - 0.24, - 0.43, and - 0.46 V (SCE), respectively. SR-50A, SFSS, and SR-6DX released below 3 ng/ml nickel for 8 weeks, and increased a little with immersion time, and 316L SS released about 3.5 ng/ml nickel, but SR-3Mo released a large amount of nickel, which increased with immersion time. The study demonstrated that SR-50A, SR-6DX, and SFSS have high corrosion resistance and mild or no cytotoxicity, due to the passive film enhanced by synergistic effect of Mo + N or by high addition effect of Cr + W. All super stainless steels showed very low cytotoxicity regardless of their nickel contents, although SR-3Mo was found to be relatively cytotoxic. From these studies, these steels are considered suitable for orthodontic applications. Copyright 2004 Wiley Periodicals, Inc.

  14. Study of Cold Coiling Spring Steel on Microstructure and Cold Forming Performance

    Science.gov (United States)

    Jiang, Y.; Liang, Y. L.; Ming, Y.; Zhao, F.

    2017-09-01

    Medium-carbon cold-coiling locomotive spring steels were treated by a novel Q-P-T (quenching-partitioning-tempering) process. Scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD) were used to characterize the relevant parameters of the steel. Results show that the microstructure of tested steel treated by Q-P-T process is a complex microstructures composed of martensite, bainite and retained austenite. The volume fraction of retained austenite (wt.%) is up to 31%. After pre-deforming and tempering again at 310°C, the plasticity of samples treated by Q-P-T process is still well. Fracture images show that the Q-P-T samples are ductile fracture. It is attributed to the higher volume fraction of the retained austenite and the interactions between the multi-phases in Q-P-T processed sample.

  15. Arc brazing of austenitic stainless steel to similar and dissimilar metals

    Science.gov (United States)

    Moschini, Jamie Ian

    There is a desire within both the stainless steel and automotive industries to introduce stainless steel into safety critical areas such as the crumple zone of modem cars as a replacement for low carbon mild steel. The two main reasons for this are stainless steel's corrosion resistance and its higher strength compared with mild steel. It has been anticipated that the easiest way to introduce stainless steel into the automotive industry would be to incorporate it into the existing design. The main obstacle to be overcome before this can take place is therefore how to join the stainless steel to the rest of the car body. In recent times arc brazil g has been suggested as a joining technique which will eliminate many of the problems associated with fusion welding of zinc coated mild steel to stainless steel.Similar and dissimilar parent material arc brazed joints were manufactured using three copper based filler materials and three shielding gases. The joints were tested in terms of tensile strength, impact toughness and fatigue properties. It was found that similar parent material stainless steel joints could be produced with a 0.2% proof stress in excess of the parent material and associated problems such as Liquid Metal Embrittlement were not experienced. Dissimilar parent material joints were manufactured with an ultimate tensile strength in excess of that of mild steel although during fatigue testing evidence of Liquid Metal Embrittlement was seen lowering the mean fatigue load.At the interface of the braze and stainless steel in the similar material butt joints manufactured using short circuit transfer, copper appeared to penetrate the grain boundaries of the stainless steel without embrittling the parent material. Further microscopic investigation of the interface showed that the penetration could be described by the model proposed by Mullins. However, when dissimilar metal butt joints were manufactured using spray arc transfer, penetration of copper into the

  16. The occurrence of an ordered fcc phase in neutron irradiated M316 stainless steel

    International Nuclear Information System (INIS)

    Cawthorne, C.; Brown, C.

    1977-01-01

    A small precipitate giving a superlattice type diffraction pattern has been observed in M316 type stainless steel irradiated in the Dounreay Fast Reactor. The precipitate was observed in cold worked and solution treated samples which were unstressed and irradiated below 540 0 C, but not in those irradiated above this temperature or in the stressed samples. (B.D.)

  17. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    Directory of Open Access Journals (Sweden)

    Bibo Yao

    2016-03-01

    Full Text Available Powder metallurgy (P/M technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  18. Rapid heating tensile tests of high-energy-rate-forged 316L stainless steel containing internal helium from radioactive decay of absorbed tritium

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1990-01-01

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. This austenitic stainless steel is frequently used in the high-energy-rate-forged (HERF) metallurgical condition to take advantage of increased strength produced by cold work introduced by this process. Proper design of tritium-handling equipment will require an understanding of how helium-3, the product of radioactive decay of tritium, affects mechanical properties. This report describes results of elevated-temperature tensile testing of HERF 316L stainless steel specimens containing helium concentrations of 171 (calculated) atomic parts per million (appm). Results are compared with those reported previously for specimens containing 0 and 94 (measured) appm helium

  19. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, C.; Basseguy, R.; Etcheverry, L.; Bergel, A. [Laboratoire de Genie Chimique, CNRS-INPT, Toulouse Cedex (France); Mollica, A. [CNR-ISMAR, Genoa (Italy); Feron, D. [SCCME, CEA Saclay, Gif-sur-Yvette (France)

    2007-12-01

    Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cathode progressively acquired effective catalytic properties. The maximal power density produced of 4 mW m{sup -2} was lower than those reported previously with marine MFC using graphite electrodes. Decoupling anode and cathode showed that the cathode suffered practical problems related to implementation in the sea, which may found easy technical solutions. A laboratory fuel cell based on the same principle demonstrated that the biofilm-covered stainless steel cathode was able to supply current density up to 140 mA m{sup -2} at +0.05 V versus Ag/AgCl. The power density of 23 mW m{sup -2} was in this case limited by the anode. These first tests presented the biofilm-covered stainless steel cathodes as very promising candidates to be implemented in marine MFC. The suitability of stainless steel as anode has to be further investigated. (author)

  20. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Ibrahim [Texas A& M Engineering Experiment Station, College Station, TX (United States); Arroyave, Raymundo [Texas A& M Engineering Experiment Station, College Station, TX (United States)

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina-forming

  1. Role of twinning and transformation in hydrogen embrittlement of austenitic stainless steels

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1977-01-01

    Internal hydrogen embrittlement may be viewed as an extreme form of environmental embrittlement that arises following prolonged exposure to a source of hydrogen. Smooth bar tensile specimens of three stainless steels saturated with deuterium (approximately 200 mol D 2 /m 3 ) were pulled to failure in air at 200 to 400 0 K or in liquid nitrogen at 78 0 K. In Type 304L stainless steel and Tenelon ductility losses are a maximum around 200 to 273 0 K; Type 310 stainless steel is not embrittled at this hydrogen concentration. A distinct change in fracture mode accompanies hydrogen embrittlement, with fracture proceeding along coherent boundaries of pre-existing annealing twins. This fracture path is observed in Tenelon at 78 0 K even when hydrogen is absent. There is also a change in fracture appearance in specimens with no prior exposure to hydrogen if they are pulled to failure in high-pressure hydrogen. The fracture path is not identifiable, however. Magnetic response measurements and changes in the stress-strain curves show that hydrogen suppresses formation of strain-induced α'-martensite at 198 0 K in both Type 304L stainless steel and Tenelon, but there is little effect in Type 304L stainless at 273 0 K

  2. Laser heat treatment of welds for various stainless steels

    Science.gov (United States)

    Dontu, O.; Ganatsios, S.; Alexandrescu, N.; Predescu, C.

    2008-03-01

    The paper presents a study concerning the post - weld heat treatment of a duplex stainless steel. Welded joint samples were surface - treated using the same laser source adopted during welding in order to counterbalance the excess of ferrite formed in the welding process.

  3. Stress corrosion cracking of highly irradiated 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko; Nakajima, Nobuo; Furutani, Gen [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Mechanical property tests, grain boundary (GB) composition analysis and slow strain rate test (SSRT) in simulated PWR primary water changing dissolved hydrogen (DH) and dissolved oxygen (DO) content were carried out on cold-worked (CW) 316 stainless steels which were irradiated to 1-8x10{sup 26} n/m{sup 2} (E>0.1 MeV) in a Japanese PWR in order to evaluate irradiation-assisted stress corrosion cracking (IASCC) susceptibility. Highly irradiated stainless steels were susceptible to intergranular stress corrosion cracking (IGSCC) in both hydrogenated water and oxygenated water and to intergranular cracking in inert gas atmosphere. IASCC susceptibility increased with increasing DH content (0-45 ccH{sub 2}/kgH{sub 2}O). Hydrogen content of the section containing fracture surface was higher than that of the section far from fracture surface. These results suggest that hydrogen would have an important role for IASCC. While mechanical property was saturated, GB segregation and IASCC susceptibility increased with an increase in fluence, suggesting that GB segregation would have a dominant role for an increase in IASCC susceptibility at this high fluence region. (author)

  4. Failures on stainless steel components

    International Nuclear Information System (INIS)

    Haenninen, H.

    1994-01-01

    Economic losses due to failure mainly by corrosion in process and nuclear industries are considered. In these industries the characteristics of different forms of corrosion and their economic effects are fairly well known and, especially, in nuclear industry the assessment of corrosion related costs has been comprehensive. In both industries the economic losses resulting from environmentally enhanced cracking of stainless steel components and the accompanying failures and outages have been considerable, owing as much to the frequency as the unpredictability of such occurrences. (orig.)

  5. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo,Carlos Eduardo; Tschiptschin,André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  6. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo, Carlos Eduardo; Tschiptschin, André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% carbon super...

  7. Corrosion behaviour of high manganese austenitic stainless steels: positive and negative aspects

    International Nuclear Information System (INIS)

    Raja, V.S.

    1999-01-01

    Stainless steel 304 has found use as a most versatile engineering material in many industrial applications. Recently, the Indian industries have developed high Mn stainless steels with low C and Ni contents and simultaneously introduced N and Cu in the system. Composition of some of the alloys which are prevalent in the market are given. Individually, the effect of Ni, C, Mn, N and Cu on various forms of corrosion is reasonably understood. However, it will be worthwhile to review the response of these alloys, containing all these elements, towards various forms of corrosion. The objective of this paper is preciously to do this

  8. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    International Nuclear Information System (INIS)

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-01-01

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: ► FSW produced sound welds between st37 low carbon steel and 304 stainless steel. ► The SZ of the st37 steel contained some products of allotropic transformation. ► The material in the SZ of the 304 steel showed features of dynamic recrystallization. ► The finer microstructure in the SZ increased the hardness and tensile strength.

  9. Martensitic Stainless Steels Low-temperature Nitriding: Dependence of Substrate Composition

    OpenAIRE

    Ferreira, Lauro Mariano; Brunatto, Silvio Francisco; Cardoso, Rodrigo Perito

    2015-01-01

    Low-temperature plasma assisted nitriding is a very promising technique to improve surface mechanical properties of stainless steels, keeping unaltered or even improving their surface corrosion resistance. During treatment, nitrogen diffuses into the steel surface, increasing its hardness and wear resistance. In the present work the nitriding process of different martensitic stainless steels was studied. As-quenched AISI 410, 410NiMo, 416 and 420 stainless steel samples were plasma nitrided a...

  10. Corrosion behaviour of dissimilar welds between ferritic-martensitic stainless steel and austenitic stainless steel from secondary circuit of CANDU NPP

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2016-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. The principal criteria for selecting a stainless steel usually is resistance to corrosion, and white most consideration is given to the corrosion resistance of the base metal, additional consideration should be given to the weld metal and to the base metal immediately adjacent to the weld zone. Our experiments were performed in chloride environmental on two types of samples: non-welded (410 or W 1.4006 ferritic-martensitic steel and 304L or W 1.4307 austenitic stainless steel) and dissimilar welds (dissimilar metal welds: joints between 410 ferritic-martensitic and 304L austenitic stainless steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and optic microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and ferritic-martensitic steel in solutions containing chloride ions. It was evaluated the corrosion rates of samples (welded and non-welded) by electrochemical methods. (authors)

  11. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  12. Effect of chemistry variations on the short-term rupture life and tensile properties of 20% cold-worked type 316 stainless steel

    International Nuclear Information System (INIS)

    Duncan, D.R.; Paxton, M.M.

    1977-01-01

    The effects of compositional variations on the rupture life of 20% cold-worked Type 316 stainless steel were investigated at 19-ksi (131-MPa) uniaxial tensile stress and at 1400 0 F (1033 K). Forty-nine different alloys were studied, with compositional variations from nominal in carbon, nitrogen, phosphorus, sulfur, boron, manganese, copper, silicon, molybdenum, cobalt, chromium and nickel. This alloy and cold-work level represents the duct and fuel cladding material choice for the first four core loadings of the Fast Flux Test Facility, a key element in the Liquid-Metal Fast Breeder Reactor Program. Tensile properties of four of the alloys were studied at temperatures from room temperature to 1600 0 F (1144 K). Boron, nitrogen, and molybdenum plus silicon additions significantly increased rupture life, while chromium and carbon additions decreased rupture life. Molybdenum plus silicon additions increased yield and ultimate strength and ductility at 1200 0 F (922 K) and below

  13. Rainbow fringes around crevice corrosion formed on stainless steel AISI 316 after ennoblement in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Zhang, X. [College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao (China); Wang, J. [College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao (China); State Key Laboratory for Corrosion and Protection, Shenyang (China)

    2009-10-15

    The crevice corrosion occurrence probability of stainless steel (SS) AISI 316 was increased under ennoblement condition due to chemically added H{sub 2}O{sub 2} into seawater. The H{sub 2}O{sub 2} was used to simulate the important factor causing ennoblement in natural marine biofilm. Morphology of the crevice corrosion was observed using an incident-light source microscopy. Some interesting ''rainbow'' fringes were observed around micro-crevices. The mechanism was discussed from the ions diffusion and potential distribution during the crevice formation. This result shows that under ennoblement condition the colored fringe is a distinct characteristic of the morphology of localized corrosion for stainless steel. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  15. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  16. Phase Transformation in Cast Superaustenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  17. Corrosion in lithium-stainless steel thermal-convection systems

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Selle, J.E.

    1980-01-01

    The corrosion of types 304L and 316 austenitic stainless steel by flowing lithium was studied in thermal-convection loops operated at 500 to 650 0 C. Both weight and compositional changes were measured on specimens distributed throughout each loop and were combined with metallographic examinations to evaluate the corrosion processes. The corrosion rate and mass transfer characteristics did not significantly differ between the two austenitic stainless steels. Addition of 500 or 1700 wt ppM N to purified lithium did not increase the dissolution rate or change the attack mode of type 316 stainless steel. Adding 5 wt % Al to the lithium reduced the weight loss of this steel by a factor of 5 relative to a pure lithium-thermal-convection loop

  18. Simplified Estimation of Tritium Inventory in Stainless Steel

    International Nuclear Information System (INIS)

    Willms, R. Scott

    2005-01-01

    An important part of tritium facility waste management is estimating the residual tritium inventory in stainless steel. This was needed as part of the decontamination and decommissioning associated with the Tritium Systems Test Assembly at Los Alamos National Laboratory. In particular, the disposal path for three, large tanks would vary substantially depending on the tritium inventory in the stainless steel walls. For this purpose the time-dependant diffusion equation was solved using previously measured parameters. These results were compared to previous work that measured the tritium inventory in the stainless steel wall of a 50-L tritium container. Good agreement was observed. These results are reduced to a simple algebraic equation that can readily be used to estimate tritium inventories in room temperature stainless steel based on tritium partial pressure and exposure time. Results are available for both constant partial pressure exposures and for varying partial pressures. Movies of the time dependant results were prepared which are particularly helpful for interpreting results and drawing conclusions

  19. Biomonitoring of genotoxic exposure among stainless steel welders

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Boisen, T; Christensen, J M

    1992-01-01

    A biosurvey in the Danish metal industry measured the genotoxic exposure from stainless steel welding. The study comprised measurements of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), unscheduled DNA synthesis (UDS) in peripheral lymphocytes and serum immunoglobulin G. Environm......A biosurvey in the Danish metal industry measured the genotoxic exposure from stainless steel welding. The study comprised measurements of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), unscheduled DNA synthesis (UDS) in peripheral lymphocytes and serum immunoglobulin G....... A higher frequency of chromosomal aberrations, classified as translocations, double minutes, exchanges and rings, was observed in stainless steel welders than in non-welders. SCE was lower in welders working with both MMA and TIG welding than in reference persons. N-Acetoxy-N-acetylaminofluorene (NA...... lymphocytes in exposed persons compared with non-exposed are suggested. MMA welding gave the highest exposure to chromium, an increased number of chromosomal aberrations and a decrease in SCE when compared with TIG welding. Consequently improvements in the occupational practice of stainless steel welding...

  20. Effect of helium ion bombardment on hydrogen behaviour in stainless steel

    International Nuclear Information System (INIS)

    Guseva, M.I.; Stolyarova, V.G.; Gorbatov, E.A.

    1987-01-01

    The effect of helium ion bombardment on hydrogen behaviour in 12Kh18N10T stainless steel is investigated. Helium and hydrogen ion bombardment was conducted in the ILU-3 ion accelerator; the fluence and energy made up 10 16 -5x10 17 cm -2 , 30 keV and 10 16 -5x10 18 cm -2 , 10 keV respectively. The method of recoil nuclei was used for determination of helium and hydrogen content. Successive implantation of helium and hydrogen ions into 12Kh18N10T stainless steel results in hydrogen capture by defects formed by helium ions

  1. Strengthening of stainless steel weldment by high temperature precipitation

    OpenAIRE

    Sergio Neves Monteiro; Lucio Fabio Cassiano Nascimento; Édio Pereira Lima, Jr.; Fernanda Santos da Luz; Eduardo Sousa Lima; Fábio de Oliveira Braga

    2017-01-01

    The mechanical behavior and the strengthening mechanism of stainless steel welded joints at 600 °C have been investigated. The welds were composed of AISI 304 stainless steel, as base metal, and niobium containing AISI 347 stainless steel, as weld metal. The investigation was conducted by means of creep tests. The welded specimens were subjected to both high temperature (600 °C) and long periods (up to 2000 h) under constant load, and both mechanical properties and microstructural changes in ...

  2. Structure and properties of the Stainless steel AISI 316 nitrided with microwave plasma

    International Nuclear Information System (INIS)

    Becerril R, F.

    1999-01-01

    In this work were presented the results obtained by nitridation on stainless steel AISI 316 using a plasma generated through a microwave discharge with an external magnetic field using several moistures hydrogen / nitrogen to form a plasma. The purpose of nitridation was to increase the surface hardness of stainless steel through a phase formation knew as γN which has been reported that produces such effect without affect the corrosion resistance proper of this material. (Author)

  3. Chemical decontaminating method for stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1990-01-01

    Radioactive metal wastes comprising passivated stainless steels are chemically decontaminated to such a radioactivity level as that of usual wastes. The present invention for chemically decontaminating stainless steels comprises a first step of immersing decontaminates into a sulfuric acid solution and a second step of immersing them into an aqueous solution prepared by adding oxidative metal salts to sulfuric acid, in which a portion of the surface of stainless steels as decontaminates are chemically ground to partially expose substrate materials and then the above-mentioned decontamination steps are applied. More than 90% of radioactive materials are removed in this method by the dissolution of the exposed substrate materials and peeling of cruds secured to the surface of the materials upon dissolution. This method is applicable to decontamination of articles having complicate shapes, can reduce the amount of secondary wastes after decontamination and also remarkably shorten the time required for decontamination. (T.M.)

  4. Identification of the mechanism that confers superhydrophobicity on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Ana M.; Llorca-Isern, Nuria; Rius-Ayra, Oriol

    2016-01-15

    This study develops a rapid method to confer superhydrophobicity on 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. The highest contact angle (approaching 173°) was obtained after forming hierarchical structures with a non-aqueous electrolyte by an electrolytic process. Our goal was to induce superhydrophobicity directly on 316L stainless steel substrates and to establish which molecules cause the effect. The superhydrophobic behaviour is analysed by contact angle measurements, scanning electron microscopy (SEM), IR spectroscopy and atomic force microscopy (AFM). The growth mechanism is analysed using FE-SEM, TOF-SIMS and XPS in order to determine the molecules involved in the reaction and the growth. The TOF-SIMS analysis revealed that the Ni{sup 2+} ions react with lauric acid to create an ester on the stainless steel surface. - Highlights: • This study develops a rapid and facile approach to impart superhydrophobicity properties to 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. Surface character changes from superhydrophilicity to superhydrophobicity. • This process changes the surface character from superhydrophilicity to superhydrophobicity. • The process based on electrolysis of a nickel salt in lauric acid provides superhydrophobic behaviour in 316L stainless steel. • The growth mechanism is proposed as a mode island (Volmert- Weber mode). • TOF-SIMS and XPS provided the identification of the molecules involved in the surface modification reaction on AISI 316L inducing superhydrophobicity.

  5. Effect of ageing on the microstructural stability of cold-worked titanium-modified 15Cr-15Ni-2.5Mo austenitic stainless steel

    International Nuclear Information System (INIS)

    Venkadesan, S.; Bhaduri, A.K.; Rodriguez, P.; Padmanabhan, K.A.

    1992-01-01

    A titanium-modified 15Cr-15Ni-2.5Mo austenitic stainless steel conforming to ASTM A 771 (UNS S 38660), commercially called Alloy D9, is being indigenously developed for application as material for the fuel clad and the hexagonal wrapper for fuel subassemblies of the Prototype Fast Breeder Reactor. As this material would be used in the cold-worked condition and would be subjected to prolonged exposure to elevated service temperatures, the effect of ageing on the microstructural stability was studied as a function of the amount of cold work. The material was given 2.5-30% prior cold work and then aged at temperatures in the range 923 to 1173 K for times ranging from 0.25 to 1000 h. Hardness measurements made before and after ageing were correlated with the Larson-Miller parameter to determine the highest stable prior cold-work level. Optical microscopy was used to study the microstructural changes. The influence of prolonged exposure for two and three years at the operating temperatures of clad and wrapper, on the elevated temperature tensile properties of a 20% prior cold-worked Alloy D9 was also studied through accelerated ageing treatments based on the present parametric approach. (orig.)

  6. Fatigue behavior of Type 316 stainless steel following neutron irradiation inducing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Liu, K.C.

    1980-01-01

    Since a tokamak reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially in the first wall and blanket. There has been limited work on fatigue in irradiated alloys but none on irradiated materials containing significant amounts of irradiation-induced helium. To provide scoping data and to study the effects of irradiation on fatigue behavior, 20%-cold-worked type 316 stainless steel from the MFE reference heat was studied

  7. Reliability and performance evaluation of stainless and mild steel ...

    African Journals Online (AJOL)

    Reliability and performance of stainless and mild steel products in methanolic and aqueous sodium chloride media have been investigated. Weight-loss and pre-exposure methods were used. There was a higher rate of weight-loss of mild steels and stainless steels in 1% HCl methanolic solution than in aqueous NaCl ...

  8. Development of nuclear grade stainless steels at KCSSL

    International Nuclear Information System (INIS)

    Balachandran, G.; Dhere, M.; Mahadik, A.; Hinge, N.M.; Balasubramanian, V.

    2011-01-01

    Kalyani Carpenter Special Steels Ltd is an alloy steel plant, where a variety of alloy steel grades are produced for automotive, defence, nuclear and aerospace applications. The plant has developed expertise in processing of several alloy steel grades of superior quality that meets stringent specifications. Primary steel is processed through a combination of electric arc furnace, ladle furnace and vacuum degassing where stringent control over dephosphorisation, desulphurization, deoxidation is effected to get a refined high quality steel. The molten steel is cast through continuous casting of slabs or ingot casting. In grades specific to nuclear application, the primary cast products are further subjected to electroslag remelting to achieve further freedom from inclusions and to achieve a favourable solidification grain structure, which ultimately improve the hot workability of the alloy steel. Appropriate choice of slag and operating parameters are needed for realising the required ingot quality. The present study would examine the processing and quality aspects of some important grades of steels used in nuclear industry namely ferritic 9Cr-1Mo steel, martensitic stainless steels 403, 410, precipitation hardenable 17-4 PH stainless steel and austenitic 321, 316LN stainless steel, which were made and supplied for applications to Indian nuclear industry. The expertise developed in processing the steels in terms of melting, heat treatment and their relationship to structural features and mechanical properties would be highlighted. (author)

  9. Stainless steel in contact with food and bevarage

    Directory of Open Access Journals (Sweden)

    Sveto Cvetkovski

    2012-12-01

    Full Text Available Stainless steels are probably the most important materials in the food and beverage industries. The main reason for such broad implementation of stainless steel in contact with food are excellent properties which they possess such as corrosion resistance, resistance to high and low temperatures, very good mechanical and physical properties, aesthetic appeal, inertness of surface, durability, easy cleaning and recycling. Low thermal conductivity of these steels produces steeper temperature coefficient provoking an increased distortion, shrinkage and stresses compared with carbon steel.

  10. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  11. Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel

    Science.gov (United States)

    Prabha, B.; Sundaramoorthy, P.; Suresh, S.; Manimozhi, S.; Ravishankar, B.

    2009-12-01

    Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.

  12. Increased recombination of CH3 radicals on stainless steel

    International Nuclear Information System (INIS)

    Gorodetsky, A.E.; Zalavutdinov, R.Kh.; Zakharov, A.P.; Vnukov, S.P.; Varshavskaya, I.G.; Makhankov, A.N.; Mazul, I.V.; Federici, G.

    2005-01-01

    By using a so-called 'stream technique', which consists of flowing gas in laminar regime along a quartz tube, we determine that CH 3 radicals are completely removed from the pumped mixture (CH 4 /C X H Y /H 2 /H/CH 3 ) after several hundred collisions with the inner surface of a stainless steel insert (T = 380-470 K). The methyl sticking coefficient decreased to ∼10 -6 and the recombination coefficient increased up to ∼0.01 at impingement with the metal surface. After passing through the heated zone no hydrocarbon deposition occurred at 300 K. However, unsaturated hydrocarbons, which formed in discharge zone and appeared as a result of interaction of radicals with stainless steel, condensed in a liquid phase at a temperature of ∼130 K and partial pressure of 0.01-0.1 Pa. Liquid films underwent partial polymerization and formed island deposits, which were stable at 300 K

  13. Analysis of creep data from MOTA irradiation of 20% cold worked 316 stainless steel

    International Nuclear Information System (INIS)

    Garner, F.A.; Toloczko, M.B.; Puigh, R.J.

    1992-01-01

    The objective of this study is to provide insight into the relationship between void swelling, irradiation creep and applied stress. This insight will be used to develop irradiation creep correlations for fusion applications. Analysis of creep data for 20% cold worked 316 stainless steel irradiated in FFTF/MOTA demonstrates that creep-swelling coupling coefficient is not a strong function of temperature and can be assumed to be -0.6 x 10 -2 MPa -1 in the range 400-600 C. It appears, however, that the creep compliance B o is a moderately strong function of temperature and alloy composition. The latter dependency arises primarily because derived values of B o unavoidably incorporate precipitation-related strains that cannot be easily separated from contributions arising from true creep. It has also been found that at ∼550-600 C there is an upper limit on the total diametral strain rate at 0.33%/dpa. In contrast to the conclusion of an earlier experiment, this limitation does not arise initially from the total disappearance of creep, however. The creep rate first increases with the onset of swelling and then diminishes as the swelling rate increases, disappearing only when the swelling rate reaches its steady state value

  14. Effects of microstructure on ultrasonic examination of stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Reimann, K.J.

    1976-01-01

    Ultrasonic inspection of cast stainless steel components or stainless steel welds is difficult, and the results obtained are hard to interpret. The present study describes the effects of stainless steel microstructure on ultrasonic test results. Welded coupons, 2.5 and 5.0 cm thick, were fabricated from Type 304 stainless steel, with Type 308 stainless steel as the weld material. Metallography of the base material shows grain sizes of 15 and 80 μm, and dendrites aligned from the top to the bottom surface in cast material. X-ray diffraction and ultrasonic velocity measurements indicate a random crystal orientation in the base material, but the cast sample had aligned dendrites. The weld material exhibits a dendritic structure with a preferred (100) direction perpendicular to the weld pass. Spectral analysis of ultrasonic broad-band signals through the base materials shows drastic attenuation of higher frequencies with increasing grain size (Rayleigh scattering). Annealing and recrystallization increases the ultrasonic attenuation and produces carbide precipitation at grain boundaries. The microstructural differences of the base metal, heat-affected zone, and weld metal affect the amplitude of ultrasonic reflections from artificial flaws in these zones. Data obtained from two samples of different grain sizes indicate that grain size has little effect when a 1-MHz transducer is used. When going from a 15 to an 80-μm crystalline structure, a 5-MHz unit suffers a 30-dB attenuation in the detection of a 1.2 mm deep notch. The anisotropy of the dendritic structure in stainless steel renewed the interest in the effect of shear-wave polarization. In the (110) crystallographic orientation of stainless steel, two modes of shear waves can be generated, which have velocities differing by a factor of two. This effect may be helpful in ''tuning'' of shear waves by polarization to obtain better penetration in large grain materials such as welds

  15. Behaviour of stainless steel in natural seawater

    OpenAIRE

    Compere, Chantal; Le Bozec, Nathalie

    1997-01-01

    In this paper, investigations performed in natural and artificial seawater on stainless steels will be presented. They concerned studies on: biofilm formation, passive layers composition, electrochemical behaviour, localised corrosion and the evolution of these different parameters as a function of ageing time. According to literature surveys, the different aspects will be discussed. Some conclusions will be drawn concerning the actual knowledge on the behaviour of stainless steels in seawater.

  16. NDE of explosion welded copper stainless steel first wall mock-up

    International Nuclear Information System (INIS)

    Taehtinen, S.; Kauppinen, P.; Jeskanen, H.; Lahdenperae, K.; Ehrnsten, U.

    1997-04-01

    The study showed that reflection type C-mode scanning acoustic microscope (C-SAM) and internal ultrasonic inspection (IRIS) equipment can be applied for ultrasonic examination of copper stainless steel compound structures of ITER first wall mock-ups. Explosive welding can be applied to manufacture fully bonded copper stainless steel compound plates. However, explosives can be applied only for mechanical tightening of stainless steel cooling tubes within copper plate. If metallurgical bonding between stainless steel tubes and copper plate is required Hot Isostatic Pressing (HIP) method can be applied. (orig.)

  17. Strengthening of stainless steel weldment by high temperature precipitation

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2017-10-01

    Full Text Available The mechanical behavior and the strengthening mechanism of stainless steel welded joints at 600 °C have been investigated. The welds were composed of AISI 304 stainless steel, as base metal, and niobium containing AISI 347 stainless steel, as weld metal. The investigation was conducted by means of creep tests. The welded specimens were subjected to both high temperature (600 °C and long periods (up to 2000 h under constant load, and both mechanical properties and microstructural changes in the material were monitored. It was found that the exposure of the material at 600 °C under load contributes to a strengthening effect on the weld. The phenomenon might be correlated with an accelerated process of second phase precipitation hardening. Keywords: Stainless steel, Weld, AISI 304, Precipitation hardening

  18. Experimental determination of the constitutive behaviour of a metastable austenitic stainless steel

    NARCIS (Netherlands)

    Post, J.; Nolles, H.; Datta, K.; Datta, K.; Geijselaers, Hubertus J.M.

    2008-01-01

    This article presents measurements to describe the constitutive behaviour of a semi-austenitic precipitation hardenable stainless steel called Sandvik Nanoflex™, during metal forming and hardening. The material is metastable, which causes strain-induced transformation during forming. Depending on

  19. Damage evolution and failure mechanisms in additively manufactured stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, Holly D., E-mail: carlton4@llnl.gov [Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Haboub, Abdel [Lincoln University, Life and Physical Sciences Department, 820 Chestnut St, Jefferson City, MO 65101 (United States); Gallegos, Gilbert F. [Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Parkinson, Dilworth Y.; MacDowell, Alastair A. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2016-01-10

    In situ tensile tests were performed on additively manufactured austenitic stainless steel to track damage evolution within the material. For these experiments Synchrotron Radiation micro-Tomography was used to measure three-dimensional pore volume, distribution, and morphology in stainless steel at the micrometer length-scale while tensile loading was applied. The results showed that porosity distribution played a larger role in affecting the fracture mechanisms than measured bulk density. Specifically, additively manufactured stainless steel specimens with large inhomogeneous void distributions displayed a flaw-dominated failure where cracks were shown to initiate at pre-existing voids, while annealed additively manufactured stainless steel specimens, which contained low porosity and randomly distributed pores, displayed fracture mechanisms that closely resembled wrought metal.

  20. Portable hyperspectral fluorescence imaging system for detection of biofilms on stainless steel surfaces

    Science.gov (United States)

    Jun, Won; Lee, Kangjin; Millner, Patricia; Sharma, Manan; Chao, Kuanglin; Kim, Moon S.

    2008-04-01

    A rapid nondestructive technology is needed to detect bacterial contamination on the surfaces of food processing equipment to reduce public health risks. A portable hyperspectral fluorescence imaging system was used to evaluate potential detection of microbial biofilm on stainless steel typically used in the manufacture of food processing equipment. Stainless steel coupons were immersed in bacterium cultures, such as E. coli, Pseudomonas pertucinogena, Erwinia chrysanthemi, and Listeria innocula. Following a 1-week exposure, biofilm formations were assessed using fluorescence imaging. In addition, the effects on biofilm formation from both tryptic soy broth (TSB) and M9 medium with casamino acids (M9C) were examined. TSB grown cells enhance biofilm production compared with M9C-grown cells. Hyperspectral fluorescence images of the biofilm samples, in response to ultraviolet-A (320 to 400 nm) excitation, were acquired from approximately 416 to 700 nm. Visual evaluation of individual images at emission peak wavelengths in the blue revealed the most contrast between biofilms and stainless steel coupons. Two-band ratios compared with the single-band images increased the contrast between the biofilm forming area and stainless steel coupon surfaces. The 444/588 nm ratio images exhibited the greatest contrast between the biofilm formations and stainless coupon surfaces.

  1. Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Maziasz, P.J.; Stoller, R.E.

    1993-01-01

    Microstructural data on the evolution of the dislocation loop, cavity, and precipitate populations in neutron-irradiated austenitic stainless steels are reviewed in order to estimate the displacement damage levels needed to achieve the 'steady state' condition. The microstructural data can be conveniently divided into two temperature regimes. In the low temperature regime (below about 200 degrees C) the microstructure of austenitic stainless steel is dominated by 'black spot' defect clusters and faulted interstitial dislocation loops. The dose needed to approach saturation of the loop and defect cluster densities is generally on the order of 1 displacement per atom (dpa) in this regime. In the high temperature regime (∼300 to 700 degrees C), cavities, precipitates, loops and network dislocations are all produced during irradiation; doses in excess of 10 dpa are generally required to approach a 'steady state' microstructural condition. Due to complex interactions between the various microstructural components that form during irradiation, a secondary transient regime is typically observed in commercial stainless steels during irradiation at elevated temperatures. This slowly evolving secondary transient may extend to damage levels in excess of 50 dpa in typical 300-series stainless steels, and to >100 dpa in radiation-resistant developmental steels. The detailed evolution of any given microstructural component in the high-temperature regime is sensitive to slight variations in numerous experimental variables, including heat-to-heat composition changes and neutron spectrum

  2. Standard test method for electrochemical critical pitting temperature testing of stainless steels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This test method covers a procedure for the evaluation of the resistance of stainless steel and related alloys to pitting corrosion based on the concept of the determination of a potential independent critical pitting temperature (CPT). 1.2 This test methods applies to wrought and cast products including but not restricted to plate, sheet, tubing, bar, forgings, and welds, (see Note 1). Note 1—Examples of CPT measurements on sheet, plate, tubing, and welded specimens for various stainless steels can be found in Ref (1). See the research reports (Section 14). 1.3 The standard parameters recommended in this test method are suitable for characterizing the CPT of austenitic stainless steels and other related alloys with a corrosion resistance ranging from that corresponding to solution annealed UNS S31600 (Type 316 stainless steel) to solution annealed UNS S31254 (6 % Mo stainless steel). 1.4 This test method may be extended to stainless steels and other alloys related to stainless steel that have a CPT...

  3. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    OpenAIRE

    Prabhu Paulraj; Rajnish Garg

    2015-01-01

    Duplex Stainless Steels (DSS) and Super Duplex Stainless Steel (SDSS) have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic pha...

  4. Advances in stainless steels

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Saibaba, Saroja; Sivaprasad, P.V.; Shankar, P.

    2010-01-01

    This book covers a broad spectrum of topics spanning the entire life cycle of stainless steel-from alloy design and characterization to engineering design, fabrication, mechanical properties, corrosion, quality assurance of components, in-service performance assessment, life prediction and finally failure analysis of materials and components. The contents provide useful feedback for further developments aimed at effective utilization of this class of materials. The book comprises articles that bring out contemporary developments in stainless steels and is thematically classified into the following sections. 1. Component design, modelling and structural integrity, 2. Manufacturing technology, 3. Property evaluation, 4. Alloy development and applications, 5. NDE methods, 6. Corrosion and surface modification. The book commences with articles on component design and structural integrity, thus opening up the areas of challenge for researchers and academia. The articles in the book relevant to INIS are indexed separately

  5. TiC-Maraging stainless steel composite: microstructure, mechanical and wear properties

    Institute of Scientific and Technical Information of China (English)

    Akhtar Farid; GUO Shiju; FENG Peizhong; Khadijah Ali Shah; Syed Javid Askari

    2006-01-01

    Particulate TiC reinforced 17-4PH and 465 maraging stainless steel matrix composites were processed by conventional powder metallurgy (P/M). TiC-maraging stainless steel composites with theoretical density >97% were produced using conventional P/M. The microstructure, and mechanical and wear properties of the composites were evaluated. The microstructure of the composites consisted of (core-rim structure) spherical and semi-spherical TiC particles depending on the wettability of the matrix with TiC particles. In TiC-maraging stainless steel composites, 465 stainless steel binder phase showed good wettability with TiC particles. Some microcracks appeared in the composites, indicating the presence of tensile stresses in the composites produced during sintering. The typical properties, hardness, and bend strength were reported for the composites. After heat treatment and aging, an increase in hardness was observed. The increase in hardness was attributed to the aging reaction in maraging stainless steel. The specific wear behavior of the composites strongly depends on the content of TiC particles and their interparticle spacing, and on the heat treatment of the maraging stainless steel.

  6. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    Cruz V, J. P.; Vite T, J.; Castillo S, M.; Vite T, M.

    2009-01-01

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  7. Effect of Heat Input on Geometry of Austenitic Stainless Steel Weld Bead on Low Carbon Steel

    Science.gov (United States)

    Saha, Manas Kumar; Hazra, Ritesh; Mondal, Ajit; Das, Santanu

    2018-05-01

    Among different weld cladding processes, gas metal arc welding (GMAW) cladding becomes a cost effective, user friendly, versatile method for protecting the surface of relatively lower grade structural steels from corrosion and/or erosion wear by depositing high grade stainless steels onto them. The quality of cladding largely depends upon the bead geometry of the weldment deposited. Weld bead geometry parameters, like bead width, reinforcement height, depth of penetration, and ratios like reinforcement form factor (RFF) and penetration shape factor (PSF) determine the quality of the weld bead geometry. Various process parameters of gas metal arc welding like heat input, current, voltage, arc travel speed, mode of metal transfer, etc. influence formation of bead geometry. In the current experimental investigation, austenite stainless steel (316) weld beads are formed on low alloy structural steel (E350) by GMAW using 100% CO2 as the shielding gas. Different combinations of current, voltage and arc travel speed are chosen so that heat input increases from 0.35 to 0.75 kJ/mm. Nine number of weld beads are deposited and replicated twice. The observations show that weld bead width increases linearly with increase in heat input, whereas reinforcement height and depth of penetration do not increase with increase in heat input. Regression analysis is done to establish the relationship between heat input and different geometrical parameters of weld bead. The regression models developed agrees well with the experimental data. Within the domain of the present experiment, it is observed that at higher heat input, the weld bead gets wider having little change in penetration and reinforcement; therefore, higher heat input may be recommended for austenitic stainless steel cladding on low alloy steel.

  8. Improvements to the corrosion resistance of stainless steels for fuel cell applications : supplementary report for phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, S.; Li, J.; Liu, P.; Shehata, M.; Kruszewski, J.; Lo, J.; Guertsman, V.Y.; Gu, G.P. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2007-07-15

    This paper reported on a newly developed method of making bipolar electrodes from type 304 stainless steel. Two stainless steels were cast, hot-rolled and heat treated. The microstructures were then examined to determine the chromium carbide formation. Plain and mechanically polished samples were sent to General Motors for conductivity measurements to investigate the thermo-mechanical treatment as a means of improving the contact resistance of stainless steel bipolar plates subject to the operating conditions in a proton-exchange membrane (PEM) fuel cell. The treatment induces precipitation of conducive particles. The surface of the stainless steel is etched so that particles protrude from the surface. When the bipolar plates are stacked with sufficient load, the protruding surface precipitates indent into adjacent graphite electrodes, making direct electrical contact. The most common precipitate is M{sub 23}C{sub 6} carbide. This paper described the carbide precipitation required for electrical conductivity and presented a model for electrical conductance across a bipolar plate. It included a description of inter-particle distance and carbide size; carbide formation in type 304 stainless steels; heat-treatment processing of 304 steel for electrical conductance and desensitization; and the effect of steel composition on carbide growth. The experimental work was outlined in terms of casting, hot rolling, cold rolling, heat treatment, aging treatment for carbide growth, and desensitization treatment. Both alloys that were subjected to the thermo-mechanical treatment in this study showed a uniform distribution of carbide precipitates. Their size varied from very small to about 0.8{mu}m. Scanning electron microscopy (SEM) analysis did not detect a change in particle size and population density of these particles with prolonged annealing at 800 degrees C. 4 refs., 6 tabs., 14 figs.

  9. Plating on stainless steel alloys

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1981-01-01

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate

  10. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless...... steel as base material. The stainless base powders were added different amounts and types of boride and sintered in hydrogen at different temperatures and times in a laboratory furnace. During sintering the outlet gas was analyzed and subsequently related to the obtained microstructure. Thermodynamic...

  11. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part I: screening of doping oxidants

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO3 and WO3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reduction of P2O5 in the glass-ceramic where the P2O5 is to form Li3PO4 nuclei for growth of high expansion crystalline SiO2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.

  12. HIP bonding for the different material between Niobium and Stainless steel

    International Nuclear Information System (INIS)

    Inoue, H.; Saito, K.; Abe, K.; Fujino, T.; Hitomi, N.; Kobayashi, Y.

    2000-01-01

    In the future advanced cryomodule for superconducting RF cavities, a helium vessel made from titanium or stainless steel has to be welded directly to the niobium cavity wall in order to be simple structure. For that, we need a transformer from niobium to titanium or stainless steel. Stainless steel will have many benefits if the reliable bonding to the niobium is developed. We have tested the niobium/stainless steel bonding by HIP (Hot Isostatic Pressing) with the heat shock between 1023K and 2K. The bonding interface was also observed by SEM. These test results will be presented. (author)

  13. High temperature tensile properties of 316 stainless steel implanted with helium

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Yamamoto, Norikazu; Shiraishi, Haruki

    1993-01-01

    Helium embrittlement is one of the problems in structural materials for fusion reactors. Recently, martensitic steels have been developed which have a good resistance to high-temperature helium embrittlement, but the mechanism has not yet been clarified. In this paper, tensile behaviors of helium implanted austenitic stainless steels, which are sensitive to the helium embrittlement, were studied and compared with those of martensitic steels under the same experimental conditions, and the effect of microstructure on helium embrittlement was discussed. Helium was implanted by 300 appm at 573-623 K to miniature tensile speciments of 316 austenitic steels using a cyclotron accelerator. Solution annealed (316SA) and 20% cold worked (316CW) specimens were used. Post-implantation tensile tests were carried out at 573, 873 and 973 K. Yield stress at 573 K increased with the helium implantation in 316SA and 316CW, but the yield stress changes of 316SA at 873 and 973 K were different from that of 316CW. Black-dots were observed in the as-implanted specimen and bubbles were observed in the speciments tensile-tested at 873 and 973 K. Intergranular fracture was observed at only 973 K in both of the 316SA and 316CW specimens. Therefore, cold work did not suppress the high-temperature helium embrittlement under this experimental condition. The difference in the influence of helium on type 316 steel and 9Cr martensitic steels were discussed. Test temperature change of reduction in are showed clearly that helium embrittlement did not occur in 9Cr martensitic steels but occurred in 316 austenitic steels. Fine microstructures of 9Cr martensitic steels should suppress helium embrittlement at high temperatures. (author)

  14. Characterization of thermal aging of duplex stainless steel by SQUID

    International Nuclear Information System (INIS)

    Isobe, Y.; Kamimura, A.; Aoki, K.; Nakayasu, F.

    1995-01-01

    Thermal aging is a growing concern for long-term-aged duplex stainless steel piping in nuclear power plants. Superconducting QUantum Interference Device (SQUID) was used for the detection of thermal aging of SUS329 rolled duplex stainless steel and SCS16 cast duplex stainless steel. It was found that the SQUID output signal pattern in the presence of AC magnetic field applied to the specimen was sensitive to the changes in electromagnetic properties due to thermal aging

  15. Corrosion resistance of stainless steel pipes in soil

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, L.; Camitz, G. [Swerea KIMAB AB, Box 55970, SE-102 16 Stockholm (Sweden); Peultier, J.; Jacques, S.; Baudu, V.; Barrau, F.; Chareyre, B. [Industeel and ArcelorMittal R and D, 56 rue Clemenceau, BP19, FR-71201 le Creusot, Cedex (France); Bergquist, A. [Outokumpu Stainless AB, P.O. Box 74, SE-774 22 Avesta (Sweden); Pourbaix, A.; Carpentiers, P. [Belgian Centre for Corrosion Study, Avenue des Petits-Champs 4A, BE 1410 Waterloo (Belgium)

    2011-04-15

    To be able to give safe recommendations concerning the choice of suitable stainless steel grades for pipelines to be buried in various soil environments, a large research programme, including field exposures of test specimens buried in soil in Sweden and in France, has been performed. Resistance against external corrosion of austenitic, super austenitic, lean duplex, duplex and super duplex steel grades in soil has been investigated by laboratory tests and field exposures. The grades included have been screened according to their critical pitting-corrosion temperature and according to their time-to-re-passivation after the passive layer has been destroyed locally by scratching. The field exposures programme, being the core of the investigation, uses large specimens: 2 m pipes and plates, of different grades. The exposure has been performed to reveal effects of aeration cells, deposits or confined areas, welds and burial depth. Additionally, investigations of the tendency of stainless steel to corrode under the influence of alternating current (AC) have been performed, both in the laboratory and in the field. Recommendations for use of stainless steels under different soil conditions are given based on experimental results and on operating experiences of existing stainless steel pipelines in soil. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. The crevice corrosion behaviour of stainless steel in sodium chloride solution

    International Nuclear Information System (INIS)

    Hu Qian; Zhang Guoan; Qiu Yubin; Guo Xingpeng

    2011-01-01

    Highlights: → There are three stages in crevice corrosion of 13Cr stainless steel in NaCl solution. → The decrease of crevice thickness shortens the incubation period of crevice corrosion. → The incubation period of crevice corrosion prolongs as the increase of the area ratio. → Corrosion develops preferentially at crevice bottom and hydrogen reduction occurs inside the crevice. → Crevice corrosion of 13Cr stainless steel in NaCl solution follows the passive dissolution mechanism. - Abstract: The crevice corrosion behaviour of 13Cr stainless steel in NaCl solution was investigated mainly by electrochemical noise measurements, considering the influences of the crevice opening dimension (a) and the area ratio of the electrode outside the crevice to the one inside the crevice (r). Results show that the increase of r value prolongs the incubation period of crevice corrosion, but crevice corrosion develops rapidly once the crevice corrosion occurs. The crevice corrosion develops preferentially at the crevice bottom and then spreads to the whole electrode surface. Proton could reduce on the uncorroded area and hydrogen bubbles form inside the crevice.

  17. Freezing controlled penetration of molten metals flowing through stainless steel tubes

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Spencer, B.W.; Vetter, D.L.; Wesel, R.H.

    1985-01-01

    The freezing controlled penetration potential of molten metals flowing within stainless steel structure is important to the safety assessment of hypothetical severe accidents in liquid metal reactors. A series of scoping experiments has been performed in which molten stainless steel and nickel at various initial temperatures and driving pressures were injected downward and upward into 6.4 and 3.3 mm ID stainless steel tubes filled with argon gas and initially at room temperature. In all tests, there was no evidence that the solid tube wall was wetted by the molten metals. The penetration phenomena are markedly different for downward versus upward injections. The dependency upon tube orientation is explained in terms of the absence of wetting. Complete plugs were formed in all experiments halting the continued injection of melt. Calculations with a fluid dynamics/heat transfer computer code show that the injected masses limited by plugging are consistent with freezing through the growth of a stable solidified layer (crust) of metal upon the solid tube wall. 23 refs., 5 figs., 2 tabs

  18. [Study on biocompatibility of MIM 316L stainless steel].

    Science.gov (United States)

    Wang, Guohui; Zhu, Shaihong; Li, Yiming; Zhao, Yanzhong; Zhou, Kechao; Huang, Boyun

    2007-04-01

    This study was aimed to evaluate the biocompatibility of metal powder injection molding (MIM) 316L stainless steel. The percentage of S-period cells was detected by flow cytometry after L929 cells being incubated with extraction of MIM 316L stainless steel, and titanium implant materials for clinical application were used as control. In addition, both materials were implanted in animals and the histopathological evaluations were carried out. The statistical analyses show that there are no significant differences between the two groups (P > 0.05), which demonstrate that MIM 316L stainless steel has good biocompatibility.

  19. Optimization of the A-TIG welding for stainless steels

    Science.gov (United States)

    Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.

    2018-03-01

    The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.

  20. Antibacterial effect of silver nanofilm modified stainless steel surface

    Science.gov (United States)

    Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.

    2015-03-01

    Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.

  1. Evolution of stainless steels in nuclear industry

    International Nuclear Information System (INIS)

    Tavassoli, Farhad

    2010-01-01

    Starting with the stainless steels used in the conventional industry, their adoption and successive evolutions in the nuclear industry, from one generation of nuclear reactors to another, is presented. Specific examples for several steels are given, covering fabrication procedures, qualification methods, property databases and design allowable stresses, to show how the ever-increasing demands for better performance and reliability, in particular under neutron irradiation, have been met. Particular attention is paid to the austenitic stainless steels types 304L, 316L, 316L(N), 316L(N)-IG, titanium stabilized grade 321, precipitation strengthened alloy 800, conventional and low activation ferritic/martensitic steels and their oxygen dispersion strengthening (ODS) derivatives. For each material, the evolution of the associated filler metal and welding techniques are also presented. (author)

  2. Improving the properties of stainless steel electron-beam welds by laser treatment

    International Nuclear Information System (INIS)

    Wu Xueyi; Zhou Changchi

    1991-10-01

    For improving the properties of corrosion resistance of stainless steel, which is widely used in nuclear engineering, the technological test on rapid fusing and setting formed by using laser treatment in electron-beam welds on stainless steel was investigated and the analytical results of welding structure and properties were reported. The experimental results show that after laser treatment more finegrained structure in the surface of the welding centreline and welding heat-affected zone was observed. Segregation of chemical composition was reduced. Plasticity and corrosion resistance in the welding zone was increased. Intergranular corrosion of heat-affected zone was improved

  3. Corrosion Study of Super Ferritic Stainless Steel UNS S44660 (26Cr-3Ni-3Mo) and Several Other Stainless Steel Grades (UNS S31603, S32101, and S32205) in Caustic Solution Containing Sodium Sulfide

    Science.gov (United States)

    Chasse, Kevin R.; Singh, Preet M.

    2013-11-01

    Electrochemical techniques, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used in this study to show how the corrosion mechanism of several commercial grades of stainless steel in hot caustic solution is strongly influenced by the presence of sodium sulfide. Experimental results from super ferritic stainless steel UNS S44660 (26Cr-3Ni-3Mo) were compared to austenitic stainless steel UNS S31603, lean duplex stainless steel (DSS) UNS S32101, and standard DSS UNS S32205 in caustic solution, with and without sodium sulfide, at 443 K (170 °C). Weight loss measurements indicated that corrosion rates of UNS44660 were much lower than the other grades of stainless steel in the presence of the sodium sulfide. Potentiodynamic polarization and linear polarization resistance measurements showed that the electrochemical behavior was altered by the adhesion of sulfur species, which reduced the polarization resistances and increased the anodic current densities. SEM and XPS results imply that the surface films that formed in caustic solution containing sodium sulfide were defective due to the adsorption of sulfide, which destabilized the passive film and led to the formation of insoluble metal sulfide compounds.

  4. Anomalous kinetics of lath martensite formation in stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2015-01-01

    The kinetics of lath martensite formation in Fe-17.3 wt-%Cr-7.1 wt-%Ni-1.1 wt-%Al-0.08 wt-%C stainless steel was investigated with magnetometry and microscopy. Lath martensite forms during cooling, heating and isothermally. For the first time, it is shown by magnetometry during extremely slow...

  5. The effects of some factors on the creep behavior of type 304 stainless steel

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Abo, Hideo

    1977-01-01

    The effects of some factors on the creep behavior of type 304 stainless steel have been studied, and relationships between the strength and the structures in the steel have been discussed. Main results obtained were as follows: (1) Creep strength and creep rupture strength at 550, 600, and 650 0 C increased with cold working rate up to 20%, but creep rupture elongation decreased. These facts were explained by the strengthening of matrix by dislocations which acted as precipitation sites of carbides during creep. (2) The steel was aged for up to 3000h at 550-700 0 C. Carbides precipitated on grain boundary and in the neighborhood of grain boundary. With long time or high temperature aging creep strength and creep rupture strength decreased, but creep rupture elongation increased. (3) Creep strength at 600 0 C was independent of the grain size. Initiation of crack was accelerated with growth of grains, and therefore the creep rupture strength and elongation became lower. (4) Creep strength of type 304 stainless steel stemed from uniformly distributed fine carbieds (Cr, Fe) 23 -C 6 which precipitated on dislocations during creep. (auth.)

  6. Method of chemical decontamination of stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1989-01-01

    The present invention concerns a decontamination method of chemically decontaminating radioactive metal wastes of passivated stainless steels to a radioactivity level identical with usual wastes, in which the amount of oxidizable metal salts used is decreased. Metal wastes of stainless steels contaminated at their surface with radioactive materials are immersed in a sulfuric acid solution. In this case, a voltage is applied for a certain period of time so that the potential of the stainless steels comes to an active region. Then, oxidizable metal salt (tetravalent cerium) is added into the sulfuric acid solution. According to this method, since most of radioactive materials are removed in the immersing step to the sulfuric acid solution, the amount of the tetravalent cerium used is as less as 1/700 and the decontamination time is as short as 1/4 as compared with those in the conventional method. (K.M.)

  7. Compresibility and sinterability of HCx PM steel diluted with stainless steels

    Directory of Open Access Journals (Sweden)

    Elena Gordo

    2003-12-01

    Full Text Available HCx powder metallurgy steel contains in its composition high contents of Cr and C, and significant quantities of alloy elements typical of tool steels (Mo, V, W, to provide the corrosion resistance of stainless steel with wear resistance of tool steels. HCx appears to be a suitable material for applications in aggressive environments, as valve seat inserts in automotive engines. However, this steel presents a low compressibility leading to high production costs. In this work, some results carried out to improve the compressibility of HCx are presented. The way to attempt this improvement is the dilution of base material with two stainless steels, the ferritic 430LHC and the austenitic 316L. The powder mixes prepared were uniaxially pressed to study the compressibility. The sinterability was study by determining of density, hardness, transverse rupture strength (TRS and microstructural evolution after vacuum sintering at different temperatures. As a result, better compressibility is observed in the mixes although not all of them present the properties required.

  8. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the...

  9. Hardening of Fe-Cr-Mn steels cold plastic working

    International Nuclear Information System (INIS)

    Malinov, L.S.; Konop-Lyashko, V.I.; Nikoporets, N.M.

    1983-01-01

    The dependence is established between the level of proper-- ties obtained after cold plastic working and development of martensite transformations when loading in Fe-Cr-Mn steels containing 0.1-0.5% C, 13% Cr, 8-12% Mn, as well as in a number of complex alloyed steels. It is shown that the highest level of mechanical properties can be obtained after cold plastic working only in steels with definite austenite stability. Cold plastic working can both activize and stabilize austenite relatively to martensite formation during loading. The first thing is found when under the effect of preliminary cold working dislocation splitting takes place, as well as the formation of a small amount of E-phase and martensite. The second thing manifests itself when under the effect of cold working performed above Md (Md<20 deg C) cell dislocation structure is formed and dislocation pinning takes place

  10. Microbiota formed on attached stainless steel coupons correlates with the natural biofilm of the sink surface in domestic kitchens.

    Science.gov (United States)

    Moen, Birgitte; Røssvoll, Elin; Måge, Ingrid; Møretrø, Trond; Langsrud, Solveig

    2016-02-01

    Stainless steel coupons are frequently used in biofilm studies in the laboratory, as this material is commonly used in the food industry. The coupons are attached to different surfaces to create a "natural" biofilm to be studied further in laboratory trials. However, little has been done to investigate how well the microbiota on such coupons represents the surrounding environment. The microbiota on sink wall surfaces and on new stainless steel coupons attached to the sink wall for 3 months in 8 domestic kitchen sinks was investigated by next-generation sequencing (MiSeq) of the 16S rRNA gene derived from DNA and RNA (cDNA), and by plating and identification of colonies. The mean number of colony-forming units was about 10-fold higher for coupons than sink surfaces, and more variation in bacterial counts between kitchens was seen on sink surfaces than coupons. The microbiota in the majority of biofilms was dominated by Moraxellaceae (genus Moraxella/Enhydrobacter) and Micrococcaceae (genus Kocuria). The results demonstrated that the variation in the microbiota was mainly due to differences between kitchens (38.2%), followed by the different nucleic acid template (DNA vs RNA) (10.8%), and that only 5.1% of the variation was a result of differences between coupons and sink surfaces. The microbiota variation between sink surfaces and coupons was smaller for samples based on their RNA than on their DNA. Overall, our results suggest that new stainless steel coupons are suited to model the dominating part of the natural microbiota of the surrounding environment and, furthermore, are suitable for different downstream studies.

  11. Temporal sealing material of tritium-contaminated stainless steel

    International Nuclear Information System (INIS)

    Wen Wei; Dan Guiping; Zhang Dong; Qiu Yongmei; Zhang Li

    2010-01-01

    Tritium can be released from the exterior of tritium-contaminated stainless steel by slight stirring while decontaminating and disassembling. In order to avoid secondary tritium contamination to environment and operators, it is necessary to cover with an effective coating to tritium on the exterior of tritium-contaminated stainless steel and fill an effective substance to tritium inside. The results of tritium sealed experiments show that sealing efficiency of neutral silicone rubber is more than 85% for condition of static state and more than 99% for foam concrete condition of dynamic state. Neutral silicone rubber and foam concrete which have finer sealing efficiency can be used as temporal sealed material for the decontamination and disassembly of tritium-contaminated stainless steel. (authors)

  12. Effect of fluoride mouthwash on tensile strength of stainless steel orthodontic archwires

    Science.gov (United States)

    Fatimah, D. I.; Anggani, H. S.; Ismah, N.

    2017-08-01

    Patients with orthodontic treatment are commonly recommended to use a fluoride mouthwash for maintaining their oral hygiene and preventing dental caries. However, fluoride may affect the characteristics of stainless steel orthodontic archwires used during treatment. The effect of fluoride mouthwash on the tensile strength of stainless steel orthodontic archwires is still unknown. The purpose of this study is to know the effect of fluoride mouthwash on the tensile strength of stainless steel orthodontic archwires. Examine the tensile strength of 0.016 inch stainless steel orthodontic archwires after immersion in 0.05%, 100 ml fluoride mouthwash for 30, 60, and 90 min. There is no statistically significant difference in the tensile strength of stainless steel orthodontic archwires after immersed in fluoride mouthwash. The p-values on immersion fluoride mouthwash for 30, 60, and 90 min consecutively are 0.790; 0.742; and 0.085 (p > 0.05). The use of fluoride mouthwash did not have an effect on the tensile strength of stainless Steel orthodontic archwires.

  13. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Directory of Open Access Journals (Sweden)

    Masafumi Matsushita

    2011-07-01

    Full Text Available Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride.

  14. Biocompatibility of 17-4 PH stainless steel foam for implant applications.

    Science.gov (United States)

    Mutlu, Ilven; Oktay, Enver

    2011-01-01

    In this study, biocompatibility of 17-4 PH stainless steel foam for biomedical implant applications was investigated. 17-4 PH stainless steel foams having porosities in the range of 40-82% with an average pore size of around 600 μm were produced by space holder-sintering technique. Sintered foams were precipitation hardened for times of 1-6 h at temperatures between 450-570 °C. Compressive yield strength and Young's modulus of aged stainless steel foams were observed to vary between 80-130 MPa and 0.73-1.54 GPa, respectively. Pore morphology, pore size and the mechanical properties of the 17-4 PH stainless steel foams were close to cancellous bone. In vitro evaluations of cytotoxicity of the foams were investigated by XTT and MTT assays and showed sufficient biocompatibility. Surface roughness parameters of the stainless steel foams were also determined to characterize the foams.

  15. Low-waste electrochemical decontamination of stainless-steel surface

    International Nuclear Information System (INIS)

    Babain, V.A.; Smirnov, I.V.; Shadrin, A.Yu.; Firsin, N.G.; Zakharchuk, G.A.; Pavlov, A.B.; Shilov, V.V.

    2002-01-01

    An electrochemical decontamination method using a formic acid-based recycling electrolyte was proposed to remove firmly fixed contaminants from stainless-steel surfaces. The following provisions make for minimisation of the amounts of waste: (i) use of specially designed electrodes with vacuum removal of spent electrolyte; (ii) inter-cycle removal of radionuclides from the electrolyte by using an inorganic sorbent; (iii) periodic regeneration of the spent electrolyte. the dissolved metals (Fe, Cr, Ni) being transformed into acidic phosphates; (iv) solidification of residues arising from the regeneration of the electrolyte and spent sorbent into iron-phosphate ceramics. The technology and equipment developed were used for decontamination of a plutonium glove-box. The level of surface contamination was reduced 100-fold in two decontamination cycles. The depth of metal skimming was 1.5 μ for the ceiling and walls and 4.5 μ for the table top. Each square meter of stainless-steel surface provides about 100 g of solid radioactive waste in the form of iron-phosphate ceramic blocks

  16. Tensile Fracture Behavior of 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    Science.gov (United States)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-02-01

    Herein we investigate how the oxygen content in hot isostatically pressed (HIP'd) 316L stainless steel affects the mechanical properties and tensile fracture behavior. This work follows on from previous studies, which aimed to understand the effect of oxygen content on the Charpy impact toughness of HIP'd steel. We expand on the work by performing room-temperature tensile testing on different heats of 316L stainless steel, which contain different levels of interstitial elements (carbon and nitrogen) as well as oxygen in the bulk material. Throughout the work we repeat the experiments on conventionally forged 316L steel as a reference material. The analysis of the work indicates that oxygen does not contribute to a measureable solution strengthening mechanism, as is the case with carbon and nitrogen in austenitic stainless steels (Werner in Mater Sci Eng A 101:93-98, 1988). Neither does oxygen, in the form of oxide inclusions, contribute to precipitation hardening due to the size and spacing of particles. However, the oxide particles do influence fracture behavior; fractography of the failed tension test specimens indicates that the average ductile dimple size is related to the oxygen content in the bulk material, the results of which support an on-going hypothesis relating oxygen content in HIP'd steels to their fracture mechanisms by providing additional sites for the initiation of ductile damage in the form of voids.

  17. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    International Nuclear Information System (INIS)

    Prajitno, Djoko Hadi; Syarif, Dani Gustaman

    2014-01-01

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO 2 . The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe 2 O 3 . Minor element such as Cr 2 O 3 is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO 2 appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate

  18. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    International Nuclear Information System (INIS)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel open-quotes scrapclose quotes metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques

  19. The irradiation performance of austenitic stainless steel clade PWR fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The steady state irradiation performance of austenitic stainless steel clad pressurized water reactor fuel rods is modeled with fuel performance codes of the FRAP series. These codes, originally developed to model the thermal-mechanical behavior of zircaloy clad fuel rods, are modified to model stainless steel clad fuel rods. The irradiation thermal-mechanical behavior of type 348 stainless steel and zircaloy fuel rods is compared. (author) [pt

  20. Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer

    International Nuclear Information System (INIS)

    Kundu, S.; Chatterjee, S.

    2006-01-01

    Diffusion bonding was carried out between commercially pure titanium and 304 stainless steel using nickel interlayer in the temperature range of 800-950 deg. C for 3.6 ks under 3 MPa load in vacuum. The transition joints thus formed were characterized in optical and scanning electron microscopes. TiNi 3 , TiNi and Ti 2 Ni are formed at the nickel-titanium (Ni-Ti) interface; whereas, stainless steel-nickel (SS-Ni) interface is free from intermetallic compounds up to 900 deg. C processing temperatures. At 950 deg. C, Ni-Ti interface exhibits the presence of β-Ti discrete islands in the matrix of Ti 2 Ni and the phase mixture of λ + χ + α-Fe, λ + α-Fe, λ + FeTi + β-Ti and FeTi + β-Ti occurs at the stainless steel-nickel interface. Nickel is able to inhibit the diffusion of Ti to stainless steel side up to 900 deg. C temperature; however, becomes unable to restrict the migration of Ti to stainless steel at 950 deg. C. Bond strength was also evaluated and maximum tensile strength of ∼302 MPa and shear strength of ∼219 MPa were obtained for the diffusion couple processed at 900 deg. C temperature due to better contact of the mating surfaces and failure takes place at the Ni-Ti interface. At higher joining temperature, the formation of Fe-Ti bases intermetallics reduces the bond strength and failure occurs at the SS-Ni interface

  1. Surface interactions of cesium and boric acid with stainless steel

    International Nuclear Information System (INIS)

    Grossman-Canfield, N.

    1995-08-01

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction

  2. Withdrawal Strength and Bending Yield Strength of Stainless Steel Nails

    Science.gov (United States)

    Douglas R. Rammer; Samuel L. Zelinka

    2015-01-01

    It has been well established that stainless steel nails have superior corrosion performance compared to carbon steel or galvanized nails in treated wood; however, their mechanical fastening behavior is unknown. In this paper, the performance of stainless steel nails is examined with respect to two important properties used in wood connection design: withdrawal strength...

  3. Localized deformation as a key precursor to initiation of intergranular stress corrosion cracking of austenitic stainless steels employed in nuclear power plants

    International Nuclear Information System (INIS)

    Karlsen, Wade; Diego, Gonzalo; Devrient, Bastian

    2010-01-01

    Cold-work has been associated with the occurrence of intergranular cracking of stainless steels employed in light water reactors. This study examined the deformation behavior of AISI 304, AISI 347 and a higher stacking fault energy model alloy subjected to bulk cold-work and (for 347) surface deformation. Deformation microstructures of the materials were examined and correlated with their particular mechanical response under different conditions of temperature, strain rate and degree of prior cold-work. Select slow-strain rate tensile tests in autoclaves enabled the role of local strain heterogeneity in crack initiation in pressurized water reactor environments to be considered. The high stacking fault energy material exhibited uniform strain hardening, even at sub-zero temperatures, while the commercial stainless steels showed significant heterogeneity in their strain response. Surface treatments introduced local cold-work, which had a clear effect on the surface roughness and hardness, and on near-surface residual stress profiles. Autoclave tests led to transgranular surface cracking for a circumferentially ground surface, and intergranular crack initiation for a polished surface.

  4. Microstructural stability of 21-6-9 stainless steel

    International Nuclear Information System (INIS)

    Krenzer, R.W.; Sanderson, E.C.

    1978-01-01

    Two experiments were designed to better define parameters for thermomechanical processing of 21-6-9 stainless steel. This steel is one of the nitrogen-strengthened chromium, manganese, and nickel austenitic stainless steels having mechanical properties that can be improved by a combination of plastic deformation and heat treatments. By heat-treating coupons, the time-temperature relationship of the precipitate phase, and the solutionizing, recrystallizing, and stress-relieving temperature ranges in 21-6-9 were established. Secondly, mechanical properties and microstructure as a function of percent deformation and stress-relieving temperature are reported

  5. Studies of lubricants and punch design in punching of stainless steel

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2004-01-01

    Environmentally hazardous lubricants such as chlorinated paraffin oils are often applied in punching and blanking operations especially involving stainless steel workpiece materials. This is due to the fact that punching and blanking are among the tribologically most difficult forming operations...

  6. Nickel: makes stainless steel strong

    Science.gov (United States)

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  7. Mechanical Behavior of Additive Manufactured Layered Materials, Part 2: Stainless Steels

    Science.gov (United States)

    2015-04-30

    materials. Elsevier, Oxford; 2007: 416 -420. [19] Deng, D., Chen, R., Sun, Q. and Li, X. Microstructural study of 17-4PH stainless steel after plasma...1 Mechanical Behavior of Additive Manufactured Layered Materials, Part 2: Stainless Steels * Todd M. Mower † and Michael J. Long M.I.T. Lincoln... stainless steel alloys produced with Direct Metal Laser Sintering (DMLS) was measured and is compared to that of similar conventional materials

  8. Crevice Corrosion Behavior of 45 Molybdenum-Containing Stainless Steels in Seawater.

    Science.gov (United States)

    1981-12-01

    Armco, Avesta Jernverks, Cabot, Carpenter Technology, Crucible, Eastern, Firth-Brown, Huntington, Jessup, Langley Alloys, and Uddeholm. 16...Department of Energy, Report ANL/OTEC-BCM-022. 7. Wallen, B., and M. Liljas, " Avesta 254 SMO - A New, High Molybdenum Stainless Steel," presented at NKM8...1977).; 11. Wallen, B., " Avesta 254 SMO - A Stainless Steel for Seawater Service," presented at the Advanced Stainless Steels for Turbine Condensors

  9. Paraequilibrium Carburization of Duplex and Ferritic Stainless Steels

    Science.gov (United States)

    Michal, G. M.; Gu, X.; Jennings, W. D.; Kahn, H.; Ernst, F.; Heuer, A. H.

    2009-08-01

    AISI 301 and E-BRITE stainless steels were subjected to low-temperature (743 K) carburization experiments using a commercial technology developed for carburization of 316 austenitic stainless steels. The AISI 301 steel contained ~40 vol pct ferrite before carburization but had a fully austenitic hardened case, ~20- μm thick, and a surface carbon concentration of ~8 at. pct after treatment; this “colossal” paraequilibrium carbon supersaturation caused an increase in lattice parameter of ~3 pct. The E-BRITE also developed a hardened case, 12- to 18- μm thick, but underwent a more modest (~0.3 pct) increase in lattice parameter; the surface carbon concentration was ~10 at. pct. While the hardened case on the AISI 301 stainless steel appeared to be single-phase austenite, evidence for carbide formation was apparent in X-ray diffractometer (XRD) scans of the E-BRITE. Paraequilibrium phase diagrams were calculated for both AISI 301 and E-BRITE stainless steels using a CALPHAD compound energy-based interstitial solid solution model. In the low-temperature regime of interest, and based upon measured paraequilibrium carbon solubilities, more negative Cr-carbon interaction parameters for austenite than those in the current CALPHAD data base may be appropriate. A sensitivity analysis involving Cr-carbon interaction parameters for ferrite found a strong dependence of carbon solubility on relatively small changes in the magnitude of these parameters.

  10. Investigating the Crevice Corrosion Behavior of Coated Stainless Steel in Seawater

    National Research Council Canada - National Science Library

    Kain, Robert

    2000-01-01

    .... austenitic stainless steel. Testing in natural seawater has demonstrated that coatings can protect susceptible stainless steel from barnacle related crevice corrosion and localized corrosion at weldments...

  11. Aging of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1984-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70,000 h at 300, 350, and 400 0 C reveals the formation of four different types of precipitates that are not α'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after approx. 8 y at 300 0 C and shows cleavage fracture. Examination of the fracture surfaces of the impact-test specimens indicates that the toughness of the long-term aged material is determined by the austenite phase. 8 figures, 3 tables

  12. 78 FR 21596 - Drawn Stainless Steel Sinks From the People's Republic of China: Countervailing Duty Order

    Science.gov (United States)

    2013-04-11

    ... single or multiple drawn bowls, with or without drain boards, whether finished or unfinished, regardless... steel, and then welding and finishing the vertical corners to form the bowls. Stainless steel sinks with...

  13. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    Science.gov (United States)

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Influence of pH on the chemical and structural properties of the oxide films formed on 316L stainless steel, alloy 600 and alloy 690 in high temperature aqueous environments

    International Nuclear Information System (INIS)

    Dupin, M.; Gosser, P.; Walls, M.G.; Rondot, B.; Pastol, J.L.

    2002-01-01

    The oxide films formed on 316L stainless steel, alloy 600 and alloy 690 at 320 deg C in high temperature aqueous environments of different pH have been examined by glow discharge optical spectroscopy, scanning electron microscopy, atomic force microscopy and capacitance measurements. The analytical study reveals that the films formed at pH 5 are mainly composed of chromium oxides. When the pH increases the chromium concentration decreases and those of the other two elements (Ni and Fe) tend to increase. The films formed at pH 5 on 316L stainless steel and alloy 600 are thick and powder-like. The film formed at the same pH on alloy 690 is thin and is composed of a compact protective inner layer and a less-compact outer layer formed by crystals of mixed iron-nickel-chromium oxides. The morphological appearance of the thick films and that of the thin films is very different. However, equivalent morphologies can be observed for the relatively thin duplex films formed at pH 8 and pH 9.5 on the 316L stainless steel and nickel-base alloys. The evolution of the chemical composition of the films is accompanied by important changes from the point of view of their semi-conductivity. (authors)

  15. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    Directory of Open Access Journals (Sweden)

    Oladayo OLANIRAN

    2015-05-01

    Full Text Available Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr and Nickel (Ni were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail using scanning electron microscopy (SEM and X-ray diffraction (XRD. The microstructural evolution and phase formation during oxide dispersion strengthening of duplex stainless steel composites were investigated. The influence of composition variation of the reinforcements on the microstructural and corrosion behaviour in simulated mine water of the composites were investigated. In this manuscript, it was established that composition has great influence on the structure/properties relationship of the composites developed.

  16. An in vitro Evaluation of Friction Characteristics of Conventional Stainless Steel and Self-ligating Stainless Steel Brackets with different Dimensions of Archwires in Various Bracket-archwire Combination.

    Science.gov (United States)

    Sridharan, K; Sandbhor, Shailesh; Rajasekaran, U B; Sam, George; Ramees, M Mohamed; Abraham, Esther A

    2017-08-01

    The purpose of this research is to compare the frictional attributes of stainless steel conventional brackets and self-ligating stainless steel brackets with different dimensions of archwires. The test was carried with two sets of maxillary brackets: (1) Conventional stainless steel (Victory Series), (2) stainless steel self-ligating (SmartClip) without first premolar brackets. Stainless steel, nickel-titanium (NiTi), and beta-Ti which are the types of orthodontic wire alloys were tested in this study. To monitor the frictional force, a universal testing machine (Instron 33R 4467) that comprises 10 kg tension load cell was assigned on a range of 1 kg and determined from 0 to 2 kg, which allows moving of an archwire along the brackets. One-way analysis of variance was used to test the difference between groups. To analyze the statistical difference between the two groups, Student's t-test was used. For Victory Series in static friction, p-value was 0.946 and for kinetic friction it was 0.944; at the same time for SmartClip, the p value for static and kinetic frictional resistance was 0.497 and 0.518 respectively. Hence, there was no statistically significant difference between the NiTi and stainless steel archwires. It is concluded that when compared with conventional brackets with stainless steel ligatures, self-ligating brackets can produce significantly less friction during sliding. Beta-Ti archwires expressed high amount of frictional resistance and the stainless steel archwires comprise low frictional resistance among all the archwire materials. In orthodontics, frictional resistance has always had a major role. Its ability to impair tooth movement leads to the need for higher forces to move the teeth and it extends the treatment time which results in loss of posterior anchorage. Friction in orthodontics is related with sliding mechanics when a wire is moving through one or a series of bracket slots.

  17. Measuring secondary phases in duplex stainless steels

    Science.gov (United States)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  18. Corrosion of mild steel and stainless steel by marine Vibrio sp.

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wagh, A.B.

    Microbially induced corrosion (MIC) of stainless steel and mild steel coupons exposed to media with and without a bacterial culture Vibrio sp. was studied using Scanning Electron Microscope (SEM). Pitting type of corrosion was noticed which was more...

  19. Fatigue crack growth in austenitic stainless steel piping

    International Nuclear Information System (INIS)

    Bethmont, M.; Cheissoux, J.L.; Lebey, J.

    1981-04-01

    The study presented in this paper is being carried out with a view to substantiating the calculations of the fatigue crack growth in pipes made of 316 L stainless steel. The results obtained may be applied to P.W.R. primary piping. It is divided into two parts. First, fatigue tests (cyclic pressure) are carried out under hot and cold conditions with straight pipes machined with notches of various dimensions. The crack propagation and the fatigue crack growth rate are measured here. Second, calculations are made in order to interpret experimental results. From elastic calculations the stress intensity factor is assessed to predict the crack growth rate. The results obtained until now and presented in this paper relate to longitudinal notches

  20. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ryskamp, J.M.; Adams, J.P.; Faw, E.M.; Anderson, P.A.

    1996-09-01

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments.

  1. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Adams, J.P.; Faw, E.M.; Anderson, P.A.

    1996-09-01

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments

  2. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    Science.gov (United States)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  3. Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants.

    Science.gov (United States)

    Pienkowski, D; Stephens, G C; Doers, T M; Hamilton, D M

    1998-04-01

    This was a prospective in vitro study comparing titanium alloy and stainless steel alloy in transpedicular spine implants from two different manufactures. To compare the multicycle mechanical performance of these two alloys, used in each of two different implant designs. Transpedicular spine implants primarily have been manufactured from stainless steel, but titanium alloy offers imaging advantages. However, the notch sensitivity of titanium alloy has caused concern regarding how implants made from this material will compare in stiffness and fatigue life with implants made from stainless steel. Twenty-four implants (two alloys, two designs, six implants per group) were mounted in machined polyethylene wafers and repetitively loaded (up to 1 million cycles) from 80 N to 800 N using a 5-Hertz sinusoidal waveform. Load and displacement data were automatically and periodically sampled throughout the entire test. Implant stiffness increased with cycle load number, reached a steady state, then declined just before fatigue failure. Stiffness varied less in titanium transpedicular spine implants than in their stainless counterparts. All stainless steel implant types were stiffer (steady-state value, P titanium alloy counterparts. One titanium implant design failed with fewer (P stainless steel counterpart, whereas a stainless steel implant of another design failed with fewer (P titanium counterpart. Overall, fatigue life, i.e., the total number of load cycles until failure, was related to implant type (P implant material. A transpedicular spine implant's fatigue lifetime depends on both the design and the material and cannot be judged on material alone. Stainless steel implants are stiffer than titanium alloy implants of equal design and size; however, for those designs in which the fatigue life of the titanium alloy version is superior, enlargement of the implant's components can compensate for titanium's lower modulus of elasticity and result in an implant equally stiff

  4. Risk of lung cancer according to mild steel and stainless steel welding

    DEFF Research Database (Denmark)

    Sørensen, Anita Rath; Thulstrup, Ane Marie; Hansen, Johnni

    2007-01-01

    OBJECTIVES: Whether the elevated risk of lung cancer observed among welders is caused by welding emissions or by confounding from smoking or asbestos exposure is still not resolved. This question was addressed in a cohort with a long follow-up and quantified estimates of individual exposure.......06-1.70)]. Among the stainless steel welders, the risk increased significantly with increasing accumulative welding particulate exposure, while no exposure-response relation was found for mild steel welders, even after adjustment for tobacco smoking and asbestos exposure. CONCLUSIONS: The study corroborates...... earlier findings that welders have an increased risk of lung cancer. While exposure-response relations indicate carcinogenic effects related to stainless steel welding, it is still unresolved whether the mild steel welding process carries a carcinogenic risk....

  5. Interdiffusion between U-Zr-Mo and stainless steel cladding

    International Nuclear Information System (INIS)

    Hwang, J. Y.; Lee, B. S.; Lee, J. T.; Kang, Y. H.

    1998-01-01

    Interdiffusion investigations were carried out at 700 deg C for 200 hours for the diffusion couples assembled with the U-Zr-Mo ternary fuel versus austenitic stainless steel D9 and the U-Zr-Mo ternary fuel versus martensitic stainless steel HT9 respectively to investigate the fuel-cladding compatibility. SEM-EDS analysis was utilized to determine the composition and the penetration depths of the reaction layers. In the case of Fuel/D9 couple, (Fe, Cr, Ni) of the cladding elements formed the precipitates with the Zr, Mo and diminished the U concentration upto 800μ length from the fuel side. Composition of the precipitates was varied with the penetrated elements. In Fuel/HT9 couple, reaction layer was smaller than that of D9 couples and was less affected by cladding elements. The eutectic reaction appeared partially in the Fuel/HT9 diffusion couple

  6. Low temperature surface hardening of stainless steel; the role of plastic deformation

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jespersen, Freja Nygaard; Hattel, Jesper Henri

    2016-01-01

    : - plastic deformation of metastable austenitic stainless steels leads to the development of strain-induced martensite, which compromises the uniformity and the homogeneity of the expanded austenite zone. - during low temperature surface engineering composition and stress profiles develop. On numerical......Thermochemical surface engineering by nitriding of austenitic stainless steel transforms the surface zone into expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. As a consequence of the thermochemical surface engineering, huge...

  7. Cytotoxicity difference of 316L stainless steel and titanium reconstruction plate

    Directory of Open Access Journals (Sweden)

    Ni Putu Mira Sumarta

    2011-03-01

    Full Text Available Background: Pure titanium is the most biocompatible material today and used as a gold standard for metallic implants. However, stainless steel is still being used as implants because of its strength, ductility, lower price, corrosion resistant and biocompatibility. Purpose: This study was done to revealed the cytotoxicity difference between reconstruction plate made of 316L stainless steel and of commercially pure (CP titanium in baby hamster kidney-21 (BHK-21 fibroblast culture through MTT assay. Methods: Eight samples were prepared from reconstruction plates made of stainless steel type 316L grade 2 (Coen’s reconstruction plate® that had been cut into cylindrical form of 2 mm in diameter and 3 mm long. The other one were made of CP titanium (STEMA Gmbh® of 2 mm in diameter and 2,2 mm long; and had been cleaned with silica paper and ultrasonic cleaner, and sterilized in autoclave at 121° C for 20 minutes.9 Both samples were bathed into microplate well containing 50 μl of fibroblast cells with 2 x 105 density in Rosewell Park Memorial Institute-1640 (RPMI-1640 media, spinned at 30 rpm for 5 minutes. Microplate well was incubated for 24 and 48 hours in 37° C. After 24 hours, each well that will be read at 24 hour were added with 50 μl solution containing 5mg/ml MTT reagent in phosphate buffer saline (PBS solutions, then reincubated for 4 hours in CO2 10% and 37° C. Colorometric assay with MTT was used to evaluate viability of the cells population after 24 hours. Then, each well were added with 50 μl dimethyl sulfoxide (DMSO and reincubated for 5 minutes in 37° C. the wells were read using Elisa reader in 620 nm wave length. Same steps were done for the wells that will be read in 48 hours. Each data were tabulated and analyzed using independent T-test with significance of 5%. Results: This study showed that the percentage of living fibroblast after exposure to 316L stainless steel reconstruction plate was 61.58% after 24 hours and 62

  8. Stainless steel pool constructing technology and management of Fangjiashan Nuclear Power Company

    International Nuclear Information System (INIS)

    Wei Lianfeng; Wang Qun

    2013-01-01

    The construction of Fangjiashan nuclear power plant stainless steel cladding has been taken much attention. Based on the careful analysis of stainless steel cladding welding and construction main issues; Many measures have been taken such as welding technology, construction process, the stress control of welding deformation, the cleanliness control of construction process, install precision control, improvements of Non-destructive testing, product protection, etc. And installation methods and techniques have been improved and innovative, the installation quality of stainless steel cladding has been enhanced. At the same time, as owners of the plants, we explored the methods of quality supervision and control, together with the relevant units; and sense of quality management has been unified effectively, made stainless steel cladding quality getting better and better. Fangjiashan nuclear power stainless steel cladding construction quality and management experience has been highly recognized by every company. (authors)

  9. Internal attachment of laser beam welded stainless steel sheathed thermocouples into stainless steel upper end caps in nuclear fuel rods for the LOFT Reactor

    International Nuclear Information System (INIS)

    Welty, R.K.; Reid, R.D.

    1980-01-01

    The Exxon Nuclear Company, Inc., acting as a subcontractor to EG and G Idaho Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho, conducted a laser beam welding study to attach internal stainless steel thermocouples into stainless steel upper end caps in nuclear fuel rods. The objective of this study was to determine the feasibility of laser welding a single 0.063 inch diameter stainless steel (304) sheathed thermocouple into a stainless steel (316) upper end cap for nuclear fuel rods. A laser beam was selected because of the extremely high energy input in unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A special weld fixture was designed and fabricated to hold the end cap and the thermocouple with angular and rotational adjustment under the laser beam. A commercial pulsed laser and energy control system was used to make the welds

  10. Effects of Cr2N Precipitation on the Antibacterial Properties of AISI 430 Stainless Steel

    OpenAIRE

    Je-Kang Du; Chih-Yeh Chao; Yu-Ting Jhong; Chung-Hao Wu; Ju-Hui Wu

    2016-01-01

    Based on their mechanical properties and good corrosion resistance, some commercial Ni-Cr stainless steels have been widely applied as biomaterials, including the austenitic 304 stainless steel, the austenitic 316 stainless steel, the duplex 2205 stainless steel, and the ferritic 430 stainless steel. In order to reduce the occurrence of infections resulting from biomaterial implants, instruments, and medical devices, Cu2+ and Ag2+ ions have been added onto biomaterials for increasing the anti...

  11. Chemical sanitizers to control biofilms formed by two Pseudomonas species on stainless steel surface

    Directory of Open Access Journals (Sweden)

    Danila Soares Caixeta

    2012-03-01

    Full Text Available The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1 when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.

  12. 75 FR 39663 - Stainless Steel Bar From Brazil: Final Results of Antidumping Duty Administrative Review

    Science.gov (United States)

    2010-07-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-351-825] Stainless Steel Bar From... duty order on certain stainless steel bar from Brazil. The review covers one producer/exporter of the... antidumping duty order on certain stainless steel bar from Brazil. See Stainless Steel Bar From Brazil...

  13. Irradiation Assisted Stress Corrosion Cracking of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) of austenitic stainless steels in oxygenated high temperature water was studied. The IASCC failure has been considered as a degradation phenomenon potential not only in the present light water reactors but rather common in systems where the materials are exposed simultaneously to radiation and water environments. In this study, effects of the material and environmental factors on the IASCC of austenitic stainless steels were investigated in order to understand the underlying mechanism. The following three types of materials were examined: a series of model alloys irradiated at normal water-cooled research reactors (JRR-3M and JMTR), the material irradiated at a spectrally tailored mixed-spectrum research reactor (ORR), and the material sampled from a duct tube of a fuel assembly used in the experimental LMFBR (JOYO). Post-irradiation stress corrosion cracking tests in a high-temperature water, electrochemical corrosion tests, etc., were performed at hot laboratories. Based on the results obtained, analyses were made on the effects of alloying/impurity elements, irradiation/testing temperatures and material processing, (i.e., post-irradiation annealing and cold working) on the cracking behavior. On the basis of the analyses, possible remedies against IASCC in the core internals were discussed from viewpoints of complex combined effects among materials, environment and processing factors. (author). 156 refs.

  14. Anelastic mechanical loss spectrometry of hydrogen in austenitic stainless steels

    International Nuclear Information System (INIS)

    Yagodzinskyy, Y.; Andronova, E.; Ivanchenko, M.; Haenninen, H.

    2009-01-01

    Atomic distribution of hydrogen, its elemental diffusion jumps and its interaction with dislocations in a number of austenitic stainless steels are studied with anelastic mechanical loss (AML) spectrometry in combination with the hydrogen thermal desorption method. Austenitic stainless steels of different chemical composition, namely, AISI 310, AISI 201, and AISI 301LN, as well as LDX 2101 duplex stainless steel are studied to clarify the role of different alloying elements on the hydrogen behavior. Activation analyses of the hydrogen Snoek-like peaks are performed with their decomposition to sets of Gaussian components. Fine structure of the composite hydrogen peaks is analyzed under the assumption that each component corresponds to diffusion transfer of hydrogen between octahedral positions with certain atomic compositions of the nearest neighbouring lattice sites. An additional component originating from hydrogen-dislocation interaction is considered. Binding energies for hydrogen-dislocation interaction are also estimated for the studied austenitic stainless steels.

  15. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    Energy Technology Data Exchange (ETDEWEB)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id; Syarif, Dani Gustaman, E-mail: djokohp@batan.go.id [Research Center for Nuclear Materials and Radiometry, Jl. Tamansari 71, Bandung 40132 (Indonesia)

    2014-03-24

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.

  16. Development of TRIP-Aided Lean Duplex Stainless Steel by Twin-Roll Strip Casting and Its Deformation Mechanism

    Science.gov (United States)

    Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong

    2016-12-01

    In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ ɛ-martensite→ α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.

  17. Martensitic transformation of type 304 stainless steel by high-energy ion implantation

    International Nuclear Information System (INIS)

    Chayahara, A.; Satou, M.; Nakashima, S.; Hashimoto, M.; Sasaki, T.; Kurokawa, M.; Kiyama, S.

    1991-01-01

    The effect of high-energy ion implantation on the structural changes of type 304 stainless steel were investigated. Gold, copper and silicon ions with an energy of 1.5 MeV was implanted into stainless steel. The fluences were in the range from 5x10 15 to 10 17 ions/cm 2 . It was found that the structure of stainless steel was transformed form the austenitic to the martensitic structure by these ion implantations. This structural change was investigated by means of X-ray diffraction and transmission electron microscopy (TEM). The depth profile of the irradiated ions was also analyzed by secondary ion mass spectroscopy (SIMS) and glow discharge spectroscopy (GDS). The degree of martensitic transformation was found to be strongly dependent on the surface pretreatment, either mechanical or electrolytic polishing. When the surface damages or strains by mechanical polishing were present, the martensitic transformation was greatly accelerated presumably due to the combined action of ion irradiation and strain-enhanced transformation. Heavier ions exhibit a high efficiency for the transformation. (orig.)

  18. Nanosized TiN-SBR hybrid coating of stainless steel as bipolar plates for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Kumagai, Masanobu; Myung, Seung-Taek; Asaishi, Ryo; Sun, Yang-Kook; Yashiro, Hitoshi

    2008-01-01

    In attempt to improve interfacial electrical conductivity of stainless steel for bipolar plates of polymer electrolyte membrane fuel cells, TiN nanoparticles were electrophoretically deposited on the surface of stainless steel with elastic styrene butadiene rubber (SBR) particles. From transmission electron microscopic observation, it was found that the TiN nanoparticles (ca. 50 nm) surrounded the spherical SBR particles (ca. 300-600 nm), forming agglomerates. They were well adhered on the surface of the type 310S stainless steel. With help of elasticity of SBR, the agglomerates were well fitted into the interfacial gap between gas diffusion layer (GDL) and stainless steel bipolar plate, and the interfacial contact resistance (ICR), simultaneously, was successfully reduced. A single cell using the TiN nanoparticles-coated bipolar plates, consequently, showed comparable cell performance with the graphite employing cell at a current density of 0.5 A cm -2 (12.5 A). Inexpensive TiN nanoparticle-coated type 310S stainless steel bipolar plates would become a possible alternate for the expensive graphite bipolar plates as use in fuel cell applications

  19. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    International Nuclear Information System (INIS)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D.

    2008-01-01

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years

  20. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D. [POSCO Technical Reseaarch Lab., Pohang (Korea, Republic of)

    2008-12-15

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years.

  1. Influence of chloride and bromide anions on localized corrosion of 15%Cr ferritic stainless steel

    International Nuclear Information System (INIS)

    Lee, Seung Uk; Ahn, Jae Chen; Kim, Dong Hyun; Hong, Seung Chan; Lee, Kyung Sub

    2006-01-01

    The influence of Cl - (919 ppm) and a mixture of Cl - (919 ppm) and Br - (51 ppm) on the corrosion behavior of 15%Cr ferritic stainless steel was investigated. Potentiodynamic and immersion tests were performed to examine the corrosion behavior. The size and the shape of pits were observed by optical microscope and scanning electron microscope. The oxide films formed on stainless steel were investigated by X-ray photoelectron spectroscopy (XPS). During the immersion test at 93 deg. C for 600 h, Fe and Cr were mostly corroded to iron and chromium oxides. The results of depth profiling indicate higher corrosion rate of solution containing chloride than the mixture solution. It was clear that the addition of Br - to the solution containing Cl - inhibited the localized corrosion of 15%Cr ferritic stainless steel

  2. Aging and Embrittlement of High Fluence Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  3. 78 FR 45271 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam

    Science.gov (United States)

    2013-07-26

    ... Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam Determination On the basis of the record... reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel pressure pipe, provided... contained in USITC Publication 4413 (July 2013), entitled Welded Stainless Steel Pressure Pipe from Malaysia...

  4. Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2014-01-15

    Highlights: • Environmental constant extension rate tensile tests were performed on neutron irradiated steel. • Percentage of intergranular cracking quantified the cracking susceptibility. • Cracking susceptibility varied with test environment, solute addition, and cold work. • No singular microstructural change could explain increases in cracking susceptibility with irradiation dose. • The increment of yield strength due to irradiation correlated well with cracking susceptibility. -- Abstract: The objective of this study was to isolate key factors affecting the irradiation-assisted stress corrosion cracking (IASCC) susceptibility of eleven neutron-irradiated austenitic stainless steel alloys. Four commercial purity and seven high purity stainless steels were fabricated with specific changes in composition and microstructure, and irradiated in a fast reactor spectrum at 320 °C to doses between 4.4 and 47.5 dpa. Constant extension rate tensile (CERT) tests were performed in normal water chemistry (NWC), hydrogen water chemistry (HWC), or primary water (PW) environments to isolate the effects of environment, elemental solute addition, alloy purity, alloy heat, alloy type, cold work, and irradiation dose. The irradiated alloys showed a wide variation in IASCC susceptibility, as measured by the relative changes in mechanical properties and crack morphology. Cracking susceptibility measured by %IG was enhanced in oxidizing environments, although testing in the lowest potential environment caused an increase in surface crack density. Alloys containing solute addition of Ni or Ni + Cr exhibited no IASCC. Susceptibility was reduced in materials cold worked prior to irradiation, and increased with increasing irradiation dose. Irradiation-induced hardening was accounted for by the dislocation loop microstructure, however no relation between crack initiation and radiation hardening was found.

  5. Ultrasonic scanner for stainless steel weld inspections. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D. S.; Reimann, K. J.

    1978-09-01

    The large grain size and anisotropic nature of stainless steel weld metal make conventional ultrasonic testing very difficult. A technique is evaluated for minimizing the coherent ultrasonic noise in stainless steel weld metal. The method involves digitizing conventional ''A-scan'' traces and averaging them with a minicomputer. Results are presented for an ultrasonic scanner which interrogates a small volume of the weld metal while averaging the coherent ultrasonic noise.

  6. Stainless steel reinforcement for durability in concrete structures

    International Nuclear Information System (INIS)

    Cochrane, D.J.

    1998-01-01

    Stainless steels and concrete are materials which the nuclear industry, more than any other, has given special attention to over the years. It is the intention of this paper to inform congress about developments outside the nuclear industry, in the use of stainless steel as reinforcement (rebar) in concrete structures. It is left to individual engineers within the industry to assess the implications of this information to applications with which they will be familiar. (author)

  7. Nickel alloys and high-alloyed special stainless steels. Properties, manufacturing, applications. 4. compl. rev. ed.

    International Nuclear Information System (INIS)

    Heubner, Ulrich; Kloewer, Jutta; Alves, Helena; Behrens, Rainer; Schindler, Claudius; Wahl, Volker; Wolf, Martin

    2012-01-01

    This book contains the following eight topics: 1. Nickel alloys and high-alloy special stainless steels - Material overview and metallurgical principles (U. Heubner); 2. Corrosion resistance of nickel alloys and high-alloy special stainless steels (U. Heubner); 3. Welding of nickel alloys and high-alloy special stainless steels (T. Hoffmann, M. Wolf); 4. High-temperature materials for industrial plant construction (J. Kloewer); 5. Nickel alloys and high-alloy special stainless steels as hot roll clad composites-a cost-effective alternative (C. Schindler); 6. Selected examples of the use of nickel alloys and high-alloy special stainless steels in chemical plants (H. Alves); 7. The use of nickel alloys and stainless steels in environmental engineering (V. Wahl); 8: Nickel alloys and high-alloy special stainless steels for the oil and gas industry (R. Behrens).

  8. Investigation of the effect of heat treatment on the structure of the cold-rolled ferrite stainless steels

    Directory of Open Access Journals (Sweden)

    В. Л. Грешта

    2015-03-01

    Full Text Available The work presents the estimation of a factor, namely, the solid solution super saturation by carbon and nitrogen on crystalline nature of high-chromium ferrite (HCF in defining the inhibition mechanism of recrystallization processes in ferritic stainless steel. The essence of the study was to conduct an additional heat treatment of hot (h/r tackle for the following modes: annealing 800 ° C - 4 hours, tempering with temperatures of 900, 1000, 1100 ° C after exposure to 1 min/mm. It is established that the determining factor that influences the amount of the carbide phase in c/r sheet is prior treatment of h/r tackle. A definite connection between the volume fraction of the secondary phase and the degree of cold deformation was observed. In the structure of cold-rolled sheet the same pattern with respect to the degree of implementation processes allocation of excess phases is maintained as in hot-rolled, after appropriate heat treatment. The smallest amount of the secondary phase structure was observed in the letter after hardening from 1100 °C - 1 min/mm. The reason is the thermodynamic state of HCF, to which at 1100 °C all the excess carbon and nitrogen must exist in solid solution. Thus, it is found that according to the present analysis of structural changes it should be noted that the best option of thermal prior treatment of h/r tackle is the annealing at 800 °C – 4 hours

  9. The negative effect of Zr addition on the high temperature strength in alumina-forming austenitic stainless steels

    International Nuclear Information System (INIS)

    Moon, Joonoh; Jang, Min-Ho; Kang, Jun-Yun; Lee, Tae-Ho

    2014-01-01

    The effect of a Zr addition on the precipitation behavior and mechanical properties in Nb-containing alumina-forming austenitic (AFA) stainless steels was investigated using tensile tests, scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) analysis. The TEM observation showed that a Zr addition led to the formation of a (Nb,Zr)(C,N) complex particle, which coarsened the Nb-rich carbonitride. Tensile tests were performed at an elevated temperature (700 °C), and both the tensile and yield strengths decreased with a Zr addition. This unexpected result of a Zr addition was due to the reduction of the precipitation strengthening by particle coarsening. - Highlights: • The effect of Zr on high temperature strength in AFA steel containing Nb was studied. • Both the tensile and yield strengths of an AFA steel decreased with Zr-addition. • This is due to the reduction of precipitation strengthening by particle coarsening. • Nb(C,N) and (Nb,Zr)(C,N) particles were precipitated in an AFA and Zr-added AFA steel. • The size of (Nb,Zr)(C,N) particle is much bigger than that of Nb(C,N) particle

  10. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    Science.gov (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  11. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.

    Science.gov (United States)

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-06-27

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.

  12. The effects of some factors on the creep behavior of type 304 stainless steel

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Abo, Hideo

    1978-01-01

    The effects of some factors on the creep behavior of Type 304 stainless steel have been studied and the relations between the strength and the structure of the steel have been discussed. The main results obtained are as follows. (1) The creep and creep rupture strengths at 550 0 , 600 0 and 650 0 C increased with the increase in cold working rate up to 20%, but the creep rupture elongation decreased. These facts could be explained by the strengthening of matrix by dislocations which acted as precipitation sites of carbides during creep. (2) The steel was aged for up to 3000 hr at 550 0 to 700 0 C. Carbides precipitated on the grain boundaries and in the neighborhood of the grain boundaries. With long-time or high-temperature aging, the creep strength and creep rupture strength decreased, but the creep rupture elongation increased. (3) The creep strength at 600 0 C was independent of the grain size. Crack initiation was accelerated by the growth of grains, and therefore the creep rupture strength and elongation were decreased. (4) The creep strength of Type 304 stainless steel was increased by uniformly distributed fine carbides (Cr, Fe) 23 C 6 which precipitated on dislocations during creep. (author)

  13. Computer simulation of sensitization in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Logan, R W

    1983-12-20

    Stainless steel containers are prime candidates for the containment of nuclear waste in tuff rock. The thermal history of a container involves exposure to temperatures of 500 to 600/sup 0/C when it is welded and possibly filled with molten waste glass, followed by hundreds of years exposure in the 100 to 300/sup 0/C range. The problems of short- and long-term sensitization in stainless steels have been addressed by two computer programs. The TTS program uses classical nucleation and growth theory plus experimental input to predict the onset of precipitation or sensitization under complex thermal histories. The FEMGB program uses quadratic finite-element methods to analyze diffusion processes and chromium depletion during precipitate growth. The results of studies using both programs indicate that sensitization should not be a problem in any of the austenitic stainless steels considered. However, more precise information on the process thermal cycles, especially during welding of the container, is needed. Contributions from dislocation pipe diffusion could promote long-term low-temperature sensitization.

  14. The correlation between yielding behavior and precipitation in ultra purified ferritic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.Y., E-mail: zyliu@mail.neu.edu.cn [State Key Lab of Rolling Technologies and Automation, Northeastern University, Heping Qu, Wenhua St, P.O. Box 105, Shenyang, Liaoning Province 110004 (China); Gao, F. [State Key Lab of Rolling Technologies and Automation, Northeastern University, Heping Qu, Wenhua St, P.O. Box 105, Shenyang, Liaoning Province 110004 (China); Jiang, L.Z. [Research Institute for Stainless Steels, R and D Center, Baosteel Co., Shanghai 201900 (China); Wang, G.D. [State Key Lab of Rolling Technologies and Automation, Northeastern University, Heping Qu, Wenhua St, P.O. Box 105, Shenyang, Liaoning Province 110004 (China)

    2010-06-25

    Cold rolled sheets of a ultra purified ferritic stainless steel were annealed either by being slowly cooled from 950 deg. C or being rapidly cooled to room temperature from the intermediate holding at 750 deg. C. The former exhibited substantial Lueders elongation during tensile testing, while the later showed continuous yielding behavior. In the slowly cooled sheet, both Nb(C, N) and (Fe, Cr){sub 2}Nb have been formed, and no (Fe, Cr){sub 2}Nb could be observed in the rapidly cooled sheet. The fast growth of (Fe, Cr){sub 2}Nb is believed to have caused local depletion of Nb atoms around fine NbC particles, resulting in their dissolution and having carbon atoms released for the formation of the Cottrell atmosphere. These results have been confirmed by the internal friction measurements and thermodynamic calculations.

  15. Failure of Stainless Steel Welds Due to Microstructural Damage Prevented by In Situ Metallography

    OpenAIRE

    Lopez,Juan Manuel Salgado; Alvarado,María Inés; Hernandez,Hector Vergara; Quiroz,José Trinidad Perez; Olmos,Luis

    2016-01-01

    Abstract In stainless steels, microstructural damage is caused by precipitation of chromium carbides or sigma phase. These microconstituents are detrimental in stainless steel welds because they lead to weld decay. Nevertheless, they are prone to appear in the heat affected zone (HAZ) microstructure of stainless steel welds. This is particularly important for repairs of industrial components made of austenitic stainless steel. Non-destructive metallography can be applied in welding repairs of...

  16. Passivation behavior of SUS 304 stainless steel in neutral solutions at elevated temperature

    International Nuclear Information System (INIS)

    Tanno, Kazuo; Kato, Koji; Ohnaka, Noriyuki; Okajima, Yoshiaki; Minato, Akira.

    1981-01-01

    Cyclic voltammograms of SUS 304 stainless steel in various neutral solutions such as Na 2 SO 4 at high temperature were measured, as a successive study to previous report in which effects of temperature and pH on polarization behavior of stainless steel were studied. In this measurement Ag/AgCl reference electrode and platinum counter electrode were used in a static autoclave lined with inconel. Passive films formed in various conditions were analysed by electron diffraction and Auger spectroscopy. Results obtained were compared with anodic behavior of iron, chromium and nickel and with thermodynamical stabilities of their compounds. The main results are summarized as follows. (1) Stainless steel shows such electrochemical behavior as active dissolution, passivation and transpassivation in a deaerated neutral solution at 250 0 C after fully reductive treatment of the specimen. In air-saturated solution, the peak of active dissolution is not observed. In the passive range there are intermediate oxidation and reduction peaks, and it is assumed that dissolved ionic species are oxidized to form oxide of spinel type and higher oxidized state successively at these peaks. (2) Electrochemical behavior of specimens in 0.1 M sulfate, -phosphate and -carbonate solutions are almost the same and rather thick films form in these solutions. On the other hand, specimens are easy to passivate in borate and -nitrate solution, and their passive films are thin. (author)

  17. Characteristics and formation mechanism for stainless steel fiber with periodic micro-fins

    Science.gov (United States)

    Tang, Tao; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2016-05-01

    Metal fibers have been widely used in many industrial applications due to their unique advantages. In certain applications, such as catalyst supports or orthopedic implants, a rough surface or tiny outshoots on the surface of metal fibers to increase surface area are needed. However, it has not been concerned about the surface morphologies of metal fiber in the current research of metal fiber manufacturing. In this paper, a special multi-tooth tool composed of a row of triangular tiny teeth is designed. The entire cutting layer of multi-tooth tool bifurcates into several thin cutting layers due to tiny teeth involved in cutting. As a result, several stainless steel fibers with periodic micro-fins are produced simultaneously. Morphology of periodic micro-fins is found to be diverse and can be classified into three categories: unilateral plane, unilateral tapering and bilateral. There are two forming mechanisms for the micro-fins. One is that periodic burrs remained on the free side of cutting layer of a tiny tooth create micro-fins of stainless steel fiber produced by the next neighboring tiny tooth; the other is that the connections between two fibers stuck together come to be micro-fins if the two fibers are finally detached. Influence of cutting conditions on formation of micro-fins is investigated. Experimental results show that cutting depth has no significant effect on micro-fin formation, high cutting speed is conducive to micro-fin formation, and feed should be between 0.12 mm/r and 0.2 mm/r to reliably obtain stainless steel fiber with micro-fins. This research presents a new pattern of stainless steel fiber characterized by periodic micro-fins formed on the edge of fiber and its manufacturing method.

  18. Twin boundary cavitation in aged type 304 stainless steel

    International Nuclear Information System (INIS)

    Sikka, V.K.; Swindeman, R.W.; Brinkman, C.R.

    1975-10-01

    A transition from grain to twin boundary cavitation was observed in aged-and-creep-tested type 304 stainless steel. Evidence of twin boundary cavitation has also been observed for unaged material under certain test conditions. This same behavior was also found in aged type 316 stainless steel. Several possible reasons have been suggested for the absence of frequently observed grain boundary cavitation

  19. Magnetic permeability of stainless steel for use in accelerator beam transport systems

    International Nuclear Information System (INIS)

    Wilson, N.G.; Bunch, P.

    1991-01-01

    High-vacuum beam transport tubes are being designed for use in an accelerator under development at Los Alamos. In areas such as weld-heat-affected zones, the tubes will require localized magnetic permeability of less than 1.02. Seven austenitic stainless steel candidates, 304L, 310, 316L, 317LN, 20Cb-3, Nitronic 33, and Nitronic 40, have been evaluated to determine their permeability in cold-worked, annealed, and weld-affected zones. 310 and 20Cb-3 showed permeability after welding of less than 1.01. 1 ref., 1 fig., 1 tab

  20. Boron effect on stainless steel plasticity under hot deformation

    International Nuclear Information System (INIS)

    Bulat, S.I.; Kardonov, B.A.; Sorokina, N.A.

    1978-01-01

    The effect of boron on plasticity of stainless steels at temperatures of hot deformation has been studied at three levels of alloying, i.e. 0-0.01% (micro-alloying or modifying), 0.01-0.02% (low alloying) and 0.02-2.0% (high alloying). Introduction of 0.001-0.005% of boron increases hot plasticity of both low and high carbon stainless steels due to decrease in grain size and strengthening of grain boundaries. Microalloying by boron has a positive effect at temperatures below 1200-1220 deg C. At higher temperatures, particularly when its content exceeds 0.008%, boron deteriorates plasticity by increasing the size of grains and weakening their boundaries. 0.1-2% boron strengthen the stainless steel and dectease its plasticity

  1. Depth distribution of martensite in xenon implanted stainless steels

    International Nuclear Information System (INIS)

    Johansen, A.; Johnson, E.; Sarholt-Kristensen, L.; Steenstrup, S.; Hayashi, N.; Sakamoto, I.

    1989-01-01

    The amount of stress-induced martensite and its distribution in depth in xenon implanted austenitic stainless steel poly- and single crystals have been measured by Rutherford backscattering and channeling analysis, depth selective conversion electron Moessbauer spectroscopy, cross-sectional transmission electron microscopy and x-ray diffraction analysis. In low nickel 17/7, 304 and 316 commercial stainless steels and in 17:13 single crystals the martensitic transformation starts at the surface and develops towards greater depth with increasing xenon fluence. The implanted layer is nearly completely transformed, and the interface between martensite and austenite is rather sharp and well defined. In high nickel 310 commercial stainless steel and 15:19 and 20:19 single crystals, on the other hand, only insignificant amounts of martensite are observed. (orig.)

  2. Behaviour of steels in natural environments: focus on stainless steels in natural sea water

    International Nuclear Information System (INIS)

    Feron, D.

    2005-01-01

    Corrosion behaviour of steels and alloys in natural environments is not only dependent to material parameters and environmental chemistry, but also to micro-organisms which may be there. The global approach used to investigate the behaviour of alloys in natural environments is illustrated by the work done on stainless steels in seawater. In aerated seawater, studies led to the proposal of an 'enzymatic model' based on the enzymatic catalyze of the cathodic reaction and which allows reproducing the electrochemical behaviour of stainless steels in natural seawater and the crevice corrosion phenomena observed in natural sea waters. Coupling areas under aerobic and anaerobic conditions leads to the worst situation for stainless steel behaviour: the catalysis of the cathodic reaction on aerobic exposed surfaces and the decrease of the corrosion resistance of anaerobic surfaces due to sulphides. These results lead to the concept of electro-active bio-films. (author)

  3. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming Analysis, Simulation and Engineering Applications

    CERN Document Server

    Hu, Ping; Liu, Li-zhong; Zhu, Yi-guo

    2013-01-01

    Over the last 15 years, the application of innovative steel concepts in the automotive industry has increased steadily. Numerical simulation technology of hot forming of high-strength steel allows engineers to modify the formability of hot forming steel metals and to optimize die design schemes. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming focuses on hot and cold forming theories, numerical methods, relative simulation and experiment techniques for high-strength steel forming and die design in the automobile industry. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming introduces the general theories of cold forming, then expands upon advanced hot forming theories and simulation methods, including: • the forming process, • constitutive equations, • hot boundary constraint treatment, and • hot forming equipment and experiments. Various calculation methods of cold and hot forming, based on the authors’ experience in commercial CAE software f...

  4. Assessment of tensile and creep data for types 304 and 316 stainless steel

    International Nuclear Information System (INIS)

    Sikka, V.K.; Booker, M.K.

    1976-01-01

    Austenitic stainless steels of types 304 and 316 are prime construction materials for nuclear fast breeder reactors and will be used in the temperature range where elevated-temperature, tensile, creep, and fatigue properties are required to calculate the design stress limits. This report examines the possible variations in such properties, using data from several sources including data from Japan and the United Kingdom. United States data were shown to contain the largest variations in both tensile and creep properties, with Japanese data the least. For a given country no distinction could be made in variations in tensile properties of types 304 and 316 stainless steels, but variations in standard error of estimate for all creep properties analyzed were significantly lower for type 316 stainless steel than corresponding variations in creep properties of type 304 stainless steel. The data from each of these countries showed the same creep rupture strength (at 10 4 h) for type 316 stainless steel; this was not true for the type 304 stainless steel. Results of the analysis performed in this paper showed that the U.S. and foreign data on types 304 and 316 stainless steels could possibly be combined for the determination of design stress intensity limits

  5. Development of liner cutting method for stainless steel liner

    International Nuclear Information System (INIS)

    Takahata, Masato; Wignarajah, Sivakmaran; Kamata, Hirofumi

    2005-01-01

    The present work is an attempt to develop a laser cutting method for cutting and removing stainless steel liners from concrete walls and floors in cells and fuel storage pools of nuclear facilities. The effects of basic laser cutting parameters such as cutting speed, assist gas flow etc. were first studied applying a 1 kW Nd:YAG laser to mock up concrete specimens lined with 3 mm thick stainless steel sheets. These initial studies were followed by studies on the effect of unevenness of the liner surface and on methods of confining contamination during the cutting process. The results showed that laser cutting is superior to other conventional cutting methods from the point of view of safety from radioactivity and work efficiency when cutting contaminated stainless steel liners. In addition to the above results, this paper describes the design outline of a laser cutting system for cutting stainless liners at site and evaluates its merit and cost performance. (author)

  6. PengaruhKorosiAir LautpadaKekuatanTarik SambunganLas KombinasiStainless Steel 304-201

    Directory of Open Access Journals (Sweden)

    Tjokorda Gde Tirta Nindhia

    2016-07-01

    Full Text Available Abstrak: Instalasi konstruksi yang dibangun dengan bahan stainless steel merupakan pilihan pertama dari daftar lis yang akan digunakan untuk konstruksi dekat laut. Dengan ditemukannya teknologi tungsten inert gas (TIG belakangan ini maka kontruksi dengan bahan stainles steel dapat direalisasikan. Dalam beberapa kasus sampungan las stainless steel dilakukan dengan menyambung dengan stainless steel dari jenis yang berbeda tanpa peduli dengan kekuatan yang dihasilkan khusunya jika mengalami korosi dalam hal ini korosi akibat air laut. Dalam penelitian ini kekuatan tarik sambungan kombinasi stainles steel dari jenis 304- 201 diuji dan dibandingkan dengan sambungan sejenis dari jenis 304-304 dan 201-201 Pengerauh korosi air laut terhadap kekuatan tarik sambungan stainless steel tersebut juga diteliti. Penelitian menemukan bahwa kekuatan tarik paling tinggi dimiliki oleh sambungan sejenis 304-304 diikuti oleh samnbungan kombinasi 304-201 dan yang terendah adalah sambungan 201-201. Pengaruh korosi airlaut diketahui menurunkan kekuatan dari semua jenis sambungan Kata Kunci : Stainless steel, las, air laut, korosi, kekuatan tarik Abstract: Installation of construction made from stainless steel is in the first list to be selected for location near the sea. The construction is by recent technology is much realize by using welding technology especially tungsten inert gas (TIG. In some case the welded joint of stainless steel are realized by joining 2 different type of stainless steel such as between type of 304 and 201 without any concern to the strength that will be achieved especially after exposure to the sea water. In this research the tensile strength of a combination of welding between stainless steel of 304- 201 is tested and compare to the welded of 304-304 and welded of 201-201. The effect of sea water corrosion in 30 days to the strength of the welded joint is observed . It is found that the tensile strength of welded 304-304 is found the highest

  7. Effect of axial stress on the transient mechanical response of 20%, cold-worked Type 316 stainless-steel cladding

    International Nuclear Information System (INIS)

    Yamada, H.

    1979-01-01

    To understand the effects of the fuel-cladding mechanical interaction on the failure of 20% cold-worked Type 316 stainless-steel cladding during anticipated nuclear reactor transients, the transient mechanical response of the cladding was investigated using a transient tube burst method at a heating rate of 5.6 0 C/s and axial-to-hoop-stress ratios in the range of 1/2 to 2. The failure temperatures were observed to remain essentially constant for the transient tests at axial-to-hoop-stress ratios between 1/2 and 1, but to decrease with an increase in axial-to-hoop-stress ratios above unity. The uniform diametral strains to failure were observed to decrease monotonically with an increase in axial-to-hoop-stress ratio from 1/2 to 2, and in general, the uniform axial strains to failure were observed to increase with an increase in axial-to-hoop-stress ratio. The fracture of the cladding during thermal transients was found to be strongly affected by the maximum principal stress but not by the effective stress

  8. Determining frustum depth of 304 stainless steel plates with various diameters and thicknesses by incremental forming

    Energy Technology Data Exchange (ETDEWEB)

    Golabi, Sa' id [University of Kashan, Kashan (Iran, Islamic Republic of); Khazaali, Hossain [Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2014-08-15

    Nowadays incremental forming is more popular because of its flexibility and cost saving. However, no engineering data is available for manufacturers for forming simple shapes like a frustum by incremental forming, and either expensive experimental tests or finite element analysis (FEA) should be employed to determine the depth of a frustum considering: thickness, material, cone diameter, wall angle, feed rate, tool diameter, etc. In this study, finite element technique, confirmed by experimental study, was employed for developing applicable curves for determining the depth of frustums made from 304 stainless steel (SS304) sheet with various cone angles, thicknesses from 0.3 to 1 mm and major diameters from 50 to 200 mm using incremental forming. Using these curves, the frustum angle and its depth knowing its thickness and major diameter can be predicted. The effects of feed rate, vertical pitch and tool diameter on frustum depth and surface quality were also addressed in this study.

  9. Low temperature sensitization of austenitic stainless steel: an ageing effect during BWR service

    International Nuclear Information System (INIS)

    Shah, B.K.; Sinha, A.K.; Rastogi, P.K.; Kulkarni, P.G.

    1994-01-01

    Sensitization in austenitic stainless steel refers to chromium carbide precipitation at the grain boundaries with concomitant depletion of chromium below 12% near grain boundaries. This makes the material susceptible to either intergranular corrosion (IGC) or intergranular stress corrosion cracking (IGSCC). This effect is predominant whenever austenitic stainless steel is subjected to thermal exposure in the temperature range 723-1073K either during welding or during heat treatment. Low temperature sensitization (LTS) refers to sensitization at temperature below the typical range of sensitization i.e. 723-1073K. A prerequisite for LTS phenomenon is reported to be the presence of chromium carbide nuclei at the grain boundaries which can grow during boiling water reactor service even at a relatively lower temperature of around 560K. LTS can lead to failure of BWR pipe due to IGSCC. The paper reviews the phenomenological and mechanistic aspects of LTS. Studies carried out regarding effect of prior cold work on LTS are reported. Summary of the studies reported in literature to examine the occurrence of LTS during BWR service has also been included. (author). 10 refs., 3 figs

  10. Desensitization of stainless steels by laser surface heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Yoshikuni; Nishimoto, Kazutoshi

    1987-11-01

    Laser heating was applied for the desensitization heat-treatment of the surface layer in the sensitized HAZ of Type 304 stainless steel. The degree of sensitization was examined by EPR technique and the 10 % oxalic acid electrolytic etch test. The CO/sub 2/ laser with maximum power of 1.5 kW was used for heat-treatment. Time-Temperature-Desensitization diagram (TTDS diagram) for sensitized Type 304 stainless steels were developed by calculation assuming the chromium diffusion control for desensitization which might occur when the chromium depleted zone was healed up due to dissolution of chromium carbide and chromium diffusion from the matrix being heated at the solution annealing temperatures. TTDS diagrams calculated agree fairly well with ones determined by corrosion tests. Laser irradiation conditions (e.g., Laser power, beam diameter and traveling velocity) required for desensitization of sensitized Type 304 stainless steels were calculated using additivity rule from the TTDS diagram calculated and theoretical thermal curve of laser heating derived from the heat conduction theory. After laser beam irradiated under an optimum condition predicted by calculation, the sensitized HAZ of Type 304 stainless steel restored complete resistance to intergranular corrosion.

  11. Microstructure of laser cladded martensitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2006-08-01

    Full Text Available and martensite with 10% ferrite for Material B. Table 7 - Proposed martensitic stainless steel alloys for laser cladding Material C* Cr Ni Mn Si Mo Co Ms (ºC)* Cr eq Ni eq Material A 0.4 13 - 1 0.5 2.5 5.5 120 16.5 12.5 Material B 0.2 15 2 1 0.7 2.5 5.5 117... dilution, low heat input, less distortion, increased mechanical and corrosion properties excellent repeatability and control of process parameters. Solidification of laser cladded martensitic stainless steel is primarily austenitic. Microstructures...

  12. 76 FR 49726 - Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Sheet and Strip in...

    Science.gov (United States)

    2011-08-11

    ... martensitic precipitation-hardenable stainless steel, and (12) three specialty stainless steels typically used...\\ ``Gilphy 36'' is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is...-831] Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Sheet and Strip in...

  13. Mass spectrometric analysis of helium in stainless steel

    International Nuclear Information System (INIS)

    Isagawa, Hiroto; Wada, Yukio; Asakura, Yoshiro; Tsuji, Nobuo; Sato, Hitoshi; Tsutsumi, Kenichi

    1974-01-01

    Vacuum fusion mass-spectrometry was adopted for the analysis of helium in stainless steel. Samples were heated in a vacuum crucible, and helium in the samples was extracted and collected into a reservoir tank. The gas was then introduced through an orifice into a mass spectrometer, where the amount of helium was determined. The maspeq 070 quadrupole type mass spectrometer made by Shimazu Seisakusho, Ltd. was used. The resolving power was 150, and the mass range of the apparatus was 0-150. The determination limit of helium was about 2 x 10 -3 μg when standard helium gas was analyzed, and was about 10 -2 μg when the helium in stainless steel was analyzed. The relative standard deviation of helium intensity in repetitive measurement was about 2% in the amount of helium of 0.05 μg. Helium was injected into stainless steel by means of alpha particle irradiation with a cyclotron. The amount of helium in stainless steel was then determined. The energy of alpha particles was 34 MeV, and the beam area was 10 mm x 10 mm. The experimental data were higher than the expected value in one case, and were lower in the other case. This difference was attributable to the fluctuation of alpha particle beam, misplacement of sample plates, and unevenness of the alpha beam. (Fukutomi, T.)

  14. Product consistency testing of three reference glasses in stainless steel and perfluoroalkoxy resin vessels

    International Nuclear Information System (INIS)

    Olson, K.M.; Smith, G.L.; Marschman, S.C.

    1995-03-01

    Because of their chemical durability, silicate glasses have been proposed and researched since the mid-1950s as a medium for incorporating high-level radioactive waste (HLW) generated from processing of nuclear materials. A number of different waste forms were evaluated and ranked in the early 1980s; durability (leach resistance) was the highest weighted factor. Borosilicate glass was rated the best waste form available for incorporation of HLW. Four different types of vessels and three different glasses were used to study the possible effect of vessel composition on durability test results from the Production Consistency Test (PCT). The vessels were 45-m 304 stainless steel vessels, 150-m 304 L stainless steel vessels, and 60-m perfluoroalkoxy (PFA) fluoropolymer resin vessels. The three glasses were the Environmental Assessment glass manufactured by Corning Incorporated and supplied by Westinghouse Savannah River company, and West Valley Nuclear Services reference glasses 5 and 6, manufactured and supplied by Catholic University of America. Within experimental error, no differences were found in durability test results using the 3 different glasses in the 304L stainless steel or PFA fluoropolymer resin vessels over the seven-day test period

  15. Evaluation of deformation behavior of in grains and grain boundaries of L-grade austenitic stainless steel 316L

    International Nuclear Information System (INIS)

    Nagashima, Nobuo; Hayakawa, Masao; Tsukada, Takashi; Kaji, Yoshiyuki; Miwa, Yukio; Ando, Masami; Nakata, Kiyotomo

    2009-01-01

    In this study, micro-hardness tests and AFM observations were performed on SUS 316L low-carbon austenitic stainless steel pre-strained by cold rolling to investigate its deformation behavior. The following results were obtained. Despite the fact that the same plastic strain was applied, post-tensile test AFM showed narrower slip-band spacing in a reduction in area of 30% cold-rolled specimen than the unrolled specimen. Concentrated slip bands were observed near grain boundaries. These were presumably due to slip blocking at grain boundaries. SCC sensitivity increased at a hardness of 300 or higher, the frequency occurrence of a hardness of 300 or higher in the micro-hardness measurements was compared. The micro-hardness did not exceed 300 both within grains and at grain boundaries in the unrolled and up to a reduction in area of 20% cold-rolled specimens of before and after the tensile tests. Micro-hardness exceeding 300 was found to occur frequently in after tensile test specimens with a reduction in area of 30% or more, particularly at grain boundaries. It is suggested that the nonuniformity of deformation at grain boundaries plays an important role of IGSCC crack propagation mechanism of low-carbon austenitic stainless steel. (author)

  16. Joining method for pressure tube and martensitic stainless steel tube

    International Nuclear Information System (INIS)

    Kimoto, Hiroshi; Koike, Hiromitsu.

    1993-01-01

    In a joining portion of zirconium alloy and a stainless steel, the surface of martensitic stainless steel being in contact with Zr and Zr alloy is applied with a laser quenching solidification treatment before expanding joining of them to improve the surface. This can provide the surface with refined coagulated cell tissues and make deposits and impurities homogeneous and solubilized. As a result, the surface of the martensitic stainless steel has highly corrosion resistance, to suppress contact corrosion with Zr and Zr alloy. Accordingly, even if it is exposed to high temperature water of 200 to 350degC, failures of Zr and Zr alloy can be suppressed. (T.M.)

  17. The role of molybdenum in corrosion resistance of stainless steel

    International Nuclear Information System (INIS)

    Abdul Razak bin Daud

    1989-01-01

    The effect of Mo on corrosion properties of stainless steels in 1M MgCl 2 solution was studied using an electrochemical polarization method. Procedure for the preparation of electrochemically polarized samples for surface analysis is described. The samples surface were analyzed using X-ray Photoelectron Spectroscopy (XPS). The stainless steel which has high Mo content has a better resistance to corrosion in Cl containing media. Cr and Mo are enriched in the surface of Mo-bearing stainless steels which have undergone high anodic-metal dissolution. Mo may exist as MoO 2 which is responsible in slowing down the rate of corrosion attack. (author)

  18. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  19. Response of cast austenitic stainless steel to low temperature plasma carburizing.

    OpenAIRE

    Sun, Yong

    2008-01-01

    The response of a cast 316 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. The cast steel has a dendritic structure with a mix of austenite, ferrite and carbide phases. The results show that such a complex structure responds well to the carburizing process, and the inter-dendrite regions containing ferrite and carbides can be transformed to expanded austenite to form a continuous and uniform layer supersat...

  20. Analysis of the non-isothermal austenite-martensite transformation in 13% Cr-type martensitic stainless steels

    International Nuclear Information System (INIS)

    Garcia-De-Andris, C.; Alvarez, L.F.

    1996-01-01

    In martensitic stainless steels, as in other alloyed containing carbide-forming elements, the carbide dissolution and precipitation processes that take place during heat treatment can cause modifications to the chemical composition of the austenite phase of these steels. The chemical composition of this phase is a fundamental factor for the evolution of the martensitic transformation. As a result of their influence on the dissolution and precipitation processes, the parameters of the quenching heat treatment exert a strong influence on the behavior of the martensitic transformation in these steels. In the present study, the effect of the heating temperature and the cooling rate on the martensitic transformation in two 13% Cr-type martensitic stainless steels with different carbon contents were properly evaluated. (author)

  1. An efficient genetic algorithm for the design optimization of cold-formed steel portal frame buildings

    OpenAIRE

    Phan, Thanh Duoc; Lim, James; Tanyimboh, Tiku T.; Sha, Wei

    2013-01-01

    The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal sol...

  2. 77 FR 41969 - Stainless Steel Bar From Japan: Rescission of Antidumping Duty Administrative Review

    Science.gov (United States)

    2012-07-17

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-833] Stainless Steel Bar From... order on stainless steel bar from Japan (the Order) covering the period February 1, 2010, through... Suruga to the Secretary, ``Stainless Steel Bar--Withdrawal of Request for Administrative Review,'' dated...

  3. Pelepasan ion nikel dan kromium kawat Australia dan stainless steel dalam saliva buatan (The release of nickel and chromium ions from Australian wire and stainless steel in artificial saliva

    Directory of Open Access Journals (Sweden)

    Nolista Indah Rasyid

    2014-09-01

    Full Text Available Background: Fixed orthodontic treatment needs several types of wire to produce biomechanical force to move teeth. The use orthodontic wire within the mouth interacts with saliva, causing the release of nickel and chromium ions. Purpose: The study was aimed to examine the effect of immersion time in artificial saliva between special type of Australian wire and stainless steel on the release of nickel and chromium ions. Methods: Thirty special type Australian wires and 30 stainless steel wires were used in this study, each of which weighed 0.12 grams. The wires were immersed for 1, 7, 28, 35, 42, and 49 days in artificial saliva with a normal pH. The release of ions in saliva was examined using Atomic Absorption spectrophotometry. Results: The result indicated that the release of nickel ions on special type of Australian wire was larger than that on stainless steel wire (p<0.005, there were differences in the release of the amount of nickel ions on special type of Australia in different immersion time, and there was a correlation between the types of wire and immersion time. Nickel ions released from the special type of Australian wire detected on the 7th day of immersion and reached its peak on the 35th day, while from stainless steel wire were detected on the 49th day of immersion. The released of chromium ions from the special type of Australian wire and stainless steel wire were not detected until the 49th day of immersion. Conclusion: The release of nickel ions were highest on the 35th day of immersion in special type of Australian wire and they were detected on the 49th day in stainless steel wire. The release of chromium ions were not detected until 49th day of immersion in special type of Australian and stainless steel wire.Latar belakang: Perawatan ortodonti cekat memerlukan beberapa macam kawat untuk menghasilkan kekuatan biomekanika yang sesuai dalam menggerakkan gigi. Pemakaian kawat ortodonti di dalam mulut dapat bereaksi dengan

  4. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    International Nuclear Information System (INIS)

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-01-01

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  5. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada)

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  6. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    during forming resulting in seizure of the tool/steel sheet contact and extensive scratching of the steel sheet surface. As a result, a number of concepts have been developed in order to reduce the tendency to galling in metal forming, including the development of new dry lubricants, new forming tool...... steel grades and improved surface engineering treatments such as the deposition of low friction CVD and PVD coatings. In the present study the performance of a hot-melt dry lubricant in the forming of hot and cold rolled and hot-dip galvanized high strength steel has been evaluated and compared...... with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated...

  7. Occupational asthma due to manual metal-arc welding of special stainless steels.

    Science.gov (United States)

    Hannu, T; Piipari, R; Kasurinen, H; Keskinen, H; Tuppurainen, M; Tuomi, T

    2005-10-01

    Occupational asthma (OA) can be induced by fumes of manual metal-arc welding on stainless steel. In recent years, the use of special stainless steels (SSS) with high chromium content has increased. This study presents two cases of OA caused by manual metal-arc welding on SSS. In both cases, the diagnosis of OA was based on respiratory symptoms, occupational exposure and positive findings in the specific challenge tests. In the first case, a 46-yr-old welder had experienced severe dyspnoea while welding SSS (SMO steel), but not in other situations. Challenge tests with both mild steel and stainless steel using a common electrode were negative. Welding SSS with a special electrode caused a delayed 37% drop in forced expiratory volume in one second (FEV1). In the second case, a 34-yr-old male had started to experience dyspnoea during the past few years, while welding especially SSS (Duplex steel). The workplace peak expiratory flow monitoring was suggestive of OA. Challenge tests with both mild steel and stainless steel using a common electrode did not cause bronchial obstruction. Welding SSS with a special electrode caused a delayed 31% drop in FEV1. In conclusion, exposure to manual metal-arc welding fumes of special stainless steel should be considered as a new cause of occupational asthma.

  8. Growth of MWCNTs on Flexible Stainless Steels without Additional Catalysts

    Directory of Open Access Journals (Sweden)

    Udomdej Pakdee

    2017-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs were synthesized on austenitic stainless steel foils (Type 304 using a home-built thermal chemical vapor deposition (CVD under atmospheric pressure of hydrogen (H2 and acetylene (C2H2. During the growth, the stainless steel substrates were heated at different temperatures of 600, 700, 800, and 900°C. It was found that MWCNTs were grown on the stainless steel substrates heated at 600, 700, and 800°C while amorphous carbon film was grown at 900°C. The diameters of MWCNTs, as identified by scanning electron microscope (SEM images together with ImageJ software program, were found to be 67.7, 43.0, and 33.1 nm, respectively. The crystallinity of MWCNTs was investigated by an X-ray diffractometer. The number of graphitic walled layers and the inner diameter of MWCNTs were investigated using a transmission electron microscope (TEM. The occurrence of Fe3O4 nanoparticles associated with carbon element can be used to reveal the behavior of Fe in stainless steel as catalyst. Raman spectroscopy was used to confirm the growth and quality of MWCNTs. The results obtained in this work showed that the optimum heated stainless steel substrate temperature for the growth of effective MWCNTs is 700°C. Chemical states of MWCNTs were investigated by X-ray photoelectron spectroscopy (XPS using synchrotron light.

  9. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Furukawa, Kazuki; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki

    2014-01-01

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF 6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF 6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF 4 - , (CF 3 SO 2 ) 2 N - (TFSA - ) and ClO 4 - . The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO 4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF 6 - with the contaminate water will act as an F - source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF 6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF 6 salt or adding HF in the electrolyte

  10. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    International Nuclear Information System (INIS)

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu; Schulze, Hans-Peter; Besliu, Irina

    2011-01-01

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  11. Irradiated accelerated corrosion of stainless steel

    International Nuclear Information System (INIS)

    Raiman, S.S.; Wang, P.; Was, G.S.

    2015-01-01

    Type 316L stainless steel was exposed to a simulated PWR environment with in-situ proton irradiation to investigate the effect of simultaneous irradiation and corrosion. To enable these experiments, a dedicated beamline was constructed to transport a 3.2 MeV proton beam from a tandem accelerator, through the sample that also acts as the window between the beamline vacuum and a corrosion cell designed to flow primary water at 320 C. degrees and 13.1 MPa. Experiments were conducted on 316L stainless steel samples which were irradiated for 24 hours in 320 C. degrees water with 3 ppm H 2 , at dose rates of 7*10 -6 dpa/s and 7*10 -7 dpa/s, for 4, 24, and 72 hours. A dual-layer oxide formed on the samples, with an inner layer rich in Cr with Fe and Ni content, and an outer layer of Fe oxides. Samples were characterized with TEM (Transmission Electron Microscopy), EDS, and Raman spectroscopy to determine the effect of irradiation. Irradiated samples were found to have a thinner and more porous inner oxide which was deficient in chromium. The outer oxide was found to have significant hematite content, suggesting that irradiation led to an increase in ECP (Electro-Chemical Potential) at the oxide-solution interface, causing accelerated dissolution of the oxide under irradiation. (authors)

  12. DETECTION OF BACTERIAL BIOFILM ON STAINLESS STEEL BY HYPERSPECTRAL FLUORESCENCE IMAGING

    Science.gov (United States)

    In this study, hyperspectral fluorescence imaging techniques were investigated for detection of microbial biofilm on stainless steel plates typically used to manufacture food processing equipment. Stainless steel coupons were immersed in bacterium cultures consisting of nonpathogenic E. coli, Pseudo...

  13. Diffusionless bonding of aluminum to type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R D

    1963-03-15

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510{sup o}C) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  14. Diffusionless bonding of aluminum to type 304 stainless steel

    International Nuclear Information System (INIS)

    Watson, R.D.

    1963-03-01

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510 o C) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  15. Mechanism of creep in stainless steel

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Silveira, T.L.

    In the present work the creep criterions to identify the deformation mechanisms through the exponent of the strain rate versus stress relationship are presented. When applied to several stainless steels these criterions show an apparent contradiction for the proper mechanism acting at Σ/D above 10 9 /cm 2 . Microstructural aspects interfering in different manners with the fracture of these steels could be a reason for rationalizing the contradictory behavior. This is discussed in suggested deformation maps for the steels investigated [pt

  16. A New Maraging Stainless Steel with Excellent Strength–Toughness–Corrosion Synergy

    Directory of Open Access Journals (Sweden)

    Jialong Tian

    2017-11-01

    Full Text Available A new maraging stainless steel with superior strength–toughness–corrosion synergy has been developed based on an innovative concept of alloy design. The high strength–toughness combination is achieved by forming dispersive nano-sized intermetallic compounds in the soft lath martensitic matrix with a slight amount of residual austenite. The good corrosion resistance is guaranteed by exactly controlling the Co content based on understanding the synergistic effect between Co and Cr. The fine structure characteristics of two dominant strengthening precipitations including Ni3Ti and Mo-rich phases were finely characterized associated with transmission electron microscope (TEM and atom probe tomography (APT analyses. The relationship among microstructure, strength and toughness is discussed. The precipitation mechanism of different precipitates in the new maraging stainless steel is revealed based on the APT analysis.

  17. A New Maraging Stainless Steel with Excellent Strength-Toughness-Corrosion Synergy.

    Science.gov (United States)

    Tian, Jialong; Wang, Wei; Babar Shahzad, M; Yan, Wei; Shan, Yiyin; Jiang, Zhouhua; Yang, Ke

    2017-11-10

    A new maraging stainless steel with superior strength-toughness-corrosion synergy has been developed based on an innovative concept of alloy design. The high strength-toughness combination is achieved by forming dispersive nano-sized intermetallic compounds in the soft lath martensitic matrix with a slight amount of residual austenite. The good corrosion resistance is guaranteed by exactly controlling the Co content based on understanding the synergistic effect between Co and Cr. The fine structure characteristics of two dominant strengthening precipitations including Ni₃Ti and Mo-rich phases were finely characterized associated with transmission electron microscope (TEM) and atom probe tomography (APT) analyses. The relationship among microstructure, strength and toughness is discussed. The precipitation mechanism of different precipitates in the new maraging stainless steel is revealed based on the APT analysis.

  18. The #betta# irradiation-enhanced corrosion of stainless and mild steels by water in the presence of air, argon and hydrogen

    International Nuclear Information System (INIS)

    Burns, W.G.; Marsh, W.R.; Walters, W.S.

    1983-01-01

    When air-saturated pure water was #betta#-irradiated in the presence of air to high doses in sealed stainless steel containers hydrogen and oxygen were formed. The amounts were less than one tenth of the maximum possible for continuous aqueous radiolysis but the increase in oxygen appearing as gas was less than that equivalent to the hydrogen formed from the water present, indicating that metallic corrosion had occurred. In the absence of radiation no change in gas composition was observed. When the air in solution and in the gas space was replaced by argon or by hydrogen, radiolysis and corrosion were virtually suppressed. When the container was made of mild steel or strips of mild steel were initially introduced into a sealed stainless steel container containing air and water, oxygen was consumed on irradiation, and hydrogen was formed, together with a suspended brown oxide. In the absence of radiation oxygen was consumed and hydrogen was formed but both at a lower rate than in the presence of radiation. In this case, unlike the case of stainless steel, the formation of hydrogen was not prevented by replacing the air present with argon. The results are discussed. (author)

  19. Microstructural development during laser cladding of low-C martensitic stainless steel.

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2007-07-01

    Full Text Available Heat input plays an important role in the microstructural development of 12%Cr martensitic stainless steel. The microstructure of low-C 12%Cr martensitic stainless steel resulting from laser cladding was investigated. For 410L a ferritic...

  20. STRUCTURAL STABILITY OF HIGH NITROGEN AUSTENITIC STAINLESS STEELS

    Directory of Open Access Journals (Sweden)

    Jana Bakajová

    2011-05-01

    Full Text Available This paper deals with the structural stability of an austenitic stainless steel with high nitrogen content. The investigated steel was heat treated at 800°C using different annealing times. Investigation was carried out using light microscopy, transmission electron microscopy and thermodynamic calculations. Three phases were identified by electron diffraction: Cr2N, sigma – phase and M23C6. The thermodynamic prediction is in good agreement with the experimental result. The only is the M23C6 carbide phase which is not thermodynamically predicted. Cr2N is the majority secondary phase and occurs in the form of discrete particles or cells (lamellas of Cr2N and austenite.

  1. Study on optimum length of raw material in stainless steel high-lock nuts forging

    Science.gov (United States)

    Cheng, Meiwen; Liu, Fenglei; Zhao, Qingyun; Wang, Lidong

    2018-04-01

    Taking 302 stainless steel (1Cr18Ni9) high-lock nuts for research objects, adjusting the length of raw material, then using DEFORM software to simulate the isothermal forging process of each station and conducting the corresponding field tests to study the effects of raw material size on the stainless steel high-lock nuts forming performance. The tests show that the samples of each raw material length is basically the same as the results of the DEFORM software. When the length of the raw material is 10mm, the appearance size of the parts can meet the design requirements.

  2. Void swelling and phase stability in different heats of cold-drawn type 1.4970 stainless steel after heavy-ion irradiation

    International Nuclear Information System (INIS)

    Vaidya, W.V.; Knoblauch, G.; Ehrlich, K.

    1982-01-01

    The present investigations were undertaken with the aim to understand, to what extent variations of the tube fabrication parameters and slight modifications in the chemical composition might influence the swelling behavior of Type 1.4970 stainless steel. The parameters varied were: variations in the manufacturing parameters for cold-worked tubes (type and degree of drawing, solution-annealing temperature and thermomechanical treatments), and variations in minor elements (C, Ti, Mo) within the specified range of chemical composition. In addition, the Si-content and the Ti/C ratio - the so-called stabilization - were changed within a broader range. The samples were irradiated with 46 MeV-Ni-ions to 64 dpa at 575 0 C and swelling as well as austenite stability, formation of precipitates and other microstructural changes were investigated by TEM. Though the austenite was stable under irradiation with respect to ferrite/martensite-transformation, the cold-drawn alloys showed a tendency to recrystallize during irradiation and exhibited lean precipitation. With respect to swelling, the only parameter that substantially reduced it, was the high Si addition; otherwise the alloys were practically insensitive to changes in the investigated parameters. These results are discussed in terms of the radiation-induced recrystallization and the high-Si-effect, both of which are found to be beneficial in reducing swelling

  3. Evaluation of weld defects in stainless steel 316L pipe using guided wave

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Lee, Jin Kyung [Dept. of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of)

    2015-02-15

    Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

  4. Solidification Sequence of Spray-Formed Steels

    Science.gov (United States)

    Zepon, Guilherme; Ellendt, Nils; Uhlenwinkel, Volker; Bolfarini, Claudemiro

    2016-02-01

    Solidification in spray-forming is still an open discussion in the atomization and deposition area. This paper proposes a solidification model based on the equilibrium solidification path of alloys. The main assumptions of the model are that the deposition zone temperature must be above the alloy's solidus temperature and that the equilibrium liquid fraction at this temperature is reached, which involves partial remelting and/or redissolution of completely solidified droplets. When the deposition zone is cooled, solidification of the remaining liquid takes place under near equilibrium conditions. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to analyze the microstructures of two different spray-formed steel grades: (1) boron modified supermartensitic stainless steel (SMSS) and (2) D2 tool steel. The microstructures were analyzed to determine the sequence of phase formation during solidification. In both cases, the solidification model proposed was validated.

  5. 75 FR 81309 - Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan

    Science.gov (United States)

    2010-12-27

    ... (Second Review)] Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan AGENCY: United... on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan. SUMMARY: The... on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan would be likely to lead...

  6. 75 FR 32366 - Certain Steel Grating From the People's Republic of China: Final Determination of Sales at Less...

    Science.gov (United States)

    2010-06-08

    ... shape; (2) method of manufacture; (3) metallurgy (carbon, alloy, or stainless); (4) the profile of the... slit and expanded, and does not involve welding or joining of multiple pieces of steel. The scope of... cold formed, and does not involve welding or joining of multiple pieces of steel. Certain steel grating...

  7. Cryogenic properties of V-bearing austenitic stainless steel

    International Nuclear Information System (INIS)

    Nohara, Kiyohiko

    1985-01-01

    A new type austenitic stainless steel which is expected as the cryogenic structural material for superconducting magnets has been developed. This steel is that vanadium was added to SUS 316 stainless steel of low carbon and high nitrogen, which has the sufficient strength and toughness at 4 K, and maintains the stable nonmagnetic state. This is applicable both to the solution state and the state of carrying out age hardening heat treatment for precipitating Nb 3 Sn subsequent to it. Accordingly, this material can be applied to the sheath material for nuclear fusion and the manufacture of superconducting magnets by Wind and React process besides the candidate material of superconducting magnets for nuclear fusion. This phenomenon is due to the fact that vanadium carbide precipitates in crystal grains before chrome carbide precipitates at grain boundaries, thus the precipitation of chrome carbide is suppressed. In this experiment, the effect of vanadium addition on the cryogenic properties of SUS 316 stainless steel was examined. The experimental method and the results of the effects of vanadium and nitrogen, solution treatment and precipitation aging, and the measurement of magnetism are reported. (Kako, I.)

  8. Assessment of microstructure stability of cold worked Ti-modified austenitic stainless steel during aging using ultrasonic velocity measurements and correlation with mechanical properties

    International Nuclear Information System (INIS)

    Vasudevan, M.; Palanichamy, P.

    2003-01-01

    As ultrasonic velocity is sensitive to the changes in texture, it is a more reliable technique than mechanical property measurements for assessment of microstructural stability (recrystallization behaviour) of cold worked alloy where recrystallization is coupled with precipitation. Hence ultrasonic velocity measurements have been employed for studying the influence of Ti/C ratio on the microstructural stability of cold worked Ti-modified austenitic stainless steel during isochronal aging. In this alloy precipitation of TiC is known to retard recovery and recrystallization. The variation in ultrasonic velocity with aging temperature exhibited a three stage behaviour at all three frequencies employed (2, 10 and 20 MHz) and correlated well with the microstructural changes. Based on the microstructural investigations, the three stages have been identified to be recovery, progress of recrystallization and completion of recrystallization. There was one to one correspondence between the variation in the hardness, strength values and the variation in the ultrasonic velocity values as a function of aging temperature in assessing the microstructural changes, except when the interaction between the TiC precipitation and recrystallization is stronger

  9. Ultra-large size austenitic stainless steel forgings for fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    Tsukada, Hisashi; Suzuki, Komei; Sato, Ikuo; Miura, Ritsu.

    1988-01-01

    The large SUS 304 austenitic stainless steel forgings for the reactor vessel of the prototype FBR 'Monju' of 280 MWe output were successfully manufactured. The reactor vessel contains the heart of the reactor and sodium coolant at 530 deg C, and its inside diameter is about 7 m, and height is about 18 m. It is composed of 12 large forgings, that is, very thick flanges and shalls made by ring forging and an end plate made by disk forging and hot forming, using a special press machine. The manufacture of these large forgings utilized the results of the basic test on the material properties in high temperature environment and the effect that the manufacturing factors exert on the material properties and the results of the development of manufacturing techniques for superlarge forgings. The problems were the manufacturing techniques for the large ingots of 250 t class of high purity, the hot working techniques for stainless steel of fine grain size, the forging techniques for superlarge rings and disks, and the machining techniques of high precision for particularly large diameter, thin wall rings. The manufacture of these large stainless steel forgings is reported. (Kako, I.)

  10. Recrystallization and modification of the stainless-steel surface relief under photonic heat load in powerful plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: budaev@mail.ru; Martynenko, Yu. V. [National Research Centre Kurchatov Institute (Russian Federation); Khimchenko, L. N. [Project Center ITER (Russian Federation); Zhitlukhin, A. M.; Klimov, N. S. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Pitts, R. A. [ITER Organization (France); Linke, J. [EURATOM Association, Forschungszentrum Jülich GmbH (Germany); Bazylev, B. [IHM, Karlsruhe Institute of Technology (Germany); Belova, N. E.; Karpov, A. V. [National Research Centre Kurchatov Institute (Russian Federation); Kovalenko, D. V.; Podkovyrov, V. L.; Yaroshevskaya, A. D. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2013-11-15

    Targets made of ITER-grade 316L(N)-IG stainless steel and Russian-grade 12Cr18Ni10Ti stainless steel with a close composition were exposed at the QSPA-T plasma gun to plasma photonic radiation pulses simulating conditions of disruption mitigation in ITER. After a large number of pulses, modification of the stainless-steel surface was observed, such as the formation of a wavy structure, irregular roughness, and cracks on the target surface. X-ray and optic microscopic analyses of targets revealed changes in the orientation and dimensions of crystallites (grains) over a depth of up to 20 μm for 316L(N)-IG stainless steel after 200 pulses and up to 40 μm for 12Cr18Ni10Ti stainless steel after 50 pulses, which is significantly larger than the depth of the layer melted in one pulse (∼10 μm). In a series of 200 tests of ITER-grade 316L(N)-IG ITER stainless steel, a linear increase in the height of irregularity (roughness) with increasing number of pulses at a rate of up to ∼1 μm per pulse was observed. No alteration in the chemical composition of the stainless-steel surface in the series of tests was revealed. A model is developed that describes the formation of wavy irregularities on the melted metal surface with allowance for the nonlinear stage of instability of the melted layer with a vapor/plasma flow above it. A decisive factor in this case is the viscous flow of the melted metal from the troughs to tops of the wavy structure. The model predicts saturation of the growth of the wavy structure when its amplitude becomes comparable with its wavelength. Approaches to describing the observed stochastic relief and roughness of the stainless-steel surface formed in the series of tests are considered. The recurrence of the melting-solidification process in which mechanisms of the hill growth compete with the spreading of the material from the hills can result in the formation of a stochastic relief.

  11. Fatigue behavior of welded austenitic stainless steel in different environments

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  12. Penentuan konsentrasi stainless steel 316L dan kobalt kromium remanium GM-800 pada uji GPMT

    Directory of Open Access Journals (Sweden)

    Ikmal Hafizi

    2016-12-01

    Full Text Available Concentration determination of stainless steel 316L and cobalt chromium remanium GM - 800 on GPMT test. Dentistry had used metals such as cobalt chromium and stainless steel in maxillofacial surgery, cardiovascular, and as a dental material. 316L stainless steel is austenistic stainless steel which has low carbon composition to improve the corrosion resistance as well as the content of molybdenum in the material. Cobalt chromium (CoCr is a cobaltbased alloy with a mixture of chromium. Density of a metal cobalt chromium alloy is about 8-9 g/cm3 that caused metal interference relatively mild. Remanium GM-800 is one type of a cobalt chromium alloy with the advantages of having high resistance to fracture and high modulus of elasticity. This study aims to determine the exact concentration used in 316L stainless steel and cobalt chromium GM-800 as the GPMT test material. Subjects were cobalt chromium Remanium GM-800 and 316L stainless steel concentration of 5%, 10%, 20%, 40% and 80%. Patch containing stainless steel or cobalt chromium paste was af xed for 24 hours each on three experimental animals, then the erythema and edema were observed using the Magnusson and Kligman scale. In the study, concentration of 5% is the concentration recommended for stainless steel 316L and cobalt chromium GM-800 as material in challenge phase GPMT test, while the concentration of 40% is the concentration recommended for stainless steel 316L and cobalt chromium GM-800 in the induction phase. ABSTRAK Dunia kedokteran gigi banyak menggunakan logam pada pembedahan maxillofacial, cardiovascular, dan sebagai material dental. Logam yang banyak digunakan antara lain adalah kobalt kromium dan stainless steel. Stainless steel 316L merupakan austenistic stainless steel yang memiliki komposisi karbon rendah sehingga dapat meningkatkan ketahanan terhadap korosi sama halnya dengan kandungan molybdenum pada material tersebut. Kobalt kromium (CoCr adalah cobalt-based alloy dengan

  13. Assessment of bacterial biofilm on stainless steel by hyperspectral fluorescence imaging

    Science.gov (United States)

    Hyperspectral fluorescence imaging techniques were investigated for detection of two genera of microbial biofilms on stainless steel material which is commonly used to manufacture food processing equipment. Stainless steel coupons were deposited in nonpathogenic E. coli O157:H7 and Salmonella cultu...

  14. Effect of temperature on sintered austeno-ferritic stainless steel microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Munez, C.J. [Departamento de Ciencia e Ingenieria de Materiales, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain)], E-mail: claudio.munez@urjc.es; Utrilla, M.V.; Urena, A. [Departamento de Ciencia e Ingenieria de Materiales, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain)

    2008-09-08

    The influence of temperature on microstructural changes of sintered austeno-ferritic steels has been investigated. PM stainless steels have been obtained by sintering mixtures of austenitic and ferritic stainless steel powders. Only temperature-induced phase transformation was observed in austenite, as a result of elements interdiffusion between both phases. Microstructural characterization was completed with atomic force microscopy (AFM) and micro- and nano-indentation test, it is revealed an increase in the hardness with respect to the solutionized materials.

  15. Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S., E-mail: atef.hamada@suezuniv.edu.eg [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Box 43721, Suez (Egypt); Kisko, A.P. [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland); Sahu, P. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Karjalainen, L.P. [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland)

    2015-03-25

    Controlled martensitic reversion annealing was applied to a heavily cold-worked metastable austenitic low-Ni Cr–Mn austenitic stainless steel (Type 201) to obtain different ultrafine austenite grain sizes to enhance the mechanical properties, which were then compared with the conventional coarse-grained steel. Characterization of the deformed and reversion annealed microstructures was performed by electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and light and transmission electron microscopy (TEM). The steel with a reverted grain size ~1.5 μm due to annealing at 800 °C for 10 s showed significant improvements in the mechanical properties with yield stress ~800 MPa and tensile strength ~1100 MPa, while the corresponding properties of its coarse grained counterpart were ~450 MPa and ~900 MPa, respectively. However, the fracture elongation of the reversion annealed steel was ~50% as compared to ~70% in the coarse grained steel. A further advantage is that the anisotropy of mechanical properties present in work-hardened steels also disappears during reversion annealing.

  16. Impact Testing of Stainless Steel Materials

    International Nuclear Information System (INIS)

    R. K. Blandford; D. K. Morton; T. E. Rahl; S. D. Snow

    2005-01-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a ''total impact energy'' approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper

  17. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    International Nuclear Information System (INIS)

    Rozing, Goran; Marusic, Vlatko; Alar, Vesna

    2017-01-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  18. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rozing, Goran [Osijek Univ. (Croatia). Chair of Mechanical Engineering; Marusic, Vlatko [Osijek Univ. (Croatia). Dept. of Engineering Materials; Alar, Vesna [Zagreb Univ. (Croatia). Dept. Materials

    2017-04-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  19. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  20. Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel

    International Nuclear Information System (INIS)

    Hedstroem, Peter; Lienert, Ulrich; Almer, Jon; Oden, Magnus

    2007-01-01

    In situ high-energy X-ray diffraction during tensile loading has been used to investigate the evolution of lattice strains and the accompanying strain-induced martensitic transformation in cold-rolled sheets of a metastable stainless steel. At high applied strains the transformation to α-martensite occurs in stepwise bursts. These stepwise transformation events are correlated with stepwise increased lattice strains and peak broadening in the austenite phase. The stepwise transformation arises from growth of α-martensite embryos by autocatalytic transformation

  1. Infrared electro-thermal NDE of stainless steel

    International Nuclear Information System (INIS)

    Green, D.R.; Hassberger, J.A.

    1975-01-01

    Electro-thermal examination, a branch of thermal testing, is a promising method being developed for nondestructive examination of stainless steel welds. This paper describes the first phase of development; i.e., preliminary demonstration and laboratory evaluation of the method's sensitivity to notches in Type 304 stainless steel plate specimens. It also includes a description of the basic principles, together with a description of the hardware and experimental results showing that electrical discharge machined notches down to 0.16 cm long x 0.08 cm deep were detected. A qualitative technique for interpreting the test results to determine whether defects are at the surface or deeper within the material is demonstrated

  2. Effects of nitrogen on corrosion of stainless steels in a liquid sodium environment

    International Nuclear Information System (INIS)

    Suzuki, Tadashi; Mutoh, Isao

    1990-01-01

    The corrosion of ferritic stainless steels using sodium at 650degC in a maximum isothermal region contained in a non-isothermal sodium loop constructed of a Type 316 stainless steel has been examined. Also, previous results on corrosion of austenitic stainless steels in sodium at 700degC in the same loop have been reproduced. The selective dissolution and absorption of nickel, the selective dissolution of chromium, and the resultant increase in iron in the surface of stainless steels in the loop mainly determine the corrosion loss of the stainless steel specimens. The austenitic steels hardly decarburize, but denitride. The ferritic steels decarburize and denitride and the denitriding is more remarkable than the decarburizing. The vanadium and niobium, carbide and nitride formers, in the ferritic steels inhibit the decarburizing to some extent, but barely inhibit the denitriding. The nitrogen in the steels rapidly diffuses to the grain boundaries, and rapidly dissolves into sodium, which will lower surface energy of the steels to enhance the dissolution of other elements. The dissolved N in sodium would then be transported to the free surface of the sodium adjacent to the argon cover gas of sodium and easily be released into the cover gas. This mechanism would cause the rapid dissolution of nitrogen into sodium and the enhancement of the corrosion rate of the steels containing nitrogen. (orig.)

  3. Use of stainless steel as structural materials in reactor cores

    International Nuclear Information System (INIS)

    Teodoro, C.A.

    1990-01-01

    Austenitic stainless steels are used as structural materials in reactor cores, due to their good mechanical properties at working temperatures and high generalized corrosion resistance in aqueous medium. The objective of this paper is to compare several 300 series austenitic stainless steels related to mechanical properties, localized corrosion resistance (SCC and intergranular) and content of delta ferrite. (author)

  4. Chemical coloring on stainless steel by ultrasonic irradiation.

    Science.gov (United States)

    Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin

    2018-01-01

    To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Void swelling behaviour of austenitic stainless steel during electron irradiation

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Ti Zhongxin

    1994-04-01

    The irradiation swelling behaviour of 00Cr17Ni14Mo2 austenitic stainless steel (AISI 316L) was investigated by means of high voltage electron microscope. Results showed that in solution annealed condition almost no swelling incubation period existed, and the swelling shifted from the transition period to the steady-state one when the displacement damage was around 40 dpa. In cold rolled condition there was evidently incubation period, and when the displacement damage was up to 84 dpa the swelling still remained in the transition period. The average size and density of voids in both conditions were measured, and the factors, which influenced the void swelling, were discussed. (3 figs.)

  6. Cladding of aluminum on AISI 304L stainless steel by cold roll bonding: Mechanism, microstructure, and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Akramifard, H.R., E-mail: akrami.1367@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-08

    The AA1050 aluminum alloy and AISI 304L stainless steel sheets were stacked together to fabricate Al/304L/Al clad sheet composites by the cold roll bonding process, which was performed at temperatures of ∼100 and 23 °C to produce austenitic and austenitic–martensitic microstructures in the AISI 304L counterpart, respectively. The peel test results showed that the threshold reduction required to make a suitable bond at room temperature is below 10%, which is significantly lower than the required reduction for cold roll bonding of Al sheets. The tearing of the Al sheet during the peel test signified that the bond strength of the roll bonded sheets by only 38% reduction has reached the strength of Al, which is a key advantage of the developed sheets. The extrusion of Al through the surface cracks and settling inside the 304L surface valleys due to strong affinity between Al and Fe was found to be the bonding mechanism. Subsequently, the interface and tensile behaviors of three-layered clad sheets after soaking at 200–600 °C for 1 h were investigated to characterize the effect of annealing treatment on the formation and thickening of intermetallic compound layer and the resultant mechanical properties. Field emission scanning electron microscopy, X-ray diffraction, and optical microscopy techniques revealed that an intermediate layer composed mainly of Al{sub 13}Fe{sub 4}, FeC and Al{sub 8}SiC{sub 7} forms during annealing at 500–600 °C. A significant drop in tensile stress–strain curves after the maximum point (UTS) was correlated to the interface debonding. It was found that the formation of intermediate layer by post heat treatment deteriorates the bond quality and encourages the debonding process. Moreover, the existence of strain-induced martensite in clad sheets was found to play a key role in the enhancement of tensile strength.

  7. Development of laser cutting method for stainless steel liner

    International Nuclear Information System (INIS)

    Ishihara, Satoshi; Takahata, Masato; Wignarajah, Sivakumaran; Kamata, Hirofumi

    2007-01-01

    The present work is an attempt to develop a laser cutting method for cutting and removing stainless steel liners from concrete walls and floors in nuclear facilities. The effect of basic laser cutting parameters such as energy, cutting speed, assist gas flow etc. were first studied through cutting experiments on mock-up concrete specimens lined with 3mm thick stainless steel sheets using a 1kW Nd:YAG laser. These initial studies were followed by further studies on the effect of unevenness of the liner surface and on a new method of confining contamination during the cutting process using a sliding evacuation hood attached to the laser cutting head. The results showed that laser cutting is superior to other conventional cutting methods from the point of view of safety from radioactivity and work efficiency when cutting contaminated stainless steel liners. (author)

  8. Fatigue behaviour of friction welded medium carbon steel and austenitic stainless steel dissimilar joints

    International Nuclear Information System (INIS)

    Paventhan, R.; Lakshminarayanan, P.R.; Balasubramanian, V.

    2011-01-01

    Research highlights: → Fusion welding of dissimilar metals is a problem due to difference in properties. → Solid state welding process such as friction welding is a solution for the above problem. → Fatigue life of friction welded carbon steel and stainless steel joints are evaluated. → Effect of notch on the fatigue life of friction welded dissimilar joints is reported. → Formation of intermetallic is responsible for reduction in fatigue life of dissimilar joints. -- Abstract: This paper reports the fatigue behaviour of friction welded medium carbon steel-austenitic stainless steel (MCS-ASS) dissimilar joints. Commercial grade medium carbon steel rods of 12 mm diameter and AISI 304 grade austenitic stainless steel rods of 12 mm diameter were used to fabricate the joints. A constant speed, continuous drive friction welding machine was used to fabricate the joints. Fatigue life of the joints was evaluated conducting the experiments using rotary bending fatigue testing machine (R = -1). Applied stress vs. number of cycles to failure (S-N) curve was plotted for unnotched and notched specimens. Basquin constants, fatigue strength, fatigue notch factor and notch sensitivity factor were evaluated for the dissimilar joints. Fatigue strength of the joints is correlated with microstructure, microhardness and tensile properties of the joints.

  9. Characterisation of boric acid aerosol behaviour and interactions with stainless steel

    International Nuclear Information System (INIS)

    Anderson, A.B.; Beard, A.M.; Bennett, P.J.; Benson, C.G.

    1991-03-01

    Experiments have been conducted to determine the physical characteristics of boric acid aerosol. Aqueous solutions of boric acid (either 200 or 2000 ppm boron) were injected at a controlled rate onto a 304 stainless steel cone held at 1000 o C. The transport and deposition of the resulting aerosol was studied through a system including pipework and a dilution chamber. Work was also undertaken to characterise the interaction between boric acid and stainless steel. Boric acid was vaporized in steam-argon atmospheres at 300 o C and passed over 304 stainless steel coupons held at temperatures between 400 and 1000 o C. (author)

  10. Hydroxyapatite coating on stainless steel by biomimetic method

    International Nuclear Information System (INIS)

    Dias, V.M.; Maia Filho, A.L.M.; Silva, G.; Sousa, E. de; Cardoso, K.R.

    2010-01-01

    Austenitic stainless steels are widely used in implants due to their high mechanical strength and corrosion, however, are not able to connect to bone tissue and were classified as bioinert. The calcium phosphate ceramics such as hydroxyapatite (HA) are bioactive materials and create strong chemical bonds with bone tissue, but its brittleness and low fracture toughness render its use in conditions of high mechanical stress. The coating of steel with the bioactive ceramics such as HA, combines the properties of interest of both materials, accelerating bone formation around the implant. In this study, austenitic stainless steel samples were coated with apatite using the biomimetic method. The effect of three different surface conditions of steel and the immersion time in the SBF solution on the coating was evaluated. The samples were characterized by SEM, EDS and X-ray diffraction. (author)

  11. Niobium stainless steel for implants

    International Nuclear Information System (INIS)

    Rollo, J.M.D.A.

    1983-01-01

    The materials that have often been used, during the last two or three decades, to carry out materials for implants are made according to the specifications: a)A.S.T.M. (F.55-76, F.56-76, F.138-76, F.139-76) stainless steel b)A.S.T.M. (F.75-76), cobalt-chromium-molybdenum alloys. c)A.S.T.M. (F.90-76), cobalt-chromium-tungsten-nickel alloys. d)A.S.T.M. (F.67-77), unalloyed titanium. e)A.S.T.M. (F.136-70), titanium alloys. It was the purpose of retaking them, toverify the niobium influence as alloy element in ANSI/ASTM F.55-76 classification stainless steels, usually for these materials elaboration. The problem by substituting molybdenum total or partially for niobium, by comparing the mechanical and corrosion properties, and biocompatibility is presented, by pointing out the variables of these substitutions, when we employ this new material to perform materials for implants. (Author) [pt

  12. Radiation blistering of stainless steel

    International Nuclear Information System (INIS)

    Yoshii, Naritsugu; Tanabe, Tetsuo; Imoto, Shosuke

    1980-01-01

    Surface blistering of stainless steels due to 20 keV He + ion bombardment has been investigated by examination of surface topography with a scanning electron microscope (SEM) and an optical microscope. Blisters of 0.1 to 2 μm in diameter are observed in all samples irradiated with fluence of about 1 x 10 18 He + /cm 2 at any temperature between -80 0 C and 500 0 C. With increasing the fluence blister covers are ruptured and exfoliated and finally the surface becomes rough surface without traces of blister formation. The surface effect is severer at 500 0 C than at 100 0 C irradiation. Also in double-phase stainless steel DP-3, similar surface topography to 316 SS is observed. But by the difference of the erosion rate by sputtering of the surface between α-phase and γ-phase, a striped pattern appears in DP-3 with heavy irradiation of about 2 x 10 19 He + /cm 2 . (author)

  13. The influence of temperature on low cycle fatigue behavior of prior cold worked 316L stainless steel (II) : life prediction and failure mechanism

    International Nuclear Information System (INIS)

    Hong, Seong Gu; Yoon, Sam Son; Lee, Soon Bok

    2003-01-01

    Tensile and low cycle fatigue tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650 deg. C. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM

  14. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    OpenAIRE

    Oliveira,Maíra Maciel Mattos de; Brugnera,Danilo Florisvaldo; Alves,Eduardo; Piccoli,Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ?C and stirring of 50 rpm. The number of adhered cells was de...

  15. Effect of Low-Temperature Sensitization on Hydrogen Embrittlement of 301 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Chieh Yu

    2017-02-01

    Full Text Available The effect of metastable austenite on the hydrogen embrittlement (HE of cold-rolled (30% reduction in thickness 301 stainless steel (SS was investigated. Cold-rolled (CR specimens were hydrogen-charged in an autoclave at 300 or 450 °C under a pressure of 10 MPa for 160 h before tensile tests. Both ordinary and notched tensile tests were performed in air to measure the tensile properties of the non-charged and charged specimens. The results indicated that cold rolling caused the transformation of austenite into α′ and ε-martensite in the 301 SS. Aging at 450 °C enhanced the precipitation of M23C6 carbides, G, and σ phases in the cold-rolled specimen. In addition, the formation of α′ martensite and M23C6 carbides along the grain boundaries increased the HE susceptibility and low-temperature sensitization of the 450 °C-aged 301 SS. In contrast, the grain boundary α′-martensite and M23C6 carbides were not observed in the as-rolled and 300 °C-aged specimens.

  16. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Harald; Mattissen, Dorothea; Schaumann, Thomas Wilhelm [ThyssenKrupp Steel AG, Center of Materials Excellence, Dortmund (Germany)

    2009-01-15

    Advanced high-strength steels offer a great potential for the further development of automobile bodies-in-white due to their combined mechanical properties of high formability and strength. They represent the first choice in material selection for strength and crash-relevant parts with challenging geometries. The intensive development of multiphase steels by ThyssenKrupp Steel has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex-phase steels are currently produced in addition to cold rolled dual phase (DP) and retained austenite (RA) or transformation induced plasticity (TRIP) steels. New continuously annealed grades of steel are being developed with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for the high demands of structural automobile components. These steels make use of the classic advantages of microalloying as well as the principles of DP steels and RA / TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (orig.)

  17. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Lambrinou, Konstantina, E-mail: klambrin@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Charalampopoulou, Evangelia [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Van der Donck, Tom [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven (Belgium); Delville, Rémi [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Schryvers, Dominique [University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2017-07-15

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10{sup −8} mass%) static liquid lead-bismuth eutectic (LBE) for 253–3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack. - Highlights: •Dissolution corrosion was more severe in cold-deformed than solution-annealed 316L steels. •LBE penetration occurred along preferential paths in the steel microstructure. •The maximum dissolution rate was inversely proportionate to the depth of dissolution.

  18. Quality control of stainless steel pipings for nuclear power generation

    International Nuclear Information System (INIS)

    Miki, Minoru; Kitamura, Ichiro; Ito, Hisao; Sasaki, Ryoichi

    1979-01-01

    The proportion of nuclear power in total power generation is increasing recently in order to avoid the concentrated dependence on petroleum resources, consequently the reliability of operation of nuclear power plants has become important. In order to improve the reliability of plants, the reliability of each machine or equipment must be improved, and for the purpose, the quality control at the time of manufacture is the important factor. The piping systems for BWRs are mostly made of carbon steel, and stainless steel pipings are used for the recirculation system cooling reactors and instrumentation system. Recently, grain boundary type stress corrosion cracking has occurred in the heat-affected zones of welded stainless steel pipings in some BWR plants. In this paper, the quality control of stainless steel pipings is described from the standpoint of preventing stress corrosion cracking in BWR plants. The pipings for nuclear power plants must have sufficient toughness so that the sudden rupture never occurs, and also sufficient corrosion resistance so that corrosion products do not raise the radioactivity level in reactors. The stress corrosion cracking occurred in SUS 304 pipings, the factors affecting the quality of stainless steel pipings, the working method which improves the corrosion resistance and welding control are explained. (Kako, I.)

  19. Failure of Stainless Steel Welds Due to Microstructural Damage Prevented by In Situ Metallography

    Directory of Open Access Journals (Sweden)

    Juan Manuel Salgado Lopez

    Full Text Available Abstract In stainless steels, microstructural damage is caused by precipitation of chromium carbides or sigma phase. These microconstituents are detrimental in stainless steel welds because they lead to weld decay. Nevertheless, they are prone to appear in the heat affected zone (HAZ microstructure of stainless steel welds. This is particularly important for repairs of industrial components made of austenitic stainless steel. Non-destructive metallography can be applied in welding repairs of AISI 304 stainless steel components where it is difficult to ensure that no detrimental phase is present in the HAZ microstructure. The need of microstructural inspection in repairs of AISI 304 is caused because it is not possible to manufacture coupons for destructive metallography, with which the microstructure can be analyzed. In this work, it is proposed to apply in situ metallography as non-destructive testing in order to identify microstructural damage in the microstructure of AISI 304 stainless steel welds. The results of this study showed that the external surface micrographs of the weldment are representative of HAZ microstructure of the stainless steel component; because they show the presence of precipitated metallic carbides in the grain boundaries or sigma phase in the microstructure of the HAZ.

  20. 75 FR 67110 - Forged Stainless Steel Flanges From India and Taiwan

    Science.gov (United States)

    2010-11-01

    ... Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade Commission. ACTION... India and Taiwan. SUMMARY: The Commission hereby gives notice that it has instituted reviews pursuant to... the antidumping duty orders on forged stainless steel flanges from India and Taiwan would be likely to...